PHARMACEUTICAL MANUFACTURING ENCYCLOPEDIA

Second Edition

Reprint Edition

by

Marshall Sittig

Volume 1 A-K

Copyright © 1988 by Marshall Sittig

No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the Publisher.

Library of Congress Catalog Card Number: 87-31547

ISBN: 0-8155-1144-2 Printed in the United States

Published in the United States of America by Noyes Publications Fairview Avenue, Westwood, New Jersey 07675

109876543

Library of Congress Cataloging-in-Publication Data

Sittig, Marshall.

Pharmaceutical manufacturing encyclopedia.

Includes bibliographies and indexes.
1. Drugs--Synthesis--Dictionaries. 2. Chemistry,
Pharmaceutical--Dictionaries. 1. Title.
RS402.5.\$58 1988 615'.191 87-31547
ISBN 0-8155-1144-2

Foreword

The worldwide pharmaceutical industry has a dollar sales volume greater than \$100 billion with a number of individual drugs boasting sales volumes of over \$100 million each. Indeed some drugs have been called "blockbuster drugs"—those generating at least \$300 million in new revenues each year. The profit margins in drug manufacture are higher than the rest of the chemical industry and, of course, research expenditures are huge in order to maintain position and develop new drugs in this highly competitive industry.

The present-day drug industry is one of rapid change.

Patents on current best-selling drugs are expiring. It has been estimated that the top 100 products in the marketplace will all come off patent (that is, the basic patents will expire) in the period between 1973 and 1990.

As patents expire, exclusivity of producing a trade-named product will pass and competitive-versions of the basic drug will be marketed under generic names (or other new trade names) by new manufacturers. It has been estimated that 40% of the drugs on the market in 1990 will be generic drugs.

New products will come on the market as

New products are developed through research.

Products now marketed in Europe and Asia attain approved status by the U.S. Food and Drug Administration (FDA) and enter the huge and lucrative American market.

Information on patented processes offers a number of commercial opportunities:

- (1) The patent expiration date (in the U.S. usually 17 years after the patent issuance date cited) offers the opportunity to duplicate and practice the patented process without legal conflict after expiration.
- (2) The statement of ownership of the patents affords the opportunity to license the patent in question from the patent holder.
- (3) The definition of the patented process offers the opportunity to an innovative chemist to develop a process which bypasses the original patent claims and offers a new legally clear route to an economically attractive product.

This encyclopedic work gives details for the manufacture of 1295 pharmaceuticals, now being marketed as trade-named products somewhere in the world. The pertinent process information has been obtained from examples given in the pertinent patent literature (usually U.S. patents and sometimes British patents).

In addition to the patent-derived process information, references are also cited under each drug's entry to major pharmaceutical reference works where additional information can be obtained on synthesis methods and the pharmacology of the individual products.

This work is presented in two volumes. The arrangement within the books is alphabetic by generic name. The table of contents appears at the beginning of Volume 1. There is also an index by trade names used in many of the countries in the world. Another index lists the raw materials used in the manufacture of the various drugs, an index which should be commercially valuable to suppliers of chemical raw materials to the pharmaceutical industry. These indexes appear at the end of Volume 2.

These volumes provide a handy first reference both to manufacturing process and also to other reference sources where additional details on the product may be found.

This handbook should be useful as an initial point of access to the commercial pharmaceutical literature. It can be consulted as a master source before using computerized retrieval even if computer data on the pertinent literature are readily available.

This work summarizes practical information available from the work of hundreds of pharmaceutical research laboratories and of thousands of chemists in those laboratories in developing thousands of commercial products.

Finally, it is hoped that these books will offer a sort of blueprint for entry into profitable generic drug manufacture. Companies not now in the drug business but with some expertise in fermentation processes and/or chemical synthesis may be able to add a few technical people and make a relatively small investment to get themselves on the first rung of the ladder to being pharmaceutical producers. Study of available technology, patent expiration dates and existing markets for particular trade-named drugs may well lead to routes to promising new ventures.

NOTICE

To the best of the Publisher's knowledge the information contained in this book is accurate; however, the Publisher assumes no responsibility nor liability for errors or any consequences arising from the use of the information contained herein. Final determination of the suitability of any information, procedure, or product for use contemplated by any user, and the manner of that use, is the sole responsibility of the user. The book is intended for informational purposes only. Due caution should be exercised in the use and handling of those raw materials that are potentially hazardous. Expert advice should be obtained at all times when manufacturing implementation is being considered. In the case of personal use of any of the products included, the manufacturer's medical instructions should be followed. Mention of trade names does not indicate endorsement by the Author nor the Publisher.

It should be noted that the manufacturing procedures described are based on patented processes and that a proper license must be obtained for the use of such processes, if the patent has not expired.

Contents

Introduction	
Acebutolof	
Aceclidine	
Aceglutamide Aluminum	
Acemetacin	
Acenocoumarol (Acenocoumarin)	j
Acetaminophen	
Acetazolamide	į
Acetohexamide	j
Acetophenazine Dimaleate	ì
Acetoxolone Aluminum Salt	J
Acetrizoate Sodium)
Acetylcysteine	
Acetyldigitoxin	
Acetyl Sulfisoxazole	
Aclarubicin	ļ
Aclatonium Napadisylate	ì
Acyclovir	
Adenosine Triphosphate	
Afloquatione	
Albendazole	
Albuterol	
Alcofenac	
Alcuronium Chloride	
Alfacalcidol	
Alfaxalone	
Alfentanil Hydrochloride	
Algestone Acetophenide	
Alibendol	
Alizapride	
Alkofanone	
Allopurinol	
Alphaprodine Hydrochloride	i
Alprazolam	
Alprenolol Hydrochloride	
Altretamine	
Aluminum Nicotinate	
Amantidine Hydrochloride	
Ambenonium Chloride	
Ambroxol	
Ambuphylline	
Ambuside	
Amcinonide	
Annaholius Mathal Culfer	

Amikacin	57
Amiloride Hydrochloride	60
Amineptine Hydrochloride	61
Aminobenzoic Acid	62
Aminocaproic Acid	64
Aminoglutethimide	65
Aminometradine	66
Aminopentamide	67
Aminosalicylic Acid	68
Amiodarone Hydrochloride	69
Amisometradine	
Amitriptyline Hydrochloride	
Amitriptyline Oxide	73
Amixetrine Hydrochloride	74
Amodiaguin	
Amoxapine	
Amoxicillin	
Amphetamine Phosphate	81
Amphomycin Calcium	
Amphotericin B	
Ampicillin	
Ampicillin Trihydrate	
Amrinone	
Ancitabine Hydrochloride	
Angiotensin Amide	
Anileridine Dihydrochloride	
Anisindione	
Anisotropine Methylbromide	
Antazoline Hydrochloride	
Antrafenine	
Apalcillin Sodium	
Apazone	
Aprindine Hydrochloride	
Arginine Glutamate	
Asparaginase	
Aspartame	
Aspirin	
Astemizole	
Atenolol	
Atracurium Besylate	
Auranofin	
Aurothioglycanide	
Azacyclonol	
Azanidazole	
Azapetine Phosphate	
Azatadine Maleate	
Azathioprine	
Azidocillin	
Azlocillin.	
Azosemide	
Azosemide	
Bacampicillin	124
Bacitracin	
Baclofen	
Barbexaclone	
Batroxobin	
Beclamide	
Beclomethasone Dipropionate	
Decignical description are a series and a series and a series are a series and a series are a se	130

ix

x Contents

dumadizon. dumetanide dunitrolol dupivacaine dupranolol dusulfan dutalamine Hydrochloride dutamirate Citrate dutethamine duthiazide dutofilolol dutorphanol dutorpium Bromide	. 202 . 203 . 204 . 205 . 206 . 207 . 208 . 209 . 210 . 212 . 213
Safaminol	. 215
Calcifediol	. 215
Calcitonin	
Calcitriol	
Calusterone	
amazepam	
Candicidin	
Canrenoate Potassium	
Capreomycin Sulfate	
Captodiamine	
Captopril	
Caramiphen Edisylate	
Carazoloi	
Carbachol	
Carbamazepine	_
Carbaspirin Calcium	
Carbazochrome	. 234
Carbenicillin Disodium	. 235
Carbenicillin Indanyl Sodium	. 237
Carbenoxolone	. 238
Carbidopa	
Carbinoxamine Maleate	. 241
Carbocysteine	. 242
Carbomycin	
Carboquone	. 245
Carbuterol	
Cargutocin	. 247
Carisoprodol	. 248
Carmofur	. 249
Carnitine	. 250
Garotene	. 252
Caroxazone	. 253
Carphenazine Maleate	. 254
Carprofen	. 255
Carteolol	. 256
Carticaine	. 257
Cefaclor	
Cefadroxil	
Cefamandole Nafate Sodium Salt	
Cefatrizine	
Cefazolin Sodium	
Cefmenoxime	. 265
Cefonerazone	. 266

Cefotaxime Sodium	267
Cefoxitin Sodium	268
Cefroxadine	269
Cefsulodin	
Ceftazidime	
Ceftizoxime	
Ceftriaxone Sodium	
Cefuroxime	
Celiprolol	
Cephacetrile Sodium	
Cephalexin	
Cephaloglycin	282
Cephaloridine	
Cephalothin Sodium	
Cephapirin Sodium	287
Cephradine	289
Ceruletide	291
Cetiedil	292
Chenodiol	293
Chlophedianol	294
Chloral Betaine	295
Chlorambucil	296
Chloramphenicol	297
Chloramphenicol Palmitate	301
Chlorcyclizine	302
Chlordantoin	303
Chlordiazepoxide Hydrochloride	304
Chlorhexidine	306
Chlorisondamine Chloride	307
Chlormerodrin	308
Chlormezanone	309
Chloroprocaine Hydrochloride	310
Chloroquine Phosphate	312
Chlorothiazide	313
Chlorotrianisene	314
4-Chloro-3,5-Xylenol	315
Chlorphenesin Carbamate	316
Chlorpheniramine Maleate	317
Chlorphenoxamine Hydrochloride	319
Chlorproethazine HCl	
Chlorpromazine Hydrochloride	321
Chlorpropamide	323
Chlorprothixene	325
Chlorquinaldol	326
Chlortetracycline	327
Chlorthalidone	329
Chlorthenoxazine	
Chlorzoxazone	
Choline Dihydrogen Citrate	
Choline Salicylate	334
Choline Theophyllinate	
Chromonar Hydrochloride	
Chymopapain	
Ciclonicate	
Ciclopiroxolamine	
Cicloxilic Acid	
Cimetidine	341
Cinepazet Maleate	343

Cinnarizine	
Cinoxacin	
Ciprofibrate	
Citicoline	347
Citiolone	349
Clavulanic Acid	350
Clemastine Fumarate	351
Clemizole	353
Cienbuterol	354
Clidanac	355
Clidinium Bromide	356
Clindamycin Hydrochloride	357
Clinofibrate	358
Clobazam	359
Clobetasol	361
Clobutinol	361
Clocapramine	363
	363
Clofibrate	364
Clofibride	
Clofoctol	
Clomiphene Dihydrogen Citrate	
Clomipramine	
Clonazepam	
Clonidine Hydrochloride	
Clopenthixol	
Cloperastine	
Cloprednol	
Clorazepate Dipotassium	
Clorexolone	
Clorprenaline	
Clortermine Hydrochloride	
Clotiazepam	
Clotrimazole.	
Cloxacillin	
Cloxazolam	
Clozapine	
Colestipol	
Cortisone Acetate	
Cortivazol	
Creatinolfosfate	
Cromolyn Sodium	
Crotamiton	
Cryptenamine Tannates	
Cyamemazine	
Cyanocobalamin	
Cyclacillin	
Cyclamate Calcium	
Cyclandelate	
Cyclarbamate	
Cyclizine	
Cyclobenzaprine	
Cyclobutyrol	
Cyclofenil	
Cyclomethycaine	
Cyclopentamine Hydrochloride	
Cyclopentolate Hydrochloride	413
Cyclopherphamide	413

Cycloserine	
Cyclosporin	
Cyclothiazide	
Cycrimine Hydrochloride	
Cyproheptadine	420
Cyproterone Acetate	422
Cytarabine Hydrochloride	423
Dactinomycin	426
Danazoi	
Dantrolene Sodium	
Dapsone	
Daunorubicin	
Deanol Acetamidobenzoate	
Debrisoquin	433
Defosfamide	434
Demecarium Bromide	
Demeclocycline Hydrochloride	
Demegestone	
Demexiptiline HCl	
Descrpidine	
Desipramine Hydrochloride	443
Desmopressin	
Desogestrel	445
Desonide	446
Desoximetasone	447
Dexamethasone Acetate	449
Dexamethasone-21-Linoleate	450
Dexamethasone Phosphate	
Dexbrompheniramine Maleate	
Dexchlorpheniramine Maleate	454
Dexetimide	455
Dexpanthenol	456
Dextran 40	457
Dextroamphetamine Sulfate	458
Dextromethorphan Hydrobromide	459
Diamthazole Dihydrochloride	461
Diatrizoate Sodium	462
Diazepam	463
Diazoxide	467
Dibekacin	468
Dibenzepin Hydrochloride	470
Dibutoline Sulfate	471
Dichlorisone Acetate	472
Dichlorphenamide	473
Diclofenac Sodium	474
Dicloxacillin Sodium	476
Dicyclomine Hydrochloride	477
Dienestrol	479
Diethylcarbamazine Citrate	480
Diethylpropion HCl	481
Diethylstilbestrol	482
Diethylstilbestrol Diphosphate	
Difenoxine	
Diflorasone Diacetate	
Diflucortolone Valerate	
Diflunisal	489
	400

Dihydrostreptomycin Sulfate		
Dihydrotachysterol		
Dilazep Hydrochloride		
Diltiazem Hydrochloride		
Dimenhydrinate		496
Dimercaprol		498
Dimetacrine Tartrate		499
Dimethicone		500
Dimethindene Maleate		502
Dimethisoquin		503
Dimethisterone		504
Dimethoxanate		505
Dimethyl Sulfoxide		506
Dimethyl Tubocurarine lodide		507
Dinoprost Tromethamine		
Dinoprostone		
Diosmin		
Dioxyline Phosphate		-
Diphemanil Methylsulfate		
Diphenadione		
Diphenhydramine Hydrochloride		
Diphenidol		
Diphenoxylate Hydrochloride		
Diphenoxylate Hydrochionae		
Diphenylpyraline Hydrochloride		
Dipivefrin		
Dipyridamole		
Disopyramide Phosphate		
Distigmine Bromide		
Disulfiram		
Ditazol		
Dithiazanine Iodide		
Dixyrazine		
Dobesilate Calcium		
Dobu tamine		
Docusate Calcium		
Domiphen Bromide		
Domperidone		
Doxapram Hydrochloride		
Doxepin Hydrochloride		
Doxorubicin		
Doxycycline		
Dromostanolone Propionate		
Droperidol		543
Droprenilamine HCl		545
Dyclonine Hydrochloride		545
Dydrogesterone		546
Dyphylline		547
Echothiopate Iodide		550
Econazole Nitrate		
Ectylurea		
Edetate Disodium		
Edrophonium Chloride		
Emylcamate		
Endralazine	-	
Enflurane		
Enviomycin		559
wildingon		

Eperisone HCl . , . ,	. 560)
Epicillin	. 560)
Epimestrol	. 562	2
Epinephryl Borate	. 563	3
Epirizole	. 563	3
Epitiostanol	. 565	Ś
Eprazinone HCI	. 565	5
Eprozinol	. 566	ò
Erythromycin		
Erythromycin Estolate	. 570)
Erythromycin Gluceptate		
Erythromycin Lactobionate		
Erythromycin Stearate		
Estazolam		
Estradiol Cypionate		
Estradiol Valerate		
Estramustine Phosphate		
Estriol Succinate		
Ethacrynic Acid		
Ethambutol Hydrochloride		
Ethamivan		_
Ethamsylate		
Ethclorvynol		
Ethiazide		
Ethinamate		
Ethinylestradiol		
Ethionamide		
Ethoheptazine		
Ethopropazine Hydrochloride		
Ethosuximide		
Ethotoin		
Ethoxzolamide		
Ethyl Biscoumacetate		
Ethylestrenol		
Ethynodiol Diacetate		
Etidocaine HCl		
Etidronate Disodium		
Etifelmine		-
Etifoxine		
Etilefrine Pivalate Hydrochloride		
Etiroxate		
Etodroxizine	-	-
Etofenamate		
Etofibrate		
Etofylline Clofibrate		
Etomidate Hydrochloride		
Etomidoline		
Etozolin		
Etretinate		
Etryptamine		
Exalamide		
Exiproben		
Exiproper	. 011	,
Fazidinium Bromide	. 61	7
Febantel		•
Febuprol		_
Felypressin.		
Ecopordayolo	62	

Fenbufen	
Fendiline Hydrochloride	623
Fenethylline HCI	624
Fenipentol	625
Fenofibrate	
Fenoprofen	
Fenoterol Hydrobromide	629
Fenoxedil	630
Fenproporex	631
Fenspiride	632
Fentanyl	633
Fentiazac	634
Fentonium Bromide	636
Feprazone	
Ferrocholinate	
Ferroglycine Sulfate	
Ferrous Fumarate	
Fibrinolysin	
Flavoxate Hydrochloride	
Flecainide	
Floctafenine	
Fiorantyrone	
Floredil Hydrochloride	
Floxacillin	640
Floxuridine	
Fluazacort	051
Flubendazole	653
Fluctoronide	654
Flucytosine	
Fludiazepam Hydrochloride	05/
Fludrocortisone Acetate	
Flumequine	
Flumethasone	
Flumethiazide	
Flunarizine HCl	
Flunisolide	
Flunitrazepam.	664
Fluocinolone Acetonide	
Fluocinonide	
Fluocortin Butyl	
Fluocortolone	
Fluorometholone	
Fluorouracil	
Fluoxymesterone	
Flupentixol	
Fluphenazine Hydrochloride	681
Fluprednidene Acetate	683
Fluprednisolone	685
Flurandrenolide	686
Flurazepam	687
Flurbiprofen	689
Flurothyl.	690
Fluroxene	691
Fluspirilene	
Flutamide	
Fluvoxamine Maleate	
Folic Acid	
Fominoben HCI	697

Fomocaine	599
Fonazine Mesylate	399
Formocortal Acetate	701
Fosfomycin	702
Fructose,	703
Fumagillin	
Furaltadone	
Furazabol	
Furazolidone	
Furosemide	
Fursultiamine	
Furtrethonium Iodide	
Fusafungine	/13
	717
Gemeprost	
	719
Gentamicin Sulfate	720
Gepefrin	723
Glafenine	723
Glaucarubin	725
	726
Glibornuride	728
	729
Glipizide	
Gliquidone	
	732
Glucagon	
	733 733
Glybuzole	
	735
	736
Gramicidin	
	739
Guaifenesin	740
Guanabenz	742
Guanadrel Sulfate	743
Guanethidine Sulfate	744
	745
	746
,	
Halazepam	748
Halcinonide	749
Haloperidol	750
·	751
Haloprogin	
	753
	755
•	_
	756 757
	757
Hetacillin Potassium	
	760
	761
	762
Hexetidine	763
	764
	765
Hexoprenaline	766

xviii Contents

Hexylcaine Hydrochloride	768
Homofenazine	
Hydralazine Hydrochloride	770
Hydrochlorothiazide	
Hydrocortamate HCI	
Hydrocortisone	
Hydrocortisone Sodium Phosphate	
Hydroflumethiazide	
Hydroquinone	
Hydroxocobalamin	
Hydroxychloroquine Sulfate	
Hydroxydione Sodium Succinate	
Hydroxyphenamate	
Hydroxyprogesterone Caproate	
Hydroxypropyl Cellulose	
Hydroxystilbamidine Isethionate	
Hydroxytryptophan	-
Hydroxyurea	
Hydroxyzine Hydrochloride	794
lbuprofen	
lbuproxam	
Idoxuridine	
Ifenprodil Tartrate	
Ifosfamide	
Imipramine Hydrochloride	
Improsulfan Tosylate	
Indalpine	
Indanazoline	
Indapamide	
Indenotol	
Indomethacin	
Indoprofen	
Indoramin	
Inosine ,	
Inositol	
Inositol Niacinate	
Insulin	
Insulin Isophane	
Insulin Zinc Suspension	
Interferon	
lodamide	
lodipamide	
Iodoalphionic Acid	
loglycamic Acid	827
Iopamidol	828
Iopanoic Acid	829
Iophendylate	831
Iopronic Acid	832
Iothalmate Meglumine	833
Iothiouracil	834
lotroxic Acid	835
Ipratropium Bromide	
Iproniazid	837
Ipronidazole	838
Isaxonine Phosphate	839
Isoaminile	840
Isobornyl Thiocyanoacetate	841

Isocarboxazid	
Isoconazole Nitrate	43
Isoflurane	44
Isoflurophate	44
Isometheptene	46
Isoniazid	46
Isopropamide lodide	
Isoproterenol Sulfate	
Isosorbide Dinitrate	
Isothipendyl HCl	
· · · ·	
Isoxicam	
Isoxsuprine Hydrochloride	54
Kanamycin Sulfate	
Kebuzone	
Ketamine Hydrochloride	
Ketazolam	
Ketoconazole	61
Ketoprofen	62
Ketotifen,	64
Labetalol Hydrochloride,	67
Lactulose	
Letosteine	
Levamisole Hydrochloride	
Levodopa	
Levothyroxine Sodium	
Lidocaine	
Lidoflazine	
Lincomycin	
Lindane	
Liothyronine	
Lofexidine Hydrochloride	
Loflazepate Ethyl	
Lonazolac	
Loperamide Hydrochloride	84
Loprazolam	85
Lorazepam	86
Lorcainide Hydrochloride	88
Lormetazepam	89
Loxapine.,	
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
Mafenide Acetate	92
Magaldrate	
Malathion	
Maltose	
Mannitol	
Mazaticol Hydrochloride	
Mazindol	
Mebendazole	
Mebeverine Hydrochloride	
Mebutamate	
Mecamylamine Hydrochloride	03
Mecillinam	05
Meclizine Hydrochloride9	06
Meclofenamic Acid	07
Medazepam	
Medigoxin	
•	

xx Contents

Medrogestone	
Medroxyprogesterone Acetate	
Medrysone	917
Mefenamic Acid	
Mefenorex Hydrochloride	919
Mefruside	920
Megestrol Acetate	921
Melitracen	922
Melperone	923
Melphalan	924
Memantine	926
Menadiol Sodium Diphosphate	927
Menbutone	928
Mepazine,	929
Mepenzolate Bromide	930
Meperidine Hydrochloride	931
Mephenesin	
Mephenesin Carbamate	934
Mephenoxalone	935
Mephentermine	936
Mepicycline	937
Mepindolol	938
Mepitiostane	939
Mepivacaine	940
Meprednisone	941
Meprobamate	942
Meptazinol	
Meguitazine	
Meralluride	947
Mercaptomerin Sodium	
Mercaptopurine	
Mesna	
Mesoridazine Besylate	
Mesterolone	
Mestranol	
Metampicillin Sodium	
Metapramine	
Metaproterenol Sulfate	
Metaraminol	
Metaxalone	
Metergoline	
Methacycline	
Methadone Hydrochloride	
Methallenestril	
Methandrostenolone	
Methapyrilene Hydrochloride	
Methagualone	
Methazolamide	
Methdilazine Hydrochloride	
Methenamine Hippurate	
Methenolone Acetate	
Methicillin Sodium	
Methionine	
Methitural	
Methixene Hydrochloride	
Methocarbamol	
Methohexital Sodium.	
Methotrexate	
Methotrimenrazine	005

Methoxamine Hydrochloride	
Methoxsalen	987
Methoxyflurane	
Methscopolamine Bromide	990
Methsuximide	991
Methyldopa	992
Methylergonovine Maleate	993
Methylhexaneamine Carbonate	
Methylol Riboflavin	996
Methylphenidate Hydrochloride	997
Methylprednisolone	998
Methyltestosterone	000
Methyprylon	001
Methysergide Maleate	002
Metiazinic Acid	
Metoclopramide HCl	004
Metolazone	006
Metoprolol Tartrate	009
Metrizoic Acid	010
Metronidazole	
Metyrapone	013
Metyrosine	
Mexenone	015
Mexiletine HCl	016
Mezlocillin	017
Mianserin	019
Miconazole Nitrate	
Micronomicin	022
Midazolam Maleate	024
Midecamycin	1025
Midodrine	1027
Minaprine	028
Minocycline	029
Minoxidil	030
Mitobronitol	031
Mitomycin	1032
Mitopodozide	033
Molindone	1034
Mopidamol	1035
Morclofone	
Motretinide	
Moxalactam Disodium	
Moxestrol	
Moxisylyte	
Muzolimine	1043
Nabilone	
Nadolol	
Nafcillin Sodium	1047
Nafiverine	
Nafronyl Oxalate	
Nalbuphine	
Nalidixic Acid	
Nalorphine	
Naloxone	
Nandrolone Decanoate	1056
Nandrolone Phenpropionate	
Naphazoline	1058

Naproxen	
Natamycin	31
Nefopam Hydrochloride	32
Neomycin	33
Netilmicin	
Nialamide	
Niaprazine	
Nicardipine	69
Nicergoline	70
Niceritrol	
Niclosamide	
Nicomol	
Nicotinyl Alcohol	
Nifedipine	
Niflumic Acid	
Nifuratel	
Nifurfoline	
Nifuroxazide	
Nifurtoinol	
Nifurzide	
Nimetazepam	32
Nimorazole	83
Nimustine	85
Nitrazepam	
Nitrofurantoin	
Nitrofurazone	
Nomifensine Maleate	
Nonoxynol	
Nordazepam	
Norethandrolone	
Norethindrone	
Norethindrone Acetate	
Norethynodrel	
Norfenefrine	
Norfloxacin	99
Norgestrel	
Nortriptyline	
Novobiocin	02
Noxiptilin	03
Noxytiolin	05
Nylidrin	05
Nystatin	
Octopamine Hydrochloride	10
Oleandomycin	
Opipramol	
Orazamide	
Orgotein	
Ornidazole	
Ornipressin	16
Orphenadrine Citrate	
Oxaceprol	
Oxacillin Sodium	
Oxaflozane Hydrochloride	
Oxaflumazine Disuccinate	
Oxametacine	
Oxamniquine	25
Oxandrolone	27
Overtomide 11	28

Oxazepam	
Oxazolam	
Oxeladin	
Oxendolone	
Oxethazine	
Oxetorone Fumarate	
Oxiconazole Nitrate	
Oxitriptan	
Oxitropium Bromide	
Oxolinic Acid	
Oxomemazine	
Oxprenolol	
Oxybutynin Chloride	
Oxyfedrine	
Oxymetazoline Hydrochloride	
Oxymorphone	
Oxypendyl	
Oxyphenbutazone	
Oxyphencyclimine	
Oxyphenisatin Acetate	
Oxytetracycline	
Oxytocin	154
Pancuronium Bromide	158
Papain	
Papaverine Monophosadenine	
Paramethadione	
Paramethasone Acetate	
Parapenzolate Bromide	
Pargyline Hydrochloride	
Paromomycin	
Pelargonic Acid	
Pemoline	169
Penbutolol	
Penfluridol	171
Penicillamine	172
Penicillin G Benzathine	174
Penicillin G Hydrabamine	
Penicillin G Procaine	177
Penicillin O	178
Penicillin V	
Penicillin V Hydrabamine	181
Pentaerythritol Tetranitrate	182
Pentagastrin	
Pentapiperide Methosulfate	185
Penthienate Bromide	
Pentobarbital Sodium	187
Pentoxifylline	188
Peplomycin Sulfate	189
Perhexiline Maleate	
Perimethazine	1192
Perisoxal Citrate	1192
Perlapine	1194
Perphenazine	1195
Phenactropinium Chloride	
Phenaglycodol	
Phendimetrazine Tartrate	
Phenelzine Sulfate	1200

xxiv Contents

Phenethicillin Potassium
Phenformin
Phenindamine Tartrate
Pheniprazine
Pheniramine Maleate
Phenmetrazine,
Phenoperidine Hydrochloride
Phenoxybenzamine Hydrochloride
Phenprocoumon
Phensuximide
Phentermine Hydrochloride
Phentolamine Hydrochloride
Phenyl Aminosalicylate
Phenylbutazone
Phenylephrine Hydrochloride
Phenylpropanolamine Hydrochloride
Phenyltoloxamine
Phenyramidol
Phenytoin
Phethenylate Sodium
Phthalylsulfathiazole
Phytate Sodium
Phytonadione
Picoperine
Picosulfate Sodium
Pifarnine
Pimefylline Nicotinate
Pimozide
Pinazepam
Pipamazine
Pipamperone
Pipazethate
Pipebuzone
Pipemidic Acid
Pipenzolate Bromide
Piperacillin Sodium
Piperidolate
Pipethanate Ethobromide
Pipobroman
Pipoxolan Hydrochloride
Piprozolin
Piracetam
Pirbuterol
Piretanide
Piribedil
Piroheptine
Piromidic Acid
Pirozadil
Pirprofen
Pivampicillin
Pivmecillinam
Pixifenide
Pizotyline Hydrochloride
Poloxalkol
Polyestradiol Phosphate
Polymyxin
Polythiazide
Povidone-lodine

Practolol	
Prajmaline Bitartrate	
Pralidoxime Chloride	.1273
Pramiverin	.1274
Pramoxine Hydrochloride	.1275
Pranoprofen ,	.1276
Prazepam	.1277
Praziquantel	.1279
Prazosin	.1280
Prednimustine	.1281
Prednisolone	.1283
Prednisolone Acetate	
Prednisolone Phosphate Sodium	
Prednisolone Stearoylglycolate ,	
Prednisolone Tebutate	
Prednisone	
Prenalterol	
Prenylamine	
Prilocaine Hydrochloride	
Primidone	
Probenecid	
Probucol	
Procarbazine Hydrochloride	
Procaterol	
Prochtorperazine	
Procyclidine Hydrochloride	
Proglumetacin Maleate	
Promazine Hydrochloride	
Promegestone	.1306
Promethazine Hydrochloride	.1307
Propafenone Hydrochloride	.1308
Propanidid	.1310
Propantheline Bromide	.1310
Propiram Fumarate	
Propoxyphene Hydrochloride	.1313
Propranolol Hydrochloride	
Propylhexedrine	
Proquazone	
Proscillaridin.	
Prothipendyi Hydrochloride	1319
Protionamide	
Protizinic Acid	
Protokylol	
Protriptyline	
Proxazole Citrate	
Proxibarbal	
Pyrantel Pamoate	
Pyrathiazine	
Pyrazinamide	
Pyridinol Carbamate	
Pyridostigmine Bromide	
Pyrilamine	
Pyrimethamine	
Pyrithyldione	
Pyritinol	
Pyrovalerone Hydrochloride	
Pyrrobutamine	.1339
Puninium Pamosto	1240

xxvi Contents

	42
Quinethazone	43
Quingestanol Acetate	
Quinidine Polygalacturonate	45
Quinupramine	
Ranitidine	4Ω
Razoxane	
Relaxin	50
Reproterol	
Rescimetol	52
Rescinnamine	53
Reserpine	54
Ribostamicin	57
Rifampin	52
Rimiterol	
Ritodrine	
Rociverine	52
Rolitetracycline	
Rosoxacin	54
Salicylanilide	36
Salicylic Acid	
Secnidazole	
Construction Confirm	20
Secobarbital Sodium	
Secretin	
Selegiline	72
Selenium Sulfide	72
Silymarin	73
Simethicone	
Simfibrate	
Sincalide	
Sisomicin,	
Sobrerol	"
Societo: , , , , , , , , , , , , , , , , , , ,	79
Somatotropin	
Spectinomycin	
Spiperone	
Spiramycin	
Spironolactone	85
Stallimycin Hydrochloride	86
Stanolone	RR
Stanozolol	89
Streptokinase	a۸
Streptomycin	
Streptozocin	93
Succinylsulfathiazole	94
Sucralfate	95
Sufentanil	96
Sulbenicillin	97
Sulfacetamide	98
Sulfachlorpyridazine	ao
Sulfacytine	S
Sulfadiazine	וע
Sulfadimethoxine	03
Sulfadoxine	04
Sulfaethidole	05
Sulfaguanidine	06
Sulfaguanol	

Sulfalene	
Sulfamerazine	0
Sulfameter	
Sulfamethazine	
Sulfamethizole	
Sulfamethoxazole	4
Sulfamethoxypyridazine	6
Sulfamoxole	7
Sulfaphenazole	
Sulfasalazine	
1420	
Sulfisomidine	
Sulfisoxazole	
Sulfoxone Sodium	
Sulindac	
Sulisobenzone	
Suloctidil	
Sulpiride	9
Sulprostone	1
Sultopride Hydrochloride	
Sultosilic Acid Piperazine Salt	
Sultroponium	4
Syrosingopine	5
Talampicillin	7
143	8
Tamoxifen	9
Tanphetamin	
Tegafur	
Temazepam	3
Teniposide	4
Terbutaline	5
Terofenamate	
Testolactone	
Testosterone 17 eta -Cypionate	
Testosterone Enanthate	
Tetrabenazine	1
Tetracycline	2
Tetracycline Phosphate Complex	
Tetrahydrozoline Hydrochloride	
Tetrazepam	
Thiabendazole	
Thiamine Disulfide	
Thiamphenicol	0
Thiamylal	
Thiethylperazine	
Thihexinol	4
Thiocarbarsone	35
Thioguanine	
Thiopropazate	3 7
Thioproperazine	88
Thioridazine	39
Thiotepa	70
Thiothixene	71
Thiphenamil Hydrochloride	73
Thonzylamine Hydrochloride	74
Tiadenol	15
Tianeptine	16

xxviii Contents

Tiapride
Tiaprofenic Acid
Tiaramide
Tibezonium Iodide
Ticarcillin Disodium
Ticlopidine Hydrochloride
Ticrynafen
Tiemonium lodide
Tilidine Hydrochloride
Timepidium Bromide
Timolol Maleate
Timonacic Sodium
Tinidazole
Tinoridine
Tiocarlide
Tioconazole
Tiopronin
Tiratricol
Tiropramide
Tixocortol Pivalate
Tocainide
Tofenacin Hydrochloride
Tofisopam
Tolazamide
Tolazoline
Tolbutamide
Tolciclate
Tolmetin
Tolnaftate
Tolonidine Nitrate
Tolonium Chloride
Tramadol Hydrochloride
Tranexamic Acid
Tranilast
Tranylcypromine Sulfate
Trapidil
Trazodone Hydrochloride
Trenbolone Acetate
Trepibutone
Tretinoin
Triacetin
Triamcinolone
Triamcinolone Acetonide
Triamcinolone Diacetate
Triamterene
Triazolam
Tribenoside
Trichlormethiazide
Triclobisonium Chloride
Triclocarban
Triclofos Sodium
Tridihexethyl lodide
Triethylenemelamine
Trifluoperazine
α, α, α -Trifluorothymidine
Triflupromazine
- FIDUEAVUNEHBUYE DVGTUGHUNDIUG

Trilostane	
Trimeprazine	
Trimetazidine	
Trimethadione	
Trimethobenzamide Hydrochloride	
Trimethoprim	
Trimetozine	
Trioxsalen	551
Triparanol	552
Tripelennamine	553
Triprolidine	554
Trofosfamide	556
Tromantidine Hydrochloride	557
Tromethamine	
Tropicamide	
Tubocurarine Chloride	
Tybamate	
Tyloxapol	
Tyropanoate Sodium	
- 1, 10p=110=10 0001=111 1 1 1 1 1 1 1 1 1 1 1 1	
Ubidecarenone	565
Uracil Mustard	
Urapidil	
Urokinase	
Olokinase	506
Valethamate Bromide	571
Vancomycin	
Veralipride	
Verapamil	
Vidarabine	
Viloxazine Hydrochloride	
Viminol	
Vinbarbital Sodium	
Vinblastine Sulfate	
Vincamine	
Vincristine Sulfate	
Vindesine	_
Viomycin	
Viguidil	
Visnadine	
Vielladino ,	000
Warfarin Sodium	590
Xanthinol Niacinate	592
Xibornol	
Xipamid	
Xylometazoline Hydrochloride	
Zyjomotazomo nyaroshonas i i i i i i i i i i i i i i i i i i i	000
Zeranol	598
Zimelidine	
Zipeprol	
Zolimidine	
Zomepirac	
Zotepine	
Zoxazolamine	
ZUX4ZUI4IIIIIC.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	004
RAW MATERIALS INDEX	606
Fermentation or Extraction	
Chemicals	
	609

Introduction

INFORMATION SOURCES USED

A variety of sources were used to identify the patent associated with particular commercial products and to serve as a source of process information. These include the following:

Merck Index: followed by a citation of the entry number in the Tenth (1983)

Edition.1

DFU: The periodical publication, *Drugs of the Future*, ² published in Spain.

DOT: The periodical publication, *Drugs of Today*, ³ also published in Spain.

Kleeman & The encyclopedic German work, Pharmazeutische Werkstoffe,4

Engel: second revised edition published in 1982.

OCDS: The 3-volume reference series on the Organic Chemistry of Drug

Synthesis.5

In addition, sources of pharmacological data and comparative information on trade names used in various countries were obtained from:

REM: The latest edition of Remington's Pharmaceutical Sciences. 6

The nonproprietary name index published by Paul de Haen.⁷

I.N.: The biannual Swiss publication, Index Nominum.⁸

PDR: The guide to commercially available U.S. drugs, the Physicians'

Desk Reference.9

Finally, earlier books by this author were drawn on to provide information for some entries. These include:

The Pharmaceutical Manufacturing Encyclopedia, first edition. 10

A book entitled, *Manufacturing Processes for New Pharmaceuticals*. ¹¹ This book attempted to review processes for manufacturing drugs still in the developmental stage—those which had attained generic name status but not trade name status in most cases. Many of these have since fallen by the wayside.

The Veterinary Drug Manufacturing Encyclopedia. ¹² The present volume deals only in "people drugs" as did its predecessor volume ¹⁰ but some drugs find application in both areas.

It should be emphasized again that this is simply a guide to manufacturing processes. Under each generic named product a "Therapeutic Function" is indicated. However, the reader is referred to the *Merck Index* and to *Remington* as well as to *Drugs of the Future*, Drugs of Today, and the Physicians Desk Reference (PDR) for more information on the material, its properties, its therapeutic use and its side effects. The chemist who is interested in synthesis routes is referred to Lednicer and Mitscher as well as to Kleeman & Engel for more information on routes to these products and to products having similar structures.

SALES RANKINGS OF U.S. DRUGS

In the preparation of the first edition of this volume, contact was made with IMS, Inc. of Ambler, Pa., a well-known source of international statistics. With their help, a list was prepared of the 100 top products based on U.S. sales volume in 1976; that list is given in Table 1.

Table 1: The Top 100 Generic Pharmaceuticals in the U.S. in 1976

			_
(1)	Diazepam		Doxorubicin
	Methyldopa		Propoxyphene
(3)	Hydrochlorothiazide		Nitrofurantoin
(4)	Acetaminophen		Trimethoprim
(5)	Amitriptyline		Betamethasone Valerate
(6)	Cephalexin		Pseudoephedrine
(7)	lbuprofen		Diethylpropion
(8)	Cephalothin		Meclizine
(9)	Furosemide	(59)	Ampicillin Anhydrous
(10)	Norethindrone		Pentazocine Lactate
(11)	Indomethacin		Tetracycline
(12)	Gentamicin Sulfate		Procainamide
(13)	Chlordiazepoxide	(63)	Imipramine
	Thoridazine	(64)	Chlorpromazine
	Norgestrel	(65)	Triamcinolone Acetonide
	Propranolol		Dipyridamole
	Estrogenic Substances, Conjugated	(67)	Clindamycin Phosphate
	Ampicillin Trihydrate		Miconazole Nitrate
	Spironolactone	(69)	Chlorpheniramine Maleate
	Amoxicillin	(70)	Theophylline
(21)		(71)	Naproxen
	Penicillin V	(72)	Kanamycin Sulfate
	Isosorbide Dinitrate	(73)	Pentaerythritol Tetranitrate
	Chlorpropamide		Meperidine
	Chlorthalidone	(75)	Neomycin Sulfate
	Allopurinol	(76)	бхаzepam
	Cefazolin Sodium	(77)	Guaiacol Glyceryl Ether
	Hydralazine	(78)	Oxymetazoline
,,	Doxepin		Tolazamide
	Clidinium Bromide	(80)	Insulin Zinc Suspension
	Doxycycline		Metronidazole
	Erythromycin Estolate	(82)	Phentermine Resin
	Papaverine	(83)	Erythromycin Stearate
	Hydroxyzine Pamoate	(84)	Phenobarbital
	Flurazepam	(85)	Povidone-Iodine
	Tolbutamide	(86)	Quinidine Gluconate
(30)	Methylprednisolone Sodium Succinate	(87)	Hydroflumethiazide
	Clofibrate		Imipramine Pamoate
	Ethynodiol Diacetate	(89)	
	Insulin Isophane	(90)	Nitroglycerin
) Phenylpropanolamine		Albumin, Normal Human Serum
) Diphenoxylate		Cyclandelate
) Prochlorperazine		Dicyclomine
) Isoxsuprine		Enflurane
) Clorazepate		Erythromycin Ethyl Succinate
(40	Diphenyl Hydantoin (Phenytoin)	(96)	· ·
) Haloperidol		Carbendicillin Disodium
) Haloperidoi) Dihydroergocornine		Hydroxyzine
) Chlorothiazide		Tobramycin Sulfate
	i) Trifluoperazine		Meprobamate
(SU	ij ilinuoperazine		A STATE OF THE STA

This data courtesy of IMS, Inc.; interpreted by M. Sittig.

The top four items on the list each had sales over \$100 million; by coincidence the cutoff point at the end of the 100 top generic products was at the \$10 million sales level; the total sales of the 100 products listed was about \$3 billion. Of this total, some \$600 million was in antiinfective products (penicillins, antibiotics, sulfa drugs, etc.), some \$500 million in tranquilizers and some \$400 million in cardiovascular drugs. These three categories represented half the dollar total of the top 100 drugs sold in the U.S. Other major drug market areas are in antiarthritic drugs and antiulcer drugs.

Now, for this second edition, an attempt was made to list the top prescription drugs in the U.S. as of 1985-some ten years later than the earlier tabulation. This new listing was done by the author based on his interpretation of the sales list by trade name in the magazine American Druggist for February 1986; it gives approximate rank by generic product as of the date of manuscript preparation in 1986. See Table 2.

Table 2: The Top 100 Generic Pharmaceuticals in the U.S. in 1985

	•		
(1)	Hydrochlorothiazide	(51)	Temazepam
(2)	Triamterene		Diphenhydramine
(3)	Propranolol	(53)	Captopril
(4)	Digoxin	(54)	Dipyridamole
(5)	Norethindrone	(55)	Nitroglycerin
(6)	Ethinyl Estradiol	(56)	Isosorbide Dinitrate
(7)	Diazepam	(57)	Polymyxin B
(8)	Acetaminophen	(58)	Neomycin
(9)	Amoxicillin	(59)	Bacitracin
(10)	Cimetidine	(60)	Amiloride
(11)	Furosemide	(61)	Butalbital
(12)	Propoxyphene	(62)	Liothyronine
(13)	Ibuprofen	(63)	Cyclobenzaprine
(14)	Estrogens, Conjugated	(64)	Oxycodone
(15)	Atenolol		Warfarin Sodium
(16)	Cephalexin	(66)	Guaifenesin
(17)	Norgestrei	(67)	Phenylpropanolamine
	Methyldopa		Methoxyprogesterone Acetate
	Levothyroxine		Nicotine Polacrilex
	Metoprolol		Allopurinol
	Theophylline		Phenobarbital
	Alprazolam		Doxepin
	Potassium Chloride		Metoclopramide
	Phenytoin		Chlorthalidone
	Lorazepam		Aspirin
	Naproxen		Erythromycin Stearate
	Erythromycin Ethyl Succinate		Haloperidol
	Miconazole Nitrate		Trimethoprim
	Nifedipine		Sulfamethoxazole
	Piroxicam		Tetracycline
	Ranitidine	,	Clotrimazole
	Timolol Maleate		Amitriptyline
	Prazosin Hydrochloride		Perphenazine
	Cefactor		Ampicillin
	Chlorpropamide		Tolazamide
	Mestranoi		Diflunisal
	Flurazepam		Nitrofurantoin
	Indomethacin		Thoridazine
	Penicillin V		Promethazine
	Chlorazepate		Fluocinonide
	Triazolam		Carbamazepine
	Diltiazem		Terbutaline
	Clonidine Hydrochloride		Trazodone
	Albuterol		Betamethasone Valerate
	Erythromycin		Hydrocodone Bitartrate
	Levonorgestrel		Fenoprofen
	Nadolol		Hydroxyzine
	Sulindac		Tolmetin Sodium
(49)	Metaproterenol	(99)	Meclizine

(100) Acyclovir

(50) Ethynodiol Diacetate

TRENDS IN PATENT EXPIRATION

It has been estimated that patents on the top 100 drugs in the U.S. market will expire in the period between 1973 and 1990.

This will help to lead to a situation where generically-designated drugs are expected to account for 40% of the prescription drug market by 1990.

BIBLIOGRAPHY

- Windholz, M., editor, The Merck Index, 10th edition, Rahway, NJ, Merck & Co., Inc. (1983).
- 2. Prous, J.R., editor, Drugs of the Future, Provenza 385-87, Barcelona-13, Spain.
- 3. Prous, J.R., editor, Drugs of Today, Provenza 385-87, Barcelona-13, Spain.
- Kleeman, A. and Engel, J., Pharmazeutische Werkstoffe: Synthesen, Patente, Anwendugen, Stuttgart, Germany, Georg Thieme Verlag (1982).
- Lednicer, D. and Mitscher, L., The Organic Chemistry of Drug Synthesis, New York, John Wiley and Sons, Vol. 1 (1977); Vol. 2 (1980); Vol. 3 (1984).
- Philadelphia College of Pharmacy and Science, Remington's Pharmaceutical Sciences, Easton, PA, Mack Publishing Co., 17th edition (1985).
- Paul de Haen International, Inc., Nonproprietary Name Index, Englewood, CO, Paul de Haen International, Inc., 15th edition (1984).
- H.P. Jasperson et al, editors, Index Nominum, Zurich, Switzerland, Swiss Pharmaceutical Society (1984).
- Barnhart, E.R., editor, *Physicians Desk Reference*, Oradell, NJ, Medical Economics Co., Inc., 40th edition (1986).
- Sittig, M., Pharmaceutical Manufacturing Encyclopedia, Park Ridge, NJ, Noyes Data Corp. (1979)
- Sittig, M., Manufacturing Processes for New Pharmaceuticals, Park Ridge, NJ, Noyes Publications (1983).
- Sittig, M., Veterinary Drug Manufacturing Encyclopedia, Park Ridge, NJ, Noyes Publications (1981).

A

ACEBUTOLOL

Therapeutic Function: Cardiovascular beta-blocker

Chemical Name: N-[3-acetyl-4-[2-hydroxy-3-[(1-methylethyl)-amino] propoxy] phenyl]

butanamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 37517-30-9; 34381-68-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Sectral	May & Baker	UK	1975
Sectral,	Specia	France	1976
Prent	Bayer	W. Germany	1977
Neptall	Rhodia Pharma	W. Germany	1977
Sectral	May & Baker	Switzerland	1980
Sectral	Roger Bellon	Italy	1980
Sectral	RBJ Pharma	Italy	1980
Acetanol	Kanebo	Japan	1 9 81
Prent	Bayer	Italy	1981
Acecor	S.P.A.	Italy	-
Diasectral	Rhone Poulenc	_	_
Neptal	Rohm Pharma	_	
Secradex	May & Baker	U.K.	_
Sectral	Wyeth	U.S.	_

Raw Materials

Butyramidophenol	Epichlorohydrin
Acetyl Chloride	Sodium Ethoxide
Aluminum Chloride	Isopropylamine

Manufacturing Process

Crude 5'-butyramido-2'-(2,3-epoxypropoxy)acetophenone (16 g), isopropylamine (20 g) and ethanol (100 ml) were heated together under reflux for 4 hours. The reaction mixture was concentrated under reduced pressure and the residual oil was dissolved in N hydrochloric acid. The acid solution was extracted with ethyl acetate, the ethyl acetate layers being discarded. The acidic solution was brought to pH 11 with 2 N aqueous sodium hydroxide solution and then extracted with chloroform. The dried chloroform extracts were concentrated under re-

duced pressure to give an oil which was crystallized from a mixture of ethanol and diethyl ether to give 5'-butyramido-2'-(2-hydroxy-3-isopropylaminopropoxy)acetophenone (3 g), MP 119°-123°C.

Crude 5'-butyramido-2'-(2,3-epoxypropoxy)acetophenone used as starting material was prepared as follows: p-butyramidophenol (58 g; prepared according to Fierz-David and Kuster, Helv. Chim. Acta 1939, 2282), acetyl chloride (25.4 g) and benzene (500 ml) were heated together under reflux until a solution formed (12 hours). This solution was cooled and treated with water. The benzene layer was separated and the aqueous layer was again extracted with benzene.

The combined benzene extracts were dried and evaporated to dryness under reduced pressure to give p-butyramidophenyl acetate (38 g) as an off-white solid, MP 102°-103°C. A mixture of p-butyramidophenyl acetate (38 g), aluminum chloride (80 g) and 1,1,2,2-tetrachloroethane (250 ml) was heated at 140°C for 3 hours. The reaction mixture was cooled and treated with iced water. The tetrachloroethane layer was separated and the aqueous layer was extracted with chloroform. The combined organic layers were extracted with 2N aqueous sodium hydroxide and the alkaline solution was acidified to pH 5 with concentrated hydrochloric acid. The acidified solution was extracted with chloroform and the chloroform extract was dried and concentrated under reduced pressure to give 5'-butyramido-2'-hydroxyacetophenone (15.6 g), MP 114°-117°C. A solution of 5'-butyramido-2'-hydroxyacetophenone (15.6 g) in ethanol (100 ml) was added to an ethanolic solution of sodium ethoxide which was prepared from sodium (1.62 g) and ethanol (100 ml). The resulting solution was evaporated to dryness under reduced pressure and dimethylformamide (100 ml) was added to the solid residue. Approximately 10 ml of dimethylformamide was removed by distillation under reduced pressure. Epichlorohydrin (25 ml) was added and the solution was heated at 100°C for 4 hours. The solution was concentrated under reduced pressure to give a residual oil which was treated with water to give a solid. The solid was dissolved in ethanol and the resulting solution was treated with charcoal, filtered and concentrated under reduced pressure to give crude 5'-butyramido-2'-(2,3-epoxypropoxy)acetophenone (16 g), MP 110°-116°C.

The crude compound may be purified by recrystallization from ethyl acetate, after treatment with decolourizing charcoal, to give pure 5'-butyramido-2'-(2,3-epoxypropoxy)acetophenone, MP 136°-138°C.

References

Merck Index 13 Kleeman & Engel p. 1 PDR p. 1978 OCDS Vol. 2 p. 109 (1980) DOT 11 (7) p. 264 (1975) I.N. p. 2

Wooldridge, K.R.H. and Basil, B.; U.S. Patent 3,857,952; Dec. 31, 1974; assigned to May & Baker, Ltd.

ACECLIDINE

Therapeutic Function: Miotic, cholinomimetic

Chemical Name: 1-Azabicyclo [2.2.2] octan-3-ol acetate

Common Name: 3-Quinuclidinol Acetate

Structural Formula:

Chemical Abstracts Registry No.: 827-61-2; 6109-70-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Glacostat	MSD-Chibret	France	1966
Glaunorm	Farmigea	italy	1969
Glaudin	SIFI	Italy	***

Raw Materials

Methyl Isonicotinate	Potassium Metal
Ethyl Bromoacetate	Hydrogen

Manufacturing Process

A mixture of 274 g of methyl isonicotinate, 367 g of ethyl bromoacetate and 125 cc of ethyl alcohol was stirred without heating for 4 hours in a flask equipped with a reflux condenser. (The reaction was exothermic and precautions were taken to keep the temperature below 70°C.) The reaction mixture was then left for 15 hours at room temperature.

The reaction product (1-carbethoxymethyl-4-carbomethoxy-pyridinium bromide) was obtained in crystalline form. (It formed prisms melting at 166° - 169° C after recrystallization from a mixture of isopropanol and acetone.) It was not necessary to isolate it. For the following reduction step, the reaction mixture was brought into solution by the addition of about 1 liter of warm ethyl alcohol. It was then hydrogenated at about 30 atm pressure in the presence of 2 g of platinum oxide. The temperature rose during this reaction to about 40° C. After the calculated amount of hydrogen had been absorbed, the catalyst was filtered off, the solution was concentrated in vacuo, and the residual syrup was dissolved in ice water. Benzene was added and the mixture was made alkaline with an excess of concentrated ice cold potassium carbonate solution. The temperature was kept low by continuous addition of ice, and the benzene layer was separated and dried with sodium sulfate. The dried benzene solution was concentrated in vacuo and the residual oil was distilled in vacuo. BP 30 mm = 175° - 182° C, n_D° = 1.4613-1.4628. During the reduction, partial alcoholysis occurred, and the product isolated was 1-carbethoxymethyl-4-"carbalkoxy"-piperidine, wherein "carbalkoxy" represents a mixture of carbomethoxy and carbethoxy.

100 g of potassium were pulverized in 200 cc of hot toluene in a heated three-neck flask equipped with an efficient condenser, stirrer and dropping funnel. To the refluxing potassium suspension were added in small portions 229 g of the product of the previous step and about 700 cc of toluene. This addition had to be carried out very cautiously; the onset of the exothermic reaction is sometimes delayed. The addition was finished in about 1 hour. To complete the reaction, the refluxing and stirring were continued for about 4 hours. The reaction mixture was then cooled to about +5°C and about 50 cc isopropanol were added to decompose unreacted potassium. Then 2.5 liters of concentrated hydrochloric acid were added and the mixture was refluxed for 15 hours, and then concentrated in vacuo to dryness. To the residue was added with cooling an excess of 50% potassium hydroxide. Ether was then added and the resulting mixture was filtered through a fritted glass funnel, thus removing the precipitated potassium chloride. The ethereal and aqueous layers were separated, and the aqueous layer was extracted repeatedly with 500 cc portions of ether. The organic solutions were combined, dried over sodium sulfate and concentrated in vacuo. Aqueous hydrochloric acid was added to the residue until the solution became acid. The mixture was then diluted with distilled water to about 300 cc, heated with decolorizing charcoal, filtered and concentrated in vacuo to dryness. The residue was treated with isopropanol, and the precipitated crystalline product was filtered off. The product was recrystallized from a mixture of water and isopropanol and was

identified as 1-azabicyclo [2.2.2] -3-octanone hydrochloride; prisms, MP 311°-313°C, with decomposition.

A solution of 50 g of the above ketone-hydrochloride in 30 cc of water was made alkaline by the addition of 30 g of potassium hydroxide. After the alkali was dissolved, 35 g of granular potassium carbonate were added. The free basic ketone was then extracted from the viscous mixture by shaking with 4 portions of hot benzene (300 cc in each portion). The benzene extracts were decanted, filtered over sodium sulfate in order to remove any suspended alkali, and concentrated in vacuo. The residual 1-azabicyclo[2.2.2]-3-octanone was purified by sublimation (50°-70°C/0.5 mm Hg); it can also be purified by recrystallization from petroleum ether. It formed feathery crystals melting at 147°-148°C.

The product was reduced as follows:

A solution of 50 g of 1-azabicyclo [2,2,2]-3-octanone hydrochloride in 200 cc of water was hydrogenated at room temperature and 50 atm pressure with 1 g of platinum oxide as catalyst. After the calculated amount of hydrogen had been absorbed, the mixture was filtered and concentrated in vacuo to dryness. The residual product was recrystallized from a mixture of methanol and acetone and formed prisms melting above 300°C. It was identified as 1-azabicyclo [2,2,2]-3-octanol hydrochloride.

A solution of 50 g of 1-azabicyclo [2.2.2] -3-octanol hydrochloride in 30 cc water was made alkaline with 30 g of potassium hydroxide. After the alkali was dissolved 35 g of granular potassium carbonate were added. The free basic alcohol was then extracted from the viscous mixture by shaking with four portions of boiling benzene (300 cc in each portion). The benzene extracts were decanted and filtered over anhydrous sodium sulfate, to remove any suspended alkali. The combined benzene solutions were concentrated in vacuo. The residue was recrystallized from benzene and identified as 1-azabicyclo [2.2.2] -3-octanol, MP 221°-223°C. The product can also be purified by recrystallization from acetone, or by sublimation in vacuo (120°C/20 mm Hg). The alcohol was reacted with acetic anhydride to give the product aceclidine.

References

Kleeman & Engel p. 2 OCDS Vol. 2 p. 295 (1980) I.N. p. 2

Sternbach, L.H.; U.S. Patent 2,648,667; Aug. 11, 1953; assigned to Hoffman-La Roche Inc.

ACEGLUTAMIDE ALUMINUM

Therapeutic Function: Antiulcer (free base as psychostimulant)

Chemical Name: Pentakis(N²-acetyl-L-glutaminato)tetrahydroxytrialuminum

Common Name: -

Structural Formula:

$$\begin{bmatrix} H_2N \\ C - CH_2 - CH_2 - CH - COO^- \\ NH - COCH_3 \end{bmatrix}_5 [AI_3(OH)_4]^{5+}$$

Chemical Abstracts Registry No.: 12607-92-0

Trade Name	Manufacturer	Country	Year Introduced
Glumal	Kyowa Hakko	Japan	1978
Glumal	Liade	Spain	

Raw Materials

N-Acety I-L-Glutamine Aluminum Isopropoxide

Manufacturing Process

A mixture of 37.6 g of N-acetyl-L-glutamine and 1,000 ml of water is heated to 40°C, and 900 ml of an isopropanol solution containing 40.8 g of aluminum isopropoxide is added to the warm mixture with stirring. The stirring is continued for 10 minutes. The reaction mixture is filtered and the filtrate is concentrated under reduced pressure, Isopropanol is added to the aqueous solution and the salt precipitates in the solution. The precipitates are collected by filtration and upon drying, 48.5 g of the crystalline-like aluminum salt of N-acetyl-L-glutamine are obtained.

References

Merck Index 20 Kleeman & Engel p. 32 DOT 14 (2) p. 54 (1978) I.N. p. 3

Kagawa, T., Fuji, K., Tanaka, M. and Tanaka, H.; U.S. Patent 3,787,466; Jan, 22, 1974; assigned to Kyowa Hakko Kogyo Co., Ltd.

ACEMETACIN

Therapeutic Function: Antiinflammatory

Chemical Name: 1-(p-Chlorobenzoy!)-5-methoxy-2-methylindole-3-acetoxyacetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53164-05-9

Trade Name	Manufacturer	Country	Year Introduced
Rantudil	Bayer	W. Germany	1980
Rantudil	Tropon	W. Germany	_

Raw Materials

N-(p-Methoxybenzyl)-p-Chlorobenzhydrazide HCl Benzyl Levulinoyloxyacetate Hydrogen

Manufacturing Process

25.4 g (0.050 mol) of {1-(p-chlorobenzoyl)-5-methoxy-2-methyl-3-indoleacetoxy]-benzyl acetate were dissolved in 400 ml of glacial acetic acid and hydrogenated on 2.0 g of palladium carbon at room temperature. After the absorption of hydrogen had finished (1 hour), the catalyst was filtered off, the filtrate was concentrated by evaporation under vacuum and the compound was caused to crystallize by adding petroleum ether. The compound melted at $149.5^{\circ}-150.5^{\circ}$ C (determined on the micro-Kofler bench); the yield was 19.4 g which corresponds to 93% of the theoretical yield.

The starting material for the above step may be prepared as follows: 5 g (0.016 mol) of N¹-(p-methoxyphenyl)-p-chlorobenzhydrazide hydrochloride and 4.75 g (0.018 mol) of benzyl levulinoyloxyacetate were heated in 25 ml of glacial acetic acid for 3 hours at 80°C. The solvent was then evaporated off under vacuum. The residue was taken up in chloroform and the solution was washed neutral by shaking with sodium bicarbonate solution and thereafter with water. After drying the chloroform solution, this was subjected to chromatography on aluminium oxide, the eluate was concentrated by evaporation and the viscous oil remaining as residue was crystallized by adding ether. The compound melted at 94°-95°C. The yield was 4.1 g which corresponds to 50.7% of the theoretical yield.

References

Merck Index 21 DFU 2 (7) p. 423 (1977) Kleeman & Engel p. 3 DOT 17 (7) p. 279 (1981) I.N. p. 3

Boltze, K.H., Brendler, O., Dell, H.D. and Jacobi, H.; U.S. Patent 3,910,952; October 7, 1945; assigned to Tropenwerke Dinklage and Co.

Boltze, K.H., Brendler, O., Dell, H.D. and Jacobi, H.; U.S. Patent 3,966,956; June 29, 1976; assigned to Tropenwerke Dinklage and Co.

ACENOCOUMAROL (ACENOCOUMARIN)

Therapeutic Function: Anticoagulant, Vitamin K antagonist

Chemical Name: 3-(α -acetonyl-p-nitrobenzyl)-4-hydroxycoumarin

Common Name: Nicoumalone

Structural Formula:

Chemical Abstracts Registry No.: 152-72-7

Trade Name	Manufacturer	Country	Year Introduced
Sintrom	Geigy	U.S.	1957
Sintrom	Geigy	W. Germany	-
Sintrom	Ciba Geigy	Switz.	_
Sintrom	Ciba-Geigy	France	1959

Trade Name	Manufacturer	Country	Year Introduced
Neo-Sintrom	Geigy		_
Ascumar	Star	Finland	-
Syncumar	Egyt	Hungary	_
Synthrome	Geigy	U.K.	
Sintrom	Ciba-Geigy-		
	Fujisawa	Japan	

Raw Materials

4-Hvdroxvcoumarin Nitrobenzalacetone

Manufacturing Process

16 parts of 4-hydroxycoumarin and 19 parts of 4-nitrobenzalacetone are thoroughly mixed and heated for 12-14 hours in an oil bath, the temperature of which is between 135° and 140°C. After cooling, the melt is dissolved in a little acetone. The solution is slowly added to a lye made up from 6 parts of sodium hydroxide in 400 parts of water while stirring and then the mixture is stirred for 30 minutes. A little animal charcoal is then added, the mixture is stirred for a further 15 minutes, 400 parts of water are added and the charcoal and undissolved components are separated by filtration under suction. The clear solution is made acid to Congo red paper with hydrochloric acid and the product which is precipitated is filtered off under suction. 3-[α-(4'-nitrophenyl)-β-acetyl ethyl]-4-hydroxycoumarin is obtained. MP 196°-199°C.

It should be noted that the process is akin to that for Warfarin except that 4-nitrobenzalacetone replaces benzalacetone as a raw material.

References

Merck Index 23 Kleeman & Engel p. 4 OCDS Vol. 1 p. 331 (1977) I.N.p.3

Stoll, W. and Litvan, F.: U.S. Patent 2.648,682; August 11, 1953; assigned to J.R. Geigy A.G., Switzerland.

ACETAMINOPHEN

Therapeutic Function: Analgesic, antipyretic

Chemical Name: N-(4-hydroxyphenyl)acetamide

Common Name: Paracetamol, Acetyl-p-Aminophenol, APAP

Structural Formula:

Chemical Abstracts Registry No.: 103-90-2

Trade Name	Manufacturer	Country	Year Introduced
•	_	Germany	1878

Trade Name	Manufacturer	Country	Year Introduced
Trigesic	Squibb	U.S.	1950
Apamide	Ames (Dome)	U.S.	1952
Nebs	Norwich (Eaton)	U.S.	1955
Tylenol	McNeil	U.S.	1955
Febrolin	Tilden Yates	U.S.	1957
Tempra	Mead Johnson	U.S.	1957
Fendon	Am, Pharm,	U.S.	1958
Amdil	Breon	U.S.	1958
Lyteca	Westerfield	U.S.	1962
Menalgesia	Clapp	U.S.	1963
Dial-Agesic	Borden	U.S.	1968
Tenlap	Dow	U.S.	1970
SK-APAP	SK&F	U.S.	1971
Valadol Tablets	Squibb	U.S.	1971
Tapar	Parke-Davis	U.S.	1974
Cen-Apap	Central	U.S.	1974
Acephen	G&W	U.S.	1978
St. Joseph Aspirin	St. Joseph	U.S.	1982
Panadol	Glenbrook	U.S.	1983
Pain & Fever	Lederle	U.S.	1983
Accu-Tap	Accu-Med	U.S.	_
Actamin	Buffington	U.S.	_
Aminofen	Dover	U.S.	_
Anuphen	Comatic	U.S.	_
Dapa	Ferndale	U.S.	-
Datril	Bristol-Myers	U.S.	_
Dirox	Winthrop	U.S.	-
Dolanex	Lannett	U.S.	-
Febrogesic	First Texas	U.S.	_
Halenol	Halsev	U.S.	_
Hedex	Winthrop	U.S.	_
Homoolan	Winthrop	U.S.	_
Injectapap	Johnson &	·	
. ,	Johnson	U.S.	_
Korum	Geneva	U.S.	_
Metalid	Philips-Roxane	U.S.	_
Minotal	Carnrick	U.S.	_
Neopap	Webcon	U.S.	-
Neotrend	Bristol-Myers	U.S.	•••
Nilprin	AVP	U.S.	_
Panamax	Winthrop	U.S.	
Panodil	Winthrop	U.S.	_
Parten	Parmed	U.S.	<u>-</u>
Phenaphen	Robins	U.S.	
Phendex	Mallard	U.S.	_
Phrenilin	Carnrick	U.S.	_
Prompt	Delree	U.S.	_
Proval	Reid-Provident	U.S.	
Robigesic	Robins	U.S.	_
Valorin	Otis Clapp	U.S.	_
Abrol	Rekah	Israel	-
Abrolet	Rekah	Israel	_
Acamol	Ikapharm	Israel	_
Acetalgin	Streuli	Switz.	_
Aldolor	Novis	Israel	_
Alpiny	SS Pharmaceut.	Japan	-
Alvedon	Draco	Sweden	_

Trade Name	Manufacturer	Country	Year Introduced
Anaflon	Duphar	U.K.	
Anhiba	Hokuriku	Japan	-
APA/Aparacet	Arcana	Austria	
Apiretal	Ern	Spain	
Arasol	Horner	Canada	
Benmyo	Heilmittelwerke	Austria	-
Ben-U-Ron	Benechemie	W. Germany	_
Calpol	Calmic	U.K.	_
Campain	Winthrop	Canada	_
Ceetamol	Protea	Australia	-
Cetadol	Rybar Chama Dave	U.K.	-
Chemcetaphen	Chemo-Drug	Canada	
Dipramat Infantil Dolamin	Byk-Gulden	W. Germany Australia	_
Doliprane	Nyal Bottu	France	-
Dolprone	Siegfried	W. Germany	<u>-</u>
Dymadon	Calmic	U.K.	_
Efferalgan	UPSA	France	_
Enelfa	Dolorgiet	W. Germany	_
Exdol	Merck-Frosst	Canada	
Febrilix	Boots	U.K.	_
Finimal	Mepros	Neth.	_
Finimal	Pharmaton	Switz.	_
Gelocatil	Gelos	Spain	
Ildamol	Rekah	Israel	***
Kinder-Finiweh	Cesmopharma	Neth,	_
Kratofin	Kwizda	Austria	_
Labamol	Vitamed	Israel	_
Langesic	Boots	U.K.	
Letamol	Letap	Switz.	-
Momentum	Much	W. Germany	_
Myalgin	Allied Labs	U.K.	_
Napional	Pharma Import	Austria _	
Nealgyl	Bottu	France	_
Nevral	Lepetit	Italy	Avelaus .
Pacemo	Alpinapharm	Switz.	_
Pacet	Rekah	Israel	_
Painex	A.L. Marshalls Pharm.	Norway U.K.	_
Pamol Panacete	Prosana	O.N. Australia	_
Panadol	Sterwin-Espanola	Spain	•••
Panadon	Isis	Yugoslavia	
Panasorb	Winthrop	U.K.	_
Panasorb	Bayer	W. Germany	_
Panok	B.M. Labs	U.K.	_
Pantalgin	UCB	Belgium	_
Paracet	Zdravije	Yugoslavia	_
Paracet	Weifa	Norway	_
Paralgin	ICN	Canada	_
Paramol	Duncan Flockhart	U.K.	
Paramolan	Trima	Israel	
Parasin	Adams	Australia	_
Paraspen	Fisons	U.K.	_
Para-Suppo	Orion	Finland	_
Parmol	Knoll	Australia	_
Parol	Atabay	Turkey	-
Pasolind	Stada	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
PCM	Napp	U.K.	_
Pediaphen	Ross	Canada	
Phenipirin	Aksu	Turkey	_
Pinex	A.L.	Norway	_
Puernol	Formenti	Italy	_
Pyrinazin	Yamanouchi	Japan	_
Pyrital	Medica	Finland	
Reliv	A C O	Sweden	_
Rivalgyl	Rivopharm	Switz.	_
Rounox	Rougier	Canada	_
Servigesic	Servipharm	Switz.	_
Setamol	Pharmacia	Sweden	-
Setol	Dif-Dogu	Turkey	_
Supramol	Sam-On	Israel	_
Tabalgin	Bayer	W. Germany	
Tachipirina	Angelini	Italy	_
Temperal .	Prodes	Spain	-
Trenodin	Fresenius	W. Germany	_
Tymol	Reckitt & Colman	W. Germany	_
Veralydon	Lelong	France	****

Raw Materials

Nitrobenzene Acetic Anhydride

Manufacturing Process

About 250 ml of a reaction mixture obtained by the electrolytic reduction of nitrobenzene in sulfuric acid solution and containing about 23 grams of p-aminophenol by assay is neutralized while at a temperature of 60° to 65°C, to a pH of 4.5 with calcium carbonate. The calcium sulfate precipitate which forms is filtered off, the precipitate washed with hot water at about 65°C and the filtrate and wash water then combined. The solution is then extracted twice with 25 ml portions of benzene and the aqueous phase is treated with 0.5 part by weight, for each part of p-aminophenol present, of activated carbon and the latter filtered off. The activated carbon is regenerated by treatment with hot dilute caustic followed by a hot dilute acid wash, and reused a minimum of three times.

To the filtrate obtained, there are then added about 0.2 gram of sodium hydrosulfite or sodium sulfite and 15.0 grams of anhydrous sodium acetate in about 27 grams of acetic anhydride at 40°C. The reaction mixture formed is cooled to 8° to 10°C with stirring and held at this temperature for 60 minutes. A crystalline precipitate of about 27 grams of N-acetyl-p-aminophenol is obtained melting at 169°-171°C. This is equivalent to a yield of 85%.

In lieu of utilizing calcium carbonate as the neutralizing agent, calcium hydroxide, barium hydroxide, barium chloride or other alkaline earth metal salt or hydroxide forming an insoluble sulfate may be employed.

References

Merck Index 39 Kleeman & Engel p. 684 PDR p. Many References OCDS Vol. 1 p. 111 (1977) DOT 16 (2) p. 59 (1980) I.N. p. 728 REM p. 1111

Wilbert, G. and De Angelis, J.; U.S. Patent 2,998,450; August 29, 1961; assigned to Warner-Lambert Pharmaceutical Company.

ACETAZOLAMIDE

Therapeutic Function: Carbonic anhydrase inhibitor, diuretic, treatment of glaucoma

Chemical Name: N-[5-(aminosulfonyl)-1,3,4-thiadiazol-2-yl] acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59-66-5

Trade Name	Manufacturer	Country	Year Introduced
Diamox	Lederie	U.S.	1953
Hydrazole	Softcon Products	U.S.	1975
Acetamide	Nessa	Spain	
Acetamox	Santen	Japan	
Acetazolam	ICN	Canada	
Acetazolamide			
Chibret	Chibret	France	_
Albox	Kwizda	Austria	_
Atenezol	Tsuruhara	Japan	_
Defiltran	Jouveinal	France	~
Diazomid	Dif-Dogu	Turkey	-
Diamox	Theraplix	France	_
Didoc	Sawai	Japan	_
Diluran	Spofa	Czech.	_
Diuramid	Polfa	Poland	
Dirureticum-			
Holzinger	Holzinger	Austria	_
Diuriwas	Wassermann	Italy	_
Donmox	Hotta	Japan	
Edemox	Wassermann	Spain	
Glauconox	Llorens	Spain	_
Glaupax	Erco	Denmark	_
Glaupax	Baeschlin	W. Germany	_
Glaupax	Dispersa	Switz.	-
Inidrase	Omikron-Gagliardi	italy	_
Nephramid	Chemiek	E. Germany	_
Oedemin	Astra	Sweden	
Renamid	Pliva	Yugoslavia	-
Uramox	Taro	Israel	-
Zohnox	Konto	Japan	_

Raw Materials

Hydrazine Hydrate	Chiorine
Ammonium Thiocyanate	Ammonia
Acetic Anhydride	Bromine

Manufacturing Process

According to REM, hydrazine hydrate is reacted with 2 mols of ammonium thiocyanate to produce 1.2-bis(thiocarbamoyl) hydrazine which by loss of ammonia and rearrangement produces 5-amino-2-mercapto-1,3,4-thiadiazole. That compound is acetyled with acetic anhydride.

Then, as described in U.S. Patent 2,554,816, the 2-acetylamido-5-mercapto-1,3,4-thiadiazole is converted to the sulfonyl chloride by passing chlorine gas into a cooled (5°-10°C) solution in 33% acetic acid (66 parts to 4 parts of mercapto compound) used as a reaction medium. Chlorine treatment is continued for two hours. The crude product can be dried and purified by recrystallization from ethylene chloride. The pure compound is a white crystalline solid, MP 194°C, with decomposition, when heated rapidly. The crude damp sulfonyl chloride is converted to the sulfonamide by addition to a large excess of liquid ammonia. The product is purified by recrystallization from water. The pure compound is a white, crystalline solid, MP 259°C, with decomposition. The yield of sulfonamide was 85% of theory based on mercapto compound,

An alternative process is described in U.S. Patent 2,980,679 as follows. 15 grams of finely powdered 2-acetylamino-1,3,4-thiadiazole-5-mercaptain are suspended in 200 ml of water containing 4 grams of potassium bromide. From 0.5 to 1 gram of ferric chloride are subsequently added. The mass is energetically stirred and 52 grams of liquid bromide are added by increments for about 45 minutes, while keeping the reaction temperature below 10°C, and, preferably, at 4°-8°C by employing a cooling bath. Stirring is continued for a further 10 minutes, then the 2-acetylamino-1,3,4-thiadiazole-5-sulfobromide is collected on a funnel equipped with a porous diaphragm, thoroughly washed with cold water and finally subjected to amidation with liquid ammonia. The reaction mixture is allowed to stand for a certain period, then the ammonia is evaporated, after which the residue is taken up with diluted ammonia and, after decolorizing with carbon, the sulfonamide is precipitated with hydrochloric acid. The yield of crude sulfonamide obtained with this process, with respect to the starting mercapto compound is about 84%. If the amidation is carried out with 33% aqueous ammonia, the vield is slightly lower.

References

Merck Index 45 Kleeman & Engel p. 6 PDR pp. 830, 1008, 1606 OCDS Vol 1 p. 249 (1977) I.N. p. 5 **REM p. 936**

Clapp, J.W. and Roblin, R.O., Jr.; U.S. Patent 2,554,816; May 29, 1951; assigned to American Cyanamid Company.

Gianfranco, P.; U.S. Patent 2,980,679; April 18, 1961; assigned to Omikron-Gagliardi Societa di Fatto, Italy.

ACETOHEXAMIDE

Therapeutic Function: Hypoglycemic

Chemical Name: 1-[(p-acetylphenyl)sulfonyl]-3-cyclohexylurea

Common Name: Cyclamide

Structural Formula:

Chemical Abstracts Registry No.: 968-81-0

Trade Name	Manufacturer	Country	Year Introduced
Dymelor	Lilly	U.S.	1964
Dimelin	Shionogi	Japan	-
Dimelor	Lilly	U.K.	
Gamadiabet	Salvat	Spain	-
Metaglucina	Perga	Span	-
Ordimei	Lilly	Spain	_

Raw Materials

p-Aminoacetophenone Sulfur Dioxide Sodium Nitrite Ammonia

Hydrogen Chloride Cyclohexyl isocyanate

Manufacturing Process

Preparation of p-Acetylbenzenesulfonamide: 100 grams of p-aminoacetophenone were dissolved in a solvent mixture containing 165 ml of 12 N hydrochloric acid and 165 ml of glacial acetic acid. The mixture was cooled with stirring to about 0°C. A solution containing 56.2 grams of sodium nitrite and 175 ml of water was added dropwise with stirring to the acidic solution while maintaining the temperature below 5°C.

After the addition had been completed, the acidic solution containing p-acetylphenyldiazonium chloride formed in the above reaction was added dropwise with stirring to a mixture of 530 ml of glacial acetic acid and 530 ml of benzene which had been previously cooled. and the cooled solution saturated with sulfur dioxide and to which had been added 34 g of cupric chloride dihydrate. After the addition had been completed, the reaction mixture was stirred at about 40°C for three hours, and was then poured into 3,000 ml of an icewater mixture.

The benzene layer containing p-acetylbenzenesulfonyl chloride formed in the above reaction was separated, and the acidic aqueous phase was extracted twice with 250 ml portions of benzene. The benzene layers were combined, the combined extracts were filtered, and the benzene was evaporated from the resulting filtrate in vacuo.

The solid residue comprising p-acetylbenzenesulfonyl chloride was dissolved in 100 ml of dioxane, and the solution was added to 200 ml of 14% aqueous ammonium hydroxide. The resulting solution was stirred overnight at ambient room temperature. The p-acetylbenzenesulfonamide thus prepared was collected by filtration. Recrystallization of the filter cake from aqueous ethanol yielded purified p-acetylbenzenesulfonamide melting at about 176° to 179°C.

Preparation of N-p-Acetylphenylsulfonyl-N'-Cyclohexylurea: A reaction mixture consisting of 32.7 grams of p-acetylbenzenesulfonamide and 64 grams of anhydrous potassium carbonate in 350 ml of anhydrous acetone was stirred at refluxing temperature for about 11/2 hours, thus forming the potassium salt of p-acetylbenzenesulfonamide. 30.9 grams of cyclohexylisocyanate were added dropwise to the reaction mixture. Refluxing and stirring were continued during the course of the addition and for an additional 16 hours.

The acetone was removed by evaporation in vacuo, and about 750 ml of water were added to dissolve the resulting residue. The solution was filtered. The potassium salt of N-p-acetylphenylsulfonyl-N'-cyclohexylurea formed in the above reaction, being water-soluble, passed into the filtrate. Acidification of the filtrate with 6 N aqueous hydrochloric acid caused the precipitation of N-p-acetylphenylsulfonyl-N'-cyclohexylurea which was collected by filtration. Recrystallization of the filter cake from 90% aqueous ethanol yielded purified N-p-acetylphenylsulfonyl-N'-cyclohexylurea melting at about 188°-190°C.

Merck Index 53 Kleeman & Engel p. 7 PDR p. 1049 OCDS Vol. 1 p. 138 (1977) I.N. p. 6 REM p. 976

Sigal, M.V., Jr. and Van Arendonk, A.M.; U.S. Patent 3,320,312; May 16, 1967; assigned to Eli Lilly and Company.

ACETOPHENAZINE DIMALEATE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[3-[4-(2-hydroxyethyl)-1-piperazinyl] propyl] phenothiazin-2-yl methyl

ketone maleate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5714-00-1; 2751-68-0 (Acetophenazine)

Trade Name	Manufacturer	Country	Year Introduced
Tindal	Schering	U.S.	1961

Raw Materials

Sodium Amide 1-(2-Hydroxyethyl)piperazine 2-Acetylphenothiazine Maleic Acid 1-Bromo-3-Chloropropane

Manufacturing Process

The requisite intermediate, 10-(3-chloropropyl)-2-acetylphenothiazine is prepared as follows: To a suspension of sodamide (from 3 grams of sodium) in 300 ml of liquid ammonia is added 30 grams of 2-acetylphenothiazine. After stirring for one hour, there is added 19 grams of 1-bromo-3-chloropropane. The ammonia is allowed to evaporate and the residue is diluted with 200 ml of water. The mixture is extracted with ether and the ether solution is dried over anhydrous sodium sulfate, filtered and concentrated.

The residue consists of crude 10-(3-chloropropyl)-2-acetylphenothiazine as a viscous oil and is used in the next step without further purification. The crude base obtained from the reaction of 10-(3-chloropropyl)-2-acetylphenothiazine with 1-(2-hydroxyethyl)piperazine is purified by conversion to its dimaleate salt, MP 167°-168.5° from ethanol.

References

Merck Index 64 Kleeman & Engel p. 7 OCDS Vol. 1 p. 383 (1977)

I.N. p. 6

REM p. 1086

Sherlock, M.H. and Sperber, N.; U.S. Patent 2,985,654; May 23, 1961; assigned to Schering Corporation.

ACETOXOLONE ALUMINUM SALT

Therapeutic Function: Antiulcerative

Chemical Name: 3-(acetyloxy)-11-oxoolean-12-en-29-oic acid aluminum salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6277-14-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Oriens	Inverni Beffa	Italy	1981

Raw Materials

3-Acetyl-18 β -glycerrhetinic Acid Aluminum Alcoholate

Manufacturing Process

The salts of 3-acetyl-18 β -glycyrrhetinic acid can be prepared by reaction between 3-acetyl-18 β -glycyrrhetinic acid and an aluminum alcoholate. Preferably lower alcoholates are used, i.e., alcoholates in which the alkoxy group or groups have from one to four carbon atoms. The salification reaction may be carried out at room temperature or at an elevated temperature in conventional fashion, preferably in the presence of organic solvents. As organic solvents may be used alcohols, ethers, ketones, chlorinated solvents (methylene chloride, chloroform) ethyl acetate, etc.

References

Merck Index 70

Bonati, A.; U.S. Patent 3,764,618; October 9, 1973; assigned to Dott. Inverni & Della Befia S.p.A.

ACETRIZOATE SODIUM

Therapeutic Function: X-ray contrast medium

Chemical Name: 3-(Acetylamino)-2.4.6-triiodobenzoic acid sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 129-63-5

Trade Name	Manufacturer	Country	Year Introduced
Urokon Sodium	Mallinckrodt	U.S.	1950
Thixokon	Mallinckrodt	U.S.	1957
Cystokon	Mallinckrodt	U.S.	1964
Pyelokon-R	Mallinckrodt	U.S.	_
Salpix	Ortho	U.S.	_
Diaginol	May & Baker	U.K.	_
Diaginol	Banyu	Japan	_
Vasurix	Guerbet	France	
Fortombrin	Dagra	Neth.	_
lodopaque	Labaz	Switz.	_
Triurol	Lundbeck	Denmark	_

Raw Materials

3-Amino-2,4,6-triiodobenzoic Acid Acetic Anhydride Sodium Hydroxide

Manufacturing Process

3-amino-2.4.6-triiodobenzoic acid (51,5 g) was mixed with 125 ml of acetic anhydride containing 2 drops of concentrated sulfuric acid and refluxed for thirty minutes. The mixture was allowed to cool slightly, and then was poured into 600 ml of water at room temperature and stirred until crystallization was complete. The mixed anhydride of 3-acetylamino-2,4,6triiodobenzoic acid with acetic acid thus prepared was then separated by filtration and washed with water. Without drying, the solid was suspended in 600 ml of water and hydrolyzed with a slight excess of ammonium hydroxide. It was necessary to warm the mixture slightly and stir it for about one-half hour in order to dissolve all the solid. The solution was then treated with activated carbon, filtered and precipitated with an excess of hydrochloric acid, filtered, washed and dried at 70°C. The yield was 51.5 g of 3-acetylamino-2,4,6-triiodobenzoic acid which melted at 276.6°-278.2°C with decomposition when placed in the melting block at 260°C and heated at the rate of 3°C per minute. Due to decomposition, the melting point varied from about 269°-280°C, depending upon the rate of heating and other conditions.

3-acetylamino-2,4,6-triiodobenzoic acid (28 g) was dissolved in a little over 50 ml of 1 N sodium hydroxide in a round-bottom flask. The pH was adjusted to slightly over 7 and the solution was evaporated on a steam bath under reduced pressure. After the residue became solid, it was further dried overnight in a vacuum desiccator containing calcium chloride. The salt weighed 31.2 g, theory being 29.0 g, indicating that the product contains about 7% water of crystallization when dried under these conditions. The finished salt was scraped from the flask and ground.

References

Merck Index 73 Kleeman & Engel p.8

I.N. p.7

Wallingford, V.H.; U.S. Patent 2,611,786; September 23, 1952; assigned to Mallinckrodt Chemical Works,

ACETYLCYSTEINE

Therapeutic Function: Expectorant

Chemical Name: N-acetyl-L-cysteine

Common Name: -

Structural Formula: NHCOCH₃

HSCH₂CHCOOH

Chemical Abstracts Registry No.: 616-91-1

Trade Name	Manufacturer	Country	Year Introduced
Mucomyst	Mead Johnson	U.S.	1963
Acetein	Senju	Japan	_
Airbron	BDH	U.K.	_
Broncholysin	Spofa	Czech.	
Brunac	Bruschettini	Italy	_
Fabrol	Ciba	-	_
Fluimucetin	Zambon	Italy	-
Fluimucetin	Inpharzam	Belgium	***
Fluimucil	Zambon	Italy	_
Inspir	Vitrum	Sweden	_
Mucolyticum	Lappe	W. Germany	_
Mucosolvin	VEB Berlin-Chemie	E. Germany	_
NAC	Mead Johnson	<u> </u>	_
Parvolex	Duncan Flockhart	U.K.	_
Mucomist	Bristol	Italy	_
Mucisol	Deca	Italy	_
Rinofluimucil	Inpharzam	W. Germany	_
A.R.B.	Tokyo Tanabe	Japan	
Mucofilin	Eisai	Japan	_

Raw Materials

L-Cysteine HCI Acetic Anhydride

Manufacturing Process

To a suspension of 35.2 grams (0.2 mol) of L-cysteine hydrochloride monohydrate stirred in a reaction vessel containing 87 ml of 91% aqueous tetrahydrofuran under a nitrogen

atmosphere there is added 54.4 grams (0.4 mol) of sodium acetate trihydrate. The mixture is stirred for 20 minutes at room temperature to insure neutralization of the hydrochloride salt resulting in the formation of a suspension of equimolar amounts of cysteine and sodium acetate.

The mixture is then chilled to 3°-6°C by external cooling and 20 ml (20.8 grams, 0.21 mol) of acetic anhydride is added thereto in dropwise fashion with cooling in the above range. The resulting mobile suspension is stirred for 6 hours at room temperature, allowed to stand overnight, and finally heated at reflux (72°C) for 4 hours. The resulting suspension of sodium N-acetyl-L-cysteinate is then neutralized by treatment at 5°-10°C with 8 grams of hydrogen chloride. Resulting sodium chloride is removed by filtration and the product is isolated by distilling the solvent from the filtrate in vacuo and crystallizing the residue from 35 ml of water, yield 26.3 grams (80.6%) of N-acetylcysteine as a white solid, MP 109°-110°C.

References

Merck Index 82 Kleeman & Engel p. 8 PDR p. 1126 DOT 16 (2) p. 42 (1980) 1.N.p.8 REM p. 867

Martin, T.A. and Waller, C.W.; U.S. Patent 3,184,505; May 18, 1965; assigned to Mead Johnson & Company.

ACETYLDIGITOXIN

Therapeutic Function: Cardiotonic

Chemical Name: See structural formula

Common Name: Digitoxin monoacetate

Structural Formula:

Chemical Abstracts Registry No.: 1111-39-3

Trade Name	Manufacturer	Country	Year Introduced
Acylanid	Sandoz	U.S.	1954
Acygoxine	Sandoz	France	1972
Acylanide	Sandoz	France	1954
Acylanil	_	_	-
Acylanid	Sandoz	Italy	1966
Sandolanid	Sandoz	W. Germany	1968

Raw Materials

Digitalis Ferruginea Leaves

Manufacturing Process

Acetyldigitoxin- α can be obtained from acetyldigitoxin- β by heating it in an anhydrous or aqueous organic solvent at neutral, weakly acid or weakly alkaline pH, i.e., at a pH range from about 3.5 to about 8.

The acetylidigitoxin- β used for this purpose is a cardiac glycoside which can be obtained either by splitting off the glucose residue from lanatoside A, or by extraction of the leaves of Digitalis ferruginea. It is composed of the aglycone digitoxigenin and 3 molecules of digitoxose, to one of which an acetyl group is attached. Acetyldigitoxin- α , obtained from acetyldigitoxin-\(\beta \) by rearrangement, differs from the latter in the position of the acetyl group.

The process may be carried out, for example, in the following manner: A solution of acetyldigitoxin-\(\beta \) in a suitable solvent, such as methanol, is boiled under reflux and then diluted with water. The unchanged acetyldigitoxin- β , which crystallizes out first, is filtered off and can again be submitted to the same process. On concentrating the filtrate, acetyldigitoxin- α separates out in crystalline form and after filtering off and recrystallizing is obtained in a pure state. The acetyldigitoxin-α crystallizes from aqueous methanol in platelets melting at 217°-221°C.

References

Merck Index 83 Kleeman & Engel p. 9 8.a.M.I

Stoll, A. and Kreis, W.; U.S. Patent 2,776,963; January 8, 1957; assigned to Sandoz, AG. Switzerland.

ACETYL SULFISOXAZOLE

Therapeutic Function: Antimicrobial

Chemical Name: N-[(4-aminophenyl)sulfonyl]-N-(3,4-dimethyl-5-isoxazolyl)sulfanilamide

Common Name: Acetylsulfafurazol

Structural Formula:

Chemical Abstracts Registry No.: 80-74-0

Trade Name	Manufacturer	Country	Year Introduced
Gantrisin Acetyl Lipo-Gantrisin	Roche	U.S.	1954
Acetyl Pediazole	Roche Ross	U.S. U.S.	1954

Raw Materials

Sulfisoxazole Acetic Anhydride

Manufacturing Process

267 grams (1 mol) of sulfisoxazole were suspended in 400 ml of acetone and 79 grams (1 mol) of dry pyridine at 20°-25°C in a round-bottom flask equipped with a stirrer and thermometer. 132 grams (1 mol) of acetic anhydride were added within 3 minutes with stirring. The sulfisoxazole dissolved in the mixture and a clear solution resulted. The temperature rose to 39°-40°C. After stirring for several minutes, the product started to crystallize as a white crystalline mush. The temperature rose to 42°-43°C, maintained itself at this temperature for 15-30 minutes, and then started to drop. Stirring was continued for 5 hours and the mixture was then allowed to stand for 10 hours. One liter of 2.5-3.0% ice-cold aqueous ammonia and some fresh ice were then added while stirring and the crystals were filtered without delay. The crystals were washed on the filter with 1 liter of icecold 1% ammonia and then with 1 liter of water. The material on the filter was well pressed off, washed with 200-300 ml of alcohol and dried at 70°C to constant weight. The N-monoacetyl sulfisoxazole melted at 193°-194°C and showed a positive Bratton-Marshall reaction and a positive Hucknall-Turfat reaction.

The product is in the form of colorless crystals which are somewhat water repellent. It is insoluble in alkali but is saponified upon standing in alkaline suspension (3% ammonia). It is soluble in strong acids (20-36% HCl or 10 N H₂SO₄) and is rapidly saponified upon standing.

References

Merck Index 104 Kleeman & Engel p. 13 PDR pp. 1487, 1558 I.N. p. 10

Hoffer, Max; U.S. Patent 2,721,200; October 18, 1955; assigned to Hoffmann-La Roche Inc.

ACLARUBICIN

Therapeutic Function: Antitumor; antibiotic

Chemical Name: $[1R-(1\alpha,2\beta,4\beta)]$ -2-Ethyl-1,2,3,4,6,11-hexahydro-2,5,7-trihydroxy-6,11-dioxo-4-[[O-2.3.6-trideoxy-0-L-dycero-hexopyranos-4-ulos-1-yl-(1->4)-O.2.6-dideoxy-0-L-Iyxohexopyranosyl-(1→4)-2,3,6-trideoxy-3-(dimethylamino)-α-L-lyxohexopyranosyl]oxy]-1-naphthacenecarboxylic acid methyl ester

Common Name: Aclacinomycin A

Chemcal Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Aclacinon	Yamanouchi	Japan	1981
Aclacinomycine	Roger Bellon	France	1981

Raw Materials

Carbohydrates (By Fermentation)

Manufacturing Process

An aqueous medium having the following composition was prepared:

	Percent
Potato starch	1
Glucose	1
Prorich	1.5
KH ₂ PO ₄	0.1
K ₂ HPO ₄	0.1
MgSO ₄ ·7H ₂ O	0.1
NaCl	0.3
Minerals*	0,125
Silicone (KM75)	0.05
pH	7.0

*2.8 g CuSO₄·5H₂O, 0.4 g FeSO₄·7H₂O, 3.2 g MnCl₂·4H₂O, 0.8 g ZnSO₄·7H₂O in 500 ml water

100 ml of this medium was sterilized at 120°C for 15 min in a 500 ml Sakaguchi-shaking flask which was inoculated from an agar slant culture of Streptomyces galilaeus MA144-M1 by platinum loop. Incubation proceeded for 48 hr at 28°C on a reciprocal shaker. 10 ℓ of the previously sterilized medium in a 20 ℓ stainless steel jar fermenter were aseptically inoculated with 200 ml of the above seed cultures. Fermentation was carried out at 28°C for 32 hours with agitation (240 rpm) and aeration (5 ℓ /min). The cultured broth obtained was adjusted to pH 4.5, mixed with an adsorbent siliceous earth material and filtered from the mycelium. The filtrate and cake obtained thereby were extracted separately. The cake was suspended in acetone (3 ℓ /kg wet cake), stirred for 2 hr and filtered, and the cake was further extracted with acetone once again. The extracts thus obtained were evaporated to one-tenth volume in vacuo. The culture filtrate was adjusted to pH 6.8 and extracted twice with one-third volume of ethyl acetate, and the ethyl acetate extracts were concentrated to one-tenth volume in vacuo.

Twenty grams of the resulting oily substances were mixed with 20 grams of silicic acid (Mallinckrodt Chemical Co.), applied to a column 40 cm in length and 4.5 cm in diameter filled with silicic acid, and eluted with a benzene-acetone-methanol mixture. The initial eluate which eluted with a 1:1:0 mixture was discarded and the active fractions eluted with 1:3:0 and 1:3:0.3 mixtures were collected and concentrated to dryness in vacuo. 11.5 g of this crude substance was then dissolved in a small amount of ethyl acetate and applied to the same silicic acid column as above. After discarding the initial eluates by the 1:1 and 2:1 benzene-acetone mixtures, aclacinomycin B fractions were first eluted with the above mixtures of 1:3 and 1:5 ratio, and aclacinomycin A fractions were then eluted with the 1:5:0.5 and 1:5:1 benzene-acetone-methanol mixtures. The eluates were dried over anhydrous sodium sulfate and concentrated to dryness in vacuo. 4.8 g of crude aclacinomycin A and 3.5 g of aclacinomycin B were obtained as yellow powder.

2.0 g of crude adacinomycin A obtained as above were dissolved in a small amount of chloroform, applied to a column 20 cm in length and 20 cm in diameter filled with 30 g of silicic acid. After eluting off the pigments containing aglycone and adacinomycin B and other impurities with chloroform and 1.5% methanol-containing chloroform, adacinomycn A fractions were eluted with 2% methanol-containing chloroform, and concentrated to dryness in vacuo. 53 mg of yellow powder of aclacinomycin A was obtained. Its melting point was 129° to 135°C.

References

DFU 2 (3) 171 (1978) (as Aclacinomycin A) DOT 18 (10) 517 (1982) I.N. p. 42 (1984)

Umezawa, H., Takeuchi, T., Hamada, M., Takamatsu, A. and Oki, T.; U.S. Patent 3 988 315; October 26, 1976; assigned to Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai

ACLATONIUM NAPADISYLATE

Therapeutic Function: Cholinergic

Chemical Name: 2-[2-(Acetyloxy)-1-oxopropoxy]-N,N,N-trimethylethanaminium-1,5-naph-

thalenedisulfonate(2:1)

Common Name: Bis[Acetoxy-methyl acetic acid trimethylammoniumethyl ester] -naphtha-

lene-1.5-disulfonate

Structural Formula:

$$\begin{bmatrix} \begin{smallmatrix} \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 & \mathsf{CH}_3 \\ \mathsf{CH}_3 & \mathsf{CH}_3 \end{bmatrix}_2$$

Chemical Abstracts Registry No.: 55077-30-0

Trade Name	Manufacturer	Country	Year Introduced
Abovis	Toyama	Japan	1981

Raw Materials

Bis (Choline) - Naphthalene - 1,5-Disulfonate Lactic Acid Anhydride Diacetate

Manufacturing Process

5.2 g of bis(choline)-naphthalene-1,5-disulfonate was suspended in 30 ml of acetonitrile, and 10 g of lactic acid anhydride diacetate was added thereto. This mixture was refluxed for 3 hours. The resulting reaction mixture was allowed to stand at room temperature while cooling to precipitate the desired product crystals, which were collected by filtration. 5.5 g (76% vield) of the desired product having a melting point of 189° to 191°C were obtained.

References

Merck Index 110 DFU 7 (4) 227 (1982) DOT 19 (1) 8 (1983) I.N. p. 42

Miura, K., Takagawa, N., Suzuki, Y., and Matsumoto, Y.; U.S. Patent 3,903,137; September 2, 1975; assigned to Toyama Chemical Co., Ltd.

ACYCLOVIR

Therapeutic Function: Antiviral

Chemical Name: 2-Amino-1,9-dihydro-9-[(2-hydroxyethoxy)methyl]-6H-purin-6-one

Common Name: Acycloguanosine; 9-{2-hydroxyethoxymethyl)guanine

Structural Formula:

Chemical Abstracts Registry No.: 59277-89-3

Trade Name	Manufacturer	Country	Year Introduced
Zovirax	Burroughs-Wellcome	U.K.	1981
Zovirax	Burroughs-Wellcome	U.S.	1982
Zovirax	Burroughs-Wellcome	Switz.	1982
Zovirax	Burroughs-Wellcome	W. Germany	1983
Zovirax	Burroughs-Wellcome	Sweden	1983
Zovirax	Burroughs-Wellcome	France	1983

Raw Materials

Sodium Nitrite 2-Chloro-9-(2-Hydroxyethoxymethyl)adenine Ammonia

Manufacturing Process

Solid sodium nitrite (0.97 g) was added at room temperature with stirring over a period of one hour to a solution of 2-chloro-9-(2-hydroxyethoxymethyl)adenine (0.5 g) in glacial acetic acid (10 ml). The reaction mixture was stirred for an additional 4½ hours. The white solid was removed by filtration, washed with cold acetic acid and then well triturated with cold water to remove the sodium acetate present. The solid product was retained. The combined acetic acid filtrate and wash was evaporated at reduced pressure and 40°C bath temperature and the residual oil triturated with cold water. The resulting solid material was combined with the previously isolated solid and the combined solids dried and recrystallized from ethanol to give 2-chloro-9-(2-hydroxyethoxymethyl)-hypoxanthine (0.25 g), MP>310°C. Elemental analysis and NMR spectrum were consistent with this structure.

A mixture of 2-chloro-9-(2-hydroxyethoxymethyl)-hypoxanthine (0.375 g) and methanol (80 ml) saturated with anhydrous ammonia was heated in a bomb at 125°C for 5 hours. The bomb was cooled in an ice bath and the reaction mixture removed. Solvent and excess ammonia were removed under reduced pressure at 50°C. After the residue was triturated with cold water to remove the ammonium chloride formed, the remaining solid was dried and then recrystallized from methanol to give pure 9-(2-hydroxyethoxymethyl)guanine (0.24 g), MP 256.5°-257°C.

References

Merck Index 140 DFU 4 (11) 842 (1979) Kleeman & Engel p. 14 PDR p. 773 OCDS Vol. 3 p. 229 DOT 18 (2) 52 (1982)

REM p. 1231

Schaeffer, H.J.; U.S. Patent 4,199,574; April 22, 1980; assigned to Burroughs-Wellcome Co.

ADENOSINE TRIPHOSPHATE

Therapeutic Function: Coenzyme; vasodilator

Chemical Name: Adenosine 5'-(tetrahydrogen triphosphate)

Common Name: ATP; Triphosadenine

Structural Formula:

Chemical Abstracts Registry No.: 56-65-5

Trade Name	Manufacturer	Country	Year Introduced
Atepodin	Medix	Spain	_
Atriphos	Biochimica	Switz,	-
Estriadin	Boizot	Spain	_
Striadyne	Auclair	France	
Triphosphodine	I.C.I.	U.K.	_

Raw Materials

1,3-Dicyclohexylguanidinium adenosine 5'-phosphoramidate Bis-Triethylammonium pyrophosphate

Manufacturing Process

With a solution of 0.29 part by weight of well dried 1,3-dicyclohexylguanidinium adenosine 5'-phosphoramidate in 5 parts by volume of ortho-chlorophenol is admixed a solution of 0.95 part by weight of bis-triethylammonium pyrophosphate in a mixed solvent composed of 1 part by volume of ortho-chlorophenol and 2 parts by volume of acetonitrile. The mixture is left standing at 20°C for 2 days. Then 30 parts by volume of water is added to the mixture. After washing with three 15 parts by weight volume-portions of diethyl ether, the aqueous layer is separated, and the remaining diethyl ether in the aqueous layer is removed under reduced pressure. Five parts by weight of activated charcoal is added to the aqueous layer and the mixture is stirred for 30 minutes. The activated charcoal is filtered and further 1 part by weight of activated charcoal is added to the filtrate. After 20 minutes agitation, the activated charcoal is taken out by filtration. The combined activated charcoal is washed with a little water, and eluted twice with respective 300 and 200 parts by volume-portions of 50% (volume) ethanol containing 2% (volume) of concentrated aqueous ammonia. The eluate is concentrated

to 40 parts by volume, then is passed through a column packed with 20 parts by volume of a strongly basic anion exchange resin in bead form (chloric type) (polystyrene trimethylbenzyl ammonium type resin sold under the name of Dowex-1 from Dow Chemical Company, Mich. U.S.A.). Then, the column is washed with 750 parts by volume of an acid aqueous saline solution containing 0.01 normal hydrochloric acid and 0.02 normal sodium chloride and then eluted with 600 parts by volume of an acid aqueous saline solution composed of 0.01 normal hydrochloric acid and 0.2 normal sodium chloride. After neutralizing with a diluted sodium hydroxide solution, the eluate is treated with activated charcoal to adsorb ATP as its sodium salt. The separated activated charcoal is washed with water and eluted with 60% (volume) ethanol containing 2% (volume) of concentrated aqueous ammonia. The eluate is concentrated to 0.5 part by volume, then 5 parts by volume of ethanol is added. The precipitate thus deposited is centrifuged and dried at low temperature to obtain 0.155 part by weight of tetrasodium salt of ATP containing 4 mols of water of crystallization as a colorless crystalline powder. The yield is 47% relative to the theoretical.

References

Merck Index 146 I.N.p. 983

Tanaka, K. and Honjo, M.; U.S. Patent 3,079,379; February 26, 1963; assigned to Takeda Pharmaceutical Industries, Ltd.

AFLOQUALONE

Therapeutic Function: Centrally acting muscle relaxant

Chemical Name: 6-Amino-2-(fluoromethyl)-3-(o-tolyl)-4(3H)-quinazolinone

Common Neme: -

Structural Formula:

Chemical Abstracts Registry No.: 56287-74-2; 56287-75-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Arofuto	Tanabe Seiyaku	Japan	1983

Raw Materials

N-(2-Amino-5-Nitrobenzyl)-o-Toluidine Fluoroacetyl Chloride Acetic Anhydride Hydrogen

Manufacturing Process

14.4 g (0.053 mol) of N-(2-amino-5-nitrobenzoyl)-o-toluidine end 6.3 g (0.08 mol) of pyridine are dissolved in 300 ml of tetrahydrofuran. 12.2 g (0.126 mol) of fluoroacetyl chloride

are added to the solution for 10 minutes under ice-cooling. The solution is stirred at the same temperature for 30 minutes and then at room temperature for 2,5 hours. The reaction solution is allowed to stand at room temperature overnight. The crystalline precipitate is collected by filtration, washed with water and then dried. 16.4 g of N-(2-fluoroacetamido-5-nitrobenzoyl)-o-toluidine are obtained. Yield: 93.7%; MP 238°-239°C.

16.5 g (0.05 mol) of N-(2-fluoroacetamido-5-nitrobenzoyl)-o-toluidine and 25.5 g (0.25 mol) of acetic acid anhydride are dissolved in 250 ml of glacial acetic acid. The solution is refluxed for 2 hours under heating. Then, the reaction solution is evaporated to remove solvent. The residue thus obtained is poured into ice-water, and the aqueous mixture is adjusted to pH 9 with potassium carbonate. The crystalline precipitate is collected by filtration. 15.5 g of 2-fluoromethyl-3-(o-tolyl)-6-nitro-4(3H)-quinazolinone are obtained. Yield: 98.7%; MP 155°–158°C (recrystallized from ethanol).

A mixture of 2.0 g (0.064 mol) of 2-fluoromethyl-3-(o-tolyl)-6-nitro-4(3H)-quinazolinone, 0.2 g of 5% palladium-carbon and 100 ml of acetic acid is shaken for 30 minutes in hydrogen gas. The initial pressure of hydrogen gas is adjusted to 46 lb and the mixture is heated with an infrared lamp during the reaction. After 30 minutes of this reaction, the pressure of hydrogen gas decreases to 6 lb. After the mixture is cooled, the mixture is filtered to remove the catalyst. The filtrate is evaporated to remove acetic acid, and the residue is dissolved in chloroform. The chloroform solution is washed with 5% aqueous sodium hydroxide and water, successively. Then, the solution is dried and evaporated to remove solvent. The oily residue thus obtained is dissolved in 2 ml of chloroform, and the chloroform solution is passed through a column of 200 g of silica gel. The silica gel column is eluted with ethyl acetate-benzene (1:1). Then, the eluate is evaporated to remove solvent. The crude crystal obtained is washed with isopropylether and recrystallized from isopropanol. 0.95 g of 2-fluoromethyl-3-(o-tolyl)-6-amino-4(3H)-quinazolinone is obtained. Yield: 52,5%; MP 195°-196°C.

References

DFU 7 (8) 539 (1982) DOT 19 (1) 581 (1983)

Inoue, L., Oine, T., Yamado, Y., Tani, J., Ishida, R. and Ochiai, T.; U.S. Patent 3,966,731; June 29, 1976; assigned to Tanabe Seiyaku Co., Ltd.

ALBENDAZOLE

Therapeutic Function: Anthelmintic

Chemical Name: [5-(Propylthio)-1H-benzimidazol-2-yl] carbamic acid methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54965-21-8

Trade Name	Manufacturer	Country	Year Introduced
Zentel	SK&F	France	1981

Raw Materials

3-Chloro-6-Nitroacetanilide Propyl Mercaptan Hydrogen

Cvanamide Methyl Chloroformate

Manufacturing Process

A mixture of 6.65 g of 3-chloro-6-nitroacetanilide, 3.2 ml of propylmercaptan, 5.6 g of 50% sodium hydroxide and 100 ml of water is heated at reflux overnight. The cooled mixture is filtered to give the desired 2-nitro-5-propylthioaniline, MP 69.5°-71.5°C after recrystallization from ethanol then hexane-ether. NMR (CDCl₃) 40%.

The aniline (2.5 g) is hydrogenated with 1.9 ml of concentrated hydrochloric acid, 100 ml ethanol and 5% palladium-on-charcoal to give 4-propylthio-o-phenylene-diamine hydrochloride.

A mixture of 2.5 ml of 50% sodium hydroxide in 5 ml of water is added to a mixture of 1.9 g of cyanamide, 2.2 g of methylchloroformate, 3.5 ml of water and 3 ml of acetone over 45 minutes below 10°C, pH raised to 6.5. A molar equivalent solution of the diamine in 100 ml of ethanol is added. The mixture is heated until the easily volatile solvents are expelled, to about 85°C, then maintained at this temperature with some water added for one-half hour. The product, methyl 5-propylthio-2-benzimidazolecarbamate, is separated, washed to give a colorless crystalline solid, MP 208°-210°C.

References

Merck Index 197 DFU 2 (2) 81 (1977) OCDS Vol. 2 p. 353 (1980) DOT 15 (3) 89 (1979) I.N. p. 50

Gyurik, R.J. and Theodorides, V.J.; U.S. Patent 3,915,986; October 28, 1975; assigned to Smith Kline Corp.

ALBUTEROL

Therapeutic Function: Bronchodilator

Chemical Name: α^{1} -[[(1,1-Dimethylethyl)amino]methyl]-4-hydroxy-1,3-benzenedimethanol

Common Name: Salbutamol; α' -tert-butylaminomethyl-4-hydroxy-m-xylene- α^1 , α^3 -diol

Structural Formula:

Chemical Abstracts Registry No.: 18559-94-9; 51022-70-9 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Ventolin	Allen & Hanburys	U.K.	1969
Sultanol	Glaxo	W. Germany	1971
Ventoline	Glaxo	France	1971
Ventolin	Glaxo	Italy	1973
Ventolin	Sankyo	Japan	1973
Ventolin	Glaxo	Switz.	1981
Ventolin	Glaxo	U.S.	1981

Trade Name	Manufacturer	Country	Year Introduced
Broncollenas	Lienas	Spain	_
Buto-Asma	Aldo Union	Spain	_
Proventil	Schering	Ú.S.	_
Rotacaps	Schering	_	_
Salbumoi	Medica	Finland	_
Salbutol	litas	Turkey	_
Salbuvent	Leiras	Finland	_
Salbuvent	Nyegaard	Norway	_

Raw Materials

5-(N-benzyl-N-tert-butylglycyl)salicylic acid methyl ester hydrochloride Lithium aluminum hydride Hydrogen

Manufacturing Process

(a) α^1 -benzyl-tert-butylaminomethyl-4-hydroxy-m-xylene- $\alpha^1 \alpha^3$ -diol-3.0 g of 5-(N-benzyl-N-tert-butylglycyl)-salicylic acid methyl ester hydrochloride in 40 ml of water was basified with sodium bicarbonate solution and extracted into ether. The ethereal solution was dried over MgSO4 and evaporated and the basic residue in 20 ml of dry tetrahydrofuran was added with stirring to 1.0 g of lithium aluminium hydride in 100 ml of dry tetrahydrofuran, over a period of 5 minutes. The light gelatinous precipitate that formed was stirred and refluxed for 8 hours after which time 7 ml of water was carefully added and the solvents were removed under reduced pressure.

The residue was acidified with dilute hydrochloric acid and brought to pH 8 with sodium hydroxide and sodium bicarbonate. The mixture was filtered and the filtrate and orange solid were separately extracted with chloroform. The combined, dried, chloroform solutions were evaporated to give 2.2 g of the crude basic triol as an orange solid, when triturated with ether. A portion of the material was recrystallized from ether/light petroleum (BP 40°-60°C) to give a white solid, MP 109°-111°C.

In an alternative process, sodium borohydride was used as the reducing agent, as follows:

36 g of 2-(benzyl-tert-butylamino) 4'-hydroxy-3'-hydroxymethyl acetophenone, hydrochloride was shaken with 100 ml of 10% sodium carbonate solution and 100 ml of ethyl acetate. The ethyl acetate layer was separated, washed with water, dried over anhydrous sodium sulfate and evaporated in vacuo.

The residual gum was dissolved in 360 ml of ethanol and cooled to 15°C in an ice/water bath. 8 g of sodium borohydride was then added in portions over 30 minutes while maintaining the temperature at 15°-20°C. After a further 30 minutes at 20°C the solution was stirred at room temperature for 2 hours. The solution was again cooled in ice and 250 ml of 2 N sulfuric acid were slowly added, then the solution was evaporated in vacuo until the ethanol had been removed. The clear aqueous solution was then treated with 250 ml of 10% sodium carbonate solution and the oil which precipitated was extracted into ethyl acetate. The ethyl acetate layer was washed with sodium carbonate solution, then with water, and was dried over anhydrous sodium sulfate and evaporated in vacuo, to a small volume. Petroleum ether (BP 40°-60°C) was added, and after standing overnight a white solid was obtained. This was filtered off to give 23 g of the product, MP 110°-114°C.

(b) α^1 -tert-butylaminomethyl-4-hydroxy-m-xylene- α^1 α^3 -diol-0.8 g of α^1 benzyl-tert-butylaminomethyl 4-hydroxy-m-xylene- α^1 , α^3 -diol in 20 ml of ethanol and 2 ml of water was shaken with hydrogen in presence of 0.50 g of pre-reduced 10% palladium on charcoal catalyst. When uptake of hydrogen was complete, the solution was filtered and evaporated under reduced pressure to give 0.4 g of the base as a colorless oil which yielded a white solid, MP 144°-145°C when triturated with ether/cyclohexane. Recrystallization from ethyl acetate-cyclohexane gave a white solid, MP 147°-149℃.

Merck Index 206 DFU 4 (9) 629 (1979) Kleeman & Engel p. 813 PDR 40 pp. 916, 1649 OCDS Vol. 2 p. 43 (1980) DOT 16 (8) 269 (1980) I.N. p. 860

I.N. p. 860 REM p. 881

Lunts, L.H.C. and Toon, P.; U.S. Patent 3,644,353; February 22, 1972; assigned to Allen & Hanburys Ltd.

ALCOFENAC

Therapeutic Function: Antiinflammatory

Chemical Name: 3-Chloro-4-(2-propenyloxy)benzene-acetic acid

Common Name: {4-(allyloxy)-3-chlorophenyl} acetic acid

Structural Formula:

Chemical Abstracts Registry No.: 22131-79-9

Trade Name	Manufacturer	Country	Year Introduced
Mervan	Cooper	Switz.	_
Prinalgin	Berk	U.K.	1971
Neoston	Beiersdorf	W. Germany	1972
Allopydin	Chugai	Japan	1976
Zumaril	Abbott	Italy	1976
Epinal	Kyorin	Japan	1976
Darkeyfenac	Cuatrecasas-Darkey	Spain	_
Desinflam	Sintyal	Argentina	-
Medifenac	Medici	Italy	
Mervan, Mirvan	Continental Pharma	Belgium	_
Vanadian	Federico Bonet	Spain	_
Zumaril	Sidus	Italy	_
Rentenac	Tosi	Italy	_

Raw Materials

3-Chloro-4-allyloxyphenyl acetonitrile Potassium hydroxide

Manufacturing Process

103.7 grams of 3-chloro-4-allyloxyphenylacetonitrile in 500 cc of ethanol, 100 grams of potassium hydroxide and 100 cc of water are refluxed for 4 hours. Maximum of alcohol is evaporated, the residue is diluted with water and ice, and acidified with 20% HCl. The solid is filtered and washed with petroleum ether. 91.5 grams of acid are obtained (Yield: 81%) which is recrystallized from aqueous methanol; MP 92°-93°C.

Merck Index 209 Kleeman & Engel p. 19 OCDS Vol. 2 p. 68 (1980) DOT 8 No. 9, 329 (1972)

I.N.p. 50

British Patent 1,174,535; December 17, 1969; assigned to Madan AG, Switzerland.

ALCURONIUM CHLORIDE

Therapeutic Function: Skeletal Muscle Relaxant

Chemical Name: N.N'-DiallyInortoxiferinium Dichloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15180-03-7

Trade Name	Manufacturer	Country	Year Introduced
Alloferin	Roche	U.K.	1966
Alloferin	Roche	W. Germany	1968
Alloferine	Roche	France	1968
Dialferin	Nippon Roche	Japan	1969
Toxiferin	Roche	<u>.</u>	

Raw Materials

Dially! Nortoxiferine Diiodide Chloride Ion Exchange Resin

Manufacturing Process

31 g of diallylnortoxiferine diiodide are suspended in 1 liter of water and shaken with 1,100 ml of Amberlite IRA-400 [chloride ion form, described Merck Index, 7th edition, Merck & Co., Inc., Rahway, New Jersey (1960), page 1584], for 2 hours. The diiodide thereby goes into solution. The ion exchanger is filtered off and then washed in 3 portions with a total of 1 liter of water. The combined filtrates are then allowed to run through a column of 300 ml of Amberlite IRA-400 (chloride ion form), rinsed with 300 ml of water and the eluate evaporated to dryness in a vacuum while excluding air. The residue gives on recrystallization from methanol/ethanol crystalline pure colorless diallylnortoxiferine dichloride in a yield of 18,6 g. The compound contains 5 mols of water of crystallization after equilibration in air.

Merck Index 215 Kieeman & Engel p. 19

I.N. p. 51

Boller, A., Els, H. and Furst, A.; U.S. Patent 3,080,373; March 5, 1963; assigned to Hoffman La Roche, Inc.

ALFACALCIDOL

Therapeutic Function: Calcium Regulator, Vitamin D

Chemical Name: 9,10-Secocholesta-5,7,10(19)-triene-1,3-diol

Common Name: 1α-Hydroxycholecalciferol; 1α-Hydroxyvitamin D₃

Structural Formula:

Chemical Abstracts Registry No.: 41294-56-8

Trade Name	Manufacturer	Country	Year Introduced
One-Alpha	Leo	U.K.	1978
Eins-Alpha	Thomae	W. Germany	1980
Alfarol	Chugai	Japan	1981
One-Alpha	Teljin	Japan	1981
Delakmin	Roussel	France	_
Etalpha	Leo	Denmark	· -
Un-Alfa	Leo		_

Raw Materials

Cholesta-1,5,7-trien-3β-ol m-Chloroperbenzoic Acid 4-Phenyl-1 2.4-triazoline-3.5-dione Lithium Aluminum Hydride

Manufacturing Process

1. Preparation of 1 A-cyclized adduct of cholesta-1,5,7-trien β-ol and 4-phenyl-1,2,A-triazoline-3.5-dione: a solution of 400 mg of cholesta-1.5-7-trien-3 β -ol in 30 ml of tetrahydrofuran is cooled with ice, and 190 mg of 4-phenyl-1,2,4-triazoline-3,5-dione is added little by little to the solution under agitation. The mixture is agitated at room temperature for 1 hour and the solvent is distilled under reduced pressure. The residue is purified by chromatography using a column packed with silica gel. Fractions eluted with ether-hexane (7:3 v/v) are collected and recrystallization from ether gives 550 mg of a 1,4-cyclized adduct of cholesta-1,5,7-trien-3 β -ol and 4-phenyl-1.2,4-triazoline-3.5-dione having a melting point of 178° to 182°C.

- 2. Preparation of 1,4-cyclized adduct of cholesta-5,7-dien-3β-ol-1α-epoxide and 4-phenyl-1.2.4-triazoline-3.5-dione: 1.25 g of the 1.4-cyclized adduct of cholesta-1.5.7-trien-3β-ol and 4-phenyl-1 2.4-triazoline 3.5-dione is dissolved in 50 ml of chloroform, and 560 mg of mchloroperbenzoic acid is added to the solution. The mixture is agitated for 20 hours at room temperature, and 200 mg of m-chloroperbenzoic acid is further added and the mixture is agitated again for 20 hours. The reaction mixture liquid is diluted with chloroform, washed with a 10% agueous solution of potassium carbonate and dried with magnesium sulfate. Then, the solvent is distilled under reduced pressure. The residue is purified by silica gel chromatography, and first effluent fractions eluted with ether are collected, and recrystallization from methanol gives 680 g of a crystal melting at 172° to 173°C. The second ether effluent fractions are collected, and recrystallization from methanol gives 400 mg of a 1,4-cyclized adduct of cholesta 5.7 dien -3β -ol- $1\alpha.2\alpha$ -epoxide and 4-phenyl-1.2.4-triazoline 3.5 dione having a melting point of 152° to 154°C.
- 3. Preparation of cholesta 5.7-diene-1 α ,3 β -diol: a solution of 500 mg of the 1.4-cyclized adduct of cholesta 5,7-dien -3β -ol- 1α ,2 α -epoxide and 4-phenyl-1,2,4-triazoline-3,5-dione in 40 ml of tetrahydrofuran is added dropwise under agitation to a solution of 600 mg of lithium aluminum hydride in 30 ml of THF. Then, the reaction mixture liquid is gently refluxed and boiled for 1 hour and cooled, and a saturated aqueous solution of sodium sulfate is added to the reaction mixture to decompose excessive lithium aluminum hydride. The organic solvent layer is separated and dried, and the solvent is distilled. The residue is purified by chromatography using a column packed with silica gel. Fractions eluted with ether-hexane (7:3 v/v) are collected, and recrystallization from the methanol gives 400 mg of cholesta-5,7-diene-1 α , 3β -diol.
- 4. Preparation of $1\alpha,3\beta$ -dihydroxyprovitamin D₃: a solution of 25 mg of cholesta-5,7-diene- $1\alpha,3\beta$ -diol in 650 ml of ether is subjected to radiation of ultraviolet rays for 14 minutes in an argon gas atmosphere by passing it through a Vycor filter using a 200-W high pressure mercury lamp (Model 654A-36 manufactured by Hanobia). The solvent is distilled at room temperature under reduced pressure. This operation is repeated twice, and 50 mg of the so obtained crude product is fractionated by chromatography using a column packed with 20 g of Sephadex LH-20. The first effluent fractions eluted with chloroform-hexane (65:35 v/v) give 13.5 mg of oily $1\alpha.3\beta$ -dihydroxyprovitamin D₃. The composition exhibits a maximum ultraviolet absorption at 260 m in an ether solution.
- 5. Preparation of 1α -hydroxycholecalciferol: a solution of 13,5 mg of $1\alpha.3\beta$ -dihydroxyprovitamin D₃ in 200 ml of ether is allowed to stand still in the dark at room temperature in an argon gas atmosphere for 2 weeks. During this period, the position of the maximum ultraviolet absorption is shifted from 260 m μ to 264 m μ , and the absorption intensity becomes 1.6 times as high as the original intensity. The solvent is distilled at room temperature under reduced pressure, and the residue is purified by chromatography using a column packed with 10 g of Sephadex LH-20. The fractions eluted with chloroform-hexane (65:35 v/v) give 6.5 mg of oily 1α -hydroxycholecalciferol.

Merck Index 4730 Kleeman & Engel p. 21 DOT 6 (3) 104 (1970); 14 (10) 441 (1978)

Ishikawa, M., Kaneko, C., Suda, T., Yamada, S., Eguchi, Y., Sugimoto, A. and Sasaki, S.; U.S. Patent 3,929,770; December 30, 1975; assigned to Wisconsin Alumni Research Foundation.

ALFAXALONE

Therapeutic Function: Anesthetic component

Chemical Name: 3-Hydroxypregnane-11,20-dione

Common Name: Alphaxolone

Structural Formula:

Chemical Abstracts Registry No.: 23930-19-0

Trade Name	Manufacturer	Country	Year Introduced
Althesin	Glaxo	U.K.	1972
Alfadion	Nippon Glaxo	Japan	1978
Alfathesin	Glaxo	France	_
Aurantex	Glaxo	W. Germany	-

Raw Materials

 3α -Hydroxy- 5α -pregn-16-ene-11,20-dione Hydrogen

Manufacturing Process

A solution of 3α -hydroxy- 5α -pregn-16-ene-11.20-dione (200 mg) in freshly distilled tetrahydrofuran (8 ml) with 5% palladium on carbon (100 ml) was hydrogenated until hydrogen uptake ceased. The mixture was filtered through a pad of k leselguhr and the tetrahydrofuran removed in vacuo to give 196 mg, MP 171° to 172° C.

References

Merck Index 225 Kleeman & Engel p. 23 DOT 8 (11) 407 (1972)

I.N. p. 53

Davis, B., Pearce, D.R. and Phillips, G.H., British Patent 1,317,184; May 16, 1973; assigned to Glaxo Laboratories, Ltd.

Davis, B. and Phillips, G.H.; U.S. Patent 3,714,352; January 30, 1973; assigned to Glaxo Laboratories, Ltd.

ALFENTANIL HYDROCHLORIDE

Therapeutic Function: Narcotic analgesic

Chemical Name: N-[1-[2-(4-Ethyl-4,5-dihydro-5-oxo-1 H-tetrazol-1-yl)ethyl] -4-(methoxy-

methyl)-4-piperidinyl]-N-phenylpropaneamide hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Rapifen	Janssen	Belgium	1983
Rapifen	Janssen	N etherlands	1983
Rapifen	Janssen	W. Germany	1983
Rapifen	Janssen	U.K.	1983
Rapifen	Janssen	S witz,	1983

Raw Materials

- 1-Ethyl-1,4-dihydro-5H-tetrazol-5-one
- 1-Bromo-2-chloroethane
- N-[4-Methoxymethyl) 4-piperidinyl-N-phenylpropamide

Manufacturing Process

A mixture of 22 parts of 1-ethyl-1,4-dihydro-5H-tetrazol-5-one,45 parts of 1-bromo-2-chloro-ethane, 26 parts of sodium carbonate, 0.3 part of potassium iodide and 240 parts of 4-methyl-2-pentanone is stirred and refluxed overnight with water-separator. The reaction mixture is cooled, water is added and the layers are separated. The aqueous phase is extracted three times with dichloromethane. The combined organic phases are dried, filtered and evaporated. The residue is purified by column-chromatography over silica gel using trichloromethane as eluent. The pure fractions are collected and the eluent is evaporated, yielding 28.4 parts (80%) of 1-(2-chloroethyl)-4-ethyl-1,4-dihydro-5H-tetrazol-5-one as a residue.

A mixture of 1.8 parts of 1-(2-chloroethyl)-4-ethyl-1,4-dihydro-5H-tetrazol-5-one, 3.45 parts of N-[4-(methoxymethyl)-4-piperidinyl]-N-phenylpropanamide, 5 parts of sodium carbonate, 0.2 part of potassium iodide and 240 parts of 4-methyl-2-pentanone is stirred and refluxed overnight with water-separator. The reaction mixture is poured onto water and the layers are separated. The organic phase is dried, filtered and evaporated. The residue is purified by column-chromatography over silica gel using a mixture of trichloromethane and methanol (97:3 by volume) as eluent. The pure fractions are collected and the eluent is evaporated. The residue is converted into the hydrochloride salt in 2-propanone. The salt is filtered off and crystallized from 2-propanone, yielding 1.5 parts (33.3%) of N-[1-[2-(4-ethyl-4,5-dihydro-5-oxo-1H-tetrazol-1-yl] 4-(methoxymethyl)-4-piperidinyl]-N-phenylpropanamide monohydrochloride monohydrate; melting point 140.8°C.

References

DFU 6 (6) 335 (1981) OCDS Vol. 3 p. 118 (1984) DOT 19 (12) 683 (1983) I.N. p. 53

Janssens, F.; U.S. Patent 4,167,574; September 11, 1979; assigned to Janssen Pharmaceutica NV.

ALGESTONE ACETOPHENIDE

Therapeutic Function: Progestin; Contraceptive

Chemical Name: 16,17-[(1-Phenylethylidene)bis(oxy)] pregn-4-ene-3,20-dione

Common Name: 16\alpha,17\alpha-Dihydroxyprogesterone acetophenide; alphasone acetophenide

Structural Formula:

Chemical Abstracts Registry No.: 24356-94-3

Trade Name	Manufacturer	Country	Year Introduced
Neolutin Depo	Medici	Italy	1982
Neolutin Depositum	Orma	Italy	_
Droxone	Squibb	U.S.A.	_
Decadroxone	Squibb	_	_
Decadroxate	Squibb	_	-

Raw Materials

16α,17α-Dihydroxyprogesterone Acetophenone

Manufacturing Process

To a suspension of 500 mg of $16\alpha,17\alpha$ -dihydroxyprogesterone in 25 ml of freshly redistilled acetophenone is added 0.125 ml of 72% perchloric acid and the mixture is agitated at room temperature for one hour. The clear solution is washed with dilute sodium bicarbonate to remove excess acid and the acetophenone layer, after addition of chloroform is separated from the aqueous phase. The organic layer is dried over sodium sulfate and after removal of the chloroform and acetophenone in high vacuum the residue is crystallized from 95% alcohol. The pure acetophenone derivative has a melting point of about 142° to 144° C.

References

Merck Index 227 Kleeman & Engel p. 24 OCDS Vol. 2 p. 171 (1980) DOT 19 (2) 110 (1983) I.N. p. 54

Fried, J.; U.S. Patent 2,941,997; June 21, 1960; assigned to Olin Mathieson Chemical Corp. Fried, J. and Diassi, P.A.; U.S. Patent 3,008,958; November 14, 1961; assigned to Olin Mathieson Chemical Corp.

ALIBENDOL

Therapeutic Function: Choleretic; Antispasmodic

Chemical Name: 2-Hydroxy-N-(2-hydroxyethyl)-3-methoxy-5-(2-propenyl)benzamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 26750-81-2

Trade Name	Manufacturer	Country	Year Introduced
Cebera	Bouchara	France	1981

Raw Materials

2-Hydroxy-3-methoxy-5-allyl benzoic acid Ethanol Ethanolamine

Manufacturing Process

36 g of ethyl ester of 2-hydroxy-3-methoxy-5-allyl-benzoic acid [obtained by the process described by Pearl, et al., J. Amer. Chem. Soc., Vol 71, 1067-1068 (1949)] and 61 g of ethanolamine were admixed and left to stand for 1 hour at ambient temperature after which it was heated for 1 hour at 120°C. The mixture was extracted with chloroform and the organic phases were washed with half diluted hydrochloric acid, then with water, and the chloroform evaporated off. The residue, after recrystallization from benzene, was a 78% yield of 2-hydroxy-3methoxy-5-allyl-N-(β-hydroxyethyl)-benzamide having a melting point of 95°C. The product appeared in the form of colorless crystals which were insoluble in water and soluble in dilute sodium hydroxide.

References

Merck Index 230 DOT 18 (10) 525 (1982)

Clemence, F. and Le Martret, O.; U.S. Patent 3,668,238; June 6, 1972; assigned to Roussel Uclaf.

ALIZAPRIDE

Therapeutic Function: Neuroleptic (antiemetic)

6-Methoxy-N-[[1-(2-propenyl)-2-pyrrolidinyl] methyl]-H-benzotriazole-Chemical Name:

5-carboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59338-93-1

Trade Name	Manufacturer	Country	Year Introduced
Plitican	Delagrange	France	1981
Vergentan	Delagrange	W. Germany	198 1

Raw Materials

2-Methoxy 4.5-ezimido Benzoic Acid 1-Allyl-2-amino-methyl Pyrrolidine Phosphoric Anhydride

Manufacturing Process

38.6 g (0.2 mol) of 2-methoxy-4.5-azimido benzoic acid were dissolved in anhydrous toluene and 56 g (0.4 mol) of 1-allyl-2-amino-methyl pyrrolidine were added. The mixture was heated to 50°C and then 42 g (0.3 mol) of phosphoric anhydride were added. The mixture was warmed at reflux temperature for 3 hours and then cooled to 80°C. After adding water, the aqueous layer was alkalized. The crystals were filtered, washed with water and then dissolved in 450 m! of acetone. After crystallization, the product was filtered, washed and dried.

40.4 g (yield 65%) of N-(1'-allyl-2'-pyrrolidylmethyl)-2-methoxy-4,5-azimidobenzamide having a melting point of 139°C were obtained.

References

Merck Index 231 DFU 6 (1) 11 (1981) DOT 18 (4) 162 (1982) I.N, p. 55

Bulteau, G., Acher, J., Collignon, C. and Monier, J.C.; U.S. Patent 4,039,672; August 2, 1977; assigned to Societe D'Etudes Scientifiques et Industrielles de l'Île-de-France

ALKOFANONE

Therapeutic Function: Antidiarrheal

Chemical Name: 3-[(4-Aminophenyl)sulfonyl]-1,3-diphenyl-1-propanone

Common Name: -

Structural Formula:

$$\mathbf{H_2N} - \underbrace{\hspace{1cm}}_{\mathbf{SO_2CHCH_2CO}} - \underbrace{\hspace{1cm}}_{\mathbf{C_6H_5}}$$

Chemical Abstracts Registry No.: 7527-94-8

Trade Name	Manufacturer	Country	Year Introduced
Clafanone	Roche	∪. s .	1956
Alfone		_	_

Raw Materials

Benzal Acetophenone p-Aminobenzene Sulfinic Acid

Menufecturing Process

38 g benzal-acetophenone and 25 g p-aminobenzene-sulfinic acid are fefluxed for 5 hours in 700 cc of 85% ethyl alcohol. Fine crystals soon begin to appear and fill the reaction vessel. While still hot, the mixture is suction-filtered. The reaction product is washed first with 750 cc warm absolute alcohol, then with 500 cc water, and finally again with 300 cc alcohol, and then dried in vacuo. Yield 32 g. MP 210°-212°C with decomposition.

References

Merck Index 240

Goldberg, M.W.; U.S. Patent 2,421,836; June 10, 1947; assigned to Hoffmann-La Roche, Inc.

ALLOPURINOL

Therapeutic Function: Xanthine oxidase inhibitor; gout therapy

Chemical Name: 1H-pyrazolo[3,4-d] pyrimidin-4-ol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 315-30-0

Trade Name	Manufacturer	Country	Year Introduced
Zyloprim	Burroughs Wellcome	U.S.	1966
Zyloric	Wellcome	Switz.	
Zyloric	Burroughs-Wellcome	U.K.	1966
Zyloric	Wellcome	W. Germany	1967
Zyloric	Wellcome	Italy	1968
Zyloric	Wellcome	Japan	1969
Zyloric	Wellcome	France	1969
Lopurin	Boots	U.K.	1980
Adenock	Tanabe	Japan	
Adenock	Shiraimatsu	Japan	
Allopin	Yeni	Turkey	_
Allomaron	Nattermann	W. Germany	
Alloprim	litas	Turkey	
Alloprin	ZCN	Canada	_
Allopur	Gea	Denmark	-
Allopur	Nyegaard	Norway	-
Allopurinoi	Sigfried	W, Germany	_
Allopurinol	Efeka	W. Germany	_
Allopurinol	Woelm Pharma	W. Germany	-
Allopurinol	Lederie	Japan	_
Allopurinol	Kowa	Japan	-
Allopurinol	Showa	Japan	-
Allorin	Towa	Japan	-
Allozym	Sawai	Japan	

Trade Name	Manufacturer	Country	Year Introduced
Allural	Nativelle	Italy	
Allural	Pan Quimica	Spain	_
Allurit	Schoum	Italy	-
Aloc	Toho Iyaku	Japan	
Alositol	Tanabe	Japan	_
Anoprocin	Nippon Shoji	Japan	-
Antigot	Yurtoglu	Turkey	_
Anzief	Nippon Chemiphar	Japan	-
Aprinol	Daisan	Japan	-
Apurin	Gea	Denmark	
Apurin	Medica	Finland	-
Apuroi	Siegfried	Switz,	-
Bleminol	Desitin	W. Germany	_
Caplenal	Berk	U.K.	_
Capurate	Fawns & McAllan	Australia	_
Cellidrin	Hennig	W. Germany	-
Cosuric	DDSA	U.K.	-
Dabroson	Hoyer	W. Germany	
Embarin	Diabetylin	W. Germany	_
Epidropal	Fresenius	W. Germany	_
Flogorex	Lancet	Italy	_
Foligan	Henning	W. Germany	_
Geapur	Gea	Denmark	_
Gichtex	Gerot	Austria	-
Ketawrift	Ohta	Japan	_
Ketobun A	Isei	Japan	_
Lopurin	Generics Corp.	U.S.	_
Lysuron	Boehringer Mannheim	W. Germany	-
Masaton	Zensei	Japan	_
Melianin	Kohjin	Japan	_
Mephanol	Mepha	Switz.	_
Milurit	Egyt	Hungary	_
Monarch	SS Pharmaceutical	Japan	-
Nektronan	ICN Pharma	W. Germany	***
Neufan	Teikoku Teisaa	Japan	-
Neufan	Teisan	Japan	-
Novopurol	Novopharm	Canada	_
Progout	Protea	Australia	-
Puricos	Lennon	S. Africa	_
Purinol Riball	Horner	Canada	****
	Mitsui Rougier	Japan	-
Roucol		Canada	_
Serviprinol	Servipharm Merckle	Switz,	_
Suspendol Takanarumin		W. Germany	
Urbol	Takata Heilit	Japan W. Germany	-
Urbol	Gea	Denmark	_
Uredimin	Chassot	Switz,	-
Uricemil	Farnex		-
Uricemil	Fardeco	italy Italy	
Uriconorm	Streuli	Switz.	
Uridocid	Reig Jofre	Spain	_
Uriscel	Armour Med,		_
Urobenyl	Endopharm	Italy W. Germany	<u>-</u>
Urolit	Magis	Italy	<u>-</u>
Urosin	Boehringer Mannheim	W. Germany	_
Urozyl-SR	Restan	S. Africa	_
Urtias	Sabona	W. Germany	<u>-</u>
O) tida	Gagona	W. Germany	_

Raw

Trade Name	Manufacturer	Country	Year Introduced
Vedatan	Corvi	Italy	_
Xanturat	Grunenthal	W. Germany	_
Zyloi	Teva	Israel	_
Materials			
Cyanoacetamic	de	Morpholine	

Manufacturing Process

Cyanoacetamide Triethylorthoformate

3-Morpholino-2-cyanoacrylamide: A stirred mixture of cyanoacetamide (63 g), triethylorthoformate (134 g), morpholine (82.5 g) and acetonitrile (37.5 ml) was heated under reflux for 4 hours. The initial reflux temperature was 117°C and the final reflux temperature was 82°C.

Hydrazine Hydrate

At the end of the reflux period the mixture was cooled to 30°C and the heavy crystalline precipitate was collected and washed with 2 X 75 ml of ethanol. The product was dried in vacuo at 30°C. Wt = 111 g. Yield = 82%, MP 173°-175°C.

3-Aminopyrazole 4-carboxamide hemisulfate: To water (253 ml) at 60° C was added 3-morpholino-2-cyanoacrylamide (63.4 g) and 85% technical hydrazine hydrate (22.7 g). The mixture was rapidly heated to 95° C and the temperature was maintained at $>90^{\circ}$ C for 20 minutes. The mixture was then cooled to 60° C and the pH carefully adjusted to 1.5 by the addition of a mixture of sulfuric acid (45.7 g) and ice (45.7 g). The acidified reaction was cooled to 5° C and the crystalline product collected and washed with cold water (2 X 100 ml) and acetone (2 X 50 ml). The product was dried in vacuo at 80° C. Wt = 5.8 g. Yield = 95%, MP 237°-239°C.

4-Hydroxypyrazolo[3,4-d] pyrimidine: A suspension of 3-aminopyrazole-4-carboxamide hemisulfate (113 g) in formamide (325 g) was stirred and heated to 145° C. The reaction was held at 145° C for 5 hours. The reaction was then cooled to 30° C and the product collected and washed with formamide (2 X 50 ml), water (2 X 150 ml) and acetone (2 X 100 ml). Wt of crude product = 79 g. The crude product was recrystallized by dissolution in a solution made from sodium hydroxide (25 g) in water (1,200 ml) with treatment at 25°C with charcoal (8 g), followed by reprecipitation by the addition of concentrated hydrochloric acid to pH 5. The product was collected and washed with cold water (2 X 300 ml), acetone (2 X 200 ml) and dried in vacuo at 60° C. Wt = 70 g, Yield = 80%.

References

Merck Index 273 Kleeman & Engel p. 27 PDR pp. 685, 774, 830, 993, 1606 OCDS Vol. 1 pp. 152, 269 (1977) I.N. p. 57 REM p. 1111

Druey, J. and Schmidt, P.; U.S. Patent 2,868,803; January 13, 1959; assigned to Ciba Pharmaceutical Products Inc.

Hitchings, G.H. and Falco, E.A.; U.S. Patent 3,474,098; October 21, 1969; assigned to Burroughs Wellcome & Co.

Cresswell, R.M. and Mentha, J.W.; U.S. Patent 4,146,713; March 27, 1979; assigned to Burroughs Wellcome & Co.

ALPHAPRODINE HYDROCHLORIDE

Therapeutic Function: Narcotic analgesic

Chemical Name: cis-1,3-dimethyl-4-phenyl-4-piperidinol propanoate hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 77-20-3 (Base); 49638-24-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Nisentil	Roche	U.S.	1949

Raw Materials

Lithium Propionic Anhydride
Bromobenzene Hydrogen Chloride
1,3-Dimethyl 4-piperidone

Manufacturing Process

In a round-bottom flask provided with stirrer, dropping funnel, condenser and a gas outlet for keeping the system under nitrogen, 200 cc of dry ether is placed and 4.6 grams of lithium cut into thin strips is added. 52 grams of bromobenzene in 50 cc of dry ether are added dropwise and after addition, the mixture is refluxed for 2 hours. This procedure results in the formation of phenyl-lithium. Other aryl-lithium compounds can be prepared in a similar manner by reacting lithium metal or a lithium compound capable of transferring lithium and a compound having an exchangeable halogen group as, for example, bromonaphthalene.

The solution of phenyl-lithium is cooled to -20°C and to this a solution of 12.7 grams of 1,3-dimethyl-4-piperidone, prepared according to the method of Howton, *J. Org. Chem.* 10, 277 (1945), in ether is added dropwise with stirring. After the addition, the stirring is continued for a further 2 hours at -20°C. The lithium complex, 1,3-dimethyl-4-phenyl-4-oxylithium piperidine, which forms is soluble in the ether and can be recovered therefrom. To prepare the piperidinol, the lithium complex, while in the reaction mixture is decomposed by the addition of an ice and hydrochloric acid mixture. The acidified layer is separated, basified and extracted with ether. After drying the ether solution and removing the solvent, the residue on distillation in vacuum distills chiefly at 155°C/10 mm, yielding the product, 1,3-dimethyl-4-phenyl-4-hydroxy piperidine, which, on crystallization from n-hexane melts at 102°C. On treatment with propionic anhydride catalyzed with a trace of sulfuric acid, 1,3-dimethyl-4-propionoxy-4-phenyl piperidine is attained. The latter compound can be converted into the hydrochloride salt by reaction with hydrogen chloride. This salt after crystallization from acetone has a melting point of 209°C.

References

Merck Index 302 Kleeman & Engel p. 29 PDR p. 1494 OCDS Vol. 1 pp. 304 & 2328 (1977) I.N. p. 60 REM p. 1107

Lee, J. and Ziering, A.; U.S. Patent 2,498,433; February 21, 1950; assigned to Hoffmann-La Roche Inc.

ALPRAZOLAM

Therapeutic Function: Tranquilizer

Chemical Name: 8-Chloro-1-methyl-6-phenyl-4H-s-triazolo[4,3-a] [1,4] benzodiazepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 28981-97-7

Trade Name	Manufacturer	Country	Year Introduced
Xanax	Upjohn	U.S.	1981
Xanex	Upjohn	Switz.	1982
Xanax	Upjohn	U.K.	1983
Xanax	Upjohn	Australia	1983

Raw Materials

2,6-Dichloro-4-phenylquinoline Hydrazine Hydrate Triethyl Orthoacetate Sodium Periodate

Paraformaldehyde Phosphorus Tribromide Ammonia

Manufacturing Process

6-Chloro-2-hydrazino-4-phenylquinoline: A stirred mixture of 2,6-dichloro-4-phenylquinoline (2.7 g, 0.01 mol) and hydrazine hydrate (6.8 g) was refluxed under nitrogen for 1 hour and concentrated in vacuo. The residue was suspended in warm water, and the solid was collected by filtration, dried and recrystallized from ethyl acetate-Skelly B hexanes to give 1.81 g (67% yield) of 6-chloro-2-hydrazino-4-phenylquinoline of melting point 156.5°-157°C.

7-Chloro-1-methyl-5-phenyl-s-trizolo [4,3-a] quinoline: A stirred mixture of 6-chloro-2-hydrazino 4-phenylquinoline (1,4 g, 0,0052 mol), triethyl-orthoacetate (0,925 g, 0,0057 mol) and xylene (100 ml) was refluxed, under nitrogen, for 2 hours 40 minutes. During this period the ethanol formed in the reaction was removed by distillation through a short, glass helix-packed column. The mixture was concentrated to dryness in vacuo and the residue was crystallized from methanol-ethyl acetate to give: 1,28 g of 7-chioro-1-methyl-5-phenyl-s-triazolo [4,3-a]quinoline (83.9% yield). The analytical sample was crystallized from methylene chloride: methanol and had a melting point 252.5°-253.5°C.

5-Chloro-2-(3-methyl-4H-1 2 4-triazol-4-yl)benzophenone (Oxidation of 7-chloro-1-methyl-5phenyl-s-trizolo [4,3-a] quinoline): A stirred suspension of 7-chloro-1-methyl-5-phenyl-s-triazolo[4,3-a] quinoline (2,94 g, 0.01 mol) in acetone (110 ml) was cooled in an ice-bath and treated slowly with a solution prepared by adding sodium periodate (2 g) to a stirred suspension of ruthenium dioxide (200 mg) in water (35 ml). The mixture became dark. Additional sodium periodate (8 g) was added during the next 15 minutes. The ice-bath was removed and the mixture was stirred for 45 minutes. Additional sodium periodate (4 g) was added and the mixture was stirred at ambient temperature for 18 hours and filtered. The solid was washed with acetone and the combined filtrate was concentrated in vacuo. The residue was suspended in water and extracted with methylene chloride. The extract was dried over anhydrous potassium carbonate and concentrated. The residue was chromatographed on silica

gel (100 g) with 10% methanol and 90% ethyl acetate; 50 ml fractions were collected. The product was eluted in fractions 10-20 and was crystallized from ethyl acetate to give: 0.405 g of melting point 168°-169.5°C and 0.291 g of melting point 167.5°-169°C (23.4% yield) of 5-chloro-2-(3-methyl-4H-1.2.4-triazol-4-yl)benzophenone. The analytical sample had a melting point of 168°C.

5-Chloro-2-[3-(hydroxymethyl)-5-methyl-4H-1,2,4-triazol-4-yl]benzophenone: A stirred mixture of 5-chloro-2-(3-methyl-4H-1,2,4-triazolo-4-yl)benzophenone, (2,98 g, 0.01 mol) paraformaldehyde (3 g) and xylene (100 ml) was warmed under nitrogen, in a bath maintained at 125°C for 7 hours. The mixture was then concentrated in vacuo. The residue was chromatographed on silica gel (150 g) with 3% methanol-97% chloroform. Fifty ml fractions were collected. The product was eluted in fractions 20-44. The fractions were concentrated and the residue was crystallized from ethanol-ethyl acetate to give: 1,64 g of melting point 138°-142°C; 0.316 g of melting point 138.5°-141°C; 0.431 g of melting point 139°-141°C (72.8% yield) of 5-chloro-2-[3-(hydroxymethyl)-5-methyl-4H-1,2,4-triazol-4-yi] benzophenone. The analytical sample had a melting point of 138°-139°C.

5-Chloro-2-[3-(bromomethyl)-5-methyl-4H-1,2,4-triazol-4-yl]-benzophenone: A solution of 5-chloro-2-[3-(hydroxymethyl)-5-methyl-4H-1,2,4-triazol-4-yl]-benzophenone (328 mg, 0.001 mol) in dry, hydrocarbon-stabilized chloroform (5 ml) was cooled in an ice-bath and treated with phosphorus tribromide (0.1 ml). The colorless solution was kept in the ice-bath for 55 minutes, at ambient temperature (22°-24°C), for 5 hours. The resulting yellow solution was poured into a mixture of ice and dilute sodium bicarbonate. This mixture was extracted with chloroform. The extract was washed with brine, dried over anhydrous magnesium sulfate and concentrated. The residue was crystallized from methylene chloride-ethyl acetate to give: 0.285 g of melting point 200°-240°C (decomposition) and 0.030 g of melting point 200°-220°C (decomposition) of 5-chloro-2-[3-(bromomethyl)-5-methyl-4H-1,2,4-triazol-4-yl] -benzophenone. The analytical sample had a melting point of 200°-240°C.

8-Chloro-1-methyl-6-phenyl-4H-s-triazolo-[4,3-a] [1,4] -benzodiazepine: A stirred suspension of 5-chloro-2-[3-(bromomethyl)-5-methyl-4H-1,2,4-triazol-4-yl]-benzophenone (391 mg, 0.001 mo!) in tetrahydrofuran (15 ml) was cooled in an ice-bath and treated with a saturated solution of ammonia in methanol (12,5 ml). The resulting solution was allowed to warm to ambient temperature and stand for 24 hours. It was then concentrated in vacuo. The residue was suspended in water, treated with a little sodium bicarbonate and extracted with methylene chloride. The extract was washed with brine, dried with anhydrous potassium carbonate and concentrated. The residue was crystallized from methylene chloride-ethyl acetate to give 0.220 g of crude product of melting point 227°-228.5°C. Recrystallization of this material from ethyl acetate gave 0.142 g of melting point 228°-229.5°C of 8-chloro-1-methyl-6-phenyl-4H-s-triazolo (4,3-a) (1,4) -benzodiazepine.

References

Merck Index 303 DFU 1 (12) 551 (1976) Kleeman & Engel p. 30 PDR p. 1865 OCDS Vol. 3 p. 197 (1984) DOT 11 (5) 179 (1975) I.N. p. 60

Hester, J.B., Jr.; U.S. Patent 3,681,343; August 1, 1972; assigned to The Upjohn Company. Hester, J.B., Jr.; U.S. Patent 3,781,289; December 25, 1973; assigned to The Upjohn Company. Hester, J.B., Jr.; U.S. Patent 3,709,898; January 9, 1973; assigned to The Upjohn Company.

ALPRENOLOL HYDROCHLORIDE

Therapeutic Function: Beta blocker

Chemical Name: 1-[(1-Methylethyl)amino]-3-[2-(2-propenyl)phenoxy]-2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13655-52-2 (Base); 13707-88-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Aptol	Globopharm	Switz.	_
Aptin	Astra France	W. Germany	1967
Aptine	Lematte/Boinot	France	1971
Aprobal	Fujisawa	Japan	1971
Aptin	Byk Gulden	Italy	1972
Apilobal	Hassle	Sweden	_
Aptina	Made	Spain	
Aptol-Duriles	Astra	_	_
Betacard	Beecham	U.K.	_
Betaptin	_	_	_
Elperi	Sawai	Japan	_
Gubernal	Geigy	France	_
Regietin	Teikoku	Japan	-
Sinalol	Kaken	Japan	_
Yobir	Maruko	Japan	. -

Raw Materials

o-Allyl Epoxy Propoxy Benzene Ammonia

Hydrogen Chloride

Sodium Borohydride Acetone

Manufacturing Process

A solution of 24.6 g of o-allyl-epoxypropoxybenzene dissolved in 250 ml of absolute ethanol saturated with ammonia was placed in an autoclave and heated on a steam-bath for 2 hours. The alcohol was then removed by distillation and the residue was redissolved in a mixture of methanol and ethylacetate. Hydrogen chloride gas was introduced into the solution. The hydrochloride salt was then precipitated by the addition of ether to yield 11.4 g of product. Five grams of the amine-hydrochloride thus formed were dissolved in 50 ml of methanol and 9 ml of acetone. The resulting solution was cooled to about 0°C. At this temperature 5 g of sodium borohydride were added over a period of 1 hour. Another 2.2 ml of acetone and 0.8 g of sodium borohydride were added and the solution was kept at room temperature for 1 hour, after which 150 ml of water were added to the solution. The solution was then extracted with three 100-ml portions of ether which were combined, dried over potassium carbonate, and evaporated. The free base was then recrystallized from petrol ether (boiling range 40°-60°C) to yield 2.7 g of material having a melting point of 57°C.

The corresponding hydrochloride was prepared by dissolving 2 g of the product, prepared above, in 20 ml of acetone, and adding to the resulting solution acetone saturated with hydrogen chloride until the pH was reduced to about 3. The precipitated hydrochloride salt was then recrystallized from acetone.

References

Merck Index 304

Kleeman & Engel p. 31 OCDS Vol. 1 p. 177 (1977) DOT 9 (6) 245 (1973)

I.N.p.60

Brandstrom, A.E., Corrodi, H.R. and Alblad, H.R.G.; U.S. Patent 3,466,376; September 9, 1969; assigned to Aktiebolaget Hassle.

ALTRETAMINE

Therapeutic Function: Antitumor agent

Chemical Name: 2,4,6-Tris(dimethylamino)-1,3,5-triazine

Common Name: Hexamethylmelamine

Structural Formula:

Chemical Abstracts Registry No.: 645-05-6

Trade Name	Manufacturer	Country	Year Introduced
Hexastat	Roger Bellon	France	1979
Hexastat	Rhone Poulenc	Switz.	1981
Altretamine	Rhone Poulenc	W. Germany	1982

Raw Materials

Hexamethylolmelamine-Hexamethyl Ether Hydrogen

Manufacturing Process

50 g of hexamethylolmelamine-hexamethyl ether in 950 cc methanol are hydrogenated, at 90° to 100°C, in the presence of 2 g Raney nickel with 100 atmospheres excess pressure of hydrogen in a steel autoclave holding 2 ℓ until the absorption of hydrogen is terminated. After the catalyst has been filtered off with suction, the methanol is distilled off. As a result, 23.1 g (86% of the theoretical) of crude hexamethylmelamine are formed having a melting point of 158° to 162°C. After recrystallization from methanol, the pure product is obtained having a melting point of 168°C.

References

Merck Index 310 DFU 5 (10) 492,635 (1980) DOT 18 (4) 165 (1982) I.N. p. 61

von Brachel, H. and Kindler, H.; U.S. Patent 3,424,752; January 28, 1969; assigned to Casella Farbwerke Mainkur AG

ALUMINUM NICOTINATE

Therapeutic Function: Peripheral vasodilator

Chemical Name: 3-pyridinecarboxylic acid aluminum salt

Common Name: Tris(nicotinato)aluminum

Structural Formula:

Chemical Abstracts Registry No.: 1976-28-9

Trade Name	Manufacturer	Country	Year Introduced
Nicalex	Merrell-Dow	U.S.	1960
Alunitine	Continental Pharma	Belgium	—

Raw Materials

Nicotinic Acid Aluminum Hydroxide

Manufacturing Process

Aluminum nicotinate is prepared by dissolving nicotinic acid in hot water and adding a slurry of aluminum hydroxide to it. A slight excess of aluminum hydroxide is used in order that the final product would be free of nicotinic acid. The precipitate is collected on a filter and dried. The final product contains a mixture of aluminum nicotinate and a small but acceptable amount of aluminum hydroxide.

References

Merck Index 346 Kleeman & Engel p. 33

Miale, J.P.; U.S. Patent 2,970,082; January 31, 1961; assigned to Walker Laboratories, Inc.

AMANTIDINE HYDROCHLORIDE

Therapeutic Function: Antiviral, anti-Parkinsonism

Chemical Name: 1-adamantanamine hydrochloride

Common Name: 1-aminoadamantane hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 665-66-7

Trade Name	Manufacturer	Country	Year Introduced
Symmetrel	DuPont (Endo)	U.S.	1966
Symmetrel	Geigy	W. Germany	1966
Symmetrel	Geigy	U.K.	1971
Mantadan	De Angeli	Italy	1971
Mantadix	Theraplix	France	1973
Symmetrel	Fujisawa	Japan	1975
Amantadin	Ratipharm	W. Germany	_
Amantan	Byk-Gulden	_	_
Amazolon	Sawai	Japan	-
Antadine	DuPont	Australia	_
Atarin	Medica	Finland	
Contenton	SK Dauelsberg	W. Germany	_
Influenol	Santos	Spain	
Midantan	_	_	_
Paramantin	Orion	Finland	_
Paritrel	Trima	Israel	_
PK-Mertz	Mertz	W. Germany	-
Protexin	Landerlan	Spain	_
Solu-Contenton	SK&F	W. Germany	
Trivaline	Farmex	France	_
Viregyt	Egyt	Hungary	_
Virofral	Duphar	Belgium	_
Virofral	Ferrosan	Denmark	_
Virosol	Phoenix	Argentina	_

Raw Materials

Adamantane	Sodium Hydroxide
Hydrocyanic Acid	Hydrogen Chloride

Manufacturing Process

360 ml of 96% sulfuric acid and a solution of 13.6 grams (0.1 mol) of adamantane in 100 ml of n-hexane were emulsified in the apparatus described and provided with an inclined centrifugal stirrer. Then a mixture of 46 grams (1.7 mols) of liquid hydrocyanic acid and 29.6 grams (0.4 mol) of tertiary butanol was added dropwise within 1.5 hours at about 25°C.

After 30 minutes of postreaction, the product was poured on ice. The granular mass which precipitated [N-(adamantyl-1)formamide] was sucked off and washed with water. The raw product (37 grams) was then refluxed for 10 hours with a solution of 60 grams of NaOH in 600 ml of diethylene glycol.

After cooling, the solution was diluted with 1.5 liters of water and subjected to three extractions with ether. The amine was extracted from the ethereal solution with 2 N HCl and liberated therefrom by the addition of solid NaOH (while cooling). The alkaline solution was extracted with ether and the ethereal solution was dried with solid NaOH. Distillation resulted in 10.6 grams (70% of the theory) of 1-aminoadamantane which, after sublimation, melted at 180° to 192°C (seal capillary). It is converted to the hydrochloride.

References

Merck Index 373 Kleeman & Engel p. 33 PDR p. 862 OCDS Vol. 2 p. 18 (1980) DOT 3 (1) 6 (1967) and 7 (2) 44 (1971) I.N. p. 63

REM p. 927

Haaf, W.; U.S. Patent 3,152,180; October 6, 1964; assigned to Studiengesellschaft Kohle mbH, Germany

AMBENONIUM CHLORIDE

Therapeutic Function: Cholinesterase inhibitor

Chemical Name: N,N'-[(1,2-dioxo-1,2-ethanediy!)bis(imino-2,1-ethanediy!)] bis[2-chloro-

N.N-diethylbenzenemethanaminium] dichloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 115-79-7

Trade Name	Manufacturer	Country	Year Introduced
Mytelase CL	Winthrop	U.S.	1956
Mytelase	Winthrop	W. Germany	_
Mytelase	Winthrop	France	1950
Mytelase	Winthrop	U,K.	1970
Mytelase	Nippon Shoji	Japan	
Mysuran	Winthrop	<u>-</u>	_

Raw Materials

2-Diethyl Amino Ethyl Amine

Ethyl Oxalate

2-Chlorobenzyl Chloride

Manufacturing Process

N,N'-Bis(2-Diethylaminoethyl)Oxamide: A solution of 150 grams (1.32 mol) of 2-diethylaminoethylamine in 250 ml of xylene was gradually added to a solution of 73.0 grams (0.5 mol) of ethyl oxalate in 250 ml of xylene, with external cooling. The mixture was then refluxed for eight hours, cooled and diluted with ether. The ether-xylene solution was extracted with 10% hydrochloric acid, and the hydrochloric acid extracts were in turn extracted with ether and then made alkaline with 35% sodium hydroxide solution. The organic material which separated was extracted with ether, and the ether solution was dried over anhydrous sodium sulfate and concentrated, giving 106.5 grams of N,N'-bis(2-diethylaminoethyl)oxamide, MP 40°-42°C.

N,N'-Bis(2-Diethylaminoethyl)Oxamide Bis(2-Chlorobenzochloride): A solution of 7 grams (0.025 mol) of N,N'-bis(2-diethylaminoethyl)oxamide and 16.1 grams (0.1 mol) of 2-chlorobenzyl chloride in 100 ml of acetonitrile was refluxed for eleven hours. The solid which separated upon cooling was collected by filtration and recrystallized by dissolving it in

ethanol and adding ether to cause the product to separate. After drying at about 60°C (1-3 mm) there was obtained 4.1 grams of N.N'-bis(2-diethylaminoethyl)oxamide bis(2chlorobenzochloride), MP 196°-199°C.

References

Merck Index 378 Kleeman & Engel p. 34 I.N. p. 64 REM p. 898 Kirchner, F.K.; U.S. Patent 3,096,373; July 2, 1963; assigned to Sterling Drug Inc. Behr, L.C. and Schreiber, R.S.; U.S. Patent 2,438,200; March 23, 1948; assigned to E.I. du Pont de Nemours and Co.

AMBROXOL

Therapeutic Function: Expectorant

Chemical Name: 4-[[(2-Amino-3,5-dibromophenyl)methyl]amino]-cyclohexanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18683-91-5

Trade Name	Manufacturer	Country	Year Introduced
Mucosolvan	Thomae	W. Germany	1980
Mucosolvan	De Angeli	Italy	1981
Mucosolvon	Boehringer-Ingel	Switz.	1982
Fluixol	Ripari-Gero	Italy	_
Fluibron	Chiesi	italy	_
Muciclar	Piam	Italy	_

Raw Materials

N-(trans-p-hydroxy-cyclohexyl)-(2-aminobenzyl)-amine Bromine

Manufacturing Process

6.5 g of N-(trans-p-hydroxy-cyclohexyl)-(2-aminobenzyl)-amine were dissolved in a mixture of 80 cc of glacial acetic acid and 20 cc of water, and then 9,6 g of bromine were added dropwise at room temperature while stirring the solution. After all of the bromine had been added, the reaction mixture was stirred for two hours more and was then concentrated in a water aspirator vacuum. The residue was taken up in 2 N ammonia, the solution was extracted several times with chloroform, and the organic extract solutions were combined and evaporated. The residue, raw N-(trans-p-hydroxy-cyclohexyl)-(2-amino-3,5-dibromobenzyl)-amine, was purified with chloroform and ethyl acetate over silica gel in a chromatographic column, the purified product was dissolved in a mixture of ethanol and ether, and the solution was

acidified with concentrated hydrochloric acid. The precipitate formed thereby was collected and recrystallized from ethanol and ether, yielding N-(trans-p-hydroxy-cyclohexyl)-(2-emino-3.5-dibromobenzyl)-amine hydrochloride, MP 233°-234.5°C (decomposition).

References

Merck Index 383 DFU 1 (3) 95 (1976) Kleeman & Engel p. 35 I.N. p. 64

Keck, J., Koss, F.W., Schraven, E. and Beisenherz, G.; U.S. Patent 3,536,713; October 27, 1970; assigned to Boehringer Ingelheim G.m.b.H.

AMBUPHYLLINE

Therapeutic Function: Diuretic, smooth muscle relaxant

Chemical Name: 3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione compound with 2-amino-2-

methyl-1-propanol (1:1)

Common Name: Theophylline aminoisobutanol; Bufylline

Structural Formula:

Chemical Abstracts Registry No.: 5634-34-4

Trade Name	Manufacturer	Country	Year Introduced
Butaphyllamine	Merrell-Dow	U.S.	1944
Buthoid	Merrell-Dow	U.S.	

Raw Materials

Theophylline

2-Amino-2-methyl-1-propanol

Manufacturing Process

Equimolecular proportions of theophylline and 2-amino-2-methyl-1-propanol are dissolved in water and the water is evaporated until crystallization is almost complete. The crystals are filtered off and dried. The product has a melting point of 254°-256°C, softening at 245°C. It has a water solubility of about 55%. It may be compounded in the form of tablets, for oral administration, or may be prepared in solution for distribution in ampoules. For the manufacture of solutions for packaging in ampoules, it is more convenient to simply dissolve the theophylline and the butanol amine in water, without going through the intermediate step of separating the crystalline salt.

References

Merck Index 385

I.N. p. 64

Shelton, R.S.; U.S. Patent 2,404,319; July 16, 1946; assigned to The Wm. S. Merrell Co.

AMBUSIDE

Therapeutic Function: Diuretic, antihypertensive

Chemical Name: N'-ally!-4-chloro-6-[(3-hydroxy-2-butenylidene)amıno] -m-benzenedisulfon-

amide

Common Name: -

Structural Formula:

$$\begin{array}{c} \text{CH}_3 \\ \text{C} - \text{CHCH} - \text{N} \\ \text{OH} \\ \end{array}$$

Chemical Abstracts Registry No.: 3754-19-6

Trade Name	Manufacturer	Country	Year Introduced
Hydrion	Robert Carriere	France	1970

Raw Materiels

2-Allyisulfamyl-5-chloro-4-sulfamylaniline Acetaldehyde Dimethylacetal

Manufacturing Process

Preparation of 2-Allylsulfamyl-4-Sulfamyl-5-Chloro-N-(3-Hydroxy-2-Butenylidene)Aniline or Ambuside: 2-allylsulfamyl-5-chloro-4-sulfamylaniline monohydrate (6.9 grams, 0.020 mol) was dissolved in 14 ml acetylacetaldehyde dimethylacetal at room temperature and the viscous solution was filtered. Addition of 6 drops of 10:1 H₂O/concentrated HCl, and stirring for 20 hours gave a heavy suspension. Dilution with 150 ml of ethanol, collection of the solid, washing twice with 40 ml portions of ethanol, and drying gave 6.2 grams (78%) of product, MP 204°-206°C.

References

Merck Index 386 Kleeman & Engel p. 35 OCDS Vol. 2 p. 116 (1980) I.N. p. 64

Robertson, J.E.; U.S. Patent 3,188,329; June 8, 1955; assigned to Colgate-Palmolive Co.

AMCINONIDE

Therapeutic Function: Topical steroid; antiinflammatory agent

Chemical Name: 16α,17α-Cyclopentylidenedioxy-9α-fluoro-11β,21-dihydroxy-1,4-pregna-

diene-3.20-dione-21-acetate

Common Name: Amcinopol

Structural Formula:

Chemical Abstracts Registry No.: 51022-69-6

Trade Name	Manufacturer	Country	Year Introduced
Cyclocort	Lederle	U.S.	1979
Amcinonid	Cyanamid	W. Germany	1981
Visderm	Lederle	Japan	1982
Penticort	Lederle	France	_
Mycoderm	Lederle	_	_

Raw Materials

16α.17α-Cyclopentylidenedioxy-9α-fluoro-11β.21-dihydroxy-1.4-pregnadiene-3.20-

Acetic Anhydride

Manufacturing Process

An 11,1 g (24.1 mmol) portion of the compound 16α,17α-cyclopentylidenedioxy-9α-fluoro-11 β ,21-dihydroxy-1,4-pregnadiene-3,20-dione is placed in a 250 ml round-bottom flask. A 100 ml portion of pyridine is added and the mixture is stirred to a complete solution. A 5.5 ml (54.6 mmol) portion of acetic anhydride is added dropwise and the mixture is stirred for 2½ hours. An 11 ml portion of methanol is added and the mixture is stirred an additional hour. This mixture is concentrated under reduced pressure to about 10 to 15 ml and then poured slowly into a mixture of ice, water and dilute hydrochloric acid. This mixture is stirred and the solid which forms is collected by filtration, washed with water to a neutral pH and air dried yielding 11.5 g. This solid is taken up in hot acetone, treated with activated charcoal and filtered while hot through diatomaceous earth. The filtrate is concentrated on a steam bath while adding n-hexane to the point of incipient crystallization. This mixture is allowed to cool to room temperature. The solid which forms is collected by filtration, washed with acetone-n-hexane (1:14) and air dried yielding 7.0 g of the desired product.

References

Merck Index 389 DFU 3 (5) 337 (1978) Kleeman & Engel p. 36 PDR p. 1007 DOT 16 (10) 322 (1980) I.N. p. 65 REM p. 972

Schultz, W., Sieger, G.M. and Krieger, C.; British Patent 1,442,925; July 14, 1976; assigned to American Cyanamid Company.

AMEZINIUM METHYL SULFATE

Therapeutic Function: Antihypotensive

Chemical Name: 4-Amino-6-methoxy-1-phenylpyridazinium methyl sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 30578-37-1

Trade Name	Manufacturer	Country	Year Introduced
Regulton	Nordmark	W. Germany	1981
Regulton	Knoll	Switz.	1983

Raw Materials

1-Phenyl-4-aminopyridazone Dimethyl Sulfate

Manufacturing Process

18.7 parts of 1-phenyl-4-aminopyridazone-(6) and 19 parts of dimethyl sulfate in 400 parts of xylene are kept at 120°C for one hour while mixing well. The reaction mixture is suction filtered . 28 parts (89.5% of the theory) of 1-phenyl-4-amino-6-methoxypyridazinium methosulfate is obtained having a melting point of 173° to 174°C after recrystallization from acetonitrile. The perchlorate has a melting point of 179° to 182°C.

References

Merck Index 395 DFU 5 (4) 207 (1980) DOT 18 (7) 317 (1982) I.N. p. 66

Reicheneder, F. and Kropp, R.; U.S. Patent 3,631,038; December 28, 1971; assigned to Badische Anilin und Soda-Fabrik A.G.

AMIKACIN

Therapeutic Function: Antibacterial

Chemical Name: (S)-O-3-amino-3-deoxy-α-D-glucopyranosyl-(1→6)-O-[6-amino-6-deoxy-α-D-glucopyranosyl-(1→4)]-N¹-(4-amino-2-hydroxy-1-oxobutyl)-2-deoxy-D-streptamine

Common Name: 1-N-[L(-)-4-amino-2-hydroxybutyryl] kanamycin A

Structural Formula:

Chemical Abstracts Registry No.: 37517-28-5; 39831-55-5 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Amikin	Bristol	U.S.	1976
Amiklin	Bristol	France	1976
Biklin	Gruenenthal	W. Germany	1976
Amikin	Bristol	U.K.	1976
Biklin	Bristol Banyu	Japan	1977
BB-K8	Bristol	Italy	1978
Amiglyde-V	Bristol		
Amisin	Faro	Turkey	
Biklin	Frika	Austria	_
Briclin	Mead-Johnson	_	_
Kaminax	Ausonia	Italy	-
Likacin	Lisapharma	Italy	
Novamin	Bristol	_	_
Amikacin	Banyu-Seiyaku	Japan	_

Raw Materials

L-(-)-γ-Amino-α-hydroxybutyric Acid N-hydroxysuccinimide 6'-Monobenzyloxy-carbonyl-kanamycin A Sulfuric Acid

Sodium Hydroxide Carbobenzoxy Chloride Hydrogen

Manufacturing Process

Preparation of L-(-)- γ -Benzyloxycarbonylamino- α -Hydroxybutyric Acid: L-(-)- γ -amino- α hydroxybutyric acid (7.4 g, 0.062 mol) was added to a solution of 5.2 grams (0.13 mol) of sodium hydroxide in 50 ml of water. To the stirred solution was added dropwise at 0°-5°C over a period of 0.5 hour, 11.7 grams (0.068 mol) of carbobenzoxy chloride and the mixture was stirred for another hour at the same temperature. The reaction mixture was washed with 50 ml of ether, adjusted to pH 2 with dilute hydrochloric acid and extracted with four 80 ml portions of ether. The ethereal extracts were combined, washed with a small amount of saturated sodium chloride solution, dried with anhydrous sodium sulfate and filtered. The filtrate was evaporated in vacuo and the resulting residue was crystallized from benzene to give 11.6 grams (74%) of colorless plates; MP 78.5° to 79.5°C.

Preparation of N-Hydroxysuccinimide Ester of L-(-)-γ-Benzyloxycarbonylamino-α-Hydroxybutyric Acid: A solution of 10.6 grams (0.042 mol) of L-(-)-y-benzyloxycarbonylaminoα-hydroxybutyric acid and 4.8 grams (0.042 mol) of N-hydroxysuccinimide in 200 ml of

ethyl acetate was cooled to 0°C and then 8.6 grams (0.042 mol) of dicyclohexylcarbodiimide was added. The mixture was kept overnight in a refrigerator. The dicyclohexylurea which separated was filtered off and the filtrate was concentrated to about 50 ml under reduced pressure to give colorless crystals of L-(-)-γ-benzyloxycarbonylamino-α-hydroxybutyric acid which were collected by filtration; 6.4 grams, MP 121°-122.5°C. The filtrate was evaporated to dryness in vacuo and the crystalline residue was washed with 20 ml of a benzene-n-hexane mixture to give an additional amount of L-(-)-γ-benzyloxycarbonylamino-α-hydroxybutyric acid. The total yield was 13.4 grams (92%).

Preparation of 1-[L-(-)-γ-Benzyloxycarbonylamino-α-Hydroxybutyryl]-6'-Carbobenzoxykanamycin A: A solution of 1.6 grams (4.6 mmol) of L-(-)-γ-benzyloxycarbonylaminoα-hydroxybutyric acid in 40 ml of ethylene glycol dimethyl ether (DME) was added dropwise to a stirred solution of 2.6 grams (4.2 mmol) of 6'-monobenzyloxycarbonylkanamycin A in 40 ml of 50% aqueous ethylene glycol dimethyl ether and the mixture was stirred overnight. The reaction mixture was evaporated under reduced pressure to give a brown residue 1-[L-(-)-γ-benzyloxycarbonylamino-α-hydroxybutyryl]-6'-carbobenzoxykanamycin A which was used for the next reaction without further purification.

Preparation of 1- $[L-(-)-\gamma-Amino-\alpha-Hydroxybutyryl]$ Kanamycin A: The crude product 1-[L-(-)-γ-benzyloxycarbonylamino-α-hydroxybutyryl]-6'-carbobenzoxykanamycin A was dissolved in 40 ml of 50% aqueous dioxane and a small amount of insoluble material was removed by filtration. To the filtrate was added 0.8 ml of glacial acetic acid and 1 gram of 10% palladium-on-charcoal and the mixture was hydrogenated at room temperature for 24 hours in a Parr hydrogenation apparatus. The reaction mixture was filtered to remove the palladium catalyst and the filtrate was evaporated to dryness in vacuo.

The residue was dissolved in 30 ml of water and chromatographed on a column of CG-50 ion exchange resin (NH4 type, 50 cm x 1.8 cm). The column was washed with 200 ml of water and then eluted with 800 ml of 0.1 N NH₄OH, 500 ml of 0.2 N NH₄OH and finally 500 ml of 0.5 N NH₄OH. Ten milliliter fractions were collected and fractions 146 to 154 contained 552 mg (22%, based on carbobenzoxykanamycin A, 6'-monobenzyloxycarbonylkanamycin A) of the product which was designated BB-K8 lot 2. MP 187°C (dec). Relative potency against B. subtilis (agar plate) = 560 mcg/mg (standard: kanamycin A free base).

A solution of 250 mg of BB-K8 lot 2 in 10 ml of water was subjected to chromatography on a column of CG-50 (NH₄ $^+$ type, 30 cm x 0.9 cm). The column was washed with 50 ml of water and then eluted with 0.2 N NH₄OH. Ten milliliter fractions were collected. Fractions 50 to 63 were combined and evaporated to dryness under reduced pressure to give 98 mg of the pure product base.

Preparation of the Monosulfate Salt of 1-[L-(-)- γ -Amino- α -Hydroxybutyryl] Kanamycin A: One mol of $1-[L-(-)-\gamma-amino-\alpha-hydroxybutyryl]$ kanamycin A is dissolved in 1 to 3 liters of water. The solution is filtered to remove any undissolved solids. To the chilled and stirred solution is added one mol of sulfuric acid dissolved in 500 ml of water. The mixture is allowed to stir for 30 minutes, following which cold ethanol is added to the mixture till precipitation occurs. The solids are collected by filtration and are determined to be the desired monosulfate salt.

References

Merck Index 405 Kleeman & Engel p. 38 PDR p. 692 DOT 12 (5) 202 (1976) I.N. p. 68 REM p. 1180

Kawaguchi, H., Naito, T. and Nakagawa, S.; U.S. Patent 3,781,268; December 25, 1973; assigned to Bristol-Myers Company.

Schreiber, R.H. and Kell, J.G.,; U.S. Patent 3,974,137; August 10, 1976; assigned to Bristol-Myers Company.

AMILORIDE HYDROCHLORIDE

Therapeutic Function: Potassium-sparing diuretic

Chemical Name: 3,5-Diamino-N-(aminoiminomethyl)-6-chloropyrazine carboxamide

Common Name: Guanamprazine; amipramidin; amipramizide

Structural Formula:

Chemical Abstracts Registry No.: 2016-88-8, 2609-46-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Midamor	Merck	U.K.	1971
Modamide	Merck	France	1973
Arumil	Sharp & Dohme	W. Germany	1975
Midamor	Merck	U.S.	1981
Colectril	Merck	U.S.	-
Moducren	Dohme-Chibret	France	_
Moduretic	Merck	_	-
Nilurid	Merck	_	_
Pandiuren	Sintyal	Argentina	_
Puritrid	Leiras	Finland	-

Raw Materials

Methyl-3-aminopyrazinoate Sodium Sulfuryl Chloride Guanidine Ammonia Hydrogen Chloride

Manufacturing Process

Step A: Preparation of methyl 3-amino-5,6-dichloropyrazinoate—Methyl 3-aminopyrazinoate (765 g, 5 mols) is suspended in 5 liters of dry benzene. While stirring under anhydrous conditions sulfuryl chloride (1.99 liters, 3,318 g, 24.58 mols) is added over a period of 30 minutes and stirring is continued for 1 hour. During this period, the temperature rises to about 50°C and then begins to drop. The mixture is heated cautiously to reflux (60°C), refluxed for 5 hours and then stirred overnight at room temperature. The excess sulfury! chloride is distilled off at atmospheric pressure (distillation is stopped when vapor temperature reaches 78°C). The dark red mixture is chilled to 6°C. The crystals are filtered off, washed by displacement with two 100 ml portions of cold (8°C) benzene, then washed with 300 ml petroleum ether and dried in vacuo at room temperature, yielding 888 g (80%) of methyl 3-amino-5,6-dichloropyrazinoate in the form of red crystals, MP 228°-230°C. The crude product is dissolved in 56 liters of boiling acetonitrile and passed through a heated (70°-80°C) column of decolorizing charcoal (444 g). The column is washed with 25 liters of hot acetonitrile, the combined eluate concentrated in vacuo to about 6 liters and chilled to 5°C. The crystals that form are filtered, washed three times with cold acetonitrile, and air dried to constant weight, yielding

724 g (82% recovery, 66% overall) of methyl 3-amino-5,6-dichloropyrazinoate in the form of yellow crystals, MP 230°-234°C. After additional recrystallizations from acetonitrile the product melts at 233°-234°C.

Step B: Preparation of methyl 3,5-diamino-6-chloropyrazinoate—In a 2-liter, 3-necked flask fitted with a a mechanical stirrer, thermometer and gas inlet tube is placed dry dimethyl sulfoxide (1 liter). Methyl 3-amino-5,6-dichloropyrazinoate (100 g, 0.45 mol) is added and the mixture stirred and heated at 65°C on a steam bath until solution is effected. A stream of dry ammonia gas is admitted to the solution with continuous stirring, over a period of 45 minutes while the temperature is maintained at 65°-70°C. The solution is cooled to about 10°C with continuous stirring and ammonia gas is admitted for an additional 1½ hours. The yellow reaction mixture is poured, with stirring, into cold water (2 liters) and the light yellow solid that separates is removed by filtration, thoroughly washed with water, and dried in a vacuum desiccator to give 82.5 g (91%) of methyl 3,5-diamino-6-chloropyrazinoate, MP 210°-212°C. Recrystallization from acetonitrile gives material melting at 212°-213°C.

Step C: Preparation of the base—A 300 ml one-necked, round-bottomed flask, equipped with a water-cooled condenser, calcium chloride tube and magnetic stirrer is charged with anhydrous methanol (150 ml) and sodium metal (5.75 g, 0.25 g atom). When the reaction is complete, the solution is treated with dry guanidine hydrochloride (26.3 g, 0.275 mol) and stirred for 10 minutes. The sodium chloride that forms is removed by filtration. The solution is concentrated in vacuo to a volume of 30 ml and the residue treated with the product of Step B, heated one minute on a steam bath and kept at 25°C for 1 hour. The product is filtered, washed well with water, dissolved in dilute hydrochloric acid and the free base precipitated by addition of sodium hydroxide to give the amiloride product base, a solid which melts at 240.5°-241.5°C.

To produce the hydrochloride, the base is suspended in water (70 ml) and treated with sufficient 6 N hydrochloric acid to dissolve the free base. The solution is filtered and treated with concentrated hydrochloric acid (5 ml). The hydrochloride salt (2.2 g, 97%) separates and is recrystallized from water (50 ml) containing concentrated hydrochloric acid (3 ml).

References

Merck Index 406 Kleeman & Engel p. 40 PDR p. 1199 OCDS Vol. 1 p. 278 (1977) DOT 19 (3) 172 (1983) I.N. p. 69 REM p. 941

Cragoe, E.J., Jr.; U.S. Patent 3,313,813; April 11, 1967; assigned to Merck & Co., Inc.

AMINEPTINE HYDROCHLORIDE

Therapeutic Function: CNS Stimulant

Chemical Name: 7-[(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-yl-amino] heptanoic

acid hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57574-09-1 (Base): 30272-08-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Survector	Eutherapie	France	1978
Survector	Servier	Italy	1982
Maneon	Poli	Italy	1982

Raw Materials

5-Chloro-10,11-dihydro-5H-dibenzo(a,d)cycloheptene Ethyl 7-aminoheptanoate

Manufacturing Process

6.5 g of 5-chloro-10.11-dihydro-5H-dibenzo(a,d)cycloheptene in 60 ml of nitromethane and 10.8 g of ethyl 7-aminoheptanoate in 12 ml of nitromethane were mixed at ambient temperature. The reaction was slightly exothermic. The reaction mixture was left to stand overnight and the solvent was evaporated in vacuo. The residue was taken up in normal hydrochloric acid and the resulting precipitate was filtered off,

10.5 g of crude ethyl 7-[dibenzo(a,d)cycloheptadiene-5-yl] aminoheptanoate hydrochloride were obtained, of which a sample recrystallized from benzene gave a pure product melting instantaneously at 166° to 168°C.

The hydrochloride of the crude ester obtained above was added to 25 ml of 2 N hydrochloric acid. The whole was kept under reflux for 2 hours. The material dissolved and a new hydrochloride then reprecipitated. After cooling, the hydrochloride of the crude acid was filtered off, washed with iced water and then recrystallized from distilled water. 5.7 g of 7-[dibenzo(a,d)cycloheptadien-5-yl] aminoheptanoic acid hydrochloride were obtained, melting instantaneously at 226° to 230°C.

References

Merck Index 409 Kleeman & Engel p. 40 DOT 19 (10) 547 (1983) I.N. p. 69

Melen, C., Danree, B. and Poignant, J.C.; U.S. Patent 3,758,528; September 11, 1973; assigned to Societe en nom Collectif Science Union et Cie; Societe Francaise de Recherche Medicale Melen, C., Danree, B. and Poignant, J.C.; U.S. Patent 3,821,249; June 28, 1974; assigned to Societe en nom Collectif Science Union et Cie: Societe Française de Recherche Medicale

AMINOBENZOIC ACID

Therapeutic Function: Sunscreen agent, antirickettsial

Chemical Name: p-aminobenzoic acid

Common Name: Vitamin H, Vitamin Bx, PABA

Structural Formula:

Chemical Abstracts Registry No.: 150-13-0

Trade Name	Manufacturer	Country	Year Introduced
Pabalate	Robins	U.S.	1949
Ambin	_	_	_
Hachemina	Medea	Spain	_
Pabacyd	_	_	_
Pabafilm	Owen	U.S.	_
Pabagel	Owen	U.S.	-
Pabanol	Elder	U.S.	_
Pabasin			_
Paraminol	_	_	_
Potaba	Westwood	U.S.	_
Pre-Sun	Westwood	U.S.	_
Sunbrella	Dor s ey	U.S.	_

Xvlene Ammonium Sulfate Sodium Hypochlorite

Manufacturing Process

The following example illustrates in detail the preparation of amino benzoic acids from the hot reaction product obtained by the oxidation of a xylene and containing a mixture of salt, amide salt and diamide of a phthalic acid.

800 cc of hot aqueous oxidation product, obtained from the oxidation of para-xylene with ammonium sulfate, hydrogen sulfide and water are boiled and agitated for 4 hours to remove carbon dioxide, hydrogen sulfide and ammonia, sufficient water being added to maintain a constant volume. The mixture is filtered to remove a precipitate containing elemental sulfur. 12 grams of activated charcoal are added to the filtrate and the mixture held at a temperature of 180°F for 20 minutes. Filtration through diatomaceous earth removes color bodies formed during the oxidation process and yields a pale yellow filtrate. The filtrate is acidified with sulfuric acid to a pH of 3 or less to precipitate approximately 49 grams of white solid, comprising a mixture of terephthalic acid and amides of terephthalic acid. which are removed by filtration. This solid is then washed with water at 200°F and redissolved in 200 cc of water containing 28.6 grams of sodium hydroxide.

A mixture of sodium hypochlorite and sodium hydroxide is prepared by adding 27.5 grams of chlorine to a vessel equipped with cooling means and containing a solution of 50 grams of sodium hydroxide in 375 cc of water, thereafter adding sufficient water to produce 500 cc of solution. 190 cc of this cold solution are slowly added to the acid-amide solution previously prepared so as to keep the temperature of the mixture below 55°F. The mixture is stirred for 15 minutes and then heated rapidly to 200°F and maintained at that temperature for one hour. 2 grams of sodium thiosulfate are added to consume excess sodium hypochlorite. The solution is acidified to a pH of 3 or less and filtered hot. The filter cake, comprising about 26.9 grams of terephthalic acid, is then suspended in 300 cc of dilute sulfuric acid of pH about 2, heated to 200°F and filtered hot.

The filtrates are combined, cooled, and extracted with three successive 200 cc portions of ether. The pH of the filtrate is then raised to 3.5 with sodium hydroxide and the filtrate extracted with six successive 200 cc portions of ether to yield the balance of the product. The crude para-aminobenzoic acid product is recovered by evaporation of ether and is suspended in hot benzene, cooled and filtered to remove benzoic and toluic acids together with small amounts of impurities soluble in the filtrate. Recrystallization of the product from 200 cc of water yields 14.5 grams of light tan needles of para-aminobenzoic acid having an acid number of 411 (theoretical value 409).

Aminobenzoic acid can be then purified and decolorized by a process described in U.S. Patent 2,735,865.

References

Merck Index 423 PDR pp. 926, 1894 I.N. p. 1012 **REM p. 787**

Toland, W.G. and Heaton, C.D.; U.S. Patent 2,878,281; March 17, 1959; assigned to California Research Corporation

Spiegler, L.; U.S. Patent 2,947,781; August 2, 1960; assigned to E.I. Du Pont de Nemours and Company

Lyding, A.R.; U.S. Patent 2,735,865; February 21, 1956; assigned to Heyden Chemical Corporation

AMINOCAPROIC ACID

Therapeutic Function: Antifibrinolytic

Chemical Name: 6-aminohexanoic acid

Common Name: Epsilcapramin

Structural Formula: H₂N(CH₂)₅COOH

Chemical Abstracts Registry No.: 60-32-2

Trade Name	Manufacturer	Country	Year Introduced
Epsilon	Roche	W. Germany	1962
Epsilon-Aminoca	Roche	W. Germany	1962
Capramol	Choay	France	1963
Amicar	Lederle	U.S.	1964
Epsikapron	Kabi Vitrum	U.K.	1967
Acikaprin	Polfa	Poland	_
Amicar	Lederle	U.S.	_
Capracid	Kabi Vitrum	Sweden	_
Capracid	Bonomelli-Hommel	Italy	_
Capralense	Choay	France	
Capramol	Italfarmaco	Italy	_
Caprolisin	Malesci	Italy	_
EACA	Kasi Vitrum	Sweden	_
Ekaprol	Difrex	Australia	_
Epsilon	Star	Finland	_
Hemocaprol	Delagrange	France	_
Capusumine	Nichijko	Japan	_
Hemotin	Hokuriku	Japan	_
Ipsilon	Dailchi	Japan	_
Resplamin	Kyorin	Japan	_

Raw Materials

Caprolactam Water

Manufacturing Process

5 kg of caprolactam were heated with 40 liters of water in a pressure vessel at 250°C for

a period of four hours. These quantities of reactants correspond to a water:lactam molecular ratio of 50:1. After cooling, the small quantity of the nonsoluble substance that is formed is filtered off, and the filtrate is evaporated as far as possible. The resulting concentrate is mixed with three times its volume of strong alcohol, thereby causing the desired product, epsilon-aminocaproic acid (6-aminohexanoic acid), to crystallize out. After seperating the crystalline product thus obtained, a further quantity of epsilon-aminocaproic acid can be obtained from the mother liquid if desired.

References

Merck Index 433 Kleeman & Engel p. 41 PDR pp. 872, 997 I.N. p. 13 REM p. 831

Koch, T.; U.S. Patent 2,453,234; November 9, 1948; assigned to American Enka Corporation

AMINOGLUTETHIMIDE

Therapeutic Function: Cytostatic

Chemical Name: 3-(4-Aminophenyl)-3-ethyl-2.6-piperidinedione

Common Name: α -(p-aminophenyl)- α -ethyl-glutarimide

Structural Formula:

Chemical Abstracts Registry No.: 124-84-8

Trade Name	Manufacturer	Country	Year Introduced
Ellipten	Ciba	U.S.	1960
Cytadren	Ciba-Geigy	U.S.	1980
Orimeten	Ciba-Geigy	Switz.	1981
Orimeten	Ciba-Geigy	U.K.	1982

Raw Materials

α-Phenyl-α-ethyl Glutarimide Nitric Acid Hydrogen

Manufacturing Process

The α -(p-nitrophenyl)- α -ethyl-glutarimide starting material can be prepared as follows: 217 g of α -phenyl- α -ethyl-glutarimide are dissolved in 800 g of concentrated sulfuric acid with subsequent cooling to about -10°C and nitration is carried out at -10° to +10°C by slow addition of a mixed acid consisting of 110 g of concentrated sulfuric acid and 110 g of 63% nitric acid. The nitration solution is stirred into ice, the separated nitro compound taken up in methylene or ethylene chloride, the solution washed with water and sodium carbonate solution until

neutral and the solvent evaporated under vacuum. The residue is crystallized from methanol or ethyl acetate, whereby a yellowish crystal powder of MP 128°-136°C is obtained in a yield of about 85% which consists for the most part of α -(p-nitrophenyl)- α -ethyl-glutarimide. By recrystallization from methanol the pure p-nitrophenyl compound is obtained of MP 137°-139°C. From the residues of the mother liquors a small quantity of the isomeric α -(o-nitrophenyl)-α-ethyl-glutarimide of MP 170°-172°C can be obtained.

26.2 g of α-(p-nitrophenyl) -α-ethyl-glutarimide of MP 137°-139°C dissolved in ethyl acetate. are reduced in the presence of nickel with hydrogen in a shaking flask at 50°-70°C until the absorption of hydrogen falls off. The catalyst is then filtered off with suction and the solution concentrated and cooled, as a result of which colorless crystals of MP 146°-149°C are obtained. Recrystallization from methanol gives pure α-(p-aminophenyl)-α-ethyl-glutarimide of MP 149°-150°C (yield 97%).

Instead of ethyl acetate another solvent can be used in the above reduction, such as methanol or ethanol.

The hydrochloride of MP 223°-225°C is obtained by dissolving the base with alcohol and the corresponding quantity of hydrochloric acid gas in the hot with subsequent cooling of the solution. Colorless crystals are formed of MP 223°-225°C, which are easily soluble in water.

References

Merck Index 443 PDR p. 794 OCDS Vol. 1 p. 257 (1977) I.N. p. 71 REM p. 1143

Hoffmann, K, and Urech, E.; U.S. Patent 2,848,455; August 19,1958; assigned to Ciba Pharmaceutical Products, Inc.

AMINOMETRADINE

Therapeutic Function: Diuretic

Chemical Name: 6-Amino-3-ethyl-1-(2-propenyl)-2,4(1H,3H)-pyrimidinedione

Common Name: Aminometramide

Structural Formula:

Chemical Abstracts Registry No.: 642-44-4

Trade Name	Manufacturer	Country	Year Introduced
Mincard	Searle	U.\$.	1954
Mictine	Searle	-	_

Raw Materials

Monoallyl Urea Sodium Hydroxide Cyanoacetic Acid Diethyl Sulfate

Manufacturing Process

85 parts of monoallylurea are dissolved in 105 parts of acetic anhydride, and 85 parts of cyanoacetic acid are added gradually and the mixture is maintained at 65°C for 2.5 hours. The mixture is distilled at 20 mm until a syrup remains, 50 parts of water are added to this syrup and distillation is resumed. The resulting syrup is dissolved in 96% ethanol at 60°C, stirred with charcoal and filtered. One to one and one-half volumes of ether are added to the filtrate at 40°C. Upon cooling the N-cyanoacetyl-N'-allylurea precipitates. It is collected on a filter and washed with ether. The white crystals melt at about 142°-143°C. The N-cyanoacetyl-N'-allylurea is dissolved by warming with 10% sodium hydroxide. Sufficient 70% sodium hydroxide is added to raise the pH to 10. The solution is maintained at 60°C for five minutes. After cooling the crystals are collected on a filter and recrystallized from water. 1-allyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione is obtained in the form of white crystals melting at 270°-272°C.

334 parts of 1-allyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione are dissolved in a solution of 88 parts of sodium hydroxide in 1,100 parts of water. While this mixture is stirred rapidly at 50°C, 430 parts of diethyl sulfate are added in the course of 30 minutes. Stirring is continued at 50°-55°C for one hour longer, and an alkaline reaction is maintained by occasional additions of small portions of 20% aqueous sodium hydroxide solution, about 300 parts in all being required. On cooling, the 1-allyl-3-ethyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione separates as the monohydrate; it is filtered off, washed with cold water, and recrystallized from water containing a small amount of sodium hydroxide to hold in solution any unreacted 1-allyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione. The air dried product thus obtained contains 1 mol of crystal water and melts over a wide range with dehydration at 75°-115°C. After dehydration by treatment with anhydrous ether, the anhydrous 1-allyl-3-ethyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione melts sharply at about 143°-144°C.

References

Merck Index 455 OCDS Vol. 1 p. 265 (1977)

I.N. p. 72

Papesch, V. and Schroeder, E.F.; U.S. Patent 2,650,922; September 1, 1953; assigned to G.D. Searle & Co.

AMINOPENTAMIDE

Therapeutic Function: Anticholinergic

Chemical Name: 4-(Dimethylamino)-2,2-diphenylvaleramide

Common Name: Dimevamide

Structural Formula:

Chemical Abstracts Registry No.: 60-46-8

Trade Name	Manufacturer	Country	Year Introduced
Centrine	Bristol	U.S.	1953

α,α-Diphenyl-γ-dimethylamino Valeronitrile Hydroxylamine Hydrochloride

Manufacturing Process

A mixture of 14 g (0.05 mol) of $\alpha\alpha$ -diphenyl- γ -dimethylaminovaleronitrile, 16 g (0.2 mol) of sodium acetate, 14 g (0,2 mol) of hydroxylamine hydrochloride and 75 ml of ethyl alcohol was refluxed 18 hours. The mixture was cooled, poured into water and neutralized with ammonium hydroxide. The heavy white precipitate solidified on standing. The material was filtered and recrystallized from isopropanol. After three recrystallizations the aminopentamide product melted at 177° to 179°C.

The product is often used as the acid sulfate which is produced as follows: 252,0 g (0.85 mol) of $\alpha\alpha$ -diphenyl- γ -dimethylaminovaleramide was dissolved in one liter of isopropanol, and 70 mi of concentrated sulfuric acid was added as rapidly as possible. The mixture was heated until clear, then filtered and diluted with 1,500 ml of anhydrous ethyl acetate. The solution was cooled and filtered, and the white crystalline product was dried in vacuo over P2O5.

References

Merck Index 463 I.N. p. 342

Specter, M.E.; U.S. Patent 2,647,926; August 4, 1953; assigned to Bristol Laboratories, Inc.

AMINOSALICYLIC ACID

Therapeutic Function: Antitubercular

Chemical Name: 4-amino-2-hydroxybenzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 65-49-6

Trade Name	Manufacturer	Country	Year Introduced
Pamisyl	Parke David	U.S.	1948
Parasal	Panray	U.S.	1950
Rexipas	Squibb	U.S.	1954
Aminacyl	Wander	U.K.	
B-Pas	Salvoxyl-Wander	France	_
Enseals	Lilly	U.S.	_
Nemasol	I.C.N.	Canada	
Neopasalate	Mallinckrodt	U.S.	_
Panacyl	Pharma Rheinpreussen	W. Germany	_
Paramisan	Smith & Nephew	U.K.	_
Para-Pas	Gold Leaf	U.S.	_
Pas	Sumitomo	Japan	

Trade Name	Manufacturer	Country	Year Introduced
Pasido	Ferrosan	Sweden	_
Propasa	Merck Sharp & Dohme		_
Rezipas	Squibb	U.S.	•
Sanpas	Sanyo	Japan	_
Sta-Pas	Debat	France	_
Tebacin Acid	Consol, Midland	U.S.	

Sodium-p-aminosalicylate m-Aminophenol Ammonium Carbonate

Manufacturing Process

As described in U.S. Patent 427,564, aminosalicylic acid may be prepared from m-aminophenol by heating with ammonium carbonate in solution under pressure.

Alternatively, aminosalicylic acid may be made from sodium p-aminosalicylate as described in U.S. Patent 2,844,625 as follows: 196 grams of commercial sodium para-aminosalicylate (18.5% H₂O) was dissolved in 196 ml of water and 150 ml of isopropanol. 6 grams of sodium bisulfite was dissolved in the solution and the solution filtered. While stirring and keeping the temperature between 25°-31°C, seven grams of 85% formic acid and 27.5 grams of 95% sulfuric acid in 150 ml of water was added during 1½ hours. The mixture was stripped 1 hour longer, cooled to 23°C and filtered. The filter cake was washed with 100 cubic centimeters of water, further washed with 100 cc of 25% isopropanol and 100 cc of water, and vacuum dried to constant weight at 45°-50°C. Weight of p-amino-salicylic acid was 76.5 grams (92.7% yield) exhibiting a bulk density of 47 cc/oz.

References

Merck Index 485 Kleeman & Engel p. 43 I.N. p. 74 REM p. 1213

Gnehm, R. and Schmid, J.; U.S. Patent 427,564; May 13, 1890

Centolella, A.P.; U.S. Patent 2,844,625; July 22, 1958; assigned to Miles Laboratories, Inc.

Doub. L.: U.S. Patent 2,540,104; February 6, 1951; assigned to Parke Davis & Co.

AMIODARONE HYDROCHLORIDE

Therapeutic Function: Coronary vasodilator

Chemical Name: (2-butyl-3-benzofuranyl) [4-[2-diethylamino)ethoxy] -3,5-diiodophenyl] -

methanone hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1951-25-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cordarone	Labaz	France	1968
Cordarone	Sigma Tau	Italy	1971
Cordarone X	Labaz	U.K.	1980
Cordarone	Labaz	Switz.	1981
Cordarexne	Labaz	W. Germany	1982
Amiodacore	C.T.S.	Israel	_
Atlansil	Roemmers	Argentina	_
Miodarone	Biosintetica	Brazil	
Procor	Unipharm	Israel	_
Ritmocardyl	Bago	Argentina	_
Trangorex	Labaz	_	_
Uro-Septra	Biosintetica	Brazil	_

2-n-Butyl-3-(3,5-diiodo-4-hydroxybenzoyl)benzofuran Sodium Methoxide β-Diethylaminoethyl Chloride

Manufacturing Process

135 grams of 2-n-butyl-3-(3.5-diiodo-4 hydroxybenzoyl)benzofuran dissolved in 600 cc of ethyl carbonate were treated with 5.7 grams of sodium in the form of sodium methoxide in methanol. Then, β -diethylaminoethyl chloride which had been obtained from 51.6 grams of the hydrochloride in ethyl carbonate was introduced into a suspension of the sodium salt. The mixture was heated to a temperature of approximately 90°C which was maintained for approximately 2 hours. The mixture was cooled and allowed to stand overnight during which time the sodium chloride settled down.

The toluene solution containing diethylaminoethylether was extracted with increasingly diluted aqueous hydrochloric acid solutions while stirring. Extraction was continued until the alkalized solution produced no further precipitate. The combined aqueous solutions were washed with ether and then made strongly alkaline with aqueous sodium hydroxide. Extraction with ether was carried out three times. The organic layers were washed with water and then dried over anhydrous potassium carbonate. In order to produce the hydrochloride, the carbonate was filtered off and then the hydrochloride was precipitated from the ether solution with an ethereal hydrochloric acid solution. After the solution had been allowed to stand for a few hours, decantation was carried out and the syrupy hydrochloride residue was taken up in 500 cc of boiling acetone. The salt crystallized out by cooling. The substance was allowed to stand overnight at 0°C, and centrifuged, washed with ethyl acetate and then with ether and dried. 130 grams of 2-n-butyl-3-(3,5-diiodo-4β-N-diethylaminoethoxybenzoyl)benzofuran hydrochloride in the form of a crystalline powder which melts at 156°C were obtained.

References

Merck Index 491 DOT 5 (4) 123 (1969)

Kleeman & Engel p. 43 I.N. p. 75

Tondeur, R. and Binon, F.; U.S. Patent 3,248,401; April 26, 1966; assigned to Societe Beige de l'Azote et des Produits Chimiques du Marly, SA, Belgium

AMISOMETRADINE

Therapeutic Function: Diuretic

Chemical Name: 6-Amino-3-methyl-1-(2-methyl-2-propenyl)-2,4(1H,3H)-pyrimidinedione

Common Name: -

Structural Formula:

$$CH_{3}$$

$$CH_{2}C = CH_{2}$$

$$H_{2}N$$

$$N$$

$$CH_{3}$$

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Rolicton	Searle	U.S.	1956

Raw Materials

Methallylamine	Cyanoacetic Acid
Methyl Isocyanate	Sodjum Hydroxide

Manufacturing Process

Preparation of the ethyl analog is as follows (methyl isocyanate is used in amisometradine manufacture).

To a cooled and stirred solution of 142 parts of methally lamine in 900 parts of benzene, 156 parts of ethyl isocyanate are added dropwise. Upon concentration in vacuum N-ethyl-N'methallylurea is obtained.

260 parts of this urea derivative are dissolved in 500 parts of acetic anhydride and treated with 157 parts of cyanoacetic acid at 60°C and heated at that temperature for 2 hours. The solution is then concentrated in vacuum to a syrup. 100 parts of water are added and the vacuum distillation is repeated. The remaining syrup contains a mixture of N-cyanoacetyl-Nethyl-N'-methallylurea and a small quantity of N-cyanoacetyl-N-methallyl-N'-ethylurea.

This syrup is treated with sufficient 20% sodium hydroxide solution to raise the pH to 10. A violent reaction occurs. The reaction mixture is diluted with 50 parts of water, stirred, cooled and filtered. The material collected on the filter is recrystallized from 10% ethanol to yield a mixture of 1-methally I-3-ethy I-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione and 1-ethyl-3-methallyl-6-amino-1,2,3,4-tetrahydro-2,4-pyrimidinedione melting at about 157°-159°C.

References

Merck Index 493 OCDS Vol. 1 p. 266 I.N. p. 76

Papesch, V. and Schroeder, E.F.; U.S. Patent 2,729,669; January 3, 1956; assigned to G.D. Searle & Co.

AMITRIPTYLINE HYDROCHLORIDE

Therapeutic Function: Antidepressant

Chemical Name: 3-(10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-ylidene)-N,N-dimethyl-1-propaneamine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 549-18-8; 50-48-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Elavil HCl	Merck Sharp & Dohme	U.S.	1961
Elavil	DDSA	U.K.	1962
Triptizol	Merck Sharp & Dohme	Italy	1962
Laroxyl	Roche	italy	1962
Endep	Roche	U.S.	1975
Amitril	WL/PD	U.S.	1978
Amitid	Squibb	U.S.	1979
Amavil	Mallard	U.S.	1980
Enovil	Hauck	U.S.	1982
Adepril	Lepetit	Italy	_
Adepress	Essex-Shionogi	Japan	_
Ami-Aneiun	Liorente	Spain	_
Amilent	Warner-Lambert	U.S.	_
Amiprin	Kobayashi	Japan	
Amiptanol	Kanto	Japan	
Amitrip	Glebe	Australia	_
Amitriptol	Bracco	Italy	_
Annolytin	Kodama	Japan	
Annolytin	Nippon Shoji	Japan	_
Deprestat	Script Intal	South Africa	
Domical	Berk	U.K.	_
Elatrol	ICN	Canada	_
Elatrol	Teva	Israel	_
Elatrolet	Teva	Israel	_
Lantron	Yamanouchi	Japan	_
Lentizol	Warner-Lambert	U.s.	_
Levate	ICN	Canada	_
Limbitrol	Roche	France	
Limbitrol	Roche	U.S.	*****
Mareline	Elliott-Marion	Canada	-
Meravil	Medic	Canada	
Miketorin	Mitsui	Japan	_
Mitaptyline	Toyo Pharm.	Japan	
Mutanxion	Cetrane	France	_
Mutaspline	Cetrane	France	_
Normaln	Sawai	Japan	_
Novotriptyn	Novopharm	Canada	_
Redomex	Labaz	-	
Saroten	Lundbeck	W. Germany	_
Saroten	Tropon	W, Germany	_
Saroten	Warner	U.K.	_
Sarotex	Lundbeck	W. Germany	_
Schuvel	Tokyo-Hosei	Japan	****
Sensival	Pfizer Taito	Japan	_
		•	

Trade Name	Manufacturer	Country	Year Introduced
Teperin	Egyt	Hungary	
Trepiline	Lennon	South Africa	_
Triavil	Merck Sharp & Dohme	U.S.	
Triptilin	Kimya Evi	Turkey	_
Triptyl	Farmos	Finland	_
Tryptal	Unipharm	Israel	_
Tryptanol	Merck-Banyu	Japan	
Tryptizol	Sharpe & Dohme	W. Germany	_
Tryptizol	Sharpe & Dohme	U.K.	_

Phthalic Anhydride Hydrogen 3-(Dimethylamino)propyl Chloride Phenylacetic Acid Hydrochloric Acid

Manufacturing Process

Phthalic anhydride is reacted with phenylacetic acid to form 3-benzylidenephthalide which is then hydrogenated to 2-phenethylbenzoic acid. Conversion to the acid chloride followed by intramolecular dehydrochlorination yields the ketone, 5H-dibenzo[a,d] cyclohepten-5-one. The ketone undergoes a Grignard reaction with 3-(dimethylamino)propyl chloride to give 5- $(\gamma$ -dimethylaminopropylidene)-5H-dibenzo[a,d] cycloheptene.

Then, as described in U.S. Patent 3,205,264, a solution of 5-(γ-dimethylaminopropylidene)-5H-dibenzo-[a,d]-cycloheptene (42 grams; 0.153 mol) in 105 ml of ethanol is hydrogenated over Raney nickel (1.5 grams) at 65°C under an initial hydrogen pressure of 450 lb. After 1 mol of hydrogen is absorbed (3.5 hours), the reaction mixture is filtered to remove the catalyst and is acidified with 80 ml of 2.5 N hydrochloric acid (0.2 mol). The acidic solution is concentrated to dryness under vacuum and is flushed three times with 100 ml of benzene to remove residual water. The solid residue then is dried under vacuum at 40°C to yield 44.9 grams (94% of theory) of the product, MP 187°-189.5°C, equivalent weight 307, ultraviolet absorption A% 2380⁴³². Recrystallization from isopropyl alcohol and ether affords the product in high purity.

References

Merck Index 496 Kleeman & Engel p. 44 PDR pp. 673, 993, 1174, 1217, 1314, 1509, 1513, 1569, 1606, 1617 OCDS Vol. 1 pp. 151, 404 DOT 9 (6) 219 (1973) I.N. p. 76 REM p. 1093

Tristram, E.W. and Tull, R.J.; U.S. Patent 3,205,264; September 7, 1965; assigned to Merck & Co., Inc.

AMITRIPTYLINE OXIDE

Therapeutic Function: Antidepressant

Chemical Name: 3-(3'-Dimethylaminopropylidene)dibenzo[a,d]cyclohepta-1,4-diene N-oxide

Common Name: -

Chemical Abstracts Registry No.: 4317-14-0

Trade Name	Manufacturer	Country	Year Introduced
Equilibrin	Nattermann	W. Germany	1980
Ambivalon	Nattermann	W. Germany	_

Raw Materials

Dibenzo [a,d] cyclohepta-1,4-diene-5-one 3-Dimethylaminopropanol Magnesium Chloride Hydrogen Peroxide

Manufacturing Process

31.3 g (0.1 mol) of 3-(3'-dimethylaminopropylidene)dibenzo[a,d] cyclohepta-1,4-diene hydrochloride are dissolved in water, and the free base is liberated by means of a 28% aqueous solution of sodium hydroxide. The free base is sucked off, washed with water, and dissolved in 100 ml of methanol. To the solution are added 31 ml of 30% hydrogen peroxide. After 7 days, the reaction mixture is diluted with 200 ml of water, and the major part of the methanol is evaporated in vacuum. The precipitated N-oxide crystals are filtered off, washed with water, and dried, yielding 27 g of the dihydrate of 3-(3'-dimethylaminopropylidene)dibenzo-[a,d] cyclohepta-1,4-diene N-oxide with melting point of 102° to 103°C. In dehydrated state the melting point is 228° to 230°C.

By dissolving the N-oxide in acetone, and bubbling dry hydrogen chlorine gas through the solution until slightly acid reaction, the hydrochloride of the N-oxide is precipited as a white crystalline substance with melting point of 172° to 173.6°C.

The starting material can be prepared in known manner from dibenzo[a,d] cyclohepta-1,4-diene-5-one by a Grignard reaction with 3-dimethylaminopropyl magnesium chloride, hydrolysis and dehydration of the resulting carbinol.

References

Merck Index 497 DFU 5 (7) 329 (1980) Kleeman & Engel p. 45 DOT 18 (3) 110 (1982) I.N. p. 77

Pedersen, J.B.; British Patent 991,651; May 12, 1965; assigned to A/S Dumex (Dumex, Ltd.) Merck & Co., Inc.; British Patent 1,095,786; December 20, 1967

Pedersen, J.B.; U.S. Patent 3,299,139; January 17, 1967; assigned to A/S Dumex (Dumex, Ltd.)

AMIXETRINE HYDROCHLORIDE

Therapeutic Function: Antiinflammatory; anticholinergic; antidepressant

Chemical Name: N-(2-Phenyl-2-isoamyloxy) -ethylpyrrolidine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24622-52-4; 24622-72-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Somagest	Riom	France	1972
Materials			
Styrene		t-Buty! Hype	obromite
Isoamyl Alcohol		Pyrrolidine	

Manufacturing Process

Hydrogen Chloride

Raw

There is heated under reflux with stirring for 10 hours: 117 g of (2-phenyl-2-isoamyloxy)ethyl bromide, 61.5 g of pyrrolidine and 250 ml of toluene.

After filtration of the pyrrolidine hydrobromide, the toluene is removed under reduced pressure. The residue is then taken up with 4N HCI. The aqueous solution is washed with ether. It is made alkaline by a solution of 50% NaOH. It is extracted with ether. The ethereal phase is dried over anhydrous sodium sulfate, and rectified under reduced pressure after removing the solvent. There is thus obtained 90 g of a colorless oil with an amine odor.

The hydrochloride is prepared in the usual manner by dissolving the amine in anhydrous ether and adding to it the requisite amount of dry gaseous hydrochloric acid, dissolved in absolute alcohol. There is obtained a white crystalline powder melting at 150°C, very soluble in water and alcohol, very slightly soluble in ether and ethyl acetate.

The starting material above is prepared by reacting styrene with isoamyl alcohol and then reacting that product with t-buty! hypobromite.

References

Merck Index 499 Kleeman & Engel p. 46 DOT 8 (9) 334 (1972) I.N. p. 77

Centre Europeen de Recherches Mauvernay, RIOM; British Patent 1,253,818; November 17, 1971

AMODIAQUIN

Therapeutic Function: Antimalarial

Chemical Name: 4-[(7-Chloro-4-quinolinyl)amino]-2-[(diethylamino)-methyl] phenol

Common Name: 4-(3'-diethylaminomethyl-4'-hydroxyanilino)-7-chloroquinoline

Structural Formula:

Chemical Abstracts Registry No.: 86-42-0 (Base); 69-44-3 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year introduced
Camoquin HCl	Parke Davis	U.S.	1950
Flavoquine	Roussel	France	1979
Corbutyl	I.S.H.	France	_
Camoquin	Parke-Davis	U.K.	_

Raw Materials

p-Aminophenol Hydrochloride	Diethylamine
4,7-Dichloroquinoline	Paraformaldehyde

Manufacturing Process

72.8 g (0.5 mol) of p-aminophenol hydrochloride is dissolved in 500 cc of water and added to 99 g (0.5 mol) of 4.7 dichloroquinoline. After a few minutes of warming in a steam bath. 4-(4'-hydroxyanilino)-7-chloroquinoline hydrochloride, of sufficient purity for use in further experiments, precipitates as a yellow crystalline solid. Recrystallized from methanol, the MP is over 300°C.

A mixture consisting of 13.5 g of 4-(4'-hydroxyanilino)-7-chloroquinoline hydrochloride dissolved in absolute ethanol is treated with a solution of 4.38 g of diethylamine and 1.8 g of paraformaldehyde in 20 cc of absolute ethanol. The reaction mixture is heated under reflux for 16 hours, evaporated to one-half volume and the warm solution treated with an excess of hydrogen chloride dissolved in absolute ethanol. Acetone is added to the warm solution until it becomes turbid and then the solution is cooled. The crude dihydrochloride which separates is collected and purified by recrystallization from methanol; MP 240°-242°C.

By using an equivalent amount of 4-(4'-hydroxyanilino)-7-bromoquinoline in the above procedure, 4-(3'-diethylaminomethyl-4'-hydroxyanilino)-7-bromoquinoline dihydrochloride is obtained; MP (base) 206°-208°C dec.

References

Merck Index 593 Kleeman & Engel p. 47 I.N. p. 78 REM p. 1217

Burckhalter, J.H., Jones, E.M., Rawlins, A.L., Tendick, F.H. and Holcomb, W.F.; U.S. Patent 2,474,821; July 5, 1949; assigned to Parke, Davis & Co.

AMOXAPINE

Therapeutic Function: Antidepressant

Chemical Name: 2-Chloro-11-(1-piperazinyl)dibenz[b,f] [1,4] oxazepine

Structural Formula:

Chemical Abstracts Registry No.: 14028-44-5

Trade Name	Manufacturer	Country	Year Introduced
Asendin	Lederle	U.S.	1980
Moxadil	Lederle	France	1980
Amoxan	Lederle	Japan	1981
Omnipress	Cvanamid	W. Germany	1983
Demolox	Lederle	_	_

Raw Materials

o-(p-Chlorophenoxy)aniline Hydrochloride	Ethyl Chlorocarbonate
N-Carbethoxypiperazine	Phosphorus Pentoxide

Manufacturing Process

A mixture of 125 g of o-(p-chlorophenoxy)aniline hydrochloride and 100 ml of dry pyridine is treated cautiously with a solution of 90 ml of ethyl chlorocarbonate in 150 ml of ether. The mixture is kept at room temperature for 3 days, diluted with about 500 ml of water and extracted with 300 ml of ether. The ethereal extract is washed with 300 ml of water, dried over calcium chloride, filtered and concentrated. The resulting ethyl o-(p-chlorophenoxy)carbanilate is obtained in a viscous oil suitable for use in the next step without further purification.

A solution of 70 g of ethyl o-(p-chlorophenoxy) carbanilate and 120 g of N-carbethoxypiperazine in 100 ml of benzene containing a little sodium methoxide is heated on a steam bath for about 5 days. The solvent is removed by distillation and the residue is triturated with water. The resulting solid is dissolved in ether and dried over sodium sulfate. Filtration and concentration then yields ethyl 4-[[o-(p-chlorophenoxy)phenyl] carbamoyl]-1-piperazinecarboxylate, melting at 89° to 91°C, and suitable for cyclization.

A mixture of 10 g of the above piperazine carboxylate ester, 8 g of phosphorus pentoxide and 20 ml of phosphorus oxychloride is heated under reflux for about 1 day, diluted with 100 ml each of chloroform and benzene and quenched with 200 g of ice. The mixture is made basic with 10% sodium hydroxide. The organic layer is isolated and extracted with 150 ml of dilute hydrochloric acid. The product is precipitated from the aqueous layer by addition of 10% sodium hydroxide, extracted with benzene and dried over potassium carbonate. Recrystallization from benzene-petroleum ether gives 2-chloro-11-(1-piperazinyl)dibenz[b,f] [1,4]-oxazepine which melts at 175° to 176°C.

References

Merck Index 598	DFU 1 (11) 511 (1976)
PDR p. 1005	OCDS Vol. 2 p. 478 (1980)
DOT 8 (2) 78 (1972) & 15 (3) 73 (1979)	1.N. p. 79
REM n 1094	

Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; U.S. Patent 3,663,696; May 16, 1972; assigned to American Cyanamid Company

Howell, C.F., Hardy, R.A., Jr. and Quinones, N.Q.; U.S. Patent 3,681,357; August 1, 1972; assigned to American Cyanamid Company

AMOXICILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-([amino-(4-hydroxyphenyl)acetyl] amino)-3,3-dimethyl-7-oxo-4-thia-1-

azabicyclo[3.2.0] heptane-2-carboxylic acid

Common Name: p-Hydroxyampicillin

Structural Formula:

Chemical Abstracts Registry No.: 26787-78-0; 61336-70-7 (Trihydrate)

Trade Name	Manufacturer	Country	Year Introduced
Amoxil	Bencard	U.K.	1972
Clamoxyl	Beecham	W. Germany	1973
Clamoxyl	Beecham	France	1974
Larotid	Roche	U.S.	1974
Amoxil	Beecham	U.S.	1974
Polymox	Bristol	U.S.	1975
Sawacillin	Fujisawa	Japan	1975
Pasetocin	Kyowa Hakko	Japan	1975
Velamox	Zambeletti	Italy	1975
Wymox	Wyeth	U.S.	1978
Utimox	WL/PD	U.S.	1979
Agerpen	Cepa	Spain	_
A-Gram	Inava	France	_
Alfamox	Alfa	Italy	-
Alfida	Esteve	Spain	
Alfoxil	Fako	Turkey	
Am-73	Medici	Italy	-
Amocilline	inpharzam	Belgium	_
Amoclen	Spofa	Czechoslovakia	-
Amodex	Robert & Carriere	France	_
Amo-Flamisan	Mazuelos	Spain	_
Amoksilin	Nobel	Turkey	_
Amoksina	Mustafa Nevzat	Turkey	
Amolin	Takeda	Japan	
Amorion	Orion	Finland	_
Amosin	Sanli	Turkey	-
Amox	Lusofarmaco	Spain	_
Amox	Prodes	Spain	_
Amoxamil	Lafi	Brazil	_
Amoxaren	Areu	Spain	_
Amoxi-Basileos	Basileos	Spain	-
Amoxibiotic	Aristochimica	Italy	_
Amoxicil	Dincel	Turkey	_
Amoxicillin	Toho	Japan	_
Amoxidal	Roemmers	Argentina	_
Amoxidin	Lagap	Switz.	
Amoxi-Gobens	Normon	Spain	_
Amoxillin	Esseti	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Amoximedical	Medical	Spain	_
Amoxipen	Gibipharma	Italy	_
Amoxipenil	Montpellier	Argentina	
Amoxiroger	Roger	Spain	
Amoxi-Tabs	Beecham	_	_
Amoxypen	Grunenthal	W. Germany	
Amplimox	Ausonia	ltaly	_
Amplimox	Iton	Italy	-
Ampy-Penyl	Proto	Switz.	
Apitart	Isei	Japan	_
Ardine	Antibioticos	Spain	_
Aspenil	Chemil	Italy	
Augmentin	Beecham	U.S.	_
Ax-1000	Durachemie	W. Germany	_
Axbiot	Galepharma Iberica	Spain	-
Becabil	Alfar	Spain	_
Benzoral	Biosintetica	Brazil	-
Bioxidona	Faes	Spain	_
Bristamox	Bristol	· -	_
Cabermox	Caber	Italy	_
Chitacillin	Banyu	Japan	_
Cidanamox	Cidan	Spain	-
Clamox	Roussel-Diamant	Morocco	_
Clamoxyl	Wulfing	W. Germany	
Clamoxyl	Beecham-Sevigne	France	_
Dacala	Guadalupe	Spain	_
Damoxicil	Elmu	Spain	
Daxipen	Recofarma	Brazil	_
Delacillin	Sankyo	Japan	_
Demoksil	Deva	Turkey	_
Doksilin	litas	Turkey	_
Draximox	Novo	_	_
Efpenix	Toyo Jozo	Japan	_
Eupen	Uriach	Spain	
Flemoxin	Gist-Brocades	_	_
Fullcilina	Sintyal	Argentina	_
Grinsil	Argentia	Argentina	_
Hiconcil	Allard	France	_
Himinomax	Kaken	Japan	
Hosboral	Hosbon	Spain	_
Ibiamox	IBI	Italy	_
Imacillin	Astra		_
Infectomycin	Heyden	W. Germany	_
Isimoxin	ISI	Italy	-
Kapoxi	Kappa	Spain	_
Largopen	Bilim	Turkey	
Majorpen	Cyanamid	U.S.	_
Megacillin	Mulda	Turkey	_
Metifarma	Novofarma	Spain	
Morgenxil	Morgens	Spain	•••
Moxacin	C.S.L.	Australia	_
Moxal	Roger Bellon	Italy	
Moxalin	Mead-Johnson	U.S.	
Moxilean	Organon	_	_
Moxipin	Gamir	Spain	_
Moxypen	Teva	Israel	_
Novamoxin	Novopharma	Canada	_
TOTALITONIII	·	Curaca	

Trade Name	Manufacturer	Country	Year Introduced
Nuvosyl	Mepha	Switz.	_
Optium	Disprovent	Argentina	_
Ospanox	Biochemie	Austria	, –
Pamocil	Lancet	Italy	
Paradroxil	Bristol	_	_
Pasetocin	Kyowa	Japan	_
Penamox	Beecham	_	-
Penimox	lbsa	Switz.	_
Piramox	Pharmax	Italy	
Precopen	Fides	Spain	_
Primasin	Eczacibasi	Turkey	_
Raudopen	Alter	Spain	
Raylina	Robert	Spain	_
Reloxyl	Biologia Marina	Spain	_
Remoxil	Kimya Evi	Turkey	_
Rivoxicillin	Rivopharm	Switz.	_
Robamox	Robins	U.S.	-
Sancixomal	Santos	Spain	_
Sawamezin	Sawai	Japan	_
Sigamopen	Siegfried	Switz,	_
Simplamox	ISF	Italy	_
Sinacilin	Galenika	Yugoslavia	_
Sintedix	Castillon	Spain	_
Sintoplus	Aesculapius	Italy	
Sumox	Reid-Provident	U.S.	-
Superpeni	Efeyn	Spain	_
Tolodina	Estedi	Spain	-
Triamoxil	Squibb	U.S.	_
Trifamox	Bago	Argentina	_
Trimoksilin	Abdi Ibrahim	Turkey	_
Trimox	Squibb	U.S.	-
Unicillin	Tobishi	Japan	-
Uro-Clamoxyl	Beecham	-	_
Utimox	Parke Davis	_	_
Wassermox	Wassermann	Spain	_
Widecillin	Meiji	Japan	_
Zamocillin	Zambon	Italy	_
Zimox	Farmitalia Carlo Erba	Italy	
	·	· · ·	

6-Aminopenicilianic Acid Ethyl Chlorocarbonate Sodium Bicarbonate Hydrogen

O,N-Dibenzyloxycarbonyl-p-oxy-di- α -aminophenylacetic Acid

Manufacturing Process

Ethyl chlorocarbonate (2.2 ml) was added to an ice cold solution of O,N-dibenzyloxycarbonyl-p-oxy-dl-α-aminophenylacetic acid (10 grams) and triethylamine (3.85 ml) in dry acetone (193 ml). The mixture was stirred at 0°C for 5 minutes during which triethylamine hydrochloride precipitated. The suspension was cooled to -30°C and stirred vigorously while adding as rapidly as possible an ice cold solution of 6-aminopenicillanic acid (5.85 grams) in 3% aqueous sodium bicarbonate (193 ml), the temperature of the mixture never being allowed to rise above 0°C. The resulting clear solution was stirred for 30 minutes at 0°C, and then for a further 30 minutes, without external cooling, and finally extracted with diethyl ether (3 x 200 ml) only the aqueous phase being retained.

This aqueous solution was brought to pH 2 by the addition of hydrochloric acid and the

6-(O,N-dibenzyloxycarbonyl-p-oxy-dl-α-aminophenylacetamido)-penicillanic acid so liberated was extracted into diethyl ether (50 ml and 2 portions of 30 ml). The ether phase was washed with water (3 x 5 ml) and the water washings were discarded.

Finally, the penicillin was converted to the sodium salt by shaking the ether solution with sufficient 3% sodium bicarbonate to give a neutral aqueous phase, separating the latter and evaporating it at low pressure and temperature below 20°C. The product was finally dried over phosphorus pentoxide in vacuo to give sodium 6-(O,N-dibenzyloxycarbonyl-p-oxy-dlα-aminophenylacetamido)-penicilianate (9.2 grams).

A suspension of palladium on calcium carbonate (36 grams of 5%) in water (150 ml) was shaken in an atmosphere of hydrogen at room temperature and atmospheric pressure for 1 hour. A neutral solution of sodium 6-(O,N-dibenzyloxycarbonyl-p-oxy-dl-α-aminophenylacetamido)-penicillanate (9 grams) in water (100 ml) was then added and shaking in hydrogen was resumed for one hour. The suspension was then filtered and the collected catalyst was washed well with water without being allowed to suck dry between washings. The combined filtrate and washings were then brought to pH 6.5 with dilute hydrochloric acid and evaporated to dryness at reduced pressure and temperatures below 20°C. The product was finally dried over phosphorus pentoxide in vacuo to give a solid (5.4 grams) containing 6-(p-hydroxy-dl-α-aminophenylacetamido)-penicillanic acid.

References

Merck Index 600 Kleeman & Engel p. 48 PDR pp. 658, 673, 705, 993, 1315, 1606, 1769, 1997 OCDS Vol. 1 p. 414 DOT 19 (3) 169 (1983) I.N. p. 79 REM p. 1193 Nayler, J.H.C. and Smith, H.; U.S. Patent 3,192,198; June 29, 1965

AMPHETAMINE PHOSPHATE

Therapeutic Function: Central stimulant

Chemical Name: 1-Phenyl-2-aminopropane monophosphate

Common Name: -

Structural Formula: C₆H₅CH₂CH(NH₂)CH₃·H₃PO₄

Chemical Abstracts Registry No.: 139-10-6

Trade Name	Manufacturer	Country	Year Introduced
Raphetamine	Strasenburgh	u.s.	1950
Amphate	Storck	U.S.	_
Leptamine	Bowman	U.S.	_
Monophos	Durst	U.S.	
Profetamine	Clark & Clark	U.S.	_

Raw Materials

Phenyl Nitropropylene Phosphoric Acid

Chemical Abstracts Registry No.: 1402-82-0 (Base)

Manufacturing Process

1 mol of phenyl-nitropropylene, C₆H₅CH=C(CH₃)NO₂, is dissolved with a solvent prepared by mixing one liter of ethanol with one-half liter of acetic acid and one-half liter of 12 N sulfuric acid. The resultant solution is placed in the cathode compartment of a divided electrolytic cell containing a metallic cathode of mercury, copper, or other metal of similar nature. Current is passed, using a current density of \sim 0.2 amp/cm 2 of cathode surface. The temperature is kept at about 40°C during the electrolysis which is continued until at least eight Faradays of electricity have been passed.

When the reduction is completed, the 1-phenyl-2-aminopropane may be separated from the solution. A convenient way of doing this is by removing the ethanol and ethyl acetate present by evaporation and then making the residual solution strongly alkaline by addition of caustic alkali. The basic layer thus formed is separated from the aqueous solution and contains the desired 1-phenyl-2-aminopropane.

135 g (1 mol) of amphetamine (1-phenyl-2-aminopropane) were stirred into 300 cc of acetone in a stainless-steel vessel. To the resultant solution there were slowly added under constant agitation 115.3 g of 85% phosphoric acid (containing 1 mol of H₃PO₄), care being taken to avoid any sudden rise in temperature or local overheating due to the considerable amount of heat that is evolved. During the addition of the phosphoric acid a fine, white, flocculent precipitate appears which becomes more and more dense and abundant, as the quantity of added acid increases.

When the entire quantity of the phosphoric acid has thus been added, agitation of the mixture is continued for about a half-hour or more to insure complete conversion. The precipitate is then allowed to settle, the supernatant liquid is drawn off, and the residue is filtered. The precipitate thus separated may, if desired, be washed with acetone and is then dried by evaporation to constant weight. It forms a fine, white, impalpable powder consisting of pure monobasic amphetamine phosphate.

References

Merck Index 607 I.N. p. 80 Alles, G.A.; U.S. Patent 1,879,003; September 27, 1932 (amphetamine base mfg.) Goggin, T.C.; U.S. Patent 2,507,468; May 9, 1950; assigned to Clark & Clark Co. (amphetamine conversion to phosphate)

AMPHOMYCIN CALCIUM

Therapeutic Function: Antibiotic

Chemical Name: Amphomycin calcium

Common Name: Glumamicin

Structural Formula:

CH₃CH₂CH(CH₂)₅CH=CHCH₂CO-Asp-MeAsp-Asp-Gly-Asp-Gly-Dab^e-Val-Pro Pip-Dab^t CH₃ Dabe = D-erythro- $\alpha \beta$ -diaminobutyric acid Dab^t = L-threo- α , β -diaminobutyric acid (base) Pip = D-pipecolic acid

Trade Name	Manufacturer	Country	Year Introduced
Amphocortrin CR	Warner-Lambert	U.S.	1963

Amphomycin Calcium Hydroxide

Manufacturing Process

The process for producing amphomycin comprises cultivating a strain of Streptomyces canus in an aqueous, nutrient-containing carbohydrate solution under submerged aerobic conditions until substantial antibacterial activity is imparted to the solution and then recovering the so-produced amphomycin from the fermentation broth.

The process of decolorizing solutions of amphomycin then involves treatment with activated charcoal, followed by the steps of (1) extracting the antibiotic into a water-immiscible organic solvent under strongly acid conditions or precipitating the amphomycin from aqueous solution by adjusting the pH to a point within the range of pH 3.0 to 4.0, (2) removing impurities from strongly acid, aqueous solution of amphomycin by extraction of the impurities with methyl isobutyl ketone and amyl acetate, (3) extracting the amphomycin from a strongly acid solution in butanol by the use of water having a pH higher than 4, (4) extracting the amphomycin from solution in water-immiscible organic solvent into water whose pH is greater than 6.0, (5) precipitating amphomycin from solution by formation of insoluble derivatives of the basic function, and (6) precipitating amphomycin from solution by formation of insoluble derivates of the acidic function.

The amphomycin is then converted to the calcium salt with calcium hydroxide.

References

Merck Index 609

Heinemann, B., Cooper, I.R. and Kaplan, M.A.; U.S. Patent 3,126,317; March 24, 1964; assigned to Bristol-Myers Co.

AMPHOTERICIN B

Therapeutic Function: Antifungal

Chemical Name: [1R-(1R*,3S*,5R*,6R*,9R*,11R*,15S*,16R*,17R*,18S*,19E,21E,23E, 25E,27E,29E,31E,33R*,35S*,36R*,37S*)]-33-[(3-amino-3,6-dideoxy-β-D-mannopyranosyl)oxy] -1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo [33.3.1] nonatriconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

Common Name: —

Chemical Abstracts Registry No.: 1397-89-3

Trade Name	Manufacturer	Country	Year Introduced
Fungizone	Squibb	U.S.	1958
Ampho-Moronal	Heyden	W. Germany	_
Fungizone	Squibb	France	1969
Amphocycline	Squibb	France	_
Amphozone	Squibb	_	_
Fungilin	Squibb	U.K.	·
Fungilin	Squibb	Italy	_
Fungizone	Squibb-Sankyo	Japan	-
Mysteclin	Heyden	W. Germany	_

Raw Materials

Carbohydrates Streptomyces nodosus

Manufacturing Process

The process for producing amphotericin comprises cultivating a strain of Streptomyces nodosus in an aqueous nutrient medium comprising an assimilable, fermentable carbohydrate and an assimilable organic nitrogen source, under submerged aerobic conditions, until substantial antifungal activity is imparted to the medium and recovering amphotericin from the medium.

References

Merck Index 611 Kleeman & Engel p. 50 PDR pp. 1743, 1752 DOT 7 (5) 192 (1971) I.N. p. 81 REM p. 1226

Dutcher, J.D., Gold, W., Pagano, J.F. and Vandeputte, J.; U.S. Patent 2,908,611; October 13, 1959; assigned to Olin Mathieson Chemical Corporation

AMPICILI IN

Therapeutic Function: Antibacterial

Chemical Name: 6-[D-amino-(2-phenylacetamido)] 3,3-dimethyl-7-oxo-4-thia-1-azabicyclo-

[3.2.0] heptane-2-carboxylic acid

Common Name: D-α-aminobenzylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 69-53-4

Trade Name	Manufacturer	Country	Year Introduced
Binotal	Bayer	W, Germany	1962

Trade Name	Manufacturer	Country	Year Introduced
Penicline	Delagrange	France	1963
Penbritin	Ayerst	U.S.	1963
Penbritin	Beecham	U.K.	1963
Omnipen	Wyeth	U.S.	1966
Ampisint	Proter	Italy	1969
Acucillin	Fuji	Japan	_
Adobacillin	Tobishi	Japan	-
Albipen	Gist Brocades	· <u> </u>	
Alfasilin	Fako	Turkey	_
Almopen	Gist Brocades	_	_
Alpen	Lederle	U.S.	_
Amblosen	Hoechst	W. Germany	<u>=</u>
Amcill	Parke-Davis	U.S.	_
Amfipen	Gist Brocades	U.K.	·
Amfipen	Schering	W. Germany	-
Amipenix	Toyo Jozo	Japan	_
Ampen	Medosan	Italy	_
Ampen	ICN	Canada	_
Ampensaar	Chephasaar	W. Germany	
Ampibeta	Violani-Farmavigor	italy	_
Ampibiotic	Ottolenghi	Italy	_
Ampicil	Ausonia	italy	_
Ampicillina Pharmax	Pharmax		_
•		Italy	<u>-</u>
Ampicillina Pierrel	Pierrel	Italy	
Ampicina	Sigma Tau	Italy	_
Ampicyn	Protea	Australia	
Ampifen	Intersint	Italy	-
Ampikel	Dreikehl	Spain	
Ampilan	lbern	Italy	
Ampiland	Landerlan	Spain	-
Ampilisa	Lisapharma	Italy	
Ampilux	Tubi Lux Pharma	Italy	
Ampimed	Aristochimica	Italy	-
Ampinebiot	Bertran Hathor	Spain	_
Ampinova	Cheminova Espanola	Spain	
Ampinoxi	Therapia	Spain	-
Ampiopen	lbern	Italy	- .
Ampi-Plena Simple	Pradel	Spain	-
Ampisil	Dif-Dogu	Turkey	=
Ampisina	Mustafa Nevzat	Turkey	-
Ampi-Tablinen	Sanorania	W. Germany	_
Ampitex	Neopharmed	Italy	-
Ampivax	Ripari-Gero	italy	_
Ampixyl	Pharma-Plus	Switz.	_
Amplenil	Orma	Italy	
Amplibios	Panther-Osfa Chemie	Italy	_
Amplicid	Cifa	Italy	_
Amplipen	Labif	Italy	_
Amplipenyl	ISF	Italy	_
Ampliscocil	I.C.I.	Italy	_
Amplisom	Isom	Italy	
Amplital	Farmitalia Carlo Erba	Italy	
Amplizer	O.F.F.	Italy	_
Anhypen	Gist Brocades		_
Anidropen	Wyeth	Italy	_
Anticyl	San Carlo	Italy	_
A-Pen	Orion	Finland	

Trade Name	Manufacturer	Country	Year Introduced
Argocillina	Beta	Italy	_
Austrapen	CSI	Australia	
Benusel	ICN	_	_
Bio-Ampi	Donatello	Italy	_
Biocellina	Magis	Italy	_
Bionacillin	Takata	Japan	-
Bonapicillin	Taiyo	Japan	_
Britapen Oral	Federico Bonet	Spain	-
Britcin	DDSA	U.K.	
Bropicilina	Byk Golden	_	-
Cilleral	Bristol-Banyu	Japan	-
Citicil	C.T.	Italy	-
Combinenix	Toyo Jozo	Japan	-
Copharcilin	Cophar	Switz.	
Deripen	Schering	W. Germany	_
Doktacillin	Astra	-	_
Domicillin Defailin	Dainippon	Japan	
Drisilin Espectrosira	Drifen Clariana	Turkey Spain	
Espectrosira Eurocillin	Borromeo	Italy	-
	Gazzini	•	
Farmampil Fidesbiotic	Fides	łtaly Spain	_
	Continental Pharma	•	
Fortapen Geycillina	Geymonat	Belgium Italy	_
Gramcillina	Caber	Italy	
Grampenii	Argentina	Argentina	_
Guicitrina	Perga	Spain	_
Hostes Pedriatico	Lando	Argentina	-
ikapen	lkapharm	Israel	
Isocillin	Kanto	Japan	_
Iwacillin	lwaki	Japan	
Lampocillina Orale	Sidus	Italy	_
Lifeampil	Lifepharma	Spain	_
Marisilan	Wakamoto	Japan	_
Makrosilin	Atabay	Turkey	_
Maxicilina	Antibioticos	Spain	_
Napacil	Montefarmaco	Italy	
NC-Cillin	Nippon Chemiphar	Japan	_
Negopen	Deva	Turkey	
Nuvapen	Cepa	Spain	_
Orocilin	isa	Brazil	_
Overcillina	Lepetit	Italy	-
Overcillina	Archifar	Italy	-
Pen Ampil	Nuovo, Const.		
	Sanit. Naz.	italy	_
Penbrock	Beecham	_	_
Penibrin	Teva	Israel	_
Penimic	SS Pharm.	Japan	_
Peninovel	Larma	Spain	_
Penisint B.G.	Boniscontro	Italy	-
Penoral	Nobel	Turkey	_
Penorsin	Wassermann	Spain	_
Pentrex	Banyu	Japan	_
Pentrexyl	Galenika	Yugoslavia	-
Pharcillin	Toyo Pharm	Japan	_
Platocillina	Crosara	Italy	_
Plumericin	Torlan	Spain	-

Trade Name	Manufacturer	Country	Year Introduced
Policilin	Bristol		_
Polycillin	Bristol	U <i>.</i> S.	_
Principen	Squibb	U.S.	_
Quimetam	Quimicos Unidos	Spain	_
Radiocillina	Radium Pharma	Italy	_
Recenacillin	Maruko	Japan	
Resan	Alacan	Spain	_
Rivocillin	Rivopharm	Switz.	_
Saicil	Libra	Italy	_
Sentapent	Kimya Evi	Turkey	_
Sernabiotic	Libra	Italy	-
Sesquicillina	ita	Italy	_
Sintopenyl	Aesculapius	Italy	-
SK-Ampicillin	SK&F	U.S.	
Togram	Morgens	Spain	_
Tokiocillin	Isei	Japan	_
Totacillin	Beecham	Japan	
Totaclox	Beecham	Japan	
Totalciclina	Benvegna	Italy	-
Totapen	Bristol	France	_
Trafarbiot	Novopharma	Spain	_
Ultrabion	Lifasa	Spain	_
Vastacyn	Ankerfarm	Italy	-
Vexampil	Ifi	italy	_
Viccillin	Meiji	Japan	-

&-Aminophenylacetic Acid
Ethyl Chlorocarbonate
6-Aminopenicillanic Acid

Benzyl Chlorocarbonate Hydrogen

Manufacturing Process

 α -Carbobenzyloxyaminophenylacetic acid (0.1 mol), which is obtained by the reaction of equivalent quantities of α -aminophenylacetic acid and benzyl chlorocarbonate in aqueous sodium hydroxide, dissolved in dry acetone is stirred and cooled to approximately -5°C. To this there is added dropwise with continued cooling and stirring a solution of ethyl chlorocarbonate (0.1 mol). After approximately 10 minutes, the acylating mixture is cooled to about -5°C and then is slowly added to a stirred ice-cold mixture of 6-aminopenicillanic acid (0.1 mol), 3% sodium bicarbonate solution (0.1 mol) and acetone. This reaction mixture is allowed to attain room temperature, stirred for an additional thirty minutes at this temperature and then is extracted with ether,

The extracted aqueous solution is covered with butanol and the pH adjusted to 2 by the addition of N HCI. The acidified aqueous phase is extracted with butanol, the pH of the aqueous phase being adjusted to pH 2 each time. The combined butanol solutions which contain the free acid, α -carbobenzyloxyaminobenzylpenicillin, are washed with water, and are then shaken with water to which sufficient 3% sodium bicarbonate has been added to bring the aqueous phase to pH 7. The process of washing and shaking is repeated with fresh water and bicarbonate solution. The combined aqueous solutions are washed with ether and then are evaporated under reduced pressure and low temperature. The product, the sodium salt of α -carbobenzyloxyaminobenzylpenicillin, is obtained as a yellow solid in a yield of 65%.

A suspension of palladium on barium carbonate (3.7 grams of 30%) in water (20 ml) is shaken in an atmosphere of hydrogen at room temperature. The catalyst is then filtered and washed well with water, care being taken that it does not become dry. A solution of the

sodium salt of α -carbobenzyloxyaminobenzylpenicillin (4 grams) in water (20 ml) is added to the pretreated catalyst and the suspension is shaken in an atmosphere of hydrogen at room temperature and pressure for one hour. The catalyst is then filtered off, washed well with water, and the combined filtrate and washings adjusted to pH 7 with N hydrochloric acid. The resulting solution is evaporated in vacuo at a temperature below 20°C to give α-aminobenzylpenicillin (2.4 grams, 74% yield), which is assayed at approximately 48% pure by the manometric method.

References

Merck Index 612 Kleeman & Engel p. 50 PDR pp. 673, 703, 1314, 1722, 1964 OCDS Vol. 1 p. 413; Vol. 2 p. 437 I.N.p.81 REM p. 1194

Doyle, F.P., Nayler, J.H.C., and Smith, H.; U.S. Patent 2,985,648; May 23, 1961 Kaufmann, W. and Bauer, K.; U.S. Patent 3,079,307; Feb. 26, 1963; assigned to Farbenfabriken Bayer AG, Germany

Johnson, D.A. and Wolfe, S.; U.S. Patnet 3,140,282; July 7, 1964; assigned to Bristol-Myers Company

Grant, N.H. and Alburn, H.E.; U.S. Patent 3,144,445; August 11, 1964; assigned to American Home Products Corporation

AMPICILLIN TRIHYDRATE

Therapeutic Function: Antibacterial

Chemical Name: See Ampicillin

Common Name: -

Structural Formula: See Ampicillin

Chemical Abstracts Registry No.: 7177-48-2

Trade Name	Manufacturer	Country	Year Introduced
Polycillin	Bristol	U.S.	1963
Principen	Squibb	U . S.	1967
Amcill	Parke Davis	U.S.	1968
Alpen	Lederle	U.S.	1969
Totacillin	Beecham	U.S.	1970
Pensyn	Upjohn	U.S.	1972
Ro-Ampen	Rowell	U.S.	1972
Pen A	Pfizer	U.S.	1972
Trimox	Squibb	U.S.	1978
AB-PC	Tojo Jozo	Japan	
Acillin	ICN	_	-
Amblosin	Hoechst	_	-
Amcap	Circle	U.S.	-
Amperil	Geneva Drugs	U.S.	_
Ampexin	Therapex	Canada	_
Ampical	Uva	France	_
Ampichelle	Rachelle	U.S.	-

Trade Name	Manufacturer	Country	Year Introduced
Ampicil	Jeba	Spain	-
Ampiciman	Liberman	Spain	_
Ampi-Co	Coastal	U.S.	-
Ampifar	Benedetti	Italy	_
Ampikel	Dreikehl	Spain	_
Ampilag	Lagap	Switz.	_
Ampileta	Letap	Switz.	_
Ampi-Oral	Biologia Marina	Spain	-
Ampiorus	Horus	Spain	-
Ampiscel	Rachelle	U.S.	_
Ampixyl	Pharma-Plus	Switz.	-
Ampi-Zoja	Zoja	Italy	_
Amplin	Winston	U.S.	-
Arcocillin	ICN	· <u> </u>	_
Benusel	ICN	_	_
Binotal	Bayer	_	_
Cetampin	CTA Pharma	Switz.	_
Cetampin	Scarium	Switz.	
Cimexillin	Cimex	Switz.	_
Cymbi	Dolorgiet	W. Germany	
Citicil	C.T.	Italy	
D-Amp	Dunhall	U.S.	
D-Cillin	Dunhall	U.S.	
Delcillin	Marlop	U.S.	_
Divercillin	Ascher	U.S.	
Dumopen	Dumex	Denmark	-
Dur Ampicillin	Durachemie	W. Germany	
Espimin-Cilin	Spyfarma	Spain	_
Fuerpen	Hermes	Spain	_
Gobernicina Simple	Normon	Spain	
Helvecillin	Helvepharm	Switz.	
Lifeampil	Lifepharma	Spain	-
Morepen	Morejon	Spain	_
Novoexpectro	Aldon	Spain	
Penbristo!	Bristol-Myers	Austria	
Penimaster	Liade	Spain	_
Peninovel	Larma	Spain	
Pentraxyl	Bristol	_	
Pentrexyl Oral	Antibioticos	Spain	-
Pentricine	lbsa	Switz.	
Poenbiotico	Poen	Argentina	-
Prestacilina	Pental	Spain	_
Q I Damp	Mallinckrodt	U.S.	-
Rosampline	Rosa-Phytopharma	France	
Servicillin	Servipharm	Switz.	
Standacillin	Biochemie	Austria	_
Sumipanto Oral	Asla	Spain	_
Texcillin	First Texas	U.S.	-
Trafarbior	Novopharma	Spain	
Trafacilina	Bago	Argentina	
Vampen	Vangard	U.S.	_
Vidopen	Berk	U.K.	_
1,00puii	Sur	O 115.	_

Ampicillin Beta Naphthalene Sulfonate Secondary Amines

Manufacturing Process

The known methods for the preparation of D-(-)- α -aminobenzylpenicillin by the acylation of 6-aminopenicillanic acid result in the preparation of aqueous mixtures which contain, in addition to the desired penicillin, unreacted 6-aminopenicillanic acid, hydrolyzed acylating agent, and products of side reactions such as the products of the acylating agent reacted with itself and/or with the desired penicillin, as well as other impurities.

The D-(-)-\alpha-aminobenzylpenicillin may then be recovered from the aqueous reaction mixture by concentration to small volume and recovering the product by filtration. However, due to the fact that anhydrous D-(-)-\alpha-aminobenzy|penicillin is soluble in water to the extent of about 20-25 mg/ml at 20°-25°C, it is very difficult to recover the product in high yields. Furthermore, the recovered D-(-)-α-aminobenzylpenicillin may be obtained in the form of a monohydrate. The monohydrates (as well as the dihydrates) of D-(-)-α-aminobenzylpenicillin possess poor biological stability.

The trihydrate which is obtained in high yields, is relatively insoluble in water, possesses high biological stability and can be obtained by contacting, at a temperature not above 60° C, an acid addition salt of D-(-)- α -aminobenzy|penicillin with an amine in a waterimmiscible solvent containing at least 3 mols of water per mol of such penicillin.

The following is an example of the conduct of such a process. To a vigorously agitated mixture of 100 ml of methyl isobutyl ketone there are added at 25° to 30°C 15 ml of water and 10 ml of a mixture of secondary amines.

To this mixture there is then added slowly over a period of 30 minutes 10 grams of D-(-)α-aminobenzylpenicillin beta-naphthalene sulfonate. The mixture is agitated for 3 hours at 25°-30°C. The product, D-(-)-α-aminobenzylpenicillin trihydrate precipitates and is collected by filtration. The filter cake of the product is washed several times with methyl isobutyl ketone and is dried at 40°C. The product is obtained in about a 90% yield and has a potency of 865 mcg/mg. It is determined by Karl Fischer analysis to have a moisture content of 13.4% by weight.

References

Merck Index 612

Kleeman & Engel p. 81 PDR pp. 993, 1606, 1758 I.N. p. 50 Johnson, D.A. and Hardcastle, G.A., Jr.; U.S. Patent 3,157,640; November 17, 1964; assigned to Bristol-Myers Company

AMRINONE

Therapeutic Function: Cardiotonic

Chemical Name: 3-Amino-5-(4-pyridinyl)-2(1H)-pyridinone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 60719-84-8

Trade Name	Manufacturer	Country	Year Introduced
Inocor	Sterling Winthrop	Philippines	1982
Inocor	Sterling Winthrop	Mexico	1983
Wincoram	_	_	****

Raw Materials

3-Nitro-5-(4-pyridinyl)-2(1H)-pyridinone Hydrogen

Manufacturing Process

A mixture containing 10 g of 3-nitro-5-(4-pyridinyl)-2(1H)-pyridinone, 200 ml of dimethylformamide and 1.5 g of 10% palladium-on-charcoal was hydrogenated under pressure (50 psi) at room temperature until the uptake of hydrogen ceased (about 30 minutes). The reaction mixture was filtered through infusorial earth and the filtrate was heated in vacuo to remove the solvent. The residual material was crystallized from dimethylformamide, washed successively with ethanol and ether, and dried in a vacuum oven at 80°C for 8 hours to yield 6 g of 3-amino-5-(4-pyridiny!)-2(1H)-pyridinone, melting point 294° to 297°C with decomposition.

References

Merck Index 616 DFU 4 (4) 245 (1979) PDR p. 1909 OCDS Vol. 3 p. 147 DOT 18 (10) 547 (1982) & 19 (10) 581 (1983) I.N.p.85

Lesher, G.Y. and Opalka, C.J.; U.S. Patent 4,004,012; January 18, 1977; assigned to Sterling Drug Inc.

Lesher, G.Y. and Opalka, C.J.; U.S. Patent 4,107,315; August 15, 1978; assigned to Sterling Drug Inc.

ANCITABINE HYDROCHLORIDE

Therapeutic Function: Antineoplastic

Chemical Name: 2,3,3a,9a-Tetrahydro-3-hydroxy-6-imino-6H-furo[2',3';4,5]oxazolo[3,2-a]-

pyrimidine-2-methanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 10212-25-6; 31698-14-3 (Base)

R

Trade Name	Manufacturer	Country	Year Introduced
Cyclo-C	Kohjin	Japan	1975
law Materials			
Uridine		Acetic Anhy	dride
Trityl Chloride		Phosphorus	Pentasulfide
Imidazole		Ammonia	
Thiophosgene		Bromine	
Hydrogen Sulfide		Hydrogen Cl	nloride
Acetic Acid			

Manufacturing Process

A series of reaction steps may be employed in which; (1) Uridine is reacted with trity! chloride to give 5'-o-trityluridine; (2) Imidazole is reacted with thiophosgene and that product reacted with the 5'-o-trityluridine to give 2,2'-anhydro-1-(5'-o-trityl β -D-arabinofuranosyl)uracii; (3) The preceding uracil product is converted to the thiouracil using hydrogen sulfide; (4) The trityl group is removed by treatment with 80% acetic acid; (5) A triacetylated product is obtained using acetic anhydride; (6) A dithiouracil is prepared from the uracil intermediate using phosphate pentasulfide.

Preparation of $1-(\beta$ -D-arabinofuranosyl)-2-thiocytosine: A solution of 2.0 g of 1-(2'.3'.5'-Otriacetyl- β -D-arabinofuranosyl)-2,4-dithiouracil in 100 ml of methanol is saturated with anhydrous ammonia at 0°C. The mixture, in a glass liner, is heated in a pressure bomb at 100°C for three hours. The reaction mixture is concentrated to a gum in vacuo, and most of the byproduct acetamide is removed by sublimation at 60°C/0.1 mm. The residue is chromatographed on 100 g of silicagel. Elution of the column with methylene chloride-methanol mixtures with methanol concentrations of 2-25% gives fractions containing acetamide and a series of brown gums. The desired product is eluted with 30% methanol-methylene chloride to give a total yield of 0.386 g (30%), MP 175°-180°C (dec.). Recrystallization from methanol-isopropanol furnishes an analytical sample, MP 180°-182°C (dec.).

To a solution of 80 mg of 1-(β-D-arabinofuranosyl)-2-thiocytosine in 12 ml of water is added dropwise 3 ml of a 1 M bromine solution in carbon tetrachloride. At this point the color of the bromine persists for about 2-3 minutes after each addition. The unreacted bromine is blown off with a stream of nitrogen, and the reaction mixture is concentrated to a syrup in vacuo using a bath temperature less than 50°C. The residue is evaporated three times with 10 ml portions of ethanol, whereupon it crystallizes. The product is triturated with cold ethanol and with ether to obtain 17 mg of 2,2'-anhydro-1-(β -D-arabinofuranosyl)cytosine hydrobromide, MP 240°C (dec.).

Treatment of the hydrobromide with a slight excess of ethanolic ammonia yields the base which may then be converted to the hydrochloride.

References

Merck Index 654 Kleeman & Engel p. 53 DOT 12 (8) 304 (1976) I.N. p. 87

Shen, T.Y. and Ruyle, W.V.; U.S. Patent 3,463,850; August 26, 1969; assigned to Merck & Co., Inc.

ANGIOTENSIN AMIDE

Therapeutic Function: Vasoconstrictor

Chemical Name: L-asparaginyl-L-arginyl-L-valyl-L-tyrosyl-L-valyl-L-histidyl-L-protyl-L-phenylalanine

Common Name: -

Structural Formula:

H-Asn-Arg-Val-Tyr-Val-His-Pro-Phe-OH

Chemical Abstracts Registry No.: 53-73-6

Trade Name	Manufacturer	Country	Year Introduced
Hypertensin	Ciba	W. Germany	1961
Hypertensin	Ciba	U.S.	1962

Raw Materials

L-Asparaginyl-L-arginyl-L-valyl-L-tyrosyl-L-valyl-L-histidyl-L-prolyl-L-phenylalanine methyl ester trihydrochloride Sodium hydroxide

Manufacturing Process

48 mg (0.042 mmol) of L-asparaginyl-L-arginyl-L-valyl-L-tyrosyl-L-valyl-L-histidyl-L-prolyl-L-phenylalanine methyl ester trihydrochloride are suspended in 0.5 ml of methanol, and treated gradually in the course of one hour with 0.3 ml of N-caustic soda solution (about 7 equivalents) so that the pH value of the solution is maintained between 10.5 and 11.5. After a further 30 minutes the solution is freed from methanol under vacuum at room temperature, adjusted with 1N-acetic acid to pH 7.4 and lyophilized. The residual mixture of free peptide and inorganic salts (79 mg) is fractionated by countercurrent distribution in the system butanol/0.1 N-ammonium hydroxide. The pure octapeptide is obtained as a colorless powder which is soluble in water and methanol, more sparingly soluble in ethanol, and insoluble in acetone.

References

Merck Index 674 Kleeman & Engel p. 55 I.N. p. 89

Schwyzer, R., Iselin, B., Kappeler, H., Ritter, W. and Riuiker, B.; U.S. Patent 2,978,444; April 4, 1961; assigned to Ciba Pharmaceutical Products, Inc.

ANILERIDINE DIHYDROCHLORIDE

Therapeutic Function: Narcotic analgesic

Chemical Name: 1-[2-(4-aminophenyl)ethyl]-4-phenyl-4-piperidinecarboxylic acid ethyl ester dihydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 126-12-5; 144-14-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Leritine HCl	Merck Sharpe & Dohme	U.S.	1958
Apodol Tabs	Squibb	U.S.	1965
Leritine	Merck-Frosst	Canada	_

Raw Materials

β-(p-Aminophenyl)ethyl Chloride	Sodium Carbonate
4-Phenyl-4-carbethoxy Piperidine Carbonate	Hydrogen Chloride

Manufacturing Process

A mixture of 7.8 grams (0.05 mol) of β -(p-aminophenyl)ethyl chloride hydrochloride, 12.5 grams (0.025 mol) of 4-phenyl-4-carboethoxypiperidine carbonate, 10.5 grams (0.125 mol) sodium bicarbonate, and 100 cc of anhydrous ethanol are mixed, stirred and heated under reflux for a period of approximately 40 hours and then concentrated in vacuo to dryness. The residual material is triturated with 50 cc of water, decanted, washed by decantation with an additional 50 cc of water, and then dried in vacuo to give N-[β -(p-aminophenyl)-ethyl]-4-phenyl-4-carboethoxypiperidine.

The N-[β -(p-aminophenyl)ethyl]-4-phenyl-4-carboethoxypiperidine is dissolved in 50 cc of hot anhydrous ethanol, an excess (about 20 cc) of 20% alcoholic hydrochloric acid solution is added; upon scratching the side of the container crystals form. One hundred cubic centimeters of ether are then added to the mixture, the ethereal mixture is cooled, and the crystalline material which precipitates is recovered by filtration, washed with ether, and dried to give 12.7 grams of N-[β -(p-aminophenyl)ethyl]-4-phenyl-4-carboethoxypiperidine dihydrochloride which can be further purified by recrystallization from ethanol or methanol to give substantially pure material; MP 275°-277°C.

References

Merck Index 680 Kleeman & Engel p. 56 OCDS Vol. 1 p. 300 (1977) I.N. p. 90

Weijlard, J. and Pfister, K., III; U.S. Patent 2,966,490; December 27, 1960; assigned to Merck & Co., Inc.

ANISINDIONE

Therapeutic Function: Anticoagulant

Chemical Name: 2-(4-methoxyphenyl)-1H-indene-1,3(2H)-dione

Common Name: Anisindandione

Structural Formula:

Chemical Abstracts Registry No.: 117-37-3

Trade Name	Manufacturer	Country	Year introduced
Miradon	Schering	U.S.	1960
Unidone	Unilabo	France	1964
Unidone	Centrane	France	-

Raw Materials

p-Methoxybenzaldehyde Sodium Ethoxide Phthalide

Manufacturing Process

To a hot solution of 20.6 g of sodium in 400 ml of absolute ethanol, there is added a solution of 110 g of phthalide and 110 g of p-methoxybenzaldehyde. A vigorous reaction ensues and one-half of the alcohol is distilled off over a two hour period. Ice and water are added to the red solution and the diluted solution is acidified with hydrochloric acid. The resulting gum solidifies and the aqueous phase is removed by decantation. The crude solid is recrystallized twice from two liters of ethanol yielding 2-(p-methoxyphenyl)-1,3-indandione as pale yellow crystals, MP 155°-156°C.

References

Merck Index 690 Kleeman & Engel p. 57 OCDS Vol. 1 p. 147 (1977) I.N. p. 90 REM p. 828

Sperber, N.; U.S. Patent 2,899,358; August 11, 1959; assigned to Schering Corporation

ANISOTROPINE METHYLBROMIDE

Therapeutic Function: Anticholinergic

Chemical Name: endo-8,8-dimethyl-3-[(1-oxo-2-propylpentyl)oxy] -8-azoniabicyclo[3.2.1] -

octane bromide

Common Name: Octatropine methyl bromide

Structural Formula:

Chemical Abstracts Registry No.: 80-50-2

Trade Name	Manufacturer	Country	Year Introduced
Valpin	Endo (Du Pont)	U.S.	1963
Valpinax	Crinos	Italy	1966
Valpin	Lacer	Spain	
Valpin	Sankyo	Japan	_

Raw Materials

Tropine Di-n-Propyl Acetyl Chloride Methyl Bromide

Manufacturing Process

Preparation of Di-n-Propyl Acetyl Tropine Hydrochloride: Tropine (11.12 grams) was dissolved in 100 ml of anhydrous pyridine and to this solution was added 15.64 grams of din-propyl acetyl chloride. The mixture was refluxed for 6 hours. This solution was then cooled and the pyridine removed in vacuo. The residue was dissolved in chloroform. The chloroform solution was washed with 10% hydrochloric acid to remove the residual trace of pyridine. The hydrochloride of the product ester is soluble in chloroform and is not extracted from chloroform by hydrochloric acid. This is an unexpected property.

The chloroform solution of the hydrochloride was dried over anhydrous calcium sulfate, and evaporated to dryness, leaving a semisolid residue of product ester hydrochloride. This was recrystallized from chloroform-hexane mixture, MP 186°C.

Preparation of the Methyl Bromide: To the acetone solution of the free base was added an acetone solution, containing an excess of methyl bromide. Within a few minutes the methobromide started to crystallize. The mixture was allowed to stand for several hours. The crystallized solid was filtered, and additional product was obtained by evaporation of the filtrate. The yield was nearly quantitative. After recrystallization from acetone, the product melted at 329°C.

References

Merck Index 693 Kleeman & Engel p. 655 PDR p. 865 1.N. p. 699 REM p. 913

Weiner, N. and Gordon, S.M.; U.S. Patent 2,962,499; November 29, 1960; assigned to Endo Laboratories, Inc.

ANTAZOLINE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: 4,5-Dihydro-N-phenyl-N-(phenylmethyl)-1H-imidazole-2-methanamine

Common Nama: Imidamine

Structural Formula:

Chemical Abstracts Registry No.: 2508-72-7; 91-75-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Antistine HCI	Ciba	U.S.	1948
Antistine	Ciba Geigy	France	1948
Antistine	Ciba	W. Germany	-
Antasten	Ciba	· _	-
Arithmin	Lannett	U.S.	
Azalone	Smith, Miller & Patch	U.S.	_
Histotab	Boots	U,K.	· _
Phenazoline	Polfa	Poland	-

Raw Materials

2-Chloromethylimidazoline HCI N-Benzylaniline Hydrogen Chloride

Manufacturing Process

15.4 parts of 2-chloromethylimidazoline-hydrochloride, 45.8 parts of N-benzylaniline and 150 parts of alcohol are heated in an oil bath at 100° to 110°C. After distilling off the alcohol, the reaction mass is maintained at this temperature for a further 3 hours and then triturated with water and 10 parts of sodium bicarbonate. The unconsumed benzylaniline is extracted with ether and the aqueous solution neutralized with dilute hydrochloric acid. By evaporating this solution and extracting the residue with alcohol there is obtained 2-(N-phenyl-N-benzylaminomethyl)-imidazoline-hydrochloride in the form of colorless crystals of melting point 227° to 229°C.

References

Merck Index 701 Kleeman & Engel p. 57 OCDS Vol. 1 p. 242 (1977) I.N. p. 91

Miescher, K. and Klarer, W.; U.S. Patent 2,449,241; September 14, 1948; assigned to Ciba Pharmaceutical Products, Inc.

ANTRAFENINE

Therapeutic Function: Analgesic

Chemical Name: 2-(4'-m-Trifluoromethylphenyl-piperazino)-ethyl 2-(7'-trifluoromethyl-

4'-quinolyl-amino)-benzoate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55300-29-3

Trade Name	Manufacturer	Country	Year Introduced
Stakane	Dausse	France	1977

Allyl 2-(7'-Trifluoromethyl-4'-quinolinyl-amino)benzoate 2-(4'-m-Trifluoromethylphenyl-piperazino)ethanol Sodium

Manufacturing Process

A mixture of 18.65 g (0.05 mol) of allyl 2-(7'-trifluoromethyl-4'-quinolylamino)-benzoate, 16.2 g (0.059 mol) of 2-(4'-m-trifluoromethylphenyl-piperazino)-ethanol, 150 ml of anhydrous toluene and 0.03 g of sodium is heated under reflux for 2½ hours, while the allyl alcohol formed during the reaction is slowly removed by distillation. A slight amount of insoluble matter is filtered off and the toluene is evaporated from the filtrate. The residue is dissolved in a mixture of methylene chloride and acetone (8:2) and this solution is passed through a silica column. Elution is carried out with the same mixture of solvents and the eluate is collected in 50 ml fractions. These fractions are examined by thin layer chromatography, Those which contain the desired almost pure ester are combined and the solvent is driven off from them. The residual product is triturated in a mixture of ether and petroleum ether. filtered off and dried. 16.8 g (yield 57%) of 2-(4'-m-trifluoromethylphenyl-piperazino)ethyl 2-(7'-trifluoromethyl-4'-quinolylamino)-benzoate, melting point 88° to 90°C, are thus isolated.

References

Merck Index 746 DFU 2 (12) 786 (1977) Kleeman & Engel p. 57 DOT 14 (2) 55 (1978) 1.N.p. 94

Giudicelli, D.P.R.L., Najer, H., Manory, P.M.J. and Dumas, A.P.F.; U.S. Patent 3,935,229; January 27, 1976; assigned to Synthelabo

APALCILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 6-[[[(4-Hydroxy-1,5-naphthyridin-3-yl)carbonyl]amino]-phenyl acetyl]amino] -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3,2,0] -heptane-2-carboxylic acid

Common Name: D-α-(4-Hydroxy-1,5-naphthyridine-3-carbonamido)benzylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 63469-19-2

Trade Name	Manufacturer	Country	Year Introduced
Lumota	Thomae	W. Germany	1982

Phenacyl-6-aminopenicillate HCl D-Phenylglycyl Chloride HCI 4-Hydroxy-1,5-naphthyridine-3carboxylic acid-N-succinimide ester Sodium Bicarbonate Sodium Thiophenoxide Triethylamine

Manufacturing Process

- (a) Preparation of 6-D-α-aminobenzy penicillin phenacyl ester: To a suspension of phenacyl 6-aminopenicillanate hydrochloride (1,85 g) and D-phenylglycyl chloride hydrochloride (1,29 g) in dichloromethane (20 ml), sodium bicarbonate (1.05 g) was added, and the resultant mixture was stirred while cooling with ice for 6 hours. The reaction mixture was filtered to eliminate the by-produced sodium chloride. The filtrate was admixed with isopropanol and concentrated under reduced pressure by the aid of a rotary evaporator. After the evaporation of dichloromethane, the precipitate was collected by filtration to give the objective compound in the form of the hydrochloride (2.19 g) MP 142° to 148°C (decomposition).
- (b) Preparation of D- α -(4-hydroxy-1,5-naphthyridine-3-carbonamido)benzylpenicillin: To a solution of 6-D-α-aminobenzylpenicillin phenacyl ester (hydrochloride) (2.01 g) and triethylamine (0.808 g) in dimethylformamide (20 ml), 4-hydroxy-1,5-naphthyridine-3-carboxylic acid N-succinimide ester [(MP 310° to 311°C (decomposition)] (1.15 g) was added while cooling with ice, and the resultant mixture was stirred for 1 hour. Stirring was further continued at room temperature for 2 hours. After cooling with ice, 1% sodium bicarbonate solution (100 ml) was added thereto. The precipitated crystals were collected by filtration, washed with water and dried over phosphorus pentoxide to give D-(α -4-hydroxy-1,5-naphthyridine-3carboxamido)benzylpenicillin phenacyl ester (2.17 g).

The above product was dissolved in dimethylformamide (65 ml), sodium thiophenoxide (0.89 g) was added thereto, and the resultant mixture was stirred at room temperature for 1 hour. To the resultant mixture, acetone (650 ml) was added, and the separated crystals were collected by filtration and washed with acetone and ether in order to give the objective compound in the form of the sodium salt (1.3 g).

In the above procedure, the use of 4-hydroxy-1,5-naphthyridine-3-carbonyl chloride in place of 4-hydroxy-1,5-naphthyridine-3-carboxylic acid N-succinimide ester can also afford the same objective compound as above. The use of sodium thio-n-propoxide in place of sodium thiophenoxide can also give the objective compound in the form of the sodium salt.

References

Merck Index 748 DFU 4 (3) 225 (1979) DOT 19 (2) 110 (1983) I.N. p. 94

Yamada, H., Tobiki, H., Nakatsuka, I., Tanno, N., Shimago, K. and Nakagome, T.; U.S. Patent 4,005,075; January 25, 1977; assigned to Sumitomo Chemical Co., Ltd.

APAZONE

Therapeutic Function: Antiarthritic

Chemical Name: 5-(dimethylamino)-9-methyl-2-propyl-1H-pyrazolo [1,2-a] [1,2,4] benzo-

triazine-1,3(2H)-dione

Common Name: Azapropazone

Structural Formula:

Chemical Abstracts Registry No.: 113539-59-8

Trade Name	Manufacturer	Country	Year introduced
Prolixan	Siegfried	W. Germany	1970
Prolixan	Siegfried	Switz.	1970
Cinnamin	Nippon Chemiphar	Japan	1971
Rheumox	Robins	U.K.	1976
Prolixan	Logeais	France	1976
Prolixan	Malesci	Italy	1977
Prolixan	Embil	Turkey	***
Prodisan	Embil	Turkey	_
Prodisan	Roche	_ `	-
Prolix	Roche		_
Prolixano	Leo	_	
Rheumox	Robins	U.S.	_
Xani	Farmakos	Yugoslavia	_

Raw Materials

3-Dimethylamino-(1,2-Dihydro-1,2,4-benzotriazine)	Sodium
Diethyl Propyl Malonate	Hydrogen
3-Dimethylamino-1,2,4-benzotriazine Oxide	Triethylamine
Propyl Malonyl Chloride	

Manufacturing Process

The following describes two alternatives for the synthesis of the closely related butyl analog.

Alternative (a): In a three-neck flask with descending condenser to 3.8 grams of 3-dimethylamino-(1,2-dihydro-1,2,4-benzotriazine) are added 0.52 gram metallic sodium, dissolved in a small volume of absolute alcohol, 4.5 g of diethylbutylmalonate (diethylpropylmalonate for Apazone) and 15 ml of xylene, in a nitrogen atmosphere. The mixture is heated for 2 hours to 70°C, then for 3 hours to 110°-130°C and for one more hour to 150°C, slowly distilling off the alcohol and most of the xylene. To the resulting light brown colored mass are added 200 ml of water. The resulting solution is extracted twice with ether or benzene and afterwards acidified with HCl. Yield 3.6 g of 1,2-butylmalonyl-3-dimethylamino-(1,2-dihydro-1,2,4-benzotriazine). After crystallization from alcohol the melting point is 189°-190°C.

Alternative (b): 3-Dimethylamino-1,2,4-benzotriazine-oxide is shaken in the presence of Raney nickel in 15 volume parts of an alcohol-acetic acid (9:1) mixture in a hydrogen atmosphere. The mixture absorbs 2 mols hydrogen per 1 mol starting material. Hydrogenation can also be effected using a palladium catalyst with a suitable solvent. After reduction it is filtered on a Büchner-funnel through a Hyflow-layer and the solvent is evaporated in vacuo under nitrogen. The residue is dissolved in 20 parts of water-free dioxane and treated at 60°C with the calculated amount of butylmalonyl chloride (propyl malonyl chloride for Apazone) (1 mol/mol) and triethylamine (2 mol/mol). The separated triethylamine hydrochloride is filtered, the dioxane-solution is evaporated under vacuo to dryness, and the residue is dissolved in 7 volume parts of boiling acetic acid. After cooling, the product separates in lightly yellowish crystals. They are dissolved in the calculated amount of 0.25 N NaOH, treated with a small amount of carbon and precipitated with HCl. Melting point of the purified product is 187°C. Yield: approximately 60% of the theoretical amount.

References

Merck Index 750 Kleeman & Engel p. 66 OCDS Vol. 2 p. 475 (1980) i.N.p. 110

Molnar, I., Wagner-Jauregg, T., Jahn, U. and Mixich, G.; U.S. Patent 3,349,088; October 24, 1967; assigned to Sjegfried AG, Switzerland

Molnar, I., Wagner-Jauregg, T., Jahn, U. and Mixich, G.; U.S. Patent 3,482,024; December 2, 1969; assigned to Siegfried AG.

APRINDINE HYDROCHLORIDE

Therapeutic Function: Antiarrhythmic

Chemical Name: N-[3-(Diethylamino)propyl] -N-phenyl-2-indanamine hydrochloride

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 33237-74-0; 37640-71-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Amidonal	Madaus	W. Germany	1976
Fiboran	Sedaph	France	1977
Fibocil	Lilly	U.S.	-
Fiboran	Christiaens	Belgium	_
Ritmusin	Gebro	Austria	-

Raw Materials

N-Phenyl-2-aminoindane Sodium Amide α-Chloropropyl Diethyl Amine Hydrogen Chloride Sodium Hydroxide

Manufacturing Process

104.6 g (0.5 mol) N-phenyl-2-aminoindane and 2.5 liters benzene are introduced into a reaction vessel of 5 liters, under an atmosphere of nitrogen. 37 g (0.95 mol) sodium amide are added and the mixture is stirred during 3 hours at room temperature.

119.7 g (0.8 mol) of γ -chloropropyl diethylamine are then quickly added. After agitation during 1 hour at room temperature, the reaction mixture is refluxed and stirred under nitrogen during 21 hours. The mixture is then allowed to cool and poured onto ice. The obtained aqueous phase is extracted by means of 500 cm³ of benzene. The benzene extract is washed two times with 200 cm³ of water and the benzene is then evaporated.

The residue is treated with 500 cm³ of hydrochloric acid (2 N). The obtained solution is evaporated to dryness and the oily residue is recrystallized from ethanol. 176.9 g (yield 89.4%) of dihydrochloride of N-phenyl-N-diethylaminopropyl-2-aminoindane are obtained, MP 208° to 210°C.

The dihydrochloride is converted into monohydrochloride by dissolving 26.36 g (0.066 mol) of dihydrochloride into 158 cm³ of water, adding drop by drop a suitable amount (0.066 mol) of caustic soda (1N), evaporating the aqueous solution to dryness, drying by means of benzene, filtering the formed sodium chloride (3.8 g) and crystallizing the cooled obtained benzene solution. 22.6 g (95%) of monohydrochloride are obtained, MP 120° to 121°C.

References

Merck Index 776 Kleeman & Engel p. 58 OCDS Vol. 2 p. 208 DOT 10 (4) 120 (1974) REM p. 860

Vanhoof, P. and Clarebout, P.; British Patent 1,321,424; June 27, 1973; assigned to Manufacture de Produits Pharmaceutiques A. Christiaens, SA

ARGININE GLUTAMATE

Therapeutic Function: Ammonia detoxicant (hepatic failure)

Chemical Name: Glutamic Acid Compound with L-Arginine

Common Name: -Structural Formula:

H₂NC(NH)HN(CH₂)₃CH(NH₂)COOH·HOOC(CH₂)₂(NH₂)COOH

Chemical Abstracts Registry No.: 4320-30-3

Trade Name	Manufacturer	Country	Year Introduced
Modamate	Abbott	U.S.	1960
Eucol	Lefranco	France	1970

Raw Materials

L-Arginine L-Glutamic Acid

Manufacturing Process

This salt may be prepared by mixing L-arginine with L-glutamic acid in water and crystallizing the resulting salt from the water by the addition of a polar water miscible organic solvent to the water. For instance, when 17,2 g of L-arginine and 14.5 g of L-glutamic acid were dissolved in 155 g of water, a clear homogeneous solution resulted which had a pH of 5.3. This solution was filtered and the filtrate was evaporated at 50°C under reduced pressure to a solution having a solids content of about 45%. Absolute methanol (220 g) was added to the concentrated solution of the salt and this mixture cooled to 5°C for one hour. The resulting solid salt was removed from the mixture by filtration and washed with absolute methanol. After being dried preliminarily in the air, the salt was further dried in a vacuum oven at 60°C for 3 hours. The resulting salt, L-arginine-L-glutamate, weighed 30 g (94,6% of the theoretically possible yield based on the amount of L-arginine and L-glutamic acid employed) and melted at 193°-194.5°C with decomposition.

References

Merck Index 798 DFU 3 (1) 10 (1978) DOT 17 (3) 87 (1981)

I.N. p. 98

Barker, N.G. and Chang, R.W.H., U.S. Patent 2,851,482; September 9, 1958; assigned to General Mills, Inc.

ASPARAGINASE

Therapeutic Function: Antineoplastic (acute leukemia)

Chemical Name: L-Asparagine amidohydrolase

Common Name: Colapase; L-Asnase

Structural Formula:

An enzyme of MW 133,000 ± 5,000 believed to consist of 4 equivalent subunits.

Chemical Abstracts Registry No.: 9015-68-3

Trade Name	Manufacturer	Country	Year Introduced
Crasnitin	Bayer	W. Germany	1969
Crasnitin	Bayer	Italy	1971
Leunase	Kyowa Hakko	Japan	19 71
Kidrolase	Specia	France	1971
Crasnitin	Bayer	U.K.	1971
Elspar	Merck Sharp & Dohme	U.S.	1978
Kidrolase	Rhone-Poulenc	Canada	_
Leucogen	Bayer	_	_

Raw Materials

Erwinia bacteria Nutrient medium

Manufacturing Process

Therapeutically active L-asparaginase is isolated from bacteria from the genus Erwinia, a known genus pathogenic towards plants. L-asparaginase is conveniently isolated from this genus by growing the bacteria upon a suitable nutrient medium until a desired quantity is obtained and then extracting the L-asparaginase either by conventional cell disruption methods, or preferably, by processes more fully described in U.S. Patent 3,660,238.

References

Merck Index 849 Kleeman & Engel p. 62 PDR p. 1176 I.N. p. 102 REM p. 1143

Wade, H.E.; U.S. Patent 3,660,238; May 2, 1972

Herbert, D. and Wade, H.E.; U.S. Patent 3,686,072; August 22, 1972

ASPARTAME

Therapeutic Function: Sweetener (dietetic)

Chemical Name: N-L-α-Aspartyl-L-phenylalanine 1-methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22839-47-0

Trade Name	Manufacturer	Country	Year Introduced
Canderel	Searle	France	1979
Canderel	Searle	Switz.	1981
Equal	Searle	U.S.	1982
Canderel	Wander	W. Germany	1983
Canderel	Muro	U.S.	
Nutrasweet	Searle	U.S.	_

Raw Materials

L-Phenylalanine Methyl Ester HCI

N-Benzyloxycarbonyl-L-aspartic acid-α-p-nitrophenyl, β-benzyl Diester

Hydrogen

Manufacturing Process

A solution of 88.5 parts of L-phenylalanine methyl ester hydrochloride in 100 parts of water is neutralized by the addition of dilute aqueous potassium bicarbonate, then is extracted with approximately 900 parts of ethyl acetate. The resulting organic solution is washed with water and dried over anhydrous magnesium sulfate. To that solution is then added 200 parts of N-benzyloxycarbonyl-L-aspartic acid- α -p-nitrophenyl, β -benzyl diester, and that reaction mixture is kept at room temperature for about 24 hours, then at approximately 65°C for about 24 hours. The reaction mixture is cooled to room temperature, diluted with approximately 390 parts of cyclohexane, then cooled to approximately -18°C in order to complete crystallization. The resulting crystalline product is isolated by filtration and dried to afford β -benzyl N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester, melting at about 118.5°-119.5°C.

To a solution of 180 parts of β -benzyl N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester in 3,000 parts by volume of 75% acetic acid is added 18 parts of palladium black metal catalyst, and the resulting mixture is shaken with hydrogen at atmospheric pressure and room temperature for about 12 hours. The catalyst is removed by filtration, and the solvent is distilled under reduced pressure to afford a solid residue, which is purified by recrystallization from aqueous ethanol to yield L-aspartyl-L-phenylalanine methyl ester. It displays a double melting point at about 190°C and 245°-247°C.

References

Merck Index 852 DOT 16 (2) 65 (1980) I.N. p. 102

Schlatter, J.M.; U.S. Patent 3,492,131; January 27, 1970; assigned to G.D. Searle & Co.

ASPIRIN

Therapeutic Function: Analgesic, antipyretic, antiinflammatory

Chemical Name: 2-(acetyloxy)benzoic acid

Common Name: Acetylsalicylic acid

Structural Formula:

COOH OOCCH³

Chemical Abstracts Registry No.: 50-78-2

Trade Name	Manufacturer	Country	Year Introduced
Entab	Mayrand	U.S.	1982
Easprin	WL/PD	U,S.	1982
Ecotrin	Menley James	U.S.	1983
Zorprin	Boots	U.S.	1983
Verin	Verex	U.S.	1983
AAS	Sterwin Espanola	Spain	-
Acesal	Oranienbourg	E. Germany	_
Acetard	Benzon	Denmark	-
Acetisal	Alkaloid	Yugoslavia	_
Acetisal	Farmakos	Yugoslavia	_
Acetisal	Galenika	Yugoslavia	_
Acetical	Rekah	(srae)	_
Acetophen	Merck-Frosst	Canada	_
Acetylin	Heyden	W. Germany	_
Acetylo	Chemedica	Switz.	_
Acetylosal	Maria Heil	Austria	_
Acetyl-Sal	Hartz	Canada	-
Acetysal	Jugoremedija	Yugoslavia	_
Acetysal	Krka	Yugoslavia	-
Acetysal	Zdravlje	Yugoslavia	_
Acimetten	Kwieda	Austria	_
Acisal	Pliva	Yugoslavia	_
Adiro	Bayer		
Alaspine	Liba	Turkey	•••
Albyi	AFI	Norway	-
Algo	Lokman	Turkey	_
Alka-Seltzer	Miles	Italy	_
Ancasal	Anca	Canada	_
Antidol	Gebro	Austria	_
Apernyl	Bayer	Japan	-
Apyron	Lingner & Fischer	W. Germany	
Asart	SK&F	U.S.	_
Asatard	De Angeli	Italy	_
Asdol	Srbolek	Yugoslavia	***
Aspalgin	Krka	Yugoslavia	
Aspec	Kempthorne Prosser	New Zealand	_
Aspegic	Egic	France	_
Aspercin	Otis Clapp	U.S.	_
Aspermin	Buffington	U.S.	_
Aspirin	Bayer	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Aspirtab	Dover	U.S.	_
Aspirvess	Miles	U.S.	_
Aspisol	Bayer	W. Germany	_
Aspro	Nicholas	Italy	_
Aspro	Pan Quimica	Spain	_
Asrivo	Rivopharm	Switz.	_
Astrin	Medic	Canada	_
Ataspin	Atabay	Turkey	_
Babypyrin	Pfizer	U.S.	-
Bebaspin	Deva	Turkey	
Bi-Prin	Boots	U.K.	_
Breoprin	Izai	U.K.	_
Bufacyl	Teva	Israel	_
Buffaprin	Buffington	U.S.	_
Buffasa!	Dover	U.S.	_
Calmo Yer	Yer	Spain	_
Caprin	Sinclair	U.K.	_
Casprium	Liade	Spain	_
Catalgine	Theraplix	France	_
Cedrox	Cederroths	Sweden	_
Cemerit	Bayer	Italy	_
Claradin	Nicholas	U.K.	
Claragine	Nicholas	France	_
Clariprin	Nicholas	_	_
Codalgina	Fass	Spain	_
Colfarit	Bayer	W. Germany	_
Contrheuma-Retard	Spitzner	W. Germany	_
Coryphen	Rougier	Canada	_
Diaforil	Maggioni	ltaly	_
Domupirina	Medici Domus	Italy	-
Ecasil	Andromacco	Argentina	-
Ecoprin	Sam-On	Israel	-
Ecotrin	SK&F	U.S.	-
Empirin	Burroughs-Wellcome	U.S.	_
Endospirin	Enila-Lotecia	Brazil	_
Endyol	Guidotti	Italy	_
Entericin	Bristol-Myers	u.s.	
Enterosarine	Sarein	France	_
Entrophen	Merck-Frosst	Canada	_
Eskotrin	SK&F	U.S.	
Extren	Vicks	U.S.	_
Flectadol	Maggioni	italy	_
Genasprin	Fisons	U.K.	_
Godamed	Pfleger	W. Germany	_
Globentyl	Nyegaard	Norway	_
Globoid	Nyegaard Tachaisanharm	Norway Switz.	-
Glucetyl	Technicopharm	W. Germany	_
Hagedabletten	Hageda Togal	W. Germany	_
Halgon Idotyl	Ferrosan	Denmark	
Juveprine	Sarget	France	
Kilios	Farmitalia Carlo Erba	italy	
Levius	Pharmitalia	U.K.	***
Levius	Montedison	W. Germany	_
Licyl	A.L.	Norway	<u>-</u>
Longasa	Squibb	U.S.	_
Magnecyl	ACO	Sweden	_
. .			

Trade Name	Manufacturer	Country	Year Introduced
Magnyi	DAK	Denmark	_
Measurin	Breon	U.S.	_
Medisyl	Medica	Finland	-
Mejoral Infantil	Sterwin Espanola	Spain	
Micristin	Gyogyert	Hungary	
Neopirine	Casgrain & Charbonneau	Canada	_
Neutracetyl	Promedica	France	_
Nibol	Bosnalijek	Yugoslavia	_
Nova-Phase	Nova	Canada	
Novasen	Novopharm	Canada	
Pharmacin	Optrex	U.K.	_
Premaspin	Laake	Finland	_
Pyronoval	Hoechst	W. Germany	_
Rectosalyl	Bouty	Italy	_
Reunyl	Hassle	Sweden	_
Rhodine	Specia	France	_
Rhonai	Specia	France	
Rhonal	Rhodia Iberica	Spain	_
Rhusal	G.P.	Australia	_
Riphen	Riva	Canada	_
Rodina	Farmitalia Carlo Erba	Italy	_
Sal Adult	Beecham	U.K.	
Sal Infant	Beecham	U.K.	-
Sargepirine	Sarget	France	_
Saspryl	Teva	Israel	_
Seclopyrine	Seclo	France	_
Servisprin	Servipharm	Switz.	_
Solprin	Reckitt	U.K.	_
Solpyron	Beecham	U.K.	
Solucetyl	Sarback	France	_
Solusal	Hamilton	Australia	
St. Joseph	Plough	U.S.	
Supasa	Nordic	Canada	_
Tasprin	Ticen	U.K.	-
Temagin	Beiersdorf	W. Germany	
Triaphen	Trianon	Canada	_
Trineral	Beiersdorf	W. Germany	_
Winsprin	Winthrop	U.S.	

Salicylic Acid Acetic Anhydride Ketene

Manufacturing Process

As described in U.S. Patent 2,731,492, a glass-lined reactor of 1,500 gallons capacity, fitted with a water-cooled reflux condenser, thermometers with automatic temperature registers and an efficient agitator, is employed.

To start the process, a mother liquor is made by dissolving 1,532 kg of acetic anhydride (15 mols) in 1,200 kg of toluene. To this mother liquor, add 1,382 kg of salicylic acid (10 mols), heat the reaction mixture under an efficient reflux condenser, to 88°-92°C and maintain within this temperature range for 20 hours.

The reaction mixture is now transferred to aluminum cooling tanks, and is allowed to cool slowly, over a period of 3 to 4 days, to a terminal temperature of 15°-25°C (room temperature). The acetylsalicylic acid precipitates as large, regular crystals. The mother liquor is now filtered or centrifuged from the precipitated acetylsalicylic acid and the filter cake is pressed or centrifuged as free of mother liquor as possible. The crystals are washed with distilled water until completely free of acetic acid, pressed or centrifuged as dry as possible and the filter cake is then dried in a current of warm air at a temperature of 60°-70°C.

The filtrate from this first batch will comprise a solution of 180 to 270 kg of unprecipitated acetylsalicylic acid (1.0 to 1.5 mols), 510 kg of acetic anhydrice (5.0 mols), 600 kg of acetic acid (10.0 mols) (obtained as a by-product in the acetylation step) and 1,200 kg of the diluent toluene. Into this filtrate, at a temperature of 15° to 25°C, ketene gas is now passed through a sparger tube or diffuser plate, with good agitation, until a weight increase of 420.5 kg of ketene (10 mols) occurs. The reaction mixture will now contain 180-270 kg of unprecipitated acetylsalicylic acid (1,0-1,5 mols) and 1,532 kg of acetic anhydride (15 mols) in 1,200 kg of toluene. This mother liquor is recycled to the first step of the process for reaction with another batch of 1,382 kg of salicylic acid. On recirculating the mother liquor, the yield of pure acety/salicylic acid is 1,780 to 1,795 kg per batch.

References

Merck Index 863 Kleeman & Engel p. 12 PDR (Many References) DOT 16 (10) 359 (1980) REM p. 1112

Kamlet, J.; U.S. Patent 2,731,492; January 17, 1956

Hamer, W.E. and Phillips, G.V.; U.S. Patent 2,890,240; June 9, 1959; assigned to Monsantc Chemicals, Limited, England

Edmunds, R.T.; U.S. Patent 3,235,583; February 15, 1966; assigned to The Norwich Pharmacal Company

ASTEMIZOLE

Therapeutic Function: Antiallergic; antihistaminic

Chemical Name: 1-[(4-Fluorophenyl)methyl]-N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperi-

dinyl] -1 H-benzimidazol-2-amine

Common Name: -

Structural Formula:

$$\mathsf{F} - \mathsf{CH}_2 \\ \mathsf{H} \\ \mathsf{N} - \mathsf{CH}_2 \mathsf{CH}_2 \\ - \mathsf{CH}_3 \\ \mathsf{C$$

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Hismanal	Janssen	U.K.	1983

Raw Materials

2-(4-Methoxyphenyl)ethyl Methane Sulfonate

1-[(4-Fluorophenyl)methyl]-N-(4-piperidinyl)-1H-benzimidazol-2-amine Dihvdrobromide Sodium Carbonate

Manufacturing Process

A mixture of 2.3 parts of 2-(4-methoxyphenyl)ethyl methanesulfonate, 4.9 parts of 1-[(4fluorophenyl)methyl]-N-(4-piperidinyl)-1H-benzimidazol-2-amine dihydrobromide, 3.2 parts of sodium carbonate, 0.1 part of potassium iodide and 90 parts of N,N-dimethylformamide is stirred overnight at 70°C. The reaction mixture is poured onto water. The product is extracted with methylbenzene. The extract is washed with water, dried, filtered and evaporated. The residue is purified by column-chromatography over silicagel using a mixture of trichloromethane and methanol (98:2 by volume) as eluent. The pure fractions are collected and the eluent is evaporated. The residue is crystallized from 2,2'-oxybispropane, yielding 2,2 parts (48%) of 1-(4-fluorophenylmethyl)-N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperidinyl]-1Hbenzimidazol-2-amine; MP 149.1°C.

References

Merck Index A-1 DFU 7 (1) 10 (1982) OCDS Vol. 3 p. 177 DOT 19 (7) 412 (1983) I.N.p. 102

Janssens, F., Stokbroekx, R., Torremans, J. and Luyckx, M; U.S. Patent 4,219,559; August 26, 1980; assigned to Janssen Pharmaceutica N.V.

ATENOLOL

Therapeutic Function: β -Adrenergic blocking drug

Chemical Name: 4-[2-hydroxy-3-[(1-methylethyl)amino] propoxy] benzeneacetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 29122-68-7

Trade Name	Manufacturer	Country	Year Introduced
Tenormin	Stuart	U.K.	1976
Tenormin	I.C.I.	W. Germany	1976
Tenormin	1.C.1.	Switz.	1978
Tenormin	1.C.I.	Italy	1979
Tenormin	I.C.I.	France	1979
Tenormin	Stuart	U .S .	1981
Atenol	C .⊤ <i>,</i>	Italy	_
8lokium	Prodes	Spain	_
lbin o lo	I.B.I.	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Myocord	Szabo-Kessler	Argentina	-
Normiten	Abic	Israel	_
Seles Beta	Farmitalia Carlo Erba	Italy	
Tenoretic	Stuart	U.S.	_
Vericordin	Lazar	Argentina	_

p-Hydroxyphenylacetamide Epichlorohydrin Isopropylamine

Manufacturing Process

1 gram of 1-p-carbamoy/methy/phenoxy-2,3-epoxypropane and 10 ml of isopropy/lamine in 25 ml of methanol is heated in a sealed tube at 110°C for 12 hours. The mixture is evaporated to dryness and the residue is partitioned between 50 ml of chloroform and 50 ml of aqueous 2N-hydrochloric acid. The aqueous acidic layer is separated, made alkaline with sodium carbonate and extracted twice with 50 ml of chloroform each time. The combined extracts are dried and evaporated to dryness and the residue is crystallized from ethyl acetate. There is thus obtained 1-p-carbamoylmethy!phenoxy-3-isopropylamino-2-propanol, MP 146°-148°C.

The 1-p-carbamoy/methylphenoxy-2,3-epoxypropane used as starting material may be obtained as follows: a mixture of 3.2 grams of p-hydroxyphenylacetamide, 25 ml of epichlorohydrin and 6 drops of piperidine is heated at 95°-100°C for 6 hours. The mixture is cooled and filtered and the solid product is crystallized from methanol. There is thus obtained 1-pcarbamoy!methylphenexy-2,3-epoxypropane, MP 158°-160°C.

References

Merck Index 868 DFU 1 (1) 7 (1976) Kleeman & Engel p. 62 PDR pp. 1786, 1788 OCDS Vol. 2 p. 109 (1980) DOT 13 (2) 49 (1977) & 16 (1) 30 (1980) J.N. p. 103 REM p. 904

Barrett, A.M., Carter, J., Hull, R., Le Count, D.J. and Squire, C.J.; U.S. Patent 3,663,607; May 16, 1972; assigned to Imperial Chemical Industries Limited, England Barrett, A.M., Carter, J., Hull, R., Le Count, D.J. and Squire, C.J.; U.S. Patent 3,836,671; September 17, 1974; assigned to Imperial Chemical Industries Limited, England

ATRACURIUM BESYLATE

Therapeutic Functon: Neuromuscular blocker

Chemical Name: N,N'-4,10-dioxa-3,11-dioxotridecylene-1,13-bis-tetrahydropapaverine dibenzenesulfonate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 64228-81-5

Trade Name	Manufacturer	Country	Year Introduced
Tracrium	Burroughs Wellcome	U.S.	1983
Tracrium	Burroughs Wellcome	U.K.	1983
Tracrium	Burroughs Wellcome	Switz.	1983

Raw Materials

Acryloyl Chloride	Tetrahydropapaverine
Pentane-1,5-diol	Methyl Benzene Sulfonate

Manufacturing Process

Acryloyl chloride (0.2 mol) in dry benzene (60 ml) was added over 0.5 hour with mechanical stirring to pentane-1,5-diol (0.1 mol), triethylamine (0.2 mol) and pyrogallol (0.1 g) in dry benzene (100 ml). Further dry benzene (ca 100 ml) was added followed by triethylamine (10 ml), and the mixture stirred at 50°C for 0.5 hour. The triethylamine hydrochloride was filtered off and the solvent removed in vacuo to leave a yellow oil which was distilled in the presence of a trace of p-methoxyphenol,excluding light, to give 1,5-pentamethylene diacrylate (12.9 g; 61%; BP 90° to 95°C/0.01 mm Hg).

A solution of tetrahydropapaverine (4.43 g) and 1,5-pentamethylene diacrylate (1.30 g) in dry benzene (15 ml) was stirred under reflux for 48 hours excluding light. The solvent was removed in vacuo and the residual pale red oil dissolved in chloroform (10 ml). Addition of ether (ca 400 ml), followed by saturated ethereal oxalic acid solution (ca 500 ml) gave a floculent white precipitate, which was filtered off, washed with ether and dried. Crystallization (twice) from ethanol gave N,N'4,10-dioxa-3,11-dioxotridecylene-1,13-bis-tetrahydropapaverine dioxalate as a white powder (3.5 g; 51%; MP 117° to 121°C).

The free base, N,N'-4,10-dioxa-3,11-dioxotridecylene-1,13-bis-tetrahydropapaverine, was obtained by basifying an aqueous solution of the dioxalate with sodium bicarbonate solution, followed by extraction with toluene and evaporation of the solvent, to give a colorless viscous oil.

Scrupulously dried base (0.5~g) in spectroscopically pure acetonitrile (8~mi) was treated with methyl benzene sulfonate at room temperature for 22 hours. The filtered reaction mixture was added dropwise to mechanically stirred, filtered, dry ether (ca 450 mi). The flocculent white precipitate was filtered off, washed with dry ether, and dried in vacuo over P_2O_5 at 50° C to yield the product, an off-white powder melting at 85° to 90° C.

References

Merck Index A-2 DFU 5 (11) 541 (1980) PDR p. 766

DOT 19 (2) 111 (1983)

I.N. p. 104

REM p. 925

Stenlake, J.B., Waigh, R.D., Dewar, G.H., Urwin, J. and Dhar, N.C.; U.S. Patent 4,179,507 December 18, 1979; assigned to Burroughs Wellcome Company

AURANOFIN

Therapeutic Function: Antiarthritic

Chemical Name: S-Triethylphosphinegold 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34031-32-8

Trade Name	Manufacturer	Country	Year Introduced
Ridaura	SK&F	W. Germany	1982
Ridaura	SK&F	Switz.	1983

Raw Materials

Gold Acid Chloride Trihydrate Thiodiglycol Triethylphosphine Potassium Carbonate S-(2,3,4,6-Tetra-O-acetylglucopyranosyl)thiopseudourea Hydrobromide

Manufacturing Process

(A) Triethylphosphinegold chloride: A solution of 10.0 g (0.08 mol) of thiodiglycol in 25 ml of ethanol is mixed with a solution of 15.76 g (0.04 mol) of gold acid chloride trihydratein 75 ml of distilled water. When the bright orange-vellow solution is almost colorless, it is cooled to -5°C and an equally cold solution of 5.0 g (0.0425 mol) of triethylphosphine in 25 ml of ethanol is added dropwise to the stirred solution. After the addition is complete, the cooled mixture is stirred for ½ hour. Solid that separates is removed and the filtrate is concentrated to about 30 ml to yield a second crop. The combined solid is washed with aqueous-ethanol (2:1) and recrystallized from ethanol by adding water to the cloud point. The product is obtained as white needles, MP 85° to 86°C.

(B) Auranofin: A cold solution of 1.66 g (0.012 mol) of potassium carbonate in 20 ml of distilled water is added to a solution of 5.3 g (0.011 mol) of S-(2,3,4,6-tetra-O-acetylglucopyranosyl)-thiopseudourea hydrobromide [Methods in Carbohydrate Chemistry, vol 2, page 435 (1963)] in 30 ml of water at -10°C. A cold solution of 3,86 g (0,011 mol) of triethylphosphinegold chloride in 30 ml of ethanol containing a few drops of methylene chloride is added to the above mixture before hydrolysis of the thiouronium salt is complete. After the addition is complete, the mixture is stirred in the cold for ½ hour. The solid that separates

is removed, washed first with aqueous ethanol then water and dried in vacuo. There is obtained colorless crystals, MP 110° to 111°C, of S-triethylphosphinegold 2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranoside.

References

Merck Index 882 DFU 1 (10) 451 (1976) PDR p. 1721 DOT 18 (9) 463 (1982) I.N. p. 106 REM p. 1122

McGusty, E.R. and Sutton, B.M.; U.S. Patent 3,708,579; January 2, 1973; assigned to Smith Kline and French Laboratories

Nemeth, P.E. and Sutton, B.M.; U.S. Patent 3,635,945; January 18, 1972; assigned to Smith Kline and French Laboratories

AUROTHIOGLYCANIDE

Therapeutic Function: Antiarthritic

Chemical Name: [[(PhenylcarbamoyI)methyl]thio]gold

Chemical Name: Aurothioglycollic acid anilide

Structural Formula:

NHCOCH2SAu

Chemical Abstracts Registry No.: 16925-51-2

Trade Name	Manufacturer	Country	Year Introduced
Lauron	Endo	U.S.	1945

Raw Materials

Potassium Bromoaurate Sulfur Dioxide Thioglycolic Acid Anilide

Manufacturing Process

The product is made preferably by reacting thioglycolic-acid-anilide with an aurous bromide (AuBr).

Prior art methods for making the starting material, HSCH2CONHC6H5 are disclosed in an article by Beckurts et al. in Journ. Praktische Chemie (2) 66 p. 174, and in the literature referred to in the mentioned article.

Ten grams of the potassium salt of bromoauric acid (KBrA₄) are dissolved in 100 cc of 96% ethyl alcohol. This salt is also designated as potassium auribromide. Sulfur dioxide (SO₂) is then led through this solution, through a fine capillary tube, for several minutes. This reaction produces aurous bromide (AuBr). The solution of the aurous bromide is then allowed to

stand for 2 to 3 hours until it is colorless. A precipitate of KBr is thus formed. This precipitate is separated from the solution of the aurous bromide which is added to a solution of three grams of the thioglycolic-acidanilide in 50 cc of ethyl alcohol. This is done at about 20°C. Then 300 cc of water are added to this mixture, at 20°C. The water is then removed by decantation or any suitable method, and the mixture is repeatedly thus treated with water, in order to remove all impurities which can thus be removed. The product is then centrifuged twice with 96% ethyl alcohol. It is then centrifuged three times with 100% or absolute ethyl alcohol, and then centrifuged three times with water-free ligroin (petroleum ether), i.e., the 40°-60°C fraction which is distilled from petroleum. After each centrifuging, the product is separated from the liquid which has been used during the centrifuging.

The product is then dried in a high vacuum with the use of phosphorus pentoxide (P_2O_5) .

References

Merck Index 889 I.N. p. 106 Lewenstein, M.J.; U.S. Patent 2,451,841; October 19, 1948

AZACYCLONOL

Therapeutic Function: Tranquilizer

Chemical Name: $\alpha_{i}\alpha_{j}$ -Diphenyl-4-piperidinemethanol

Common Name: Gamma-pipradol

Structural Formula:

Chemical Abstracts Registry No.: 115-46-8; 1798-50-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Frenquel	Merrell	U.S.	1955
Frenoton	Draco	Sweden	***
Frenquel	Inibsa	Spain	_
Frenquel	Merrell-Toraude	France	_
Frenquel	Shionogi	Japan	_

Raw Materials

 α -(4-Pyridyl)-benzhydrol Hydrogen

Manufacturing Process

A mixture of 26 g (0.1 mol) of α -(4-pyridyl)-benzhydrol, 1.5 g of platinum oxide, and 250 ml of glacial acetic acid is shaken at 50°-60°C under hydrogen at a pressure of 40-50 lb/in². The hydrogenation is complete in 2 to 3 hours. The solution is filtered and the filtrate evaprated under reduced pressure. The residue is dissolved in a mixture of equal parts of methanol and butanone and 0.1 mol of concentrated hydrochloric acid is added. The mixture is cooled and filtered to give about 30 g of α-(4-piperidyl)-benzhydrol hydrochloride, MP 283°-285°C. as a white, crystalline substance.

The free base is readily obtained from the hydrochloride salt by treatment with ammonia and when so obtained has a melting point of 160°-161°C.

References

Merck Index 898 Kleeman & Engel p. 65 OCDS Vol. 1 p. 47 I.N.p. 109

Schumann, E.L., Van Campen, M.G., Jr. and Pogge, R.C.; U.S. Patent 2,804,422; August 27, 1957; assigned to The Wm, S. Merrell Co.

AZANIDAZOLE

Therapeutic Function: Antiprotozoal, antibacterial

Chemical Name: 2-Amino-4-[2-(1-methyl-5-nitroimidazol-2-yl)vinyl] pyrimidine

Common Name: Nitromidine

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Triclose	Ist. Chemioter.	Italy	1977
Triclose	I.C.I.	Italy	_

Raw Materials

2-Amino-4-methylpyrimidine 2-Formyl-1-methyl-5-nitroimidazole Sulfuric Acid

Manufacturing Process

Into a mixture of 1.6 g of 2-amino-4-methylpyrimidine with 10 ml of glacial acetic acid is slowly added 2.13 g of concentrated sulfuric acid. A mixture of 2.4 g of 2-formyl-1-methyl-5-nitroimidazole in 20 ml of glacial acetic acid is slowly added to the mixture of the pyrimidine under stirring. The reaction mixture is maintained at a temperature of about 55°C for 4 hours. The resultant mixture is then diluted with 200 ml of distilled water and neutralized with a saturated aqueous solution of sodium bicarbonate. A brownish-yellow precipitate (MP 232° to 235°C) is formed and recovered. The product is analyzed by infrared spectroscopy and is found to conform to 2-amino-4-[2-(1-methyl-5-nitro-2-imidazolyl)vinyl] pyrimidine.

References

Merck Index 902 DOT 14 (6) 234 (1978) I.N. p. 109

Garzia, A.; U.S. Patent 3,882,105; May 6, 1975; assigned to Istituto Chemioterapico Italiano SnA

Garzia, A.; U.S. Patent 3,969,520; July 13, 1976; assigned to Istituto Chemioterapico Italiano SpA

AZAPETINE PHOSPHATE

Therapeutic Function: Antiadrenergic

Chemical Name: 6,7-Dihydro-6-(2-propenyl)-5H-dibenz[c,e]-azepine phosphate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 130-83-6; 146-36-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hidar	Roche	U.S.	1954
Hidar	Roche	W. Germany	_

Raw Materials

Diphenic Acid	Acetic Anhydride	
Ammonia	Allyl Bromide	
Lithium Aluminum Hydride	Phosphoric Acid	

Manufacturing Process

29 grams of diphenic acid were stirred in 900 cc of acetic anhydride at 120°C for one hour. The cooled mixture was filtered and washed with acetic acid to give diphenic anhydride, colorless crystals, MP about 222°-226°C.

24,11 grams of diphenic anhydride were mixed with 50 cc of concentrated ammonia. The mixture warmed up and cooling was applied, after which the mixture was stirred until a clear solution formed and for 1½ hours afterward. The mixture was acidified and allowed to stand overnight. Water was added, initiating precipitation. The mixture was chilled and filtered to yield diphenamic acid, a colorless solid, MP about 191°–193°C.

23.5 grams of diphenamic acid were heated at 200°C in an oil bath, first for about 20 hours at atmospheric pressure and then for about 10 hours at about 20 mm.

Melting points were taken at intervals in order to gain an idea of the extent of reaction. The final residue was boiled with alcohol but since the solid exhibited insufficient solubility in the hot solvent, the mixture was filtered. The residue consisted of tan crystals, MP about 220°-221°C, and the filtrate on cooling gave an additional crop of tan crystals, MP about 219°-221°C. The two materials were identical and consisted of diphenimide.

5.58 g of diphenimide were placed in a Soxhlet thimble and extracted for about 3 days with a boiling mixture of 9.0 g of lithium aluminum hydride in 600 cc of sodium-dried ether. Excess lithium aluminum hydride was then decomposed cautiously with water and the mixture was filtered through a filter aid by suction. The filtrate consisted of two layers. The ether layer was separated and dried with anhydrous potassium carbonate and acidified with alcoholic hydrochloric acid to give 6,7-dihydro-5H-dibenz [c,e] azephine hydrochloride, MP about 287°–289°C.

One gram of 6,7-dihydro-5H-dibenz[c,e] azepine hydrochloride was dissolved in water, made alkaline with concentrated ammonia, and the resultant base extracted twice with benzene. The benzene layers were combined, dried with anhydrous potassium carbonate, and mixed with 0.261 g of allyl bromide at 25°-30°C. The reaction solution became turbid within a few minutes and showed a considerable crystalline deposit after standing 3½ days. The mixture was warmed 1¾ hours on the steam bath in a loosely-stoppered flask, then cooled and filtered. The filtrate was washed twice with water and the benzene layer evaporated at diminished pressure. The liquid residue was dissolved in alcohol, shaken with charcoal and filtered. Addition to the filtrate of 0.3 gram of 85% phosphoric acid in alcohol gave a clear solution which, when seeded and rubbed, yielded 6-allyl-6,7-dihydro-5H-dibenz[c,e] azepine phosphate, MP about 211°-215°C with decomposition.

References

Merck Index 904 Kleeman & Engel p. 65 I.N. p. 109

Schmidt, R.A. and Wenner, W.; U.S. Patent 2,693,465; November 2, 1954; assigned to Hoff-mann-La Roche, Inc.

AZATADINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: 6,11-Dihydro-11-(1-methyl-4-piperidinylidene)-5H-benzo[5,6] cyclohepta-

[1,2-b] pyridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3978-86-7

Trade Name	Manufacturer	Country	Year Introduced
Idulian	Unilabo	France	1968
Optimine	Schering	U.S.	1977
Optimine	Warrick	U.K.	1978
Optimine	Warrick	Italy	1983

Trade Name	Manufacturer	Country	Year Introduced
Optimine	Byk Essex	W. Germany	1983
Trinalin	Schering	U . S.	_
Verben	Schering	-	_
Zadine	Schering	_	_

Raw Materials

N-Methyl-4-chloropiperidine	Ethyl Bromide
Polyphosphoric Acid	Magnesium
4-Aza-10,11-dihydro-5-H-dibenzo-	Maleic Acid
[a,d] -cycloheptene-5 one	

Manufacturing Process

Preparation of 4-aza-5-(N-methyl-4-piperidyl)-10,11-dihydro-5H-dibenzo[a,d] cycloheptene-5-ol: Add 17.4 g of N-methyl-4-chloropiperidine to a stirred mixture containing 3.2 g of magnesjum, 20 mł of anhydrous tetrahydrofuran, 1 ml of ethyl bromide and a crystal of iodine. Reflux for two hours, cool to 30°-35°C and add a solution of 13 g of 4-aza-10,11-dihydro-5Hdibenzo[a,d] cycloheptene-5-one in 25 ml of tetrahydrofuran. Stir for five hours, remove the solvent by distillation in vacuo and add 250 ml of ether. Add 100 ml of 10% ammonjum chloride solution and extract the mixture with chloroform. Concentrate the chloroform solution to a residue and recrystallize from isopropyl ether obtaining 20 g of the carbinol, MP 173°-174°C.

Preparation of 4-aza-5-(N-methyl-4-piperidylidene)-10,11-dihydro-5H-dibenzo[a,d] cycloheptene: Heat 5.4 g of the carbinol and 270 g of polyphosphoric acid for 12 hours at 140°-170°C. Pour into ice water and make alkaline with sodium hydroxide. Extract with ether. Dry ether solution and concentrate to a residue. Crystallize from isopropyl ether, MP 124°-126°C.

Preparation of 4-aza-5-(N-methyl-4-piperidylidene)-10,11-dihydro-5H-dibenzo[a,d] cycloheptene dimaleate: To a solution containing 4.3 g of 4-aza-(N-methyl-4-piperidylidene)-10,11dihydro-5H-dibenzo [a,d] cycloheptene in 55 ml of ethyl acetate, add a solution of 3,45 g of maleic acid dissolved in ethyl acetate. Filter the resulting precipitate and recrystallize the desired product from an ethyl acetate-methanol mixture to yield 4-aza-5-(N-methyl-4-piperidylidene)-10,11-dihydro-5H-dibenzo[a,d] cycloheptene dimaleate, MP 152°-154°C.

References

Merck Index 906 PDR pp. 1643, 1657 OCDS Vol. 2 p. 424 DOT 5 (2) 47 (1969) I.N. p. 110 REM p. 1131

Villani, F.J.; U.S. Patents 3,326,924; January 20, 1967; 3,357,986; December 12, 1967; and 3,419,565; December 31, 1968; all assigned to Schering Corp.

AZATHIOPRINE

Therapeutic Function: Immunosuppressive

Chemical Name: 6-[(1-methyl-4-nitroimidazol-5-yl)thio] purine

Common Name: Azothioprine

Chemical Abstracts Registry No.: 446-86-6

Trade Name	Manufacturer	Country	Year Introduced
Imuran	Wellcome	U.K.	1964
!mure!	Wellcome	France	1967
Imurek	Wellcome	W. Germany	1967
Imuran	Wellcome	U.S.	1968
Imuran	Wellcome	Italy	1968
Imuran	Tanabe	Japan	1969
Azamun	Medica	Finland	_
Azanin	Tanabe	Japan	_
Azapress	Lennon	South Africa	-

Raw Materials

N,N'-Dimethyloxaldiamide	Nitric Acid
Phosphorus Pentachloride	6-Mercaptopurine

Manufacturing Process

N,N'-dimethyloxaldiamide is reacted with PCI₅ to give 4-chloro-1-methyl imidazole. This is nitrated with HNO₃ to give 5-nitro-1-methyl-4-chloro-imidazole. Then, a mixture of 4.6 grams of anhydrous 6-mercaptopurine, 5 grams of 1-methyl-4-chloro-5-nitro-imidazole and 2.5 grams of anhydrous sodium acetate in 100 ml of dry dimethyl sulfoxide was heated at 100° C for 7 hours.

After standing overnight at room temperature, the mixture was poured into 200 ml of cold water and the yellow precipitate of 6-(1'-methyl-4'-nitro-5'-imidazolyl)mercaptopurine (7.0 grams) collected. After recrystallization from 50 % aqueous acetone, the product melted at 243°-244°, dec., and had an UV spectrum with λ maximum = 280 m μ at pH 1 and λ max. = 285 m μ at pH 11.

References

Merck Index 907 Kleeman & Engel p. 67 PDR p. 744 OCDS Vol. 2 p. 464 DOT 16 (10) 360 (1980) I.N. p. 110 REM p. 1143

Hitchings, G.H. and Elion, G.B.; U.S. Patent 3,056,785; October 2, 1962; assigned to Burroughs Wellcome & Co.

AZIDOCILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-(D-2-azido-2-phenylacetamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo-[3.2.0] heptane-2-carboxylic acid

Common Name: \alpha-Azidobenzylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 17243-38-8

Trade Name	Manufacturer	Country	Year Introduced
Nalpen	Beecham	W, Germany	1972
Longatren	Bayer	Italy	1981
Longatren	Bayer	Japan	-
Astracilina	Astra	Sweden	_
Finacillin	Sedequil	Portugal	_
Syncillin	Tropon	W. Germany	_

Raw Materials

α-Azidophenylacetic Acid Triethylamine Ethyl Chloroformate Thionyl Chloride 6-Aminopenicillanic Acid

Manufacturing Process

Example 1: α -Azidobenzylpenicillin via the Mixed Anhydride — A solution of α -azidophenylacetic acid (8.9 grams, 0.05 mol) of triethylamine (5.1 grams, 0.05 mol) in 50 ml of dry dimethylformamide was stirred and chilled below -5°C. At this temperature ethyl chloroformate (4.7 ml) was added in portions so that the temperature was never above -5°C. After the mixture had been stirred for 20 minutes, dry acetone (100 ml), chilled to -5°C, was added in one portion, immediately followed by an ice-cold solution of 6aminopenicillanic acid (10.8 grams, 0.05 mol) and triethylamine (5.1 grams, 0.05 mol) in 100 ml of water, and the stirring was continued for 1½ hours at 0°C.

The pH of the mixture was adjusted to 7.5 by adding a saturated sodium bicarbonate solution. After being washed twice with diethyl ether, the reaction solution was acidified to pH 2 with dilute hydrochloric acid and extracted with ether. The ether solution containing the free penicillin was washed twice with water and then extracted with 50 ml of N potassium bicarbonate solution. After freeze drying of the obtained neutral solution, the potassium salt of α -azidobenzylpenicillin was obtained as a slightly colored powder (11.2) grams, 54% yield) with a purity of 55% as determined by the hydroxylamine method (the potassium salt of penicillin G being used as a standard).

The infrared spectrum of this substance showed the presence of an azido group and a β lactam system. The substance inhibited the growth of Staph. aureus Oxford at a concentration of 0.25 mcg/ml.

Example 2: \(\alpha\)-Azidobenzylpenicillin via the Acid Chloride --- 6-aminopenicillanic acid (18.5) grams, 0.085 mol) and sodium bicarbonate (21 grams, 0.025 mol) were dissolved in 200 ml of water and 100 ml of acetone. To this solution, chilled in ice, was added α -azidophenylacetyl chloride (16.6 grams, 0.085 mol), diluted with 10 ml of dry acetone. The temperature is held at 0° to 5°C and the reaction mixture was stirred for 21/2 hours.

The resulting solution was treated as described in Example 1 to give the potassium salt of

 α -azidobenzylpenicillin as a white powder (29.4 grams, 84% yield) with a purity of 83% as determined by the hydroxylamine method (the potassium salt of penicillin G being used as a standard).

The product showed the same properties as the product obtained in Example 1: it inhibits the growth of Staph, aureus Oxford at a concentration of 0.13 mcg/ml.

The α -azidophenylacetyl chloride was prepared by treating α -azidophenylacetic acid with thionylchloride in portions at room temperature and then heating the solution under reflux for one hour. The α -azidophenylacetyl chloride distils at 115°C under a pressure of 10 mm Hg.

References

Merck Index 913 Kleeman & Engel p. 68 DOT 7 (5) 186 (1971 & 8 (7) 248 (1972) I.N. p. 111

Sjoberg, B.O.H. and Ekstrom, B.A.; U.S. Patent 3,293,242; December 20, 1966; assigned to Beecham Group Limited, England

AZLOCILLIN

Therapeutic Function: Antibacterial

Chemical Name: D-α-(imidazolidin-2-on-1-yl-carbonylamino)benzylpenicillin, sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 37091-66-0; 37091-65-9 (Sodium Salt)

Trade Name Manufacturer Country Y	ear Introduced
Securopen Bayer W. Germany	1977
Securopen Bayer Switz.	1980
Securopen Bayer U.K.	1980
Azlin Miles U.S.	1982
Securopen Bayer France	1983

Raw Materials

 $D(-)-\alpha-[(Imidazolidin-2-on-1-yl)carbonylamino]$ phenyl Acetic Acid 6-Aminopenicillanic Acid

Manufacturing Process

3.8 parts by weight of D(-)- α -[(imidazolidin-2-on-1-yl)carbonylamino]phenyl-acetic acid were dissolved in 65 parts by volume of dichloromethane. 2.7 parts by weight of 1-methyl-2-chloro∆1-pyrrolinium chloride were added, and after cooling to -10°C 2.0 parts by volume of triethylamine were added gradually. This reaction mixture was then stirred for one hour at ~5°C (mixture A). 4.0 parts by weight of 6-aminopenicillanic acid in 80 parts by volume of dichloromethane were treated with 4.4 parts by volume of triethylamine and 4.0 parts by weight of anhydrous sodium sulfate and then stirred for two hours at room temperature. After filtration, the solution was cooled to -20°C and combined with the mixture A. The reaction mixture was left to reach 0°C of its own accord, and was then stirred for a further hour at 0°C. The solvent was removed in a rotary evaporator, the residue was dissolved in water, and the solution was covered with a layer of ethyl acetate and acidified with dilute hydrochloric acid at 0° to 5°C, while stirring, until pH 1.5 was reached. The organic phase was then separated off, washed with water, dried over magnesium sulfate while cooling, and filtered, and after dilution with an equal amount of ether the sodium salt of the penicillin was precipitated from the filtrate by adding a solution of sodium 2-ethylcaproate dissolved in ether containing methanol. Yield: 1.3 parts by weight.

References

Merck Index 916 Kleeman & Engel p. 69 PDR p. 1247 OCDS Vol. 3 p. 206 (1984) DOT 13 (10) 409 (1977) I.N. p. 111 REM p. 1200

Konig, H.B., Schrock, W., Disselknotter, H. and Metzger, K.G.; U.S. Patents 3,933,795; January 20, 1976; 3,936,442; February 3, 1976; 3,939,149; February 17, 1976; 3,974,140; August 10, 1976; 3,978,223; August 31, 1976 and 3,980,792; September 14, 1976; all assigned to Bayer AG

AZOSEMIDE

Therapeutic Function: Diuretic

Chemical Name: 5-(4'-Chloro-2'-thenylemino-5'-sulfamoylphenyl)tetrazole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27589-33-9

Trade Name	Manufacturer	Country	Year Introduced
Diurapid	Boehringer-Mann	W. Germany	1981

Raw Materials

4-Chloro-2-fluoro-5-sulfamov| Benzonitrile Thenylamine Sodium Azide

Manufacturing Process

The 4-chloro-5-sulfamoyl-2-thenylamino-benzonitrile used as starting material is obtained by the reaction of 4-chloro-2-fluoro-5-sulfamoyl-benzonitrile with thenylamine in anhydrous tetrahydrofuran.

Then the 5-(4'-chloro-5'-sulfamoyl-2'-thenylamino)phenyltetrazole (MP 218° to 221°C; yield 37% of theory) is obtained by the reaction of 4-chloro-5-sulfamoyi-2-thenylaminobenzonitrile (MP 170° to 174°C) with sodium azide and ammonium chloride.

References

Merck Index 922 DFU 4 (6) 393 (1979) OCDS Vol. 3 p. 27 (1984) Popelek, A., Lerch, A., Stach, K., Roesch, E. and Hardebeck, K.; U.S. Patent 3,665,002; May 23, 1972; assigned to Boehringer Mannheim GmbH

B

BACAMPICILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-[(Aminophenylacetyl)amino] -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo-

[3.2.0] heptane-2-carboxylic acid 1-[(ethoxycarbonyl)oxy]-ethyl ester

Common Name: 1'-Ethoxycarbonyloxyethyl 6-(D-\alpha-aminophenylacetamido)penicillinate

Structural Formula:

Chemical Abstracts Registry No.: 50972-17-3; 37661-08-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Penglobe	Astra	W. Germany	1977
Bacacil	Pfizer	Switz.	1978
Penglobe	Lematte/Boinot	France	1978
Bacacil	Pfizer	Italy	1980
Ambaxin	Upjohn	U.K.	1981
Spectrobid	Pfizer	U.S.	1981
Bacacil	Pfizer Taito	Japan	1981
Penglobe	Yoshitomi	Japan	1981
Bamaxin	Upjohn	Canada	1982
Ambacamp	Upjohn	W. Germany	
Bacampicin	Upjohn	_	_
Velbacil	Pfizer	_	-

Raw Materials

Sodium 6-(D-α-azidophenylacetamido)penicillinate α-Chlorodiethyl Carbonate Sodium Bicarbonate Hydrogen

Manufacturing Process

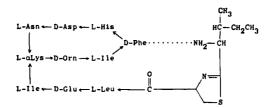
1'-Ethoxycarbonyloxyethyl 6-(D- α -azidophenylacetamido)penicillinate (98 g) was prepared from sodium 6-(D- α -azidophenylacetamido)penicillinate (397 g, 1 mol), α -chlorodiethylcarbonate (458 g, 3 mols) and sodium bicarbonate (504 g, 6 mols). The product showed strong IR absorption at 2090 cm⁻¹ and 1780–1750 cm⁻¹ showing the presence of azido group and β -lactam and ester carbonyls.

It was dissolved in ethyl acetate (700 ml) and hydrogenated at ambient conditions over a palladium (5%) on carbon catalyst (18 g). The catalyst was removed by filtration and washed with ethyl acetate. The combined filtrates were extracted with water at pH 2.5 by addition of dilute hydrochloric acid. Lyophilization of the aqueous phase gave the hydrochloride of 1'-ethoxycarbonyloxyethyl 6-(D-α-aminophenylacetamido)penicillinate (94 g), MP 171°-176℃.

References

Merck Index 933 Kleeman & Engel p. 69 PDR p. 1531 OCDS Vol. 3 p. 204 (1984) DOT 11 (11) 428 (1975) & 13 (10) 415 (1977) I.N. p. 113 REM p. 1200

Ekstrom, B.A. and Sjoberg, B.O.H.; U.S. Patents 3,873,521; March 25, 1975; and 3,939,270; February 17, 1976; both assigned to Astra Lakemedal A.B.


BACITRACIN

Therapeutic Function: Antibacterial

Chemical Name: Complex polypeptide mixture containing predominantly bacitracin A

Common Name: -

Structural Formula:

bacitracin A

Chemical Abstracts Registry No.: 1405-87-4; 21373-17-1 (Bacitracin A)

Trade Name	Manufacturer	Country	Year Introduced
Baciguent	Upjohn	U.S.	1948
Topitracin	Comm. Solv.	U.S.	1948
Bacitracine	Novopharm	Switz.	_
Bacitracine	Diamant	France	1953
Bacitracin	Kayaku	Japan	-
Bacitracin	Upjohn	U.S.	_
Batrax	Gewo	W. Germany	-
Cicatrin	Calmic	U.K.	-
Cicatrex	Wellcome	W. Germany	_
Enterostop	Schiapparelli	Italy	_
Fortracin	A.L. Labs	U.S.	
Hydroderm	Merck Sharpe & Dohme	U.K.	_
Medicrucin	Medice	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Nebacetin	Byk-Gulden	W. Germany	_
Neobacrin	Glaxo	U.K.	_
Neo-Caf	Francia	Italy	_
Neo-Polycin	Dow	U.S.	_
Neosporin	Burroughs-Wellcome	U.S.	_
Orobicin	Fulton	Italy	-
Polybactrin	Calmic	U.K.	_
Polybactrin	Wellcome	W. Germany	
Polycin	Dow	U.S.	
Polyfax	Wellcome	U.K.	_
Polysporin	Burroughs-Wellcome	U.S.	_
Rikospray	Riker	U.K.	_
Topitracin	Reed & Carnrick	U.S.	_

Raw Materials

Bacillus subtilis Nutrient Medium (Soy Bean Oil Meal)

Manufacturing Process

The early patent, U.S. Patent 2,498,165 first disclosed bacitracin and described a process for preparing bacitracin, comprising cultivating *Bacillus subtilis* Tracy I in a nutritive medium, at substantially pH 7 and 37°C, for more than three days, extracting the antibiotic from the resulting medium with a low molecular weight alcohol, concentrating the resulting alcoholic solution in vacuo, acidifying the resulting concentrate, extracting the antibiotic from the resulting solution, and precipitating the antibiotic from the resulting solution, with a precipitating agent for the antibiotic, selected from the group consisting of Reinecke's salt, phosphotungstic acid, phosphomolybdic acid, molybdic acid, picric acid, ammonium rhodanilate, and azobenzene-p-sulfonic acid.

A subsequent patent, U.S. Patent 2,828,246 described a commercial process for bacitracin production. A 1,230 gallon portion of a medium containing 10% soybean oil meal, 2,50% starch and 0.50% calcium carbonate having a pH of 7.0 was inoculated with a culture of bacitracin-producing bacteria of the Bacillus subtilis group and the inoculated medium incubated for a period of 24 hours with aeration such that the superficial air velocity was 12.1. An assay of the nutrient medium following the fermentation revealed a yield of bacitracin amounting to 323 units/ml. This was more than twice the yields previously obtained.

Then, a patent, U.S. Patent 2,834,711 described the purification of bacitracin. In this process for purifying bacitracin, the steps comprise adding a water-soluble zinc salt to a partially purified aqueous solution of bacitracin, adjusting the pH to from 5 to 9, recovering the precipitate which forms, dissolving the precipitate in water at a pH not substantially in excess of 4, and removing the zinc ion by passing the aqueous solution through a cation exchange resin and drying the resulting solution to obtain dry solid bacitracin.

Another patent, U.S. Patent 2,915,432 describes a process of recovering and concentrating bacitracin from aqueous filtered fermentation broth containing on the order of 3% proteinaceous solids which comprises intimately contacting the broth with a synthetic organic cation exchange resin having as its functional groups nuclear sulfonic acids and having a crosslinkage of the order of 1 to 2%, with the resin being in the hydrogen form, and eluting the adsorbed bacitracin from the resin with a weak base.

Bacitracin recovery is described in U.S. Patents 3,795,663 and 4,101,539.

Raw Materials

Merck Index 937

Kleeman & Engel p. 70

PDR p. 888 I.N. p. 113

REM p. 1201

Chaiet, L. and Cochrane, T.J., Jr.; U.S. Patent 2,915,432; December 1, 1959; assigned to Merck & Co., Inc.

Johnson, R.A. and Meleney, F.L.; U.S. Patent 2,498,165; February 21, 1950; assigned to U.S. Secretary of War

Freaney, T.E. and Allen, L.P.; U.S. Patent 2,828,246; March 25, 1958; assigned to Commercial Solvents Corporation

Zinn, E. and Chornock, F.W.; U.S. Patent 2,834,711; May 13, 1958; assigned to Commercial Solvents Corporation

Miescher, G.M.; U.S. Patent 3,795,663; March 5, 1974; assigned to Commercial Solvents Corp. Kindraka, J.A. and Gallagher, J.B.; U.S. Patent 4,101,539; July 18, 1978; assigned to IMC Chemical Group, Inc.

BACLOFEN

Therapeutic Function: Muscle relaxant

Chemical Name: γ -Amino- β -(p-chlorophenyl)butyric acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1134-47-0

Trade Name	Manufacturer	Country	Year Introduced
Lioresal	Ciba-Geigy	Switz.	-
Lioresal	Ciba-Geigy	W. Germany	1971
Lioresal	Ciba-Geigy	U.K.	1972
Lioresal	Ciba-Geigy	France	1974
Lioresal	Ciba-Geigy	Italy	1974
Lioresal	Ciba-Geigy	U.S.	1977
Lioresal	Ciba-Geigy	Japan	1979
Gabalon	Daiichi	Japan	1979
Bacion	Medica	Finland	
Spastin	Yurtoglu	Turkey	_

Raw Materials

 β -(p-Chlorophenyl)glutaric Acid Imide Sodium Hydroxide Bromine

Manufacturing Process

42.45 g of β -(p-chlorophenyl)glutaric acid imide are stirred into a solution of 8.32 g of sodium

hydroxide in 200 ml of water. The mixture is heated for 10 minutes at 50°C, and the solution thus formed is cooled to 10° to 15°C. At this temperature there are then added dropwise a solution of 40.9 g of sodium hydroxide in 200 ml of water and then, in the course of 20 minutes, 38.8 g of bromine. When all has been dropped in, the batch is stirred for 8 hours at 20° to 25°C. The reaction solution is then cautiously adjusted with concentrated hydrochloric acid to pH 7, whereupon finely crystalline γ -amino- β -(p-chlorophenyl) butyric acid settles out. To purify it, it is recrystallized from water. Melting point is 206° to 208°C.

References

Merck Index 939 Kleeman & Engel p. 71 PDR p. 894 OCDS Vol. 2 p. 121 (1980) DOT 8 (2) 49 (1972) I.N. p. 114 **REM p. 925**

Keberle, H., Faigle, J.W. and Wilhelm, M.; U.S. Patent 3,471,548; October 7, 1969; assigned to Ciba Corporation

Keberle, H., Faigle, J.W. and Wilhelm, M.; U.S. Patent 3,634,428; January 11, 1972; assigned to Ciba Corporation

BARBEXACLONE

Therapeutic Function: Antiepileptic

Chemical Name: (-)-N- α -Dimethylcyclohexaneethylamine compound with 5-ethyl-5-phenyl-

5-phenylbarbituric acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 4388-82-3

Trade Name	Manufacturer	Country	Year Introduced
Maliasin	Knoll	Italy	1983

Raw Materials

Phenyl Ethyl Barbituric Acid 1-Cyclohexyl-2-methylamino Propane Hydrochloride

Manufacturing Process

25,4 g of sodium salt of phenyl ethyl barbituric acid and 19,1 g of 1-cyclohexyl-2-methylamino propane hydrochloride are boiled under reflux in a mixture of 125 cc of acetic acid ethyl ester and 125 cc of ethanol. After boiling for half an hour, the solution is filtered, while still hot, to separate the precipitated sodium chloride. The filtrate is concentrated by evaporation to about half its volume. After cooling 42.5 g of the salt of 1-cyclohexyl-2methylamino propane and of phenyl ethyl barbituric acid are obtained in crystalline form. Its melting point is 130°-133°C.

References

Kleeman & Engel p. 73

I.N. p. 115

Suranyi, L.; U.S. Patent 3,210,247; October 5, 1965; assigned to Knoll A.G.

BATROXOBIN

Therapeutic Function: Hemostatic

Chemical Name: See under structural formula; no defined name

Common Name: -

Structural Formula:

It is a complex enzyme of molecular weight no greater than 40,000 in monomeric form.

Chemical Abstracts Registry No.: 9039-61-6

Trade Name	Manufacturer	Country	Year Introduced
Defibrase	Serono	W. Germany	1982
Botrophase	Ravizza	Italy	
Ophidiase	Labaz	Switz,	_
Reptilase	Disperga	Austria	****
Reptilase	Knoll	W. Germany	_

Raw Materials

Venom of Bothrops Atrox (A Pit Viper)
Phenol

Manufacturing Process

The process for preparing the enzyme composition comprises treating an aqueous solution of the snake venom at a pH of about 4 to 6 with phenol or a phenol derivative in order to precipitate an insoluble complex containing the active venom fraction and decomposing the complex in order to release the thrombinlike enzyme composition.

References

Merck Index 1010

DOT 18 (4) 169 (1982)

I.N. p. 117

Percs, E.E., Stocker, K.F., Blomback, B., Blomback, M. and Hessel, B.; U.S. Patent 3,849,252; November 19, 1974; assigned to Pentapharm A.G.

BECLAMIDE

Therapeutic Function: Anticonvulsant

Chemical Name: 3-chloro-N-(phenylmethyl)propanamide

Common Name: Benzchloropropamide, Chloroethylphenamide, Benzylchloropropionamide

Structural Formula: CICH2 CH2 CONHCH2 C6 H6

Chemical Abstracts Registry No.: 501-68-8

Trade Name	Manufacturer	Country	Year Introduced
Posedrine	Biosa	Switz.	_
Posedrine	Aron	France	1970
Beclam id	Aron	W. Germany	1975
Neuracen	Promonta	W. Germany	_
Nydrane	Lipha	U.K.	
Nydrane	Aron (Rona)	France	_
Posedrine	Lasa	Spain	
Posedrine	Byk Gulden		_
Posedrine	Spemsa	Italy	
Seclar	Andromaco	Argentina	

Raw Materials

Benzylamine p-Chloropropionyl Chloride Sodium Hydroxide

Manufacturing Process

A 100 gallon lined jacketed kettle provided with cooling is charged with 100 lb of benzylamine and 150 liters of water. The mixture is cooled to 5°C and with stirring 119 lb of β-chloropropionyl chloride and a solution of 45 lb of sodium hydroxide pellets in 40 liters of water are added simultaneously at such a rate that the temperature does not exceed 10°C. During this period the pH of the mixture should be on the alkaline side but below pH 9.5. When the addition is complete the pH should be about 8. The mixture is stirred overnight in the cold, and the solid product is filtered. The filter cake is reslurred with about 80 gallons of water, filtered, and air-dried. Yield, 128 pounds.

The crude material is recrystallized by dissolving it in the minimal quantity of hot methanol (about 50 gallons), adding Norite, and filtering hot. Upon cooling slowly (finally to about 5°C) large crystals separate; they are filtered and air-dried. Yeild, 109 pounds. Melting point 92° to 93°C.

References

Merck Index 1017 Kleeman & Engel p. 74 I.N. p. 118 Cassell, R.T. and Kushner, S.; U.S. Patent 2,569,288; September 25, 1951; assigned to American Cyanamid Company

BECLOMETHASONE DIPROPIONATE

Therapeutic Function: Topical anti-inflammatory; glucocorticoid

Chemical Name: 9-chloro-11 β ,17,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione

dipropionate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5534-09-8; 4419-39-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Propaderm	Kyowa Hakko	Japan	1972
Becotide	Allen & Hanburys	U.K.	1972
Cleniderm	Chiesi	Italy	1974
Sanasthmyl	Glaxo	W. Germany	1975
Becotide	Glaxo	France	1976
Beconase	Glaxo	W. Germany	1976
Vanceril	Schering	U.S.	1976
Beclotide Nasal	Glaxo	Italy	1977
Becotide	Glaxo	Japan	1978
Aidesin	Shionogi	Japan	1978
Beclovent	Glaxo	U.S.	1979
Becotide	Glaxo	Switz.	1981
Becloforte	Allen & Hanburys	U.K.	1982
Aldecin	Schering	_	-
Anceron	Essex	Argentina	-
Beclacin	Kaigai	Japan	, -
Beclacin	Morishita	Japan	-
Beclamet	Orion	Finland	· -
Beclo-Asma	Aldo Union	Spain	_
Beclomet	Orion	Finland	_
Beclosona	Spyfarma	Spain	_
Beclovent	Meyer	U.S.	-
Becotide	Pliva	Yugoslavia	_
Betozon	Ohta	Japan	_
Betozon	Ono	Japan	-
Bronco-Turbinal	Valeas	Italy	-
Clenil	Chiesi	Italy	_
Dermisone Beclo	Frumtost	Spain	-
Entyderma	Taiyo	Japan	_
Gnadion	Pliva	Yugoslavia	_
Hibisterin	Nippon Zoki	Japan	-
Inalone	Lampugnani	Italy	-
Korbutone	Nippon Glaxo	Japan	-
Proctisone	Chiesi	Italy	_
Propaderm	Duncan	Italy	_
Propavent	Glaxo	U.K.	_
Rino-Clenil	Chiesi	Italy	_
Turbinal	Valeas	Italy	_
Vaderm	Schering		-
Vancenase		U.S.	-
Viarex	Essex	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Viarex	Schering	U.S.	_
Viarox	Byk-Essex	W. Germany	_
Zonase	Script Intal	S. Africa	
Zonide	Script Intal	S. Africa	_

Raw Materials

16 β -Methyl-1,4-pregnadiene-11 β ,17 α ,21-triol-3,2-dione-21-acetate Methane Sulfonyl Chloride Sodium Methoxide N-Chlorosuccinimide Perchloric Acid

Manufacturing Process

6 grams of 16β -methyl-1.4-pregnadiene- 11β . 17α .21-triol-3.20-dione-21-acetate is dissolved in a mixture of 35 ml of dimethylformamide and 6 ml of pyridine. To the resulting solution is added 2.5 ml of methanesulfonyl chloride and the reaction mixture maintained at 80°-85°C for about 1 hour. The resulting red solution is cooled in an ice bath and treated successively with 55 ml of methanol, 240 ml of 5% aqueous sodium bicarbonate and finally with 360 ml of water. The resulting reaction mixture is then allowed to stand at room temperature overnight after which the precipitated product is removed by filtration, washed repeatedly with water and dried to a constant weight in air at about 50°C to produce 16βmethyl-1,4,9(11)-pregnatriene-11 α ,21-diol-3,20-dione-21-acetate.

Hydrolysis of the acetate ester with alkali, e.g., sodium methoxide in methanol, affords the free alcohol, 16β -methyl-1,4,9(11)-pregnatriene-17 α , 21-diol-3,20-dione. To a suspension of 3 grams of 16β -methyl-1,4,9(11)-pregnatriene-17 α ,21-diol-3,20-dione-21-acetate in 40 ml of acetone is added at 0°C with stirring 2 grams of N-chlorosuccinimide and then 7 ml of a perchloric acid solution prepared by dissolving 0.548 ml of 70% perchloric acid in 33 ml of water. The resulting reaction mixture is stirred at 0°C for about 4 hours 45 minutes.

The excess of N-chlorosuccinimide is destroyed by the addition of about 15 drops of allyl alcohol and 180 ml of water is then added with stirring. This mixture is held at 0°C for about one hour. The precipitated 16 β -methyl-1,4-pregnadiene-9 α -chloro-11 β ,17 α ,21-triol-3,20dione-21-acetate is recovered by filtration. A solution of 250 mg of the chlorohydrin in 5 ml of 0.25 N perchloric acid in methanol is stirred for about 18 hours at room temperature to produce 16β -methyl- 9α -chloro- 11β ,17 α ,21-trihydroxy-1,4-pregnadiene-3,20-dione which is recovered by adding water to the reaction mixture and allowing the product to crystallize. Propionic anhydride is then used to convert this material to the dipropionate,

References

Merck Index 1018 Kleeman & Engel p. 74 PDR pp. 906, 1659 DOT 9 (8) 335 (1973) I.N. p. 118 REM p. 962

Merck & Co., Inc. British Patent 912,378; December 5, 1962

Taub, D., Wendler, N.L. and Slates, H.L.; U.S. Patent 3,345,387; October 3, 1967; assigned to Merck & Co., Inc.

BEFUNOLOL

Therapeutic Function: Beta-blocker

Chemical Name: 2-Acetyl-7-(2-hydroxy-3-isopropylaminopropoxy)benzofuran

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 39552-01-7

Trade Name	Manufacturer	Country	Year introduced
Bentos	Kakenyaku Kakko	Japan	1983

Raw Materials

2-Acetyl-7-hydroxybenzofuran Epichlorohydrin Isopropylamine

Manufacturing Process

To 8.8 g of 2-acetyl-7-hydroxybenzofuran were added 80 ml of epichlorohydrin and 0.2 g of piperidine hydrochloride and the mixture was heated at 105°C for 3 hours. After the reaction, the excess of epichlorohydrin was evaporated and the resultant was distilled under reduced pressure to give 9.3 g of 2-acetyl-7-(2,3-epoxypropoxy)benzofuran having a boiling point of 175° to 176°C/0.7 mm Hg. 6 g of the product was dissolved in 30 ml of ethanol and to the solution was added 10 ml of isopropylamine. After refluxing the mixture for 40 minutes, the solvent was evaporated from the reaction mixture. The resulting residue was recrystallized from cyclohexane-acetone to give 6 g of 2-acetyl-7-(2-hydroxy-3-isopropylaminopropoxy)benzofuran having a melting point of 115°C.

References

Merck Index 1022 DFU 6 (10) 601 (1981)

Ito, K., Mashiko, I., Kimura, K. and Nakanishi, T.; U.S. Patent 3,853,923; December 10, 1974; assigned to Kakenyaku Kakko Co., Ltd.

BEKANAMYCIN SULFATE

Therapeutic Function: Antibacterial

Chemical Name: D-Streptamine, O-3-amino-3-deoxy-α-D-glucopyranosyl-(1→6)-O-[2,6-di-

amino-2,6-dideoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$] -2-deoxy sulfate (1:1)

Common Name: Aminodeoxykanamycin

Structural Formula:

Chemical Abstracts Registry No.: 29701-07-3; 4696-76-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Kanendomycin	Meiji Seika	Japan	1969
Stereocidin	Crinos	Italy	1980
Coltericin	Argentia	Argentina	
Kanendomicina	Lefa	Spain	_
Kanendos	Crinos	Italy	_
Visumetazone Antibiotica	ISF	Italy	_
Visumicina	ISF	Italy	_

Raw Materials

Bacterium S. Kanamyceticus **Nutrient Broth**

Manufacturing Process

200 liters of the medium containing 2.0% starch, 1.0% soybean meal, 0.05% KCI, 0.05% MgSO₄·7H₂O, 0.3% NaCl, 0.2% NaNO₃ was placed in the 400 liter fermenter, the pH was adjusted to 7,5, and the medium was then sterilized (pH after the sterilization was 7,0) for 30 minutes at 120°C, inoculated with 1,000 ml of 40 hour shake-cultured broth of S. kanamyceticus (a selected subculture of K2-J strain) and tank-cultured at 27°-29°C. As antifoam, soybean oil (0.04%) and silicone (0.04%) were added. The broth after 48 hours was found to contain 250 mcg/ml of kanamycin.

A portion (950 ml) of the rich eluate was adjusted to pH 6.0 by the addition of sulfuric acid. Ultrawet K (7.0 g) in 70 ml water was added slowly to the neutralized eluate to precipitate kanamycin B dodecylbenzenesulfonate which was collected by filtration after adding filteraid (Dicalite). The cake was washed with water and extracted with 100 ml methanol. After filtering and washing with methanol, sulfuric acid was added to the filtrate until no more kanamycin B sulfate precipitated. After addition of an equal volume of acetone to provide more complete precipitation, the kanamycin B sulfate was collected by filtration, washed with methanol and dried in vacuo at 50°C.

References

Merck Index 5118 Kleeman & Engel p. 75 I.N. p. 120 REM p. 1181

Umezawa, H., Maeda, K. and Ueda, M.; U.S. Patent 2,931,798; April 5, 1960.

Johnson, D.A. and Hardcastle, G.A.; U.S. Patent 2,967,177; January 3, 1961; assigned to Bristol-Myers Co.

Rothrock, J.W. and Potter, I.; U.S. Patent 3,032,547; May 1, 1962; assigned to Merck & Co., Inc.

BENACTYZINE HYDROCHLORIDE

Therapeutic Function: Tranquilizer; anticholinergic

Chemical Name: α-Hydroxy-α-phenylbenzene acetic acid-2-(diethylamino)ethyl ester

Common Name: β -Diethylaminoethylbenzilate hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 57-37-4; 302-40-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Suavitil	Merck Sharp & Dohme	U.S.	1957
Phebex	Hoechst	U.S.	1958
Cedad	Recordati	Italy	_
Cevanol	I.C.I.	U.K.	
Depro!	Wallace	U.S.	_
Lucidil	Smith & Nephew	U.K.	_
Morcain	Tatsumi	Japan	_
Nutinal	Boots	U.K.	_
Parasan	Medix	Spain	_
Parpon	Santen	Japan	_
Phobex	Lloyd	<u>.</u>	_
Phobex	Dabney & Westerfield	-	_

Raw Materials

Ethyl Benzilate Sodium

 β -Diethylaminoethanol Hydrogen Chloride

Manufacturing Process

114 parts of ethyl benzilate, 175 parts of β -diethylaminoethanol and 0.2 part of metallic sodium were placed in a flask attached to a total-reflux variable take-off fractionating column. The pressure was reduced to 100 mm and heat was applied by an oil bath the temperature of which was slowly raised to 90°C. During three hours of heating 17 parts of ethanol distilled (35.5°C). When the distillation of the ethanol became slow, the bath temperature was raised to 120°C. When the vapor temperature indicated distillation of the amino alcohol the takeoff valve was closed and the mixture was refluxed for one hour. At the end of this period the vapor temperature had dropped and two more parts of ethanol were distilled. The remaining aminoalcohol was slowly distilled for three hours. The pressure was then reduced to 20 mm and the remainder of the aminoalcohol distilled at 66°C. During the reaction the color of the solution changed from yellow to deep red. The residue was dissolved in 500 parts of ether, washed once with dilute brine, and three times with water, dried over sodium sulfate and finally dried over calcium sulfate. 500 parts of a saturated solution of HCI in absolute ether was added and the resulting precipitate filtered. Dry HCl gas was passed into the filtrate to a slight excess and the precipitate again filtered. The combined precipitates were washed with cold acetone. The 106 parts of product was purified by recrystallization from acetone as fine white crystals which melt at 177°-178°C.

References

Merck Index 1028 Kleeman & Engel p. 76

PDR p. 1874 OCDS Vol. 1 p. 93 (1977) DOT 9 (6) 241 (1973)

I.N. p. 120

Hill, A.J., and Holmes, R.B.; U.S. Patent 2,394,770; February 12, 1946; assigned to American Cvanamid

BENAPRYZINE HYDROCHLORIDE

Therapeutic Function: Anticholinergic, antiparkinsonism

Chemical Name: α-hydroxy-α-phenylbenzeneacetic acid 2-(ethylpropylamino)ethyl ester

hydrochloride

Common Name: 2-Ethylpropylaminoethyl diphenylglycollate hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 3202-55-9; 22487-42-9 (Base)

Trade Name	Manufacturer	Country	Year introduced
Brizin	Beecham	U.K.	1973

Raw Materials

Sodium Methoxide 2-Ethylpropylaminomethanol Methyl α,α-diphenyl Glycollate Hydrogen Chloride

Manufacturing Process

A methanolic solution of sodium methoxide [from sodium (0.2 gram) and dry methanol (3 ml)) was added dropwise during 20 minutes to a boiling solution of methyl α, α -diphenylglycollate (11 grams) and 2-ethylpropylaminoethanol (6 grams) in light petroleum (150 ml, BP 80° 100°C) and the methanol that separated was removed by using a Dean and Starke apparatus. At the end of 5 hours no further separation of methanol occurred and the reaction mixture after being washed with water (3 x 20 ml) was extracted with 1 N hydrochloric acid (3 x 30 ml).

The acid extracts (after washing with 50 ml ether) were made alkaline with aqueous 5 N sodium hydroxide solution, the liberated base was extracted into ether (4 x 50 ml) and the ether extracts were dried (MgSO₄). Treatment of the extracts with hydrogen chloride gave the hydrochloride (11 grams, 70%), which was obtained as rectangular plates, MP 164° to 166°C, after several crystallizations from butanone.

References

Merck Index 1030 Kleeman & Engel p. 77 OCDS Vol. 2 p. 74 (1980) DOT 9 (6) 241 (1973) I.N. p. 121

Mehta, M.D. and Graham, J.; U.S. Patent 3,746,743; July 17, 1973; assigned to Beecham Group Limited

BENDACORT

Therapeutic Function: Glucocorticoid

Chemical Name: 21-ester of [(1-benzyl-1H-indazol-3-yl-oxy]-acetic acid with 11β , 17α , tri-

hydroxy-pregn-4-ene 3,20-dione

Common Name: Ester of Bendazac with hydrocortisone

Structural Formula:

Chemical Abstracts Registry No.: 53716-43-1

Trade Name	Manufacturer	Country	Year Introduced
Versacort	Angelini	Italy	1978

Raw Materials

Hydrocortisone

Bendazac Chloride;[(1-benzyl-1H-indazol-3-yl)oxy] acetic acid chloride

Manufacturing Process

Hydrocortisone (25 g) and Bendazac chloride (21 g) are suspended in anhydrous dioxane (250 ml). Pyridine (6 ml) is added and the solution is kept under stirring for 2 hours at room temperature. Pyridine hydrochloride which separates is filtered and the clear dioxane solution is added, under strong stirring, to a solution of sodium bicarbonate (20 g) in distilled water (2,500 ml). The colorless precipitate which is formed is filtered, washed with water and dried on a porous plate. The substance crystallizes from ethanol. Needles. MP 174°–176°C. Yield: 75%.

References

Merck Index 4689

Baiocchi, L.; U.S. Patent 4,001,219; January 4, 1977

BENDAZAC

Therapeutic Function: Antiinflammatory

Chemical Name: [(1-benzyl-1H-indazol-3-yl)oxy]acetic acid

Common Name: Bendazolic acid

Structural Formula:

Chemical Abstracts Registry No.: 20187-55-7

Trade Name	Manufacturer	Country	Year Introduced
Versus	Angelini	Italy	1970
Zildasac	Chugai	Japan	1979
Hubersil	Hubber	Spain	
Versus	Werfft Chemie	Austria	_

Raw Materials

1-Benzyl-3-oxy-indazole Chloroacetonitrile Hydrogen Chloride

Manufacturing Process

11 grams of the sodium salt of 1-benzyl-3-oxy-indazole are dissolved in 70 ml of absolute ethanol by heating the resulting solution to boiling and stirring. 3.5 grams of chloroacetonitrile dissolved in 5 ml of absolute ethanol are then added within 2-3 minutes and after 10 minutes a further portion of 1.7 grams of chloroacetonitrile are added. The reaction is finally brought to completion with an additional 45 minutes of boiling. The reaction mixture is allowed to cool at room temperature and is then filtered. The alcohol solution is evaporated to dryness under reduced pressure; the resulting residue is taken up again with ether and the ether solution is washed in sequence with dilute HCI, water, NaOH and water. The solution is dried on Na₂ SO₄ and then the solvent is removed. The residue consists of (1-benzyl-indazole-3)oxyacetonitrile which is crystallized from methanol. It has a melting point of 93°C.

1 gram of the (1-benzyl-indazole-3)oxyacetonitrile is pulverized and is added with stirring to 5 ml concentrated HCI. By heating on a boiling water bath for 2-3 minutes, the nitrile product melts and soon thereafter solidifies. The precipitate is cooled, then filtered and washed well in a mortar with water. After dissolution in 10% Na₂CO₃, it is precipitated again with dilute HCl. After crystallization from ethanol, 1-benzyl-indazole-3-oxyacetic acid is obtained. It has a melting point of 160°C.

References

Merck Index 1033 Kleeman & Engel p. 79 OCDS Vol. 2 p. 351 (1980)

I.N. p. 121

Palazzo, G.; U.S. Patent 3,470,194; September 30, 1969; assigned to Aziende Chimiche Riunite Angelini, Francesco ACRAF SpA, Italy

BENDROFLUMETHIAZIDE

Therapeutic Function: Diuretic, antihypertensive

Chemical Name: 3,4-dihydro-3-(phenylmethyl)-6-(trifluoromethyl)-2H-1,2,4-benzothiadiazine-

7-sulfonamide 1.1-dioxide

Common Name: Bendrofluazide, Benzydroflumethiazide, Benzylhydroflumethiazide

Structural Formula:

Chemical Abstracts Registry No.: 73-48-3

Trade Name	Manufacturer	Country	Year introduced
Naturetin	Squibb	U.S.	1959
Sinesalin	1.C.1.	W. Germany	-
Naturine Leo	Leo	France	1961
Benuron	Bristol	U.S.	1965
Aprinox	Boots	U.K.	_
Benzide	Protea	Australia	_
Berkozide	Berk	U.K.	-
Bristuric	Bristol	U.S.	_
Bristuron	Bristol	_	_
Centyl	Leo	Denmark	_
Centyl	Leo-Sankyo	Japan	_
Corzide	Squibb	U,S.	
Neo-Naclex	Glaxo	U.K.	_
Neo-Rontyl	Leo	Denmark	_
Notens	Farge	Italy	-
Pluryl	Leo	Denmark	_
Polidiuril	Bios	italy	_
Poliuron	Lepetit	Italy	-
Rauzide	Squibb	U.S.	-
Salural	ICB	Italy	_
Salures	Ferrosan	Denmark	_
Seda-Repicin	Boehringer-ing.	W. Germany	_
Sinesalin	Arcana	Austria	
Sodiuretic	Squibb	Italy	-
Tensionorm	Leo	France	_
Urizid	Rekah	Israel	_

Raw Materials

α,α,α-Trifluoro-m-toluidine	Chlorosulfonic Acid
Ammonia	Phenylacetaldehyde
ω-Ethoxystyrene	

Manufacturing Process

The process is described in U.S. Patent 3,392,168 as follows:

(A) Preparation of 5-Trifluoromethylaniline-2,4-Disulfonylchloride---113 ml of chlorosulfonic acid is cooled in an ice bath, and to the acid is added dropwise while stirring 26.6 grams of α,α,α -trifluoro-m-toluidine. 105 grams of sodium chloride is added during 1-2 hours, whereafter the temperature of the reaction mixture is raised slowly to 150°-160°C which temperature is maintained for three hours. After cooling the mixture, ice-cooled water is added, whereby 5-trifluoromethylaniline-2,4-disulfonyl chloride separates out from the mixture.

(B) Preparation of 5-Trifluoromethyl-2,4-Disulfamylaniline—The 5-trifluoromethylaniline-2,4-disulfonyl chloride obtained in step (A) is taken up in ether and the ether solution dried with magnesium sulfate. The ether is removed from the solution by distillation, the residue is cooled to 0°C, and 60 ml of ice-cooled, concentrated ammonia water is added while stirring. The solution is then heated for one hour on a steam bath and evaporated

in vacuo to crystallization. The crystallized product is 5-trifluoromethyl-2,4-disulfamylaniline, which is filtered off, washed with water and dried in a vacuum-desiccator over phosphorus pentoxide. After recrystallization from a mixture of 30% ethanol and 70% water. the compound has a MP of 247°-248°C.

- (C) Preparation of 3-Benzyl-6-Trifluoromethyl-7-Sulfamyl-3,4-Dihydro-1,2,4-Benzothiadiazine-1.1-Dioxide-6.4 grams of 5-trifluoromethyl-2,4-disulfamylaniline is dissolved in 12 ml of dioxane. 2.7 ml of phenylacetaldehyde and a catalytic amount of p-toluenesulfonic acid are added. After boiling for a short time under reflux, the reaction mixture crystallizes, and, after filtration and recrystallization from dioxane, the desired product is obtained with a MP of 224.5°-225.5°C.
- (D) Alternative to (C)-9.6 grams of 5-trifluoromethyl-2,4-disulfamylaniline and 4.9 grams of ω-ethoxystyrene are dissolved in 35 ml of n-butanol. 0.5 grams of p-toluenesulfonic acid is added, and the mixture is heated on a steam bath while stirring. When the solution is clear, 55 ml of hexane is added, whereafter the mixture is heated further for one and a half hours. After cooling, the substance identical to that of Example (C) is filtered off and has a MP of 222° 223°C.

Sterile compositions containing Bendroflumethiazide for parenteral administration may be prepared as described in U.S. Patent 3,265,573.

References

Merck Index 1036 Kleeman & Engel p. 79 PDR pp. 1741, 1753, 1767 OCDS Vol. 1 p. 358 (1977) DOT 16 (3) 94 (1980) I.N.p. 122 REM p. 938

Goldberg, M.; U.S. Patent 3,265,573; August 9, 1966; assigned to E.R. Squibb & Sons, Inc. Lund, F., Lyngby, K. and Godtfredsen, W.O.; U.S. Patent 3,392,168; July 9, 1968; assigned to Lovens Kemiske Fabrik ved A. Kongsted, Denmark

BENFLUOREX HYDROCHLORIDE

Therapeutic Function: Hypolipemic agent, cardiovascular drug

Chemical Name: 1-(m-Trifluoromethylphenyl)-2-(β-benzoyloxyethyl)aminopropane

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23642-66-2; 23602-78-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mediator	Servier	France	1976
Mediaxal	Stroder	Italy	1981

Trade Name	Manufacturer	Country	Year Introduced
Mediaxal	Servier	Switz.	1982
Minolip	Chiesi	Italy	_

Raw Materials

1-(m-Trifluoromethylphenyl)-2-(β -hydroxyethyl)amino Propane Benzoyl Chloride

Manufacturing Process

To a solution of 24.7 parts of 1-(m-trifluoromethylphenyl)-2-(β -hydroxyethyl)amino propane in 140 parts of anhydrous benzene, there were added successively 15 parts of 4.7 N hydrochloric ether and a solution of 14 parts of benzoyl chloride in 24 parts of anhydrous benzene. The addition required 10 minutes, the reaction mixture was then refluxed for 8 hours.

The solid product was collected by filtration and after recrystallization from 230 parts of ethyl acetate, there were obtained 15 parts of 1-(m-trifluoromethylphenyl)-2-(β -benzoyloxy-ethyl)amino propane hydrochloride melting at 161°C.

10 parts hydrochloride are put in suspension in 100 parts of water, 80 parts ether are added, then 10 parts of a concentrated solution of ammonium hydroxide. The mixture is stirred a few minutes until the salt is dissolved, then the ethered solution is poured off and dried. After the ether is eliminated, 9 parts of 1-(m-trifluoromethylphenyl)-2-(β -benzoyloxyethyl)amino propane are obtained; the base is a colorless oil.

References

Merck Index 1037 DFU 2 (8) 557 (1976) Kleeman & Engel p. 80 DOT 13 (1) 12 (1977) I.N. p. 122

Beregi, L. Hugon, P. and Le Douarec, J.C.; U.S. Patent 3,607,909; September 21, 1971; assigned to Science Union et Cie Societe Française de Recherche Medicale

BENFURODIL HEMISUCCINATE

Therapeutic Function: Coronary vasodilator, cardiotonic

Chemical Name: succinic acid monoester with 4-[2-(1-hydroxyethyl)-3-methyl-5-benzo-

furanyl] -2(5H)-furanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3447-95-8

Trade Name	Manufacturer	Country	Year Introduced
Eucilat	Clin Midy	France	1970

Trade Name	Manufacturer	Country	Year Introduced
Clinodilat	Mack-Midy	W. Germany	1981
Eucilat	Midy	Italy	1981
Eucilat	Clin-Comar-Bila	France	_

Raw Materials

4-(4-Methoxyphenyl)-2-oxo-2 5-dihydrofuran Chloroacetone Aluminum Chloride Acetyl Chloride Sodium Borohydride Hydrogen Chloride Succinic Anhydride

Manufacturing Process

- (A) Preparation of 4-(3-Acetyl-4-Hydroxyphenyl)-2-Oxo-2,5-Dihydrofuran (1567 CB): A solution of 57 grams of 4-(4-methoxyphenyl)-2-oxo-2,5-dihydrofuran (0.3 mol) in 300 ml of methylene chloride is added slowly to 200 grams of anhydrous powdered aluminum chloride, while stirring and cooling in a bath of iced water. When this is completed, one removes the bath and leaves the reagents in contact for 10 minutes, and then introduces 72 grams of acetyl chloride at a speed sufficient to maintain refluxing of the solvent. One subsequently heats under reflux for 3 hours 30 minutes, decomposes by pouring on to crushed ice, filters off the crystalline product and washes it with water. 56 g, MP = 200°C. Yield: 80%. The product is recrystallized from acetic acid and then melts at 201°-202°C.
- (B) Preparation of 4-[3-Acetyl-4-(2-Oxopropyloxy)Phenyl]-2-Oxo-2,5-Dihydrofuran: 5,45 grams (0.025 mol) of compound 1567 CB prepared according to (A) dissolved in 50 ml of dimethyl formamide is stirred at room temperature for 15 minutes with 5 grams of potassium carbonate and 1 gram of sodium iodide, and 5 grams of chloracetone are then added drop by drop. The temperature spontaneously rises a few degrees. The disappearance of the phenolic compound is checked by testing with an alcoholic solution of ferric chloride; this test should be negative at the end of the reaction (approximately 2 hours). One then dilutes with 10 volumes of water, filters the product which crystallizes out under these conditions and recrystallizes it from acetic acid. It has the form of yellow needles (4 grams yield: 63%). $MP_c = 155^{\circ}-157^{\circ}C$.
- (C) Preparation of 2-Acetyl-3-Methyl-5-(2-Oxo-2.5-Dihydro-4-Furyl)Benzo[b] Furan (3556 CB): (1) A suspension of 2 grams of the compound prepared according to (B) in 20 ml of concentrated hydrochloric acid, is heated to about 50°C, just until it dissolves. Thereafter it is heated for 2 minutes to 70°C, just until precipitation commences. The mixture is allowed to cool, diluted with water, filtered, the residue washed, dried, and sublimed at 200°C and 0.1 mm pressure. 1.4 grams of product (Yield: 70%) is obtained. MPc = 218°-221°C. A second sublimation produces a chemically pure product. MP_c = 221°-222°C.
- (2) Compound 1567 CB and chloracetone are caused to react as in (B), the mineral salts subsequently filtered, 12 ml of concentrated hydrochloric acid are added to the solution in dimethyl formamide without dilution with water, and the mixture heated for 40 minutes on a water bath. The product crystallizes in the warm mixture, the mixture is cooled to room temperature, filtered, the residue washed with water and crystallized from acetic acid. MP_c = 222°C. Yield: 60% based on compound 1567 CB.
- (D) Preparation of 2-(1-Hydroxyethyl)-3-Methyl-5-(2-Oxo-2,5-Dihydro-4-Furyl)Benzo[b]-Furan (3574 CB): 13.2 grams of compound 3556 CB of which the preparation is described in (C) are treated successively with 66 ml of methylene chloride, 27 ml of methanol and, with stirring, 1.6 grams of sodium borohydride added in stages. The reaciton takes 1 hour. The mixture is poured into water acidified with a sufficient amount of acetic acid, the solvents are stripped under vacuum, the crystalline product removed, washed with water, and recrystallized from ethyl acetate. Yield: 90%. MPk = 158°C.

(E) Preparation of 2-(1-Succinyloxyethyl)-3-Methyl-5-(2-Oxo-2,5-Dihydro-4-Furyl)Benzo[b] -Furan (409, CB): 8.65 grams of compound 3574 CB in 43 ml of pyridine are warmed for 30 minutes, on a water bath, with succinic anhydride. At the end of this, the pyridine is stripped off in vacuo. The mixture is treated with dilute sulfuric acid and with ether, the crystalline product filtered off, washed with water and with ether, and recrystallized from ethyl acetate (9.35 grams). MP_c = 144°C (measured after drying at 90°C and 0.1 mm). Yield: 77%. The product yields an equimolecular compound with morpholine. MPc = 136° C (from ethyl acetate).

References

Kleeman & Engel p. 81 OCDS Vol. 2 p. 355 (1980) DOT 6 (6) 203 (1970) LN. p. 123

Schmitt, J.; U.S. Patent 3,355,463; November 28, 1967; assigned to Etablissements Clin-Byla, France

BENORYLATE

Therapeutic Function: Analgesic, antiinflammatory, antipyretic

Chemical Name: 2-(acetyloxy)benzoic acid 4-(acetylamino)phenyl ester

Common Name: Fenasprate; p-N-acetamidophenyl acetylsalicylate

Structural Formula:

Chemical Abstracts Registry No.: 5003-48-5

Trade Name	Manufacturer	Country	Year Introduced
Benortan	Winthrop	Switz.	-
Benoral	Winthrop	U.K.	1972
Benortan	Winthrop	W. Germany	1975
Benortan	Winthrop	France	1976
Benorile	Rubio	Spain	_
Benortan	Pharmacal	Finland	_
Bentum	inpharzam	Belgium	_
Salipran	Bottu	France	_
Sinalgin	Robin	Italy	_
Triadol	Sterling Heath	U.K.	
Winorylate	Sterwin Espanola	Spain	_

Raw Materials

N-Acetyl-p-aminophenol Acetyl Salicoyl Chloride

Manufacturing Process

Example 1: 65 grams of N-acetyl-p-aminophenol were slurried with 400 ml of water and cooled to 10°C. 125 ml of 20% sodium hydroxide were slowly added to the mixture with

stirring, the temperature being maintained between 10° and 15°C. To the solution obtained, 75 grams of acetyl salicoyl chloride were added with vigorous stirring over a period of ½ hr, the solution being maintained at a temperature of about 10°C. Towards the end of the reaction the pH was checked and adjusted to greater than 10 by the addition of a small amount of 20% sodium hydroxide. After all the acid chloride had been added, vigorous stirring was continued for half an hour during which time the crude product separated out. This product was filtered off, washed thoroughly with water and recrystallized from ethanol.

Example 2: 65 grams of sodium N-acetyl-p-aminophenol were slurried with 500 grams of dry benzene and 80 grams of acetyl salicoyl chloride added. The mixture was heated under reflux for four hours and filtered hot. The excess benzene was removed under vacuum and the crude acetyl salicyclic acid ester of N-acetyl-p-aminophenol crystallized from ethanol.

References

Merck index 1043 Kleeman & Engel p. 82 DOT 8 (6) 208 (1972) I.N.p. 123

Robertson, A.; U.S. Patent 3,431,293; March 4, 1969; assigned to Sterling Drug, Inc.

BENOXAPROFEN

Therapeutic Function: Antiinflammatory, analgesic

Chemical Name: 2-(2-p-Chlorophenyl-5-benzoxazolyl) propionic acid

Common Nama: -

Structural Formula:

Chemical Abstracts Registry No.: 51234-28-7

Trade Nama	Manufacturer	Country	Year Introduced
Opren	Dista Lilly	U.K.	1980
Coxigon	Lilly	W. Germany	1981
Inflamid	Lilly	France	1981
Coxigon	Lilly	Switz,	1982
Coxigon	Schweiz, Serum I	Switz.	1982
Oraflex	Lilly	U.S.	1982
Bexopron	Lilly	_	_

Raw Materials

Ethyl-2-(3-hydroxy-4-aminophenyl)propionate p-Chlorobenzovi Chloride

Manufacturing Process

The 6-benzoxazolyl analog of the 5-benzoxazolyl product is prepared as follows:

(a) Ethyl 2-(2-p-chlorophenyl-6-benzoxazolyl)propionate: A solution of ethyl 2-(3-hydroxy-4-aminophenyl)propionate (2.5 g) in pyridine (15 ml) was treated with p-chlorobenzoyl chloride (1.65 ml) at 5°C. After stirring for 2 hours at room temperature the solution was evaporated to dryness.

The residue was heated at 220°C until no more water was evolved, then was allowed to cool. This yielded ethyl 2-(2-p-chlorophenyl-6-benzoxazolyl)propionate.

(b) 2-(2-p-Chlorophenyl-6-benzoxazolyl)propionic acid: A solution of ethyl 2-(2-p-chlorophenyl & benzoxazolyl) propionate (4 g) in aqueous sodium hydroxide (30 ml) was heated on a steam bath for one-half hour. On cooling the black solution was washed with chloroform. On acidification of the black solution with hydrochloric acid the mixture was extracted with chloroform. This solution on evaporation yielded 2-(2-p-chlorophenyl-6-benzoxazolyl)propionic acid, MP 196°C.

References

Merck Index 1044 DFU 2 (9) 565 (1977) Kleeman & Engel p. 82 OCDS Vol. 2 p. 356 (1980) DOT 16 (9) 283 (1980) I.N.p. 123

Evans, D., Dunwell, D.W. and Hicks, T.A.; U.S. Patent 3,912,748; October 14, 1975; assigned to Lilly Industries Ltd.

Evans, D., Dunwell, D.W. and Hicks, T.A.; U.S. Patent 3,962,441; June 8, 1976; assigned to Lilly Industries, Ltd.

Evans, D., Dunwell, D.W. and Hicks, T.A.; U.S. Patent 3,962,452; June 8, 1976; assigned to Lilly Industries, Ltd.

BENOXINATE HYDROCHLORIDE

Therapeutic Function: Topical anesthetic

Chemical Name: 4-amino-3-butoxybenzoic acid 2-(diethylamino)ethyl ester hydrochloride

Common Name: Oxybuprocaine

Structural Formula:

Chemical Abstracts Registry No.: 5987-82-6; 99-43-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dorsacaine HCI	Dorsey	U.S.	1953
Novesine	Merck-Chibret	France	1960
Anemixin	Zeria	Japan	_
Benoxil	Santen	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Benoxinate	Barnes-Hind	U.S.	_
Cebesine	Chausin-Blache	France	_
Colirio Anestesico	Collado	Spain	_
Collu-Blache	Chauvin-Blache	France	_
Conjuncain	Mann	W. Germany	-
Lacrimin	Santen	Japan	-
Minims Benoxinate	Smith & Nephew	U.K.	-
Novesin	Wander	Switz.	-
Novesin	Dispersa	Switz.	-
Prescaina	Llorens	Spain	-
Scarlene	Chauvin-Blache	France	_

Raw Materials

3-Oxy-4-nitrobenzoic Acid Potassium Hydroxide Thionyl Chloride Hydrogen

Ethanol Butanoi

Diethylamino Ethanol Hydrogen Chloride

Manufacturing Process

25 grams of 3-oxy-4-nitrobenzoic acid are esterified (ethyl ester) and 26 grams of the ester are dissolved in 200 cc of absolute ether and treated with 7 grams of caustic potash in 20 cc of absolute methanol. The red potassium phenolate with 7 grams of pure butyl bromide and 7 grams of absolute alcohol are heated for 5 hours in the oven to 150°C. When cool, the alcohol is evaporated in vacuo and the butoxy-nitrobenzoic acid ethyl ester is precipitated with water. The substance is sucked off and saponified for 15 minutes with a solution of 2.5 grams of caustic potash in 30 cc of alcohol on a water bath. The alcohol is evaporated in vacuo and the 3-butoxy-4-nitrobenzoic acid is precipitated with hydrochloric acid. It forms needles which melt at 174°C. 7.9 grams of dry acid are boiled for 45 minutes under a reflux condenser with 25 cc of thionyl chloride. The excess of thionyl chloride is then removed in vacuo, and the oil is distilled. The acid chloride has a yellow color and solidifies.

- 7.3 grams of the acid chloride are treated with 6.6 grams of diethyl-amino-ethanol in 20 cc of absolute benzene. The mixture is then warmed for 1 hour on a water bath. When cold, it is treated with a solution of soda and washed with ether. After drying over potash, the ether and benzene are removed by distillation and 3-butoxy-4-nitrobenzoic acid diethylamino-ethyl ester is obtained, having a BP 215°C/2.5 mm.
- 5.0 grams of this product are hydrogenated in absolute alcohol solution with fresh Raney nickel. When the absorption of hydrogen ceases (5 hours), the solution is filtered and the alcohol evaporated in vacuo. The 3-butoxy-4-aminobenzoic acid diethyl-amino-ethyl ester boils at 215°-218°C at 2mm pressure; it is an almost colorless oil.

By precipitation of a solution of the ester in absolute ether with hydrogen chloride gas, the dihydrochloride is obtained; upon recrystallization from alcohol/ether, it forms crystals which melt at 196° 197°C.

References

Merck Index 1045 Kleeman & Engel p. 671 I.N. p. 716 REM p. 1057 Dr. A. Wander, AG, Switzerland; British Patent 654,484; June 20, 1951

BENPERIDOL

Therapeutic Function: Tranquilizer

Chemical Name: 1-[1-[4-(4-fluorophenyl)-4-oxobutyl] -4-piperidinyl] -1,3-dihydro-2H-benz-

imidazol-2-one

Common Name: Benzperidol

Structural Formula:

Chemical Abstracts Registry No.: 2062-84-2

Trade Name	Manufacturer	Country	Year Introduced
Frenactil	Clin-Compar-Byla	France	1965
Gliahimon	Tropon	W. Germany	1966
Anquil	Janssen	U.K.	1973

Raw Materials

γ-Chloro-4-fluorobutyrophenone 1-(4-Piperidyl)-2-benzimidazoline HCl

Manufacturing Process

A mixture of 3.4 parts of γ -chloro-4-fluorobutyrophenone, 4 parts of 1-(4-piperidyl)-2benzimidazolinone hydrochloride, 6 parts of sodium carbonate and 0.1 part of potassium iodide in 176 parts of 4-methyl-2-pentanone is stirred and refluxed for 48 hours. The reaction mixture is cooled and 120 parts of water is added. The separated organic layer is dried over magnesium sulfate and the solvent is evaporated to leave an oily residue which is dissolved in dilute hydrochloric acid and boiled. The acidic solution is filtered and cooled at room temperature whereupon there crystallizes from solution 1-(1-[\gamma-(4-fluorobenzov])propyl] -4-piperidyl>-2-benzimidazolinone hydrochloride hydrate melting at about 134°-142°C.

References

Merck Index 1046 Kleeman & Engel p. 83 OCDS Vol. 2 p. 290 (1980) I.N. p. 124

British Patent 989,755; April 22, 1965; assigned to N.V. Research Laboratorium Dr. C. Janssen

Janssen, P.A.J.; U.S. Patent 3,161,645; December 15, 1964; assigned to Research Laboratorium Dr. C. Janssen N.V.

BENPROPERINE

Therapeutic Function: Antitussive

Chemical Name: 1-[1-Methyl-2-[2-(phenylmethyl)phenoxy] ethyl] piperidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2156-27-6

Trade Name	Manufacturer	Country	Year Introduced
Tussafug	Medipharm	Switz,	_
Blascorid	Guidotti	Italy	1968
Flaveric	Pfizer Taito	Japan	1970
Tussafugsaft	Robugen	W. Germany	1976
Pirexyl	Pharmacia	Sweden	_
Blascorid	Pharmacia	Sweden	-
Pectipront	Mack	W. Germany	_

(The above trade names are for phosphate and pamoate derivatives)

Raw Materials

o-Benzylphenoxy- β -chloropropane Piperidine

Manufacturing Process

A mixture of 26.1 g of o-benzylphenoxy- β -chloropropane and 17 g of pipiridine is refluxed over a period of 32 hours until the temperature is about 124°C and a nearly solid mixture is formed due to the precipitation of a salt. The mixture is then refluxed over a period of 48 hours at about 160°C and the reaction product obtained is cooled and dissolved in methanol. The solution is concentrated under reduced pressure to yield an oil which is added to 200 ml 3N hydrochloric acid whereupon the mixture is shaken with ether, 3 x 100 ml, until the aqueous phase is clear. The ether solution is washed with water, 3 x 50 ml, and the water present in the combined aqueous phase and water used for washing is evaporated under reduced pressure methanol being added three times when the residue appears to be dry. The impure hydrochloride of o-benzylphenoxy- β -N-piperidinopropane, 41 g, obtained is dissolved in 100 ml water and 100 ml 30% aqueous sodium hydroxide solution are added, whereupon precipitated oil is extracted with ether, 1 x 100 and 2 x 50 ml. The ether solution is washed with water, 4 x 50 ml, dried with magnesium sulfate and the ether is removed under reduced pressure. The residue, 25.2 g, is distilled under reduced pressure and the main fraction, 23.2 g, BP 159°-161°C/0.2 mm.

References

Merck Index 1047 Kleeman & Engel p. 83 OCDS Vol. 2 p. 100 (1980) DOT 13 (6) 223 (1977) I.N. p. 124

Rubinstein, K.; U.S. Patent 3,117,059; January 7, 1964; assigned to A.B. Pharmacia

BENSERAZIDE

Therapeutic Function: Antiparkinsonism

Chemical Name: DL-serine 2-[(2,3,4-trihydroxyphenyl)methyl] hydrazide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 322-35-0

Trade Name	Manufacturer	Country	Year Introduced
Madopar	Roche	Italy	1974
Madopar	Roche	U.K.	1975
Modopar	Roche	France	1975
Madopar	Roche	W, Germany	1975
Neodopasol	Daiichi	Japan	1980
Madopar	Nippon Roche	Japan	1980
EC-Dopary	Kyowa Hakko	Japan	1980
Madopark	Roche	· 	_
Prolopa	Roche	_	_

Raw Materials

DL-Servi Hydrazide HCI Pyrogaliolaldehyde Hydrogen

Manufacturing Process

35.5 grams of DL-seryl-hydrazide hydrochloride was dissolved in 350 ml of water and 35 grams of pyrogallolaldehyde (2,3,4-trihydroxy-benzaldehyde) added thereto at one time. In about 5-10 minutes a clear solution resulted, whereupon slow crystallization occurred and the temperature rose to about 6°-7°C. The crystallization was permitted to continue overnight at 5°C, and the very fine precipitate was then isolated by centrifugation and in the centrifuge washed with water, ethanol, and ether, yielding the dihydrate of DL-seryl-(2,3,4-trihydroxy-benzylidene) hydrazide hydrochloride, which melted at 134°-136°C and was poorly soluble in cold water, but very readily dissolved in hot water. The condensation was also effected in absolute ethanol yielding the anhydrous form of the hydrazone, which melted at 225°-228°C.

33.5 grams of the hydrazone-dihydrate was suspended in 330 ml of methanol and hydrogenated with 2.5 grams of palladium-carbon. After the absorption of 2.8 liters of hydrogen, the catalyst was filtered off and the solution evaporated in vacuo to a weight of about 52-55 grams. It was then immediately mixed with 160 ml of absolute ethanol and permitted to crystallize for 24 hours at room temperature and then for a further 24 hours at 0°C. The product was then filtered off with suction and washed with absolute ethanol and absolute ether. The so-obtained DL-seryl-(2,3,4-trihydroxy-benzyl)-hydrazide hydrochloride formed a white crystalline powder which was readily soluble in water and which melted at 146°-148°C.

References

Merck Index 1048 Kleeman & Engel p. 84 DOT 10 (9) 322 (1974) I.N. p. 124

Hegedus, B. and Zeller, P.; U.S. Patent 3,178,476; April 13, 1965; assigned to Hoffmann-La Roche Inc.

BENTIROMIDE

Therapeutic Function: Diagnostic aid (pancreatic function)

Chemical Name: 4-[[2-(Benzoylamino)-3-(4-hydroxyphenyl)-1-oxopropyl] amino]benzoic

acid

Common Name: N-Benzoyl-L-tyrosyl-p-aminobenzoic acid

Structural Formula:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Chemical Abstracts Registry No.: 37106-97-1

Trade Name	Manufacturer	Country	Year Introduced
PFD Oral Sol	Eisai	Japan	1980
PFT Roche	Roche	Switz.	1982
Chymex	Adria	U.S.	

Raw Materials

L-Tyrosine N-Methylmorpholine Benzoyl Chloride p-Aminobenzoic Acid

Manufacturing Process

A mixture was made of L-tyrosine (18.1 g, 0.1 mol) benzoyl chloride (7.0 g, 0.05 mol) and 200 ml anhydrous THF. After stirring at reflux for 2 hours, the mixture was cooled to room temperature, and the precipitate of tyrosine hydrochloride filtered off (11 g, 46 meq. CI-). The THF was evaporated and the residue extracted with CCI₄ (3 X 100 ml at reflux, discarded) and then dissolved in ethyl acetate (200 ml) filtering off insolubles. The ethyl acetate solution was evaporated to yield 13.2 g solid product, MP 159°-162°C (93%). The tyrosine was recovered (8 g) by neutralization with aqueous alkali, from the hydrochloride.

A solution was made of N-benzyl-L-tyrosine (5.7 g, 20 mmols) and N-methylmorpholine (2.04 g, 20 mmols) in 60 ml of THF, at -15°C, and to it was added ethyl chloroformate (2.08 g, 20 mmols). After 12 minutes, p-aminobenzoic acid (2.74 g, 20 mmols) dissolved in 25 ml of THF and 0.38 g of p-toluenesulfonic acid (2 mmols) were added, and the temperature ailowed to rise to 5°C. After 2 hours and forty minutes, the mixture was poured into 1 liter of 0.1 N cold HCl, stirred one-half hour, filtered and dried, to give 8.7 g, MP 192°-223°C. The product was recrystallized from 90 ml methanol and 40 ml water, to give 6 g (74%) of product, N-benzoyl-L-tyrosyl-p-aminobenzoic acid, MP 240°-242°C.

References

Merck Index 1050 OCDS Vol. 3 p. 60 (1984) DOT 16 (10) 354 (1980) I.N. p. 125

De Benneville, P.L. and Greenberger, N.J.; U.S. Patent 3,745,212; July 10, 1973; assigned to Rohm & Haas Co.

BENZBROMARONE

Therapeutic Function: Uricosuric, antiarthritic

Chemical Name: (3,5-dibromo-4-hydroxyphenyl)-(2-ethyl-3-benzofuranyl)methanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3562-84-4

Trade Name	Manufacturer	Country	Year Introduced
Desuric	Labaz	Switz.	_
Uricovac	Labaz	W. Germany	1971
Desuric	Labaz	France	1976
Desuric	Sigma Tau	Italy	1977
Urinorm	Torii	Japan	1979
Azubromaron	Azupharma	W. Germany	_
Allomaron	Nattermann	W. Germany	_
Exurate	Mead-Johnson	U.S.	_
Hipuric	Labaz	· _	_
Max-Uric	Labinca	Argentina	
Minuric	Labaz	_	_
Narcaricin	Heumann	W. Germany	_
Normurat	Grunenthal	W. Germany	****
Obaron	Mepha	Switz.	_

Raw Materials

Chloroacetone Salicyclic Aldehyde
Hydrazine Hydrate Anisoyl Chloride
Bromine

Manufacturing Process

The propyl analog of the benzbromarone intermediate containing an ethyl group is prepared as follows: to a solution of potassium hydroxide (56 g = 1 mol) in absolute ethyl alcohol (750 cc) is added one mol of salicylic aldehyde (122 grams). The mixture is brought to boiling point in a water-bath until the potassium salt formed is dissolved. One mol of ethyl chloromethyl ketone (106.5 grams) (methyl chloromethyl ketone or chloracetone in the case of benzbromarone) is gradually added and the solution boiled in a reflux condenser for two hours.

After cooling, the potassium chloride precipitate is separated off by filtration, and the greater part of the solvent removed by distillation. The residue is then purified by distillation. In this way, 140 grams of 2-propionyl coumarone are obtained, boiling at 135°C under 15 mm Hg. A mixture is then prepared as follows: 215 grams of 2-propionyl coumarone, 550 cc of diethylene glycol and 200 grams of hydrazine hydrate at 85% and maintained at boiling point in a reflux condenser for 10 minutes. After cooling, 180 grams of potassium hydroxide are added and the mixture brought up to 120°-130°C. This temperature is maintained until no more nitrogen is liberated (about 1 hour). The mixture is then distilled by means of super-heated steam (150°-160°C).

The distillate is neutralized by means of concentrated HCI, decanted, and the aqueous layer extracted by means of ether. The oily layer and the ethereal extract are mixed, washed with diluted HCI, then with water, and finally dried over sodium sulfate. The solvent is removed and the residue rectified under reduced pressure. In this way, 130 grams of 2-propyl coumarone are obtained, boiling at 112°C under 17 mm of mercury.

The following substances are then placed in a 250 cc flask fitted with a stirrer and a separatory funnel: 12.96 grams of 2-propyl coumarone, 55 cc of carbon sulfide and 14 grams of anisoyl chloride. The mixture is cooled by means of iced water and 21.5 grams of stancic chloride introduced dropwise, while the mixture is stirred. Stirring is continued for three hours at 0°C, after which the mixture is allowed to stand overnight. 50 cc of carbon sulfide is added and the mixture is treated, while being stirred, with the following: 20 cc of HCl and 100 cc of iced water. The organic layer is decanted and washed with water, dried over silica gel and rectified.

16.16 grams of 2-propyl-3-anisoyl coumarone are obtained (Yield: 72%), boiling at 189°C under 0.5 mm Hg. The methoxylated coumarone so obtained is mixed as follows: 1 part of 2-propyl-3-anisoyl coumarone and 2 parts of pyridine hydrochloride and the mixture maintained for one hour under a stream of dry nitrogen in an oil bath at 210°C (under a vertical condenser). After cooling, the mixture is triturated with 0.5 N hydrochloric acid (10 parts). The aqueous layer is separated and the residue extracted with ether. The ethereal extract is treated with 20 parts of 1% caustic soda. The alkaline layer is separated by decanting and acidified by means of diluted HCl. The precipitate is purified by recrystallization in aqueous acetic acid.

0.8 part of 2-propyl-3-p-hydroxybenzoyl coumarone is obtained, melting at 123°C. Then the dibromo counterpart of benzbromarone may be prepared as follows: 8.05 g of 3-ethyl-2-p-hydroxybenzoyl coumarone, prepared as described above, are dissolved in very si'ght excess of 3% caustic soda. To this solution is gradually added a slight excess of bromine dissolved in a 25% aqueous solution of potassium bromide. The resultant solution is acidified with a 20% solution of sodium bisulfite, centrifuged, washed with water and then dried under vacuum. The product is then recrystallized in acetic acid and 13.6 g of 2-(4'-hydroxy-3',5'-di-bromo-benzoyl)-3-ethyl coumarone obtained. MP 151°C.

References

Merck Index 1062 Kleeman & Engel p. 87 OCDS Vol. 2 p. 354 (1980) I.N. p. 127

Hoi, N.P.B. and Beaudet, C.; U.S. Patent 3,012,042; December 5, 1961; assigned to Societe Belge de l'Azote et des Produits Chimiques du Marly, Belgium

BENZETHONIUM CHLORIDE

Therapeutic Function: Topical Antiinfective

Chemical Name: N,N-Dimethyl-N-[2-[2-[4-(1,1,3,3-tetramethylbutyl)-phenoxy] ethyl] benzenemethanaminium chloride

2011011101110111011101101101101

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 121-54-0

Trade Name	Manufacturer	Country	Year Introduced
Phemerol	Parke Davis	u.s.	1942
Premithyn	Flint	U.S.	1959
Benzalcan	Siegfried	Switz.	_
Dalidyne	Dalin	U <i>.</i> S.	_
Desamon	Streuli	Switz.	-
Hyarom	Teva	Israel	_
Sterilette	Farmitalia Carlo Urba	Italy	-
Uni Wash	United	U.S.	_

Raw Materials

p-Diisobutylphenol	Dichlorodiethyl Ether
Benzyl Chloride	Dimethylamine

Manufacturing Process

A mixture of 32 g of p- $(\alpha,\alpha,\gamma,\gamma$ -tetramethylbutyl)phenoxyethoxyethyl-dimethylamine and 12.7 parts of benzyl chloride was warmed in 50 g of benzene for 2 hours. The benzene was then evaporated. The residual viscous mass gave a foamy, soapy solution in water.

The original starting materials are p-diisobutylphenol, dichlorodiethyl ethar and dimethylamine.

References

Merck Index 1072 PDR pp. 829, 1826 I.N. p. 127 REM p. 1166

Bruson, H.A.; U.S. Patents 2,115,250; April 26, 1938; 2,170,111; August 22, 1939; and 2,229,024; January 21, 1941; all assigned to Rohm & Haas Co.

BENZOCTAMINE HCI

Therapeutic Function: Sedative, muscle relaxant

Chemical Name: N-Methyl-9,10-ethanoanthracene-9(10H)-methanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 10085-81-1; 17243-39-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tacitin	Ciba Geigy	Switz.	_
Tacitine	Ciba Geigy	France	1970

Trade Name	Manufacturer	Country	Year Introduced
Tacitin	Ciba Geigy	U.K.	1971
Tacitin	Ciba Geigy	italy	1971
Tacitin	Ciba Geigy	W. Germany	1972

Anthracene Monomethylamine Acrolein Hydrogen

Manufacturing Process

A solution of 10 g of 9:10-dihydro-9:10-ethano-(1:2)-anthracene-(9)aldehyde (made from anthracene and acrolein) and 10 g of monomethylamine in 100 cc of ethanol is heated at 80°C for 4 hours in an autoclave. The reaction mixture is then evaporated to dryness under reduced pressure to leave a crystalline residue which is dissolved in 150 cc of ethanol and. after the addition of 2 g of Raney nickel, hydrogenated at 40°C under atmospheric pressure. When the absorption of hydrogen has subsided, the catalyst is filtered off and the filtrate evaporated under reduced pressure. An oil remains which is covered with 100 cc of 2N hydrochioric acid. The 9-methylamino-methyl-9:10-dihydro-9:10-ethano-(9:10)-anthracene hydrochloride crystallizes immediately; after crystallization from methanol it melts at 320°-322°C.

References

Merck Index 1087 Kleeman & Engel p. 88 DOT 6 (4) 123 (1970) I.N. p. 129

Schmidt, P., Wilhelm, M. and Eichenberger, K.; U.S. Patent 3,399,201; August 27, 1968; assigned to Ciba Corp.

BENZONATATE

Therapeutic Function: Antitussive

Chemical Name: 4-(butylamino)benzoic acid 3,6,9,12,15,18,21,24,27-nonaoxaoctacos-1-yl

ester

Common Name: Benzononatine

Structural Formula:

-- coo(сн₂сн₂о)₉сн₃

Chemical Abstracts Registry No.: 104-31-4

Trade Name	Manufacturer	Country	Year Introduced
Tessalon	Endo (Du Pont)	U.S.	1958
Ventusasin	Warren Teed	U.S.	1964
Tessalon	Ciba Geigy	Switz.	_

Raw Materials

p-Butylaminobenzoic Acid Ethyl Ester Nonaethylene Glycol Monomethyl Ether

Manufacturing Process

4.42 parts of para-butylamino-benzoic acid ethyl ester are put with 16.0 parts of a mixture of polyethylene glycol monomethyl ethers, boiling at 180°-220°C at a pressure of 0.01 mm of mercury, in a closed reaction vessel which is fitted with an adjustable inlet tube for solvents and a connection for distilling off in vacuo. In order to dry the mixture completely. it is heated for an hour at 100°-105°C and absolute xylene is introduced under the surface of the mixture in vacuo at a pressure of 12 mm of mercury. There is thus a constant stream of xylene steam passing through the whole apparatus, which removes the last traces of moisture and any other volatile impurities. The xylene is condensed in a cooler. The whole is cooled to 20°-30°C and 0.06 part of sodium methylate dissolved in 0.6 part of methanol is added.

Thereupon xylene is introduced again in vacuo at a temperature of 100°-105°C whereby all the methanol and the ethanol formed during re-esterification evaporates. The re-esterification is continued under these conditions until a specimen of the reaction mass is clearly soluble in cold water, which occurs after about 2-3 hours. There is now obtained in almost quantitative yield the ester of the formula

wherein n stands for approximately 7 to 9, which still contains an excess of polyethylene glycol monomethyl ether. The ester is purified by dissolving in benzene and being washed several times with a sodium carbonate solution of 5% strength. It is advantageous to agitate all the washing solutions with fresh benzene. In this distribution between benzene and sodium carbonate solution the new ester remains in the benzene, the excess polyethylene glycol monomethyl ether and a small amount of brown impurities are taken up by the dilute soda solution. By evaporating the dried and filtered benzene solution there is obtained the new ester in the form of a colorless to very faintly vellow oil which is easily soluble in most organic solvents with the exception of aliphatic hydrocarbons. The new ester is precipitated from aqueous solutions when heated to about 42°C, but it dissolves again readily on cooling.

References

Merck Index 1099 Kleeman & Engel p. 89 PDR p. 862 I.N. p. 130 REM p. 870

Matter, M.; U.S. Patent 2.714.608; August 2, 1955; assigned to Ciba Pharmaceutical Products. Inc.

BENZPHETAMINE HYDROCHLORIDE

Therapeutic Function: Antiobesity

Chemical Name: N-\alpha-dimethyl-N-\(\text{phenylmethyl}\)\)benzeneethanamine hydrochloride

Common Name: -

Chemical Abstracts Registry No.: 5411-22-3; 156-08-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Didrex	Upjohn	U.S.	1960
Inapetyl	Upjohn	France	1969
Didrex	Upjohn	U.K.	-

Raw Materials

d-Desoxyephedrine Hydrochloride Sodium Hydroxide Benzyl Chloride Hydrogen Chloride

Manufacturing Process

Fifty grams of d-desoxyephedrine hydrochloride was dissolved in a small amount of water and a molar excess of sodium hydroxide was added thereto. The resulting forty grams of precipitated oily d-desoxyephedrine was collected in ether and the whole was thereafter dried with anhydrous potassium carbonate. The ether was then removed, the resulting oily residue having an n_D²² of 1.5045 was stirred in a flask with 40 grams of anhydrous sodium carbonate at 120°C, and 34.6 grams of benzyl chloride was added dropwise thereto over a period of thirty minutes. Stirring was continued for 2 hours, whereafter the reaction mixture was extracted with benzene.

The benzene was distilled from the extract and the residue of d-N-methyl-N-benzyl-β-phenylisopropylamine was distilled at reduced pressure. The thus obtained free base, distilling at 127° C at a pressure of 0.2 mm of mercury and having an n_D^{19} of 1.5515, was dissolved in ethyl acetate and a molar equivalent of ethanolic hydrogen chloride was added thereto. Anhydrous ether was added to the mixture and d-N-methyl-N-benzyl-β-phenylisopropylamine hydrochloride precipitated from the reaction mixture as an oil which was crystallized from ethyl acetate to give crystals melting at 129° to 130°C.

References

Merck Index 1122 Kleeman & Engel p. 89 PDR p. 1841 OCDS Vol. 1 p. 70 (1977) I.N. p. 131 REM p. 891

Heinzelman, R.V. and Aspergren, B.D.; U.S. Patent 2,789,138; April 16, 1957; assigned to The Upjohn Company

BENZPYRINIUM BROMIDE

Therapeutic Function: Cholinergic

Chemical Name: 3-[[(Dimethylamino)carbonyl]oxy]-1-(phenylmethyl)-pyridinium bromide

Common Name: -

Chemical Abstracts Registry No.: 587-46-2

Trade Name	Manufacturer	Country	Year Introduced
Stigmonene	Warner Lambert	U.S.	1949

Raw Materials

Dimethylcarbamyl Chloride 3-Pyridol Benzyl Bromide

Manufacturing Process

56 grams of dimethylcarbamyl chloride were gradually added over a period of 50 minutes to a solution of 45 grams of 3-pyridol in a mixture of 300 cc of benzene and 69 grams of triethylamine. The reaction mass was then agitated at 80°C for 3 hours and permitted to cool. The triethylamine hydrochloride was removed by filtration and solvents distilled from the filtrate under vacuum in a nitrogen atmosphere. The residual oil was then fractionated under vacuum whereby, after removal of unchanged dimethylcarbamyl chloride, a product distilling at 90°C at 0.3 mm was obtained; this product was the dimethylcarbamyl ester of 3-pyridol.

60 grams of the ester prepared as above described were dissolved in 225 cc of benzene and 92,5 grams of benzyl bromide were added thereto. The solution was stirred at room temperature for 24 hours and refluxed for 3 additional hours. At the end of this time the crude product which formed was separated, washed with benzene and dissolved in water. The aqueous solution was extracted with ether, filtered through charcoal and then evaporated to dryness in a nitrogen atmosphere; traces of water were removed by redissolving the oily residue in absolute alcohol, adding benzene and then evaporating the mixture to dryness under vacuum. The yellow oil thus obtained was then dissolved in a mixture of 300 cc of benzene and 55 cc of absolute alcohol under reflux, the solution cooled, and 340 cc of absolute ether added. The solution was then seeded and maintained at 5°C for two days. The crystalline product obtained was filtered and dried, a product melting between 115°C and 116°C being obtained. This product was the desired 1-benzyl-3-(dimethylcarbamyloxy)-pyridinium bromide.

References

Merck Index 1124

I.N. p. 131

Wuest, H.M.; U.S. Patent 2,489,247; November 22, 1949; assigned to William R. Warner & Co., Inc.

BENZQUINAMIDE

Therapeutic Function: Tranquilizer, antinauseant

Chemical Name: 2-(acetyloxy)-N,N-diethyl-1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-2H-

benzo[a] quinolizine-3-carboxamide

Common Name: -

Chemical Abstracts Registry No.: 63-12-7; 30046-34-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Emete-Con	Roerig	U.S.	1974
Promecon	Endopharm	W. Germany	1983
Quantril	Pfizer	U.S.	_

Raw Materials

2-Oxo-3-carboxy-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline Diethylamine Hydrogen Hydrogen Chloride

Manufacturing Process

According to U.S. Patent 3,055,894, a solution consisting of 3.4 grams (0.01 mol) of 2oxo-3-carboethoxy-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline and 0.8 grams (0.011 mol) of freshly distilled diethylamine dissolved in 50 ml of xylene was refluxed under a nitrogen atmosphere for 24 hours. After cooling to room temperature, the reaction mixture was successively extracted with four 100 ml portions of water. The aqueous phase was then discarded and the xylene layer was passed through a paper filter containing a bed of sodium sulfate and activated charcoal. The resulting filtrate was then heated under reduced pressure (65 mm Hg) via a water bath at 50°C in order to remove the xylene solvent, and the residual oil so obtained was cooled to approximately 5°C and held at that point until a semisolid formed (required approximately 16 hours). Recrystallization of the semisolid from aqueous ethanol in the presence of activated charcoal afforded light yellow crystals of 2-oxo-3-(N,N-diethylcarboxamido)-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline, MP 150°-152°C.

Then, as described in U.S. Patent 3,053,845, one hundred grams (0.278 mol) of 2-oxo-3-(N,N-diethylcarboxamido)-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline was dissolved in 1,500 ml of hot methanol and the resulting solution was allowed to cool to room temperature. After removal of all the dissolved oxygen therein by saturation of the solution with dry nitrogen, 5.0 grams of Adams' platinum oxide catalyst was introduced into the system in one portion while still maintaining same under a nitrogen atmosphere.

The reaction flask and its contents were then shaken at room temperature under slightly greater than one atmosphere of hydrogen pressure until the total hydrogen uptake was completed. Dissolved hydrogen gas was then removed from the reaction solution by saturation of same with respect to dry nitrogen, while the platinum black was removed by means of gravity filtration. Concentration of the resulting filtrate under reduced pressure on a steam bath then afforded a nearly quantitative yield of 2-hydroxy-3-(N,N-diethylcarboxamido)-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline as a yellow crystalline solid (mixture of the axial and equatorial forms).

A mixture consisting of 2 grams of 2-hydroxy-3-(N,N-diethylcarboxamido)-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline (OH-axial) hydrochloride (prepared by treating the base with hydrogen chloride gas in absolute ether) dissolved in 7 ml of acetic anhydride containing 3 ml of pyridine was heated at 100°C for 2 hours under a nitrogen atmosphere. At the end of this period, a crystalline precipitate had formed and the resultant mixture was subsequently diluted with an equal volume of diethyl ether and filtered.

The crystalline hydrochloride salt so obtained, i.e., the solid material collected on the filter funnel, was then converted to the corresponding free base by distribution in 10 ml of a benzene-aqueous 5% sodium carbonate system. The product recovered from the benzene extracts was then recrystallized from diisopropyl ether to afford 1.46 grams of 2-acetoxy-3-(N,N-diethylcarboxamido)-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-H-benzopyridocoline (CH₃COO-axial), MP 130°-131.5°C.

References

Merck Index 1125 Kleeman & Engel p. 90

PDR p. 1523

OCDS Vol. 1 p. 350 (1977)

DOT 11 (1) 11 (1975); 9 (6) 233 (1973)

I.N. p. 131

REM p. 807

Tretter, J.R.; U.S. Patent 3,053,845; September 11, 1962; assigned to Chas. Pfizer & Co.,

Lombardino, J.G. and McLamore, W.M.; U.S. Patent 3,055,894; September 25, 1962; assigned to Chas. Pfizer & Co., Inc.

BENZTHIAZIDE

Therapeutic Function: Diuretic, antihypertensive

Chemical Name: 6-chloro-3-([(phenylmethyl)thio] methyl)-2H-1,2,4-benzothiadiazine-7-

sulfonamide 1,1-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 91-33-8

Trade Name	Manufacturer	Country	Year Introduced
Exna	Robins	U.S.	1960
Dytide	SK&F	U.K.	1960
Diteriam	Roussel	France	1962
Aquatag	Tutag	U.S.	1965
Edemex	Savage	U.S.	1970
Lemazide	Lemmon	U.S.	1970
Aquapres	Coastal	U.S.	-
Aquastat	Lemmon	U.S.	_
Aquatag	Reid-Provident	U.S.	_
Decaserpyl	Roussel	France	_
Dihydrex	Astra	Sweden	_
Exosalt	Bayer	W. Germany	_
Fovane	Taito Pfizer	Japan	_
Hydrex	Trimen Labs	U.S.	_
Hy-Drine	Zemmer	U.S.	 ,
Proaqua	Reid Provident	U.S.	
Regulon	Yamanouchi	Japan	_
Tensimic	Roussel	France	_
Urese	Pfizer	U.S.	_

Raw Materials

2,4-DisulfamyI-5-chloroaniline Chloroacetaldehyde Benzyl mercaptan

Manufacturing Process

The preparation of the dihydro analog is as follows:

- (A) Preparation of 3-Chloromethyl-6-Chloro-7-Sulfamyl-3,4-Dihydro-Benzothiadizine-1,1-Dioxide-To 8 ml of 40-50% chloroacetaldehyde aqueous solution and 7 ml of dimethylformamide are added 10 grams of 2,4-disulfamyl-5-chloroaniline. The mixture is heated on a steam bath for 2 hours after which it is concentrated at reduced pressure. The residue is triturated with water. The solid material is recrystallized from methanol-ether aftertreatment with activated carbon to give 7.2 grams of product, MP 229°-230°C.
- (B) Preparation of Benzylthiomethyl-6-Chloro-7-Sulfamyl-3,4-Dihydrobenzothiadiazine-1,1-Dioxide—A mixture of 3-(chloromethyl)-6-chloro-7-sulfamyl-3,4-dihydrobenzothiadiazine-1,1-dioxide (0.02 mol) and benzylmercaptan (0.024 mol) in 20 ml of 10% sodium hydroxide and 20 ml of dimethylformamide is stirred at room temperature for 6 hours. After heating for 10 minutes on a steam bath, the mixture is cooled and acidified with 6 N HCI. The product, after recrystallization from acetone, melts at 210°-211°C.

References

Merck Index 1126 Kleeman & Engel p. 90 PDR pp. 1458, 1807 I.N.p. 132 REM p. 938

McLamore, W.M. and Laubach, G.D.; U.S. Patent 3,111,517; November 19, 1963; assigned to Chas. Pfizer & Co., Inc.

BENZTROPINE MESYLATE

Therapeutic Function: Antiparkinsonism

Chemical Name: 3-(Diphenylmethoxy)-8-methyl-8-azabicyclo[3,2,1] octane methanesul-

fonate

Common Name: Tropine benzohydryl ether methanesulfonate, Benztropine methanesulfonate (See also Benzatropine Mesylate)

Structural Formula:

Chemical Abstracts Registry No.: 132-17-2

Trade Name	Manufacturer	Country	Year Introduced
Cogentin	Merck Sharp & Dohme	U.S.	1954
Cogentinol	Astra	W. Germany	_
Cogentine	Merrell	France	1966
Cogentin	Merck Banyu	Japan	_
Akitan	Farmos	Finland	_
Bensylate	ICN	Canada	- `

Diphenyldiazomethane Tropine Hydrogen Bromide

Sodium Hydroxide Methane Sulfonic Acid

Manufacturing Process

Diphenyldiazomethane was prepared by shaking 7.9 grams of benzophenone hydrazone and 8.8 grams of yellow mercuric oxide in petroleum ether, filtering and evaporating off the petroleum ether from the filtrate under reduced pressure. To the residual diphenyldiazomethane 2.83 grams of tropine and 4.5 ml of benzene were added. The mixture was warmed in a pan of hot water at about 85°C under reflux for 24 hours after which time the original purple color had been largely discharged. The reaction mixture was dissolved by adding benzene and water containing hydrochloric acid in excess of the quantity theoretically required to form a salt. A rather large amount of water was required since the tropine benzohydryl ether hydrochloride was not very soluble and tended to separate as a third phase. The aqueous layer was separated, washed with benzene and with ether and made alkaline with an excess of sodium hydroxide. The resulting insoluble oil was extracted with benzene.

The benzene extracts were dried over potassium carbonate and evaporated under reduced pressure, leaving a residue of 4.1 grams. The residue (tropine benzohydryl ether) was dissolved in ether and treated with hydrogen bromide gas until an acidic reaction was obtained. The precipitate soon became crystalline and was collected on a filter and dried. The tropine benzohydryl ether hydrobromide weighed 4.1 grams. Recrystallization from absolute ethanol gave 3.3 grams of first crop melting at 247°-248°C (dec.).

Twelve grains of tropine benzohydryl ether hydrobromide was converted to the free base by warming with dilute aqueous sodium hydroxide. The oily base was extracted with toluene. The toluene extract was washed with water and then extracted with about 100 ml of water containing 28.1 ml of 1.10 N methanesulfonic acid, (an equimolecular quantity). The toluene solution was extracted twice more with fresh portions of water. The combined water extracts were evaporated under reduced pressure. Residual water was removed by dissolving the residue in absolute ethanol and evaporating under reduced pressure several times. Residual alcohol was then removed by dissolving the residue in acetone and evaporating under reduced pressure several times. The resulting residue was recrystallized by dissolving in acetone and adding ether. The crystalline precipitate was collected on a filter, washed with ether and dried at 56°C in vacuo. The tropine benzohydryl ether methanesulfonate weighed 10.2 grams, MP 138°-140°C.

References

Merck Index 1127 Kleeman & Engel p. 86 PDR pp. 1149, 1606 DOT 18 (2) 91 (1982) I.N. p. 127 REM p. 928

Phillips, R.F.: U.S. Patent 2,595,405; May 6, 1952; assigned to Merck & Co., Inc.

BEPHENIUM HYDROXYNAPHTHOATE

Therapeutic Function: Anthelmintic

Chemical Name: N,N-dimethyl-N-(2-phenoxyethyl)benzenemethanaminium hydroxynaphtho-

ate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7181-73-9

Trade Name	Manufacturer	Country	Year Introduced
Alcopar	Wellcome	U.K.	1960
Alcopar	Wellcome	France	1965
Alcopara	Burroughs-Wellcome	U.S.	1967
Alcopar	Wellcome-Tanabe	Japan	_

Raw Materials

Dimethyl Amine Chloro-2-phenoxyethane

Benzyl Chloride 2-Hydroxy-3-naphthoic acid

Manufacturing Process

First, dimethylamino-2-phenoxyethane was made by reacting chloro-2-phenoxyethane with dimethylamine. Benzyl chloride (10 grams) was then added to a solution of 1-dimethylamino-2-phenoxyethane (12.3 grams) in acetone (35 ml). The mixture warmed spontaneously and N-benzyl-N, N-dimethyl-N-2-phenoxyethylammonium chloride slowly crystallized. After 24 hours, this solid was filtered off, washed with fresh acetone and dried immediately in vacuo, MP 135°-136°C.

2-Hydroxy-3-naphthoic acid (1.88 grams) was dissolved in hot aqueous sodium hydroxide (0.5 N; 20 ml) and the resulting solution was slowly added to a solution of N-benzyl-N,Ndimethyl-N-2-phenoxyethylammonium chloride (2.9 grams) in water (5 ml). A gum separated at first but it solidified on scratching. After the addition was complete, the mixture was allowed to stand at room temperature for 2 hours and then filtered. The residue was washed with water and dried in vacuo to give N-benzyl-N,N-dimethyl-N-2-phenoxyethylammonium 2-hydroxy-3-naphthoate, MP 170°-171°C.

References

Merck Index 1159 Kleeman & Engel p. 93 DOT 4 (3) 114 (1968)

I.N. p. 134

Copp, F.C.; U.S. Patent 2,918,401; December 22, 1959; assigned to Burroughs Wellcome & Co., Inc.

BEPRIDII

Therapeutic Function: Antianginal

Chemical Name: 1-[2-(N-benzylanilino)-3-isobutoxypropyl)pyrrolidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 49571-04-2

Trade Name	Manufacturer	Country	Year Introduced
Cordium	Riom	France	1981
Angoprii	Cerm	France	_
Angopril	Riom	France	

Raw Materials

1-(3-Isobutoxy-2-hydroxy)propy! Pyrrolidine	Sodium Amide
N-Benzylaniline	Thionyl Chloride

Manufacturing Process

The first step involves the preparation of 1-(3-isobutoxy-2-chloro)propyl pyrrolidine as an intermediate. 345 ml of thionyl chloride dissolved in 345 ml of chloroform are added, drop by drop, to 275 g of 1-(3-isobutoxy-2-hydroxy)propyl pyrrolidine dissolved in 350 ml of chloroform, while maintaining the temperature at approximately 45°C. The reaction mixture is heated to reflux until gas is no longer evolved. The chloroform and the excess of thionyl chloride are removed under reduced pressure. The residue is poured on to 400 g of crushed ice. The reaction mixture is rendered alkaline with soda and the resulting mixture is extracted twice with 250 ml of diethyl ether. The combined ethereal extracts are dried over anhydrous sodium sulfate. After evaporation of the solvent the residue is distilled under reduced pressure. 220 g of product are obtained having the following properties: boiling point = 96° C/3 mm, n_{\odot} ²⁴ = 1.4575.

The final product is prepared as follows. 23.4 g of sodium amide is added little by little to a solution of 92 g of N-benzylaniline in 500 ml of anhydrous xylene. The reaction mixture is then heated at 130°-135°C for 6 hours.

While maintaining the temperature at 110° C, 110 g of the product of the first step dissolved in 150 ml of xylene is added and the product heated for 6 hours at 120° C.

The product having been allowed to cool to ambient temperature, 200 ml of cold water are added. The organic phase is separated and extracted with an aqueous solution of hydrochloric acid.

After twice washing with 100 ml of diethyl ether, the aqueous phase is made alkaline with 50% caustic soda solution. The liberated base is twice extracted with 150 ml of diethyl ether. After the ether has been evaporated, the residue is distilled under reduced pressure and has a boiling point of $184^{\circ}\text{C}/0.1$ mm, $n_{\text{D}}^{20} = 1.5538.77$ g of the pure base in the form of a viscous liquid is thus obtained. The hydrochloride, which is prepared in conventional manner, has a melting point of 128°C .

References

Merck Index 1160 DFU 2 (11) 713 (1977) Kleeman & Engel p. 93 OCDS Vol. 3 p. 46 (1984) DOT 18 (9) 422 (1982) I.N. p. 135

Mauvernay, R.Y., Busch, N., Moleyre, J., Monteil, A. and Simond, J.; U.S. Patent 3,962,238; June 8, 1976; assigned to Centre Europeen de Recherches Mauvernay "CERM"

BETAMETHASONE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-fluoro-11β, 17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 378-44-9

Trade Name	Manufacturer	Country	Year Introduced
Celestone	Schering	U.S.	1961
Becort	Rachelle	U.S.	
Betacortil	Pfizer	U.S.	_
Betalone	Firma	Italy	-
Betamamallet	Showa	Japan	_
Betapred	Glaxo	U.K.	
Betasolon	Pharmax	Italy	_
Betnelan	Glaxo	U,K,	_
Betnesail	Glaxo	U.K.	_
Betnesol	Glaxo	U.K.	_
Celestan	Aesca	Austria	_
Celestene	Cetrane	France	_
Celestone	Essex	Spain	_
Cuantin	I.C.N.	Canada	_
Dermovaleas	Valeas	Italy	
Desacort-Beta	Caber	Italy	_
Diprosone	Byk-Essex	W. Germany	_
Diprosone	Unilabo	France	_
Diprostene	Centrane	France	_
Hormezone	Tobishi	Japan	_
Linosal	Wakamoto	Japan	_
Minisone	IDI	Italy	_
No-Rheumar	Janus	Italy	_
Pertene Víta	Víta	italy	_
Rinderon	Shionogi	Japan	_
Sanbetason	Santen	Japan	_
Sclane	Promesa	Spain	_
Unicort	Unipharm	Israel	_
Valisone	Schering	U,S.	_

Raw Materials

Betamethasone Acetate Hydrogen Chloride

Manufacturing Process

Betamethasone acetate is converted to betamethasone by means of hydrochloric acid in a methanol-chloroform-water mixture as described in U.S. Patent 3,164,618.

References

Merck Index 1196 Kleeman & Engel p. 95

PDR p. 1610

OCDS Vol. 1 p. 198 (1977)

I.N. p. 137

REM p. 962

Amiard, G., Torelli, V. and Cerede, J.; U.S. Patent 3,104,246; September 17, 1963; assigned to Roussel-UCLAF, SA, France

Rausser, R. and Oliveto, E.P.; U.S. Patent 3,164,618; January 5, 1965; assigned to Schering Corporation

BETAMETHASONE ACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione-21-

acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 987-24-6

Trade Name	Manufacturer	Country	Year Introduced
Celestone Soluspan	Schering	U.S.	1965
Betafluorene	Lepeti t	France	_
Celestone Cronodose	Essex	Italy	_

Raw Materials

17α,21-Dihydroxy-16β-methyl-4,9(11)-pregnadiene-3,20-dione 21 Acetate

N-Bromosuccinimide Perchloric Acid Sodium Methoxide Acetic Anhydride Hydrogen Fluoride Selenium Dioxide

Manufacturing Process

The synthesis is long and complex. For brevity, only the last steps are given here. Refer to the patents cited below for full details.

Preparation of 9α-Bromo-11β,17α,21-Trihydroxy-16β-Methyl-4-Pregnene-3,20-Dione 21-Acetate: To a mixture of 620 mg of 17α,21-dihydroxy-16β-methyl-4,9(11)-pregnadiene-3,20-dione 21-acetate and 330 mg of N-bromosuccinimide in 10 ml of dioxane and 3.2 ml of water cooled to 10°C was added 1.8 ml of cold 1 M aqueous perchloric acid. The mixture was stirred at 15°C for 3 hours. Excess N-bromosuccinimide was destroyed by addition of aqueous sodium thiosulfate and most of the dioxane was removed in vacuo. About 30 ml of water was added and crystalline bromohydrin, 9α -bromo- 11β , 17α , 21-trihydroxy-16β-methyl-4-pregnene-3,20-dione 21-acetate, was filtered, washed with water, and dried in air.

Preparation of 9β.11β-Epoxy-17α-21-Dihydroxy-16β-Methyl-4-Pregnene-3,20-Dione 21-Acetate: To a stirred solution of 100 mg of the 9α -bromo- 11β .17 α .21-trihydroxv- 16β methyl-4-pregnene-3,20-dione 21-acetate in 3 ml of tetrahydrofuran and 1 ml of methanol under nitrogen was added 1.02 ml of 0.215 N methanolic sodium methoxide. After 10 minutes at 25°C, 0.2 ml of acetic acid was added and the methanol removed in vacuo. residue was acetylated with 1.00 ml of pyridine and 0.5 ml of acetic anhydride at 60°C for 70 minutes. The mixture was taken to dryness in vacuo, water added, and the product extracted into chloroform. The residue was crystallized from ether-acetone to give pure 9β , 11β -epoxy- 17α , 21-dihydroxy- 16β -methyl-4-pregnene-3, 20-dione 21-acetate.

Preparation of 9α-Fluoro-11β.17α,21-Trihydroxy-16β-Methyl-4-Pregnene-3,20-Dione 21-Acetate: To a solution of 200 mg of 9β , 11β -epoxy- 17α , 21-dihydroxy- 16β -methyl-4-pregnene 3,20-dione 21-acetate in 2 ml of chloroform and 2 ml of tetrahydrofuran in a polyethylene bottle at ~60°C was added 2 ml of a 2:1 (by weight) mixture of anhydrous hydrogen fluoride and tetrahydrofuran. After 4 hours at -10°C the mixture was cooled to -60°C and cautiously added to a stirred mixture of 30 ml or 25% aqueous potassium carbonate and 25 ml of chloroform kept at -5°C. The aqueous phase was further extracted with chloroform and the latter phase washed with water and dried over magnesium sulfate. The residue on crystallization from acetone-ether gave pure 9α -fluoro- 11β , 17α , 21-trihydroxy- 16β methyl-4-pregnene-3,20-dione 21-acetate.

Preparation of 9α-Fluoro-11β,17α,21-Trihydroxy-16β-Methyl-1,4-Pregnadiene-3,20-Dione 21-Acetate: 100 mg of 9α-fluoro-11β,17α,21-trihydroxy-16β-methyl-4-pregnene-3,20-dione 21-acetate was treated with selenium dioxide to produce the corresponding 9α -fluoro-11 β , 17α ,21-trihydroxy-16 β -methyl-1,4-pregnadiene-3,20-dione 21-acetate. Alternately, *Bacillus* sphaericus may be utilized.

References

Merck Index 1196 Kleeman & Engel p. 97 PDR p. 1612 I.N. p. 137 REM p. 963

Taub, D., Wendler, N.L. and States, H.L.; U.S. Patent 3,053,865; September 11, 1962; assigned to Merck & Co., Inc.

Rausser, R. and Oliveto, E.P.: U.S. Patent 3,164,618: January 5, 1965; assigned to Schering Corporation.

BETAMETHASONE BENZOATE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-Fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione-17-

benzoate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22298-29-9

Trade Name	Manufacturer	Country	Year Introduced
Benisone	Warner Lambert	US.	1973
Flurobate Gel	Texas Pharm.	U.S.	1973
Beben	Parke Davis	Italy	1974
Uticort Gel	Warner Lambert	U.S.	1977
Benisone	Cooper Vision	U.S.	1979
Bebate	Warner	U.K.	_
Beben	Vister	Italy	_
Dermizol	Roux-Ocefa	Argentina	-
Euvaderm	Sasse	W, Germany	_
Parbetan	Parke Davis	W. Germany	_
Skincort	Parke Davis	W. Germany	_
Uticort	Parke Davis	U.S.	-

Raw Materials

Betamethasone Methyl Orthobenzoate

Manufacturing Process

A mixture of 50 g of betamethasone, 50 cc of dimethylformamide, 50 cc of methyl orthobenzoate and 1.5 g of p-toluenesulfonic acid is heated for 24 hours on oil bath at 105°C while a slow stream of nitrogen is passed through the mixture and the methanol produced as a byproduct of the reaction is distilled off. After addition of 2 cc of pyridine to neutralize the acid catalyst the solvent and the excess of methyl orthobenzoate are almost completely eliminated under vacuum at moderate temperature. The residue is chromatographed on a column of 1,500 g of neutral aluminum oxide. By elution with ether-petroleum ether 30 g of a crystalline mixture are obtained consisting of the epimeric mixture of 17α ,21-methyl orthobenzoates. This mixture is dissolved without further purification, in 600 cc of methanol and 240 cc of aqueous 2N oxalic acid are added to the solution. The reaction mixture is heated at 40° -50°C on water bath, then concentrated under vacuum. The residue, crystallized from acetone-ether, gives betamethasone 17-benzoate, MP 225°-231°C.

References

Merck Index 1196 Kleeman & Engel p. 98 PDR p. 1393 DOT 10 (1) 9 (1974) I.N. p. 137

Ercoli, A. and Gardi, R.; U.S. Patent 3,529,060; September 15, 1970; assigned to Warner-Lambert Pharmaceutical Co.

BETAMETHASONE DIPROPIONATE

Therapeutic Function: Glucocorticoid

Chemical Name: -

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5593-20-4

Trade Name	Manufacturer	Country	Year Introduced
Betnovate	Glaxo	U.K.	1961
Bentelan	Glaxo	Italy	1962
Betnesol	Glaxo	France	1963
Betnesol	Glaxo	W. Germany	1965
Diprosone	Schering	U.S.	1975
Rinderon DP	Shionogi	Japan	1980
Diprolene	Schering	U.S.	1983
Alphatrex	Savage	U.S.	_
Beloderm	Belupo	Yugoslavia	_
Diproderm	Essex Espana	Spain	
Diproderm	Aesca	Austria	_
Diproderm	Schering	U.S.	_
Diprogenta	Byk-Essex	W. Germany	_
Diprosalic	Unilabo	France	_
Diprosalic	S chering	U.K.	-
Diprostene	Cetrane	France	-
Lortisone	Schering	U.S.	
Vanceril	Schering	U.S.	_

Raw Materials

9α.Fluoro-11β-hydroxy-16β-methyl-17α,21-(1'-ethyl-1'-ethoxymethylenedioxy)pregna-1,4-diene-3,20-dione Acetic Acid Propionyl Chloride

Manufacturing Process

A solution of 9α -fluoro- 11β -hydroxy- 16β -methyl- 17α ,21-(1'-ethyl-1'-ethoxymethylenedioxy) pregna-1,4-diene-3,20-dione (538 mg) in acetic acid (20 ml), containing 2 drops of water, was allowed to stand at room temperature for 5 hours. Dilution of the mixture with water gave a white solid (457 mg) which, after being filtered off and dried, was recrystallized from acetone to afford 9α -fluoro- 11β ,21-dihydroxy- 16β -methyl- 17α -propionyloxypregna-1,4-diene-3, 20-dione (361 mg), MP 230°-235°C.

Bethmethasone 17-propionate (812 mg) in pyridine (10 ml) was treated with propionyl chloride (0,21 ml) at 0°C for 1 hour. Dilution with water and acidification with dilute hydrochloric acid gave the crude diester. Recrystallization from acetone-petroleum ether afforded betamethasone 17,21-dipropionate (649 mg), MP 117°C (decomposition).

References

Merck Index 1196 Kleeman & Engel p. 99 PDR pp. 888, 1429, 1601, 1614, 1631 I.N.p. 138

Elks, J., May, P.J. and Weir, N.G.; U.S. Patent 3,312,590; April 4, 1967; assigned to Glaxo Laboratories, Ltd.

BETAMETHASONE VALERATE

Therapeutic Function: Corticosteroid

Chemical Name: 9-fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione-

17-valerate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33755-46-3; 38196-44-0 (Divalerate)

Trade Name	Manufacturer	Country	Year Introduced
Valisone	Schering	U.S.	1967
Beta Dival	Fardeco	Italy	1978
Beta Val	Lemmon	U.S.	1980
Cordel	Taisho	Japan	1981
Betatrex	Savage	U.S.	1983
Betacort	ICN	Canada	_
Betacorten	Trima	Israel	-
Betaderm	K-Line	Canada	_
Betnesol	Glaxo	W. Germany	_
Betnelan	Glaxo	U.K.	
Betnevate	Daiichi	Japan	_
Celestan	Schering	W. Germany	_
Celestoderm	Cetrane	France	-
Celestoderm	Essex Espana	Spain	=
Dermosol	Iwaki	Japan	_
Dermovaleas	Valeas	Italy	-
Ecoval	Glaxo	Italy	_
Metaderm	Riva	Canada	_
Muhibeta	Nippon Shoji	Japan	_
Novobetamet	Novopharm	Canada	_
Procto-Celestan	Byk-Essex	W. Germany	
Recto-Betnesol	Glaxo	W. Germany	_
Retenema	Glaxo	U.K.	_
Rinderon	Shionogi	Japan	_
Rolazote	Lando	Argentina	_
Stranoval	Glaxo	Italy	_

Betamethasone Methyl Orthovalerate

Manufacturing Process

The valerate is made from betamethasone as a starting material as follows: A suspension of 9α -fluoro-11 β ,17 α ,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione (betamethasone) (2 grams) in sodium dried benzene (500 ml) was distilled vigorously for a few minutes, toluene-p-sulfonic acid monohydrate (30 mg) and methyl orthovalerate (5 ml) were added and distillation was continued for 10 minutes. The mixture was then boiled under reflux for 1.5 hours after which time unreacted betamethasone alcohol (400 mg) was removed by filtration. The benzene solution was treated with solid sodium bicarbonate and a few drops of pyridine, filtered and evaporated to dryness at about 50°C. The residue, in ether, was filtered through grade III basic alumina (20 grams) to remove traces of unreacted betamethasone alcohol, the ether removed in vacuo and the residue of crude betamethasone 17,21-methyl orthovalerate was treated with acetic acid (20 ml) and a few drops of water and left overnight at room temperature.

The acetic acid solution was poured into water (100 ml) and extracted with chloroform. The chloroform extracts were washed in turn with water, saturated sodium bicarbonate solution and water, dried and evaporated in vacuo. The residual gum was triturated with ether and a white crystalline solid (1.16 grams) isolated by filtration. Recrystallization from ether (containing a small amount of acetone)-petroleum ether gave 9α-fluoro-11β,21dihydroxy- 16β -methyl- 17α -valeryloxypregna-1,4-diene-3,20-dione (871 mg) as fine needles.

References

Merck Index 1196 Kleeman & Engel p. 101 PDR pp. 888, 1034, 1428, 1602, 1658 I.N. p. 138 REM p. 963

Elks, J., May, P.J. and Weir, N.G.; U.S. Patent 3.312.590; April 4, 1967; assigned to Glaxo Laboratories Limited, England

BETAXOLOL HYDROCHLORIDE

Therapeutic Function: β -Adrenergic blocking agent for cardiovascular problems

Chemical Name: 1-[4-[2-(Cyclopropylmethoxy)ethyl]phenoxy]-3-[(1-methylethyl)amino]-2-propanol hydrochloride

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 63659-18-7

Trade Name	Manufacturer	Country	Year Introduced
Kerlone	Carriere	France	1983
Kerlon	Kramer	Switz.	1983

4-[2-(Cyclopropylmethoxy)ethyl] phenol Epichlorohydrin Sodium Hydroxide Isopropylamine Hydrogen Chloride

Manufacturing Process

- (1) 1 g of sodium hydroxide pellets (0.025 mol) is added to a suspension of 3.8 g of 4-[2-(cyclopropylmethoxy)-ethyl]-phenol in 30 ml of water. When the solution becomes homogenous, 2.3 ml of epichlorohydrin are added and the mixture is stirred for 8 hours. It is then extracted with ether and the extract is washed with water, dried over sodium sulfate and evaporated to dryness. The compound is purified by passing it over a silica column. 2.4 g of 1-[4-[2-(cyclopropylmethoxy)ethyl]-phenoxy]-2,3-epoxy-propane are thus obtained.
- (2) 4.9 g of the preceding compound (0.02 mol) are condensed with 25 ml of isopropylamine by contact for 8 hours at ambient temperature and then by heating for 48 hours at the reflux temperature. After evaporation to dryness, the compound obtained is crystallized from petroleum ether. 5 g (yield 80%) of 2-[[4-(2-cyclopropylmethoxy)-ethyl]-phenoxy]-3-isopropylamino-propan-2-ol are thus obtained, melting point 70° to 72°C.

The hydrochloride is prepared by dissolving the base in the minimum amount of acetone and adding a solution of hydrochloric acid in ether until the pH is acid. The hydrochloride which has precipitated is filtered off and is recrystallized twice from acetone, melting point 116°C.

References

Merck Index 1197 DFU 4 (12) 867 (1979) DOT 18 (10) 552 (1982)

Manoury, P.M.J., Cavero, I.A.G., Majer, H. and Guidicelli, D.P.R.L.; U.S. Patent 4,252,984; February 24, 1981; assigned to Synthelabo

BETAZOLE

Therapeutic Function: Diagnostic aid (gastric secretion)

Chemical Name: 1H-pyrazole-3-ethanamine

Common Name: β -aminoethylpyrazole; ametazole

Structural Formula:

Chemical Abstracts Registry No.: 105-20-4; 138-92-1 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Histalog	Lilly	U.S.	1953
Betazol	Lilly	W. Germany	_
Histimin	Shionogi	Japan	-

Raw Materials

Pyrone

Hydrazine Hydrate Hydrogen

Manufacturing Process

A solution of 55 grams (1.1 mol) of hydrazine hydrate in 100 ml of methanol was cooled in a water bath and stirred while a solution of 48 grams (0.50 mol) of pure γ-pyrone in 100 ml of methanol was added over a period of about 15 minutes. After the addition was complete, the solution was allowed to stand at room temperature for about 1 hour, and was placed in a 1 liter hydrogenation bomb. 25 ml of liquid ammonia were added cautiously with stirring, followed by about 15 cc of Raney nickel catalyst. The bomb was charged with hydrogen to 1,800 pounds pressure, heated to 90°C and agitated. The quantity of hydrogen required to convert the hydrazone into the desired aminoethylpyrazole was taken up in about 3 hours. The bomb was cooled and opened, and the contents filtered. The filtrate was evaporated under reduced pressure to remove the methanol and the residual liquid was distilled under reduced pressure, whereby there were obtained 44.5 grams (81% yield) of 3-β-aminoethylpyrazole boiling at 118°-123°C at a pressure of 0.5 mm of Hg.

References

Merck Index 1198 Kleeman & Engel p. 102 I.N. p. 139 REM p. 1124

Jones, R.G.; U.S. Patent 2,785,177; March 12, 1957; assigned to Eli Lilly and Company

BETHANECHOL CHLORIDE

Therapeutic Function: Cholinergic

Chemical Name: 2-[(aminocarbonyl)oxy]-N,N,N-trimethyl-1-propanamium chloride

Common Name: Carbamylmethylcholine chloride

Structural Formula:

$$\begin{bmatrix} \text{CH}_{3}\text{CH} - \text{CH}_{2}\text{N}^{+} (\text{CH}_{3})_{3} \\ \text{O} - \text{CO} - \text{NH}_{2} \end{bmatrix}_{\text{C1}^{-}}$$

Chemical Abstracts Registry No.: 590-63-3

Trade Name	Manufacturer	Country	Year Introduced
Urecholine CI	MSD	U.S.	1949
Urecholine CI	MSD	Switz.	_
Duvoid	Norwich Eaton	U.S.	1978
Besacolin	Eisai	Japan	
Bethachorol	Nichiiko	Japan	_
Mechothane	Farillon	U.K.	_
Mictone	Kenyon	U.S.	-
Mictrol	Misemer	U.S.	_
Mycholine	Glenwood	U.S.	_
Myo Hermes	Hermes	Spain	_
Myotonachol	Glenwood	U.S.	-
Myotonine	Glenwood	U.K.	

Trade Name	Manufacturer	Country	Year Introduced
Paracholin	Kanto	Japan	_
Perista	Nissin	Japan	_
Urocarb	Hamilton	Australia	_
Urolax	Century	U.S.	_

β-Methylcholine Chloride Phosgene Ammonia

Manufacturing Process

About 3 grams of β -methylcholine chloride are stirred at room temperature with an excess of phosgene dissolved in 50 grams of chloroform, for about 2 hours. Excess phosgene and hydrochloric acid are removed by distillation under vacuo. Additional chloroform is added to the syrup and the mixture is poured into excess ammonia dissolved in chloroform and cooled in solid carbon dioxide-acetone. The solid is filtered and extracted with hot absolute alcohol. The solid in the alcohol is precipitated with ether, filtered, and recrystallized from isopropanol. The carbaminoyl- β -methylcholine chloride obtained has a melting point of about 220°C.

References

Merck Index 1200 Kleeman & Engel p. 102 PDR pp. 830, 926, 1219, 1276 I.N. p. 139 REM p. 895

Major, R.T. and Bonnett, H.T.; U.S. Patent 2,322,375; June 22, 1943; assigned to Merck & Co., Inc.

BIALAMICOL

Therapeutic Function: Antiamebic

Chemical Name: 3,3'-Bis ((diethylamino)methyl) -5,5'-di-(2-propenyl)-[1,1'-biphenyl) -4,4'-

diol

Common Name: Biallylamicol

Structural Formula:

Chemical Abstracts Registry No.: 493-75-4

Trade Name	Manufacturer	Country	Year Introduced
Camoform HCI	Parke Davis	u.s.	1956

Paraformaldehyde Diethylamine 3,3'-Diallyl-4,4'-biphenol

Manufacturing Process

Paraformaldehyde (7.5 g) (0.25 mol) and 18.3 g (0.25 mol) of diethylamine are mixed in 25 cc of alcohol and warmed until a clear solution is obtained. The solution is cooled and mixed with 26.6 g (0.10 mol) of 3,3'-diallyl-4,4'-biphenol in 25 cc of alcohol. After standing several hours, the solution is warmed for one hour on the steam bath, allowing the alcohol to boil off. The residue is then taken up in ether and water, the ether layer separated and washed with 2% sodium hydroxide solution and finally with water. The washed ether solution is dried over solid potassium carbonate, and filtered. After acidifying with alcoholic hydrogen chloride, the ether is distilled off and the alcoholic residue diluted with an equal volume of acetone. The crystalline hydrochloride is filtered off, triturated with alcohol, diluted with several volumes of acetone, filtered and dried: MP 209°-210°C.

References

Merck Index 1209 I.N. p. 141

Rawlins, A.L., Holcomb, W.F., Jones, E.M., Tendick, F.H. and Burckhalter, J.H.; U.S. Patent 2,459,338; January 18, 1949; assigned to Parke, Davis & Co.

BIETASERPINE

Therapeutic Function: Antihypertensive

Chemical Name: 1-[2-(Diethylamino)ethyl] -11,17-dimethoxy-18-[(3,4,5-trimethoxyben-

zoyl)oxy] yohimban-16-carboxylic acid methyl ester

Common Name: 1-[2-(Diethylamino)ethyl] reserpine

Structural Formula:

Chemical Abstracts Registry No: 53-18-9

Trade Name	Manufacturer	Country	Year Introduced
Tensibar	Le Franco	France	1967
Pleiatensin	Guidotti	Italy	_
Pleiatensin	Byla	France	_

Raw Materials

Naphthalene Sodium Diethylaminochloroethane Reserpine

Manufacturing Process

The first stage is to prepare the naphthyl sodium solution in the following way:

To a solution of 0.6 g naphthalene in 10 ml tetrahydrofurane, anhydrous, used as solvent, add 96 mg sodium under a nittrogen atmosphere. After a few minutes, an intensive dark green coloration develops, while the sodium dissolves. The reaction is completed after a period of time ranging between 30 and 60 minutes.

Then add to the above solution a solution of $2.42 \, \mathrm{g}$ reserpine in 60 ml anhydrous dioxan at $50 \, \mathrm{^oC}$.

After heating for 15 minutes (which corresponds to carrying out reaction a), add 0.6 g, diethylaminochloroethane, while the mixture is kept boiling under reflux, for 6 hours. Reaction b is then completed.

Then cool the mixture and evaporate the dioxan under reduced pressure. The pasty residue is dissolved in a mixture of 50 ml benzene and 20 ml ether, and washed several times with water.

The aqueous solutions resulting from the washing are also extracted with ether, and the ether portions are added to the main ether-benzene solution.

This solution is extracted several times with 5% acetic acid, until the silico-tungstate test (an identification test for alkaloids) yields a negative result, and the acetic solutions are washed with 10 ml ether.

After combining the acetic extracts, the solution is adjusted to a pH of 9 with sodium carbonate, which precipitates the base, which is insoluble in water.

The oily suspension obtained in this way is extracted several times with chloroform. The chloroform solutions are then washed, each with 10 ml water, then they are combined and dried over anhydrous potassium carbonate.

After filtering and evaporating the solvent under reduced pressure, the pasty residue, constituted by the enriched product, is diluted with 30 ml ether and in this way 0.225 g reserpine (which has not taken part in the reaction) is isolated by filtration.

After evaporation of the ether under reduced pressure, 1.525 g of the crude resinous base is obtained, which constitutes the required product in a crude and impure condition.

This product is purified in the following way: After dissolving in 15 ml of dry benzene, the resulting solution is filtered on an alumina column, which fixes the base.

After consecutive elutions with pure benzene, and benzene containing increasing proportions of chloroform, 0.748 g of 1-diethylaminoethyl-reserpine is isolated in the form of a resin. The crystalline acid bitartrate prepared in ethyl acetate melts at 145°-150°C, with decomposition.

References

Merck Index 1217 Kleeman & Engel p. 105 I.N. p. 142

Societe Nogentaise De Produits Chimiques and Buzas, A.; British Patent 894,866; April 26, 1962

BIFONAZOLE

Therapeutic Function: Antifungal

Chemical Name: 1-[(1,1'-Biphenyl)-4-ylphenylmethyl]-1H-imidazole

Common Name: (Biphenyl-4-yl)-imidazol-1-yl-phenylmethane

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Mycospor	Bayer	W. Germany	1983

Raw Materials

4-Phenylbenzophenone Sodium Borohydride Thionyl Chloride Imidazole

Manufacturing Process

38.8 g (0.15 mol) of 4-phenylbenzophenone are dissolved in 200 ml of ethanol and 3 g (0.075 mol) of sodium borohydride are added. After heating for 15 hours under reflux, and allowing to cool, the reaction mixture is hydrolyzed with water containing a little hydrochloric acid. The solid thereby produced is purified by recrystallization from ethanol. 36 g (89% of theory) of (biphenyl-4-yi)-phenyl-carbinol [alternatively named as diphenyl-phenyl carbinol or α-(biphenyl-4-yl)benzylalcohol] of melting point 72°-73°C are obtained.

13.6 g (0.2 mol) of imidazole are dissolved in 150 ml of acetonitrile and 3.5 ml of thionyl chloride are added at 10°C. 13 g (0.05 mol) of (biphenyl-4-yl)-phenyl-carbinol are added to the solution of thionyl-bis-imidazole thus obtained. After standing for 15 hours at room temperature, the solvent is removed by distillation in vacuo. The residue is taken up in chloroform and the solution is washed with water. The organic phase is collected, dried over sodium sulfate and filtered and the solvent is distilled off in vacuo. The oily residue is dissolved in ethyl acetate and freed from insoluble, resinous constituents by filtration. The solvent is again distilled off in vacuo and the residue is purified by recrystallization from acetonitrile. 8.7 g (56% of theory) of (biphenyl-4-yl)-imidazol-1-yl-phenylmethane [alternatively named as diphenyl-imidazolyl-(1)-phenyl-methane or as 1-(α -biphenyl-4-ylbenzyl)imidazole] of melting point 142°C are obtained.

References

Merck Index A-3 DFU 7 (2) 87 (1982) DOT 19 (6) 341 (1983) I.N. p. 142

Regal, E., Draber, W., Buchel, K.H. and Plempel, M.; U.S. Patent 4,118,487; October 3, 1978; assigned to Bayer A.G.

BIPERIDEN

Therapeutic Function: Antiparkinsonism

Chemical Name: α-bicyclo [2,2,1] hept-5-en-2-yl-α-phenyl-1-piperidinepropanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 514-65-8; 1235-82-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Akineton HCI	Knoll	U.S.	1959
Akineton HCI	Knoll	W, Germany	_
Akineton HCI	Knoll	Switz.	_
Akinophyl	Biosedra	France	1970
Akineton	Abbott	U.K.	-
Akineton	Dainippon	Japan	
Akineton	Medinsa	Spain	_
Dekinet	Rafa	Israel	-
Ipsatol	Orion	Finland	_
Paraden	Yurtoglu	Turkey	_
Tasmolin	Yoshitomi	Japan	-

Raw Materials

Acetophenone	Piperidine HCI
5-Chloro-2-norbornene	Magnesium
Hydrogen Chloride	Formaldehyde

Manufacturing Process

65 grams of 3-piperidino-1-phenyl propanone-1 of the summary formula $C_{14}H_{29}ON$, produced according to Mannich's reaction by reacting acetophenone with formaldehyde and piperidine hydrochloride are dissolved in 300 cc of benzene. The resulting solution is added to an organo-magnesium solution prepared from 96 grams of [$\Delta 5$ -bicyclo-(2,2,1)-heptenyl-2]-chloride (also known as 5-chloro-2-norbornene) 18.5 grams of magnesium shavings, and 300 cc of ether.

The reaction mixture is boiled for half an hour under reflux. Thereafter the ether is removed by distillation, until the inside temperature reaches $65^{\circ}\text{-}70^{\circ}\text{C}$. The resulting benzene solution is added to 95 cc concentrated hydrochloric acid containing ice for further processing. Thereby, 3-piperidino-1-phenyl-1-[$\Delta 5$ -bicyclo-(2,2,1)-heptenyl-2]-propanol-1 of the summary formula $C_{21}H_{29}ON$ is obtained. The compound melts at 101°C and its chlorohydrate has a melting point of about 238°C. The compound is difficultly soluble in water, slightly soluble in ethanol, and readily soluble in methanol.

References

Merck Index 1231 Kleeman & Engel p. 107 PDR p. 975 OCDS Vol. 1 p. 47 (1977) DOT 18 (2) 90 (1982) I.N. p. 144 REM pp. 928, 929

Klavehr, W.; U.S. Patent 2,789,110; April 16, 1957; assigned to Knoll AG Chemische Fabriken, Germany

BISACODYL

Therapeutic Function: Laxative

Chemical Name: 4,4'-(2-pyridylmethylene)bisphenol diacetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 603-50-9

Trede Name	Manufacturer	Country	Year Introduced
Dulcolax	Boehr, Ingel.	U.S.	1958
Dulcolax	Thomae	W. Germany	_
Dulcolax	Boehr, Ingel.	Switz.	_
Contalax	Riker	France	1959
Bicol	Wampole	U.S.	1974
Biscolax	Fleet	U.S.	1975
Theralax	Beecham	U.S.	1976
Alaxa	Angelini	Italy	_
Anan	Ono	Japan	_
Bisacolax	ICN	Canada	-
Biomit	Sampo	Japan	_
Brocalax	Brocades-Steethman	Neth,	
Cathalin	Hokoriku	Japan	_
Codilax	Pharbil	Belgium	_
Contalax	Fischer	Israel	_
Darmoletten	Omegin	W. Germany	-
Deficol	Vangard	U.S.	_
Delco-Lax	Delco	U.S.	_
Durolax	Boehr, Ingel,	W. Germany	_
Endokolat	Weiskopf	W. Germany	_
Ercolax	Erco	Denmark	
Ethanis	Taisho	Japan	_
Eulaxan	Ferring	W. Germany	_
Evac-Q-Kwik	Adria	U.S.	_
Godalax	Pfleger	W. Germany	
Hillcolax	Hillel	Israel	-
lvilax	Bieffe	Italy	_
Laco	Paul Maney	Canada	_
Laksodil	Uranium	Turkey	-
Lax	Kanto	Japan	_
Laxadin	Teva	Israel	_
Laxagetten	Tempelhof	W. Germany	_
Laxanin N	Schwarzhaupt	W. Germany	_
Laxbene	Merckle	W. Germany	_
Laxematic	Kemifarma	Denmark	
Med-Laxan	Med	W. Germany	_
Metalax	Star	Finland	_
Mormalene	Montefarmaco	Italy	_
Neodrast	Werner Schnur	W. Germany	-

Trade Name	Manufacturer	Country	Year Introduced
Neo-Salvilax	Para-Pharma	Switz,	_
Novolax	Krka	Yugoslavia	~
Obstilax	Zirkulin	W. Germany	_
Organolax	Azuchemie	W. Germany	_
Perilax	Nordex	Norway	_
Prontolax	Streuli	Switz.	_
Pyrilax	Berlin-Chemie	E. Germany	_
Rytmil	Vicks	U.S.	-
Sanvacual	Santos	Spain	_
Satolax	Sato	Japan	-
Serax	Hamein	W, Germany	_
Stadalax	Stada	W. Germany	-
Telemin	Funai	Japan	_
Toilax	Erco	Denmark	-
Toilex	Protea	Australia	_
Ulcolax	Ulmer	U.S.	_
Vemas	Nippon Zoki	Japan	_
Vencoll	Maruko	Japan	_
Vinco	OTW	W. Germany	

Q-Pyridine Aldehyde Phenol Acetic Anhydride

Manufacturing Process

Preparation of (4,4'-Dihydroxy-Diphenyl)-(Pyridyl-2)-Methane-

70.0 grams of α -pyridine aldehyde are fed portionwise with stirring and cooling to a mixture of 200 grams of phenol and 100 cc of concentrated sulfuric acid. The reaction mixture is allowed to stand for a while with repeated stirring, whereby it becomes syrupy, neutralized with sodium carbonate, dissolved in methanol and filtered. The filtrate is introduced into a large quantity of water and the resulting precipitate is recrystallized from a methanol/water mixture. Colorless crystals are obtained of MP 254°C. When using zinc chloride or tin tetrachloride and warming to a temperature of about 50°C, a corresponding result is obtained,

Preparation of Bisacodyl: 5 grams of (4,4'-dihydroxy-diphenyl)-(pyridyl-2)-methane are heated with 5 grams of anhydrous sodium acetate and 20 cc of acetic anhydride for three hours over a boiling waterbath. The cooled reaction mixture is poured into water, whereby after a while a colorless substance precipitates, which is filtered off with suction, washed with water and recrystallized from aqueous ethanol. Colorless bright crystals, MP 138°C are obtained.

References

Merck Index 1238 Kleeman & Engel p. 107 PDR pp. 561, 677, 879, 1569

I.N. p. 145 REM p. 800

Kottler, A. and Seeger, E.; U.S. Patent 2,764,590; September 25, 1956; assigned to Dr. Karl Thomae GmbH, Germany

BISMUTH SODIUM TRIGLYCOLLAMATE

Therapeutic Function: Lupus Erythematosus Suppressant

Chemical Name: Nitrilotriacetic acid bismuth complex sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5798-43-6

Trade Name	Manufacturer	Country	Year Introduced
Bistrimate	Smith, Miller & Patch	U.S.	1946

Raw Materials

Bismuth Oxide Triglycollamic Acid Sodium Carbonate

Manufacturing Process

A mixture of 2.33 g of bismuth oxide (Bi_2O_3) , 3.71 g of anhydrous sodium carbonate, and 7.64 g of triglycollamic acid and 40 cc of water was heated at 80°C on the water bath until all was dissolved. The solution was avaporated on the water bath to a syrup. The syrup was allowed to cool, during which time partial solidification occurred. It was then triturated with 300 cc of alcohol, and the solid anhydrous salt was collected on a filter, washed with alcohol. ground fine, and dried in a vacuum desiccator. This substance has a water solubility at 25°C of 31.8% by weight. It decomposes on heating in the melting point bath.

References

Merck Index 1279 I.N. p. 147 Lehman, R.A. and Sprouli, R.C.; U.S. Patent 2,348,984; May 16, 1944

BRETYLIUM TOSYLATE

Therapeutic Function: Antiadrenergic; cardiac antiarrhythmic

Chemical Name: 2-Bromo-N-ethyl-N, N-dimethylbenzenemethanaminjum 4-methylbenzene sulfonate

Common Name: -

Structural Formula:

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Chemical Abstracts Registry No.: 61-75-6

Trade Name	Manufacturer	Country	Year Introduced
Bretylate	Wellcome	U.K.	1973
Bretylate	Wellcome	France	1974
Bretylol	Am, Crit. Care	U.S.	1978
Critifib	Arnar-Stone	U.S.	_
Darenthin	Burroughs Wellcome	U.S.	_

Raw Materials

N-o-Bromobenzyl-N,N-dimethylamine Ethyl-p-toluene Sulfonate

Manufacturing Process

N-o-bromobenzyl-N,N-dimethylamine (100 g) and ethyl p-toluenesulfonate (94 g) were mixed and warmed to 50° - 60° C; after standing for either (a) a minimum of 96 hours at 15° - 20° C or (b) a minimum of 18 hours at 50° - 60° C and cooling to room temperature, a hard, crystalline mass was formed. Recrystallization of this product from acetone (2.0 ml/g of crude solid), followed by filtration and drying to 60° C gave N-o-bromobenzyl-N-ethyl-N,N-dimethylammonium p-toluenesulfonate as a white, crystalline solid, MP 97°-99°C. For this procedure it was necessary that the reactants were substantially colorless and of a high purity.

References

Merck Index 1348 PDR p. 574 OCDS Vol. 1 p. 55 (1977) DOT 16 (10) 359 (1980) I.N. p. 152 REM p. 860

Copp, F.C. and Stephenson, D.; U.S. Patent 3,038,004; June 5, 1962; assigned to Burroughs Wellcome & Co.

BROMAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-bromo-1,3-dihydro-5-(2-pyridinyl)-2H-1,4-benzodiazepin-2-one

Common Name: -

Chemical Abstracts Registry No.: 1812-30-2

Trade Name	Manufacturer	Country	Year Introduced
Lexotan	Roche	Italy	1975
Lexotan	Roche	Japan	1977
Lexotanii	Roche	W. Germany	1977
Lexotanii	Roche	Switz.	1977
Lexomil	Roche	France	1981
Lexotan	Roche	U.K.	1982
Compedium	Polifarma	Italy	_
Creosidin	Osiris	Argentina	
Lectopam	Hoffman-La Roche	U.Š.	_
Lenitin	Ikapharm	Israel	_
Lexaurin	Krka	Yugoslavia	_
Lexilium	Alkaloid	Yugoslavia	
Normoc	Merckle	W. Germany	_

Raw Materials

2-(2-AminobenzovI)pyridine Acetic Anhydride Bromine Hydrogen Chloride

Bromo Acetyl Bromide Water Ammonia

Manufacturing Process

Example: 32.8 grams of 2-(2-aminobenzoyl)-pyridine and 200 cc of acetic anhydride were stirred at room temperature for 3 hours and then permitted to stand overnight. Evaporation to dryness and digestion of the residue with 200 cc of water containing a little sodium bicarbonate to make the pH slightly alkaline gave 2-(2-acetamidobenzoyl)-pyridine as a light tan powder, which upon crystallization from methanol formed colorless crystals melting at 151°-153°C.

A solution of 8.6 cc of bromine in 100 cc of acetic acid was added slowly over a 3.5 hour period to a stirred solution of 38.5 grams of 2-(2-acetamidobenzoyl)-pyridine in 250 cc of acetic acid. The dark solution was stirred for another 3 hours, permitted to stand overnight, stirred for 1 hour with N₂ sweeping, and evaporated at diminished pressure in the hood. The gummy residue (75 grams) was treated with water and ether, made alkaline with dilute sodium bicarbonate solution, and separated. Both phases contained undissolved product which was filtered off. Additional crops were obtained by further extraction of the aqueous phase with ether and evaporation of the resulting ether solutions. All these materials were recrystallized from methanol (decolorizing carbon added) yielding 2-(2-acetamido-5-bromobenzoyl)-pyridine as yellow crystals melting at 131.5°-133°C.

20.85 grams of 2-(2-acetamido-5-bromobenzoyl)-pyridine in 250 cc of 20% hydrochloric acid in ethanol were heated to reflux for 2 hours. 100 cc of alcohol were added after one hour to maintain fluidity. The mixture stood overnight, was chilled and filtered to give 20.5 grams of colorless crystalline 2-(2-amino-5-bromobenzovl)-pyridine hydrochloride. Digestion of this hydrochloride with 0.5 liter hot water hydrolyzed this product to the free base, 2-(2-amino-5-bromobenzovl)-pyridine which formed vellow crystals, melting at 98°-100°C. Evaporation of the alcoholic mother liquor, water digestion of the residue, and alkalization of the water digests afforded additional crops of 2-(2-amino-5-bromobenzoyl)pyridine.

0.145 kg of 2-(2-amino-5-bromobenzoyl)-pyridine, was dissolved in 2.0 liters of glacial acetic acid. The resultant solution was placed in a 3 liter, 3-necked, round bottom flask fitted with a stirrer, thermometer and dropping funnel. The system was protected by a drying tube filled with anhydrous calcium chloride. To the solution, with stirring at room temperature, were carefully added 46.7 ml of bromoacetyl bromide. After the addition was

completed, the stirring was continued for two hours. The mixture was then warmed to 40°C, stirred at that temperature for 1.5 hours, chilled and filtered. The residue, after being washed with glacial acetic acid, was dried in vacuo over flake potassium hydroxide to give 2-(2-bromoacetamido-5-bromobenzoyl)-pyridine hydrobromide orange crystals, MP 205°-206°C, dec.

The hydrobromide was hydrolyzed to the free base as follows: 0.119 kg of 2-(2-bromoacet-amido-5-bromobenzoyl)-pyridine hydrobromide was stirred with 1.2 liters of cold water for 3.5 hours. The mixture was chilled and filtered, and the residue washed with cold water and dried to give 2-(2-bromoacetamido-5-bromobenzoyl)-pyridine, MP 101°C (sinters), 103°-106°C, dec.

93.0 grams of 2-(2-bromoacetamido-5-bromobenzoyl)-pyridine was carefully added to 0.5 liter of anhydrous ammonia in a 1 liter, 3-necked, round bottom flask equipped with stirrer and reflux condenser and cooled by a Dry Ice-acetone bath. The system was protected from moisture by a drying tube containing anhydrous calcium chloride. After stirring for 2 hours, the cooling bath was removed. The mixture was then stirred for 6 hours, during which time the ammonia gradually boiled off. 0.4 liter of water was added to the solid residue and stirring was resumed for about 2 hours. The solid was then filtered off, washed with water and dried in vacuo over potassium hydroxide flakes. The residue was dissolved on a steam bath in 1.4 liters of ethyl alcohol-acetonitrile (1:1) (decolorizing charcoal added). The solution was filtered hot and the filtrate chilled overnight. The crystalline deposit was filtered off, washed with cold ethyl alcohol and dried in vacuo over flake potassium hydroxide to give 54.2 grams. 7-Bromo-1,3-dihydro-5-(2-pyridyl)-2H-1,4-benzo-diazepin-2-one, MP 238°C (sinters), 239°-240.5°, dec. Further processing of the mother liquor yielded additional product.

References

Merck Index 1357 Kleeman & Engel p. 110 DOT 9 (6) 238 (1973) & 11 (1) 31 (1975) I.N. p. 154 REM p. 1064

Fryer, R.I., Schmidt, R.A. and Sternbach, L.H.; U.S. Patent 3,100,770; August 13, 1963; assigned to Hoffmann-LaRoche Inc.

Fryer, R.I., Schmidt, R.A. and Sternbach, L.H.; U.S. Patent 3,182,065; May 4, 1965; assigned to Hoffmann-LaRoche Inc.

Fryer, R.I., Schmidt, R.A. and Sternbach, L.H.; U.S. Patent 3,182,067; May 4, 1965; assigned to Hoffmann-LaRoche Inc.

BROMELAIN

Therapeutic Function: Antiinflammatory

Chemical Name: Complex proteolytic enzyme

Common Name: -

Structural Formula: Complex protein, molecular weight 33,000

Chemical Abstracts Registry No.: 9001-00-7

Trade Name	Manufacturer	Country	Year Introduced
Ananase	Rorer	U.S.	1962
Bromelain	Nadrol	W. Germany	1965

Trade Name	Manufacturer	Country	Year Introduced
Resolvit	Mepha	Switz.	1965
Ananase	Rorer	Italy	1965
Ananase	Rorer	U.K.	1966
Extranase	Rorer	France	1969
Bromelain	Towa Yakuhin	Japan	1981
Ananase	Pharmax	U.K.	_
Ananase	Yamanouchi	Japan	
Bromelain	Permicutan	W. Germany	_
Dayto Anase	Dayton	U.S.	_
Inflamen	Hokoriku	Japan	_
Mexase	Ciba-Geigy	France	-
Pinase	Dainippon	Japan	_
Proteolis	Benvegna	Italy	_
Resolvit	Mepha	Switz.	
Rogorin	Saba	Italy	
Traumanase	Arznei Muller-Rorer	W. Germany	_

Pineapple Juice Acetone

Manufacturing Process

According to U.S. Patent 3,002,891, the following describes pilot plant production of bromelain. Stripped pineapple stumps were passed four times through a three roll sugar mill press, In the second and following passes through the press, water was added to the pulp to increase the efficiency of the extraction procedure. The crude juice was screened to remove the coarse particles. Hydrogen sulfide gas was bled into the collected juice to partially saturate it. The pH was adjusted to pH 4.8 and then the juice was centrifuged.

To 50 gallons of juice were added 30 gallons of cold acetone. The precipitate which formed was removed by centifuging in a Sharples centrifuge. This precipitate was discarded. To the supernatant liquor an additional 35 gallons of acetone was added and the precipitate was collected in a Sharples centrifuge. The wet precipitate was dropped into fresh acetone, mixed well, and then recovered by settling. The paste was then dried in a vacuum oven at a shelf temperature of 110°F. Yield: 8 pounds of enzyme per 100 gallons of juice. Activity: 4,000 MCU/g.

References

Merck Index 1360 Kleeman & Engel p. 112 PDR p. 831 I.N. p. 154 REM p. 1038

Gibian, H. and Bratfisch, G.; U.S. Patent 2,950,227; August 23, 1960; assigned to Schering AG, Germany

Heinicke, R.M.; U.S. Patent 3,002,891; October 3, 1961; assigned to Pineapple Research Institute of Hawaii

BROMHEXINE

Therapeutic Function: Expectorant, mucolytic

Chemical Name: 2-Amino-3,5-dibromo-N-cyclohexyl-N-methyl-benzenemethanamine

Common Name: N-(2-Amino-3,5-dibromobenzyl)-N-methyl-cyclohexylamine

Structural Formula:

Chemical Abstracts Registry No.: 3572-43-8; 611-75-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Bisolvon	Boehringer Ingel.	Switz,	1963
Bisolvon	Thomae	W. Germany	1963
Bisolvon	Boehringer Ingel.	Italy	1968
Bisolvon	Boehringer Ingel.	U,K.	1968
Bisolvon	Boehringer Ingel.	France	1969
Lebelon	Towa Yakuhin	Japan	1981
L-Customed	Roha	W. Germany	1982
Aletor	Cantabria	Spain	-
Auxit	Heyden	W. Germany	_
Bendogen	Gea	Denmark	_
Bromeksin	Mulda, Yurtoglu	Turkey	-
Broncokin	Geymonat	Italy	_
Bronkese	Lennon	South Africa	_
Dakryo	Basotherm	W. Germany	_
Fulpen	Sawai	Japan	_
Mucovin	Leiras	Finland	_
Ophthosol	Winzer	W. Germany	-
Solvex	Ikapharm	Israel	-
Viscolyt	Gea	Denmark	_

Raw Materials

2-Nitrobenzył Bromide	Hydrazine
Cyclohexylmethylamine	Bromine

Manufacturing Process

In initial steps, 2-nitrobenzylbromide and cyclohexylmethylamine are reacted and that initial product reacted with hydrazine to give N-(2-aminobenzyl)-N-methyl-cyclohexylamine.

A solution of 29.3 g of bromine in 50 cc of glacial acetic acid was slowly added dropwise to a solution of 15.9 g of N-(2-aminobenzyl)-N-methyl-cyclohexylamine, accompanied by stirring. The glacial acetic acid was decanted from the precipitate formed during the addition of the bromine solution, and the precipitate was thereafter shaken with 200 cc of 2N sodium hydroxide and 600 cc of chloroform until all of the solids went into solution. The chloroform phase was allowed to separate from the aqueous phase. The chloroform phase was decanted, evaporated to dryness and the residue was dissolved in absolute ether. The resulting solution was found to be a solution of N-(2-amino-3,5-dibromobenzyl)-N-methyl-cyclohexylamine in ethanol. Upon introducing hydrogen chloride into this solution, the hydrochloride of N-(2-amino-3,5-dibromobenzyl)-N-methyl-cyclohexylamine precipitated out. It had a melting point of 232°-235°C (decomposition).

References

Merck Index 1361

Kleeman & Engel p. 113 OCDS Vol. 2 p. 96 (1980) I.N. p. 154

Keck, J.; U.S. Patent 3,336,308; August 15, 1967; assigned to Boehringer Ingelheim G.m.b.H.

BROMOCRIPTINE

Therapeutic Function: Lactation antagonist

Chemical Name: 2-bromo-12'-hydroxy-2'-(1-methylethyl)-5'α-(2-methylpropyl)ergotaman-

3',6',18-trione

Common Name: 2-Bromoergocryptine

Structural Formula:

Chemical Abstracts Registry No.: 25614-03-3; 22260-51-1 (Mesylate)

Trade Name	Manufacturer	Country	Year Introduced
Parlodel	Sandoz	U.K.	1975
Pravidel	Sandoz	W. Germany	1977
Parlodel	Sandoz	Switz,	1977
Parlodel	Sandoz	U.S.	1978
Parlodel	Sandoz	France	1978
Parlodel	Sandoz	Japan	1979
Parlodel	Sandoz	Italy	1979
Bromergon	Lek	Yugoslavia	_

Raw Materials

N-Bromosuccinimide Ergocryptine

Manufacturing Process

A solution of 3.4 grams of N-bromosuccinimide in 60 cc of absolute dioxane is added dropwise in the dark, during the course of 5 minutes, to a stirred solution, heated to 60°C, of 9.2 grams of ergocryptine in 180 cc of absolute dioxane. The reaction mixture is stirred at this temperature for 70 minutes and is concentrated to a syrup-like consistency in a rotary evaporator at a bath temperature of 50°C. The reaction mixture is subsequently diluted with 300 cc of methylene chloride, is covered with a layer of about 200 cc of a 2 N sodium carbonate solution in a separating funnel and is shaken thoroughly. The aqueous phase is extracted thrice with 100 cc amounts of methylene chloride. The combined

organic phases are washed once with 50 cc of water, are dried over sodium sulfate and the solvent is removed under a vacuum.

The resulting brown foam is chromatographed on a 50-fold quantity of aluminum oxide of activity II-III with 0.2% ethanol in methylene chloride as eluant, whereby the compound indicated in the heading is eluted immediately after a secondary fraction which migrates somewhat more rapidly than the fractions containing the heading compound. The last fractions to leave the aluminum oxide contain varying amounts of starting material together with the heading compound, and may be subjected directly, as mixed fractions, to an afterbromination in accordance with the method described above. The fractions containing the pure heading compound are combined and crystallized from methyl ethyl ketone/isopropyl ether. Melting point 215°-218°C (decomp.), $[\alpha]_D^{20}$ -195° (c = 1 in methylene chloride).

References

Merck Index 1386 Kleeman & Engel p. 114 PDR p. 1589 DOT 12 (3) 87 (1976) I.N. p. 155 REM pp. 929, 955

Fluckiger, E., Troxler, F. and Hofmann, A.; U.S. Patent 3,752,814; August 14, 1973; assigned to Sandoz Ltd., Switzerland

Fluckiger, E., Troxler, F. and Hofmann, A.; U.S. Patent 3,752,888; August 14, 1973; assigned to Sandoz Ltd., Switzerland

BROMOPRIDE

Therapeutic Function: Antiemetic

Chemical Name: 4-Amino-4-bromo-N-[2-(diethylamino)ethyl]-2-methoxybenzamide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 4093-35-0

Trade Name	Manufacturer	Country	Year Introduced
Praiden	Italchemi	Italy	1977
Valopri d e	Vita	Italy	1977
Cascapride	Cascan	W. Germany	1978
Artomey	Syncro	Argentina	_
Emepride	Roche	Switz.	
Emoril	Roemmers	Argentina	
Opridan	Locatelli	Italy	-
Plesium	Chiesi	Italy	_
Viaben	Schurholz	W. Germany	_

Bromine 4-Aminosalicylic Acid Dimethyl Sulfate

Acetic Anhydride Methanol

Manufacturing Process

To 119 g (0.45 mol) of N-(2-diethylaminoethyl)-2-methoxy-4-aminobenzamide dissolved in 200 cc of acetic acid are added in the cold in small portions 69 g of acetic anhydride (0.45 mol + 50% excess). The starting material is made by esterifying 4-aminosalicylic acid with methanol, then acetylating with acetic anhydride and then methylating with dimethyl sulfate. The solution obtained is heated for 2 hours on a water bath and then boiled for 15 minutes. It is cooled at 25°C. While agitating constantly and maintaining the temperature between 25° and 30°C, there is added to the solution drop by drop 72 g of bromine dissolved in 60 cc of acetic acid. It is agitated for one hour. The mixture obtained is added to one liter of water and the base is precipitated by the addition of 30% soda. The precipitated base is extracted with 40 cc of methylene chloride. After evaporation of the solvent, the residue is boiled for two hours with 390 g of concentrated hydrochloric acid in 780 cc of water. It is cooled, diluted with one liter of water, 12 g of charcoal are added, and the mixture filtered. The base is precipitated with 30% soda. The N-(2-diethyleminoethyl)-2-methoxy-4-amino-5bromobenzamide formed crystallizes, is centrifuged and washed with water. A yield of 85 g of base having a melting point of 129°-130°C is obtained.

To produce the dihydrochloride, the free base is dissolved in 110 cc of absolute alcohol, 9.6 g of dry hydrochloric acid dissolved in 35 cc of alcohol are added, followed by 2.8 cc of water. The dihydrochloride precipitates, is centrifuged, washed, and dried at 40°C. It was a solid white material having a melting point of 134°-135°C.

References

Merck Index 1404 Kleeman & Engel p. 115 DOT 14 (5) 193 (1978) I.N. p. 156

Thominet, M.L., U.S. Patents 3,177,252; April 6, 1965; 3,219,528; November 23, 1965; 3,357,978; December 12, 1967; all assigned to Societe d'Etudes Scientifiques et Industrielles de l'Ile-de-France

BROMPHENIRAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: (4-bromophenyl)-N,N-dimethyl-2-pyridinepropanamine maleate

Common Name: Parabromdylamine

Structural Formula:

$$\begin{bmatrix} N & CH & \longrightarrow & B_{\Gamma} \\ CH_{\nu}CH_{\nu}NH(CH_{\nu})_{2} \end{bmatrix} HC_{\nu}H_{\nu}O_{\nu}$$

Chemical Abstracts Registry No.: 980-71-2; 86-22-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dimetane	Robins	U.S.	1957
Dimegan	Dexo	France	1962
Symptom 3	WL/PD	U.S.	1977
Brombay	Bay	U.S.	1983
Antial	Ellem	Italy	_
Atronist	Adams	U.S.	_
Bromfed	Muro	U.S.	_
Bromphen	Schein	U.S.	_
Bromrun	Hokuriku	Japan	
Dimetapp	Scheurich	W. Germany	-
Dimotane	Robins	U.K.	-
Drauxin	Francia	Italy	-
Dura-Tap	Dura	U.S.	
Ebalin	Allergo Pharma	W. Germany	
E.N.T. Syrup	Springbok	U.S.	_
Febrica	Dexo	France	_
Gammistin	IBP	Italy	-
llvico	Bracco	Italy	-
llvin	Merck	W. Germany	_
Martigene	Martinet	France	_
Nagemid Chronule	Ortscheit	W. Germany	-
Poly Histine	Bock	U.S.	_
Probahist	Legere	u.s.	_
Rupton	Dexo	France	_
Velzane	Lannett	U.S.	_

Sulfuric Acid 4-Bromobenzyl Cyanide Sodium Amide 2-Chloropyridine Dimethylaminoethyl Chloride Maleic Acid

Manufacturing Process

Initially, 4-bromobenzyl-cyanide is reacted with sodium amide and 2-chloropyridine to give bromophenyl-pyridyl acetonitrile. This is then reacted with sodium amide then dimethyl amino ethyl chloride to give 4-bromophenyl-dimethylaminoethyl-pyridyl acetonitrile. This intermediate is then hydrolyzed and decarboxylated to bromphenirame using 80% H₂SO₄ at 140°-150°C for 24 hours. The brompheniramine maleate may be made by reaction with maleic acid in ethanol followed by recrystallization from pentanol.

References

Merck Index 1417 Kleeman & Engel p. 116 PDR pp. 555, 674, 865, 993, 1033, 1268, 1454, 1606, 1735 OCDS Vol. 1 p. 77 (1977) I.N. p. 157 REM p. 1126

Sperber, N., Papa, D. and Schwenk, E.; U.S. Patent 2,567,245; September 11, 1951; assigned to Schering Corporation

Sperber, N., Papa, D. and Schwenk, E.; U.S. Patent 2,676,964; April 27, 1954; assigned to Schering Corporation

BRONOPOL

Therapeutic Function: Antiseptic

Chemical Name: 2-Bromo-2-nitropropane-1,3-diol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52-51-7

Trade Name	Manufacturer	Country	Year Introduced
Bronosol	Green Cross	Japan	1977
Bronopol	Boots	U <i>.</i> K.	-

Raw Materials

Nitromethane Formaldehyde Bromine

Manufacturing Process

A mixture of 441 g (3 mols) of calcium chloride dihydrate, 61 g (1 mol) of nitromethane, 163 g (2 mols) of formalin (37% formaldehyde solution) and 470 ml of water was cooled to 0°C and mixed with 5 g of calcium hydroxide while stirring. The temperature thereby rose to 30°C. As soon as the temperature had fallen again, a further 32 g of calcium hydroxide (total of 0.5 mol) were added. The mixture was then cooled to 0°C and with intensive cooling and stirring, 159.8 g (1 mol, 51 ml) of bromine were dropped in at a rate so that the temperature remained at around 0°C. After the addition was ended, the mixture was stirred for a further 2 hours, when the reaction product separated in crystalline form. The product was quickly filtered on a suction filter and the crystalline sludge obtained was taken up in 450 ml of ethylene chloride and dissolved at reflux. Then by addition of magnesium sulfate, undissolved inorganic salts were separated and the solution was slowly cooled whereby 140 g (70% yield) of 2-bromo-2-nitropropane-1,3-diol precipitated in colorless crystals melting at 123°-124℃.

References

Merck Index 1421 I.N. p. 158

Wessendorf, R.; U.S. Patents 3,658,921; April 25, 1972; and 3,711,561; January 16, 1973; both assigned to Henkel & Cie G.m.b.H.

BROTIZOLAM

Therapeutic Function: Psychotropic agent

Chemical Name: 8-Bromo-6-(o-chlorophenyl)-1-methyl-4H-s-triazolo-[3,4c] -thieno-[2,3e] -

1,4-diazepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57801-81-7

Trade Name	Manufacturer	Country	Year Introduced
Lendormin	Boehringer Ingel.	Switz.	1983
Lendorm	Boehringer Ingel.	Switz,	_

Raw Materials

7-Bromo-5-(o-chlorophenyl)-3H-[2,3e] thieno-1,4-diazepin-2-one Phosphorus Pentasulfide Hydrazine Hydrate

Manufacturing Process

- (a) 11.5 g of 7-bromo-5-(o-chlorophenyl)-3H-[2.3e] -thieno-1.4-diazepin-2-one (see German Patent 2,221,623), were heated at 55° to 60°C with 100 cc of absolute pyridine and 6.5 g of phosphorus pentasulfide for 4 hours while stirring. The mixture was allowed to cool and was then poured into 100 cc of saturated ice-cold NaCl solution. The precipitate was collected by suction filtration, washed with water, dissolved in 100 cc of methylene chloride, the solution was dried and evaporated, and the residue was treated with a little methylene chloride. After suction filtration, 6 g of brown crystalline 7-bromo-5-(o-chlorophenyl)-3H-[2,3e]-thieno-1,4-diazepine-2-thione, melting point 214°C (decomposition) were obtained.
- (b) 6.0 g of this compound were suspended in 100 cc of tetrahydrofuran, and the suspension was stirred at room temperature with 1.2 g of hydrazine hydrate for 20 minutes. After evacration to about 10 cc, 20 cc of ether were added, and the crystals were collected by suction filtration. Yield: 5,2 g of 7-bromo-5-(o-chlorophenyl)-2-hydrazino-3H-[2,3e]-thieno-1,4-diazepine, melting point about 300°C (decomposition).
- (c) 5.2 g of this compound were suspended in 50 cc of orthotriethyl acetate, and the suspension was heated to 80°C. After about 30 minutes a clear solution was first formed from which later colorless crystals separated out. The mixture was allowed to cool, and the crystals were collected by suction filtration and washed with ether. Yield: 5 g of the compound, melting point 211° to 213°C.

References

Merck Index 1423 DFU 4 (2) 85 (1979)

I.N. p. 159

Weber, K.H., Bauer, A., Danneberg, P. and Kunn, F.J.; U.S. Patent 4,094,984; June 13, 1978; assigned to Boehringer Ingelheim GmbH

BUCLOXIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: 3-chloro-4-cyclohexyl-α-oxo-benzenebutanoic acid

Common Name: 4-(4-cyclohexyl-3-chlorophenyl)-4-oxobutyric acid

Structural Formula:

Chemical Abstracts Registry No.: 32808-51-8

Trade Name	Manufacturer	Country	Year Introduced
Esfar	Clin Midy	France	1974

Raw Materials

Phenylcyclohexane Succinic Acid Anhydride Chlorine

Manufacturing Process

Phenylcyclohexane and succinic acid (Bernstein Acid) anhydride are reacted in the presence of AICia to give 4-(4'-cyclohexylphenyl)-4-keto-n-butyric acid.

177 grams of anhydrous aluminum chloride are introduced into a 3-necked 1 liter flask. A hot solution of 144 grams of 4-(4'-cyclohexylphenyl)-4-keto-n-butyric acid in 330 ml of methylene chloride is added slowly from a dropping funnel. Slight reflux is observed during this addition. 33.2 ml of liquefied chlorine are then introduced slowly, drop by drop. This addition requires 5 hours. The solution is then poured on to 1 kg of ice containing 100 ml of concentrated hydrochloric acid. The aqueous phase is extracted twice, each time with 200 ml of methylene chloride, the organic phase is washed with water to pH 6.5 and dried and the organic solvent then evaporated. The desired acid is recrystallized from 500 ml of toluene. The yield is 64%. MP: 159°C.

References

Merck Index 1431 Kleeman & Engel p. 118 OCDS Vol. 2 p. 126 (1980) DOT 10 (11) 294 (1974)

British Patent 1.315,542; May 2, 1973; assigned to Ets Clinbyla, France

BUCUMOLOL HYDROCHLORIDE

Therapeutic Function: Beta adrenergic blocker

Chemical Name: 8-(2-Hydroxy-3-t-butylaminopropoxy)-5-methyl coumarin hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58409-59-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Bucumarol	Sankyo	Japan	1982

Raw Materials

t-Butylamine 8-(2-Hydroxy-3-chloropropoxy)-5-methyl coumarin

Manufacturing Process

A mixture of 3 g of 8-(2-hydroxy-3-chloropropoxy)-5-methyl coumarin, 4.3 g of t-butylamine and 60 ml of ethanol is heated at 100°C in a sealed tube for 15 hours. The reaction mixture is concentrated under reduced pressure to dryness. The residue is recrystallized from a mixture of ethanol and ether to give 2.1 g of the desired product melting at 226° to 228°C (with decomposition).

References

Merck Index 1434 DFU 3 (9) 638 (1978) DOT 19 (1) 10 (1983)

Sato, Y., Kobayashi, Y., Taragi, H., Kumakura, S., Nakayama, K. and Oshima, T.; U.S. Patent 3,663,570; May 16, 1972; assigned to Sankyo Co., Ltd.

BUDRALAZINE

Therapeutic Function: Antihypertensive

Chemical Name: 1(2H)-Phthalazinone-(1,3-dimethyl-2-butenylidene)-hydrazone

Common Name: Mesityl oxide (1-phthalazinyl) hydrazone

Structural Formula:

Chemical Abstracts Registry No.: 36798-79-5

Trade Name	Manufacturer	Country	Year Introduced
Buterazine	Daijchi Seiyaku	Japan	1983

Raw Materials

1-Hydrazinophthalazine HCI Mesityl Oxide

Manufacturing Process

A mixture of 2.0 g of 1-hydrazinophthalazine hydrochloride, 1,1 g of mesityl oxide (isoproplyideneacetone) and 100 ml of ethanol, was refluxed for 3 hours. The reaction mixture was concentrated in vacuo and the residue was dissolved in water. The water solution was neutralized with sodium bicarbonate, salted out and the product was extracted with benzene. The benzene layer was passed through a comparatively short column of alumina and the solvent was removed. The residue was crystallized from ether to give 0.7 g of 1-(1,3-dimethyl-2-butenylidene) hydrazinophthalazine, melting point 131°-132°C.

References

Merck Index 1437 DFU 2 (12) 788 (1977)

DOT 18 (10) 553 (1982) & 19 (10) 582 (1983)

Ueno, K., Miyazaki, S. and Akashi, A.; U.S. Patent 3,840,539; October 8, 1974; assigned to Dajichi Sejyaku Co., Ltd.

BUFENIODE

Therapeutic Function: Antihypertensive

Chemical Name: 4-hydroxy-3,5-diiodo- α -[1-[(1-methyl-3-phenylpropyl)amino] ethyl] benzyl

alcohol

Common Name: Diiodobuphenine

Structural Formula:

ио — Снонсимисиси
$$_2$$
си $_2$ си $_2$ си $_2$ си $_3$

Chemical Abstracts Registry No.: 22103-14-6

Trade Name	Manufacturer	Country	Year Introduced
Proclival	Houde	France	1970
Bufeniod	Weiskopf	W, Germany	1974
Diastal	Bayropharm	Italy	1982

Raw Materials

4-Hydroxypropiophenone Benzyl Chloride 3-Butyl-1-phenylamine Bromide lodine Hydrogen

Manufacturing Process

Buphenine is the starting material. See under the alternative name "Nylidrin" in this publication for synthesis.

24 grams of buphenine hydrochloride are suspended in a mixture of 440 ml of 34% ammonia (specific gravity = 0.89) and 315 ml of water. 41 grams of iodine dissolved in 1,080 ml of 96% alcohol are added little by little, with good stirring. During this addition, effected in about 30 min, buphenine hydrochloride dissolves fairly rapidly, and then the diiodobuphenine precipitates out as a crystalline powder. Stirring is continued for a further hour. The precipitate is suction filtered, and then washed with water, with alcohol and with ether and is finally dried in vacuo in the exsiccator in the presence of phosphoric anhydride. Thus, about 23 grams of dijodobuphenine solvated with 1 mol of ethanol are obtained in the form of a microcrystalline white powder. MP (slow) = 185°C (dec.). MP (inst.): 212°C.

References

Merck Index 1440 Kleeman & Engel p. 119 DOT 7 (2) 52 (1971) & 11 (8) 306 (1975)

I.N. p. 161

South African Patent 680,046; January 3, 1968; assigned to Laboratoires Houde, France

BUFETROL

Therapeutic Function: Antiarrhythmic

Chemical Name: 1-(tert-butylamino)-3-[2-[(tetrahydro-2-furanyl)methoxy] phenoxy]-2-

propanol

Common Name: Bufetolol

Structural Formula:

Chemical Abstracts Registry No.: 53684-49-4; 35108-88-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Adobiol	Yoshitomi	Japan	1974

Raw Materials

2-(2-Tetrahydrofurfuryloxy)phenol

Epichlorohydrin

t-Butylamine

Manufacturing Process

The preparation of a similar compound in which a methoxyethoxy group replaces the tetrahydrofurfuryloxy group in Bufetrol is described in the following example. Nine grams of o-(2-methoxyethoxy)phenol is suspended in 50 milliliters of water containing 3.7 grams of potassium hydroxide, and 5.5 grams of epichlorhydrin is added thereto with stirring. The mixture is stirred at room temperature for 7 hours, and then extracted with two 50 milliliter portions of benzene. The extract is washed with water, dried over anhydrous magnesium sulfate and the benzene is distilled off to give 8.5 grams of oily 1-(2,3-epoxy-propoxy)-2-(2-methoxyethoxy)benzene showing $n_{\rm D}^{20}=1.5257$. This compound has the methoxyethoxy group in place of the 2-tetrahydrofurfuryloxy group in Bufetrol.

To a solution of 1-(2,3-epoxypropoxy)-2-(2-tetrahydrofurfuryloxy)benzene in methanol are added tert-butylamine and water, the mixture is allowed to stand at 25°-30°C for 72 hours, and then the methanol is distilled off. The residue is dissolved in toluene and the solution is extracted twice with 5% oxalic acid. The aqueous extract is dried over potassium carbonate and concentrated to give Bufetrol.

References

Merck Index 1441

Kleeman & Engel p. 119 DOT 10 (12) 332 (1974)

I.N. p. 161

Nakanishi, M., Muro, T., Imamura, H. and Yamaguchi, N.; U.S. Patent 3,723,476; March 27, 1973; assigned to Yoshitomi Pharmaceutical Industries, Ltd., Japan

BUFEXAMAC

Therapeutic Function: Antiinflammatory, analgesic, antipyretic

Chemical Name: 4-Butoxy-N-hydroxybenzeneacetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2438-72-4

Trade Name	Manufacturer	Country	Year Introduced
Parfenac	Lederle	U.K.	1973
Feximac Cream	Nicholas	U.K.	1973
Parfenac	Lederle	France	1974
Parfenac	Cyanamid	Italy	1975
Parfenac	Cyanamid	W. Germany	1976
Parfenac	Opopharma	Switz.	1976
Anderm	Lederle-Takeda	Japan	1977
Droxan	Continental Pharma	Belgium	_
Droxarol	Continental Pharma	W. Germany	_
Flogocid	Continental Pharma	_ `	_
Malipuran	Scheurich	W. Germany	
Norfemac	Nordic	Canada	
Paraderm	Continental Pharma	Belgium	_
Viafen	Zyma	Switz.	_

Raw Materials

Butyl Bromide p-Hydroxyacetophenone Sulfur Morpholine Sodium Hydroxide Ethanol Hydroxylamine HCI

Manufacturing Process

- (1) 136 g of p-hydroxyacetophenone, 140 g of butyl bromide, 152 g of potassium carbonate, 17 g of potassium iodide and 275 cc of ethanol are mixed and then refluxed for 48 hours. The reaction mixture is cooled, diluted with water, then extracted with ether. The ethereal phase is washed with a 10% sodium hydroxide solution, then with water, followed by drying, ether is evaporated and the product distilled under reduced pressure. 168 g of p-butyloxyacetophenone are obtained with yield of 87% (160°-162°C at 11 mm Hg).
- (2) 192 g of p-butyloxyacetophenone, 42 g of sulfur and 130 g of morpholine are mixed and then refluxed for 14 hours. The resulting solution is poured into water and stirred until crystallization of the sulfurated complex. The latter is filtered, washed with water and dried. Production: 270 q (88% vield).

- (3) 200 g of sodium hydroxide are dissolved in 1,500 cc of ethanol and then 293 g of the thus obtained sulfurated complex are added. The mixture is refluxed overnight. The mixture is distilled to separate the maximum of the alcohol and then diluted with water. The resulting solution is acidified with hydrochloric acid, and extracted with ether. The ethereal phase is washed with water, followed by extraction with a 10% sodium carbonate solution. The carbonated solution is acidified with 10% hydrochloric acid, and the resulting precipitate of p-n-butyloxyphenylacetic acid is filtered and dried. 100 g of this product are obtained (70% yield).
- (4) 208 g of p-n-butyloxyphenylacetic acid, 368 g of ethanol and 18 cc of sulfuric acid are refluxed for 5 hours. The mixture is diluted with water, after which it is extracted with ether. The ethereal phase is successively washed with water, then with carbonate, and again with water, following which it is dried and distilled to remove solvent. The ester is then distilled at a reduced pressure. 200 g of ethyl p-butyloxyphenylacetate are thus obtained with yield of 61% (186°C at 8 mm Hg).
- (5) 7 g of hydroxylamine hydrochloride are dissolved in 100 cc of methanol. A solution of 5 g of sodium in 150 cc of methanol is added and the salt precipitate is separated by filtration. 22 g of ethyl p-n-butyloxyphenylacetate are added to the filtrate and the mixture is refluxed for 1 hour. The mixture is cooled and acidified with 20% hydrochloric acid. 14.7 g of p-n-butyloxyphenylacetohydroxamic acid are thus obtained with yield of 71% (melting point: 153°-155°C).

References

Merck Index 1442 Kleeman & Engel p. 120 DOT 12 (11) 435 (1976) I.N. p. 161

Buu-Hoi, N.P., Lambelin, G., Lepoivre, C., Gillet, C. and Thiriaux, J.; U.S. Patent 3,479,396; November 18, 1969; assigned to Madan A.D.

BUFLOMEDIL

Therapeutic Function: Vasodilator (peripheral)

Chemical Name: 4-(1-Pyrrolidinyl)-1-(2,4,6-trimethoxyphenyl)-1-butanone

Common Name: -

Structural Formula:

$$\begin{array}{c} \text{CH}_3 \text{O} \\ \\ \text{CH}_3 \text{O} \\ \\ \text{OCH}_3 \end{array} \qquad \text{(base)}$$

Chemical Abstracts Registry No.: 55837-25-7; 35543-24-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Fonzylane	Lafon	France	1976
Loftyi	Abbott	Italy	1981
Bufedil	Abbott	W. Germany	1982
Loftyl	Abbott	Switz.	1983

Trade Name	Manufacturer	Country	Year Introduced
Buflan	Pierrel	Italy	_
Irrodan	Biomedica Foscama	Italy	_

4-Chlorobutyronitrile Pyrrolidine 1,3,5-Trimethoxybenzene

Manufacturing Process

Introduce 33.6 g (0.2 mol) of 1.3.5-trimethoxybenzene and 100 ml of chlorobenzene into a 500 ml three-neck flask with stirrer, hydrochloric acid bubbler and condenser. Stir to dissolve and add 27.7 g of 4-pyrrolidinobutyronitrile (from 4-chlorobutyronitrile and pyrrolidine). Cool to about 15°-20°C and bubble hydrochloric acid gas in for 4 hours. Cool to about 5°C and add 200 cm³ of water. Stir. Decant the aqueous layer, wash again with 150 cm³ of water. Combine the aqueous layers, drive off the traces of chlorobenzene by distilling 150 cm³ of water, and heat under reflux for one hour. Cool and render alkaline by means of 60 ml of sodium hydroxide solution of 36° Baume. Extract twice with 100 ml of ether. Wash the ether with 100 ml of water. Dry the ether over sodium sulfate and slowly run in 50 ml of 5N hydrogen chloride solution in ether, at the boil. Cool in ice. Filter, wash with ether and dry in a vacuum oven. 33.6 g of crude product are obtained. Recrystallize from 200 ml of isopropanol in the presence of 3 SA carbon black. Filter. Wash and dry in a vacuum oven,

26.9 g of a white, crystalline water-soluble powder are obtained. Yield: 39,2%. Instantaneous melting point: 192°-193°C.

References

Merck Index 1443 Kleeman & Engel p. 121 DOT 11 (9) 339 (1975) I.N. p. 161

Lafon, L; U.S. Patent 3,895,030; July 15, 1975; assigned to Orsymonde

BUFORMIN HCI

Therapeutic Function: Antidiabetic

Chemical Name: N-Butylimidodicarbonimidic diamide

Common Name: Butyldiguanide

Structural Formula: NH NH (base)

Сизсизсизсизинский

Chemical Abstracts Registry No.: 692-13-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Silubin Sindiatil	Protochemie Baver	Switz, Italy	_ 1979
Adebit	Chinoin	Hungary	-

Trade Name	Manufacturer	Country	Year Introduced
Andere	Toyama	Japan	_
Biforon	Meiji	Japan	
Bigunal	Nikken	Japan	_
Bufonamin	Kaken Drug	Japan	
Bulbonin	Sankyo	Japan	
Dibetos	Kodama	Japan	_
Gliporai	Grossmann	Mexico	-
Insulamin	lwaki	Japan	_
Panformin	Shionogi	Japan	_
Ziavetine	Teikoku Kagaku	Japan	_

n-Butylamine HCI Dicyandiamide

Manufacturing Process

105.6 g of n-butylamine hydrochloride and 79.3 g of dicyandiamide were ground intimately and mixed. The mixture was heated by means of an oil bath, gradually with stirring, and after thirty minutes when the internal temperature had reached 150°C, an exothermic reaction ensued with internal pressure rising to 178°C. The reaction mixture was removed from the oil bath until the internal temperature had fallen to 150°C and then heating was resumed at 150°C for one hour. The cooled fusion mixture was dissolved in 3 liters of acetonitrile and on cooling n-butyl-biguanide hydrochloride precipitated.

References

Merck Index 1445

OCDS Vol. 1 p. 221 (1977); 2, 21 (1980)

I.N. p. 162

Shapiro, S.L.; U.S. Patent 2,961,377; November 22, 1960; assigned to U.S. Vitamin & Pharmaceutical Corp.

BUMADIZON

Therapeutic Function: Analgesic, antipyretic, antirheumatic

Chemical Name: butylpropanedioic acid mono-(1,2-diphenylhydrazide)

Common Name: Butylmalonic acid diphenylhydrazide

Structural Formula:

Chemical Abstracts Registry No.: 3583-64-0

Trade Name	Manufacturer	Country	Year Introduced
Eumotol	Byk-Gulden	W. Germany	1972
Eumotol	Iromedica	Switz.	1972

Trade Name	Manufacturer	Country	Year Introduced
Eumotol	Valpan	France	1976
Eumotol	Byk-Gulden	Italy	1976
Dibilan	Byk-Guldan	_	-
Rheumatol	Tosse	W. Germany	-

Dicyclohexylcarbodiimide n-Butyl Malonic Acid Ethyl Ester Hydrazobenzene

Manufacturing Process

- (a) A solution of 22.4 grams of dicyclohexylcarbodiimide in 120 ml of absolute tetrahydrofuran is added dropwise at 5°-10°C in an atmosphere of nitrogen to a solution of 20 grams of n-butyl malonic acid monoethyl ester and 19.6 grams of freshly recrystallized hydrazobenzene in 320 ml of anhydrous tetrahydrofuran. The mixture is then stirred for 15 hr at 25°C in an atmosphere of nitrogen, then the precipitated dicyclohexyl urea is filtered off and the filtrate, after the addition of 3 drops of glacial acetic acid, is evaporated to dryness in vacuo. The residue is dissolved in 1 liter of ether, the ethereal solution is extracted twice with 2 N potassium bicarbonate solution and twice with 2 N hydrochloric acid, whereupon it is washed with water until the washing water is neutral. The ethereal solution is dried over sodium sulfate and concentrated in vacuo. The residue is fractionally distilled under high vacuum whereupon the ester is obtained as a vellow oil. BP 170°C at 0.05 torr vacuum. Crystals which melt at 63° 65°C are obtained from cyclohexane.
- (b) A suspension of 7.1 grams of the ester obtained according to (a) in 40 ml of aqueous 0.5 N sodium hydroxide solution is refluxed for 24 hours in an atmosphere of nitrogen. The solution is filtered and traces of hydrazobenzene are removed by extraction with ether. The aqueous solution is made acid to Congo paper at 10°C with concentrated hydrochloric acid, the oil which separates is dissolved in 40 ml of ethyl acetate, the ethyl acetate solution is isolated, and washed neutral with water. The solution is then extracted twice with 36 ml of 0.5 N sodium bicarbonate solution each time.

The separate extracts are made acid to Congo paper with concentrated HCI, extracted with ethyl acetate, the extracts are washed neutral with a little water, dried and concentrated under vacuum. The colorless oil which remains is recrystallized twice from ether/petroleum ether, whereupon n-butyl malonic acid-N,N'-diphenylhydrazide is obtained in the form of short needles which melt at 116°-118°C.

References

Merck Index 1451 Kleeman & Engel p. 121 DOT 9 (1) 14 (1973) I.N. p. 162

Pfister, R., Sallmenn, A. and Hammerschmidt, W.; U.S. Patent 3,455,999; July 16, 1969; assigned to Geigy Chemical Corporetion

BUMETANIDE

Therapeutic Function: Diuretic

Chemical Name: 3-(aminosulfonyl)-5-(butylamino)-4-phenoxybenzoic acid

Common Name: -

Structural Formula:

$$\operatorname{CH_3(CH_2)_3HN} \xrightarrow{\operatorname{COOH}} \operatorname{SO_2NH_2}$$

Chemical Abstracts Registry No.: 28395-03-1

Trade Name	Manufacturer	Country	Year Introduced
Burinex	Leo	U,K.	1973
Fordiuran	Thomae	W. Germany	1976
Lunetoron	Sankyo	Japan	1976
Burinex	Sigmatau	Italy	1977
Lixil	Leo	France	1978
Fontego	Polifarma	Italy	1979
Bumex	Hoffmann La Roche	U.S.	1983
Aquazone	Prodes	Spain	
Butinat	Gerardo Ramon	Argentina	_
Cambiex	Bernabo	Argentina	_
Farmadiuril	Alter	Spain	_
Poliurene	Lepetit	-	
Primex	Medica	Finland	-
Salurex	Byk Gulden	_	_
Salurin	Yurtoglu	Turkey	-
Segurex	Ricar	Argentina	_
Yurinex	Hemofarm	Yugoslavia	_

Raw Materials

4-Chloro-3-nitro-5 Sulfamyl Benzoic Acid	n-Butanol
Sodium Bicarbonate	Phenol
Hydrogen	

Manufacturing Process

Preparation of 3-Nitro-4-Phenoxy-5-Sulfamylbenzoic Acid: A mixture of 4-chloro-3-nitro-5-sulfamylbenzoic acid (140 grams), phenol (100 grams), sodium hydrogencarbonate (170 grams), and water (1,000 ml) was heated to 85°C while stirring and kept at this temperature for 16 hours. After cooling to 4°C, the precipitated sodium salt of 3-nitro-4-phenoxy-5-sulfamylbenzoic acid was filtered off and washed with ice water. The sodium salt was dissolved in boiling water (3,000 ml), and the 3-nitro-4-phenoxy-5-sulfamylbenzoic acid was precipitated by addition of 4 N hydrochloric acid. After cooling, the acid was isolated by suction and dried. The melting point was 255°-256°C.

Preparation of 3-Amino-4-Phenoxy-5-Sulfamylbenzoic Acid: A suspension of 3-nitro-4phenoxy-5-sulfamylbenzoic acid (20 grams) in water (100 ml) was adjusted to pH 8 by addition of 1 N lithium hydroxide. The resulting solution was hydrogenated at room temperature and 1.1 atmospheres hydrogen pressure after addition of Pd on carbon catalyst (0.6 grams catalyst containing 10% Pd). After the hydrogen uptake had become negligible, the catalyst was removed by filtration, and the 3-amino-4-phenoxy-5-sulfamylbenzoic acid was precipitated from the filtrate by addition of 4 N hydrochloric acid to pH 2.5. After recrystallization from aqueous ethanol and drying, the melting point was 255°-256°C.

Preparation of 3-n-Butylamino-4-Phenoxy-5-Sulfamylbenzoic Acid: To a suspension of 3amino-4-phenoxy-5-sulfamylbenzoic acid (10 grams) in n-butanol (200 ml), concentrated sulfuric acid (2 ml) was added while stirring. The reaction mixture was heated under reflux under conditions in which the water formed during the reaction could be removed. When, after dilution with n-butanol, the NMR-spectrum of a sample of the reaction mixture showed at the two doublets of the aromatic protons in ring A that the butyl-3-amino-4-phenoxy-5-sulfamylbenzoate formed as an intermediate was more than 90% converted to the corresponding 3-n-butylaminobenzoate, 2 N sodium hydroxide (200 ml) was added and the boiling was continued for 45 minutes. After the saponification, the reaction mixture was neutralized to pH 8 by addition of concentrated hydrochloric acid.

By cooling, the sodium salt of 3-n-butylamino-4-phenoxy-5-sulfamylbenzoic acid precipitated. It was filtered off and recrystallized from water (100 ml). The sodium salt, crystallizing with 3 molecules of water, was then dissolved in boiling water (200 ml), 1 N hydrochloric acid was added to pH 2.5, and after cooling the precipitated 3-n-butylamino-4-phenoxy-5-sulfamylbenzoic acid was collected by filtration. After recrystallization from aqueous ethanol and drying, the pure compounds were obtained with melting point 230°-231°C.

References

Merck Index 1452 Kleeman & Engel p. 121 PDR p. 1479 OCDS Vol. 2 p. 87 (1980) DOT 8 (6) 238 (1972) & 9 (11) 449 (1973) I.N. p. 162

Felt, P.W.; U.S. Patent 3,634,583; January 11, 1972; assigned to Lovens Kemiske Fabrik Produktionsaktieselskab, Denmark

BUNITROLOL

Therapeutic Function: Antianginal

Chemical Name: 2-[3-{(1,1-Dimethylethyl)amino}-2-hydroxypropoxy]-benzonitrile

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34915-68-9

Trade Name	Manufacturer	Country	Year Introduced
Stresson	Boehringer Ingel.	W. Germany	1976
Betriol	Boehringer Ingel.	Italy	1981
Betrilol	Boehringer Ingel.	Japan	1983
Betrilol	Tanabe Seiyaku	Japan	1983

Raw Materials

Epichlorohydrin 2-Cyanophenol t-Butylamine

Manufacturing Process

Epichlorohydrin and 2-cyanophenol are first reacted to give 1-(2-cyanophenoxy)-2.3-epoxypropane.

15 g (0.085 mol) of 1-(2-cyanophenoxy)-2,3-epoxy propane were dissolved in 100 ml of ethanol and 18.6 g (0.255 mol) of t-butylamine were added thereto. After standing for 1 hour at room temperature, the solution was heated at 60°-70°C for 2 hours after which the volatile constituents were distilled off in vacuo. The residue was digested with dilute HCI, and the insoluble constituents were vacuum filtered off. Then the filtrate was made alkaline with NaOH and the precipitating base was taken up in ether. After the ether solution had been dried over MgSO₄, the ether was distilled off and the residue was dissolved in ethanol and by addition of ethereal HCI, the hydrochloride was precipitated therefrom in crystalline form which after recrystallization from ethanol with an addition of ether gave 9.8 g of 1-(2cyanophenoxy)-2-hydroxy-3-t-butylamino propane hydrochloride having a melting point of 163°-165°C.

References

Merck Index 1457 DFU 1 (5) 210 (1976) Kleeman & Engel p. 123 OCDS Vol. 2 pp. 106, 110 (1980) DOT 13 (1) 15 (1977)

I.N.p. 163

Koppe, H., Engelhardt, A. and Zelle, K.; U.S. Patents 3,541,130; November 17, 1970; 3,940,489; February 24, 1976; and 3,961,071; June 1, 1976; all assigned to Boehringer Ingelheim GmbH

BUPIVACAINE

Therapeutic Function: Local anesthetic

Chemical Name: dl-1-butyl-2',6'-pipecoloxylidide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2180-92-9; 18010-40-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Carbostesin	Astra	W. Germany	1967
Carbostesin	Giobopharm	Switz.	1967
Marcain	Duncan Flockhart	U.K.	1968
Marcain	Yoshitomi	Japan	1969
Marcaina	Pierrel	Italy	1971
Marcaine	Winthrop-Breon	U.S.	1973
Marcaine	Cook-Waite	U.S.	-
Sensorcaine	Astra	U.S.	1981
Bupivan	Abbott	U.S.	_
Meaverin	Woelm Pharma	W. Germany	

Raw Materials

2.6-Dimethylaniline Diethyl Malonate Nitrosyl Chloride Zinc Powder Formic Acid n-Butvlbromide

Manufacturing Process

121 parts by weight of 2.6-xylidine are heated with 400 parts of diethylmalonate at 160°C for 1 hour, and the alcohol formed by the reaction is allowed to distill off. Thereafter the reaction mass is cooled to 80°C, and 500 parts of alcohol are added. After cooling the dixylidide is sucked off, and the alcohol solution with malonic ester monoxylidide is poured into 2,000 parts of water. The monoxylidide precipitates, is filtered off and washed with water, and recrystallized in diluted alcohol. Nitrosation thereafter takes place by dissolving the dried monoxylidide in chloroform and by introducing nitrosyl chloride at 0°C until the nitrosation is completed. The isonitrosomalonic ester xylidide is filtered off and dried. Thereafter the reduction takes place with zinc powder and formic acid at 90°-100°C.

The formic acid is distilled off, and the remainder dissolved in warm benzene and washed with a bicarbonate solution to a neutral reaction. After the benzene has been distilled off, the aminomalonic ester xylidide is obtained. This is treated with an equal quantity of sodium ethylate and boiled with twice the theoretical quantity of tetramethylene bromide in absolute alcohol.

After 6 hours of boiling, the sodium bromide formed is separated, and the mixture is steamdistilled in order to remove the excess of tetramethylene bromide. The remaining oil, which mainly consists of delta-bromobutylaminomalonic ester xylidide is separated from the water and boiled with 3 parts of concentrated hydrochloric acid for 3 hours. Thereafter carbonfiltering and evaporation to dryness under vacuum takes place. The residue is dissolved in water, and the pH adjusted with sodium hydroxide to 5.5. The solution is extracted twice with ether, and the water is made strongly alkaline with sodium hydroxide.

The oil precipitates and is crystallized after a time. The crystals are separated and dried under vacuum. The pipecolyl-2,6-xylidide produced is alkylated by boiling for 10-20 hours with 0.6 part n-butylbromide in an n-butanol solution in the presence of 0.5 part potassium carbonate. The potassium carbonate is filtered off and the butanol is distilled off in vacuum. The residue is dissolved in diluted hydrochloric acid and carbon treated, after which the base is precipitated with sodium hydroxide in the form of white crystals, which are filtered off and washed with water. The base obtained, which consists of N-n-butylpipecolyl-2,6-xylidide is sufficiently pure for the production of salts.

References

Merck Index 1462 Kleeman & Engel p. 124 PDR pp. 596, 825, 1915 OCDS Vol. 1 p. 17 (1977) DOT 3 (3) 88 (1967) I.N. p. 164 REM p. 1050

Thuresson, B. and Egnér, B.P.H.; U.S. Patent 2,792,399; May 14, 1957; assigned to AB Bofors,

Thuresson, B. and Pettersson, B.G.; U.S. Patent 2,955,111; October 4, 1960; assigned to AB Bofors, Sweden

BUPRANOLOL

Therapeutic Function: Antiarrhythmic

Chemical Name: 1-(tert-butylamino)-3-[(6-chloro-m-tolyl)oxy]-2-propanol

Common Name: Bupranol

Structural Formula:

Chemical Abstracts Registry No.: 14556-46-8; 15146-80-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Betadrenol	Pharma-Schwarz	W. Germany	1969
Betadrenol	Adrosanol	Switz.	1969
Betadran	Logeais	France	1972
Looser (Lucer)	Kaken	Japan	1974
Panimit	Nattermann	W. Germany	_
Ophtorenin	Dr. Winzer	W. Germany	_

Raw Materials

Epichlorohydrin

2-Chloro-5-methylphenol

t-Butylamine

Manufacturing Process

A mixture of 16.3 g of (2-chloro-5-methylphenyl)glycidic ether (from epichlorohydrin and 2-chloro-5-methylphenol) and 6.2 g of t-butylamine in 50 ml of ethanol is heated at reflux for 6 hours. The solvent is removed, the residue is washed with water and then extracted with benzene. The dried extract is evaporated to give 1-t-butylamino-3-(2-chloro-5-methylphenoxy)-2-propanol. Treatment of the free base in benzene solution with dry hydrogen chloride yields the hydrochloride salt.

References

Merck Index 1463 Kleeman & Engel p. 125

I.N. p. 164

Kunz, W., Jacobi, H., Koch, C. and Geus, R.J.; U.S. Patent 3,309,406; March 14, 1967

BUSULFAN

Therapeutic Function: Antineoplastic

Chemical Name: 1,4-butanediol dimethanesulfonate

Common Name: -

Structural Formula: CH₃SO₂O(CH₂)₄OSO₂CH₃

Chemical Abstracts Registry No.: 55-98-1

Trade Name	Manufacture r	Country	Year Introduced
Myleran	Burroughs Wellcome	U.S.	1954
Misulban	Techni-Pharma	France	1955
Myleran	Wellcome	Switz.	1955
Myleran	Wellcome	W. Germany	1955

Trade Name	Manufacturer	Country	Year Introduced
Mablin	Takeda	Japan	
Mielucin	Farmasimes	Spain	_
Myeleukon	Arzneimittelwerk Dresden	E. Germany	_
Mylecytan	Spofa	Czechoslovakia	_
Sulfabutin	· -	_	_

1.4-Butanediol Methane Sulfonyl Chloride

Manufacturing Process

3.6 grams of redistilled 1,4-butanediol were dissolved in 10 ml of pyridine and the solution was cooled in ice and water. 9.6 grams of redistilled methane-sulfonyl-chloride were added dropwise at such a rate that the temperature did not rise above 20°C. The solution was then allowed to stand at room temperature for 30 minutes, during which time the temperature rose to 60°C. A thick precipitate of pyridine hydrochloride was formed.

The mass was cooled in ice water and was treated with 30 ml of ice cold water. On agitation, a white crystalline precipitate was formed. This was filtered off and washed well with ice cold water and allowed to drain on the pump. It weighed 7.8 grams and had a melting point of 100°C. 3.5 grams of the material were recrystallized from acetone and ether to give small white needles, having a melting point of 106°-107°C, unchanged by further recrystallization.

References

Merck Index 1470 Kieeman & Engel p. 125 PDR p. 754 I.N. p. 165 REM p. 1144

Timmis, G.M.; U.S. Patent 2.917.432; December 15, 1959; assigned to Burroughs Wellcome & Co., Inc.

BUTALAMINE HYDROCHLORIDE

Therapeutic Function: Peripheral vasodilator

Chemical Name: N,N-dibutyl-N'-(3-phenyl-1,2,4-oxadiazol-5-yl)-1,2-ethanediamine hydro-

chloride

Common Name: --

Structural Formula: (base)

Chemical Abstracts Registry No.: 22131-35-7 (Base); 28875-47-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Surheme	Aron	France	1969

Trade Name	Manufacturer	Country	Year Introduced
Surheme	Spemsa	Italy	1974
Adrevil	Zyma-Blaes	W. Germany	1975
Oxadilene	Leurquin	France	_
Surem	Cepa	Spain	_

Benzaldehyde Hydroxylamine Chlorine Cyanamid Dibutylaminoethyl Chloride Sodium Amide

Manufacturing Process

Benzaldehyde and hydroxylamine may be reacted, the product chlorinated and then reacted with cyanamid to give 5-amino-3-phenyl-1,2,4-oxadiazole.

32 grams of 3-phenyl-5-amino-1,2,4-oxadiazole dissolved in about 150 ml of anhydrous benzene, 7.8 grams of sodium amide are added and the reaction mixture heated at the boiling point with stirring for 2 hours. A solution of 38.3 grams of dibutylaminoethyl chloride in benzene is then added and the mixture heated to boiling under reflux for four hours. The sodium chloride is separated as previously described, the benzene removed by vacuum distillation and 56 grams of 3-phenyl-5-(dibutylaminoethylamino)-1,2,4-oxadiazole is obtained in the form of an oil which is then converted directly to the crystalline hydrochloride. This is accomplished by dissolving the oil in ethanol and adding the stoichiometric equivalent of anhydrous ethyl ether saturated with gaseous hydrogen chloride. The recrystallized salt is found to have a melting point of 145°C.

References

Merck Index 1477 Kieeman & Engel p. 126 I.N.p. 166

Aron-Samuel, J.M.D. and Sterne, J.J.; U.S. Patent 3,338,899; August 29, 1967

BUTAMIRATE CITRATE

Therapeutic Function: Antitussive

Chemical Name: α-ethylbenzeneacetic acid 2-[2-(diethylamino)ethoxy] ethyl ester citrate

Common Name: Butamyrate

Structural Formula: С₆н₅снсоосн₂сн₂осн₂сн₂N(сн₂сн₃)₂ сн₂сн₃

(base)

Chemical Abstracts Registry No.: 18109-81-4; 18109-80-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sinecod	Hommel	Switz.	1967
Sinecod	Karispharma	W. Germany	1967
Sinecod	Bonomelli	Italy	1969
Acodeen	Hommel	Switz.	_
Acodfen	Klimitschek	Austria	-
Codesin-F	Hommel	Switz,	_

Trade Name	Manufacturer	Country	Year Introduced
Intussin	Spofa	Czechoslovakia	_
Sincoden	Hommel	Switz.	_
Sincodix	Beta	Argentina	_
Sinecod	Abello	Spain	
Pertix-Hommel	Hommel	W. Germany	-

α-Phenyl Butyric Acid Chloride Diethylaminoethoxyethanol Citric Acid

Manufacturing Process

18.2 grams of α -phenylbutyric acid chloride are dissolved in 25 ml of toluene. To this solution, there is slowly added a solution of 16.1 grams of diethylaminoethoxyethanol in 25 ml of toluene, the reaction mixture thereby becoming hot. It is then heated for 8 hr under reflux. The reaction mixture, after cooling, is carefully poured onto 75 grams of ice and made alkaline with dilute ammonia. After thorough shaking of the solution, the toluene layer is removed and washed until neutral with water. The toluene solution is treated with carbon and dried over sodium sulfate. The toluene is distilled off from the filtered solution.

The residue is α -phenylbutyric acid diethylaminoethoxyethyl ester. The basic ester is purified by distillation in a high vacuum. 10 grams of ester are added to a solution of 7 grams of citric acid in 30 ml of warm acetone. After standing for some time, the citrate of the ester crystallizes out. After suction filtration and washing with acetone the ester citrate is recrystallized from acetone. The melting point of the citrate is 75°C.

References

Merck Index 1481 Kleeman & Engel p. 127 OCDS Vol. 2 p. 76 (1980) DOT 9 (7) 280 (1973) I.N. p. 166

Heusser, J.; U.S. Patent 3,349,114; October 24, 1967; assigned to Hommel AG, Switzerland

BUTETHAMINE

Therapeutic Function: Local anesthetic

Chemical Name: 2-[(2-Methylpropyl)amino] ethanol 4-aminobenzoate

Common Name: Ibylcaine

Structural Formula:

OOCH, CH, NHCH, CH (CH,),

Chemical Abstracts Registry No.: 2090-89-3; 553-68-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Monocaine	Novocol	U.S.	1941
Dentocaine	Amer, Chem,	U.S.	_
M-taulala			

Isobutylaminoethanol Tin Metal p-Nitrobenzoyl Chloride Hydrochloric Acid

Manufacturing Process

The preparation of the normal butyl analog is as follows:

10 g of isobutylaminoethanol, 16 g of p-nitrobenzoyl chloride and 5 g of sodium hydroxide in 175 cc of water were allowed to react. The temperature was maintained between 30°-40°C during reaction. The reaction mixture was extracted with ether, the ether evaporated, and the resultant oil washed with water to remove any unreacted secondary amino alcohol and then dried. The yield was 21 g or 91% of theory. The compound responded positively when tested for the presence of the amine configuration and also the nitro group. The yellow viscous oil which was formed was isobutylaminoethyl p-nitrobenzoate. 20 g of this latter material was directly reduced with 15 g of tin and 50 cc of concentrated hydrochloric acid. The temperature of the reduction was controlled by addition from time to time of small quantities of cold water to maintain the temperature at or near 70°C. When the reaction was completed 150 cc of sodium hydroxide was added and the solution then cooled to 15°C. The oil which gradually formed combined with undissolved tin to form a pasty mass which soon settled. The supernatant liquid was decanted and the residue washed two or three times with water to remove all traces of alkali. The oily mass, freed from most of its water, was then extracted with ether and filtered. The filtrate was evaporated to dryness and the yield of the base obtained was 13 g or 73,5% of theory. In order to get the melting point of the base, the monohydrochloride was first formed and purified, then the hydrochloride was dissolved in water and just neutralized with ammonia water. The colorless oil formed soon crystallized into a white solid, which after filtration and air drying, had a melting point of 74°-74.5°C. The hydrochloride was made when the oily base was dissolved in propyl alcohol and the calculated quantity of aqueous hydrochloric acid added to form the monohydrochloride of this compound. After repeated recrystallizations, a white needle crystal was formed which had a melting point at 146°C.

References

Merck Index 1492
Kleeman & Engel p. 128
DOT 15 (7) 368 (1979)
I.N. p. 168
Goldberg, S.D.; U.S. Patent 2,139,818; December 13, 1938; assigned to Novocol Chemical Mfg, Co., Inc.

BUTHIAZIDE

Therapeutic Function: Diuretic; antihypertensive

Chemical Name: 6-Chloro-3,4-dihydro-3-(2-methylpropyl)-2H-1,2,4-benzothiadiazine-7-sul-

fonamide-1,1-dioxide

Common Name: Thiabutazide; butizide; isobutylhydrochlorothiazide

Structural Formula:

Chemical Abstracts Registry No.: 2043-38-1

Trade Name	Manufacturer	Country	Year Introduced
Saltucin	Boehringer Mannheim	W. Germany	1961
Eunephran	Servier	France	-
Intensain	Boehringer-Mannheim	W. Germany	_
Modenol	Boehringer-Mannheim	W. Germany	-
Sembrina	Boehringer-Mannheim	W. Germany	-

Raw Materials

3-Chloraniline Ammonia isovaleraldehyde Chlorosulfonic Acid

Manufacturing Process

Chlorsulfonic acid and 3-chloroaniline react to give an intermediate which when treated with ammonia yields 5-chloro-2,4-disulfamylaniline.

20 g of 5-chloro-2,4-disulfamylaniline in 15 cc of diethyleneglycol-dimethyl ether with 0.9 g of isovaleraldehyde are reacted in the presence of 0.5 cc of a saturated solution of hydrochloric acid in ethyl acetate at 80°-90°C. The reaction mixture is concentrated under reduced pressure, an oily product precipitates on the addition of water, the latter is decanted and ethanol added to the remaining oil. 3-Isobutyl-6-chloro-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide crystallizes and, after recrystallization from dimethylformamide and water, melts at 241°-245°C.

References

Merck Index 1494 Kleeman & Engel p. 129 DOT 14 (3) 119 (1978)

I.N. p. 169

Ciba, Ltd.; British Patents 861,367; February 22, 1961 and 885,078; December 20, 1961

BUTOFILOLOL

Therapeutic Function: Beta blocker

Chemical Name: 1-[2-[3-[(1,1-Dimethylethyl)amino]-2-hydroxypropoxy]-5-fluorophenyl]-

1-butanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 64552-17-6

Trade Name	Manufacturer	Country	Year Introduced
Cafide	Clin Midy	France	1982

Raw Materials

5-Fluorosalicylaldehyde Sodium Hydride
1-Chloro-2-hydroxy-3-t-butylaminopropane Hydrogen Chloride
Propyl Magnesium Bromide

Manufacturing Process

- (a) 5-Chloromethyl-3-tert-butyl-2-(2-hydroxy-5-fluorophenyl)oxazolidine: 5-Fluorosalicylaldehyde (1.4 g, 0.01 mol) is dissolved in anhydrous benzene (20 ml) in the presence of a crystal of p-toluenesulfonic acid in a Dean-Stark apparatus. 1-Chloro-2-hydroxy-3-tert-butylamino-propane (2.08 g, approximately 1 equivalent, purity 75%) is then added within a period of 10 hours in portions of 250 mg at a time at the reflux temperature of benzene and the mixture is allowed to stand overnight. An insoluble substance is precipitated on addition of ether after which the solution is filtered, concentrated and distilled. A fraction is obtained having a boiling point of 118°-123°C/10-3 mm of mercury. A mixture of 1.03 g (yield 43%) of isomeric oxazolidines is obtained which solidifies. This is crystallized once from hexane. Melting point 75°-78°C.
- (b) 8-Aza-4,9-dioxa-11-fluoro-8-tert-butyl-2,3-benzobicyclo[4.2.1] octane: The product of the previous stage (620 mg) is dissolved in anhydrous dimethylformamide (10 ml) and two quantities each of 300 mg of 50% sodium hydride is added within 2 hours. The mixture is then left for 24 hours at 25°C while being stirred mechanically and is then heated for 2 minutes on a water bath (80°-90°C). The mixture is poured into water, the product extracted with ether, the ethereal extract dried over anhydrous sodium sulfate and the organic phase then concentrated and filtered through a short column of activated alumina. A mixture of light petroleum and diethyl ether (75:25) is used to elute 186 mg of pure product from the column. Melting point 85°-86°C (after recrystallization from diisopropyl ether).
- (c) 1-(2-Formyl-4-fluorophenoxy)-2-hydroxy-3-tert-butylaminopropane: The compound obtained as described above (50 mg) is dissolved in a solution of 1 N hydrochloric acid (0.5 ml). The mixture is then heated on a water bath (80°-90°C) for several hours. After complete hydrolysis, which requires approximately 8 hours, the mixture is poured into an excess of water which has been basified, the solid base thus formed is extracted with ether, dried and recrystallized from diisopropyl ether. Melting point 103°-105°C.
- (d) 1-[2-(1-Hydroxybutyl)-4-fluorophenoxy]-2-hydroxy-3-tert-butylaminopropane: To a solution of propylmagnesium bromide prepared from 195 mg (8.1 X 10⁻³ mol) of magnesium, 1.08 g (8.1 X 10⁻³ mol) of bromopropane and a crystal of iodine in 10 ml of anhydrous diethyl ether under nitrogen is added a solution of the previously prepared aldehyde (197 mg, 0.73 X 10⁻³ mol) in 4 ml of an ether/tetrahydrofuran mixture (1:3 by volume) and the mixture is heated to reflux for 70 minutes. The mixture is poured into water, extracted with diethyl ether, dried over anhydrous sodium sulfate and 208 mg of an oil which is homogeneous, as shown by thin-layer chromatography, is isolated.
- (e) CM 6805 (Butofilolol): The previously prepared base (200 mg, 0.66 X 10⁻³ mol) is dissolved in purified acetone (8 ml). A drop of sulfuric acid solution (prepared from 35 ml of concentrated sulfuric acid and 65 ml of water) is added and the mixture heated on a water bath for 1 minute. When the solution has cooled to 5° to 10°C a solution of chromic acid (66 mg, 1 equivalent) dissolved in 2 ml of the same acid solution is quickly added and the resulting mixture is stirred while cold. The mixture is then poured into a saturated solution of sodium carbonate, the acetone is evaporated under reduced pressure on a water bath, and the organic phase is extracted with diethyl ether. After drying and evaporating the solvent

an oil is obtained (172 mg) all of which solidifies. Recrystallization is carried out from diisopropyl ether. 122 mg of CM 6805 is obtained (yield 61%). Melting point 88°-89°C.

References

Merck Index 1500 DFU 7 (2) 96 (1982) DOT 18 (10) 551 (1982) & 19 (2) 112 (1983) I.N. p. 169

Demarne, H.; U.S. Patent 4,252,825; February 24, 1981; assigned to C.M. Industries.

BUTORPHANOL

Therapeutic Function: Analgesic, antitussive

Chemical Name: N-Cyclobutylmethyl-3,14-dihydroxymorphinan

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 42408-82-2

Trade Name	Manufacturer	Country	Year Introduced
Stadol	Bristol-Myers	U.S.	1978
Stadol	Bristol-Myers	U.K.	1980
Moradoì	Galenika	Yugoslavia	-

Raw Materials

N-CyclobutyImethyI-14-hydroxy-3-methoxymorphinan Hydrogen Bromide

Manufacturing Process

A mixture of 1.0 g (2.58 mmols) of N-cyclobutylmethyl-14-hydroxy-3-methoxymorphinan and 10 ml of 48% HBr was refluxed, under a nitrogen atmosphere, during five minutes. After cooling, the reaction mixture was diluted with water and made basic with aqueous ammonium hydroxide. The aquous basic mixture was extracted with chloroform and the combined chloroform extracts were dried over anhyrous sodium sulfate. After evaporation of the solvent, the residual oil (730 mg) was taken up in dry ether and the resulting solution filtered through celite-charcoal. The filtrate was treated with a saturated solution of hydrogen chloride in dry ether. The hydrochloride salt thus obtained was collected by filtration and recrystallized from a methanol-acetone mixture to yield 565 mg (56.5%) of Butorphanol hydrochloride crystals melting at 272°-274°C (decomposition).

References

Merck Index 1503

DFU 2 (4) 231 (1977) & 3 (5) 330 (1978)

Kleeman & Engel p. 129

PDR p. 713

OCDS Vol. 2 p. 325 (1980)

DOT 14 (5) 197 (1978)

I.N.p. 170

REM p. 1107

Monkovic, I. and Conway, T.T.; U.S. Patent 3,775,414; November 27, 1973; Monkovic, I., Wong, H. and Lim, G.; U.S. Patent 3,980,641; September 14, 1976; Pachter, I.J., Belleau, B.R. and Monkovic, I.; U.S. Patent 3,819,635; June 25, 1974; and Lim, G. and Hooper, J.W.; U.S. Patent 4,017,497; April 12, 1977; all assigned to Bristol-Myers Company

BUTRIPTYLINE

Therapeutic Function: Antidepressant

Chemical Name: (±)-10,11-dihydro-N,N,β-trimethyl-5H-dibenzo[a,d] cycloheptene-5-propan-

amine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 35941-65-2; 5585-73-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Evadyne	Ayerst	U.K.	1975
Evadene	Ayerst	Italy	1976
Centrolyse	Ayerst	_ '	_
Evasidol	Arcana	Austria	_

Raw Materials

Dibenzo [a,e] cycloheptadiene Sodium Hydride

2-Methyl-3-dimethylaminopropyl Chloride

Manufacturing Process

A solution of dibenzo[a,e] cycloheptadiene in anhydrous xylene is added in a dropwise fashion with stirring to a suspension of sodium hydride in refluxing anhydrous xylene. The mixture is heated at reflux for two hours with continual agitation and there is then added dropwise a solution of 2-methyl-3-dimethylaminopropyl chloride in an equal volume of xylene. The mixture is then heated for fifteen hours, after which time it is cooled and decomposed by the cautious addition of ice water. The layers are separated and the aqueous layer extracted with ether. The combined organic layers are next extracted with 10% hydrochloric acid and the acidic extracts then rendered alkaline by the addition of ammonium hydroxide. The precipitated oil is extracted three times with chloroform. The chloroform extracts are dried and concentrated in vacuo, the residue being distilled to yield the product.

References

Merck Index 1506

Kleeman & Engel p. 131 OCDS Vol. 1 p. 151 (1977)

DOT 9 (6) 219 (1973) & 10 (7) 235 (1974)

I.N.p. 170

Villani, F.J.; U.S. Patent 3,409,640; November 5, 1968; assigned to Schering Corporation

BUTROPIUM BROMIDE

Therapeutic Function: Antispasmodic

Chemical Name: [3(S)-endo] -8-{(4-butoxyphenyl)methyl] -3-(3-hydroxy-1-oxo-2-phenyl-

propoxy)-8-methyl-8-azoniabicyclo[3.2.1] octane bromide

Common Name: -

Structural Formula:

$$\begin{array}{c|c} C_4 H_9 O & \begin{array}{c} C H_2 \\ \\ C H_2 O H \\ \end{array} \end{array} \begin{array}{c} C H_2 O H \\ \\ C_6 H_5 \end{array} \end{array} \hspace{0.5cm} Br^{-1}$$

Chemical Abstracts Registry No.: 29025-14-7

Trade Name	Manufacturer	Country	Year Introduced
Coliopan	Eisai	Japan	1974

Raw Materials

Hyoscyamin Butoxybenzył Bromide

Manufacturing Process

To 100 ml of an isopropanol solution containing 11.8 grams of hyoscyamine base were added drop by drop with stirring 10 ml of an isopropanol solution containing 11 grams of p-n-butoxybenzyl bromide. After a while, the reaction mixture had a turbid appearance followed by separation of white crystals.

After stirring for 5 hours at room temperature, the crystals were recovered by filtration, which were then recrystallized from 120 ml of isopropanol. There was obtained 15.8 grams of white needles having the melting point of 158°-160°C.

References

Merck Index 1507 Kleeman & Engel p. 131 OCDS Vol. 2 p. 308 (1980) DOT 10 (11) 292 (1974) I.N. p. 170

Tanaka, S. and Hasimoto, K.; U.S. Patent 3,696,110; October 3, 1972; assigned to Eisai, KK, Japan

CAFAMINOL

Therapeutic Function: Nasal decongestant

Chemical Name: 3,7-Dihydro-8-[(2-hydroxyethyl)methylamino]-1,3,7-trimethyl-1H-purine-

2,6-dione

Common Name: Methylcoffanolamine

Structural Formula:

Chemical Abstracts Registry No: 30924-31-3

Trade Name	Manufacturer	Country	Year Introduced
Rhinoptil	Promonta	W. Germany	1974
Rhinetten	Arzneimittelwerk Dresden	E. Germany	-

Raw Materials

8-Chlorocaffeine β-N-methylaminoethanol

Manufacturing Process

21 g 8-chlorocaffeine and 15 g β -N-methylaminoethanol are heated to 140°-160°C for 30 minutes. Then the temperature is increased for 15-20 minutes to 165°-170°C. On cooling a colorless mass of crystals results. This is boiled with 50-60 ml ethanol and crystallized. Colorless crystals result which are soluble in water up to about 6%; pH of the aqueous solution is 6.9. The yield is 19 g while the MP is 162°-164°C.

References

Merck Index 1603

I.N. p. 173

Klosa, J.; U.S. Patent 3,094,531; June 18, 1963; assigned to Delmar Chemicals Ltd. (Canada)

CALCIFEDIOL

Therapeutic Function: Regulator (calcium)

Chemical Name: 9.10-Secocholesta-5,7,10(19)-triene-3,25-diol

Common Name: 25-Hydroxyvitamin D₃; 25-Hydroxycholecalciferol

Structural Formula:

Chemical Abstracts Registry No.: 19356-17-3

Trade Name	Manufacturer	Country	Year Introduced
Dedrogyl	Roussel	France	1976
Delakmin	Roussel	W. Germany	1978
Calderol	Upjohn	U.S.	1980
Didrogyl	Roussel/Maestrett	Italy	1980
Dedrogyl	Hoechst	Switz.	1982
Hidroferol	Juventus	Spain	_
Calderol	Organon	Ú.S.	_

Raw Materials

Cholesta-5,7-diene-3\(\beta\),25-diol

Manufacturing Process

A solution of 125 mg of cholesta-5,7-diene-3 β ,25-diol in 125 ml of benzene and 10 ml of absolute ethanol is placed in a photo reactor equipped with a quartz lampwell cooled with water and a nitrogen inlet. The reaction mixture is cooled to about 16°C, and purged with N2. A Hanovia 8A36, 100-watt lamp, centered in the lampwell 2.5 cm from the internal surface of the reaction mixture, is turned on for 15 minutes, including the 5-6 minutes required for the lamp to reach full brilliance. The lamp is a typical actinic energy source suitable for the irradiation step in the known synthesis of Vitamin D, and can be replaced by any such available lamp. The specific lamp used is a 100-watt high-pressure quartz mercury-vapor lamp, producing approximately 11.5 watts total radiated energy distributed over the range of 220-1400 mµ. A fast stream of water is necessary to keep the outlet water temperature below 20°C. The reaction mixture is concentrated to dryness in a rotary evaporator below room temperature. The semisolid residue is triturated with 5 ml of 35% ethyl acetate-65% Skellysolve B hexanes mixture and filtered and another 5 ml of the same solvent is used for wash. The solid contains unreacted starting material and the liquor contains the product. The liquor is poured onto a 40 g column containing TLC grade Florisil, 150-200 mesh packed wet with 35% ethyl acetate-Skellysolve B hexanes, and the products are eluted with the same solvent mixtura collecting 10 ml fractions. The fractions containing the product, located by spotting on a TLC plate, are combined and evaporated to dryness below room temperature to give an oily residue. A few drops of absolute ether are added and removed under vacuum to give 25hydroxyprecholecalciferol as a fluffy foam; yield 60 mg.

A solution of about 300 mg of 25-hydroxyprecholecalciferol prepared as described above in 5 ml of chloroform is heated for $3\frac{1}{2}$ hours at 70° - 75° C under N_2 in a sealed flask. The solvent is evaporated and the residue is chromatographed through a 60 g column containing TLC grade Florisil, 150-200 mesh packed wet with 35% ethyl acetate in Skellysolve B hexanes. The column is eluted with the same solvent mixture, collecting 10 ml fractions. The fractions which crystallize on trituration with aqueous methanol are combined and recrystallized twice from aqueous methanol to give 25-hydroxycholecalciferol hydrate; yield 120 mg, MP 81°-83°C (sinters 75°C).

A solution of 20 mg of 25-hydroxycholecalciferol hydrate, prepared as described above, in 20 ml of methylene chloride is dried with 200 mg of anhydrous sodium sulfate. The solution is filtered and the filtrate is evaporated to yield 25-hydroxycholecalciferol essentially anhydrous as an amorphous oil.

References

Merck Index 1610 Kleeman & Engel p. 133 PDR p. 1285 OCDS Vol. 3 p. 101 (1984) DOT 13 (6) 225 (1977)

I.N. p. 174

Babcock, J.C. and Campbell, J.A.; U.S. Patent 3,833,622; September 3, 1974; assigned to The Upjohn Company

Salmond, W.G.: U.S. Patent 4,001,096; January 4, 1977; assigned to The Upjohn Company

CALCITONIN

Therapeutic Function: Regulator (calcium)

Chemical Name: Complex hormone of molecular weight about 4,500

Common Name: Thyrocalcitonin

Structural Formula:

Cys-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-2 3 4 5 6 17 8 9 10 11 12 13 14 15 16 17 Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro-NH2 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Chemical Abstracts Registry No.: 9007-12-9

Trade Name	Manufacturer	Country	Year Introduced
Calcitar	Yamanouchi	Japan	1978
Cibacalcin	Ciba Geigy	Switz.	1978
Elcitonin	Toyo Jozo	Japan	1981
Calcimar	Armour	U.\$.	
Calcitonin-Sandoz	Sandoz	Switz.	-
Calsyn	Armour	U.K.	_
Calsynar	Armour	U.K.	
Miacalcic	Sandoz	Switz.	_
Staporos	Roussel	France	-

Raw Materials

C-cell-rich thyroid gland carcinoma

Manufacturing Process

The process for the manufacture of human calcitonin in pure form from C-cell rich medulla

carcinoma of the thyroid gland or from C-cell metastasis material is one wherein medullar carcinoma of the thyroid gland or C-cell metastasis material, which has been defatted, for example with acetone or ether, and which may have been first purified with alcohol or with aqueous trichloroacetic acid, is extracted one or more times with a solvent system containing water and an alkanol having at most 5 carbon atoms, at a pH of from about 1 to 6, and the extracted product subjected to gel chromatography using aqueous formic acid as eluant. The calcitonin may be separated into its constituents by countercurrent distribution, for example by Craig distribution using a solvent system advantageously containing n-butanol and acetic acid.

References

Merck Index 1611 DFU 8 (2) 105 (1983) PDR p. 1809 DOT 14 (4) 139 (1978) I.N. p. 174 REM p. 979

CALCITRIOL

Therapeutic Function: Calcium regulator

Chemical Name: 9,10-Secocholesta-5,7,10(19)-triene-1,3,25-triol

Ciba-Geigy A.G.; British Patent 1,270,595; April 12, 1972

Common Name: $1\alpha,25$ -Dihydroxycholecalciferol; $1\alpha,25$ -dihydroxyvitamin D₃

Structural Formula:

Chemical Abstracts Registry No.: 32222-06-3

Trade Name	Manufacturer	Country	Year Introduced
Rocaltrol	Roche	U.S.	1978
Rocaltrol	Roche	W. Germany	1980
Rocaltrol	Roche	U.K.	1980
Rocaltrol	Roche	Switz.	1980
Rocaltrol	Roche	Italy	1981

Raw Materials

1a.25-Diacetoxyprecholecalciferol Potassium hydroxide

Manufacturing Process

 1α , 25-Dihydroxyprecholecalciferol: A solution of 1α , 25-diacetoxyprecholecalciferol (0.712 g, 1.42 mmols), potassium hydroxide (2.0 g, 35.6 mmols) and methanol (40 ml) was stirred at room temperature under argon for 30 hours. The reaction mixture was concentrated under reduced pressure. Water (50 ml) was added to the residue and the mixture was extracted with methylene chloride (3 x 100 ml). The combined organic extracts were washed with saturated sodium chloride solution (3 x 50 ml), dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to give 0.619 g of 1α ,25-dihydroxyprecholecalciferol as a thick oil.

1 α , 25-Dihydroxycholecalciferol: A solution of 1 α , 25-dihydroxyprecholecalciferol [0.619 g in dioxane (30 ml)] was heated under reflux for 30 minutes under an atmosphere of argon. The reaction mixture was concentrated under reduced pressure and the residue was purified with a Waters Associates liquid chromatograph model 202 using a 8 foot X 3 k inch Porasii A column and a 5:1 mixture of ethyl acetate-n-hexane as the eluent to give 0.474 g (80% yield based on 1 α ,25-diacetoxyprecholecalciferol) of pure 1 α ,25-dihydroxycholecalciferol. Recrystallization from methyl formate afforded 0.340 g of 1 α ,25-dihydroxcholecalciferol as colorless crystals, MP 113°-114°C.

References

Merck Index 1612 Kleeman & Engel p. 134 PDR p. 1498 OCDS Vol. 3 p. 103 (1984) DOT 16 (5) 149 (1980) I.N. p. 175 REM p. 1012

Uskokovic, M.R., Narwid, T.A., Iacobelli, J.A. and Baggiolini, E.; U.S. Patent 3,993,675; November 23, 1976; assigned to Hoffmann-La Roche, Inc.

CALUSTERONE

Therapeutic Function: Antineoplastic

Chemical Name: 17β -hydroxy- 7β ,17-dimethylandrost-4-en-3-one

Common Name: 7,17-dimethyltestosterone

Structural Formula:

Chemical Abstracts Registry No.: 17021-26-0

Trade Name	Manufacturer	Country	Year Introduced
Methosarb	Upjohn	U.S.	1973
Riedemil	Upjohn	U .S .	_

Raw Materials

6-Dehydro-17-methyltestosterone Methyl magnesium bromide

Manufacturing Process

As described in U.S. Patent 3,029,263, one possibility is a multistep synthesis starting from 3β , 17β -dihydroxy- 17α -methyl-5-androstene.

Alternatively, as described in U.S. Patent 3,341,557, 6-dehydro-17-methyltestosterone may be used as the starting material. A mixture of 0.4 g of cuprous chloride, 20 ml of 4 M methylmagnesium bromide in ether and 60 ml of redistilled tetrahydrofuran was stirred and cooled in an ice bath during the addition of a mixture of 2.0 g of 6-dehydro-17-methyltestosterone, 60 ml of redistilled tetrahydrofuran and 0.2 g of cuprous chloride. The ice bath was removed and stirring was continued for four hours. Ice and water were then carefully added, the solution acidified with 3 N hydrochloric acid and extracted several times with ether. The combined ether extracts were washed with a brine-sodium carbonate solution, brine and then dried over anhydrous magnesium sulfate, filtered and then poured over a 75-g column of magnesium silicate (Florisil) packed wet with hexanes (Skellysolve B). The column was eluted with 250 ml of hexanes, 0.5 liter of 2% acetone, two liters of 4% acetone and 3.5 liters of 6% acetone in hexanes.

Four 250-ml fractions were collected followed by 150 ml fractions. The residues from fractions 8 to 16 were combined and rechromatographed over a 125-g column of magnesium silicate. The solumn was eluted with 6% acetone in hexanes which was collected in 150 ml portions. Fractions 18 to 29 were combined and dissolved in acetone, decolorized with charcoal, and recrystallized from acetone. One gram of a crystalline mixture of the 7epimers of 7,17-dimethyltestosterone was obtained melting at 120° to 140°C.

References

Merck Index 1701 Kleeman & Engel p. 138 OCDS Vol. 2 p. 154 (1980) DOT 10 (3) 85 (1974) I.N. p. 177 REM p. 1001

Campbell, J.A. and Babcock, J.C.; U.S. Patents 3,029,263; April 10, 1962 and 3,341,557; September 12, 1967; both assigned to The Upjohn Company

CAMAZEPAM

Therapeutic Function: Anxiolytic

Chemical Name: 3-N.N-dimethylcarbamoyloxy-1-methyl-7-chloro-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 36104-80-0

Trade Name	Manufacturer	Country	Year Introduced
Albego	Simes	Italy	1977

Trade Name	Manufacturer	Country	Year Introduced
Albego	Boehringer-Ingel.	W. Germany	1978
Albego	Inpharzam	Switz.	1978
Albego	Farmasimes	Spain	
Limpidon	Crinos	Italy	
Nebolan	-		-

7-Chloro-5-phenyl-1-methyl-3-hydroxy-1,3-dihydro-2H-1,4-benzodiazepine-2-one Phenyl chlorocarbonate Dimethylamine

Manufacturing Process

A suspension of 100 g of 7-chloro-5-phenyl-1-methyl-3-hydroxy-1,3-dihydro-2H-1,4-benzodiazepin-2-one in 700 ml of anhydrous pyridine, kept stirred between 0°C and +5°C, is slowly treated, during 20 to 30 minutes, with 54.5 ml phenyl chlorocarbonate. The temperature is gradually allowed to rise to 20°-25°C and stirring is maintained at this temperature during 24 hours.

 $2\,\ell$ of water are then slowly added (during about 30 minutes) and stirring is maintained during 1 hour. The precipitate which has been formed is collected on a filter, washed thoroughly with water, dried in a vacuo at 50°C and recrystallized by dissolving it at 60°C in 1,400 ml dioxane. the solution thus obtained being evaporated under reduced pressures to one-half of its volume, and 1,700 ml of ligroin (BP 80°C to 120°C) being added thereto.

7-chloro-5-phenyl-1-methyl-3-phenoxycarbonyloxy-1,3-dihydro-2H-1,4-benzodiazepin-2-one is thus obtained, with a melting point of 162°C to 164°C.

A suspension of 45 g 3-phenoxycarbonyloxy-1-methyl-7-chloro-5-phenyl-1,3-dihydro-2H-1,4benzodiazepin-2-one in 450 ml methanol is treated with stirring, with 43 ml of a solution of dimethylamine in methanol (containing 31 g dimethylamine in 100 ml). Stirring is maintained at 20°C to 25°C during 5 hours. The reaction mixture is filtered, and the filtrate is diluted with 450 ml water. The precipitate thus formed, is 3-(N,N-dimethylcarbamoyloxy)-1-methyl-7-chloro-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, which is collected on a filter, dried and recrystallized from ethyl acetate, and has a melting point of 173°C to 174°C.

References

Merck Index 1703 DFU 1 (10) 458 (1976) Kleeman & Engel p. 139 DOT 11 (5) 182 (1975); 13 (12) 521 (1977) I.N. p. 177

Ferrari, G. and Casagrande, C.; U.S. Patent 3,799,920; March 26, 1974; assigned to Siphar SA

CANDICIDIN

Therapeutic Function: Topical antifungal

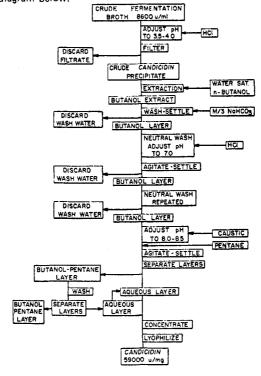
Chemical Name: Heptaene macrolide antibiotic

Common Name: -

Structural Formula: -

Chemical Abstracts Registry No.: 1403-17-4

Trade Name	Manufacturer	Country	Year Introduced
Candeptin	S chmid	U.S.	1964
Candimon	Ayerst	U.S.	_
Prostatin	Schmidt	U.S.	
Vanobid	Merrell Dow	U.S.	_


Raw Materials

Yeast-glucose medium

Streptomyces Griseus No. 3570 bacterium

Manufacturing Process

Hubert Lechevalier et al were the first to describe "Candicidin, a New Antifungal Antibiotic," in *Mycologia* XLV, No. 2, 155-171, March-April 1953. They produced candicidin by growing a culture of the organism *Streptomyces griseus* No. 3570 on a yeast-glucose medium, isolating a "crude candicidin" from the resulting broth and purifying it. An improved extraction and purification method is described in U.S. Patent 2,872,373 and is shown in the flow diagram below.

Another extraction and separation process is described in U.S. Patent 2,992,162.

References

I.N. p. 178

REM p. 1226

Siminoff, P.; U.S. Patent 2,872,373; February 3, 1959; assigned to S.B. Penick & Company,

Waksman, S.A. and Lechevalier, H.A.; U.S. Patent 2,992,162; July 11, 1961; assigned to Rutgers Research and Educational Foundation

CANRENOATE POTASSIUM

Therapeutic Function: Aldosterone antagonist, Diuretic

Chemical Name: 17-hydroxy-3-oxo-17α-pregna-4.6-diene-21 carboxylic acid potassium salt

Common Name: -

Structural Formula: The corresponding lactone, canrenone, has the formula following.

Chemical Abstracts Registry No.: 2181-04-6; 976-71-6 (Canrenone base)

Trade Name	Manufacturer	Country	Year Introduced
Spiroctan	Boehringer-Mannheim	Switz.	1968
Soldactone	Diethelm	Switz.	1968
Osyrol	Hoechst	W. Germany	1968
Soludactone	Searle	France	1971
Venactone	Lepetit	Italy	1978
Spiroctan-M	MCP Pharm.	U.K.	1981
Soldacton	Dainippon	Japan	1981
Aldactone	Boehringer-Mannheim	W. Germany	_
Aldatense	Searle	France	
Aldatense	Spa	Italy	_
Phanurane	Specia	France	_
Sincomen	Schering	W. Germany	_
Soldactone	Searle	U.S.	

Raw Materials

17α-Carboxyethyl-17β-hydroxyandrost-4-en-3-one lactone

Chloranil

Manufacturing Process

The lactone is prepared as follows: A solution of 5 parts of 17α -carboxyethyl- 17β -hydroxyandrost-4-en-3-one lactone and 5 parts of chloranil in 400 parts of xylene containing a trace of p-toluenesulfonic acid is heated at the boiling point of the solvent under reflux overnight. The solution is then cooled and filtered through approximately 200 parts of silica gel. The gel is successively washed with 5%, 10%, and 15% ethyl acetate-benzene

solutions, and the washings comprising 15% ethyl acetate are thereupon purified by chromatography on a further quantity of silica gel, using benzene and ethyl acetate as developing solvents. From the 15% ethyl acetate eluate there is obtained pure 17α -carboxyethyl- 17β -hydroxyandrosta-4,6-dien-3-one lactone, melting at 148° to 151° C. The product solidifies above this melting point and melts again at 165° C.

References

Merck Index 1726 Kleeman & Engel p. 507 OCDS Vol. 2 p. 174 (1980) DOT 12 (2) 45 (1976) I.N. p. 178

Cella, J.A.; U.S. Patent 2,900,383; August 18, 1959; assigned to G.D. Searle & Co.

CAPREOMYCIN SULFATE

Therapeutic Function: Antitubercular

Chemical Name: Cyclic polypeptide antibiotic

Common Name: Caprolin

Structural Formula:

Chemical Abstracts Registry No.: 1405-37-4 (Base = 11003-38-6)

Trade Name	Manufacturer	Country	Year Introduced
Capastat	Lilly	U.K.	1966
Capastat	Serum Impfinst	Switz.	1967
Ogostac	Lilly	W. Germany	1967
Capastat	Lilly	U.S.	1971
Capastat	Lilly	Italy	1973
Capastat	Shionogi	Japan	_

Raw Materials

Glucose
Culture of NRRL-2773 bacterium

Manufacturing Process

shaker having a 1-inch stroke.

A culture of NRRL 2773 is produced by growing the organism on a nutrient agar slant having the following composition:

Oatmeal-Tomato Paste Agar

	Grams
Tomato paste	20
Precooked oatmeal	20
Agar	15
Tap water, added to make a final volume of 1 liter.	

The slant is inoculated with spores of NRRL 2773 and is incubated for 10 days at about 30°C. The culture growth on the slant is covered with 6 ml of nutrient broth, and the slant is scraped gently to remove the organisms to provide an aqueous suspension. Employing aseptic techniques, the inoculum obtained from one 1-inch agar slant is used to inoculate a 2-liter Erlenmeyer flask containing a 500-ml portion of a sterilized vegetative culture medium having the following composition: soluble starch, 10 g; peptones, 5 g; beef ex-

To produce a larger quantity of vegetative inoculum, 500 ml of the vegetative inoculum is added aseptically to a stainless steel 350-gallon fermentation tank containing 250 gallons of sterile medium having the following composition (weight/volume): glucose, 1.5%; yeast, 1.5%; and antifoam (Polyglycol No. 2000, Dow Chemical Co.), 0.02%. The inoculum is allowed to grow for about 22 hours at a temperature of 30°C. Throughout the growth period, the medium is aerated with sterile air at the rate of 17 cfm and is agitated with two 16-inch impellers rotating at 160 revolutions per minute. To a 1,700-gallon stainless steel fermentor are added 1,100 gallons of a medium having the following composition (weight/volume):

tract, 5 g; sodium chloride, 5 g; yeast extract, 2.5 g; and tap water, 1,100 ml. The incubation is carried on at 28°C for 48 hours with shaking at 250 cycles per minute on a rotary

Peptone No. 159 Medium

	Percent
Glucose	2.5
Molasses	1.0
Peptones	4.0
Calcium carbonate	0,2
Hydrolyzed casein	0.6
Antifoam (Polyglycol No. 2000, Dow Chemical Co.)	0.005

The medium after sterilization is inoculated with 100 gallons of the inoculum grown in the fermentation tank. The fermentation is carried on at 30°C for about five days. The foam is controlled by the addition, when needed, of Larex No. 1 (an antifoam product, Swift and Co.). Throughout the fermentation, the medium is aerated by the addition of sterile air at the rate of 96 cfm and is agitated with two 22-inch impellers operated at 140 revolutions per minute. At the end of the fermentation, 240 lb of Dicalite 476 (a perlite filter product, Great Lakes Carbon Corporation) are added to 1,000 gallons of the antibiotic broth, and the mixture is stirred and filtered. The filter cake is washed with tap water and the wash water and the filtrate are combined to provide a total volume of 1,000 gallons.

To 500 gallons of the combined liquids are added 132 lb of Darco G-60. The mixture is stirred thoroughly and filtered, and the filtrate is discarded. The carbon filter cake is washed with 200 liters of tap water, the wash water being discarded. The washed carbon cake on which the capreomycin is adsorbed is further washed with 200 liters of 0.05 N aqueous hydrochloric acid. The acid wash is discarded. The washed carbon cake is eluted during a one-hour period with 400 liters of an aqueous acetone mixture containing 1.65 liters of 11.7 N hydrochloric acid and 80 liters of acetone. The filter cake is further eluted by washing the cake with 200 liters of an aqueous acetone mixture containing 825 ml of 11.7 N hydrochloric acid and 40 liters of acetone during a 15-minute period. The combined eluates, having a total volume of 575 liters, are concentrated in vacuo to 52.5 liters.

The concentrate is added with stirring to 525 liters of acetone and the acetone mixture is permitted to stand overnight at room temperature, during which time an oily precipitate of capreomycin separates. The supernatant is decanted and discarded, and the oily precipitate which remains is dissolved in 20 liters of distilled water. The aqueous solution is concentrated in vacuo to 12 liters to remove any residual acetone. The aqueous concentrate containing capreomycin is filtered to remove a small amount of a precipitate, which is discarded.

The filtrate containing the capreomycin is added to 240 liters of methanol with stirring. The methanolic solution of capreomycin is acidified by the addition of one liter of 10 N sulfuric acid, whereupon the precipitation of the sulfuric acid addition salt of capreomycin commences. The mixture is permitted to stand overnight for more complete precipitation. The supernatant is removed by decanting and filtering. The precipitate, consisting of the capreomycin disulfate, is washed with 10 liters of methanol and is dried in vacuo. Yield: 2,510 grams,

References

Merck Index 1732 Kleeman & Engel p. 141 PDR p. 1039 DOT 1 (1) 33 (1965)

I.N. p. 179 REM p. 1202

Herr, E.B., Jr., Hamill, R.L. and McGuire, J.M.; U.S. Patent 3,143,468; August 4, 1964; assigned to Eli Lilly and Company

CAPTODIAMINE

Therapeutic Function: Sedative

Chemical Name: 2-[[[4-(Butylthio)phenyl]phenylmethyl]thio]-N.N-dimethylethanamine

Common Name: Captodiam; captodramine

Structural Formula:

Chemical Abstracts Registry No.: 486-17-9; 904-04-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Covatine	Bailly	France	1958
Suvren	Ayerst	U.S.	1958
Covatix	Lundbeck	Denmark	_

Raw Materials

p-Butylmercaptobenzhydryl chloride Thiourea Sodium metal Sodium hydroxide Diethylaminoethyl chloride

Manufacturing Process

p-Butylmercaptobenzhydryl chloride was boiled with thiourea in alcohol thereby yielding p-

butylmercaptobenzhydrylisothiouronium chloride which was then subjected to hydrolysis with dilute aqueous sodium hydroxide solution whereupon p-butylmercaptobenzhydryl mercaptan was formed.

p-Butylmercaptobenzhydryl mercaptan (28.5 g) was added to a solution of sodium (2.3 g) in absolute alcohol (75 ml), followed by the addition of a solution of diethylaminoethyl chloride (13.6 g) in toluene (50 ml). The mixture was boiled on a steam bath for 3 hours and the sodium chloride which separated out was removed by filtration. The filtrate was concentrated to one-third of its volume and dissolved in ether. The ether solution was shaken with 2N hydrochloric acid (100 ml), and the resulting middle oily layer was separated, dissolved in water and the resulting aqueous solution was washed with ether, then treated with aqueous sodium hydroxide solution to precipitate an oil. The latter was dissolved in ether, dried with anhydrous potassium carbonate, filtered and then treated with anhydrous hydrogen chloride whereupon the desired p-butylmercaptobenzhydryl 2-diethylaminoethyl sulfide hydrochloride precipitated as a white, crystalline substance which was filtered and dried in a desiccator. The melting point of the product was 124°C.

References

Merck Index 1746 Kleeman & Engel p. 141 OCDS Vol. 1 p. 44 (1977)

I.N. p. 179

Hubner, O.F. and Petersen, P.V.; U.S. Patent 2,830,088; April 8, 1958

CAPTOPRIL

Therapeutic Function: Antihypertensive

Chemical Name: 1-(3-Mercapto-2-D-methylpropanoyl)-L-proline

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 62571-86-2

Trade Name	Manufacturer	Country	Year Introduced
Lopirin	Von Heyden	W. Germany	1980
Capoten	Squibb	U.S.	1981
Lopirin	Squibb	Switz.	1981
Capoten	Squibb	U.K.	1981
Capoten	Squibb	Italy	1981
Lopril	Squibb	France	1982
Captoril	Sankyo	Japan	1983
Dilabar	Vita	Spain	
isopresol	Elea	Argentina	_

Raw Materials

L-proline Isobutylene Benzyloxycarbonyl chloride Hydrogen Ammonia 3-Acetylthiomethyl propanoic acid

Trifluoroacetic acid

Manufacturing Process

The first step is the manufacture of L-proline tert-butyl ester. L-proline (230 g) is dissolved in a mixture of water (1 ℓ) and 5 N sodium hydroxide (400 ml). The solution is chilled in an ice bath, and under vigorous stirring, 5 N sodium hydroxide (460 ml) and benzyloxycarbonyl chloride (340 ml) are added in five equal aliquots during a half-hour period. After one hour stirring at room temperature, the mixture is extracted twice with ether and acidified with concentrated hydrochloric acid. The precipitate is filtered and dried. Yield is 442 g; MP 78°C to 80°C.

The benzyloxycarbonyl-L-proline thus obtained (180 g) is dissolved in a mixture of dichloromethane (300 ml), liquid isobutylene (800 ml) and concentrated sulfuric acid (7.2 ml). The solution is shaken in a pressure bottle for 72 hours. The pressure is released, the isobutylene is allowed to evaporate and the solution is washed with 5% sodium carbonate, water, dried over magnesium sulfate and concentrated to dryness in vacuo, to obtain benzyloxycarbonyl-L-proline tert-butyl ester, yield 205 g.

Benzyloxycarbonyl-L-proline tert-butyl ester (205 g) is dissolved in absolute ethanol (1,2 Ω) and hydrogenated at normal pressure with 10% Pd on carbon (10 g) until only a trace of carbon dioxide is observed in the hydrogen exit gas (24 hours). The catalyst is filtered off and the filtrate is concentrated in vacuo at 30 mm Hg. The residue is distilled in vacuo, to obtain L-proline tert-butyl ester, BP_{1mm} 50°C to 51°C.

The next step yields 1-(3-acetylthio-2-methylpropanoyl)-L-proline tert-butyl ester. L-proline tert-butyl ester (5.1 g) is dissolved in dichloromethane (40 ml) and the solution stirred and chilled in an ice bath. Dicyclohexylcarbodiimide (15 ml) is added followed immediately by a solution of 3-acetylthio-2-methylpropanoic acid (4.9 g) in dichloromethane (5 ml). After 15 minutes stirring in the ice bath and 16 hours at room temperature, the precipitate is filtered off and the filtrate is concentrated to dryness in vacuo. The residue is dissolved in ethyl acetate and washed neutral. The organic phase is dried over magnesium sulfate and concentrated to dryness in vacuo. The residue 1-(3-acetylthio-2-methylpropanoyl)-L-proline tert-butyl ester is purified by column chromatography (silica gel-chloroform), yield 7.9 g.

Then, 1-(3-acetylthio-2-methylpropanoyl)-L-proline is produced. The 1-(3-acetylthio-3-methylpropanoyl)-L-proline tert-butyl ester (7.8 g) is dissolved in a mixture of anisole (55 ml) and trifluoroacetic acid (110 ml). After one hour storage at room temperature the solvent is removed in vacuo and the residue is precipitated several times from ether-hexane. The residue (6.8 g) is dissolved in acetonitrile (40 ml) and dicyclohexylamine (4.5 ml) is added. The crystalline salt is boiled with fresh acetonitrile (100 ml), chilled to room temperature and filtered, yield 3.8 g, MP 187°C to 188°C. This material is recrystallized from isopropanol $[\alpha]_D$ -67° (C 1.4, EtOH). The crystalline dicyclohexylamine salt is suspended in a mixture of 5% aqueous potassium bisulfate and ethyl acetate. The organic phase is washed with water and concentrated to dryness. The residue is crystallized from ethyl acetate-hexane to yield the 1-(3-acetylthio-2-D-methylpropanoyl-L-proline, MP 83°C to 85°C.

Finally, Captopril is produced. The thioester (0.85 g) is dissolved in 5.5 N methanolic ammonia and the solution is kept at room temperature for 2 hours. The solvent is removed in vacuo and the residue is dissolved in water, applied to an ion exchange column on the HT cycle (Dowex 50, analytical grade) and eluted with water. The fractions that give positive thiol reaction are pooled and freeze dried. The residue is crystallized from ethyl acetate-hexane, yield 0.3 g. The 1-(3-mercapto-2-D-methylpropanoyl)-L-proline has a melting point of 103°C to 104°C.

References

Merck Index 1747 DFU 3 (11) 795 (1978) Kleeman & Engel p. 142 PDR p. 1736

OCDS Vol. 3 p. 128 (1984)

DOT 17 (6) 233 (1981); 18 (10) 554 (1982)

I.N. p. 180

REM p. 850

Ondetti, M.A. and Cushman, D.W.; U.S. Patent 4,046,889; September 6, 1977; assigned to E.R. Squibb & Sons. Inc.

Ondetti, M.A. and Cushman, D.W.; U.S. Patent 4,105,776; August 8, 1978; assigned to E.R. Squibb & Sons, Inc.

Ondetti, M.A. and Cushman, D.W.; U.S. Patent 4,154,840; May 15, 1979; assigned to E.R. Squibb & Sons, Inc.

CARAMIPHEN EDISYLATE

Therapeutic Function: Antitussive

Chemical Name: 1-Phenylcyclopentanecarboxylic acid 2-(diethylamino)-ethyl ester 1,2-

ethanedisulfonate

Common Name: -

Structural Formula:

$$\begin{bmatrix} c_6\mathsf{H}_5 & cooc\mathsf{H}_2\mathsf{CH}_2\mathsf{N}(\mathsf{C}_2\mathsf{H}_5)_2 \\ & & \mathsf{Ho}_3\mathsf{SCH}_2\mathsf{CH}_2\mathsf{So}_3\mathsf{H} \end{bmatrix}_2$$

Chemical Abstracts Registry No.: 125-86-0

Trade Name	Manufacturer	Country	Year Introduced
Panparnit	Geigy	U.S.	1949
Toryn	Smith Kline	U.S.	1953
Tuss-Ade	S chein	U.S.	
Tuss-Ornade	Smith Kline	U.S.	_

Raw Materials

1-Phenylcyclopentyl-1-carboxylic acid chloride Diethylaminoethanol Ethanedisulfonic acid

Manufacturing Process

20.8 parts of 1-phenyl-cyclopentyl-1-carboxylic acid chloride, obtained from the acid (cf. Am, Soc. 1934, 56, 715) by means of thionyl chloride, are dissolved in 250 parts by volume of absolute ether, then, while stirring and cooling with a mixture of common salt and ice a solution of 12 parts of diethylaminoethanol in 50 parts by volume of absolute ether is allowed to drop thereinto, the temperature being maintained below 0°C, whereupon stirring is continued during 2 hours at room temperature. The whole is then twice shaken out with water and once with diluted hydrochloric acid, the combined aqueous solutions are made alkaline with a potassium carbonate solution and shaken out with ether. The ethereal solution is washed with water, dried over potassium carbonate and the solvent is distilled off. The base boils at a pressure of 0.07 mm at 112°C to 115°C.

The base may then be converted to the hydrochloride or to the ethanedisulfonic acid salt (edisylate).

References

Merck Index 1750 PDR pp. 1606, 1730

OCDS Vol. 1 pg. 90 (1977)

I.N. p. 180

Martin, H. and Hafliger, F.; U.S. Patent 2,404,588; July 23, 1946; assigned to J.R. Geigy A.G. (Switzerland)

CARAZOLOL

Therapeutic Function: Beta-adrenergic blocker

Chemical Name: 4-(3-Isopropylamino-2-hydroxypropoxy)carbazole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57775-29-8

Trade Name Manufacturer Country Year Introduced Conducton Klinge 1980 W. Germany

Raw Materials

Hydroxycarbazole Epichlorohydrin Isopropylamine

Manufacturing Process

The 4-(2,3-epoxypropoxy) carbazole used as starting material is prepared as follows. A solution of 16.3 g 4-hydroxycarbazole in a mixture of 190 ml dioxan and 98 ml 1 N sodium hydroxide is, after the addition of 66 ml epichlorohydrin, stirred for 2 hours at 40°C to 45°C. The reaction mixture is then diluted with water and shaken out with methylene chloride. The methylene chloride phase is washed with water, dried over anhydrous sodium sulfate and evaporated. There are obtained 16.8 g 4-(2,3-epoxypropoxy)carbazole.

A solution of 3.5 g 4-(2,3-epoxypropoxy)carbazole in 50 ml absolute alcohol is mixed with 30 ml isopropylamine and heated for 3 hours under reflux. When the reaction is finished, the reaction mixture is evaporated to dryness. The residue obtained is taken up in methylene chloride and chromatographed over an aluminum oxide column (300 g basic aluminum oxide, activity stage IV; eluent methylene chloride). The eluted fractions are evaporated and the residue is dissolved in methanol and acidified with 2 N ethereal hydrochloric acid.

The precipitate obtained is filtered off and recrystallized from methanol. There are obtained 3.1 g (62% of theory) 4-(3-isopropylamino-2-hydroxypropoxy)carbazole hydrochloride; MP 234°C to 235°C.

References

Merck Index 1753 DFU 2 (11) 715 (1977) Kleeman & Engel p. 143

DOT 17 (2) 53 (1981) and 18 (10) 551 (1982)

I.N. p. 180

Boehringer Mannheim GmbH; British Patent 1,369,580; October 9, 1974

CARBACHOL

Therapeutic Function: Cholinergic

Chemical Name: 2-[(Aminocarbonyl)oxy] -N,N,N-trimethyl-ethanaminium chloride

Common Name: Carbocholine

Structural Formula:

Chemical Abstracts Registry No.: 51-83-2

Trade Name	Manufacturer	Country	Year Introduced
Miostat	Alcon	U.S.	1979
Atonyl	Ferrosan	Denmark	_
Cacholitin	Vaise	Denmark	
Carbacel	Warner-Lambert	U.S.	-
Carbamiotin	Tilden-Yates	U.S.	_
Carbyl	Tubi Lux Farma	İtaly	_
Carcholin	Merck Sharpe & Dohme	U.S.	_
Dory!	Merck	W. Germany	_
Iricoline	Lematte et Boinot	France	_
isopto-Carbachol	Alcon	U.S.	
Jestryl	Ankerwerk	E. Germany	-
Lentin	Merck	W. Germany	_
Lentivasan	Kwizda	Austria	
Mistura	Lederle	U.S.	
Moryl	Savory & Moore	U.K.	_
Oftan-Karbakol	Star	Finland	-
P.V. Carbachol	Aliergan	U.S.	_
Rilentol	Richter	Austria	_
Secretin	Streuli	Switz.	-
Spersacarbachol	Dispersa	Switz.	_
Tonocholin	A.F.I.	Norway	_

Raw Materials

Phosgene Choline chloride

Manufacturing Process

About 14 g of choline chloride are stirred with a solution of about 20 g of phosgene in 100 g of chloroform for about two hours at room temperature. The mixture becomes a two-phase liquid mixture. Hydrochloric acid and excess phosgene are removed by distillation in vacuo. Chloroform is added to the syrup, and the mixture is then added to a solution of excess ammonia in chloroform which was cooled with solid carbon dioxide-acetone. The mixture is

filtered, and the solid is extracted with hot absolute alcohol. The solid in the alcoholic solution is precipitated with ether, and filtered. It is recrystallized from a methyl alcohol-ether mixture; the carbaminoyl-choline chloride obtained has a melting point of about 208°-210°C.

References

Merck Index 1754 Kleeman & Engel p. 144 J.N. p. 180

REM p. 896

Major, R.T. and Bonnett, H.T.; U.S. Patent 2,374,367; April 24, 1945; assigned to Merck & Co., Inc.

CARBAMAZEPINE

Therapeutic Function: Analgesic, Anticonvulsant

Chemical Name: 5H-dibenz[b,f] azepine-5-carboxamide

Common Name: 5-carbamyl iminostilbene

Structural Formula:

CONH2

Chemical Abstracts Registry No.: 298-46-4

Trade Name	Manufacturer	Country	Year Introduced
Tegretal	Geigy	W. Germany	1964
Tegretol	Geigy	U.K.	1964
Tegretol	Geigy	France	1964
Tegretoi	Geigy	U.S.	1968
Tegretol	Geigy	Italy	1972
Biston	Spofa	Czechoslovakia	
Convuline	Protea	Australia	_
Finlepsin	Arzneimittelwerk Dresden	E. Germany	_
Hermolepsin	Laake	Finland	_
Lexin	Fujinaga	Japan	_
Mazepine	ICN	Canada	-
Neuritol	Eczacibasi	Turkey	-
Neurotol	Farmos	Finland	_
Nordotol	Farmos	Finland	-
Servimazepine	Servipharm	Switz.	_
Stazepine	Polfa	Poland	-
Telesmin	Yoshitomi	Japan	_
Temporol	Orion	Finland	_
Teril	Taro	Israel	_
Timonil	Desitin	W. Germany	_

Raw Materials

Iminostilbene Phosgene Ammonia

Manufacturing Process

19.3 parts of iminostilbene are dispersed in 100 parts by volume of toluene. Phosgene is then introduced whereupon the temperature of the reaction mixture rises to 70°C. While boiling under reflux, further phosgene is introduced until all the iminostilbene has dissolved and the hydrogen chloride development is complete. The reaction mixture is then cooled and the 5-chlorocarbonyl iminostilbene which has crystallized out is filtered off under suction. It melts at 168° to 169°C.

12.8 parts of 5-chlorocarbonyl iminostilbene are dispersed in 128 parts by volume of absolute ethanol and ammonia gas is introduced for three hours into this mixture while stirring at boiling temperature. The reaction is complete after this time; the reaction mixture is cooled and the crystals which precipitate are filtered off under suction. The ammonium chloride is washed from the crystals with water and the residue is recrystallized first from absolute ethanol and then from benzene. 5-carbamyl iminostilbene is obtained which melts at 204° to 206°C.

References

Merck Index 1758 Kleeman & Engel p. 144 PDR p. 900 OCDS Vol. 1 p. 403 (1977) DOT 1 (3) 82 (1965) I.N. p. 181 REM p. 1077

Schindler, W.; U.S. Patent 2,948,718; August 9, 1960; assigned to Geigy Chemical Corpo-

CARBASPIRIN CALCIUM

Therapeutic Function: Analgesic, antipyretic, antirheumatic

Chemical Name: 2-(Acetyloxy)benzoic acid calcium salt

Common Name: Calcium aspirin; calcium acetylsalicylate

Structural Formula:

Chemical Abstracts Registry No.: 69-46-3

Trade Name	Manufacturer	Country	Year Introduced
Calurin	Dorsey	U.S.	1959
Iromin	Iromedica	Switz.	-
Soluspan	UPSA	France	1983
Iromin	Omegin	W. Germany	-
Fiogesic	Sandoz	U.S.	-
Ursinus	Dorsey	U.S.	_

Raw Materials

Acetylsalicylic acid Calcium carbonate

Manufacturing Process

500 g of finely powdered acetylsalicylic acid and 160 g of calcium carbonate (precipitated chalk), are intimately mixed and 3,000 cc of water are added. The mixture is stirred for 15 minutes or until the reaction is completed, which is indicated by the cessation of the liberation of carbon dioxide. The temperature is desirably maintained below 20°C by any suitable means. The mass is allowed to settle until the supernatant liquor is almost clear; this usually takes about 5 minutes, and the mixture is then filtered to remove unreacted material. This part of the process is carried out as quickly as possible so as to minimize any tendency of the calcium aspirin to hydrolyze in the solution. The filtrate is cooled to about 10°C and 1 to 1½ volumes of 97% methanol, or pure wood alcohol is added. This causes the calcium aspirin to precipitate and the mass is then filtered to remove as thoroughly as possible the mother liquor. The residue of calcium aspirin is then suspended in a quantity of methanol equivalent to the volume previously used as a precipitant, and it is allowed to stand there for one hour or more with occasional or continuous agitation. The mass is again filtered, the filtrate being employed for the precipitation of calcium aspirin in a later batch. After the filtering of the first wash liquor, the calcium aspirin is again suspended in another quantity of methanol of an equivalent volume. This constitutes the second wash and it is carried out in the same way as the first wash. The filtrate is employed as a first wash in a later batch and this filtrate in turn is used, as is the filtrate of the first wash, for the precipitation of more calcium aspirin. Fresh alcohol is used as a new wash in a later batch and the washes are carried out in series. After the second wash the calcium aspirin is dried in a suitable manner, as by passing dry warm air over it, the temperature not being allowed to rise to such an extent as to decompose the aspirin; preferably the temperature is not permitted to rise above 50°C, but should be high enough to avoid deposition of water vapor, and the drying is completed when there is no longer an odor of methanol.

References

Merck Index 1615 Kleeman & Engel p. 145 PDR p. 1583

Lawrence, W.H., Jr.; U.S. Patent 2,003,374; June 4, 1935; assigned to Lee Laboratories, Inc.

CARBAZOCHROME

Therapeutic Function: Hemostatic

Chemical Name: 3-Hydroxy-1-methyl-5,6-indolinedione semicarbazone

Common Name: Adrenochrome

Structural Formula:

Chemical Abstracts Registry No.: 69-81-8; 13051-01-9 (Salicylate)

Trade Name	Manufacturer	Country	Year Introduced
Adrenosem	Beecham	U.S.	1953
Adrestat	Organon	U.S.	1957
Adrenoxyl	Labaz	France	1957
Adrenoxyl	Nordmark	W. Germany	

Trade Name	Manufacturer	Country	Year Introduced
Anaroxyl	Organon	U.S.	****
Cromosil	Zambeletti	Italy	_
Cromoxin	R. Rius	Spain	_
Meronyl	Santen	Japan	-

(Many other Trade Names also for Carbazochrome Salicylate and Carbazochrome Sodium Sulfonate)

Raw Materials

Adrenalin Silver oxide Semicarbazide hydrochloride

Manufacturing Process

A suspension containing 1 part by weight of adrenalin and 2 to 6 parts by weight of silver oxide in 150 to 250 parts by weight of methanol or ethanol is stirred for about 10 minutes. The alcoholic adrenochrome solution obtained is separated by draining and the filtrate is quickly evaporated to dryness at low temperature and in vacuo. The red crystals of adrenochrome obtained are dissolved in 45 to 55 parts by weight of water. To this solution, 2 parts of sodium acetate dissolved in 2 to 3 parts of water and 2 parts of semicarbazide hydrochloride dissolved in 2 to 3 parts of water are added. The formed precipitate consisting of red-orange prismatic needles is separated by filtration and recrystallized from diluted ethanol. There is obtained 0.30 to 0.40 part by weight of adrenochrome monosemicarbazone dihydrate, melting at 203°C with decomposition.

References

Merck Index 1767, 1768 Kleeman & Engel p. 146 I.N. p. 182 REM p. 832

Dechamps, G., Le Bihan, H. and Baudet, C.; U.S. Patent 2,506,794; May 2, 1950; assigned to Societe Belge de l'azote et des Produits Chimiques du Marly (Belgium)

CARBENICILLIN DISODIUM

Therapeutic Function: Antibacterial

Chemical Name: N-(2-carboxy-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3,2,0] hept-6-yl)-2-

phenylmalonamic acid sodium salt

Common Name: Carboxybenzylpenicillin sodium salt

Structural Formula:

where R2 and M are both Na.

Chemical Abstracts Registry No.: 4800-94-6; 4697-36-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pyopen	Beecham	Switz.	1968
Pyopen	Beecham	U.K.	1968

Trade Name	Manufacturer	Country	Year Introduced
Carindapen	Pfizer	W. Germany	1968
Pyopen	Beecham	U.S.	1970
Geopen	Roerig	U.S.	1970
Gripenin	Fujisawa	Japan	1970
Geopen	Pfizer Taito	Japan	1971
Pyocianil	Farmitalia	Italy	1972
Anabactyl	Beecham	W. Germany	
Carbapen	C.S.L.	Australia	-
Carbecin	Beecham	_	_
Fugacillin	Astra	Sweden	_
Microcillin	Bayer	W. Germany	_
Rexcilina	Wolner	Spain	_

Raw Materials

Phenylmalonic acid 6-Amino penicillanic acid Benzyl alcohol Hydrogen Thionyl chloride Sodium bicarbonate

Manufacturing Process

The required monobenzyl phenylmalonate, MP 68°C, was prepared by treating a mixture of phenylmalonic acid (18 g) and benzyl alcohol (13 g) in carbon tetrachloride (80 ml) with dry hydrogen chloride.

Monobenzyl phenylmalonate (13.3 g) in dry benzene (100 ml) was refluxed with thionyl chloride (6.45 g) for 90 minutes, then concentrated in vacuo. The residual oil was dissolved in dry acetone (50 ml) and added to a stirred, ice-cooled solution of 6-aminopenicillanic acid (9.7 g) in N sodium bicarbonate solution (135 ml), water (150 ml), and acetone (300 ml). The mixture was stirred for 30 minutes at 0°C and then for 90 minutes at room temperature, then concentrated under reduced pressure to remove acetone. The aqueous solution was brought to pH 2 with dilute hydrochloric acid and extracted with ether (3 x 100 ml). The ether solution was washed with water and then itself extracted with sufficient N sodium bicarbonate solution to give an aqueous phase of pH 7.5. The aqueous layer was separated and evaporated at low temperature and pressure to leave the impure sodium salt of α -(benzyloxycarbonyl) benzylpenicillin.

This crude product (15.8 g) in water (360 ml) was added to a prehydrogenated suspension of 10% palladium on charcoal (4 g) in water (400 ml), and hydrogenation was continued for 30 minutes. The catalyst was removed and the filtrate was adjusted to pH 7.5 with sodium bicarbonate, then evaporated at low temperature and pressure. The residue was purified by chromatography on a column of cellulose powder, eluting first with butanol/ ethanol/water mixture and then with acetone/isopropanol/water. The main fraction was evaporated at low temperature and pressure to give a 32% yield of the sodium salt of a-carboxybenzylpenicillin as a white powder. The product was estimated by manometric assay with penicillinase to be 58% pure.

References

Merck Index 1773 Kleeman & Engel p. 147 PDR p. 1404 OCDS Vol. 1 p. 414 (1977) & 2 p. 437 (1980) DOT 4 (3) 96 (1968) I.N. p. 183 REM p. 1194

Brain, E.G. and Nayler, J.H.C.; U.S. Patents 3,282,926; November 1, 1966 and 3,492,291; January 27, 1970; both assigned to Beecham Group Limited, England

CARBENICILLIN INDANYL SODIUM

Therapeutic Function: Antibacterial

Chemical Name: N-(2-carboxy-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] hept-6-yl)-2-

phenylmalonamic acid, 1-(5-indanyl ester), monosodium salt

Common Name: Carindacillin, Indanylcarbenicillin

Structural Formula:

where R₂ is 5-indanyl, M is Na.

Chemical Abstracts Registry No.: 26605-69-6; 35531-88-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Geocillin	Roerig	U.S.	1972
Carindapen	Pfizer	W. Germany	1973
Geopen	Pfizer	Switz.	1973
Geopen-U	Pfizer-Taito	Japan	1976
Unipen	Pfizer-Roerig	U.S.	-
Urobac	Pfizer-Roerig	-	

Raw Materials

Phenylmalonic acid Phosphorus pentachloride 5-Indanyl alcohol Triethylamine 6-Aminopenicillanic acid

Manufacturing Process

(A) Preparation of Phenylchlorocarbonyl Ketene: To phenylmalonic acid (20 g) in ethyl ether (100 ml) there is added phosphorus pentachloride (46 g). A vigorous reaction occurs. The reaction mixture is refluxed for 4 hours then the ether partially removed by heating on a steam bath. The reaction mixture becomes black when about half the ether is removed and the remaining ether is removed under reduced pressure (at 100 mm). The residue is distilled under vacuum and the fraction boiling at 75° to 90°C at 1.5 to 4 mm collected. The product, a yellow liquid, is redistilled at 74°C and 1.5 mm. It shows a strong peak in the infrared region of the spectrum at 4.69 μ . Repetition of this procedure but using 10 g of phenylmalonic acid instead of 20 g produces a less vigorous reaction on addition of the phosphorus pentachloride. The same product is obtained.

(B) Acylation of 6-Aminopenicillanic Acid: To a solution of the aryl halocarbonyl ketene (0.1 mol) in methylene chloride (sufficient to provide a clear solution and generally from about 5 to 10 ml per gram of ketene) there is added the proper alcohol R_2OH (0.1 mol), in this case 5-indanyl alcohol. The reaction mixture is maintained under an atmosphere of nitrogen and stirred for a period of from 20 minutes to 3 hours, care being taken to exclude moisture. The temperature may range from about -70° to about -20°C. The infrared spectrum of the mixture is then taken to determine and confirm the presence of the ketene ester. A solution of 6-aminopenicillanic acid-triethylamine salt (0.1 mol) in methylene chloride (50 ml) is added and the mixture stirred at -70° to -20°C for 10 minutes. The cooling bath is then removed and the reaction mixture stirred continuously and allowed to warm to room temperature.

Various isolation methods are then spelled out in U.S. Patent 3,679,801.

References

Merck Index 1823 Kleeman & Engel p. 155

PDR p. 1524

DOT 8 (8) 310 (1972 & 9 (4) 128 (1973)

I.N. p. 189

REM p. 1195

Butler, K.; U.S. Patents 3,557,090; January 19, 1971; 3,574,189; April 6, 1971; and 3,679,801; July 25, 1962; all assigned to Chas. Pfizer & Co., Inc.

CARBENOXOLONE

Therapeutic Function: Antiinflammatory (Gastric)

Chemical Name: 3β-hydroxy-11-oxo-20β-olean-12-en-29-oic acid hydrogen butanedioate

Common Name: Glycyrrhetinic acid hydrogen succinate

Chemical Abstracts Registry No.: 5697-56-3; 7421-40-1 (Sodium salt)

Trade Name	Manufacturer	Country	Year Introduced
Biogastrone	Winthrop	U.K.	1963
Biogastrone	Homburg	W. Germany	1970
Gastrausil	Italseber	Italy	1971
Biogastrone	Richardson-Merrell	Switz,	1978
Biogastron	Shionogi	Japan	1979
Biogastrone	Abic	israel	
Bioral	Biorex, Berk	U.K.	-
Duogastrone	Merrell	France	_
Duogastrone	Abic	Israel	
Karbenol	Yutoglu	Turkey	
Neogel	Homburg	W. Germany	_
Neutrogastroi Ulcus	Septa	Spain	
Pyrogastone	Winthrop	U.K.	_
Sanodin	Leo	Spain	-
Sustac	Sintyal	Argentina	
Terulcon	ISF	Italy	-
Ulcofer	Mulda	Turkey	-
Ulcus-Tablinen	Sanoranía	W. Germany	-
Ulkon	Eczacibasi	Turkey	· -
Ventroxol	Medica	Finland	-

Raw Materials

Glycyrrhetinic acid

Succinic anhydride

Manufacturing Process

23.5 g of glycyrrhetinic acid were dissolved in 50 cc of dry pyridine. A solution of 6.0 g of succinic anhydride in 30 cc of dry pyridine was added, followed by 30 cc of dry triethylamine and then, for washing purposes, 5 cc of dry pyridine. The solution was heated on a boiling water bath for ten hours and then poured into excess of dilute hydrochloric acid and ice. The fine gray precipitate formed was filtered off, washed with water, dissolved in chloroform, and the solution repeatedly extracted with dilute hydrochloric acid and later with water. It was dried over sodium sulfate and evaporated to dryness. Crystallization from methanol, using charcoal to effect decolorization, gave the hydrogen succinate as cream-colored crystals, MP 291° to 294°C, with previous softening.

One molecular proportion of glycyrrhetinic acid hydrogen succinate was ground with a dilute (5%) aqueous solution containing two molecular proportions of sodium hydroxide. The solution was filtered and evaporated in vacuum over concentrated sulfuric acid. The sodium salt is then obtained as a creamy white water-soluble solid. Glycyrrhetinic acid is obtainable from licorice root.

References

Merck Index 1774 Kleeman & Engel p. 147 1.N. p. 183

Gottfried, S. and Baxendale, L.; U.S. Patent 3,070,623; December 25, 1962; assigned to Biorex Laboratories Limited, England

CARBIDOPA

Therapeutic Function: Muscle relaxant-Parkinsonism

Chemical Name: S-α-hydrazino-3,4-dihydroxy-α-methylbenzenepropanoic acid monohydrate

Common Name: Methyldopahydrazine

Structural Formula:

Chemical Abstracts Registry No.: 38821-49-7; 28860-95-9 (Anhydrous)

Trade Name	Manufacturer	Country	Year Introduced
Sinemet	Merck Sharp & Dohme	İtaly	1974
Sinemet	Merck Sharp & Dohme	U.K.	1974
Nacom	Sharp & Dohme	W. Germany	1975
Sinemet	Chibret	France	1975
Lodosyn	Merck Sharp & Dohme	U.S.	1977
Menesit	Merck Banyu	Japan	1980
Neo-Dopaston	Sankyo	Japan	1980

Raw Materials

Vanillin Potassium cyanide Hydrazine hydrate Nitroethane

Butylamine Acetic acid Iron

Hydrogen chloride Hydrobromic acid Hydrochloric acid

Manufacturing Process

To a solution of vanillin in toluene is added nitroethane, butylamine and glacial acetic acid. The mixture is refluxed and the water of reaction is steadily azeotropically removed by distillation. After the theoretical amount of water is distilled out, distillation is continued to remove excess reactants. The last trace of excess reactants is then removed at room temperature under a vacuum. The product is then triturated with a hydrocarbon solvent such as Skellysolve B and is thus obtained in a crystalline state. In general, however, it is preferred to dissolve the residue directly in toluene for use in the next step, without isolating the 1-(2-nitropropen-1-yl)-4-hydroxy-3-methoxybenzene.

A mixture of iron, ferric chloride and water is added to the toluene solution. The mixture is heated to reflux and concentrated hydrochloric acid is added dropwise at a rate calculated to keep the mixture refluxing vigorously. After the hydrochloric acid is all added, the refluxing is continued by the application of heat for several hours. A siliceous filter aid is then added to the cooled reaction mixture and the material is removed by filtration. The filter cake is washed four times, each time with 90 ml of benzene. The organic layer is then separated from the filtrate. The water layer is acidified to a pH of 2 and extracted three times with 90 ml portions of benzene.

These extracts are then combined with the organic solvent layer and the combined organic phase is extracted four times with 100 ml portions of water. It is then stirred for an hour with 230 ml of 10% sodium bisulfite solution. The organic solvent phase is then separated, washed seven times with 100 ml portions of water and dried over magnesium sulfate. Evaporation of the solvent gives 1-(4-hydroxy-3-methoxyphenyl)-2-propanone in the form of an oil.

A mixture of 59.5 g of that oily product, 1.85 liters of benzene and 1 kg of potassium bisulfite in 200 liters of water is stirred at room temperature for two hours. The precipitated bisulfite addition product of the ketone is isolated by filtration and washed with isopropanol and then with ether. Five hundred grams of the adduct is mixed with 119.5 g of potassium cyanide, 292 ml of 85% hydrazine hydrate and 910 ml of water. The mixture is stirred overnight at room temperature after which the product is isolated by filtration. The product is washed 3 times with 250 ml portions of water and then 3 times with 230 ml portions of ether. It is then air dried and vacuum dried at room temperature. The intermediate so produced has the following formula:

Fifty cubic centimeters of concentrated hydrochloric acid is saturated with hydrogen chloride gas at -10°C. To the solution is then added 2.5 g of the intermediate product, of the formula shown above, slowly with vigorous stirring. The mixture is allowed to stir overnight while warming at room temperature gradually. It is then concentrated in vacuo to a syrup. To the residual syrup is added 100 ml of 48% hydrobromic acid. The reaction vessel is purged with nitrogen and the reaction mixture is then refluxed for 3 hours after which it is concentrated in vacuo to a mixture of a syrup and a solid. The residue is taken up in sufficient water to form a clear solution. Activated charcoal is added and the mixture is heated to boiling and filtered.

The filtrate is concentrated to dryness in vacuo and the residue is taken up in 25 cc of ethanol. The residual ammonium bromide is removed by filtration and to the filtrate

there is added sufficient diethylamine to change the pH to 6.4. The mixture is warmed to 60° C and then cooled to room temperature. It is then allowed to stand overnight to effect complete crystallization. It is then cooled to 0° C and the product is isolated by filtration, washed with methanol and air dried. The product (α -hydrazino- α -methyl- β -(3,4-dihydroxyphenyl)-propionic acid) is recrystallized once from water using a proportion of 15 cc water per gram of product.

References

Merck Index 1778 Kleeman & Engel p. 148 PDR p. 1210 OCDS Vol. 2 p. 119 (1980) DOT 10 (9) 322 (1974) I.N. p. 184 REM p. 929

Chemerda, J.M., Sletzinger, M. and Bollinger, F.W.; U.S. Patent 3,462,536; August 19, 1969; assigned to Merck & Co., Inc.

CARBINOXAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: 2-[(4-chlorophenyl)-2-pyridinyl-methoxy],N,N-dimethylethanamine

maleate

Common Name: --

Structural Formula:

 $\begin{bmatrix} N & CH - \bigcirc CI \\ OCH_2CH_2 NH(CH_3)_2 \end{bmatrix} HC_1H_2O_1$

Chemical Abstracts Registry No.: 3505-38-2; 486-16-8 (Base)

Trade Name	Manufacture r	Country	Year Introduced
Clistin	McNeil	U.S.	1953
Allergefon	Lafon	France	1962
Polistin	Trommsdorf	W. Germany	1963
Cardec	Schein	U.S.	-
Cibelon	Taisho	Japan	Anton
Hislosine	Toho	Japan	_
Histex	Sigma	Australia	_
Histine	Pharbil	Belgium	_
Lergefin	Larma	Spain	_
Polistine	Pharbil	Netherlands	_
Rondec	Boss	U.S.	
Ziriton	Importex	Italy	_

Raw Materials

p-Bromochlorobenzene	Magnesium
2-Pyridine aldehyde	Sodium metal

2-Dimethylaminoethyl chloride

Manufacturing Process

As described in U.S. Patent 2,800,485 a solution of p-chlorophenylmagnesium bromide is prepared by adding dropwise a solution of 230 g (1.2 mols) of p-bromochlorobenzene in 900 cc of anhydrous ether to 26.7 g (1.1 g-atoms) of magnesium suspended in 100 cc of anhydrous ether containing a small crystal of iodine. To this solution, 107 g (1 mol) of 2-pyridinealdehyde are added slowly with stripping at a rate to maintain refluxing. The reaction mixture is then stirred for one hour at room temperature. The mixture is then poured onto an equal volume of crushed ice and water and acidified with concentrated hydrochloric acid. The ether layer is removed. The aqueous layer is made basic with ammonia and extracted with ether. The ether solution is evaporated and the residue dried by addition of benzene and removal by distillation to give 208 g (95%) of solid α-(p-chlorophenyl)-2-pyridinemethanol melting at 78° to 80°C. The p-chlorophenyl pyridinemethanol may alternatively be prepared from 4-chloroacetophenone, pyridine and granular aluminum as described in U.S. Patent 2,606,195. In either case, the synthesis then proceeds as described in U.S. Patent 2,800,485.

A solution of 219 g (1 mol) of α -(p-chlorophenyl)-2-pyridinemethanol in one liter of dry toluene is heated to 100°C with stirring. Twenty-three grams (1 g-atom) of sodium are then added in portions. After all the sodium has reacted, a dried solution of 2-dimethylaminoethyl chloride in benzene is added. This benzene solution is prepared by dissolving 173 g (1,2 mols) of 2-dimethylaminoethyl chloride hydrochloride in the minimum amount of water, adding 500 cc of benzene followed by 300 g of sodium carbonate decahydrate, stirring, separating the benzene layer and drying.

The mixture is refluxed with stirring for ten hours, cooled and filtered. The filtrate is extracted three times with 200 cc portions of 6 N acetic acid. The aqueous acetic acid solution is then made strongly basic with 10% sodium hydroxide solution, and extracted three times with 200 cc portions of ether. The ether extract is dried with anhydrous sodium sulfate, stirred with 5 q of activated carbon and filtered to provide 2-[p-chloro-α(2-dimethylaminoethoxy)benzyl] pyridine in solution. Addition of a solution of 116 g (1 mol) of maleic acid in 1,500 cc of ether gives 323 g (79%) of solid which, on recrystallization from ethyl acetate, gives white solid 2-[p-chloro- α (2-dimethylaminoethoxy)benzyl] pyridine maleate melting at 117° to 119°C.

References

Merck Index 1780 Kleeman & Engel p. 150 PDR pp. 1561, 1606 OCDS Vol. 1 p. 43 (1977) and 2 p. 32 (1980) I.N. p. 184 REM p. 1126

Tilford, C.H. and Shelton, R.S.; U.S. Patent 2,606,195; August 5, 1952; assigned to The Wm. S. Merrell Company

Swain, A.P.; U.S. Patent 2,800,485; July 23, 1957; assigned to McNeil Laboratories, Inc.

CARBOCYSTEINE

Therapeutic Function: Mucolytic; expectorant; nasal antiinfective

Chemical Name: S-(carboxymethyl)-L-cysteine

Common Name: -

Structural Formula:

 $HOOC-CH_2-S-CH_2-CH-COOH$

ŃΗ2

Chemical Abstracts Registry No.: 638-23-3

Trade Name	Manufacturer	Country	Year Introduced
Rhinathiol	Kramer	Switz.	_
Rhinathiol	Jouille	France	1961
Mucodyne	Berk	U.K,	1963
Transbronchin	Homburg	W. Germany	1975
Lisomucil	Lirca	Italy	1975
Mucodyne	Kyorin	Japan	1981
Actithiol	Funk	Spain	
Bronchette	Continental Ethicals	S. Africa	
Bronchipect	Mepros	Netherlands	_
Bronchokod	Genekod	France	_
Broncodeterge	Valderrama	Spain	-
Carbocit	C.T.	Italy	_
Flemex	Parke Davis	U.S.	_
Fluifort	Lampugnani	Italy	
Loviscol	Robins	U.S.	_
Muciclar	Parke Davis	U.S.	_
Mucocaps	Berk	U.K.	_
Mucocis	Crosara	italy	_
Mucolex	Warner Lambert	U.S.	
Mucopront	Mack	W. Germany	
Mucosirop	Berk	U.K.	_
Mucospect	Lennon	S. Africa	-
Mucoliz	Yurtoglu	Turkey	
Pectox	Infar-Nattermann	Spain	_
Pulmoclase	UCB	Belgium	_
Reodyn	Remeda	Finland	
Reomucil	Tosi	Italy	_
Siroxyl	Sopar	Belgium	_
Solvopect	Mepros	Netherlands	_

Raw Materials

L-Cysteine Sodium metal Chloroacetic acid

Manufacturing Process

There were placed 120 g of L-cysteine (0.5 mol) in a 2 liter three-necked flask equipped with a stirrer thermometer and methanol/dry ice cooling and 1.5 liters of liquid ammonia were allowed to enter at -40°C. Then there were added under continuous cooling 50 g (2.17 mols) of sodium metal in portions of 1 to 2 g during the course of one hour. The end of the reaction was recognized by the continuation of the blue color. After the end of the reaction the excess sodium was destroyed by the addition of ammonium chloride and the ammonia vaporized at normal pressure. The residue was taken up in 500 ml of water and concentrated in a vacuum to 200 ml in order to remove residual ammonia, and again treated with 300 ml of water. The entire operations were carried out under a nitrogen atmosphere.

The aqueous solution of the disodium salt of L-cysteine obtained is then reacted at 20°C to 30°C under a nitrogen atmosphere in the course of 30 minutes with stirring with a solution of 104 g of chloroacetic acid (1.1 mols) and 4 g of sodium pyrosulfite in 200 ml of water. It is also allowed to post react for 15 minutes at 20°C, the solution clarified over activated carbon and the filtrate treated with 90 ml of concentrated hydrochloric acid to a pH of 2.5. Thereby the S-carboxymethyl-L-cysteine precipitates out in crystalline form. The product is filtered off with suction, well stirred in 500 ml of water, again filtered with suction and dried in a vacuum at 70°C. The yield is 92% based on L-cysteine.

References

Merck Index 1785 Kleeman & Engel p. 151 I.N. p. 185

Maierhofer, A. and Wagner, H.; U.S. Patent 4,129,593; December 12, 1978; assigned to Deutsche Gold- und Silber-Scheideanstalt vormals Roessler (Germany)

CARBOMYCIN

Therapeutic Function: Antibiotic

Chemical Name: 9-Deoxy-12,13-epoxy-9-oxo-leucomycin V-3-acetate-4B-(3-methyl-bu-

tanoate)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4564-87-8

Trade Name	Manufacturer	Country	Year Introduced
Magnamycin	Pfizer	u.s.	1953

Raw Materials

Nutrient broth
Streptomyces halstedii bacterium

Manufacturing Process

A selected strain of *Streptomyces halstedii* was cultivated in an aqueous nutrient medium under aerobic conditions and the resulting broth containing carbomycin antibiotics was filtered. The solutions was extracted twice at pH 6.5 with one-quarter volume of methyl isobutyl ketone. The combined extracts were concentrated to one-tenth volume under vacuum, and the antibiotics were extracted into water adjusted to a pH of about 2 with sulfuric acid. After adjusting the separated aqueous solution to pH 6.5, the antibiotic was extracted into benzene and the solution was concentrated to a small volume. Addition of hexane resulted in the separation of a solid product containing the benzene complexes of carbomycin A and carbomycin B, present in the fermentation broth.

References

Merck Index 1790

I.N. p. 186

Tanner, F.W. Jr., Lees, T.M. and Routien, J.B.; U.S. Patent 2,771,392; November 20, 1956; assigned to Chas, Pfizer & Co., Inc.

Friedman, I.J., Martin, E.G., Taylor, R.J. and Wagner, R.L. Jr.; U.S. Patent 2,960,438; November 15, 1960; assigned to Chas. Pfizer & Co., Inc.

CARBOQUONE

Therapeutic Function: Antineoplastic

Chemical Name: 2,5-Bis(1-aziridinyl)-3-(1-methoxy-2-carbamoyloxyethyl)-6-methyl-1,4-

benzoquinone

Common Name: Carbazilquinone

Structural Formula:

Chemical Abstracts Registry No.: 24279-91-2

Trade Name	Manufacturer	Country	Year Introduced
Esquinon	Sankyo	Japan	1974

Raw Materials

2-Methyl-5-(1-methoxy-2-carbamoyloxyethyl)-1,4-benzoquinone Aziridine

Manufacturing Process

In 10 ml of ethanol was dissolved with heating 200 mg of 2-methyl-5-(1-methoxy-2-carba-moyloxyethyl)-1,4-benzoquinone and the resulting solution was cooled. To the cooled solution was added 0.5 ml of aziridine and then the resulting mixture was allowed to stand in a refrigerator at 5°C to 8°C for 4 days. Thereafter, the crystalline substance which precipitated in situ was recovered by filtration and washed with ethanol to give 50 mg of the desired product as red crystals melting at 200°C (with decomposition).

References

Merck Index 1806 Kleeman & Engel p. 151 DOT 11 (9) 344 (1975) I.N. p. 186

Nakao, H., Arakawa, M. and Nakamura, T.; U.S. Patent 3,631,026; December 28, 1971; assigned to Sankyo Co., Ltd.

CARBUTEROL

Therapeutic Function: Bronchodilator

Chemical Name: [5-[2-[(1,1-Dimethylethyl)amino]-1-hydroxyethyl]-2-hydroxyphenyl] urea

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34866-47-2

Trade Name	Manufacturer	Country	Year Introduced
Bronsecur	SK&F	W. Germany	1980
Bronsecur	SK&F	Italy	1980
Pirem	Sasse	W. Germany	1982
Dilabron	Warner-Lambert	_	
Rispan	SK&F	_	

Raw Materials

3-Amino-4-benzyloxyacetophenone	Phosgene
Ammonia	Bromine
N-Benzyl-N-t-butylamine	Hydrogen

Manufacturing Process

A stirred solution of 40 g (0.41 m) of phosgene in 150 ml of toluene is held at 25°C with a cooling bath while a mixture of 25.2 g (0.105 m) of 3-amino-4-benzyloxyacetophenone and 220 ml of toluena are added slowly. The mixture is heated to reflux and continued for 30 minutes. Nitrogen is passed through the mixture and then concentrated in vacuo to give a crystalline isocyanate, MP 105°-106°C.

A stirred solution of the isocyanate (28,0 g) in 500 ml of dry benzene is saturated with ammonia. After one hour, the mixture is cooled to give the crystalline 4-benzyloxy-3-ureidoacetophenone, MP 184°-186°C.

To a stirred solution of 5.7 g (0.02 m) of 4-benzyloxy-2-ureidoacetophenone in 100 ml of chloroform is added 3.2 g (0.02 m) of bromine. The mixture is stirred at room temperature for about 45 minutes and the solution is concentrated in vacuo at 25°-30°C. The amorphous residue (hydrobromide salt of 4-benzyloxy-&-bromo-3-ureidoacetophenone) is dissolved in 80 ml of acetonitrile and 9.8 g (0.06 m) of N-benzyl-N-t-butylamine is added. The mixture is stirred and refluxed for 1.5 hours, then it is cooled to 0°C in an ice bath. Crystalline N-benzyl-N-t-butylamine hydrobromide is filtered. The filtrate is acidified with ethereal hydrogen chloride. The semicrystalline product is filtered after diluting the mixture with a large excess of ether. Trituration of the product with 60 ml of cold ethanol gives 4-benzyloxy-α-(N-benzyl-N-t-butylamino)-3-ureidoacetophenone hydrochloride, MP 200°-221°C (decomposition).

A solution of 10.5 g (0.0218 m) of 4-benzyloxy-Q-(N-benzyl-N-t-butylamino)-3-ureidoacetophenone hydrochloride in 65 ml of methanol and 25 ml of water is added to a suspension of 1.5 g of 10% palladium-on-carbon in 10 ml of water. The mixture is hydrogenated on the Parr apparatus at room temperature, using an initial pressura of 60 psi of hydrogen. After 4 hours about 80% of the theoretical volume of hydrogen has been absorbed. The mixture is filtered, an additional 1.5 g of 10% palladium-on-carbon is added and the mixture is again hydrogenated on the Parr apparatus under the same conditions. After hydrogenating for an additional 3 hours, the mixture is filtered and the filtrate is concentrated in vacuo. The residue is stripped twice with toluene and crystallized with ether-ethanol to give Q-(t-butylaminomethyl)-4-hydroxy-3-ureidobenzyl alcohol hydrochloride, MP 214°-215°C.

References

Merck Index 1817 DFU 1 (9) 412 (1976) Kleeman & Engel p. 153 OCDS Vol. 2 p. 41 (1980) DOT 12 (2) 483 (1976) I.N. p. 187

Kaiser, C. and Ross, S.T.; U.S. Patent 3,763,232; October 2, 1973; assigned to Smith Kline & French Laboratories

Kaiser, C. and Ross, S.T.; U.S. Patent 3,917,847; November 4, 1975; assigned to Smith Kline Corp.

CARGUTOCIN

Therapeutic Function: Oxytoxic

Chemical Name: 1-Butanoic acid-7-glycine-1,6-dicarbaoxytocin

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33065-67-3

Trade Name	Manufacturer	Country	Year Introduced
Statocin	Yoshitomi	Japan	1982

Raw Materials

Cyclic polypeptide Hydrogen

Manufacturing Process

To a suspension of Z-Tyr(Bz)-lle-Gln-Asn-Asu(OTCP)-Gly-Leu-Gly-NH $_2$ (1,310 mg) in DMF (350 ml) is added a suitable amount of palladium black. Hydrogen gas is introduced with stirring at room temperature (25°C) for about 40 hours. After stirring the mixture at 30°-35°C for several hours, the catalyst is filtered off and the filtrate is concentrated under reduced pressure. A large amount of ether is added to the residue, and the white coagulum is collected by filtration, washed with ether and dried. This is dissolved in water (30 ml), and the solution is filtered. The filtrate is passed through a column (3 x 11.5 cm) of Amerlite IR 45 (OH-form). The fractions which show a UV-absorption maximum at 280 m μ are combined and passed through a column (3 x 12.5 cm) of CM-Sephadex C-25 to remove the noncyclic compound and obtain neutral parts. The detection of the objective compound is made by UV-absorption at 280 m μ . The aqueous solution of the neutral parts is concentrated below 35°C, under reduced pressure, and the concentrate is lyophilized to give 504 mg of the crude title compound in the form of 5 hydrate.

References

Merck Index 1822

DFU 8 (3) 188 (1983) DOT 19 (3) 130 (1983)

Sakakibara, S. and Yamanaka, T.; U.S. Patent 3,749,705; July 31, 1973; assigned to Yoshitomi Pharmaceutical Industries Ltd. (Japan)

CARISOPRODOL

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: (1-methylethyl)carbamic acid 2-\([(aminocarbonyl)oxy]\) methyl\)-2-methyl-

pentyl ester

Common Name: Isopropyl meprobamate

Structural Formula:

CH2CH2CH3

H₂NCOOCH₂CCH₂OOCNHCH(CH₃)₂CH₃

Chemical Abstracts Registry No.: 78-44-4

Trade Name	Manufacturer	Country	Year Introduced
Soma	Wallace	U.S.	1959
Rela	Schering	U <i>.</i> S.	1959
Sanoma	Heilit	W. Germany	
Flexartal	Clin Midy	France	1961
Caprodat	Ferrosan	Denmark	_
Carisol	AFI	Norway	-
Carisoma	Wallace	U.S.	-
Diolene	Pharma, Farm, Spec.	Italy	_
Erbasoma	Erba	Italy	-
Meprodat	Star	Finland	_
Mioril	Rossini	italy	-
Mioxom	Dessy	italy	_
Myobutazolidin	Fujisawa	Japan	_
Relasom	Rafa	Israel	_
Relaxo-Powel	Erba	Italy	_
Soma	Horner	Canada	_
Soma	Guidotti	Italy	_
Somadril	Dumex	Denmark	
Somalgit	Wallace	U.\$.	_
Somalgit Simple	Inibsa	Spain	_
Somanil	Banyu	Japan	
Soprodol	Schein	u.s.	

Raw Materials

2-Methyl-2-propyl-1,3-propanediol Phosgene Isopropylamine Sodium Cyanate

Manufacturing Process

A cooled 10% solution of 1 mol of phosgene in toluene was added with stirring to a cooled solution of 1 mol of 2-methyl-2-propyl-1,3-propanediol and 2 mols of dimethylaniline also dissolved in toluene, at such a rate that the temperature of the mixture was maintained at about 25°C. The mixture was allowed to remain at this temperature for several hours, then

cooled and extracted with cold 5% hydrochloric acid solution to remove the dimethylaniline. The toluene layer was dried using a suitable drying agent and the 2-methyl-2propyl-3-hydroxypropyl chlorocarbonate used in subsequent reactions in the form of its solution in anhydrous toluene.

A quantity of solution obtained as described containing 0.1 mol of the chlorocarbonate was treated with 0.2 mol of anhydrous isopropylamine and allowed to react at ordinary room temperature. The solution was cooled, extracted with dilute hydrochloric acid and the organic layer concentrated by evaporation of the solvent. The crude monocarbamate was purified by distilling at 86° to 88°C at about 0.01 mm. It was a clear, viscous liquid.

21.7 g (0.1 mol) of N-isopropyl-2-methyl-2-propyl-3-hydroxypropyl carbamate and 7.5 g (0.11 mol) of anhydrous sodium cyanate are stirred in 200 ml anhydrous chloroform in a suitable vessel equipped with a gas inlet tube, stirrer and thermometer. While cooling the vessel, anhydrous hydrogen chloride is passed into the stirred mixture slowly for 5 hours maintaining the temperature between 0° and 5°C. Alternatively ethyl urethane in the presence of aluminum isopropylate as a catalyst may be used in place of the sodium cyanates and HCI. The mixture is then allowed to stand at room temperature overnight.

The solid material is separated by filtration and the chloroform solution concentrated to an oil under reduced pressure. The oil is dissolved in 50 ml of trichloroethylene, the solution treated with charcoal, filtered and the filtrate added to 125 ml of hexane. The crystalline material which forms on standing at refrigerator temperature is removed by filtration, washed with light petroleum ether and dried at about 50°C. Approximately 20 g of product are obtained. On recrystallizing from trichloroethylene-hexane, 17,8 g of purified compound are obtained, MP 89° to 91°C.

References

Merck Index 1824 Kleeman & Engel p. 155 PDR pp. 830, 1606, 1883 OCDS Vol. 1 p. 219 (1977) I.N.p. 189 REM p. 926

Berger, F.M. and Ludwig, B.J.; U.S. Patent 2,937,119; May 17, 1960; assigned to Carter Products, Inc.

CARMOFUR

Therapeutic Function: Antineoplastic

Chemical Name: 5-Fluoro-N-hexyl-3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinecarboxamide

Common Name: HCFU

Structural Formula:

Chemical Abstracts Registry No.: 61422-45-5

Trade Name	Manufacturer	Country	Year Introduced
Mifurol	Mitsui	Japan	1981
Yamafur	Yamanouchi	Japan	1981

Raw Materials

5-Fluorouracil n-Hexyl isocyanate

Manufacturing Process

13.0 g (0.10 mol) of 5-fluorouracil was suspended in 60 ml of dimethyl acetamide, then 14.0 g (0.11 mol) of n-hexyl isocyanate was added thereto at room temperature and stirred at 50° C for 8 hours. After the reaction mixture was concentrated under reduced pressure, the residue was poured into 400 ml of water and resultant precipitate was filtered off. The precipitate was washed and dried and 19.3 g (75.0% yield) of 5-fluoro-1-(n-hexylcarbamoyl)uracil was obtained.

The product was recrystallized from ether and there were obtained white crystals melting at 283°C (decomposition).

References

Merck Index 1828 DFU 1 (4) 235 (1982) DOT 18 (9) 424 (1982) I.N. p. 190

Ozaki, S. and Mori, H.; U.S. Patent 4,071,519; January 31, 1978; assigned to Mitsu Toatsu Chemicals, Inc.

CARNITINE

Therapeutic Function: Gastric and pancreatic stimulator

Chemical Name: 3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium hydroxide, inner

salt

Common Name: -

Structural Formula:

Carnitin (Hydrochlorid)

Chemical Abstracts Registry No.: 461-06-3; 5842-94-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Flatistine	Sauba	France	1978
Carnetina	Sigma Tau	Italy	1981
Nefrocarnit	Nefro Pharma	W. Germany	1983
Carnitene	Refarmed SA	Switz.	1983
Abedine	Nippon Zoki	Japan	_
Bicarnesine	Labaz	France	_
Carn	Benvegna	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Carnitan	Kakenyaku	Japan	
Carnitine	Tyson	U.S.	_
Carnitolo	Sirt-B.R.P.	Italy	_
Entomin	Maruko	Japan	_
Metina	Francia Farm	Italy	_
Monocamin	Tanabe	Japan	_
Polycartin	Daigo Eiyo	Japan	_

Raw Materials

Trimethylamine Epichlorohydrin Sodium cyanide Hydrogen chloride

Manufacturing Process

9.3 g of epichlorohydrin was added at a temperature of 40°-50°C under stirring to 9.6 g of trimethylamine hydrochloride dissolved in 10 cc of water. Continuing the reaction for an hour at the above temperature, the reaction product was concentrated under reduced pressure to obtain the crystals of 3-chloro-2-oxypropy! trimethyl ammonium chloride which were recrystallized with 25 cc of ethanol. The crystals obtained by concentrating the mother liquur were also recrystallized. The yield was 17.4 g (MP 190°C, yield 91.5%). This substance occurs as white, somewhat hygroscopic crystals and is readily soluble in water or alcohol, but insoluble in benzene, toluene, ether, acetone or chlorororm.

The result of analysis assuming $(C_6H_{15}C_{10}N)^+Cl^-$ -calculated value: N, 7.45%; total Cl, 37.7%; Cl⁻, 18.88%. Observed value: N, 7.36%; total Cl, 37.54%; Cl⁻, 18.98%.

18.8 g of 3-chloro-2-oxypropyl trimethyl ammonium chloride was dissolved in a mixed solvent composed of 19 cc of methanol and 1 cc of water. 5.1 g of sodium cyanide dissolved in 8 cc of water was dropped into the solution at 50°C under stirring. After dropping, the mixture was held at this temperature for 30 minutes under stirring. The reaction product was then neutralized with 6N hydrochloric acid toward pH 5, and, after cooling, sodium chloride separated out and was filtered. The filtrate was concentrated to dryness under reduced pressure, and the residue was washed with small quantity of ethanol. Drying the residue, dissolving in hot methanol, filtering off insoluble matters, and cooling mother liquor, the crystals of 3-cyano-2-oxypropyl trimethyl ammonium chloride which deposited out were filtered and dried. Yield 16.7 g [MP (decomposition) 220°-223°C, yield 93.4%].

12.5 cc of concentrated hydrochloric acid was added to 17.9 g of 3-cyano-2-oxypropyl trimethyl ammonium chloride. Gradually heating the mixture on a water bath under stirring, so bringing the temperature up to 98°C at the end of about 3 hours, 9 cc of water was added. After cooling, free hydrochloric acid was neutralized with 3 cc of 6N sodium hydroxide, and then by adding 1 g of active charcoal, the reaction product was decolorized and filtered. The filtrate was concentrated to almost dryness under reduced pressure. Then, this concentrate was, after washing with 10 cc of ethanol, dried. Yield 24.7g.

The dried product was dissolved in 46.5 cc of glacial acetic acid by heating on a boiling water bath. The insoluble matter is removed by filtering hot, and on cooling the mother liquor, crystals of carnitine hydrochloride separated out. The crystals were filtered, washed with 10 cc of ethanol, and dried. Recrystallizing 19.7 g of the crude carnitine with methanol, 17 g of the refined carnitine was obtained [MP 195°-198°C (decomposing point), yield 86%]. The overall yield of the refined carnitine through whole steps was about 74%. Carnitine thus prepared was an odorless, white, crystalline powder, having a strong acid taste.

References

Merck Index 1833 Kleeman & Engel p. 156 PDR p. 1807 DOT 19 (4) 185 (1983)

I.N, p. 190

Noguchi, J. and Sakota, N.; U.S. Patent 3,135,788; June 2, 1964; assigned to Nihon Zoki Seiyaku Kabushikikaisha (Japan)

B-CAROTENE

Therapeutic Function: As a vitamin A precursor; sunscreen agent

Chemical Name: β-Carotene

Structural Formula:

Chemical Abstracts Registry No.: 7235-40-7

Trade Name	Manufacturer	Country	Year Introduced
Carotaben	Hermal	W. Germany	1975
Solatene	Roche	U.S.	1975
Vitacarotene	Pellestier	Spain	_
Beta-Carotene	Solgar	U.S.	_

Raw Materials

3.8-Dimethyl-3.5,7-decatrien-1.9-diyne Phenyl Lithium 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-methyl-2-buten-1-al Hydrogen

Manufacturing Process

3.6 g (0.023 mol) of 3,8-dimethyl-3,5,7-decatrien-1,9-diyne were dissolved in 50 ml of absolute ether, and to the solution was added 0.05 mol of ethereal phenyl-lithium solution. The mixture was refluxed for 30 minutes. Then a solution of 11 g (0.05 mol) of 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-methyl-2-buten-1-al in 100 ml of ether was added dropwise, and the reaction mixture was boiled for 2 hours. The reaction mixture was then hydrolyzed with aqueous ammonium acetate solution, and the ethereal layer was separated, dried and concentrated. The residue, i.e., 1,18-di(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,7,12,16-tetramethyl-4,15-dihydroxy-2,7,9,11,16-octadecapentaen-5,13-diyne, was a resinous product (having 1.9 active hydrogen atoms and absorption maxima in the ultraviolet spectrum at 326 and 341 mμ) which was used for the next step without any further purification. The resin was dissolved in 200 ml of methylene chloride, 10 ml of glacial acetic acid were added to the solution, and the mixture was cooled to -40°C in a carbon dioxide atmosphere, while stirring. Then, 9 ml of aqueous hydrobromic acid (60%) were added in one portion, the mixture was stirred at -35°C for 11/2 minutes, and subsequently 200 ml of ice water were run into the mixture. After further stirring the mixture for 2 hours at 0°C, the methylene chloride layer was separated, washed with water and sodium bicarbonate solution, dried with Na₂SO₄ and concentrated in vacuo. The residue, i.e., 11,12-11',12'-bisdehydro-eta-carotene, was a tough resin or a foamy solid (having no active hydrogen atoms and possessing absorption maxima in the ultraviolet

DOT 19 (4) 185 (1983)

I.N, p. 190

Noguchi, J. and Sakota, N.; U.S. Patent 3,135,788; June 2, 1964; assigned to Nihon Zoki Seiyaku Kabushikikaisha (Japan)

B-CAROTENE

Therapeutic Function: As a vitamin A precursor; sunscreen agent

Chemical Name: β-Carotene

Structural Formula:

Chemical Abstracts Registry No.: 7235-40-7

Trade Name	Manufacturer	Country	Year Introduced
Carotaben	Hermal	W. Germany	1975
Solatene	Roche	U.S.	1975
Vitacarotene	Pellestier	Spain	_
Beta-Carotene	Solgar	U.S.	_

Raw Materials

3.8-Dimethyl-3.5,7-decatrien-1.9-diyne Phenyl Lithium 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-methyl-2-buten-1-al Hydrogen

Manufacturing Process

3.6 g (0.023 mol) of 3,8-dimethyl-3,5,7-decatrien-1,9-diyne were dissolved in 50 ml of absolute ether, and to the solution was added 0.05 mol of ethereal phenyl-lithium solution. The mixture was refluxed for 30 minutes. Then a solution of 11 g (0.05 mol) of 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-methyl-2-buten-1-al in 100 ml of ether was added dropwise, and the reaction mixture was boiled for 2 hours. The reaction mixture was then hydrolyzed with aqueous ammonium acetate solution, and the ethereal layer was separated, dried and concentrated. The residue, i.e., 1,18-di(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,7,12,16-tetramethyl-4,15-dihydroxy-2,7,9,11,16-octadecapentaen-5,13-diyne, was a resinous product (having 1.9 active hydrogen atoms and absorption maxima in the ultraviolet spectrum at 326 and 341 mμ) which was used for the next step without any further purification. The resin was dissolved in 200 ml of methylene chloride, 10 ml of glacial acetic acid were added to the solution, and the mixture was cooled to -40°C in a carbon dioxide atmosphere, while stirring. Then, 9 ml of aqueous hydrobromic acid (60%) were added in one portion, the mixture was stirred at -35°C for 11/2 minutes, and subsequently 200 ml of ice water were run into the mixture. After further stirring the mixture for 2 hours at 0°C, the methylene chloride layer was separated, washed with water and sodium bicarbonate solution, dried with Na₂SO₄ and concentrated in vacuo. The residue, i.e., 11,12-11',12'-bisdehydro-eta-carotene, was a tough resin or a foamy solid (having no active hydrogen atoms and possessing absorption maxima in the ultraviolet

spectrum at 334 and 408 m μ). This product can be purified by chromatography. The crude product can also be used for the next step without any preliminary purification.

11.4 g of 11,12-11',12'-bisdehydro- β -carotene were dissolved in 100 ml of petroleum ether (boiling range 80° to 100°C), and the solution was hydrogenated under normal conditions after the addition of 0.5 ml of quinoline and 5 g of a lead-poisoned palladium catalyst. After the calculated amount of hydrogen had been absorbed, the catalyst was removed by filtration and the filtrate was extracted with dilute sulfuric acid to remove the quinoline. By concentrating the solution in the usual manner there was obtained 11,12-11',12'-di-cis-carotene. The product was purified by recrystallization from benzene-alcohol. The purified product melts at 154°C; absorption maxima in the ultraviolet spectrum at 276, 334, 338, 401 and 405 m μ . The isomerization was effected by heating the product for 10 hours at 90° to 100°C in high-boiling petroleum ether in a carbon dioxide atmosphere. The resulting β -carotene melted at 180°C; ultraviolet absorption maxima at 452 and 480 m μ .

Preparation of the intermediates for the above chemical synthesis are also described in U.S. Patent 2,917,539. The other patents cited below describe a fermentation route. U.S. Patent 2,848,508 describes preparation from carrots.

References

Merck Index 1837 PDR pp. 1501, 1734

I.N. p. 136 REM p. 1005

Barnett, H.M., Hartmann, M.L., Mosher, R.C. and Espoy, H.M.; U.S. Patent 2,848,508; August 19, 1958; assigned to Barnett

Isler, O., Montavon, M., Ruegg, R. and Zeller, P.; U.S. Patent 2,917,539; December 15, 1959; assigned to Hoffman-LaRoche, Inc.

Zajic, J.E.; U.S. Patents 2,959,521 and 2,959,522; November 8, 1960; both assigned to Grain Processing Corp.

Miescher, G.M., U.S. Patent 3,001,912; September 26, 1961; assigned to Commercial Solvents Corp.

Zajic, J.E.; U.S. Patent 3,128,236; April 7, 1964; assigned to Grain Processing Corp.

CAROXAZONE

Therapeutic Function: Antidepressant

Chemical Name: 2-Oxo-2H-1,3-benzoxazine-3(4H)-acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18464-39-6

Trade Name Manufacturer Country Year Introduced
Timostenil Farmitalia Italy 1975

Raw Materials

Ethyl glycinate HCl Hydrogen

Salicylic aldehyde Ammonia

Phosgene

Manufacturing Process

37.9 g of ethyl glycinate hydrochloride were dissolved in 400 cc of ethanol and 33.5 g of salicylic aldehyde were added. It is refluxed for half an hour and cooled. 38 cc of triethylamine and 25 g of Raney nickel are then added whereafter hydrogenation is carried out at room temperature and under atmospheric pressure. After hydrogen adsorption was complete, the mixture was filtered and the alcohol evaporated off. The residue was taken up with acidified water, extracted with ether to eliminate part of the by-products, consisting mainly of o-cresol, then made alkaline with ammonia and extracted with ethyl acetate. The solvent was removed in vacuo and the residue crystallized from ether/petroleum ether. 36.7 g of o-hydroxybenzyl-aminoacetic acid ethyl ester melting at 47°C are obtained.

20 g of this compound were dissolved in 100 cc of tetrahydrofuran and 100 cc of a 30% solution of phosgene in tetrahydrofuran solution were added. After one night at room temperature, the reaction mixture was dried, taken up with 150 cc of anhydrous pyridine and allowed to stand overnight. The pyridine was then removed in vacuo and the residue dissolved in benzol was washed several times with water and chromatographed over 250 g of alumina. Elution with benzene/petroleum ether yielded 16 g of 4H-3-carboethoxymethyl-1,3-benzoxazine-2-one, melting at 90°-91°C.

5~g of this last compound were dissolved in 120 cc of absolute ethanol and saturated with NH $_3$ at 0°C. It was allowed to stand overnight whereafter 1.5 g of 4H-3-carboxamidomethyl-1,3-benzoxazine-2-one, melting at 205°C, were obtained. By evaporation from the mother liquors further quantities of the same product were obtained.

References

Merck Index 1842 Kleeman & Engel p. 157 OCDS Vol. 3 p. 191 (1984) DOT 12 (6) 236 (1976) I.N. p. 190

Bernardi, L., Coda, S., Pegrassi, L. and Suchowsky, G.K.; U.S. Patent 3,427,313; February 11, 1969; assigned to Societa Farmaceutici Italia (Italy)

CARPHENAZINE MALEATE

Therapeutic Function: Tranquilizer

Chemical Name: 1-[10-[3-[4-(2-hydroxyethyl)-1-piperazinyl] propyl] 10H-phenothiazin-2-

yl]-1-propanone dimaleate

Common Name: Carfenazine maleate

Structural Formula:

Chemical Abstracts Registry No.: 2975-34-0; 2622-30-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Proketazine	W yeth	U.S.	1962

Raw Materials

2-Propionylphenothiazine N-(2-hydroxyethyl)-piperazine Sodium Hydride Trimethylene chlorobromide

Manufacturing Process

As described in U.S. Patent 3,023,146, in a round-bottomed flask were placed 35 g of 2propionyl phenothiazine (0.14 mol) 7 g of 50% sodium hydride in mineral oil (0.14 mol), and 240 cc of dimethyl formamide dried over sodium hydride. The resultant solution was stirred at room temperature for 2 hours, and then 88 g (0.56 mol) of trimethylene chlorobromide was added at once.

The mixture was stirred for 2 hours, heated at 60° to 70°C for 1 hour and poured into 2 liters of H₂O. The resulting suspension was extracted with ether, the ether layer separated and the ether removed under vacuum. A gummy mass remained which was dissolved in decalin and the solution was partly distilled to remove excess chlorobromide. After removal of most of the decalin under vacuum, the residue was treated with a large excess of N-(β-hydroxyethyl)-piperazine and heated on a steam bath for 2 hours. This material was extracted with dilute aqueous HCI, this acid layer neutralized with aqueous base and the resulting oil extracted into ether. The ether layer was washed with water until the washings were neutral and dried over anhydrous potassium carbonate. On treatment with maleic acid in ether a yellow solid separated which was recrystallized from isopropanol. This yellow solid had MP 175° to 177°C.

References

Merck Index 1844 Kleeman & Engel p. 154 OCDS Vol. 1 p. 383 (1977)

I.N. p. 188 REM p. 1086

Tislow, R.F., Bruce, W.F. and Page, J.A.; U.S. Patent 3,023,146; February 27, 1962; assigned to American Home Products Corporation

Sherlock, M.H. and Sperber, N.; U.S. Patent 2,985,654; May 23, 1961; assigned to Schering Corporation

CARPROFEN

Therapeutic Function: Antiinflammatory

Chemical Neme: 6-Chloro-Q-methylcarbazole-2-acetic acid

Structural Formula:

Chemical Abstracts Registry No.: 53716-49-7

Trade Name	Manufacturer	Country	Year Introduced
lmady!	Roche	Switz.	1981
lmadyl	Roche	W, Germany	1982

Trade Name	Manufacturer	Country	Year Introduced
Imafen	Roche	_	_
Rimadyl	Roche	_	_

Raw Materials

6-Chloro-α-methyl-1, 2,3,4-tetrahydrocarbazole-2-acetic acid ethyl ester p-Chloranil Sodium hydroxide Hydrogen chloride

Manufacturing Process

A mixture of 34.9 g of 6-chloro-α-methyl-1,2,3,4-tetrahydrocarbazole-2-acetic acid ethyl ester (mixture of diastereomers), 350 ml CP xylene and 56.0 q of p-chloranil was stirred and heated under an atmosphere of dry nitrogen. The reaction flask was wrapped in aluminum foil in order to keep out any extraneous light. After the reaction mixture had stirred at reflux temperature for 6 hours, heating and stirring were stopped and the reaction mixture was left overnight at room temperature. The supernatant liquid was decanted through a filter. The residue was triturated with 100 ml of warm benzene and the supernatant liquid was decanted through a filter. This process was repeated three more times. Ether (300 ml) was added to the combined filtrates. The solution was extracted with cold 2N sodium hydroxide (3 x 100 ml), washed by extraction with water until neutral and dried over anhydrous magnesium sulfate. Following filtration of the desiccant and evaporation of the solvent, a residue of 35,5 g remained. Crystallization from 50 ml of methanol gave 14.8 g of 6-chloro-α-methylcarbazole-2-acetic acid ethyl ester, MP 106°-107.5°C (43.2%).

A stirred mixture of 11 g of 6-chloro- α -methylcarbazole-2-acetic acid ethyl ester, 100 ml ethanol and 100 ml of 3N sodium hydroxide was heated (N2 atmosphere). After 2 hours at reflux, the reaction mixture was concentrated to dryness under reduced pressure. Water (300 ml) and ice (200 g) were added to the residue and concentrated hydrochloric acid was added until the mixture was strongly acid. The acidic mixture was extracted with ether (3 x 200 ml). The ether extracts were combined, washed by extraction with water (3 x 100 ml) and dried over anhydrous magnesium sulfate. Following filtration of the desiccant and evaporation of the solvent, a yield of 9.8 g (98.2%) was obtained. Crystallization from CHCl₃ yielded 6.2 g (62,0%) of 6-chloro-α-methylcarbazole-2-acetic acid, MP 197°-198°C. A second crop of 1.6 g, MP 195°-199°C was obtained from the mother liquors.

References

Merck Index 1846 DFU 2 (1) 15 (1977) OCDS Vol. 3 p. 169 (1984) DOT 18 (4) 172 (1982) I.N. p. 191 Berger, L. and Corraz, A.J.; U.S. Patent 3,896,145; July 22, 1975; assigned to Hoffmann-LaRoche, Inc.

CARTEOLOL

Therapeutic Function: Beta-adrenergic receptor antagonist

Chemical Name: 5-(3-tert-Butylamino-2-hydroxypropoxy)-3,4-dihydrocarbostyril

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 51781-06-7

Trade Name	Manufacturer	Country	Year Introduced
Mikelan	Otsuka	Japan	1981
Endak	Madaus	W. Germany	1982

Raw Materials

5-Hydroxy-3,4-dihydrocarbostyril Epibromohydrin t-Butylamine

Manufacturing Process

A mixture of 1.63 g of 5-hydroxy-3,4-dihydrocarbostyril, 2.5 g of epibromohydrin and 2 drops of piperidine was heated at a temperature of 95°C to 100°C for a period of 4 hours with stirring. The reaction mixture was then concentrated to dryness under reduced pressure and the residue was recrystallized from acetone to obtain 1.2 g of 5-(2,3-epoxy)propoxy-3,4-dihydrocarbostyril as a colorless powder having a melting point of 172°C to 173°C.

A mixture of 0.75 g of 5-(2,3-epoxy)propoxy-3,4-dihydrocarbostyril, 1.0 g of tert-butylamine and 25 ml of ethanol was stirred at a temperature of from 50°C to 55°C for a period of 4 hours. Ethanol and unreacted tert-butylamine were distilled off under reduced pressure and the resulting residue was dissolved in acetone.

References

Merck Index 1850 DFU 2 (5) 288 (1977) Kleeman & Engel p. 158 OCDS Vol. 3 p. 183 (1984) DOT 18 (10) 551 (1982) & 19 (7) 413 (1983) I.N. p. 191

Tamura, Y., Nakagawa, K., Yoshizaki, S. and Murakami, N.; U.S. Patent 3,910,924; October 7, 1975; assigned to Otsuka Pharmaceutical Co., Ltd.

CARTICAINE

Therapeutic Function: Local anesthetic

Chemical Name: 4-Methyl-3-[[1-oxo-2-(propylamino)propyl] amino] -2-thiophene carboxylic

acid methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23964-58-1; 23964-57-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Ultracain	Hoechst	W. Germany	1976
Ultracain	Hoechst	France	1981

Raw Materials

3-Amino-2-carbomethoxy-4-methyl thiophene Chloropropionyl chloride n-Propylamine

Manufacturing Process

 $3 \cdot \alpha$ -Chloropropionylamino-2-carbomethoxy-4-methylthiophene (prepared from 3-amino-2-carbomethoxy-4-methylthiophene and chloropropionyl chloride) was dissolved in toluene and n-propylamine added. The whole mixture was heated to boiling for 6 to 7 hours. After cooling, the propylamine hydrochloride that had formed was removed by washing with water. The toluene phase was dried with sodium sulfate, and then the solvent and excess propylamine were removed by distillation. The oily residue was taken up in ether. The hydrochloride of 3-n-propylamino- α -propionylamino-2-carbomethoxy-4-methylthiophene was obtained by introducing hydrogen chloride gas or by means of methanolic hydrogen chloride. The base boils at 162° C to 167° C under 0.3 mm of mercury pressure and the hydrochloride melts at 177° C to 178° C.

References

Merck Index 1853 Kleeman & Engel p. 158 DOT 12 (4) 132 (1976)

Ruschig, H., Schorr, M., Muschaweck, R. and Rippel, R.; U.S. Patent 3,855,243; December 17, 1974; assigned to Farbwerke Hoechst AG (Germany)

CEFACLOR

Therapeutic Function: Antibiotic

Chemical Name: 7-(D-α-Phenylglycylamido)-3-chloro-3-cephem-4-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53994-73-3

Trade Name	Manufacturer	Country	Year Introduced
Ceclor	Lilly	U.S.	1979
Panoral	Lilly	W. Germany	1979
Distaclor	Dista	U.K.	1979
Ceclor	Lilly	Switz.	1980
Alfatil	Lilly	France	1980
Panacef	Lilly	Italy	1981

Trade Name	Manufacturer	Country	Year introduced
Kefral	Shionogi	Japan	1982
Kefolor	Lilly	_	_

Raw Materials

p-Nitrobenzyl-7-amino-3-chloro-3-cephem-4-carboxylate HCl Hydrogen N,O-Bis-(trimethylsilyl)acetamide Methyl-3 α -carboxybenzylaminocrotonate sodium salt Methyl chloroformate

Manufacturing Process

Preparation of 7-amino-3-chloro-3-cephem-4-carboxylic acid: To a solution of 750 mg (1.85 mmol) of p-nitrobenzyl 7-amino-3-chloro-3-cephem-4-carboxylate hydrochloride in 20 ml of tetrahydrofuran and 40 ml of methanol was added a suspension of 750 mg of prereduced 5% palladium on carbon catalyst in 20 ml of ethanol and the suspension was hydrogenated under 50 psi of hydrogen at room temperature for 45 minutes. The catalyst was filtered and washed with THF and water. The filtrate and catalyst washes were combined and evaporated to dryness. The residue was dissolved in a water-ethyl acetate mixture and the pH adjusted to pH 3. The insoluble product was filtered and triturated with acetone. The product was then dried to yield 115 mg of 7-amino-3-chloro-3-cephem-4-carboxylic acid.

Preparation of 7-(D- α -phenylglycylamido)-3-chloro-3-cephem-4-carboxylic acid: To a suspension of 280 mg (1.2 mmol) of 7-amino-3-chloro-3-cephem-4-carboxylic acid in 14 ml of acetonitrile was added with stirring at room temperature 0.5 ml of N,O-bis-(trimethylsilyl)acetamide to form the soluble disilylmethyl derivative thereof. The solution was cooled to 0°C and was slowly added to a solution of the mixed anhydride formed by reacting 408 mg (1.5 mmol) of methyl-3- α -carboxybenzylaminocrotonate sodium salt with 161 mg (1.7 mmol) of methyl chloroformate in the presence to 2 drops of N,N-dimethylbenzyl amine in 7 ml of acetonitrile.

The mixture was stirred at ice bath temperature for 2 hours, 1 ml of methanol was added and the mixture was filtered to remove insoluble impurities. Two milliliters of water were added to the filtrate and the pH was adjusted momentarily to pH 1.5, to effect removal of the enamine block, and then to pH 4.5 with triethylamine. After stirring for an additional hour at ice bath temperature the reaction product, 7-(D-Q-phenylglycylamido)-3-chloro-3-cephem-4-carboxylic acid (zwitterion) precipitated from the reaction mixture as a crystalline solid. The product was filtered, washed with acetonitrile and dried in vacuo to yield 200 mg.

References

Merck Index 1896 DFU 2 (6) 368 (1977) Kleeman & Engel p. 160 OCDS Vol. 3 p. 209 (1984) DOT 15 (7) 311 (1979) I.N. p. 193 REM p. 1184

Chauvette, R.R.; British Patent 1,461,323; January 13, 1977; assigned to Eli Lilly & Co. Chauvette, R.R.; U.S. Patent 3,925,372; December 9, 1975; assigned to Eli Lilly & Co.

CEFADROXIL

Therapeutic Function: Antibacterial

Chemical Name: 7-[[Amino-(4-hydroxyphenyl)acetyl]amino]-3-methyl-8-oxo-5-thia-1-aza-bicyclo[4.2.0]-oct-2-ene-2-carboxylic acid monohydrate

Common Name: p-Hydroxycephalexine monohydrate

Structural Formula:

Chemical Abstracts Registry No.: 50370-12-2

Trade Name	Manufacturer	Country	Year Introduced
Oracefal	Bristol	France	1977
Duricef	Mead Johnson	U.S.	1978
Ultracef	Bristol	U . S.	1980
Duracef	Ciba Geigy	Switz.	1980
Cephamox	Bristol	W. Germany	1980
Duracef	Bristol	Italy	1980
Sedral	Banyu	Japan	1982
Baxan	Bristol	U.K.	1982
Bidocef	Bristo!-Myers		-
Cefos	C,T.	Italy	_
Droxicef	Alfa Farm.	Italy	_

Raw Materials

Sodium N-(1-methoxycarbonyl-1-propen-2-yl)-D(-)- α -amino-(4-hydroxyphenyl)acetate Ethyl chlorocarbonate

7-Amino-3-methyl-3-cephem-4-carboxylic acid

Manufacturing Process

1.8 g of sodium N-(1-methoxycarbonyl-1-propen-2-yl)-D(-)- α -amino-(4-hydroxyphenyl)acetate was suspended in 10 ml of acetone, and one droplet of N-methylmorpholine was added thereto, and the mixture was cooled to -15°C. There was added 0.85 g of ethyl chlorocarbonate thereto, and the mixture was reacted at -13°C to -10°C for 30 minutes, and then the reaction solution was cooled to -20°C.

On the other hand, 1 g of 7-amino-3-methyl-3-cephem-4-carboxylic acid was suspended in 20 ml of methanol, and 1.4 g of triethylamine was added thereto to be dissolved, and 0.4 ml of acetic acid was further added thereto. This solution was cooled to -20°C and the mixed acid anhydride prepared previously was added thereto. After the mixture was reacted at -20°C for 1 hour, the temperature of the reaction mixture was raised to 0°C over a period of 1 hour, and the mixture was reacted for 3 hours at the same temperature.

After the reaction, 1 ml of water was added to the reaction mixture, and the mixture was adjusted to a pH of 1.0 with concentrated hydrochloric acid while being cooled, and then stirred for 30 minutes. The insoluble matters were filtered off, and the filtrate was adjusted to a pH of 5.5 with triethylamine. This solution was concentrated under reduced pressure, and the residue was diluted with 20 ml of acetone to precipitate white crystals. The crystals were collected by filtration and washed with ethanol to obtain 1.46 g of white crystals of 7-[D(-)-α-amino-(4-hydroxyphenyl)acetamido]-3-methyl-3-cephem-4-carboxylic acid having a decomposition point of 197°C.

References

Merck Index 1897

Kleeman & Engel p. 161 PDR pp. 716, 1124

OCDS Vol. 2 p. 440 (1980)

DOT 13 (3) 126 (1977) & 13 (11) 471 (1977)

I.N.p. 194

REM p. 1185

Ishimaru, T. and Kodama, Y.; U.S. Patent 3,864,340; February 4, 1975; assigned to Toyama Chemical Co. Ltd. (Japan)

Crast, L.B. Jr. and Gottstein, W.J.; U.S. Patent 3,985,741; October 12, 1976; assigned to Bristol-Myers Co.

CEFAMANDOLE NAFATE SODIUM SALT

Therapeutic Function: Antibiotic

Chemical Name: Sodium 7-(D-2-formyloxy-2-phenylacetamido)-3-(1-methyl-1H-tetrazol-5-

ylthiomethyl)-3-cephem-4-carboxylate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 42540-40-9; 34444-01-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mandokef	Lilly	W. Germany	1977
Kefadol	Lilly	U.K.	1978
Mandol	Lilly	U.S.	1978
Kefandol	Lilly	France	1978
Mandokef	Lilly	Italy	1981
Cedol	Tiber	Italy	_
Cefam	Magis	Italy	_
Cefman	I.B.P.	Italy	_
Cemado	Farmochimica	Italy	
Cemandil	S.I.T.	Italy	_
Fado	Errekappa	Italy	_
Lampomandol	A.G.I.P.S.	Italy	_
Mandolsan	San Carlo	Italy	_
Neocefal	Gibipharma	Italy	-

Raw Materials

D(-) mandelic acid Formic acid

Thionyl chloride Sodium 2-ethylhexanoate

Monotrimethyl silyl acetamide

7-Amino-3-(1-methyl-1H-tetrazol-5-yl-thiomethyl)-3-cephem-4-carboxylic acid

Manufacturing Process

To 21.6 kg (17.8 Ω) of 98% formic acid was added 1.14 kg (7.5 mols) of D-(-)-mandelic acid

and the reaction mixture was heated for 4 hours at 70°C with stirring. The excess formic acid was evaporated off in vacuo and the residual syrup was dissolved in 6 ℓ of benzene. The solution was washed twice with 6 ℓ portions of water and was dried over magnesium sulfate. The drying agent was filtered and washed with 1.5 ℓ of benzene, the washes being added to the filtrate. The dried filtrate was evaporated in vacuo to obtain the D-(-)-mandelic acid formate ether as a syrup. The product can be crystallized from cyclohexane to yield material melting at about 55°C to 58°C.

The mandelic acid formate ester obtained as a syrup as described above is stirred for 2 hours with 2.9 kg (\sim 1.75 \hat{k}) of thionyl chloride at a temperature of about 70°C. The excess thionyl chloride is removed by evaporation and the residual green solution is vacuum distilled. The product, O-formyl mandeloyl chloride, distills over at 127°C to 130°C (15 mm) or at 108°C to 112°C (7 mm).

To 13 ℓ of ethyl acetate were added 85.1 g (2.59 mols) of 7-amino-3-(1-methyl-1H-tetrazol-5ylthiomethyl)-3-cephem-4-carboxylic acid and 1,361 g (10.37 mols) of monotrimethylsilyl acetamide, and the mixture was stirred at 50°C until a clear solution was obtained. The solution was cooled to 20°C and 514 g (2.59 mols) of O-formyl mandeloyi chloride was added at a rate such that the temperature of the reaction solution was maintained between about 20°C to 25°C with ice-cooling.

The reaction mixture was stirred for 1.5 hours at about room temperature after the addition of the mandeloyl chloride was completed. Five liters of water were then added to the reaction mixture and the diluted mixture was stirred for about 10 minutes. The organic layer was separated and was washed twice with water. The combined washes are extracted with 1.5 ℓ of ethyl acetate and the extract is combined with the washed organic layer. The whole was dried over magnesium sulfate, filtered and evaporated in vacuo on a 25°C water bath to yield 1,460 g of product, 7-(D-2-formyloxy-2-phenylacetamido)-3-(1-methyl-1H-tetrazol-5ylthiomethyl)-3-cephem-4-carboxylic acid, as a yellow foam.

The product was dissolved in 5 ℓ of acetone and the solution was mixed with a solution of 430 g (2.59 mols) of sodium 2-ethylhexanoate in 5.4 ℓ of acetone. The combined solutions were seeded and stirred in an ice bath for 1.5 hours. The crystalline precipitate of sodium 7-(D-2-formyloxy-2-phenylacetamido)-3-(1-methyl-1H-tetrazol-5-ylthiomethyl)-3-cephem-4carboxylate was filtered and washed with 5 ℓ of acetone. The crystalline salt was dried overnight in a vacuum oven at 40°C to yield 1,060 g (80%) of product, melting at 182°C to 184°C.

References

Merck Index 1898 DFU 2 (10) 646 (1977) Kleeman & Engel p. 166 PDR p. 1059 OCDS Vol. 2 p. 441 (1980) & 14 (4) 151 (1978) DOT 12 (5) 177 (1976) I.N. p. 196 REM p. 1185

Greene, J.M. and Indelicato, J.M.; U.S. Patent 3,928,592; December 23, 1975; assigned to Eli Lilly & Co.

CEFATRIZINE

Therapeutic Function: Antibiotic

7-[D- α -Amino- α -(p-hydroxyphenyl)acetamido] -3-(12,3-triazol-5-ylthio-Chemical Name: methyl)-3-cephem-4-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51627-14-6

Trade Name	Manufacturer	Country	Year Introduced
Bricef	Bristol-Banyu	Japan	1980
Cepticol	Banyu	Japan	1980
Cefatrix	Ausonia	Italy	1982
Latocef	Dukron	Italy	1982

Raw Materials

7-[D-\alpha-t-Butoxycarbonylamino-\alpha-(p-hydroxyphenyl)acetamido] -3-(1.2.3-triazol-5vithiomethyi)-3-cephem-4-carboxylic acid Formic acid

Manufacturing Process

A total 6.5 q (11.55 mmol) of 7-[D-0-t-butoxycarbonylamino-0-(p-hydroxyphenyl)acetamido]-3-(1,2,3-triazol-5-ylthiomethyl)-3-cephem-4-carboxylic acid was dissolved in 175 ml (98 to 100% formic acid under anhydrous conditions. The mixture was stirred at room temperature for 2.5 hours. Part of the solution, 125 ml, was evaporated under reduced pressure to an amber oil. The oil was then azeotroped 3 times with 70 ml of toluene under reduced pressure. The residue was suspended in an $80:20 \text{ H}_2\text{O-CH}_3\text{OH}$ solution (700 ml) and stirred for 0.5 hour until most of the solid dissolved, then filtered. The filtration was treated with 1.5 g of (Darko) charcoal for about 20 minutes. The charcoal was filtered off through a Celite pad. The solution was then freeze-dried in 9 separate 100 ml round bottom flasks. The freeze-dried material weighed 2.415 g. It was recrystallized in batches of 0.200 g as described above to yield a total of 0.923 g 7-[D-α-amino-α-(p-hydroxyphenyl)acetamido]-3-(1,2,3-triazol-5-ylthiomethyl)-3-cephem-4-carboxylic acid. NMR was consistent, indicating the presence of 0.33 mol of CH₂OH.

References

Merck Index 1899 DFU 2 (10) 653 (1977) OCDS Vol. 3 p. 211 (1984) DOT 12 (5) 183 (1976) I.N. p. 197

Kaplan, M.A. and Granatek, A.P.; U.S. Patent 3,970,651; July 20, 1976; assigned to Bristol-Myers Co.

CEFAZOLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: (6R-trans)-3-\([(5-methyl-1,3,4-thiadiazol-2-yl)thio] methyl\>-8-oxo-7-\([(1-Htetrazol-1-yl)acetyl]amino>-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27164-46-1; 25953-19-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cefamedin	Fujisawa	Japan	1971
Kefzol	Lilly	U.S.	1973
Ancef	SKF	U.S.	1973
Totacef	Bristol	! taly	1973
Grammaxin	Boehr./Mann	W. Germany	1974
Kefzol	Lilly	U.K.	1974
Kefzol	Serum Impfinst.	Switz.	1974
Cefacidal	Allard	France	1976
Kefzol	Lilly	France	1976
Acef	Tiber	ltaly	_
Areuzolin	Areu	Spain	_
Atirin	Intersint	Italy	_
Biazolina	Panthox & Burck	Italy	-
Bor-Cefazol	Proter	Italy	_
Brizolina	Bristol-Myers		_
Caricef	Antibioticos	Spain	_
Cefacene	Centrum	Spain	_
Cefalomicina	Marxer	Argentina	_
Cefamezin	Fujisawa	Japan	-
Cefazina	Chemil	Italy	_
Celmetin	A.L.	Norway	_
Cromezin	Crosara	Italy	-
Elzogram	Lilly	W. Germany	-
Fidesporin	Fides	Spain	_
Firmacel	Firma	Italy	_
Kurgan	Normon	Spain	_
Legemzolina	Legem	S pain	_
Lifezolina	Lifepharma	Spain	_
Liviclina	Sierochimica	Italy	_
Maksipor	Fako	Turkey	
Neofazol	Rubio	Spain	_
Vifazolin	Vianex	Greece	-
Zolicef	Bristol-Myers	W. Germany	_

Raw Materials

7-Amino-cephalosporanic acid	Sodium hydroxide
1-H-Tetrazole-1-acety! chloride	Sodium bicarbonate
5-Methyl-1 3 4-thiadiazole-2-thiol	

Manufacturing Process

7-Amino-cephalosporanic acid is converted to its sodium salt and acylated with 1H-tetrazole-1-acetyl chloride. The acetoxy group is then displaced by reaction with 5-methyl-1,3-4-thiadiazole-2-thiol in buffer solution. The product acid is converted to the sodium salt by NaHCO3.

References

Merck Index 1901 Kleeman & Engel p. 168 PDR pp. 1058, 1701 OCDS Vol. 3 p. 442 (1984) DOT 7 (5) 146, 167, 181 (1971)

I.N. p. 197

REM p. 1185

Takano, T., Kurita, M., Nikaido, H., Mera, M., Konishi, N. and Nakagawa, R.; U.S. Patent 3.516.997; June 23, 1970; assigned to Fujisawa Pharmaceutical Co., Ltd., Japan

CEFMENOXIME

Therapeutic Function: Antibacterial

Chemical Name: 7β -[α -Methoxyimino- α -(2-aminothiazol-4-yl)acetamido] -3-(1-methyl-1H-

tetrazol-5-vithiomethy!)-3-cephem-4-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 65085-01-0

Trade Name	Manufacturer	Country	Year Introduced
Tacef	Takeda	W. Germany	1983
Bestcall	Takeda	Japan	1983

Raw Materials

 7β [α -Methoxy imino- α -(2-aminothiazol-4-yl)acetamido] cephalosporanic acid trifluoroacetic acid salt

1-Methyl-5-mercapto-1H-tetrazole

Manufacturing Process

 7β -[α -Methoxyimino- α -(2-aminothiazol-4-yl)acetamido] cephalosporanic acid trifluoroacetic acid salt is dissolved in a solution of 272 mg of 1-methyl-5-mercapto-1H-tetrazole, 555 mg of sodium bicarbonate and 68 mg of triethylbenzylammonium bromide in 10 ml of water. The solution is heated at 60°C in nitrogen atmosphere for 6 hours. After cooling, the reaction solution is passed through a column of Amberlite XAD-2 and eluted with water and then with 2.5% ethanol. The procedure yields sodium $7\beta [\alpha$ -methoxyimino- α -(2-aminothiazol-4-yl)acetamido] -3-(1-methyl-1H-tetrazol-5-ylthiomethyl)-3-cephem-4-carboxylate, MP 174°C to 175°C (decomposition).

References

Merck Index 1902 DFU 5 (3) 146 & (12) 635 (1980) (as SCE-1365) DOT 19 (6) 335 & (8) 429 (1983) I.N. p. 198

REM p. 1189

Ochiai, M., Okada, T., Aki, O., Morimoto, A., Kawakita, K. and Matsushita, Y.; U.S. Patent 4,098,888; July 4, 1978; assigned to Takeda Chemical Industries, Ltd.

CEFOPERAZONE

Therapeutic Function: Antibiotic

Chemical Name: 7-[D-(-)-α-(4-ethyl-2,3-dioxo-1-piperazinecarboxamido)-α-(4-hydroxyphenyl)acetamido] -3-[(1-methyl-1H-tetrazol-5-yl)thiomethyl] -3-cephem-4-carboxylic acid

Common Name: -

Structural Formula:

$$C_2H_3N$$

NCONHCHCONH

S

 CH_3
 $N-N$
 CO_2H
 $N-N$

Chemical Abstracts Registry No.: 62893-19-0; 62893-20-3 (Sodium Salt)

Trade Name	Manufacturer	Country	Year Introduced
Cefobid	Pfizer	W. Germany	1981
Cefobine	Pfizer	France	1981
Cefobis	Pfizer	Switz.	1981
Cefoperazin	Pfizer Taito	Japan	1982
Cefobid	Roerig	U.S.	1982

Raw Materials

7-[D-(-)-α-Amino-p-hydroxyphenylacetamido] -3-[5-(1-methyl-1,2,3,4-tetrazolyl)thiomethyl] - Δ^3 -cephem-4-carboxylic acid

4-Ethyl-2,3-dioxo-1-piperazinocarbonyl chloride

Manufacturing Process

To a suspension of 3.0 q of 7-[D-(-)-α-amino-p-hydroxyphenylacetamido] -3-[5-(1-methyl-1,2,3,4-tetrazolyi)thiomethyl] - Δ^3 -cephem-4-carboxylic acid in 29 ml of water was added 0.95 g of anhydrous potassium carbonate. After the solution was formed, 15 ml of ethyl acetate was added to the solution, and 1.35 g of 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride was added to the resulting solution at 0°C to 5°C over a period of 15 minutes, and then the mixture was reacted at 0°C to 5°C for 30 minutes. After the reaction, an aqueous layer was separated off, 40 ml of ethyl acetate and 10 ml of acetone were added to the agueous layer, and then the resulting solution was adjusted to a pH of 2.0 by addition of dilute hydrochloric acid. Thereafter, an organic layer was separated off, the organic layer was washed two times with 10 ml of water, dried over anhydrous magnesium sulfate, and the solvent was removed by distillation under reduced pressure. The residue was dissolved in 10 ml of acetone. and 60 ml of 2-propanol was added to the solution to deposit crystals. The deposited crystals were collected by filtration, washed with 2-propanol, and then dried to obtain 3.27 g of 7-[D-(-)-\alpha-(4-ethyl-2,3-dioxo)-1-piperazinocarbonylamino)-p-hydroxyphenylacetamido] -3-[5-(1methyl-1,2,3,4-tetrazolyl)thiomethyl $\frac{1}{2}$ -cephem-4-carboxylic acid, yield 80.7%. The product forms crystals, MP 188°C to 190°C (with decomposition).

References

Merck Index 1905

DFU 4 (9) (675) & (12) 911 (1979) (as T-1551)

Kleeman & Engel p. 169

PDR p. 1521

DOT 17 (12) 535 (1981)

I.N. p. 198 REM p. 1185

Saikawa, I., Takano, S., Yoshida, C., Takashima, O., Momonoi, K., Kuroda, S., Komatsu, M., Yasuda, T. and Kodama, Y.; British Patent 1,508,071; April 19, 1978; assigned to Toyama Chemical Co., Ltd. and U.S. Patent 4,110,327; August 29, 1978; also assigned to Toyama Chemical Co., Ltd.

CEFOTAXIME SODIUM

Therapeutic Function: Antibiotic

Chemical Name: Sodium 3-acetoxymethy)-7-[2-(2-amino-4-thiazolyl)-2-methoxyimino]-

acetamido-3-cephem-4-carboxylate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 64485-93-4; 63527-52-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Claforan	Hoechst-Roussel	W. Germany	1980
Claforan	Roussel Maestre	Italy	1980
Claforan	Roussel	France	1980
Zariviz	Hoechst	Italy	1980
Claforan	Roussel-Hoechst	Switz.	1981
Claforan	Roussel	U.K.	1981
Cefotax	Roussel	Japan	1981
Claforan	Hoechst	U.S.	1981
Pretor	Hoechst	_	-
Primafen	Hoechst		_
Ralopar	Hoechst		_
Tolycar	Hoechst	_	-

Raw Materials

Sodium bicarbonate

3-Acetoxymethyl-7-[2-(2-amino-4-thiazolyl)-2-methoxyiminoacetamido] -ceph-3-em-4-carboxylic acid (Cefotaxime)

Manufacturing Process

A solution of 8 g of sodium bicarbonate in about 20 ml of ethanol was progressively added to 45.55 g of pure 3-acetoxymethyl-7-[2-(2-amino-4-thiazolyl)-2-methoxyiminoacetamido]-ceph-3-eme-4-carboxylic acid in 100 ml of distilled water and another 80 ml of ethanol and 4.5 g of activated carbon were added thereto. The mixture was stirred for 5 minutes and was filtered. The filter was rinsed with ethanol and the filtrate was evaporated to dryness under

reduced pressure. The residue was taken up in 100 ml of ethanol and evaporated to dryness again. The residue was dissolved in 100 ml of methanol and the solution was poured into 2 lof acetone. The mixture was vigorously stirred and was vacuum filtered. The recovered product was rinsed with acetone and then ether and dried under reduced pressure to obtain 43.7 g of a white product which rehydrated in air to obtain a final weight of 45.2 g of sodium 3-acetoxymethyl-7-[2-(2-amino-4-thiazolyl)-2-methoxyiminoacetamido] -ceph-3-eme-4-carboxylate.

References

Merck Index 1907 DFU 3 (12) 905 (1978) Kleeman & Engel p. 171 PDR p. 935 OCDS Vol. 3 p. 216 (1984) DOT 17 (1) 16 (1981) I.N. p. 198

REM p. 1186

Heymes, R. and Lutz, A.; U.S. Patent 4,152,432; May 1, 1979; assigned to Roussel Uclaf

CEFOXITIN SODIUM

Therapeutic Function: Antibiotic

Chemical Name: 3-Carbamoyloxymethyl- 7α -methoxy- 7β -(2-thienylacetamido)decephalos-

poranic acid sodium salt

Common Name: -Structural Formula:

Chemical Abstracts Registry No.: 33654-30-6; 35607-66-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mefoxin	Merck Sharp & Dohme	U.S.	1978
Mefoxitin	Sharp/Dohme	W. Germany	1978
Mefoxin	MSD	U.K.	1978
Mefoxitin	MSD	Switz.	1979
Mefoxin	MSD	Italy	1979
Cenomicin	Daiichi-Seiyaku	Japan	1980
Mefoxin	MSD	France	1980
Merkicin	Merck Banyu	Japan	1980
Betacel	Firma	Italy	_
Boncefin	MSD	_	_
Cefaxicina	Cefa	Spain	-
Cefoctin	Teva	1sra el	_
Farmoxin	Farm, Carlo Erba	Italy	-

Raw Materials

Benzhydryl 3-carbamyloxymethyl-7α-hydroxy-7β-(2-thienylacetamino)-decephalosporanate

Sodium hydride Dimethyl sulfate Trifluoroacetic acid

Manufacturing Process

Benzhydryl 3-carbamoyloxymethyl-7 α -hydroxy-7 β -(2-thienylacetamido)decephalosporanate, 543 mg, is stirred in 15 ml dry DMSO. Sodium hydride, 24 mg (48 mg of a 50% suspension of NaH in mineral oil, which has been washed with hexane to remove the oil), is added. When hydrogen evolution has ceased, 126 mg dimethyl sulfate is added. The solution is stirred for one hour at room temperature, diluted with 100 ml benzene and washed six times with water; the last wash is made to pH 8, if necessary, by adding sodium bicarbonate. The solution is dried over MgSO₄, filtered and evaporated, leaving benzhydryl 3-carbamoyloxymethyl-7 β -(2-thienylacetamido)-7 α -methoxydecephalosporanate, which may be purified if desired by chromatography on silica gel, eluting with 25:1 chloroform-ethyl acetate.

Other methylating agents may be used in place of methyl sulfate, e.g., an equimolar amount of methyl iodide, bromide or chloride, using the same conditions, or methyl trifluoromethyl-sulfonate or trimethyloxonium trinitrobenzenesulfonate. The solvent in the latter two reagents is dimethyl ether-HMPA 1:1, using a reaction temperature of -20°C warming later to 25°C. In each instance, the benzhydryl 3-carbamoyloxymethyl-7 β -(2-thienylacetamido)-7 α -methoxydecephalosporanate is obtained.

Benzhydryl 3-carbamoyloxymethyl- 7β -(2-thienylacetamido)- 7α -methoxydecephalosporanate (300 mg) in 0.5 ml in anisole and 2.5 ml of trifluoroacetic acid is reacted for 15 minutes at 10° C. The resulting mixture is evaporated at reduced pressure and flushed twice with anisole. The residue is dissolved in methylene chloride and extracted with 5% sodium bicarbonate solution. The aqueous solution is adjusted to pH 1.8 with 5% phosphoric acid and extracted with ethyl acetate. The organic solution is dried and evaporated to yield the pure 3-carbamoyloxymethyl- 7α -methoxy- 7β -(2-thienylacetamido)decephalosporanic acid, MP 165°C to 167° C. This may then be converted to the sodium salt.

References

Merck Index 1910 DFU 3 (6) 434 (1978) Kleeman & Engel p. 173 PDR p. 1194 OCDS Vol. 2 pp. 435, 443 (1980) DOT 14 (2) 545 (1978) I.N. p. 199 REM p. 1186

Christiansen, B.G. and Firestone, R.A.; U.S. Patent 3,775,410; November 27, 1973; assigned to Merck & Company, Inc.

Hazen, G.C.; U.S. Patent 3,780,033; December 18, 1973; assigned to Merck & Company, Inc.

CEFROXADINE

Therapeutic Function: Antibacterial

Chemicel Name: 7-[(Amino-1,4-cyclohexadien-1-yl-acetyl)amino] -3-methoxy-8-oxo-5-thia-1-azabicyclo [4.2.0] -oct-2-ene-2-carboxylic acid

Common Neme: -

Structural Formula:

Chemical Abstracts Registry No.: 51762-05-1

Year Introduced
1981
1982
1983
1983

Raw Materials

D-α-Amino-α-(1,4-cyclohexadienyl)acetic acid Phosphorus pentachloride 7β -Amino-3-methoxy-3-cephem-4-carboxylic acid hydrochloride dioxanate Bis(Trimethylsilyl)acetamide Propylene oxide Sodium hydroxide

Manufacturing Process

A suspension of 30.64 g (0.2 mol) of D- α -amino- α -(1.4-cyclohexadienyl)-acetic acid in 600 ml of methylene chloride is cooled under a stream of argon to 6°C, whereupon hydrogen chloride is passed in for about 30 minutes until the mixture is saturated. Phosphorpentachloride (62.4 g, 0.3 mol) is added in two portions. The mixture is stirred for 2 hours at 6°C to 8°C. The colorless precipitate is filtered off under nitrogen and exclusion of moisture, washed with methylene chloride and dried for 18 hours at 0.05 mm Hg at room temperature to give D-&amino-α-(1,4-cyclohexadienyl)-acetylchloride hydrochloride in form of colorless crystals.

A suspension of 37.3 g (0.1 mol) of 7β -amino-3-methoxy-3-cephem-4-carboxylic acid hydrochloride dioxanate in 500 ml methylene chloride is stirred for 15 minutes at room temperature under an argon atmosphere and treated with 57.2 ml (0.23 mol) of bis-(trimethylsilyl)acetamide. After 45 minutes the faintly yellow slightly turbid solution is cooled to 0°C and treated within 10 minutes with 31.2 g (0.15 mol) of D- α -amino- α -(1.4-cyclohexadienyl) acetyl chloride hydrochloride. Thirty minutes thereafter 15 ml (about 0.21 mol) of propylene oxide is added and the mixture is further stirred for 1 hour at 0°C. A cooled mixture of 20 ml of absolute methanol in 200 ml of methylene chloride is added within 30 minutes, after another 30 minutes the precipitate is filtered off under exclusion of moisture, washed with methylene chloride and dried under reduced pressure at room temperature. The obtained hygroscopic crystals of the hydrochloride of 7β -[D- α -(1,4-cyclohexadienyl)-acetylamino]-3-methoxy-3-cephem-4-carboxylic acid are stirred into 200 ml of ice water and the milky solution treated with about 66 ml of cold 2N sodium hydroxide solution until pH 3.5 is reached. The solution is clarified by filtration through diatomaceous earth, washed with ice water, cooled to 0°C and treated with 20 ml of 2N sodium hydroxide solution until pH 5.7 is reached. A second filtration through a glass filter frit results in a clear solution which is treated with acetone (800 ml) at 0°C. The crystals are filtered washed with acetone:water (2:1), acetone and diethyl ether and dried for 20 hours at room temperature and 0.05 mm Hg to give the 7β-[D-α-amino-α-(1,4-cyclohexadienyl)-acetylamino] -3-methoxy-3-cephem-4-carboxylic acid dihydrate.

References

Merck Index 1911 DFU 4 (12) 911 (1979) OCDS Vol. 3 p. 210 (1984) DOT 19 (4) 190 (1983)

I.N. p. 200

Scartazzini, R. and Bickel, H.; U.S. Patent 4,073,902; February 14, 1978; assigned to Ciba-Geigy Corp.

CEFSULODIN

Therepeutic Function: Antibiotic

Common Name: Sulcephalosporin

Chemical Name: 7-(\alpha-Sulfophenylacetamido)-3-(4'-carbamoylpyridinium)methyl-3-cephem-

4-carboxylate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52152-93-9 (Sodium salt)

Trade Name	Manufacturer	Country	Year Introduced
Pseudomonil	Ciba Geigy	W. Germany	1980
Monaspor	Ciba Geigy	Switz.	1980
Pyocefalin	Cassene Takeda	France	1981
Takesulin	Takeda	Japan	1981
Tilmapor	Ciba Geigy	Japan	1981
Monaspor	Ciba Geigy	U.K.	1982
Pseudocef	Grunenthal	W. Germany	

Raw Materials

7-(@-Sulfophenylacetamido)cephalosporanic acid Isonicotinamide Potassium Thiocyanate

Manufacturing Process

0.514 g (4 x 10^{-3} mol) of 7-(α -sulfophenylacetamido)cephalosporanic acid, 0.466 g (3 x 10^{-3} mol) of isonicotinamide and 2.0 g (2.06 x 10^{-3} mol) of potassium thiocyanate were dissolved in 2.5 ml of water. The resulting solution was allowed to stand and heated for 20 hours in a thermostat kept at 50°C and then directly purified by chromatography on an Amberlite XAD-2 column (16 x 880 mm). Subsequently, the fractions containing the cephalosporins were collected and subjected to freeze-drying to obtain 270 g of the title product in the form of a pale yellowish white powder. The product is usually used as the sodium salt.

References

Merck Index 1912 DFU 5 (2) 67 (1980) OCDS Vol. 3 p. 214 (1984) DOT 17 (12) 542 (1981) I.N. p. 200 REM p. 1188

British Patent 1,387,656; March 19, 1975; assigned to Takeda Chemicals Industries, Ltd.

CEFTAZIDIME

Therapeutic Function: Antibiotic

Chemical Name: (6R,7R)-1-[(Z)-2-(2-Aminothiazol-4-yl)-2-(2-carboxyprop-2-oxyimino)-

acetamido] -3-(1-pyridiniummethyl)-ceph-3-em-4-carboxylic acid inner salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 72558-82-8

Trade Name	Manufacturer	Country	Year Introduced
Fortum	Glaxo	U.K.	1983

Raw Materials

(Z)-2-(2-t-Butoxycarbonylprop-2-oxyimino)-2-(2-tritylaminothiazol-4-yl)acetic acid t-Butyl (6R,7R)-3-acetoxymethyl-7-aminoceph-3-em-4-carboxylate Pyridine

Manufacturing Process

(a) t-Butyl(6R,7R)-3-acetoxymethyl-7-[(Z)-2-(2-t-butoxycarbonylprop-2-oxyimino)-2-(2tritylaminothiazol-4-yl)acetamido] ceph-3-em-4-carboxylate: A stirred solution of (Z)-2-(2t-butoxycarbonylprop-2-oxyimino)-2-(2-tritylaminothiazol-4-yl)acetic acid (572 mg) and tbutyl(6R,7R)-3-acetoxymethyl-7-aminoceph-3-em-4-carboxylate (328 mg) in dimethylformamide (10 ml) was cooled to 0°C, and 1-hydroxybenzotriazole (150 mg) was added, followed by dicyclohexylcarbodiimide (225 mg). The mixture was warmed to room temperature, stirred for 5 hours and allowed to stand overnight. The mixture was filtered, and the white solid washed with a little ether. The filtrate and washings were diluted with water (50 ml) and extracted with ethyl acetate. The organic extracts were combined, washed successively with water, 2N hydrochloric acid, water, sodium bicarbonate solution, and saturated brine, dried and evaporated. The residue was eluted through a silica column with ether. The productcontaining eluate was collected and concentrated to give the title compound (533 mg). A portion was recrystallized from disopropyl ether, MP 103°C to 113°C (decomp.); $[\alpha]_D^{20}$ +8.5° (conc. 1.0, DMSO).

(b) (6R, 7R)-3-Acetoxymethyl-7-[(Z)-2-(2-aminothiazol-4-yl)-2-(2-carboxyprop-2-oxyimino)acetamido] ceph-3-em-4-carboxylic acid: Trifluoroacetic acid (18 ml) was added to a solution of the product of (a) (2.4 g) in anisole (18 ml) at 0°C. The mixture was stirred at room temperature for 2 hours and concentrated. The residue was dissolved in ethyl acetate and extracted with saturated sodium bicarbonate solution. The pH of the aqueous extracts was adjusted to 6, and the solution washed with ethyl acetate. The aqueous phase was acidified to pH 1.5 under ethyl acetate, saturated with sodium chloride, and extracted with ethyl

acetate. The combined organic extracts were washed with saturated brine, dried and evaporated. The residue was dissolved in warm 50% aqueous formic acid (20 ml) and allowed to stand for 2 hours. The mixture was diluted with water (50 ml) and filtered. The filtrate was concentrated. The residue was taken up in water (50 ml), refiltered, and lyophilized to give the title compound (920 mg).

(c) (6R,7R)-7-[(Z)--2-Aminothiazol-4-yl)-2-(2-carboxyprop-2-oxyimino)acetamido] -3-(1-pyridiniummethyl)-ceph-3-em-4-carboxylate, monosodium salt: Pyridine (2 ml) and the product of (b) (1.8 g) were added to a stirred solution of sodium iodide (7.12 g) in water (2.2 ml) at 80°C. The solution was stirred at 80°C for 1 hour, cooled, and diluted to 100 ml with water. The pH of the solution was adjusted to 6.0 with 2N sodium hydroxide solution. and this solution was concentrated to remove pyridine. The aqueous residue was diluted to 100 ml with water, methyl isobutyl ketone (2 drops) was added, and the solution was acidified to pH 1 with 2N hydrochloric acid. The mixture was filtered, and the solid was washed with a little water. The filtrate and washings were collected and washed with ethyl acetate, and the pH adjusted to 6.0 with 2N sodium hydroxide solution. The solution was concentrated to 50 ml and applied to a column of 500 g Amberlite XAD-2 resin, using first water and then 20% aqueous ethanol as eluting solvent. The product-containing fractions were concentrated and lyophilized to give the title compound (0.56 g).

References

Merck Index 1913 DFU 6 (10) 612 (1981) PDR p. 909 OCDS Vol. 3 p. 216 (1984) DOT 19 (6) 336 (1983) REM p. 1188

O'Callaghan, C.H., Livermore, D.G.H. and Newall, C.E.; British Patent 2,025,398; January 23, 1980; assigned to Glaxo Group Ltd.

CEFTIZOXIME

Therapeutic Function: Antibacterial

Chemical Name: 7-[2-Methoxyimino-2-(2-amino-1,3-thiazol-4-yl)acetamido]-cephalosporanic

acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 68401-81-0; 68401-82-1 (Sodium salt)

Trade Name	Manufacturer	Country	Year Introduced
Eposelin	Fuiisawa	Japan	1982
Cefizox	SKF	U.S.	1983
Ceftix	Boehr./Mann	W. Germany	1983
Cefizox	Burroughs Wellcome	U.K.	-

Phosphorus oxychloride 2-Methoxyimino-2-(2-amino-1.3-thiazol-4-vI)acetic acid Bis(TrimethylsilyI)acetamide 7-Aminocephalosporanic acid

Manufacturing Process

Phosphorus oxychloride (2.0 g) was added at one time at 5°C to 10°C to a suspension of 2methoxyimino-2-(2-amino-1,3-thiazol-4-yl)acetic acid (syn isomer) (2 g) in dry ethyl acetate (20 ml). After stirring for 20 minutes at 7°C to 10°C, bis(trimethylsilyl)acetamide (0.4 g) was added thereto at the same temperature. After stirring for 10 minutes at 7°C to 10°C, phosphorus oxychloride (2.0 g) was dropwise added thereto at the same temperature. The resulting mixture was stirred for 10 minutes at 7°C to 10°C, and dry dimethylformamide (0.8 g) was dropwise added thereto at the same temperature. The mixture was stirred for 30 minutes at 7°C to 10°C to give a clear solution. On the other hand, trimethylsilylacetamide (7.35 g) was added to a suspension of 7-aminocephalosporanic acid (2.45 g) in dry ethyl acetate (8 ml), after which the mixture was stirred at 40°C to give a clear solution.

To this solution was added at one time the above-obtained ethyl acetate solution at -15°C, and the resulting mixture was stirred for 1 hour at -10°C to -15°C. The reaction mixture was cooled to -30°C, and water (80 ml) was added thereto. The aqueous layer was separated, adjusted to pH 4.5 with sodium bicarbonate and subjected to column chromatography on Diajon HP-20 resin (Mitsubishi Chemical Industries Ltd.) using 25% aqueous solution of isopropyl alcohol as an eluent. The eluate was lyophilized to give 7-[2-methoxyimino-2-(2-amino-1,3thiazol-4-yl)acetamido] cephalosporanic acid (syn isomer) (1.8 g), MP 227°C (decomp.).

References

Merck Index 1915 DFU 5 (5) 226 (1980) PDR p. 1704 OCDS Vol. 3 p. 218 (1984) DOT 19 (3) 133 (1983) I.N. p. 200 REM p. 1189

Takaya, T., Masugi, T., Takasugi, H. and Kochi, H.; U.S. Patent 4,166,115; assigned to Fujisawa Pharmaceutical Co., Ltd.

CEFTRIAXONE SODIUM

Therapeutic Function: Antibacterial

Chemical Name: Sodium salt of (6R,7R)-7-[2-(2-amino-4-thiazolyl)-2-(methoxyimino)acetamido] -8-oxo-3-[[(1,4,5,6-tetrahydro-4-methyl-5,6-dioxo-as-triazin-3-yl)thio] methyl] -5-thia-1-azabicyclo [4.2.0] oct-2-ene-2-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 75478-69-1; 73384-59-5 (Base)

Trade Name	Manufecturer	Country	Year Introduced
Rocephin	Roche	Switz.	1982
Rocephin	Roche	W. Germany	1983
Acantex	Roche	-	_

Raw Materials

(6R,7R)-7-[2-[2-(2-Chloroacetamido)-4-thiazolyl]-2-(methoxyimino)acetamido]-8oxo-3-[[(1,4,5,6-tetrahydro-4-methyl-5,6-dioxo-as-triazin-3-yl)thio] methyl]-5thia-1-azabicyclo [4,2.0] oct-2-ene-2-carboxylic acid Formic acid

Manufecturing Process

19 g of (6R,7R)-7-[2-[2-(2-chloroacetamido)-4-thiazolyl]-2-(methoxyimino)acetamido]-8-oxo-3-[[(1,4,5,6-tetrahydro-4-methyl-5,6-dioxo-as-triazin-3-yl)thio] methyl] -5-thia-1-azabicyclo-[4.2.0] oct-2-ene-2-carboxylic acid are suspended in 150 ml of water together with 9.5 g of thiourea. The pH is adjusted to 6.8 with 5% sodium hydrogen carbonate solution while gassing with nitrogen and stirring, there being obtained a yellow-orange solution. The pH of the solution is held constant at 6.8-7.0 for 6 hours by adding sodium hydrogen carbonate solution by means of an autotitrator. 100% formic acid is added to the orange colored solution until the pH is 3.5. The precipitated material is filtered off under suction and washed with 100 ml of 10% formic acid. This material is denoted as (1). The filtrate is adjusted to pH 2.5 by adding 100% formic acid, whereby additional substance precipitates out. The mixture is held in an ice-bath for 1 hour, the precipitated substance is then filtered off and washed with a small amount of ice-water. This material is denoted as fraction I. The aforementioned orange-brown material (1) is suspended in 250 ml of water. The suspension is adjusted to pH 7 with 2N sodium hydroxide, there being obtained an orange-brown solution. Additional 100% formic acid is added to this solution until the pH is 3.5. The material which thereby precipitates out is filtered off under suction and discarded. The filtrate is adjusted to pH 2.5 with 100% formic acid, whereby additional substance precipitates out. The mixture is held in an ice-bath for 1 hour, the precipitated substance is then filtered off under suction and washed with a small amount of ice-water. This material is denoted as fraction II. Fractions I and II are suspended together in 500 ml of ethanol and evaporated in a rotary evaporator in order to remove water. After adding ether, the mixture is filtered under suction and the precipitate is washed successively with ether and low-boiling petroleum ether. There is thus obtained the title substance in the form of a yellowish solid material which is denoted as A.

The mother liquors and washings of fractions I and II are concentrated from a volume of about 1.7 liters to 250 ml, the pH is adjusted to 2.5 with 100% formic acid and the solution is stored overnight in a refrigerator, whereby further substance crystallizes. This is filtered off under suction and washed with a small amount of water. The residue on the suction filter is azeotropically distilled with ethanol. There is obtained solid, almost colorless title substance which is denoted as B. B is purer than A according to thin-layer chromatography.

In order to obtain pure title substance, the acid B is suspended in 150 ml of methanol and treated while stirring with 10 ml of a 2N solution of the sodium salt of 2-ethylcaproic acid in ethyl acetate. After about 10 minutes, there results a solution which is treated with 100 ml of ethanol. The mixture is extensively concentrated at 40°C in vacuo. The sodium salt precipitates out in amorphous form after adding ethanol. This salt is filtered off under suction, washed successively with ethanol and low-boiling petroleum ether and dried at 40°C in a high vacuum. There is obtained the title substance in the form of an almost colorless amorphous powder.

References

Merck Index 1916 PDR p. 1499

DOT 19 (12) 653 (1983)

I.N. p. 200

REM p. 1189

Montavon, M. and Reiner, R.; British Patent 2,022,090; December 12, 1979; assigned to F. Hoffman-La Roche & Co. A.G. (Switz.)

CEFUROXIME

Therapeutic Function: Antibiotic

Chemical Name: (6R,7R-3-Carbamoyloxymethyl-7-[2-(2-furyl)-2-(methoxyimino)acet-

amido] -ceph-3-em-4-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55268-75-2; 56238-63-2 (Sodium salt)

Trade Name	Manufacturer	Country	Year Introduced
Ultroxim	Duncan	Italy	1978
Curoxime	Glaxo	Italy	1978
Zinacef	Hoechst	W. Germany	1978
Zinacef	Glaxo	U.K.	1978
Zinacef	Glaxo	Switz.	1978
Ceroxime	Glaxo	France	1980
Zinacef	Glaxo	Japan	1982
Zinacef	Tanabe Seiyaku	Japan	1982
Zinacef	Glaxo	Ų.S.	1983
Altacel	Pulitzer	Italy	_
Biociclin	Del Saz & Filippini	Italy	_
Bioxima	Italsuisse	Italy	-
Cefamar	Firma	Italy	_
Cefoprim	Esseti	Italy	_
Cefumax	Locatelli	Italy	_
Cefur	Tiber	Italy	_
Cefurex	Sarm	Italy	_
Cefurin	Magis	Italy	_
Cefurox	Glaxo	_	_
Colifossim	Coli	Italy	_
Curocef	Glaxo	-	_
Duxima	Dukron	Italy	_
Furex	Lafare	Italy	_
Gibicef	Gibipharma	Italy	_
itorex	Ausonia	Italy	-
Kefox	C.T.	Italy	_
Kesint	Proter	Italy	_
Ketocef	Glaxo	_	***
Lamposporin	Von Boch	Italy	-
Medoxin	Medici	Italy	_
Polixima	Sierochimica	Italy	_
Supero	Farmochimica	Italy	_
Ultroxim	Sigmatau	Italy	_

(6R,7R)-7-Amino-3-carbamoyloxymethylceph-3-em-4-carboxylic acid Phosphorus pentachloride 2-(Fur-2-yl)-2-methoxyiminoacetic acid Hydrogen chloride

Manufacturing Process

A stirred mixture of N.N-dimethylacetamide (75 ml), acetonitrile (75 ml), triethylamine (42 ml, 0.3 mol) and (6R,7R)-7-amino-3-carbamoyloxymethylceph-3-em-4-carboxylic acid was immersed in an ice-bath and water (10 ml) was added. The mixture was stirred at 0°C to 2°C for 45 minutes, the solid slowly dissolving to give a yellow solution.

Meanwhile a stirred suspension of phosphorus pentachloride (14.99 g, 0.072 mol) in dry dichloromethane (150 ml) was cooled to 0°C, and N,N-dimethylacetamide (27.5 ml) was added. The resulting solution was recooled to -10°C and 2-fur-2-yl)-2-methoxyiminoacetic acid (synisomer) (12.17 g, 0.072 mol) was added. The mixture was stirred at -10°C for 15 minutes and crushed ice (35 g) was added. The mixture was stirred at 0°C for 10 minutes, whereafter the lower dichloromethane phase was added over 10 minutes to the cephalosporin solution prepared above, cooled to -10°C so that the reaction temperature rose steadily to 0°C. The mixture was stirred at 0°C to 2°C for 1 hour, whereafter the cooling bath was removed and the reaction temperature allowed to rise to 20°C over 1 hour. The reaction mixture was then added slowly to 2N hydrochloric acid (100 ml) diluted with cold water (1.15 ℓ) at 5°C. The pH of the two-phase mixture was adjusted to below 2 with 2N hydrochloric acid (10 ml), and the mixture was stirred and recooled to 5°C. The solid which precipitated was filtered, washed with dichloromethane (100 ml) and water (250 ml), and dried in vacuo at 40°C overnight to give the title compound (22.04 g, 86.6%).

References

Merck index 1917 DFU 3 (4) 266 (1978) Kleeman & Engel p. 177 PDR p. 922 OCDS Vol. 3 p. 216 (1984) DOT 12 (5) 189 (1976) & 15 (1) 10 (1979) I.N. p. 200 REM p. 1187

Cook, M.C., Gregory, G.I. and Bradshaw, J.; U.S. Patent 3,966,717; June 29, 1976; assigned to Glaxo Laboratories, Ltd.

Cook, M.C., Gregory, G.I. and Bradshaw, J.; U.S. Patent 3,974,153; August 10, 1976; assigned to Glaxo Laboratories, Ltd.

CELIPROLOL

Therapeutic Function: Beta-adrenergic blocker

Chemical Name: N'-[3-Acetyl-4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]phenyl] -N.N-diethylurea

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56980-93-9

Trade Name	Manufacturer	Country	Year Introduced
Selectol	Chemie Linz	Austria	1983
Selectol	Chemie Linz	W. Germany	1983

Raw Materials

3-Acetyl-4-hydroxyaniline Epichlorohydrin Dimethylcarbamoyl chloride t-Butylamine

Manufacturing Process

3-Acetyl-4-hydroxyaniline, in solution in pyridine, is reacted with dimethylcarbamoyl chloride at room temperature to give N-(3-acetyl-4-hydroxy)-phenyl-N'-dimethylurea, which after evaporating the pyridine, taking up the residue in chloroform and evaporating the latter, is obtained in a crystalline form. Melting point: 160°-162°C. After reaction of the product in alkaline aqueous solution, with epichlorohydrin, N-[3-acetyl-4-(2',3'-epoxy)-propoxy]-phenyl-N'-dimethylurea (melting point: 98°-102°C) is obtained, and this, in turn, is reacted with excess tert-butylamine in aqueous solution at room temperature to give N-[3-acetyl-4-(3'tert-butylamino-2'-hydroxy)-propoxy]-phenyl-N'-dimethylurea of melting point: 120°-122°C.

References

Merck Index 1921 DFU 4 (3) 181 (1979) DOT 18 (12) 632 (1982) I.N. p. 201

Zolss, G., Pittner, H., Stormann-Menninger-Lerchenthal, H. and Lindner, I.; U.S. Patent 3,983,169; September 28, 1976; assigned to Chemie Linz AG (Austria)

CEPHACETRILE SODIUM

Therapeutic Function: Antibiotic

Chemical Name: 7-(2-cyanoacetamido)-3-(hydroxymethyl)-8-oxo-5-thia-1-azabicyclo [4.2.0] -

oct-2-ene-2-carboxylic acid acetate monosodium salt

Common Name: Sodium 7-(2-cyanoacetamido)-cephalosporanic acid

Structural Formula:

Chemical Abstracts Registry No.: 23239-41-0; 10206-21-0 (Base)

Trade Name	Manufacturer	Country	Year introduced
Celospor	Ciba Geigy	Switz.	1969
Celospor	Ciba	France	1973
Clospor	Gruenenthal	W. Germany	1974
Celospor	Ciba	Italy	1974
Celospor	Ciba	W. Germany	1974
Celtol	Takeda	Japan	1978

Trade Name	Manufacturer	Country	Year Introduced
Celospor	Ciba Geigy	Japan	1978
Flunicef	Alfa Farm.	italy	_

7-Amino-cephalosporanic acid Cvanoacetyl chloride Sodium hydroxide

Manufacturing Process

13.6 g (0.05 mol) of 7-amino-cephalosporanic acid are taken up in a mixture of 150 ml of methylene chloride and 19.5 ml of tributylamine (0.12 mol) and at 0°C a solution of 8.4 g of cyanoacetylchloride (0.07 mol) in 100 ml of methylene chloride is stirred in. The bath is then stirred for ½ hour at 0°C and for ½ hour at 20°C, the reaction solution is evaporated under vacuum and the residue taken up in 10% aqueous dipotassium hydrogenphosphate solution. This aqueous phase is washed with ethyl acetate, acidified to pH 2.0 with concentrated hydrochloric acid and extracted with ethyl acetate,

After having been dried over sodium sulfate and evaporated under vacuum, this extract gives as a solid residue 14.7 g of crude 7-cyanoacetylamino-cephalosporanic acid which is purified by chromatography on 30 times its own weight of silica gel. The fractions eluted with chloroform plus acetone (7:3) furnish a product which crystallizes from acetone plus ether in the form of needles melting at 168° to 170°C with decomposition.

5.10 g (15 mmol) of 7-cyanoacetyl-aminocephalosporanic acid are suspended in 102 ml of distilled water and converted into the sodium salt by stirring in dropwise 15 ml of N sodium hydroxide solution.

References

Merck Index 1934 Kleeman & Engel p. 159 DOT 7 (5) 181 (1971) 9 (2) 50 (1973) & 10 (7) 239 (1974) I.N. p. 193

Bickel, H., Bosshardt, R., Fechtig, B., Schenker, K. and Urech, J.; U.S. Patent 3,483,197; December 9, 1969; assigned to Ciba Corporation

CEPHALEXIN

Therapeutic Function: Antibiotic

Chemical Name: 7-[(Aminophenylacetyl)amino]-3-methyl-8-oxo-5-thia-1-azabicyclo[4,2,0]-

oct-2-ene-2-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15686-71-2; 23325-78-2 (Monohydrate)

Trade Name	Manufacturer	Country	Year Introduced
Ceporex	Glaxo	U.K.	1970
Ceprorexine	Glaxo	France	1970
Cepol	Torii	Japan	1970
Keflex	Shionogi	Japan	1970
Keflex	Lilly	U.K.	1970
Keflex	Lilly	U.S.	1971
Ceporex	Glaxo	Italy	1971
Keforal	Lilly	France, Italy	1971
Oracef	Lilly	W. Germany	1971
Keflex	Serum Impfinst	Switz.	1974
Acaxina	Martin Santos	Spain	
Acinipan	Aldon	Spain	
Ambal	Medical	Spain	-
Amplicefal	Miluy	Spain	_
Ampligram	Hermes	Spain	_
Ausocef	Ausonia	Italy	-
Basporin	Basileos	Spain	
Bilatox	Biopharma	Spain	-
Bioporina	Biologia Marina	Spain	_
Brisoral	Bristol-Myers	·	_
Cefabiot Oral	Galepharma Iberica	Spain	-
Cefadina	Antibioticos	Spain	
Cefadros	Proter	Italy	_
Cefa-Iskia	Iskia	Spain	_
Cefaleh Ina	Alvarez Gomez	Spain	_
Cefalekey	Pereira	Spain	_
Cefalex-Gobens	Normon	Spain	
Cefalival	Valles Mestre	Spain	
Cefaloto	Lifepharma	Spain	
Cefa-Reder	Reder	Spain	-
Cefaxin	Bristol	Italy	-
Cefibacter	Rubio	Spain	-
Ceflon	Mulda	Turkey	_
Ceflor	Coli	Italy	
Ceforal	Teva	Israel	-
Cepexin	Glaxo	_	-
Cephalomax	Daisan	Japan	-
Cephazal	Hokuriku	Japan	_
Cepol	Torii	Japan	
Cepoven	Glaxo	Italy	-
CEX	Glaxo	Japan	-
Chemosporal	Erba	Italy	-
Cilicef Oral	Hortel	Spain	***
Ciponium	Nippon Kayaku	Japan	
Derantel	Nippon Chemiphar	Japan	-
Devaleksin	Deva	Turkey	-
Diabeton	Teknofarma	Italy	
Erifalecin	Dreikehl	Spain	
Erocetin	Roemmers	Argentina	-
Esmezin	Sawai	Japan	-
Falecina	Italquimica	Spain	-
Farexin	Lafare	Italy	-
Fergon	Alfar	Spain	-
Garasin	Wakamoto	Japan	-
Grafalex	Graino	Spain	-
Huberlexina	Hubber	Spain	
Ibilex	I.B.I.	Italy	-
Iwalexin	lwaki	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Janocilin	Janovich	Spain	_
Keflex	Shionogi	Japan	_
Kelfison	Davur	Spain	_
Larixin	Toyama	Japan	_
Latoral	Dukron	Italy	
Lefosporina	Bicsa	Spain	_
Lexibiotico	Llano	Spain	_
Libesporal	Liberman	Spain	_
Llenas Biotic	Llenas	Spain	_
Lorexina	Crosara	Italy	_
Madlexin	Meiji	Japan	_
Maksipor	Fako	Turkey	_
Mamalexin	Showa	Japan	_
Mepilacin	Kanto	Japan	
Neolexina	Asia	Spain	-
Nilexina	Pental	Spain	_
Ohlexin	Ohta	Japan	_
Oracocin	Tobishi	Japan	_
Oralexine	Novo	Denmark	_
Oroxin	Otsuka	Japa n	_
Ortisporina	Turro	Spain	-
Ospexin	Biochemie	Austria	_
Palitrex	Galenira	Yugoslavia	_
Porinabis	Santos	Spain	_
Pracefal	Pradel	Spain	-
Prindex	Hosbon	Spain	_
Pyassan	Chinoin	Hungary	-
Rinesal	Kissei	Japan	-
Rogeridina	Roger	Spain	_
Salitex	Banyu	<u>J</u> apan	_
Sargetina	Sarget	France	-
Sartosona	Sanomed	Spain	_
Sasperos	Schiapparelli	Italy	
Sayra	Legem	Spain	_
Sefaleksin	llsan	Turkey	-
Segoramin	Takata	Japan	-
Sencephalin	Takeda	Japan	-
Septilisin	Bago	Argentina	_
Syncel	Toyo Jozo	Japan	_
Taicelexin	Taiyo	Japan	-
Talinsul	Ester	Spain	_
Testaxina	Bryan	Spain	_
Tokiolexin	lsei	Japan	-
Torlasporin	Torlan	Spain	-
Wasserporina	Wassermann	Spain	
Xahl	S.S. Seiyaku	Japan	_

Soidum-D-&-phenylglycine Zinc

Methyl acetoacetate Hydrogen chloride

p-Nitrobenzyl-7-aminodesacetoxycephalosporanate

Manufacturing Process

To a 1 liter flask containing dimethylformamide at 0°C, was added 24.8 g sodium N-(2-methoxycarbonyl-1-methylvinyl)-D- α -phenylglycine (prepared from sodium D- α -phenylglycine and methyl acetoacetate). The mixture was cooled to -40°C and methyl chloroformate (7.5 ml) and dimethylbenzylamine (0.26 ml) added. After stirring for 25 minutes, p-nitrobenzyl 7-aminodesacetoxycephalosporanate (32.8 g) in the form of its hydrochloride salt was added, followed by triethylamine (12.1 ml) and dimethylformamide (140 ml) over a period of 20 minutes. The reaction mixture was stirred for 2 hours at -25°C to -35°C, then warmed to 0°C and water (32 ml) added. To the resulant solution, hydrochloric acid (54 ml) was added followed by zinc (21.8 g) in portions over a period of 5 minutes, the temperature being maintained at 5°C to 10°C. Further hydrochloric acid (35 ml) was added and the solution stirred at 15°C to 20°C for 7 hours.

The pH was adjusted to 3.3 with triethylamine and semicarbazide hydrochloride (9.5 g) added. The mixture was brought back to pH 3 with further triethylamine, then stirred for 30 minutes at pH 3. The resultant mixture was adjusted slowly over 4 hours to pH 6.8 by addition of triethylamine, seeding being carried out when pH 4.5 was reached. The precipitated cephalexin was filtered off, washed with dimethylformamide (200 ml) and the cephalexin recovered, yield 75%.

References

Merck Index 1936 Kleeman & Engel p. 161 PDR p. 841 OCDS Vol. 1 p. 417 (1977) & 2 p. 439 (1980) DOT 5 (1) 29 (1969) & 6 (5) 165 (1970)

I.N. p. 194 REM p. 1189

Davison, M., Frankham, D.B., Spence, T.W.M.; U.S. Patent 3,946,002; March 23, 1976; assigned to Lilly Industries Ltd.

CEPHALOGLYCIN

Therapeutic Function: Antibacterial

Chemical Name: 3-[(acetyloxy)methyl] -7-[(aminophenylacetyl)amino] -8-oxo-5-thia-1azabicyclo [4.2.0] oct-2-ene-2-carboxylic acid

Common Name: 7(D-α-aminophenylacetylamido)-caphalosporanic acid

Structural Formula:

Chemical Abstracts Registry No.: 3577-01-3

Trade Name	Manufacturer	Country	Year Introduced
Kefglycin	Shionogi	Japan	1969
Kafocin	Lilly	U.S.	1970

Raw Materials

Carbobenzoxy chloride D-Phenylglycine 7-Amino-cephalosporanic acid Hydrogen Isobutyl chloroformate

Manufacturing Process

di-Phenylglycine is resolved in a conventional manner by reaction with cinchonine, fractional crystallization of the resulting diastereoisomers, and acidification to release the phenylglycine enantiomorphs. D-phenylglycine, thus prepared, is reacted with carbobenzoxy chloride in a conventional manner to produce N-carbobenzoxy-D-phenylglycine.

A 0.60 g portion of N-carbobenzoxy-D-phenylglycine is dissolved in 10 ml of dry tetrahydrofuran. The solution is cooled in an ice-salt bath, and to it is added 0.29 ml of triethylamine with stirring over a period of 10 minutes, followed by 0.29 ml of isobutyl chloroformate, after which stirring is continued for 10 minutes at -5°C. During this time, 0.57 g of 7-amino-cephalosporanic acid and 0.29 ml of triethylamine are dissolved in 5 ml of tetrahydrofuran and 5 ml of water, and the solution is centrifuged to remove a dark sludge. The clarified solution is cooled in ice and slowly added to the reaction mixture, and stirring is continued in the ice bath for 0.5 hour, followed by one hour at room temperature.

The reaction product mixture is a homogenous solution having a pH of about 6. It is evaporated under vacuum to a semisolid residue. To the residue are added 35 ml of water and a few drops of triethylamine to raise the pH to 8. The aqueous solution obtained thereby is extracted successively with 50 ml and 35 ml portions of ethyl acetate, the pH being adjusted to 2 at each extraction with hydrochloric acid. The extracts are combined, filtered, dried over sodium sulfate, stripped of solvent, and evaporated under vacuum. The product is 7-(N-carbobenzoxy-D- α -aminophenylacetamido)cephalosporanic acid in the form of a vellow-white amorphous solid weighing 1.10 g.

Of this material 1.0 g is dissolved in 150 ml of warm 95% ethyl alcohol. To the solution is added 1.0 g of 5% palladium on carbon catalyst, and the mixture is hydrogenated at room temperature and atmospheric pressure by bubbling hydrogen into it for 3 hours with stirring. The hydrogenation product is filtered. The solid phase, comprising the catalyst and the desired product, is suspended in ethyl acetate and water and adjusted to pH 2 with hydrochloric acid. The suspension is filtered to remove the catalyst. The aqueous phase is separated from the filtrate, and is evaporated under vacuum to recover the desired product, 7-(D- α -aminophenylacetamido)cephalosporanic acid.

References

Merck Index 1938 Kleeman & Engel p. 163 OCDS Vol. 1 p. 417 (1977) DOT 6 (5) 169 (1970) I.N. p. 195

British Patent 1,017,624; January 19, 1966; assigned to Merck & Co., Inc. British Patent 985,747; March 10, 1965; assigned to Eli Lilly and Company

Wall, W.F., Fatherey, M. and Boothroyd, B.; U.S. Patent 3,422,103; January 14, 1969; assigned to Glaxo Laboratories, Ltd.

Pfeiffer, R.R. and Bottorff, E.M.; U.S. Patent 3,497,505; February 24, 1970; assigned to Eli Lilly & Co.

Jackson, B.G.; U.S. Patent 3,671,449; June 20, 1972; assigned to Eli Lilly & Co.

CEPHALORIDINE

Therapeutic Function: Antibacterial

Chemical Name: (6R-trans)-1-[[2-Carboxy-8-oxo-7-[(2-thienylacetyl)amino]-5-thia-1-azabicyclo [4.2.0] oct-2-en-3-yl] methyl] pyridinium hydroxide inner salt

Common Name: Cefaloridin

Structural Formula:

Chemical Abstracts Registry No.: 50-59-9

Trade Name	Manufacturer	Country	Year Introduced
Ceporin	Glaxo	U.K.	1964
Ceporin	Glaxo	Switz.	1965
Cepaloridin	Glaxo	W. Germany	1965
Keflodin	Liffy	France	1967
Loridine	Lilly	U.S.	1968
Ceporin	Glaxo	Italy	1976
Acaporina	Martin Santos	Spain	-
Aliporina	Asla	S pain	
Amplicerina	Miluy	S pain	_
Ampligram	Hermes	Spain	_
Basporidina	Basileos	Spain	_
Bioporina	Biologia Marina	Spain	-
Cefabena	Jebena	Spain	_
Cefabiot	Galepharma Iberica	Spain	_
Cefaclox	Sigma Tau	Italy	
Cefalescord	Callol	Spain	_
Cefalisan	Lifepharma	Spain	-
Cefalobiotic	Wolner	Spain	_
Cefalogobens	Normon	Spain	_
Cefalomiso	Oftalmiso	Spain	_
Cefamusel	De La Cruz	Spain	-
Cefaresan	Alacan	Spain	_
Ceflorin	Glaxo	_	-
Cepalorin	Glaxo	_	-
Ceporan	Glaxo		_
Ceporan	Torii	Japan	-
Ceproduc	Glaxo	Italy	_
CER	Glaxo	Japan	-
Cidan-Cef	Cidan	Spain	_
Cilicef	Hortel	Spain	
Cobalcina	Pradel	Spain	-
Cusisporina	Norte De Espana	Spain	_
Diclocef	Medici	Italy	_
Dinasint	Proter	Italy	_
Eldia	Legem	Spain	-
Endosporol	Cantabria	Spein	_
Enebiotico	Llano	Spain	_
Faredina	Lefere	Italy	_
Filoklin	Lifasa	Spain	_
Floridin	Coli	Italy	-
Gencefal	Morgens	Spain	-
Glaxoridin	Glaxo	_	-
Huberlexina	Hubber	Spain	-
Intrasporin	Torlan	Spain	-
Janosina	Janovich	Spain	_
Keflodin	Shionogi	Japan	_
Kefspor	Lilly		-
Kelfison	Davur	Spain	-

Trade Name	Manufacturer	Country	Year Introduced
Latorex	Durron	Italy	_
Lauridin	Crosara	Italy	_
Lexibiotico	Llano	Spain	
Libesporina	Liberman	Spain	_
Liexina	ICN	_	-
Llenas Biotic	Llenas	Spain	_
Lloncefal	Castillon	Spain	_
Poricefal	Santos	Spain	-
Prinderin	Hosbon	Spain	
Rogeridina	Roger	Spain	_
Rolexina	Fedal	Spain	
Sargefal	Sarget	France	_
Sintoridyn	1.S.F.	Italy	_
Sporanicum	Incasa-Wolff	Spain	
Talinsul	Ester	Spain	_
Tapiola	Guadalupe	Spain	_
Testadina	Bryan	Spain	_
Totalmicina	Emyfar	Spain	_
Wasseridina	Wassermann	Spain	_

7-Aminocephalosporanic acid 2-Thienylacetyl chloride Pyridine

Manufacturing Process

7-Aminocephalosporanic acid (5,00 g) which passed through a 100-mesh sieve was suspended in boiling ethyl acetate (200 ml), and 2-thienylacetyl chloride (Cagniant, Bull. Soc. Chim, France, 1949, 847) (4.42 g, 1.5 equiv.) was added in ethyl acetate (20 ml). The mixture was boiled under reflux for 40 minutes, cooled, and filtered. Aniline (5.03 ml) was added, and after 1 hour the mixture was extracted with 3% sodium hydrogen carbonate solution (1 x 150 ml, 2 x 100 ml, 1 x 50 ml) and the alkaline extracts washed with ethyl acetate (3 x 100 ml), The aqueous solution was acidified to pH 1.2, and extracted with ethyl acetate (2 x 150 ml). The ethyl acetate extract was washed with water (4 x 40 ml), dried (MgSO₄), and concentrated in vacuo to low volume. The crude 7-2'-thienylacetamidocephalosporanic acid (2.5 g) which separated was collected by filtration. Evaporation of the filtrate gave a further 2.68 g (71%) of the product, which was purified by crystallization from ethyl acetate, then aqueous acetone, MP 150°C to 157°C (decomp.).

7-2'-Thienylacetamidocephalosporanic acid (7.0 g) was suspended in water (60 ml) and stirred with pyridine (7 ml) until the acid dissolved. The resulting solution (pH 5.9) was kept at 35°C for 3 days, then filtered and extracted with methylene chloride (4 x 60 ml). The methylene chloride extract was back-extracted with a little water and the total aqueous solutions were then percolated through a column of Dowex 1 x 8 resin, (100 to 200 mesh, 150 g) in the acetate form at pH 4.3. The column was washed with water until the optical rotation of the eluate fell to zero and the eluate (500 ml) was freeze-dried. The residual white solid was dissolved in the minimum volume of methanol and after a few minutes the pyridine derivative crystallized; this is the cephaloridine product.

References

Merck Index 1940 Kleeman & Engel p. 164 OCDS Vol. 1 p. 417 (1977) DOT 1 (3) 88 (1965) I.N. p. 195

Arkley, V., Eardley, S. and Long, A.G.; British Patent 1,030,630; May 25, 1966; assigned to Glaxo Laboratories, Ltd.

Higgins, H.M. Jr.; U.S. Patent 3,270,012; August 30, 1966; assigned to Eli Lilly & Co.

CEPHALOTHIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 6R-trans-3-[(acetyloxy)methyl] -8-oxo-7-[(2-thienylacetyl)amino] -5-thia-

1-azabicyclo [4.2.0] oct-2-ene-carboxylic acid sodium salt

Common Name: 7-(2-thienylacetamido)cephalosporanic acid

Structural Formula:

Chemical Abstracts Registry No.: 58-71-9; 153-61-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Keflin	Lilly	U.S.	1964
Cepovenin	Hoechst/Glaxo	W. Germany	1965
Keflin	Lilly	France	1965
Keflin	Serum Impfinst.	Switz.	1965
Keflin	Shionogi	Japan	1966
Keflin	Lilly	Italy	1967
Keflin	Lilly	U.K.	1969
Seffin	Glaxo	U.S.	1983
Averon	Alfar	Spain	_
Averon-I	Alfa Farm.	Italy	_
Cephalotin	Lilly	W. Germany	
Cephation	Meiji	Japan	
Ceporacin	Glaxo	-	_
Cepovenin	Hoechst	W. Germany	_
CET	Glaxo	Japan	-
Coaxin	Tobishi	Japan	
Loccalline	Showa	Japan	_
Lospoven	Hoechst	_	_
Restin	Ono	Japan	_
Sodium Cephalotin	Green Cross	Japan	_
Sucira N	Mohan	Japan	_
Synclotin	Toyo Jozo	Japan	
Toricelosin	Toril	Japan	_

Raw Materials

2-Thienvlacetic acid

7-Aminocephalosporanic acid

Thionyl chloride Sodium hydroxide

Manufacturing Process

7-(2'-Thienylacetamido)cephalosporanic acid sodium salt may be produced from 2-thienylacetyl chloride, obtainable by treatment of 2-thienylacetic acid (Ernst, Berichte, 19 (1886) 3281] with thionyl chloride in a conventional manner. The 2-thienylacetyl chloride is then reacted with 7-aminocephalosporanic acid and then converted to the sodium salt using sodium hydroxide.

References

Merck Index 1943 Kleeman & Engel p. 165 PDR pp. 911, 1056 OCDS Vol. 1 pp. 417, 420 (1977) DOT 2 (2) 44 (1966) I.N. p. 196 REM p. 1187

British Patent 982,252; February 3, 1965; assigned to Eli Lilly and Company

CEPHAPIRIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 3-[(acetyloxy)methyl]-8-oxo-7-([(4-pyridinylthio)acetyl]amino>-5-thia-1-

azabicyclo[4.2.0] oct-2-ene-2-carboxylic acid monosodium salt

Common Name: Sodium 7-(pyrid-4-ylthioacetamido)cephalosporanate

Structural Formula:

Chemical Abstracts Registry No.: 24356-60-3; 21593-23-7 (Acid)

Trade Name	Manufacturer	Country	Year Introduced
Cefadyl	Bristol	U.S.	1974
Bristocef	Bristol	W. Germany	1974
Cephaloject	Bristol	France	1974
Cefatrexyl	Essex	Switz.	1974
Brisporin	Bristol	Italy	1976
Cefatrexyl	Bristol	Japan	1977
Brisfirina	Bristol-Myers	-	_
Cefa-Lak	Bristol	_	
Cefatrex	Bristol-Myers	_	
Cefatrexil	Mead-Johnson	_	_
Cefatrexyl	Galenika	Yugoslavia	_
Piricef	C.T.	Italy	_
Today	Bristol-Myers	-	_

Raw Materials

Aminocephalosporanic acid Sodium bicarbonate Sodium-3-ethyl hexanoate

Bromoacetyl bromide 2-Mercaptopyrimidine

Manufacturing Process

One route is that described in U.S. Patent 3,422,100 as follows, starting with aminocephalosporanic acid (ACA): 27.2 g (0.1 mol) of 7-ACA, 33.2 g (0.3 mol) of NaHCO₁. 200 ml of water and 100 ml of acetone were mixed together, cooled to 0°C and stirred rapidly while 20.1 g (0.1 mol) of bromoacetyl bromide dissolved in 100 ml of acetone was added in one fast addition. The temperature was kept at 0° to 5°C for ten minutes, then the ice-salt bath was removed and stirring continued for one hour as the temperature approached 25°C. The mixture was concentrated in vacuo at 20°C to one-half volume and 200 ml of water added. Two 400 ml ether extracts were made and discarded. The aqueous solution was covered with 200 ml of ethyl acetate and vigorously stirred and cooled while being acidified to pH 2 with 40% phosphoric acid.

The mixture was filtered, the ethyl acetate layer separated and washed with three 100 ml portions of water, dried over Na₂SO₄, filtered and treated with 30 ml of sodium 2-ethylhexanoate in n-butanol (34 ml = 0.1 mol). The oil which settled out was scratched to induce crystallization. After stirring for 20 minutes the product, sodium 7-(α-bromoacetamido)cephalosporanate, was scraped from the sides of the flask and collected. The filter cake was washed with several portions of acetone, air dried, and dried in vacuo over P2O5. The yield was 22.5 g and decomposed at 193°C.

A solution of 1.13 g (0.01 mol) of 2-mercaptopyrimidine and 1.06 g (0.01 mol) of sodium carbonate dissolved in 25 ml of water was added dropwise over a period of an hour at room temperature, to a stirred solution of 4.15 g (0.01 mol) of sodium 7-(\alpha-bromoacetamido)cephalosporanate in 25 ml of water.

Stirring was continued an additional 90 minutes and then 50 ml of ethyl acetate was added. Forty percent H₂PO₄ was added dropwise with vigorous stirring until pH 2.5 to 3 was obtained. The product crystallized immediately and was filtered off, washed several times with water and then three times with 25 ml portions of ethyl acetate, following which it was air dried. The yield was 2.9 g of crystals that decomposed at 167° to 168°C. The IR and NMR spectra were consistent with the desired product, $7-(\alpha-(2-pyrimidiny))$ thio) acetamido] -cephalosporanic acid monohydrate.

An alternate route is that described in U.S. Patent 3,503,967 which uses ACA in the last step.

Another alternative route is that described in U.S. Patent 3,578,661 uses bromomethylcephalosporin as one raw material.

However the acid is prepared, the sodium salt may be prepared as described in U.S. Patent 3,503,967: Five liters of methylene chloride were added to a clean dry vessel equipped with stirrer. 7-[α (4-pyridylthio)acetamido] cephalosporanic acid (1,000 g) was added to the vessel, followed by 350 ml of triethylamine. The resultant solution was treated with decolorizing charcoal for 15 minutes and filtered. A solution of sodium-3-ethyl-hexanoate (27.3%) in butanol-methylene chloride was added to the filtrate with stirring. Seven thousand five hundred milliliters of acetone was added. Crystallization occurred while stirring was continued several hours under dry conditions. The crystals were collected by filtration, washed with large volumes of acetone, and then dried in vacuo at 50°C to yield about 950 g of the title compound.

References

Merck Index 1945 Kleeman & Engel p. 167 PDR p. 695 OCDS Vol. 2 p. 441 (1980) DOT 9 (2) 56 (1973) & 10 (11) 299 (1974) I.N. p. 197 REM p. 1187

Crast, L.B. Jr.; U.S. Patent 3,422,100; January 14, 1969; assigned to Bristol-Myers Company Silvestri, H.H. and Johnson, D.A.; U.S. Patent 3,503,967; March 31, 1970; assigned to Bristol-Myers Company

Havranek, R.E. and Crast, L.B. Jr.; U.S. Patent 3,578,661; May 11, 1971; assigned to Bristol-Myers Company

CEPHRADINE

Therapeutic Function: Antibiotic

Chemical Name: 7-[D-2-amino-2-(1,4-cyclohexadien-1-yl)acetamido] -3-methyl-8-oxo-5-

thia-1-azabicyclo [4,2,0] oct-2-ene-2-carboxylic acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 38821-53-3

Trade Name	Manufacturer	Country	Year Introduced
Sefril	S quibb	Switz.	-
Eskacef	SKF	U.K.	1972
Velosef	S quibb	U.K.	1972
S efrii	Von Heyden	W. Germany	1973
Velocef	Squibb	It aly	1973
Velosef	S quibb	U.S.	1974
Anspor	SKF	U.S.	1974
Velosef	Squibb	France	1975
Eskacef	SKF	France	1975
Dicefalin	Nippon Squibb	Japan	1978
Cefro	Sankyo	Japan	1978
Lisacef	Lisapharma	Italy	1980
Askacef	SKF	_ `	_
Cefamid	Gibipharma	Italy	_
Cefosan	San Carlo	Italy	
Cefradex	Ausonia	Italy	_
Cefrag	Magis	Italy	_
Cefro	Sankyo	Japán	_
Cefrum	San Carlo	Italy	_
Celex	Aristochimica	Italy	_
Cesporan	Errekappa	Italy	_
Citicel	C.T.	Italy	_
Dimacef	Dima	Italy	
Ecosporina	Ecobi	Italy	-
Eskacef	SKF	Italy	_
Eskacef	SK Dauelsberg	W. Germany	_
Forticef	Godecke	W. Germany	<u></u>
Lisacef	Lisapharma	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Medicef	Medici	Italy	_
Megacef	Beytout	France	-
Noblitina	Juste	Spain	_
Protocef	Ripari-Gero	Italy	
Samedrin	S avoma	İtaly	

Lithium D-Phenylglycine Ammonia Methyl acetoacetate

3-Deacetoxy-7-aminocephalosporanic acid

Manufacturing Process

In a first step, D-2-amino-2-(1,4-cyclohexadienyl)acetic acid is obtained as follows. A solution of 11.0 g (72.7 mmol) of D-phenylglycine in 900 ml distilled ammonia (which has been treated with 45 mg lithium after distillation to destroy traces of moisture) is slowly diluted with 370 ml dry tert-butyl alcohol.

Over a period of hours, 1,65 q lithium (3.27 eq) is added in small portions until a permanent blue color is obtained. The blue reaction mixture is then treated with 38 g of triethylamine hydrochloride. The ammonia is allowed to evaporate at room temperature overnight and the residual solvent is evaporated at reduced pressure. The white residue is taken up in a small amount of methanol-water and added to 4 liters of cold 1:1 chloroform-acetone to precipitate the crude product. After 20 minutes stirring the suspension is filtered and the white filter cake dried in vacuo; the filter cake is then pulverized and submitted once more to the precipitation process from 1:1 chloroform-acetone.

The white, crystalline product, 11.8 g, MP 297°C (dec), $[\alpha]_D$ -89.7° (2 N NaOH) is quantitatively obtained but is slightly contaminated with lithium chloride, 0.6% ionic chlorine being found by analysis.

The product of a second step is the methyl acetoacetic ester enamine of N-2-amino-2-(1,4-cyclohexadienyl)acetic acid sodium salt. 306 mg D-2-amino-2-(1,4-cyclohexadienyl)acetic acid (2.00 mmol) are dissolved by warming in a solution of 108 mg of NaOCH3 (2.00 mmol) in 4.3 ml reagent grade MeOH. 255 mg (0.24 ml, 2.20 mmol) methyl acetoacetate are added and the mixture refluxed for 45 minutes. The MeOH is almost totally stripped off in vacuo. Five milliliters benzene are added and distilled off to a small residual volume. The addition and distillation of benzene is repeated to insure complete removal of the MeOH and water. The product crystallizes out overnight from a small residual volume of benzene. It is filtered off, washed with benzene, and dried in vacuo. Yield 463 mg.

Then 3-deacetoxy-7-aminocephalosporanic acid is condensed with the abovedescribed sodium sait in the presence of triethylamine to give cephradine.

References

Merck Index 1947 Kleeman & Engel p. 175 PDR pp. 1703, 1771 OCDS Vol. 2 p. 440 (1980) DOT 9 (3) 89 (1973) I.N. p. 199 REM p. 1188

Weisenborn, F.L., Dolfini, J.E., Bach, G.G. and Bernstein, J.; U.S. Patent 3,485,819; December 23, 1969; assigned to E.R. Squibb & Sons, Inc.

CERULETIDE

Therapeutic Function: Stimulant (gastric secretory)

Chemical Name: Decapeptide of empirical formula C58H73N13O21S2

Common Name: Cerulein; caerulein

Structural Formula:

OSO3H

L-pyroglutamyi-L-glutaminyi-L-aspartyi-L-tyrosyi-L-threonyi-glycyi-L-tryptophanyi-L-methionyi-L-aspartyi-L-phenylalaninamide

Chemical Abstracts Registry No.: 17650-98-5

Trade Name	Manufacturer	Country	Year Introduced
Ceosunin	Kyowa Hakko	Japan	1976
Takas	Carlo Erba	W. Germany	1978
Takus	Essex	Switz.	1981
Tymtran	Adria	U.S.	1982
Cerulex	Farmitalia Erba	France	1983

Raw Materials

L-Pyroglutamyl-L-glutaminyl-L-aspartyl-L-tyrosine azide
L-Threonyl-glycyl-L-tryptophanyl-L-methionyl-L-aspartyl-L-phenylalaninamide
Pyridine sulfuric anhydride
Sodium carbonate

Manufacturing Process

The tetrapeptide, L-pyroglutamyl-L-glutaminyl-L-aspartyl-L-tyrosine-azide (I), is condensed with the hexapeptide, L-threonyl-glycyl-L-tryptophanyl-L-methionyl-L-aspartyl-L-phenyl-alaninamide (II), having the hydroxyl of the threonyl radical blocked by an acyl radical in a suitable solvent, such as dimethylformamide, to obtain the decapeptide, L-pyroglutamyl-L-glutaminyl-L-aspartyl-L-threonyl-glycyl-L-tryptophanyl-L-methionyl-L-aspartyl-L-phenylaninamide (III) having the hydroxy group of the threonyl radical blocked by an acyl radical. The decapeptide (III) is treated, at low temperature, with the complex anhydrous pyridine sulfuric anhydride finally to obtain the decapeptide, L-pyroglutamyl-L-glutaminyl-L-aspartyl-L-threonyl-glycyl-L-tryptophanyl-L-methionyl-L-aspartyl-L-phenyl-alaninamide (IV) having the phenolic group of the tyrosyl radical protected by a sulfate radical and the hydroxyl of the threonyl radical protected by an acyl radical.

Finally, by mild alkaline hydrolysis of the decapeptide (IV) one obtains the decapeptide product.

References

Merck Index 1963 DFU 1 (8) 359 (1976) Kleeman & Engel p. 178 DOT 15 (11) 13 (1979) I.N. p. 203 REM p. 1274

Bernardi, L., Bosisio, G., De Castiglione, R. and Goffredo, O.; U.S. Patent 3,472,832; Oct. 14, 1969; assigned to Societa Farmaceutici Italia (Italy)

CETIEDIL

Therapeutic Function: Vasodilator (peripheral)

Chemical Name: &-Cyclohexyl-3-thiopheneacetic acid 2-(hexahydro-1H-azepin-1-yl)ethyl

ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 14176-10-4; 16286-69-4 (Citrate)

Trade Name	Manufacturer	Country	Year Introduced
Stratene	Innothera	France	1973
Stratene	Sigmatau	Italy	1976
Fusten	Galenica	Greece	_
Huberdilat	Hubber	Spain	
Vasocet	Winthrop	· -	-

Raw Materials

(3-Thienv!)-acetonitrile Sodium metal Cyclohexyl bromide 1-(2-Chloroethyl)-hexahydro-1H-azepine

Manufacturing Process

In a 100 ml flask fitted with a mechanical stirrer, a vertical condensor protected by a calcium chloride stopper, a dropping-funnel and a source of nitrogen were introduced 30 ml of hexamethylenephosphotriamide and 2.3 g (0.1 mol) of finely cut sodium wire. A mixture of 12.3 g (0.1 mol) of (3-thienyl)-acetonitrile and 16.3 g (0.1 mol) of cyclohexyl bromide was then quickly added at a temperature of 20°C. The reaction mixture was then maintained under nitrogen atmosphere and stirred for 12 hours at room temperature. The excess of sodium was destroyed by adding 5 ml of ethanol and the organic solution was slowly poured into 100 ml of a 1N iced solution of hydrochloric acid. The solution was extracted twice with 100 ml ether. The ethereal phases were collected, washed with water, dried and concentrated under reduced pressure. The crude product was then purified by chromatography on a silica column (150 g of silica) using a 1/1 benzene/cyclohexane mixture as elution agent. The product obtained was rectified by distillation.

In this manner, 3.4 g of α (3-thienyl)- α -cyclohexylacetonitrile were obtained, which represents a vield of 16%.

The nitrile may then be hydrolyzed to cyclohexyl-(3-thienyl)acetic acid which is reacted with 1-(2-chloroethyl)-hexahydro-1 H-azepine to give cetiedil. It is commonly used as the citrate.

References

Merck Index 1976 Kleeman & Engel p. 179 OCDS Vol. 3 p. 42 (1984) DOT 10 (4) 126 (1974)

I.N. p. 204

Pigerol, C., De Cointet De Fillain, P., Grain, C. and Le Blat, J.; U.S. Patent 4,108,865; August 22, 1978; assigned to Labaz (France)

CHENODIOL

Therapeutic Function: Solubilizer for cholesterol gallstones

Chemical Name: 3,7-Dihydroxycholan-24-oic acid

Common Name: Chenodeoxycholic acid; chenic acid

Structural Formula:

Chemical Abstracts Registry No.: 474-25-9

Trade Name	Manufacturer	Country	Year Introduced
Chenofalk	Falk	W. Germany	1974
Chenofalk	Pharmacolor	Switz.	1974
Chenossil	Giuliani	Italy	1975
Chenodex	I.S.H.	France	1977
Chendol	Weddell	U.K.	1978
Regalen	Eisai	Japan	1982
Chenocol	Yamanouchi	Japan	1982
Chenix	Reid-Rowell	U.S.	1983
Aholit	Vetprom	Yugoslavia	
Bilo	litas	Turkey	_
Calcolise	Prodes	Spain	- .
Carbilcolina	Ralay	Spain	_
Chelobil	Oftalmiso	Spain	-
Chemicolina	Ern	Spain	_
Chenar	Armour-Montagu	-	
Chendal	Tika	Sweden	_
Chendix	Weddell	U.K.	
Chendol	Weddell	U.K.	_
Chenoacid	Falk	W. Germany	-
Chenodecil	Aldon	Spain	_
Chenodex	Houde	France	_
Chenomas	Guadalupe	Spain	_
Chenotar	Armour	· 	
Cholonorm	Gruenenthal	W. Germany	_
Cholasa	Tokyo Tanabe	Japan	_
Cholestex	lkapharm	Israel	_
Duanox	Roche	_	_
Fluibil	Zambon	Italy	_
Gamiquenol	Gamir	Spain	_
Hekbilin	Hek	W. Germany	_
Henohol	Galenika	Yugoslavia	_

Trade Name	Manufacturer	Country	Year Introduced
Kebilis	Hoechst-Roussel	_	_
Kenolite	Leurquin	France	_
Quenobilan	Estedi	Spain	_
Soluston	Rafa	Israel	_
Ulmenid	Roche	_	

7-Acetyl-12-ketochenodeoxycholic acid Hydrazine hydrate Potassium hydroxide

Manufacturing Process

To 1.400 ml of an approximately 50% water/triglycol solution of the potassium salt of chenodeoxycholic acid, obtained by the Wolff-Kishner reduction (using hydrazine hydrate and potassium hydroxide) from 50 g of 7-acetyl-12-ketochenodeoxycholic acid, 220 ml of dilute hydrochloric acid is added to bring the pH to 2. The solution is stirred and the crude chenodeoxycholic acid precipitates. The precipitate is recovered and dried to constant weight at about 60°C. About 36 g of the crude chenodeoxycholic acid, melting in the range of 126°-129°C, is obtained.

25 g of crude chenodeoxycholic acid so obtained is dissolved in 750 ml of acetonitrile while stirring and heating. 3 g of activated charcoal is added and then removed by suction filtering. The resulting liquid filtrate is cooled, the pure chenodeoxycholic acid crystallizing out. The crystals are recovered by suction filtering and the recovered crystals dried under vacuum. The yield is 19 g of pure chenodeoxycholic acid with a melting range of 168°-171°C.

References

Merck Index 2007 Kleeman & Engel p. 181 PDR p. 1446 DOT 8 (7) 273 (1972) & 12 (2) 52 (1976) I.N. p. 17 REM p. 812

Maeke, S. and Rambacher, P.; U.S. Patent 4,163,017; July 31, 1979; assigned to Diamait A.G. (Germany)

CHLOPHEDIANOL

Therapeutic Function: Antitussive

Chemical Name: 2-Chloro-α-[2-(dimethylamino)ethyl] -α-phenylbenzenemethanol

Common Name: Clofedanol

Structural Formula:

Chemical Abstracts Registry No.: 791-35-5; 511-13-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year introduced
Detigon	Bayer	W. Germany	1958
Detigon	Bayer	italy	1959
Ulo	Riker	U.S.	1960
Tussiplegyl	Bayer	France	1969
Colorin	Nippon Shinyaku	Japan	1981
Abehol	Piiva	Yugoslavia	_
Anayok	Chibi	Italy	-
Baltix	Kobanyai	Hungary	-
Demax	Orma	Italy	-
Dencyl	Bencard	U.K.	_
Eletuss	Serpero	Italy	_
Eutus	Eupharma	Italy	_
Farmatox	Cifa	Italy	_
Fugatox	lfisa	Italy	_
Gen-Tos	Morgens	Spain	-
Gutabex	Russi	Italy	_
Pectolitan	Kettelhack Riker	W. Germany	
Prontosed	Francia	Italy	_
Refugal	Bayer	<u>-</u>	
Tigonal	I.B.P.	Italy	_
Tuxidin	Gazzini	Italy	_
Tuxinil	Bieffe	Italy	_
Ulone	Riker	-	_

o-Chlorobenzophenone Acetonitrile Sodium amide

Manufacturing Process

This compound may be produced by reacting o-chlorobenzophenone with acetonitrile in the presence of sodium amide or another strongly basic condensing agent, to form the nitrile of β -phenyl- β -o-chlorophenyl-hydracrylic acid, which is then hydrogenated to yield 1-phenyl-1-o-chlorophenyl-3-aminopropanol-1. The latter intermediate compound is subsequently dimethylated with an agent such as methyl sulfate to provide the desired end product 1-o-chlorophenyl-1-phenyl-3-dimethylaminopropanol.

Hydrogen Methyl sulfate

References

Merck Index 2018 Kleeman & Engel p. 226 I.N. p. 244 REM p. 871

Lorenz, R., Gosswald, R. and Henecka, H.; U.S. Patent 3,031,377; April 24, 1962; assigned to Farbenfabriken Bayer AG, Germany

CHLORAL BETAINE

Therapeutic Function: Sedative

Chemical Name: Adduct of chloral hydrate with betaine

Common Name: -

Structural Formula:

CCI₃CH(OH)₂·(CH₃)₃N⁺CH₂COO⁻

Chemical Abstracts Registry No.: 2218-68-0

Trade Name	Manufacturer	Country	Year Introduced
Beta-Chlor	Mead Johnson	U.S.	1963

Raw Materials

Betaine hydrate Chloral hydrate

Manufacturing Process

An intimate mixture of betaine hydrate (67.5 g) and chloral hydrate (100 g) was warmed to ca. 60°C when an exothermic reaction occurred and the mixture became pasty. It was then stirred at 60°C for 30 minutes. The residue solidified on cooling and was crystallized from a small amount of water. The product separated in hard, colorless prisms of MP 122.5° to 124.5°C (corr).

References

Merck Index 2026 Kieeman & Engel p. 184

Petrow, V., Thomas, A.J. and Stephenson, O.; U.S. Patent 3,028,420; April 3, 1962; assigned to The British Drug Houses Limited, England

CHLORAMBUCIL

Therapeutic Function: Antineoplastic

Chemical Name: 4-[bis(2-chloroethyl)amino] benzenebutanoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 305-03-3

Trade Name	Manufacturer	Country	Year Introduced
Leukeran	Burroughs-Wellcome	U.S.	1957
Leukeran	Wellcome	W. Germany	_
Leukeran	Wellcome	Switz.	_
Amboclorin	Simes	İtaly	
Chloraminophene	Techni-Farma	France	_
Linfolysin	1.S.M.	Italy	_

Raw Materials

Acetanilide	Maleic acid
Hydrogen	Ethylene oxide
Phosphorus oxychloride	•

Manufacturing Process

Acetanilide and maleic acid are condensed to give β -(p-acetaminobenzoyl)acrylic acid which is hydrogenated to give methyl-\gamma-(p-aminophenyl)butyrate. That is reacted with ethylene oxide and then with phosphorus oxychloride to give the methyl ester which is finally hydrolyzed to give chlorambucil.

References

Merck Index 2031 Kleeman & Engel p. 184 PDR p. 752 DOT 16 (5) 70 (1980) 1.N. p. 208 REM p. 1145

Phillips, A.P. and Mentha, J.W.; U.S. Patent 3,046,301; July 24, 1962; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

CHLORAMPHENICOL


Therapeutic Function: Antimicrobial

Chemical Name: D(-)-threo-2,2-dichloro-N-[β -hydroxy- α -(hydroxymethyl)-p-nitrophenethyl]-

acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56-75-7

Trade Name	Manufacturer	Country	Year Introduced
Leukomycin	Bayer	W. Germany	_
Chloromycetin	Warner-Lambert	Switz.	_
Chloromycetin	Parke-Davis	U.S.	1949
Chloramphenicol	MSD-Chibret	France	1954
Econochlor Sol	Alcon	U.S.	1975
Amboken	Gedeon Richter	Mexico	_
Amphicol	McKesson	U.S.	
Antacin	S umitomo	Japan	_
Aquamycin	Winzer	W. Germany	_
Bemacol	Int'l. Multifoods	U.S.	
Berlicetin	A nkerwerk	E. Germany	-
Biocetin	Tasman Vaccine	U.K.	
Biophenicol	Biochemie	Austria	_
Cafenolo	Benvegna	Italy	_
Catilan	Hoechst	W. Germany	
Cebenicol	Chauvin-Blache	France	_

Trade Name	Manufacturer	Country	Year Introduced
Chemicetina -	Erba	Italy	_
Chemyzin	S.I.T.	Italy	_
Chlomin	Knoll	W. Germany	_
Chloramex	Dumex	Denmark	-
Chloramol	Protea	Australia	-
Chloramphenicol-POS	Ursapharm	W. Germany	-
Chlorasol	Evsco	U.S.	_
Chlora-Tabs	Evsco	U.S.	_
Chloricol	Evsco	U.S.	
Chlornitromycin	Farmakhim	Bulgaria	_
Chlorocid	Egyt	Hungary	_
Chloromycetin	S ankyo	Japan	_
Chloronitrin	Jenapharm	E. Germany	
Chloroptic	Allergan	U.S.	_
Chlorsig	Sigma	Australia	_
Chloramidina	Arco	Switz.	_
Clorbiotina	Wassermann	Spain	_
Clorofenicina	Antibioticos	Spain	-
Clorosintex	Angelini	Italy	_
Cylphenicol	Trent	U.S.	
Desphen	Despopharm	Switz.	_
Detreomine	Polfa	Poland	_
Devamycetin	Deva	Turkey	_
Dextromycin	V.N.I.Kh.F.J.	USSR	
Doctamicina	Docta	Switz,	
Farmicetina	Erba	Italy	-
Globenicol	Gist-Brocades	<u>.</u>	_
Glorous	Sanwa	Japan	_
Halomycetin	Kwizda	Austria	_
Hortfenicol	Hortel	Spain	_
Ismicetina	I.S.M.	Italy	
Isophenicol	Bouchara	France	_
Kamaver	Engelhard	W. Germany	_
Kemicetin	Aesca	Austria	_
Kemicetine	Fujisawa	Japan	
Kemicetine	Erba	Italy	_
Kemicetine	Vifor	Switz.	
Kemicetine	I.C.N.	Canada	_
Kemicotine	Erba	U.K.	_
Kloromisin	Biofarma	Turkey	_
Labamicol	Labatec	Switz.	-
Levomycetin	Provita	Austria	_
Lomecitina	Locatelli	Italy	_
Loromisin	Atabay	Turkey	_
Medichol	Copanos	U.S.	
Micochlorine	Continental		
	Pharma	Belgium	-
Misetin	Dif-Dogu	Turkey	_
Mycetin	Farmigea	Italy	_
Mychel	Rachelle	U.S.	_
Mycinol	Horner	Canada	
Neocetin	Uranium	Turkey	_
Novochlorcap	Novopharm	Canada	
Novaphenicol	Nova	Canada	_
Novophenicol	Solac	France	-
Oftakloram	Tan	Turkey	-
Oftalent	Weifa	Norway	
Oleomycetin	Winzer	W. Germany	
		•	

Trade Name	Manufacturer	Country	Year Introduced
Ophtaphenicol	Faure	France	_
Oralmisetin	Mulda	Turkey	_
Otachron	Alpine	Austria	_
Otomycin	Pliva	Yugoslavia	_
Pantovernil	Heyden	W. Germany	_
Paraxin	Boehr/Mann.	W. Germany	_
Paraxin	Yamanouchi	Japan	_
Pedimycetin	T.E.M.S.	Turkey	
Pentamycetin	Pentagone	Canada	
Pentocetine	Ibsa	Switz.	_
Rivomycin	Rivopharm	Switz.	_
Romphenil	Zeria	Japan	_
Septicol	Streuli	Switz.	_
Serviclofen	Servipharm	Switz.	_
Sificetina	Sifi	Italy	_
Sno-Paenicol	Smith & Nephew	U.K.	
Sopamycetin	Pharbec	Canada	-
Spersanicol	Dispersa	Switz.	_
Suismycetin	Lagap	Switz.	_
Synthomycetin	Abic	Israel	_
Tevocin	Tevcon	U.S.	-
Thilocanfol	Thilo	W. Germany	_
Tifomycine	Roussel	France	_
Veticol	Copanos	U.S.	
Viceton	Int'l. Multifoods	U.S.	_
Viklorin	llsan	Turkey	_
Vitaklorin	litas	Turkey	_

Sodium
β-Nitroethanol
Methyl dichloroacetate
Acetic anhydride

Benzaldehyde Nitric acid Hydrogen

Manufacturing Process

Chloramphenical may be prepared by fermentation or by chemical synthesis. The fermentation route to chloramphenicol is described in U.S. Patents 2,483,871 and 2,483,892. To quote from U.S. Patent 2,483,892: The cultivation of Streptomyces venezuelae may be carried out in a number of different ways. For example, the microorganism may be cultivated under aerobic conditions on the surface of the medium or it may be cultivated beneath the surface of the medium, i.e., in the submerged condition, if oxygen is simultaneously supplied.

Briefly stated, the production of chloramphenicol by the surface culture method involves inoculating a shallow layer, usually less than about 2 cm, of a sterile, aqueous nutrient medium with Streptomyces venezuelae and incubating the mixture under aerobic conditions at a temperature between about 20° and 40°C, preferably at room temperature (about 25°C), for a period of about 10 to 15 days. The mycelium is then removed from the liguid and the culture liquid is then treated by methods described for isolating therefrom the desired chloramphenicol.

The synthetic route to chloramphenical is described in U.S. Patent 2,483,884 as follows: 1.1 g of sodium is dissolved in 20 cc of methanol and the resulting solution added to a solution of 5 g of benzaldehyde and 4.5 g of β -nitroethanol in 20 cc of methanol. After standing at room temperature for a short time the gel which forms on the mixing of the reactants changes to a white insoluble powder. The precipitate is collected, washed with methanol and ether and then dried. The product thus produced is the sodium salt of

1-phenyl-2-nitropropane-1,3-diol.

Eighteen grams of the sodium salt of 1-phenyl-2-nitropropane-1,3-diol is dissolved in 200 cc of glacial acetic acid. 0.75 g of palladium oxide hydrogenation catalyst is added and the mixture shaken at room temperature under three atmospheres pressure of hydrogen overnight. The reaction vessel is opened, 2.5 g of 10% palladium on carbon hydrogenation catalyst added and the mixture shaken under three atmospheres pressure of hydrogen for 3 hours. The catalyst is removed from the reaction mixture by filtration and the filtrate concentrated under reduced pressure. Fifty cubic centimeters of n-propanol is added to the residue and the insoluble inorganic salt removed by filtration.

The filtrate is treated with excess hydrochloric acid and evaporated to obtain a pale yellow oil. Five grams of the oil thus obtained is treated with 15 cc of saturated potassium carbonate solution and the mixture extracted with 50 cc of ether, then with 30 cc of ethyl acetate and finally with two 30 cc portions of ethanol. Evaporation of the solvent from the extract gives the following quantities of the desired 1-phenyl-2-aminopropane-1,3-diol: 0.5 g, 1.0 g and 3.1 g.

1.7 g of 1-phenyl-2-aminopropane-1,3-diol is treated with 1.6 g of methyl dichloroacetate and the mixture heated at 100°C for 1¼ hours. The residue is washed with two 20 cc portions of petroleum ether and the insoluble product collected. Recrystallization from ethyl acetate yields the desired (dl)-reg.-1-phenyl-2-dichloroacetamidopropane-1,3-diol in pure form; MP 154° to 156°C.

Five hundred milligrams of (dl)-reg.-1-phenyl-2-dichloroacetamidopropane-1,3-diol is added to a solution consisting of 1 cc of pyridine and 1 cc of acetic anhydride and the resulting reaction mixture heated at 100°C for 1/2 hour. The reaction mixture is evaporated to dryness under reduced pressure and the residue taken up in and crystallized from methanol. Recrystallization from methanol produces the pure diacetate of (dl)-reg.-1-phenyl-2-dichloroacetamidopropane-1,3-diol (MP 94°C).

Two hundred milligrams of the diacetate of (dl)-reg.-1-phenyl-2-dichloroacetamidopropane-1,3-diol is added to a mixture consisting of 0.25 cc of concentrated nitric acid and 0.25 cc of concentrated sulfuric acid at 0°C. The reaction mixture is stirred until solution is complete, poured onto 25 g of ice and the mixture extracted with ethyl acetate. The ethyl acetate extracts are evaporated under reduced pressure and the diacetate of (dl)-reg.-1-pnitrophenyl-2-dichloroacetamidopropane-1,3-diol so produced purified by recrystallization from ethanol; MP 134°C.

Five hundred milligrams of the diacetate of (dl)-reg.-1-p-nitrophenyl-2-dichloroacetamidopropane-1,3-diol is dissolved in a mixture consisting of 25 cc of acetone and an equal volume of 0.2 N sodium hydroxide solution at 0°C and the mixture allowed to stand for one hour. The reaction mixture is neutralized with hydrochloric acid and evaporated under reduced pressure to dryness. The residue is extracted with several portions of hot ethylene dichloride, the extracts concentrated and then cooled to obtain the crystalline (dl)-reg. 1p-nitrophenyl-2-dichloroacetamidopropane-1,3-diol; MP 171°C.

References

Merck Index 2035 Kleeman & Engel p. 185 PDR pp. 1321, 1379, 1606, 1999 OCDS Vol. 1 p. 75 (1977) & 2 pp. 28, 45 (1980)

I.N. p. 209

REM p. 1208

Bartz, Q.R.; U.S. Patent 2,483,871; October 4, 1949; assigned to Parke, Davis & Company Crooks, H.M., Jr., Rebstock, M.C., Controulis, J. and Bartz, Q.R.; U.S. Patent 2,483,884; October 4, 1949; assigned to Parke, Davis & Company

Ehrlich, J., Smith, R.M. and Penner, M.A.; U.S. Patent 2,483,892; October 4, 1949; assigned to Parke, Davis & Company

Carrara, G.; U.S. Patent 2,776,312; January 1, 1957

Slack, R.; U.S. Patent 2,786,870; March 26, 1957; assigned to Parke, Davis & Company

CHLORAMPHENICOL PALMITATE

Therapeutic Function: Antibacterial; antirickettsial

Chemical Name: D(-)-threo-1-p-nitrophenyl-2-dichloroacetamido-3-palmitoyloxypropane-

1-01

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 530-43-8

Trade Nme	Manufacturer	Country	Year Introduced
Chloromycetin	Parke Davis	U.S.	1951
B-CP	Biokema	Switz.	
Berlicetin	Ankerwerk	E. Germany	-
Chlorambon	Biokema	Switz.	_
Chloromisol	Maipe	Spain	
Colimycin	Biofarma	Turkey	_
Detreopal	Polfa	Poland	_
Hortfenicol	Hortel	Spain	_
Levomicetina	Lepetit	Italy	_
Paidomicetina	Lafare	Italy	_
Protophenicol	Arco	Switz.	_
Sintomicetina	Lepetit	-	-

Raw Materials

Palmitovi chloride Chloramphenicol

Manufacturing Process

1,674 g of palmitoyl chloride is added to 1,870 g of D(-)-threo-1-p-nitrophenyl-2-dichloroacetamidopropane-1,3-diol (chloramphenicol) in 2,700 cc of pyridine and the solution stirred for 1 hour. The mixture is poured into 16 liters of water and the solid collected. Recrystallization of the crude product from benzene yields the desired D(+)-threo-1-p-nitrophenyl-2dichloroacetamido-3-palmitoyloxypropane-1-ol in pure form: MP 90°C,

References

Merck Index 2036 PDR p. 1324 I.N. p. 210 REM p. 1209

Edgerton, W.H.; U.S. Patent 2,662,906; December 15, 1953; assigned to Parke, Davis & Co.

CHLORCYCLIZINE

Therapeutic Function: Antihistaminic

Chemical Name: 1-[(4-Chlorophenyl)phenylmethyl]-4-methylpiperazine

Common Name: Histachlorazine

Structural Formula:

Chemical Abstracts Registry No.: 82-93-9; 1620-21-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Perazil	Burroughs-Wellcome	U.S.	1949
Di-Paralene	Abbott	U.S.	1950
Histantin	Burroughs-Wellcome	_	_
Histofax	Burroughs-Wellcome	U.K.	
Mantadil	Burroughs-Wellcome	U.S.	_
Prurisedine	Couvreur	Belgium	_
Trihistan	Revit	Switz.	-
Trihistan	Gea	Denmark	_
Trihistan	Weifa	Norway	_

Raw Materials

4-Chlorobenzhydryl chloride Methyl piperazine

Manufacturing Process

0.08 mol (19 g) of 4-chlorobenzhydryl chloride and 0.16 mol (16 g) of methylpiperazine were mixed in about 20 cc of dry benzene. The flask containing the reaction mixture was covered by a watch glass and set in a steam bath, and heating was continued for 6 hours. The contents of the flask were partitioned between ether and water and the ethereal layer was washed with water until the washings were neutral. The ethereal layer was extracted successively with 30and 10-cc portions of 3N hydrochloric acid. On evaporation of the ether layer there remained a residue of 2.5 g. The aqueous extracts were united and basified with concentrated alkali. The oily base was taken into ether and dried over potassium carbonate. On evaporation of the ether, N-methyl-N'-(4-chlorobenzhydryl) piperazine was recovered in the form of a viscous oil in 75% yield. The N-methyl-N'-(4-chlorobenzhydryl) piperazine was dissolved in absolute alcohol and ethanolic hydrogen chloride added in excess. The dihydrochloride crystallized

on addition of absolute ether and was recrystallized from the same solvent mixture in the form of longish prisms melting at about 216°C.

References

Merck Index 2045 Kleeman & Engel p. 188 PDR p. 754 OCDS Vol. 1 p. 58 (1977) I.N. p. 211

REM p. 1132 Baitzly, R. and Castillo, J.C.; U.S. Patent 2,630,435; March 3, 1953; assigned to Burroughs-Wellcome & Co. (U.S.A.) Inc.

CHLORDANTOIN

Therapeutic Function: Topical antifungal

Chemical Name: 5-(1-Ethylpentyl)-3-[(trichloromethyl)thio]-2,4-imidazolidinedione

Common Name: Clodantoin

Structural Formula:

Chemical Abstracts Registry No.: 5588-20-5

Trade Name	Manufacturer	Country	Year Introduced
Sporostacin	Ortho	U.S.	1960
Sporostacin	Ortho	U.K.	_
Gynelan	Eisai	Japan	_

Raw Materials

Perchloromethyl mercaptan

5-(1-Ethylpentyl)hydantoin sodium salt

Manufacturing Process

Perchloromethylmercaptan is reacted with the sodium salt of 5-(1-ethylpentyl)hydantoin.

References

Merck Index 2047 Kleeman & Engel p. 225

I.N. p. 243

Kittleson, A.R.; U.S. Patent 2,553,770; May 22, 1951; assigned to Standard Oil Development Company

Hawley, R.S., Kittleson, A.R. and Smith, P.V. Jr.; U.S. Patent 2,553,775; May 22, 1951; assigned to Standard Oil Development Company

CHLORDIAZEPOXIDE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2-amino-4-oxide hydro-

chloride

Common Name: Metaminodiazepoxide hydrochloride; methaminodiazepoxide hydrochlo-

ride

Structural Formula:

Chemical Abstracts Registry No.: 438-41-5; 58-25-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Librium	Roche	W. Germany	1960
Librium	Roche	U.S.	1960
Librium	Roche	Switz.	1960
Librium	Sauter	U.K.	1960
Librium	Roche	France	1961
Librium	Roche	Italy	1961
SK-Lygen	SKF	U.S.	1976
Diazachel	Rachelle	U.S.	1976
A-Poxide	Abbott	U.S.	1977
Zetran	Hauck	U.S.	1978
Balance	Yamanouchi	Japan	_
Bent	Pharma, Farm, Spec.	Italy	_
Benzodiapin	Lisapharma	Italy	_
Binomil	Uriach	Spain	
Cebrum	Cifa	Italy	_
Chemdipoxide	Chemo-Drug	Canada	_
Chlordiazachel	Rachelle	U.S.	_
Contol	Takeda	Japan	_
Diapax	Therapex	Canada	_
Dolibrax	Roche	France	_
Elenium	Polfa	Poland	_
Endequil	Panther-Osfa	Italy	_
Equibral	Ravizza	Italy	_
Gene-Poxide	Franca	Canada	-
Huberplex	Hubber	Spain	_
I-Liberty	I-Pharmacal	Ú.S.	_
Labican	Boniscontro-Gazzone	Italy	_
Lentotran	Farm Patria	Portugal	_
Lixin	I.S.M.	Italy	
Medilium	Medic	Canada	_
Murcil	Reid-Provident	U.S.	_
Napoton	Chemimportexport	Rumania	_
Normide	Inibsa	Spain	
Novopoxide	Novopharm	Canada	_
Omnalio	Estedi	Spain	_
Peast C	Sawai	Japan	_
Protensin	Elliott-Marion	Canada	
Psicofar	Terapeutico	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Psicoterina	Francia	Italy	-
Radepur	Arzneimittelwerk Dresden	E. Germany	_
Reliberan	Geymonat Sud	Italy	
Relium	Riva	Canada	_
Risolid	Dumex	Denmark	· _
Sakina	Causytn	Italy	
Sereen	Fov	U.S.	_
Smail	Saita	Italy	_
Solium	Horner	Canada	-
Sophiamin	Santen	Japan	-
Trakipearl	Hishiyama	Japan	
Tropium	D.D.S.A.	U.K.	_
Untensin	Pharmador	S. Africa	
Via-Quil	Denver	Canada	_

2-Amino-5-chlorobenzophenone Chloroacetyl chloride Hydrogen chloride Hydroxylamine Methylamine

Manufacturing Process

A mixture of 202 g 2-amino-5-chlorobenzophenone, 190 g hydroxylamine hydrochloride, 500 cc pyridine and 1,200 cc alcohol was refluxed for 16 hours, then concentrated in vacual to dryness. The residue was treated with a mixture of ether and water. The water was separated, the ether layer containing a considerable amount of precipitated reaction product was washed with some water and diluted with petroleum ether. The crystalline reaction product, 2-amino-5-chlorobenzophenone- α -oxime, was filtered off. The product was recrystallized from a mixture of ether and petroleum ether forming colorless prisms, MP 164° to 167°C.

To a warm solution (50°C) of 172.5 g (0.7 mol) of 2-amino-5-chlorobenzophenone- α -oxime in one liter glacial acetic acid were added 110 cc (1.47 mols) chloroacetyl chloride. The mixture was heated for 10 minutes at 50°C and then stirred at room temeprature for 15 hours. The precipitated yellow prisms, 2-chloromethyl-4-phenyl-6-chloroquinazoline 3-oxide hydrochloride, were filtered off, melting range 128° to 150°C with dec.

The acetic acid mother liquor, containing the rest of the reaction product, was concentrated in vacuo. The residue was dissolved in methylene chloride and washed with ice cold sodium carbonate solution. The organic solution was dried, concentrated in vacuo to a small volume and diluted with ether and petroleum ether. Fine yellow needles of 2-chloromethyl-4-phenyl-6-chloroquinazoline 3-oxide precipitated. The pure base was recrystallized from a mixture of methylene chloride, ether and petroleum ether, MP 133° to 134°C.

Ninety-eight grams of 6-chloro-2-chloromethyl-4-phenylquinazoline 3-oxide hydrochloride were introduced into 600 cc of ice cold 25% methanolic methylamine. The mixture was initially cooled to about 30°C and then stirred at room temperature. After 15 hours the reaction product which precipitated was filtered off. The mother liquor was concentrated in vacuo to dryness. The residue was dissolved in methylene chloride, washed with water and dried with sodium sulfate. The methylene chloride solution was concentrated in vacuo and the crystalline residue was boiled with a small amount of acetone to dissolve the more soluble impurities. The mixture was then cooled at 5°C for 10 hours and filtered. The crystalline product, 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine 4-oxide, was recrystallized from ethanol forming light yellow plates, MP 236° to 236.5°C.

A solution of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine 4-oxide in an equivalent amount of methanolic hydrochloric acid was diluted with ether and petroleum ether.

The precipitated hydrochloride was filtered off and recrystallized from methanol, MP 213°C.

References

Merck Index 2049 Kleeman & Engel p. 188 PDR pp. 993, 1510, 1606, 1723, 1999 OCDS Vol. 1 p. 365 (1977) & 2 p. 401 (1980) DOT 9 (6) 236 (1973)

REM p. 1061

Sternbach, L.H.; U.S. Patent 2,893,992; July 7, 1959; assigned to Hoffmann-LaRoche, Inc.

CHLORHEXIDINE

Therapeutic Function: Antimicrobial

Chemical Name: N,N"-bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecane-di-

imidamide

Common Name: 1,6-di(4'-Chlorophenyldiguanido)hexane

Structural Formula:

Chemical Abstracts Registry No.: 55-56-1

Trade Name	Manufacturer	Country	Year Introduced
Hibiclens	Stuart	U.S.	1976
Hibitane	I.C.I.	France	1976
Corsodyl	I.C.I.	U.K.	1977
Souplens	Chauvin-Blache	France	1978
Hibitane	Stuart	U.S.	1979
Hibistat	ICI	U.S.	1980
Abacil	Polfa	Poland	_
Aseptigel	Medicornea	France	_
Bactigras	Smith & Nephew	U.K.	-
Biotensid	Arcana	Austria	_
Cetal	Orapharm	Australia	_
Chlorhexamed	Blendax	W. Germany	-
Chlorohex	Geistlich	Switz.	_
Dacrine	Chibret	France	-
Dentosmin	VEB Leipz, Arz.	E. Germany	_
Desmanol	Schulke & Mayr	W. Germany	-
Desocort	Chauvin-Blache	France	_
Dialens	Chauvin-Blache	France	_
Eludril	Inava	France	_
Hexadol	Green Cross	Japan	_
Hibiscrub	ICI-Pharma	France	_
Hibiscrub	ICI	Japan	_
Hibitane	Sumitomo	Japan	_
Larylin	Beiersdorf	W. Germany	_
Lisium	Brunton Chemists	u.K.	_

Trade Name	Manufacturer	Country	Year Introduced
Manusan	Polfa	Poland	_
Maskin	Maruishi	Japan	_
Noivasan	Fort Dodge	U.S.	_
Oronine	Otsuka	Japan	
Pabron	Taisho	Japan	
Plac Out	Bernabo	Argentina	
Plak-Out	Hawe-Neos	Switz.	_
Plurexid	Sythemedica	France	_
Rhino-Blache	Chauvin-Blache	France	_
Rotersept	Roter	Neth.	_
Scarlene	Chauvin-Blache	France	_
Secalan	Zyma	Switz.	
Septalone	Abic	Israel	
Sterilone	Roter	Neth.	
Trachitol	Engelhard	W. Germany	
Vitacontact	Faure	France	_

Hexamethylene bis-dicyandiamide p-Chloroaniline hydrochloride

Manufacturing Process

25 parts of hexamethylene bis-dicyandiamide, 35 parts of p-chloroaniline hydrochloride and 250 parts of β -ethoxyethanol are stirred together at 130°C to 140°C for 2 hours under reflux. The mixture is then cooled and filtered and the solid is washed with water and crystallized from 50% aqueous acetic acid. 1,6-di(N₁,N₁'-p-chlorophenyldiguanido-N₅,N₅')hexane dihydrochloride is obtained as colorless plates of MP 258°C to 260°C.

The following is an alternative route: 19.4 parts of p-chlorophenyldicyandiamide, 9.4 parts of hexamethylenediamine dihydrochloride and 100 parts of nitrobenzene are stirred together and heated at 150°C to 160°C for 6 hours. The mixture is cooled, diluted with 200 parts of benzene and filtered. The solid residue is washed with benzene and crystallized from 50% acetic acid. 1,6-di(N_1 , N_1 '-p-chlorophenyldiguanido- N_5 , N_5 ')hexane dihydrochloride is obtained.

References

Merck Index 2057 Kleeman & Engel p. 189 PDR p. 1781 I.N. p. 212 REM p. 1159

Rose, F.L. and Swain, G.; U.S. Patent 2,684,924; July 27, 1954; assigned to Imperial Chemical Industries, Ltd.

CHLORISONDAMINE CHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: 4,5,6,7-Tetrachloro-1,3-dihydro-2-methyl-2-[2-(trimethylammonio)ethyl] -

2H-isoindolium dichloride

Common Name: Chlorisondamine dimethochloride

Structural Formula:

Chemical Abstracts Registry No.: 69-27-2

Trade Name	Manufacturer	Country	Year Introduced
Ecolid Chloride	Ciba	U.S.	1956

Raw Materials

3,4,5,6-Tetrachlorophthalic anhydride
2-Dimethylaminoethyl amine
Lithium aluminum hydride

Methyl iodide
Silver chloride

Manufacturing Process

50 parts by weight of 3,4,5,6-tetrachlorophthalic anhydride is added with stirring and cooling to 30 parts by volume of 2-dimethylaminoethyl amine. The mixture is heated at 170°C for 4 minutes and the oily residue then dissolved in 200 parts by volume of hot ethanol. On cooling, N-(2'-dimethylaminoethyl)-3,4,5,6-tetrachlorophthalimide separates. It crystallizes from ethanol and melts at 184°-186°C.

6 parts by weight of N-(2'-dimethylaminoethyl)-3,4,5,6-tetrachlorophthalimide is extracted continuously with 300 parts by volume of dry ether in which have been dissolved 3.1 parts by weight of lithium aluminum hydride. After 48 hours the excess lithium aluminum hydride is destroyed by cautious addition of 9 parts by volume of ethyl acetate while stirring. There is then added in succession with stirring 3 parts by volume of water, 6 parts by volume of 15% aqueous sodium hydroxide and 9 parts by volume of water. The granuler precipitate of lithium and aluminum salts are filtered and washed with ether. The ether is distilled off, yielding the crude, oily 4,5,6,7-tetrachloro-2-(2'-dimethylaminoethyl)-isoindoline. The above base is dissolved in 25 parts by volume of 90% ethanol and refluxed 2 hours with 6 parts by volume of methyl iodide. 4,5,6,7-tetrachloro-2-(2'-dimethylaminoethyl)-isoindoline dimethiodide separates during the reaction. It is collected by filtration and recrystallized from a mixture of ethanol and water; MP 244°-246°C.

4,5,6,7-tetrachloro-2-(2'-dimethylaminoethyl)-isoindoline dimethochloride is prepared by shaking an aqueous solution of the dimethiodide with an excess of freshly prepared silver chloride and evaporating to dryness the aqueous solution after removal of the silver salts. 4,5,6,7-tetrachloro-2-(2'-dimethylaminoethyl)-isoindoline dimethochloride is recrystallized from ethanol-ethylacetate; MP 276°-280°C.

References

Merck Index 2068 I.N. p. 213

Huebner, C.F.; U.S. Patent 3,025,294; March 13, 1962; assigned to Ciba Pharmaceutical Products, Inc.

CHLORMERODRIN

Therapeutic Function: Diuretic

Chemical Name: 1-[3-(Chloromercuri)-2-methoxypropyl] urea

Common Name: Chlormeroprin

Structural Formula: CIH9CH2CHCH2NHCNH

CH₃ (

Chemical Abstracts Registry No.: 62-37-3

Trade Name	Manufacturer	Country	Year Introduced
Neohydrin	Lakeside	U.S.	1952
Asahydrin	Pharmacia	Sweden	_
Bucohydral	Vifor	Switz.	_
Mercloran	Parke Davis	U.S.	_
Merilid	Pharmacia	Sweden	_
Oricur	Medix	Denmark	_
Orimercur	Reder	Spain	-
Ormerdan	Parke Davis	U.S.	_

Raw Materials

Allyl urea Mercuric acetate Sodium chloride

Manufacturing Process

To a refluxing solution of 100 g of allyl urea and 600 ml of absolute methanol there was added with stirring a suspension of 319 g of mercuric acetate and 600 ml of absolute methanol and 60 ml of glacial acetate acid; complete solution resulted. After 6 hours of refluxing, the solution was cooled and clarified by filtration. To this solution there were added 50 g of sodium chloride and 240 ml of water. After a short time a heavy white precipitate settled out. This precipitate, which was 3-chloromercuri-2-methoxy-propylurea, was filtered, washed and dried.

References

Merck Index 2071 Kleeman & Engel p. 191 I.N. p. 213 REM p. 489

Foreman, E.L; U.S. Patent 2,635,983; April 21, 1953; assigned to Lakeside Laboratories, Inc.

CHLORMEZANONE

Therapeutic Function: Tranquilizer

Chemical Name: 2-(4-Chlorophenyl)tetrahydro-3-methyl-4H-1,3-thiazin-4-one 1,1-dioxide

Common Name: Chloromethazanone

Structural Formula:

Chemical Abstracts Registry No.: 80-77-3

Trade Name	Manufacturer	Country	Year Introduced
Trancopal	Winthrop-Breon	U.S.	1958
Supotran	Winthrop	France	1965
Alinam	Lucien	France	_
Chlomedinon	Taiyo	Japan	_
Lumbaxol	Aldo Union	Spain	_
Metsapal	Leiras	Turkey	_
Muscotal	Farmos	Finland	_
Muskei	Winthrop	W. Germany	_
Myolespen	Dojin	Japan	_
Relizon	Mochida	Japan	_
Rexan	Labif	Italy	_
Rilaquil	Guidotti	Italy	_
Tanafol	A.M.S.A.	Italy	_
Trancote	Sawai	Japan	- .
Transanate	Teikoku	Japan	_

Raw Materials

4-Chiorobenzaldehyde Methylamine β-Mercaptopropionic acid Potassium permanganate

Manufacturing Process

A solution of 4-chlorobenzaldehyde is reacted with β -mercaptopropionic acid and with methylamine. The mixture is refluxed in benzene and water is removed from an overhead separator. The reaction mixture was cooled, washed with dilute ammonium hydroxide and water, and the benzene was removed by distillation in vacuo. The oily residue was taken up in ether from which it crystallized. The precipitate was recrystallized twice from ether to yield 2-(4-chlorophenyl)-3-methyl-4-metathiazanone.

A solution of 11.2 g of potassium permanganate in 100 ml of warm water was added dropwise to a well stirred solution of 10 g of 2-(4-chlorophenyl)-3-methyl-4-metathiazanone in 50 ml of glacial acetic acid. The temperature was kept below 30°C with external cooling. An aqueous sodium bisulfite solution was then added to remove the manganese dioxide. The thick whitish oil which separated was taken up in chloroform and the extract was washed with water. Removal of the chloroform by distillation in vacuo yielded an oily residue which solidified. The solid was recrystallized from isopropyl alcohol to give 5 g of the product, 2-(4-chlorophenyl)-3-methyl-4-metathiazanone-1,1-dioxide, MP 116.2° to 118.6°C (corr.).

References

Merck Index 2072 Kleeman & Engel p. 191 PDR p. 1934 DOT 9 (6) 243 (1973) I.N. p. 214 REM p. 1074 British Patent 815,203; June 17, 1959; assigned to Sterling Drug, Inc.

CHLOROPROCAINE HYDROCHLORIDE

Therapeutic Function: Local anesthetic

Chemical Name: 4-amino-2-chlorobenzoic acid 2-diethylaminoethyl ester hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3858-89-7; 133-16-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nesacaine	Astra	U.S.	1956
Nesacaine	Pennwalt	U.S.	_
Nesacaine	Strasenburgh	U.S.	_
Halestyn			_
Piocaine	Teikoku-Nagase	Japan	

Raw Materials

2-Chloro-4-amino benzoic acid	Thionyl chloride
β-Diethyl amino ethanol	Hydrogen chloride

Manufacturing Process

In the first step, 2-chloro-4-aminobenzoyl chloride hydrochloride is prepared by refluxing a mixture of 25 cc of purified thionyl chloride and 10 g of 2-chloro-4-aminobenzoic acid until all of the solid has gone into solution. To the cooled solution is added 150 cc of dry ethyl ether. A brisk stream of dry hydrogen chloride is passed into the solution until the precipitation of 2-chloro-4-aminobenzoyl chloride hydrochloride is complete. The acylhalide is removed by filtration and dried in a vacuum desiccator.

In the second step, the diethylaminoethyl 2-chloro-4-aminobenzoate hydrochloride is prepared by refluxing equimolar proportions of the hydrochloride of β -diethylaminoethanol in a suitable inert solvent such as a mixture of dry toluene and tetrachloroethane and the hydrochloride of 2-chloro-4-aminobenzoyl chloride until the reaction as indicated by the cessation of hydrogen chloride evolution is complete. The supernatant solvents are decanted from the reaction product which can be conveniently purified by crystallization from absolute ethanol.

An alternative purification can be effected by dissolving the reaction product in water. The ester base is liberated by rendering the clarified aqueous solution alkaline. Removal of the base from the alkaline solution is achieved by extraction with a suitable solvent such as benzene or ether. The pure hydrochloride of diethylaminoethyl 2-chloro-4-aminobenzoate is then precipitated from the dried extract by the addition of dry hydrogen chloride. After removal by filtration and recrystallization from ethanol it is found to have a melting point of 173° to 174°C.

References

Merck Index 2131 Kleeman & Engel p. 193 PDR p. 594 OCDS Vol. 1 p. 11 (1977) I.N. p. 220 REM p. 1050

Marks, H.C. and Rubin, M.I.; U.S. Patent 2,460,139; January 25, 1949; assigned to Wallace & Tiernan Products, Inc.

CHLOROQUINE PHOSPHATE

Therapeutic Function: Antimalarial

Chemical Name: N4-(7-chloro-4-quinolinyl)-N',N'-diethyl-1,4-pentanediamine phosphate

Common Name: -

Structural Formula:

$$\begin{array}{c} \text{C1} \\ \text{HNCH} \left(\text{CH}_2\right)_3 \text{N} \left(\text{C}_2\text{H}_5\right)_2 \\ \text{CH}_3 \end{array}$$

Chemical Abstracts Registry No.: 50-63-5; 54-05-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nivaquine	Specia	France	1949
Aralen	Winthrop	U.S.	_
Arthrochin	Arcana	Austria	_
Artri	Badrial	France	_
Aspiquino!	Bayer	France	_
Aviocior	I.C.I.	U.K.	
Chemochin	Pliva	Yugoslavia	-
Clorochina	Bayer	Italy	
Cidanchin	Cidan	Spain	_
Delagil	Egyt	Hungary	_
Dichinalex	Savonna	Italy	-
Elestol	Bayer	France	_
Heliopar	Farmos	Finland	_
lmagon	Astra	-	_
Lagaquin	Legap	Switz.	_
Letaquine	Letap	Switz.	_
Malarex	Dumex	Denmark	_
Quinachlor	Cophar	Switz.	
Quinercil	Robert et Carriere	France	_
Quinilon	Sumitomo	Japan	_
Resochin	Bayer	Japan	_
Rivoquine	Rivopharm	Switz.	_
Serviquin	Servipharm	Switz.	-
Silbesan	Atmos	W. Germany	-
Siragon	Biochemie	Austria	_
Tresochin	Bayer		_

Raw Materials

4,7-Dichloroquinoline

1-Diethylamino-4-aminopentane

Phosphoric acid

Manufacturing Process

105 g of 4.7-dichloroquinoline (MP 93° to 94°C) are heated with 200 g of 1-diethylamino-4-aminopentane for 7 hours in an oil bath to 180°C while stirring, until a test portion dissolved in diluted nitric acid does not show a precipitation with sodium acetate solution. The mixture is dissolved in diluted acetic acid and made alkaline by adding sodium lye.

The base is extracted with ether, dried with potassium carbonate, the ether removed by distillation and the residue fractionated. The 4-(5' diethylaminopentyl-2'-amino)-7-chloroquinoline (BP 212° to 214°C/0.2 mm) is obtained. On cooling the compound solidifies crystalline. It melts, recrystallized from benzene, at 88°C. The base combines with phosphoric acid to yield a diphosphate salt.

References

Merck Index 2136 Kleeman & Engel p. 194 PDR p. 1902 OCDS Vol. 1 p. 341 (1977) I.N. p. 220 REM p. 1218

Andersag, H., Breitner, S. and Jung, H.; U.S. Patent 2,233,970; March 4, 1941; assigned to Winthrop Chemical Company, Inc.

CHLOROTHIAZIDE

Therapeutic Function: Diuretic, Antihypertensive

Chemical Name: 6-chloro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-94-6

Trade Name	Manufacturer	Country	Year Introduced
Diuril	Merck Sharp & Dohme	U.S.	1957
Diurilix	Theraplix	France	1959
Aldocior	MSD	U.S.	_
Azide	Fawns & McAllan	Australia	_
Chiorosal	Teva	Israel	-
Chloroserpine	Schein	U.S.	_
Chlotride	Sharp & Dohme	W. Germany	
Clotride	MSD	Italy	_
Diubram	Bramble	Australia	_
Diupres	MSD	U.S.	_
Diuret	Protea	Australia	_
Diurone	Knoll	Australia	_
Fenuril	Pharmacia	Sweden	_
Lyovac	MSD	U.S.	_
Niagar	Cimes	Belgium	_
Ro-Chlorozide	Robinson	∪.s	
Salisan	Ferrosan	Denmark	_
Saluren	Croce Bianca	Italy	_
Saluretil	Gayoso Wellcome	Spain	
Saluric	MSD	Ú.K.	_
Salutrid	Leiras	Finland	_

Trade Name	Manufacturer	Country	Year Introduced
SK-Chlorothiazide	SK&F	U.S.	_
Urinex	Orion	Finland	_
Raw Materials			
m-Chloroaniline		Ammonia	
Chlorosulfonic acid	d	Formic acid	

Manufacturing Process

(A) m-Chloroaniline (64 g, 0.5 mol) was added dropwise with stirring to 375 ml of chlorosulfonic acid in a 3-liter round bottom, 3-necked flask cooled in an ice bath. Sodium chloride (350 q) was added portionwise over a period of 1 to 2 hours and the mixture then heated gradually in an oil bath to 150°C. After 3 hours at 150° to 160°C, the flask was cooled thoroughly in an ice bath and the contents treated with a liter of cold water. The product was extracted with ether and the extract washed with water and dried over sodium sulfate.

After removal of ether on the steam bath, the residual 5-chloroaniline-2,4-disulfonyl chloride, which may be crystallized from benzene-hexane MP 130° to 132°C, was cooled in an ice bath and treated with 150 ml of 28% ammonium hydroxide in a 2-liter Erlenmeyer flask. The mixture was heated on the steam bath for 1 hour, cooled and the product collected on the filter, washed with water and dried. Upon crystallization from dilute alcohol 5-chloro-2,4-disulfamylaniline was obtained as colorless needles, MP 251° to 252°C.

(B) A solution of 88 g of 5-chloro-2,4-disulfamylaniline in 1.1 liters of 88% formic acid was heated under reflux for 2 hours. After removal of 200 ml of solvent by distillation, one liter of water was added and the product collected, washed with water and dried. Crystallization from dilute alcohol afforded 6-chloro-7-sulfamyl-1,2,4-benzothiadiazine-1,1dioxide as colorless needles, MP 342.5° to 343°C, as described in U.S. Patent 2,809,194.

References

Merck Index 2143 Kleeman & Engel p. 194 PDR pp. 830, 993, 1133, 1168, 1606, 1723 OCDS Vol. 1 pp. 321, 355 (1977) & 2 p. 395 (1980) I.N. p. 221 REM p. 938

Novello, F.C.; U.S. Patent 2,809,194; October 8, 1957; assigned to Merck & Co., Inc. Hinkley, D.F.; U.S. Patent 2,937,169; May 17, 1960; assigned to Merck & Co., Inc.

CHLOROTRIANISENE

Therapeutic Function: Estrogen

Chemical Name: 1,1',1"-(1-chloro-1-ethenyl-2-ylidene)tris[4-methoxybenzene]

Common Name: Tri-p-anisylchloroethylene

Structural Formula:

Chemical Abstracts Registry No.: 569-57-3

Trade Name	Manufacturer	Country	Year Introduced
TACE	Merrell	U.S.	1952
TACE FN	Merrell	France	1959
Anisene	Farmila	italy	_
Clorotrisin	Courtois	Italy	_
Merbentul	Merrell	W. Germany	_
Triagen	Gentili	Italy	_

Raw Materials

Tris-p-methoxyphenyl ethylene Chlorine

Manufacturing Process

The following method is described in U.S. Patent 2,430,891. To a solution of 10 parts of tris-p-methoxyphenyl ethylene in 35 to 40 parts of carbon tetrachloride is added a solution of 2.0 parts of chlorine in 50 parts of carbon tetrachloride, with stirring, and over a period of ½ hour. The carbon tetrachloride is then removed by distillation on a steam bath and the residual oil is recrystallized from 250 to 400 parts of methanol, decolorizing with charcoal or the like if necessary. Tris-p-methoxyphenyl chloroethylene is obtained in a vield of 65 to 75%. It melts at 113° to 114°C.

References

Merck Index 2149 Kleeman & Engel p. 195 PDR p. 1239 OCDS Vol. 1 p. 104 (1977) I.N. p. 221 REM p. 988

Shelton, R.S. and Van Campen, M.G. Jr.; U.S. Patent 2,430,891; November 18, 1947; assigned to the Wm, S. Merrell Company

4-CHLORO-3,5-XYLENOL

Therapeutic Function: Topical antiseptic and disinfectant

Chemical Name: 4-Chloro-3,5-dimethylphenol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 88-04-0

Trade Name	Manufacturer	Country	Year Introduced
Septiderm	Fougera	U.S.	1960
Anti-Sept	Seamless	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Bacillotox	Bode	W. Germany	_
Baktol	Bode	W. Germany	_
Cruex	Pharmacraft	U.S.	_
Dettol	Reckitt & Coleman	U.K.	
Fungoid	Pedinol	U.S.	
Ice-O-Derm	Wampole	U.S.	_
Metasep	Marion	U.S.	
Micro-Guard	Sween	U.S.	_
Orlex	Baylor	U.S.	_
Otali	Saron Pharmacal	U.S.	_
Pedi-Pro Foot Powder	Pedinol	U.S.	_
Rezamid	Dermik	U.S.	_
Rocapyol	Plurosan	Austria	_
Roxenol	Saunders	Canada	_
Satinasept	Mack	W. Germany	
Sween-Soft	Sween	U.S.	_
Valvanol	Asid	W. Germany	_
Zetar	Dermik	U.S.	_

Sulfuryl chloride m-5-Xylenol

Manufacturing Process

546 g of intermediate xylenol fraction having a crystallizing point of 45°C mixed with an equal weight of m-5-xylenol are placed in a suitable vessel, equipped with stirring gear, and 273 g of sulfuryl chloride are added slowly. The temperature rises in the course of the reaction to about 40°C. When all the sulfuryl chloride is added the reaction mixture is heated to 80°C and the acid gases removed as far as possible by air-blowing or any other suitable means. On cooling a quantity of the required chlor-xylenol separates out and is removed from the mother liquor. Further quantities of the material required can be isolated by vacuum distillation of the mother liquors and further crystallization. In all, 200 to 208 g of material substantially 2-chlor-m-5-xylenol can be obtained having a melting point of 112°C to 115°C. The material can be purified if desired by crystallization from a solvent such as a hydrocarbon.

References

Merck Index 2152 Kleeman & Engel p. 196 PDR pp. 1397, 1662, 1790 I.N. p. 222 REM p. 1168

Gladden, G.W.; U.S. Patent 2,350,677; June 6, 1944; assigned to W.W. Cocker

CHLORPHENESIN CARBAMATE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 3-(4-chlorophenoxy)-1,2-propanediol-1-carbamate

Common Name: 3-p-chlorophenoxy-2-hydroxypropyl carbamate

Structural Formula:

Chemical Abstracts Registry No.: 886-74-8

Trade Name	Manufacturer	Country	Year Introduced
Maolate	Upjohn	U.S.	1967
Kolpicortin	Doetsch Grether	Switz.	-
Rinlaxer	Taisho	Japan	_

Raw Materials

p-Chlorophenol	Phosgene
Glyceryl monochlorohydrin	Ammonia

Manufacturing Process

1.0 mol of 3-p-chlorophenoxy-1,2-propanediol (chlorphenesin) is suspended in 1,000 ml of benzene in a 5-liter flask equipped with a dropping funnel, thermometer and stirrer. 1.0 mol of phosgene in 500 ml of cold, dry benzene is then added dropwise over a period of 45 minutes, the resulting mixture being maintained at 30°C until all solid material is dissolved. 1.0 mol of triethylamine is added dropwise and the resulting reaction mixture stirred for 45 minutes at 30°C following the addition. The reaction mixture is then cooled to 5°C and extracted repeatedly with 600 ml portions of cold water to remove the triethylamine hydrochloride.

The benzene fraction, containing the intermediate 3-p-chlorophenoxy-3-hydroxypropyl chlorocarbonate, is added to 600 ml of cold concentrated ammonium hydroxide and the resulting reaction mixture agitated vigorously at 5°C for 7 hours. The crude 3-p-chlorophenoxy-2-hydroxypropyl carbamate solid is then filtered off, dissolved in hot benzene, dried to remove all traces of water, and permitted to crystallize out. Several recrystallizations from solvent mixtures of benzene and toluene, with small amounts of acetone, produced a crystalline white solid in about 65% yield. The product is 3-p-chlorophenoxy-2hydroxypropyl carbamate, melting at 89° to 91°C. The chlorphenesin starting material is made by reacting p-chlorophenol with glyceryl monochlorohydrin as noted in U.S. Patent 3,214,336.

References

Merck Index 2156 Kleeman & Engel p. 198 PDR p. 1850 OCDS Vol. 1 p. 118 (1977) DOT 2 (4) 138 (1966) I.N.p. 223 REM p. 927

Collins, R.J. and Matthews, R.J.; U.S. Patent 3,161,567; December 15, 1964; assigned to The Upjohn Company

Parker, H.E.; U.S. Patent 3,214,336; October 26, 1965; assigned to The Upjohn Company

CHLORPHENIRAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: γ -(4-Chlorophenyl)-N,N-dimethyl-2-pyridinepropanamine maleate

Common Name: Chlorophenyl pyridyl propyldimethylamine maleate; chlorphenamine maleate; chlorprophen-pyridamine maleate

Structural Formula:

Chemical Abstracts Registry No.: 113-92-8; 132-22-9 (Base)

Trada Alama	Manufantuna	C	Van bandond
Trade Name	Manufacturer	Country	Year Introduced
Chlor-Trimeton	Schering	U.S.	1949
Teldrin	SKF	U.S.	1954
Drize	Ascher	U.S.	1967
Histaspan	U.S.V.	U.S.	1968
Allerbid	Amfre-Grant	U.S.	1971
Antagonate	Dome	U.S.	1973
Animing	Nisshin Seiyaku	Japan	1981
Ahiston	Ikapharm	Israel	-
Alaspan	Almay	∪.S.	
Alermine	Reid-Provident	U.S.	-
Allerdor	Fellows-Testagar	U.S.	_
Allergex	Protea	Australia	
Allergin	Dellsberger	Switz.	_
Allergin	Sankyo	Japan	_
Allergisan	Pharmacia	Sweden	_
Allersan	Pharmacia	Sweden	_
Allertab	Tri-State	Italy	_
Allerton	Scalari	Italy	_
Anaphyl	Sam-On	Israel	
Anthistamin-Sigletten	Rohm Pharma	W. Germany	_
Atalis-D	Kanto	Japan	_
Bismilla	Fuso	Japan	_
Chlo-Amine	Hollister-Stier	U.S.	_
Chlodamine	Maruko	Japan	_
Chloramate	Reid-Provident	U.S.	_
Chloramin	Langley	Australia	
Chlor-Hab	Danbury	U.S.	_
Chlor-Mai	Rugby	U.S.	_
Chlormene	Robinson	U.S.	
Chloroton	Cenci	U.S.	_
Chlorphen	Pro Doc	Canada	_
Chlor-Tel	Garden	U.S.	_
Chlortrone	Barlowe Cote	Canada	
Clorten	Panthox & Burck	Italy	· -
C-Meton	S.S. Pharm.	Japan	_
Cotuxinf	Sauba	France	_
Dallergy	Laser	U.S.	_
Decongestant Elixir	Schein	U.S.	
Decongestant Elixir Demazin			-
	Schering	U.S.	_
Donatussin	Laser	U,S.	_
Dow-Chlorpheniramine Hexapneumine	Dow Doms	U.S. France	
Histachlor		U.S.	_
	Vitamix		
Histadur	Wynn Obio Medical	U.S.	
Histaids	Ohio Medical	U.S.	_
Histalen	Len-Tag	U.S.	-
Histamic	Metro-Med	U.S.	_
Histapen	Douglas	New Zealand	_

Trade Name	Manufacturer	Country	Year Introduced
Histol	Blaine	U.S.	_
Isoclor	Arnar-Stone	U.S.	
Kloromin	Halsey	U.S.	_
Lekrica	Yoshitomi	Jap a n	_
Lorphen	Geneva	U.S.	_
Neoallermin	Taiyo	Japan	_
Neorestamin	Kowa	Japan	_
Niratron	Progress	U.S.	_
Novahistine	Dow	U.S.	_
Novopheniram	Novopharm	Canada	-
Piriton	Allen & Hanbury	U.K.	_
Pneumopan	Sau ba	France	_
Polaronic	Byk Essex	W. Germany	
Poracemin	Horita	Japan	_
Probahist	Legere	U.S.	-
Propofan	Lepetit	France	_
Pyridamal	Bel-Mar	U.S.	_
Pyrroxate	Upjohn	U.S.	-
Quadrahist	Schein	∪. s .	_
Rachelamine	Rachelle	U.S.	-
Rumicine	Cetrane	France	_
Singlet	Dow	U.S.	_
Sy nistamine	Sigmapharm	Austria	_
Trimeton	Essex	Italy	_
Trymegen	Medco	U.S.	_
U.Ŕ.I.	ICN	U.S.	_
Vitac	Egnaro	France	_

4-Chlorobenzyl cyanide	Sodium amide
2-Chloropyridine	Sulfuric acid
Dimethylaminoethyl chloride	

Manufacturing Process

See "Brompheniramine Maleate." The starting material is simply a chlorophenyl compound.

References

Merck Index 2157 Kleeman & Engel p. 196 PDR pp. 992, 1033, 1246, 1606 OCDS Vol. 1 p. 77 (1977) I.N. p. 222

Sperber, N., Papa, D. and Schwenk, E.; U.S. Patents 2,567,245; September 11, 1951; and 2,676,964; April 27, 1954; both assigned to Schering Corporation

CHLORPHENOXAMINE HYDROCHLORIDE

Therapeutic Function: Muscle relaxant; Antiparkinsonism

Chemical Name: 2-[1-(4-chlorophenyl)-1-phenylethoxy] -N,N-dimethylethanamine hydro-

chloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 562-09-4; 77-38-3 (Base)

Trade Name	Manufacturer	Country	Year introduced
Phenoxene	Dow	U.S.	1959
Systral	Lucien	France	1963
Clorevan	Evans	U.K.	
Contristamine	Noristan	S. Africa	_
Rodavan	Asta	W. Germany	_
Systral	Asta	W. Germany	_
Systral	Kyorin	Japan	_

Raw Materials

Methyl chloride	Magnesium
4-Chlorobenzophenone	Sodium amide
Dimethylaminoethyl chloride	Hydrogen chloride

Manufacturing Process

A Grignard solution is prepared by introducing methyl chloride into a boiling suspension of 36 g of magnesium in 1,000 cc of absolute ether until all the magnesium has reacted. 216 grams of 4-chloro-benzophenone are slowly added to the Grignard solution with ice cooling and stirring; after 15 hours, the thus-obtained product is poured into a mixture of 200 g of ammonium chloride and ice, whereupon it is separated with ether. The separated ether layer is dried with sodium sulfate, and the ether is distilled. The residual carbinol is added to a suspension of 45 g of sodium amide in 500 cc of toluene. To the thus-obtained mixture there are added 125 g of dimethylaminoethyl chloride, and the mixture is heated at boiling temperature for 3 hours with stirring,

The mixture is taken up with water and the base is extracted from the toluene with dilute hydrochloric acid. The hydrochloric solution is rendered alkaline with caustic soda, the base is separated with ether, dried, and after distillation of the ether fractionated in vacuo, BP at 0.05 mm Hg, 150° to 153°C. The basic ether is then dissolved in dry ether, and ether saturated with dry hydrogen chloride is added dropwise with stirring. An excess of hydrogen chloride must be avoided as it may produce decomposition to the corresponding diphenyl ethylene. The ether-moist hydrochloride is preferably dried at once in vacuo and subsequently reprecipitated from acetone-ether and then again dried in vacuo over phosphorus pentoxide. Hydrochloride, MP 128°C.

References

Merck Index 2159 Kleeman & Engel p. 198 OCDS Vol. 1 p. 44 (1977) I.N. p. 223 REM p. 931

Arnold, H., Brock, N. and Kuhas, E.; U.S. Patent 2,785,202; March 12, 1957; assigned to Asta-Werke A.G. Chemische Fabrik, Germany

CHLORPROETHAZINE HCI

Therapeutic Function: Muscle relaxant; tranquilizer

Chemical Name: 2-Chloro-N, N-diethyl-10H-phenothiazine-10-propanamine

Common Name: -

Structural Formula: CH2CH2CH2N(C2H5)2

(base)

Chemical Abstracts Registry No.: 84-01-5 (Base)

Trade Name Manufacturer Country Year Introduced

Neuriplege Genevrier France 1961

Raw Materials

2-Bromo-2'-(3"-dimethylaminopropyl)-amino-4'-chlorodiphenyl sulfide Copper powder Potassium carbonate Hydrogen chloride

Manufacturing Process

2-Bromo-2'-(3"-dimethylaminopropyl)-amino-4'-chlorodiphenylsulfide (10 g) is dissolved in dimethylformamide (80 cc). To this solution is added potassium carbonate (5 g) and copper powder (0.4 g). It is then heated under reflux for 48 hours, cooled, and the insoluble matter filtered off. After washing with dimethylformamide (20 cc), the filtrate is taken up in distilled water (200 cc). The base formed is extracted with ether (3 times with 50 cc), the ethereal solution is dried over sodium sulfate, the ether driven off on a water-bath and the residue distilled. In this way there is obtained 3-chloro-10-(3'-dimethylaminopropyl)-phenthiazine (6.4 g) which boils at 210°C to 225°C under 0.7 mm of mercury. The hydrochloride is made by the action of ethereal hydrogen chloride on the base dissolved in acetone; this hydrochloride melts at 180°C.

References

Merck Index 2161 OCDS Vol. 1 p. 379 (1977) I.N. p. 224

Buisson, P.J.C., Gaillot, P. and Gaudechon, J.; U.S. Patent 2,769,002; October 30, 1956; assigned to Societe des Usines Chimiques Rhone-Poulenc (France)

CHLORPROMAZINE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: 2-chloro-N,N-dimethyl-10H-phenothiazine-10-propanamine hydrochloride

Common Name: N-(3-dimethylaminopropyl)-3-chlorophenothiazine

Structural Formula:

Chemical Abstracts Registry No.: 69-09-0; 50-53-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Thorazine	SKF	U.S.	1954
Chlor-PZ	USV	U.S.	1973
Promapar	Parke Davis	U.S.	1973
Prochel	Rachelle	U.S.	1975
Acemin	Sankyo	Japan	
Chloractil	D.D.S.A.	U.K.	_
Chlorazin	Streuli	Switz.	_
Chiorpromados	Holz	W. Germany	_
Chlor-Promanyl	Paul Maney	Canada	_
Chlorprom-Ez-Ets	Barlowe Cote	Canada	••••
Contomin	Yoshitomi	Japan	
Copormin	Kaken	Japan	_
Cromedazine	Fellows-Testagar	U.S.	-
Doimazin	Nippon Shinyaku	Japan	_
Elmarine	Elliott-Marion	Canada	_
Epokuhl	Kyowa	Japan	_
Esmind	Otsuka	Japan	_
Fenactil	Polfa	Poland	
Hibanii	Mekos	Sweden	
Hibernal	Leo	Sweden	_
Ishitomin	Kanto	Japan	_
Klorazin	Star	Finland	
Klorproman	Orion	Finland	_
Klorpromex	Dumex	Denmark	_
Largactil	Specia	France	_
Megaphen	Bayer	W. Germany	_
Neurazine	Misr. Co-Pharm.	Egypt	_
Norcozine	lwaki	Japan	_
Procalm	Bramble	Australia	_
Promachlor	Geneva	U.\$.	-
Promacid	Knoll	Australia	_
Promactil	Wassermann	Spain	_
Promexin	Meiji	Japan	_
Promosol	Horner	Canada	_
Propafenin	Deut, Hydrierwerk	E, Germany	_
Protran	Protea	Austral ia	_
Prozil	Dumex	Denmark	_
Prozin	Lusofarmaco	Italy	-
Psychozine	O'Neal, Jones & Feldman	U.S.	_
Psylkatil	Farmos	Finland	-
Repazine	Lennon	S. Africa	_
Tarocty!	Taro	Israel	_
Wintermin	Shionogi	Japan	-

Raw Materials

Chlorophenthiazine 3-Dimethylamino-1-chloropropane

Sodium amide Hydrogen chloride

Manufacturing Process

To a boiling suspension of 11.6 g of chlorophenthiazine (consisting of a mixture of two isomers melting at 196° to 198°C and 116° to 117°C, respectively, the latter in minor proportion) and 2.4 g of sodamide (80%) in 60 cc of xylene, there are added over a period of one hour 7.5 g of 3-dimethylamino-1-chloropropane in solution in its own weight of xylene. At the end of the addition, heating is continued for one hour under reflux. After cooling, the contents are taken up in acidified water and the xylene separated. The aqueous layer is made strongly alkaline by means of sodium hydroxide in order to liberate the base and this is extracted with ether. On distillation of the ethereal extract there is obtained 10-(3'-dimethylamino-propyl)-chlorophenthiazine which distills at 200° to 205°C under a pressure of 0.8 mm Hg. Its hydrochloride, recrystallized from chlorobenzene, melts at 177° to 178°C. The chlorophenthiazine may be prepared by reacting m-chlorodiphenylamine with sulfur in the presence of an iodine catalyst.

References

Merck Index 2163 Kleeman & Engel p. 199 PDR p. 1728 OCDS Vol. 1 pp. 319, 378 (1977), 2 p. 409 (1980) & 3 p. 72 (1984) I.N. p. 224

REM p. 1086

Structural Formula:

Charpentier, P.; U.S. Patent 2,645,640; July 14, 1953; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

CHLORPROPAMIDE

C1 SO2NHCONHCE2CH2CE3

Therapeutic Function: Oral hypoglycemic

Chemical Name: 4-chloro-N-[(propylamino)carbonyl] benzenesulfonamide

Common Name: 1-(p-chlorobenzenesulfonyl)-3-propylurea

Chemical Abstracts Registry No.: 94-20-2

Trade Name	Manufacturer	Country	Year Introduced
Diabinese	Pfizer	U.S.	1958
Diabinese	Pfizer	France	1960
Dynalase	Pharmadyne	U.S.	1980
Insulase	Premo	U.S.	1980
Abemide	Kabayashi	Japan	_
Adiaben	Belupo	Yugoslavia	<u></u>
Arodoc-C	Sawai	Japan	_
Biadibe	Guidotti	Italy	_
Bioglumin	Uriach	Spain	_
Catanil	De Angeli	Italy	_
Chloronase	Hoechst	W. Germany	_
Chloronase	Hoechst	Japan	_
Clordiabet	Carulla-Vekar	Spain	_
Clordiasan	Santos	Spain	-
Cloro-Hipoglucina	Lefa	Spain	_

Trade Name	Manufacturer	Country	Year Introduced
Diabemide	Guidotti	Italy	_
Diabet	Pages Maruny	Spain	_
Diabetabs	Wolfs	Belgium	_
Diabetasi	Biagini	Italy	_
Diabetoral	Boehr/Mann.	W. Germany	-
Diabexan	Crosara	Italy	_
Diabitex	Irapharm	Israel	
Diamel-Ex	ibsa	Switz.	-
Diamide	Kanto	Japan	
Gliconorm	Gentili	Italy	-
Glucamide	Lemmon	U.S.	_
Glucosulfina	Infale	Spain	-
Meldian	Pliva	Yugoslavia	_
Melisar	Beolet	Italy	_
Melitase	Berk	U.K.	-
Mellitos	Ono	Japan	_
Melormin	Farmos	Finland	_
Normoglic	Salfa	Italy	_
Novopropamide	Novopharm	Canada	_
Orabet	Deva	Turkey	-
Orabines	Biofarma	Turkey	_
Orbin	Biles	Turkey	
Prodiaben	Labif	Italy	_
Promide	Protea	Australia	_
Shuabate	Toyama	Japan	-
Stabinol	Horner	Canada	_
Toyomelin	Toyo Jozo	Japan	_

Propyl isocyanate p-Chlorobenzene sulfonamide Triethylamine

Manufacturing Process

A solution of 54 g (0.64 mol) of propyl isocyanate in 60 ml of anhydrous dimethylformamide was added to a cold, well-stirred suspension of 81 g (0.42 mol) of dry p-chlorobenzenesulfonamide in 210 ml of anhydrous triethylamine during the course of 20 to 30 minutes. The mildly exothermic reaction was completed by allowing it to stand at room temperature for about 5 hours. The reaction mixture was then slowly added to 3 liters of cold 20% acetic acid during the course of about one hour, constant agitation being maintained throughout the addition.

After the addition was complete, the desired product, which had crystallized out, was filtered and washed well with about 2 liters of cold water. The crude material was then dissolved in 1 liter of cold 5% sodium carbonate and the resulting solution was immediately filtered from an insoluble gum. The product was then reprecipitated, by slowly adding the filtrate to 3 liters of 20% acetic acid. The precipitate, which is very nearly pure N-(p-chlorobenzenesulfonyl)-N'-propylurea, was then dried and subsequently recrystallized from about 800 ml of benzene to give a 59% yield of pure product, MP 129.2° to 129.8°C.

References

Merck Index 2164 Kleeman & Engel p. 200 PDR pp. 830, 993, 1034, 1417, 1999 OCDS Vol. 1 p. 137 (1977) I.N. p. 225

REM p. 976

McLamore, W.M.; U.S. Patent 3,349,124; October 24, 1967; assigned to Chas, Pfizer Co.,

CHLORPROTHIXENE

Therapeutic Function: Tranquilizer

Chemical Name: 3-(2-chloro-9H-thioxanthen-9-ylidene)-N,N-dimethyl-1-propanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 113-59-7; 6469-93-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Taractan	Roche	France	1960
Taractan	Roche	U.S.	1962
Clothixen	Yoshitomi	Japan	
Cloxan	Orion	Finland	-
Minithixen	Spofa	Czechoslovakia	
Paxyl	Ikapharm	Israel	-
Tra-Quilan	Eisai	Japan	_
Truxal	Tropon	W. Germany	_
Truxal	Toyama	Japan .	_
Truxaletten	Tropon	W. Germany	

Raw Materials

3-Dimethylaminopropyl chloride Magnesium 2-Chlorothiaxanthone Ethyl bromide Acetyl chloride

Manufacturing Process

Chlorprothixene may be prepared as described in U.S. Patent 2.951,082. Magnesium turnings, 4.86 g (0.2 g-atom) was placed in a 500 ml reaction flask fitted with a mercury sealed stirrer, reflux condenser and a dropping funnel. Tetrahydrofuran, 50 ml and calcium hydride, 500 mg, were added. Ethyl bromide, 2.18 g and a crystal of iodine then were added. A vigorous reaction set in that evolved sufficient heat to induce refluxing. After 5 minutes, a solution of 3-dimethylaminopropyl chloride (dried over calcium hydride) in 50 ml of tetrahydrofuran was added to the refluxing solution at such a rate that gentle refluxing was maintained. The addition required 25 minutes.

The reaction mixture was stirred at reflux for an additional 30 minutes when nearly all of the magnesium had dissolved and determination of magnesium in an aliquot of the solution showed that an 82% yield of Grignard reagent had been obtained. The reaction mixture was cooled in an ice bath and stirred while 24.67 g (0.1 mol) of 2-chlorothiaxanthone was added over a period of 10 minutes. The reaction was stirred at room temperature for 30 minutes then allowed to stand overnight in the refrigerator. The tetrahydrofuran was evaporated at 50°C under reduced pressure. Benzene, 150 ml, was added to the residue.

The mixture was hydrolyzed in the cold by the dropwise addition of 50 ml of water. The benzene layer was separated by decantation and the gelatinous precipitate washed with two 100 ml portions of benzene.

The precipitate was then mixed with diatomaceous earth, collected on a filter, and washed with water and extracted with two 100 ml portions of boiling benzene. The aqueous filtrate was extracted with 50 ml of benzene, the combined benzene extracts washed with water and evaporated to dryness under reduced pressure. The crystalline residue, MP 140° to 147°C, weighed 30.8 g. Recrystallization from a mixture of benzene and hexane gave 27.6 g (83%) of 2-chloro-10-(3-dimethylaminopropyl)-10-hydroxythiaxanthene. MP 152° to 154°C. Analytically pure material from another experiment melted at 153° to 154°C.

2-Chloro-10-(3-dimethylaminopropyl)-10-hydroxythiaxanthene, 3.34 g (0.01 mol) obtained as described was dissolved in 15 ml of dry, alcohol-free chloroform. Acetyl chloride, 2.36 g (0.03 mol) was added and the clear yellow solution was refluxed for one hour in a system protected by a drying tube. The solvent then was evaporated on the steam bath under reduced pressure and the residue dissolved in absolute alcohol. The hydrochloride of 2-chloro-10-(3-dimethylaminopropylidene)-thiaxanthene was precipitated by the cautious addition of absolute ether. After drying at 70°C the yield of white crystalline 2-chloro-10-(3-dimethylaminopropylidene)-thiaxanthene hydrochloride, MP 189° to 190°C (to a cloudy melt), was 3.20 g (90%). This material is a mixture of geometric isomers.

Trans-2-chloro-9-(ω-dimethylamino-propylidene)-thioxanthene [MP 98°C, MP of the hydrochloride 225°C (corr.)], is a valuable medicinal agent, being used as a tranquilizer and antiemetic agent, whereas the corresponding cis isomer (MP 44°C, MP of the hydrochloride 209°C) is not useful for these indications, as described in U.S. Patent 3,115,502, which describes procedures for conversion of the cis to the trans form.

References

Merck Index 2166 Kleeman & Engel p. 200 PDR p. 1503 OCDS Vol. 1 p. 389 (1977) DOT 9 (6) 229 (1973) I.N. p. 225 REM p. 1087

Sprague, J.M. and Engelhardt, E.L.; U.S. Patent 2,951,082; August 30, 1960; assigned to Merck & Co., Inc.

Schlapfer, R. and Spiegelberg, H.; U.S. Patent 3,115,502; December 24, 1963; assigned to Hoffmann-LaRoche Inc.

CHLORQUINALDOL

Therapeutic Function: Antibacterial

Chemical Name: 5,7-Dichloro-2-methyl-8-quinolinol

Common Name: Hydroxydichloroquinaldine, chloroquinaldoi

Structural Formula:

Chemical Abstracts Registry No.: 72-80-0

Trade Name	Manufacturer	Country	Year Introduced
Sterosan	Geigy	U.S.	1954
Gynotherax	Bouchard	France	1967
Afungyl	Egyt	Hungary	_
Chinosicc	Schering	W. Germany	
Chinotiol	Bouty	Italy	_
Gyno-Sterosan	Geigy	W. Germany	_
Intensol	Anasco	W. Germany	_
Lonjee	Sampo	Japan	_
Phyletten	Muller-Rorer	W. Germany	_
Quesil	Egyt	Hungary	_
Rub-All T	Toyama	Japan	_
Saprosan	C.I.F.	Rumania	_
Serviderm	Servipharm	Switz.	_
Siogeno	Geigy	W. Germany	
Siogene	Geigy	France	_
Siosteran	Fujisawa	Japan	_
Steroxin	Geigy	U.K.	_

Raw Materials

8-Hydroxyguinaldine Chlorine

Manufacturing Process

11.1 parts of 8-hydroxy-quinaldine are dissolved in 140 parts of formic acid. Chlorine is introduced into this solution under cooling, until the increase in weight corresponds to the required quantity of chlorine and a test of the chlorination mixtures gives no more dyestuff formation with diazo-benzene in an acetic acid solution.

When the chlorination is complete, the reaction mixture is poured into 1,000 parts of water and treated with a dilute sodium bisulfite solution, until no more reaction may be observed with starch-potassium iodide paper. Thereby the 5,7-dichloro-8-hydroxy-quinaldine separates out in form of a weakly yellowish colored precipitate. The same is filtered off and thoroughly washed with water.

After drying, 15 parts of 5,7-dichloro-8-hydroxy-quinaldine melting at 111°C to 112°C are obtained. When recrystallized from alcohol, the product is obtained in voluminous, slightly yellowish needles having the melting point of 111.5°C to 112°C.

References

Merck Index 2168 Kleeman & Engel p. 201 I.N. p. 225

Senn, E.; U.S. Patent 2,411,670; November 26, 1946; assigned to J.R. Geigy AG

CHLORTETRACYCLINE

Therapeutic Function: Antibacterial

Chemical Name: 7-chloro-4-dimethylamino-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12apentahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57-62-5

Trade Name	Manufacturer	Country	Year Introduced
Aureomycin	Lederle	U.S.	1948
Aureomycine	Specia	France	1951
Aureum	Farmigea	Italy	_
Aufofac	Amer, Cyanamid	U.S.	_
B-Aureo	Biokema	Switz.	_
Chevita C-10	Chevita	W. Germany	-
Chlortet	Langley	Australia	-
Chrysomycin	Dispersa	Switz.	
Ciorteta	Pierrel	Italy	-
Colircusi Aureomicina	Cusi	Spain	-
CTC Soluble	Diamond Shamrock	U.S.	
Vi-Mycin	Vineland Chemical	U.S.	-

Raw Materials

Sucrose

Corn steep liquor

S. aureofaciens bacterium

Manufacturing Process

The following process description is taken from U.S. Patent 2,987,449. An appropriate S. aureofaciens strain such as mutant \$1308 (ATCC No. 12,748) is grown aerobically in a suitable inoculum medium. A typical medium used to grow the primary inoculum is prepared according to the following formula: sucrose, 20.0 g; corn steep liquor, 16.5 ml; ammonium sulfate, 2.0 g; calcium carbonate, 7.0 g; and water to 1,000 ml,

A 100 ml aliquot of this medium is placed in a 500 ml Erlenmeyer flask and sterilized by autoclaving for 20 minutes under 15 psi pressure. Spores of mutant strain S. aureofaciens S1308 (ATCC No. 12,748) are washed from an agar slant into the flask with sterile distilled water to form a suspension containing approximately 108 spores per milliliter. A 1.0 ml portion of this suspension is used to inoculate the fermentation media in the example which follows. A fermentation medium consisting of the following ingredients was prepared. Grams

	0.0
(NH ₄) ₂ SO ₄	5.0
CaCO ₃	9,0
NH ₄ Cl	1.5
MgCl ₂ ⋅6H ₂ O	2.0
FeSO ₄ ·7H ₂ O	0.06
MnSO ₄ -4H ₂ O	0.05
CoCl ₂ ·6H ₂ O	0.005
ZnSO ₄ ·7H ₂ O	0.1
Corn steep liquor	25.0
Cornstarch	55.0
Water to 1,000 ml	

25 ml aliquots of this fermentation medium were placed in each of two 250 ml Erlenmeyer flasks and 0.5 ml of lard oil was added to each flask. Then 0.002 mg/ml of riboflavin was added to one flask, the other flask being retained as a control. The flasks were sterilized in an autoclave for 20 minutes under 15 psi pressure, then cooled to room temperature (25°±5°C). At this point, a 1.0 ml portion of inoculum of mutant strain S. aureofaciens S1308 (ATCC No. 12,748) was added to each of the two flasks. The flasks were incubated at 25°C for 120 hours on a rotary shaker operating at 180 rpm. Upon completion of the fermentation period the mashes were assayed for 7-chlorotetracycline content.

The increase in production due to the addition of riboflavin was very noticeable in the above example. A similar effect was reported for cupric sulfate pentahydrate addition according to U.S. Patent 3,050,446.

References

Merck Index 2170 Kleeman & Engel p. 203

PDR p. 1007

OCDS Vol. 1 p. 212 (1977)

I.N. p. 226 REM p. 1208

Duggar, B.M.; U.S. Patent 2,482,055; September 13, 1949; assigned to American Cyanamid Company

Niedercorn, J.G.; U.S. Patent 2,609,329; September 2, 1952; assigned to American Cyanamid Company

Winterbottom, R., Mendelsohn, H., Muller. S.A., and McCormick, J.R.D.; U.S. Patent 2,899,422; August 11, 1959; assigned to American Cyanamid Company

Miller, P.A., Goodman, J.J., Sjolander, N.O. and McCormick, J.R.D.; U.S. Patent 2,987,449; June 6, 1961; assigned to American Cyanamid Company

Goodman, J.J.; U.S. Patent 3,050,446; August 21, 1962; assigned to American Cyanamid Company

CHLORTHALIDONE

Therapeutic Function: Diuretic, antihypertensive

Chemical Name: 2-Chloro-5-(1-hydroxy-3-oxo-1-isoindolinyl)benzenesulfonamide

Common Name: Chlortalidone

Structural Formula:

Chemical Abstracts Reigstry No.: 77-36-1

Trade Name	Manufacturer	Country	Year Introduced
Hygroton	Geigy	U.S.	1960
Hygroton	Ciba Geigy	France	1960
Hygroton	Ciba Geigy	Switz.	1960
Hygroton	Ciba Geigy	W. Germany	1960

Trade Name	Manufacturer	Country	Year Introduced
Hygroton	Ciba Geigy	U.K.	1960
Igroton	Geigy	italy	1961
Thalitone	Boehr/Ingel.	U.S.	1982
Aquadon	Ikapharm	Israel	_
Hybasedock	Sawai	Japan	_
Hydoban	Med ica	Finland	_
Hydro-Long	Sanorama	W. Germany	_
Hygroton	Pliva	Yugoslavia	-
Hygroton	Geigy	Japan	_
Hypertol	Farmos	Finland	_
Igrolina	Benedetti	Italy	_
Novothalidone	Novopharm	Çanada	_
Regretron	U.S.V.	U.S.	
Renon	Medal	Italy	_
Servidone	Servipharm	Switz,	
Urid	Protea	Austral ia	_
Uridon	I.C.N.	Canada	-
Urolin	Sidus	Italy	_
Zambesil	Spemsa	Italy	_

4-Chloro-3-amino-benzophenone-2'-carboxylic acid Sodium nitrate Hydrogen chloride Sulfur dioxide Thionyl chloride Ammonia

Manufacturing Process

15 parts of aqueous 46% sodium nitrite solution are gradually added to a mixture of 27.5 parts of 4-chloro-3-amino-benzophenone-2'-carboxylic acid, 200 parts of glacial acetic acid and 20 parts of 37% hydrochloric acid at 0° to 10°C. The solution of the diazonium salt is poured into an ice-cooled mixture of 200 parts of 30% sulfur dioxide solution in glacial acetic acid and 3 parts of crystallized cupric chloride in 15 parts of water. Nitrogen is developed and, after a short time, the 4-chloro-2'-carboxy-benzophenone-3-sulfochloride crystallizes out. After 1 hour it is filtered off and washed with water. MP 178° to 182°C.

35.9 parts of 4-chloro-2'-carboxy-benzophenone-3-sulfochloride and 50 parts of thionyl chloride are heated first for 3 hours at 30° to 35°C and then for 1 hour at 45°C. The excess thionyl chloride is distilled off in the vacuum, the dichloride, 3-chloro-3-(3'-chlorosulfonyl-4ⁱ-chlorophenyl)phthalide, which remains as a crystallized mass is dissolved in 150 parts of chloroform and a mixture of 200 parts of 25% aqueous ammonia solution and 200 parts of ethanol is added dropwise at about 10°C while stirring and cooling. After stirring for 1 hour at 40°C, the solvent is distilled off in the vacuum and diluted hydrochloric acid is added to the residue whereupon the 1-oxo-3-(3'-sulfamyl-4'-chloro-phenyl)-3-hydroxy-isoindoline which is tautomeric to the 4-chloro-2'-carbamyl-benzophenone-3sulfonamide, separates out. On recrystallizing from diluted ethanol, the isoindoline derivative melts at 215°C on decomposition.

Instead of reacting the dichloride in aqueous solution with ammonia, it can also be reacted at -50° to -40°C with a great excess of liquid ammonia. After removal of the ammonia, the crude product obtained is recrystallized as described above.

References

Merck Index 2171 Kleeman & Engel p. 202 PDR pp. 509, 676, 682, 830, 993, 1326, 1606, 1786, 1813, 1820, 1999

OCDS Vol. 1 p. 322 (1977)

DOT 16 (1) 32 (1980)

I.N. p. 226 REM p. 938

Graf, W., Schmid, E. and Stoll, W.G.; U.S. Patent 3,055,904; September 25, 1962; assigned to Geigy Chemical Corporation

CHLORTHENOXAZINE

Therapeutic Function: Antipyretic; analgesic

Chemical Name: 2-(2-Chloroethyl)-2,3-dihydro-4H-1,3-benzoxazin-4-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 132-89-8

Trade Name	Manufacturer	Country	Year Introduced
Reugaril	Farber	Italy	1966
Apirogen	Dessy	Italy	_
Betix	Saba	Italy	_
Fiobrol	Geigy	W. Germany	_
Ossazin	Scalari	Italy	_
Ossazone	Brocchieri	Italy	_
Ossipirina	Radiumpharma	Italy	_
Oxal	Saita	Italy	_
Reulin	Isola-IBI	İtaly	_
Reumital	Farge	Italy	_
Valtorin	Boehr./Ingel.	_	_

Raw Materials

Acrolein Hydrogen chloride Salicylamide

Manufacturing Process

A mixture of 4 liters chloroform and 1,050 cc ethanol was saturated with dry hydrogen chloride gas at -5°C to +5°C in a vessel having a net volume of 15 liters and provided with a stirring device, reflux cooler, gas feed line, thermometer and dropping funnel. 455 g acrolein which had been precooled to 0°C were added dropwise to the solution over a period of 1 to 2 hours while maintaining the temperature below +5°C and vigorously stirring, 1,070 g salicylamide and 1.080 g glacial acetic acid were added to the resulting solution of β -chloropropional dehyde acetal, thereby forming a suspension which was heated to 60°C while stirring. A clear solution was formed which was maintained at 60°C for an additional hour. The solution was allowed to cool to about 40°C and was then washed with water by passing a strong stream of water under the surface of the chloroform and continuously withdrawing the upper phase. When the water had reached a pH of 3-4, the precipitated reaction product was separated by

vacuum filtration. The chloroform phase of the filtrate was evaporated under a weak vacuum and the residue was combined with the precipitate first obtained. The combined products were stirred with 2 liters of a 5% sodium hydroxide solution. The raw reaction product was then washed with water, dried and recrystallized from ethanol. The product had the melting point of 146°C to 147°C (decomposition). The yield was 1,260 g, corresponding to 76% of the theoretical yield.

References

Merck Index 2172 Kleeman & Engel p. 203 I.N. p. 226

Ohnacker, G. and Scheffler, H.; U.S. Patent 2,943,087; June 28, 1960; assigned to Dr. Karl Thomae G.m.b.H. (Germany)

CHLORZOXAZONE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 5-chloro-2(3H)-benzoxazolone

Common Name: 5-chloro-2-hydroxybenzoxazole

Structural Formula:

Chemical Abstracts Registry No.: 95-25-0

Trade Name	Manufacturer	Country	Year Introduced
Paraflex	McNeil	U.S.	1958
Benzoflex	Benzon	Denmark	_
Biomioran	Bioindustria	Italy	_
Chroxin	Kanyo	Japan	_
Chlozoxine	Sanko	Japan	_
Deltapyrin	Kodama	Japan	_
Escoflex	Streuli	Switz.	_
Framenco	Fuso	Japan	
Kiricoron	Sampo	Japan	
Mesin	Yamanouchi	Japan	_
Myoflex	Pliva	Yugoslavia	-
Myoflexin	Chinoin	Hungary	_
Oxyren	Astra		_
Paraflex	Cilag	W. Germany	-
Pathorysin	Kowa	Japan	_
Remoflex	Belupo	Yugoslavia	_
Solaxin	Eisai	Japan	_
Sorazin	Toho	Japan	***
Trancrol	Mohan	Japan	_

Raw Materials

2-Amino-5-chlorobenzoxazole Hydrogen chloride Sodium hydroxide

Manufacturing Process

A solution of 16.9 g (0.1 mol) of 2-amino-5-chlorobenzoxazole in 200 ml of 1 N HCl is refluxed until precipitation is complete. The resulting solid is collected by filtration, dissolved in 200 ml of 1 N NaOH and the solution extracted with 50 ml of ether. Acidification of the alkaline solution gives a precipitate which is purified by crystallization from acetone to give 2-hydroxy-5-chlorobenzoxazole melting at 191° to 191.5°C.

References

Merck Index 2174 Kleeman & Engel p. 204 PDR pp. 830, 993, 1093, 1441, 1606, 1999 OCDS Vol. 1 p. 323 (1977) I.N. p. 227 REM p. 926

Marsh, D.F.; U.S. Patent 2,895,877; July 21, 1959; assigned to McNeil Laboratories, Inc.

CHOLINE DIHYDROGEN CITRATE

Therapeutic Function: Lipotropic

Chemical Name: (2-Hydroxyethyl)trimethylammonium citrate

Common Name: -

Structural Formula: [HOCH₂CH₂N[†](CH₃)₃] [C₆H₇O₇⁻]

Chemical Abstracts Registry No.: 77-91-8

Trade Name	Manufacturer	Country	Year Introduced
Chothyn	Flint	U.S.	1945
Citrocholine	United	U.S.	1949
Lipocholin	_	_	_

Raw Materials

Trimethyl amine Ethylene oxide Citric acid

Manufacturing Process

30 lb of trimethylamine were added to 70.4 lb of methyl alcohol to which 9.2 lb of water had previously been added. To the resulting solution in a closed vessel 23 lb of ethylene oxide gas were introduced and the resulting mixture then maintained at a temperature of 16°C to 30°C and agitated for 6 hours. During the reaction the pressure in the reaction vessel varied from about 17.5 psi at the start of the reaction to 0 psi at the end of the reaction. The resulting solution was then added with agitation to a refluxing solution of 40 liters of isopropyl alcohol containing 95 lb of citric acid dissolved therein. This mixture was then cooled to 0°C and held at that temperature overnight. The white crystalline choline dihydrogen citrate which formed was separated from the solvent mixture by filtration and dried in vacuo. 117 lb of anhydrous, crystalline choline dihydrogen citrate having a purity of 99.6% were obtained. This was a yield of 78% based on the amount of trimethylamine employed.

References

Merck Index 2187 I.N. p. 227 REM p. 1026

Klein, H.C., DiSalvo, W.A. and Kapp, R.; U.S. Patent 2,870,198; January 20, 1959; assigned to Nopco Chemical Co.

CHOLINE SALICYLATE

Therapeutic Function: Analgesic, antipyretic

Chemical Name: 2-hydroxy-N,N,N-trimethyl-ethanaminium salt with 2-hydroxy benzoic

acid

Common Name: Choline salicylic acid salt

Structural Formula:

Chemical Abstracts Registry No.: 2016-36-6

Trade Name	Manufacturer	Country	Year Introduced
Arthropan	Purdue Frederick	U.S.	1959
Actasal	Purdue Frederick	U,S.	1959
Atilen	Spofa	Czechoslovakia	-
Audax	Napp	U.K.	_
Audax	Ethimed	S. Africa	_
Audax	Mundipharma	W. Germany	_
Bonjela	Lloyds	U.K.	_
Mundisal	Mundipharma	Switz.	_
Mundisal	Erco	Denmark	_
Otho	Purdue Frederick	U.S.	_
Sachol	Polfa	Poland	
Rheumavincin	Owege	W. Germany	_
Salicol	Sais	Italy	_
Satibon	Grelan	Japan	_
Syrap	Carrion	France	_
Teejel	Napp	U.K.	_
Tegunor	Mundipharma	W. Germany	_
Trilisate	Purdue Frederick	U.S.	_

Raw Materials

Choline chloride Sodium salicylate

Manufacturing Process

A method of preparation is to react an acid salt of choline (such as choline chloride or choline bromide) with an alkaline salt of salicylic acid (such as sodium salicylate, potassium salicylate, or magnesium salicylate) in an alcoholic media.

References

Merck Index 2189

Kleeman & Engel p. 205

I.N. p. 228

Broh-Kahn, E.H. and Sasmor, E.J.; U.S. Patent 3,069,321; December 18, 1962; assigned to Laboratories for Pharmaceutical Development, Inc.

CHOLINE THEOPHYLLINATE

Therapeutic Function: Smooth muscle relaxant

Chemical Name: Theophylline cholinate

Common Name: Oxotriphylline; oxytrimethylline

Structural Formula:

$$O = \bigvee_{N} \bigvee_{N} \bigvee_{N} [(CH_3)_3N^{+}-CH_2CH_2-OH)]$$

Chemical Abstracts Registry No.: 4499-40-5

Trade Name	Manufacturer	Country	Year Introduced
Sabidal S.R.	Zyma	U.K.	1983
Brondaxin	Ferrosan	Denmark	-
Cholecyl	Substancia	Spain	_
Choledyl	Nepera	U.S.	_
Cholegyl	Substantia	Neth.	_
Chophyllin	Ferraton	Denmark	_
Euspirax	Asche	W. Germany	_
Glomax	Midlands Int. Chem,	U.K.	_
Isoperin	Spofa	Yugoslavia	-
Monofillina	Manetti Roberts	Italy	-
Novotriphyl	Novopharm	Canada	_
Rouphylline	Rougier	Canada	_
Sclerofillina	Medici Domus	Italy	_
Teocolina	Nessa	Spain	_
Teofilcolina	Salfa	Italy	_
Teovent	Ferrosan	Denmark	

Raw Materials

Theophylline Choline bicarbonate

Manufacturing Process

18 parts by weight of theophylline are added to 37.8 parts by weight of aqueous choline bicarbonate (47% assay) and the mixture stirred and heated at 80°C to 90°C until the evolution

of carbon dioxide has ceased and complete solution effected. Water is separated from the reaction mixture by distillation under a vacuum sufficient to keep the still temperature between 50°C and 55°C. After about 15 parts by weight of water have been separated, about 80 parts by weight of isopropyl alcohol are added and the mixture subjected to further distillation under a vacuum sufficient to keep the mixture boiling at about 40°C. The distillation removes some of the water as an azeotrope with the isopropyl alcohol. During the removal of the water-isopropyl alcohol azeotrope a crystalline precipitate forms. The mixture is further cooled slowly to 5°C and the crystalline precipitate filtered off. The choline theophyllinate crystals are then washed with isopropyl alcohol and dried under vacuum at about 70°C. A second crop of the product may be obtained from the mother liquor by further reduction in volume and cooling. A yield of 90,5% of theory of choline theophyllinate is obtained completely free of inorganic salts.

References

Merck Index 2190 I.N. p. 228 REM p. 872

Ladenburg, K., Duesel, B.F. and Fand, T.I.; U.S. Patent 2,776,287; January 1, 1957; assigned to Nepera Chemical Co., Inc.

CHROMONAR HYDROCHLORIDE

Therapeutic Function: Coronary vasodilator

Chemical Name: [[3-[2-(Diethylamino)ethyl]-4-methyl-2-oxo-2H-1-benzopyran-7-yl]oxy]

acetic acid ethyl ester hydrochloride

Common Name: Carbocromene

Structural Formula: C2H500CCH20 (base) CH2CH2N(C2H5)2

Chemical Abstracts Registry No.: 655-35-6; 804-10-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Intensain	Hoechst	Switz.	1963
Intensain	Cassella	W. Germany	1963
Intensain	Diamant	France	1966
Intensain	Pierrel	Italy	1971
Antiagor	I.S.M.	Italy	_
Beta-Intensain	Cassella	W. Germany	_
Cardiocap	Fidia	Italy	_
Cromene	Scharper	Italy	-
Intensain	Takeda	Japan	_
Intensacrom	Albert Farma	Spain	_
Sedo-Intensain	Diamant	France	_
Intenkordin	Polfa	Poland	_

Raw Materials

Resorcinol 2-(2-Diethylaminoethyl)acetic acid ethyl ester Bromoacetic acid ethyl ester

Chymopapain

Manufacturing Process

18.7 g of 3- β -diethylaminoethyl-4-methyl-7-hydroxy-coumarin chlorhydrate are dissolved in 200 cc methyl ethyl ketone and 18 g anhydrous potassium carbonate are added. The mixture is stirred for 1 hour at 70°C and then 12 g bromoacetic acid ethyl ester are allowed to drop in. The reaction mixture is stirred under reflux for 9 hours and then it is filtered off with suction in the heat. The filtrate is concentrated in the vacuum to dryness and the resultant residue is dissolved in ether. The etheric solution is washed with diluted caustic soda solution for several times and, subsequently, dried with Glauber's salt. By introduction of hydrochloric acid gas into the etheric solution the reaction product is precipitated in the form of chlorhydrate. Yield: 15 g of 3- β -diethylaminoethyl-4-methyl-coumarin-7-ethyl oxyacetate chlorhydrate having a melting point of 154° to 156°C (= 63% of the theory).

The starting material is produced by reacting resorcinol with 2-(2-diethylaminoethyl)acetic acid ethyl ester.

References

Merck Index 2217 Kleeman & Engel p. 150 OCDS Vol. 1 p.331 (1977) I.N. p. 185

Ritter, H., Hanau, K., Beyerle, R. and Nitz, R.-E.; U.S. Patent 3,282,938; November 1, 1966; assigned to Cassella Fabrwerke Mainkur AG, Germany

CHYMOPAPAIN

Therapeutic Function: Proteolytic enzyme used in chemical nucleolysis

Chemical Name: See "Structural Formula" below.

Common Name: -

Structural Formula: Chymopapain is a sulfhydryl enzyme similar to papain. Has components of molecular weight about 35,000.

Trade Name	Manufacturer	Country	Year Introduced
Chymo diactin	Smith	U.S.	1982
Chemolase	Ortho-Tex	U.S.	_
Discase	Travenol	U.S.	_

Chemical Abstracts Registry No.: 9001-09-06

Raw Materials

Papaya latex Hydrochloric acid

Manufacturing Process

The undried latex of papaya is mixed with about three times its weight of hundredth normal hydrochloric acid. To this mixture is then added dilute hydrochloric acid (about normal) until a pH of substantially 2 has been attained. The acidified latex is next allowed to stand over night or longer in a cold place (0°C to 10°C). The material still in solution is then separated out, by any convenient means, such as filtration through paper. From the soluble portion, a

small amount of inert protein is precipitated, by half saturation with sodium chloride at about 10°C. The desired enzyme is next precipitated as a nearly pure protein by raising the concentration of salt to full saturation, while the pH is kept at a level of substantially 2, by the addition of normal alkali, if necessary. The precipitate of protein is removed by any suitable means, and may be kept as a thick paste out of contact with the air, and in the cold. The keeping properties at higher temperatures are enhanced by addition of enough alkali to the protein to bring its pH to 4.5-6.0.

This protein may be further purified, if desired, and eventually may be crystallized, by redissolving the paste in saturated sodium chloride solution by adjusting the pH to 4.5-6.0, and reprecipitating the enzyme protein by the gradual addition of acid in the cold, until a pH of approximately 2.0 is obtained; or, the purification may be accomplished by dissolving the protein in acid at a pH of 2, and then precipitating the enzyme, by increasing the concentration of salt.

When the activity and other properties of the several times recrystallized new enzyme protein are compared with those of the uncrystallized precipitate obtained in the first stages of the process, it is found that even in the first stages, the enzyme is present in sufficiently pure form for most purposes.

References

Merck Index 2244 PDR p. 1732 DOT 19 (7) 413 (1983) & (8) 454 (1983) I.N. p. 229 REM p. 1036

Jansen, E.F. and Balls, A.K.; U.S. Patent 2,313,875; March 16, 1943; assigned to Government of the U.S.A.

Stern, I.J.; U.S. Patent 3,558,433; January 26, 1971; assigned to Baxter Laboratories, Inc.

CICLONICATE

Therapeutic Function: Vasodilator

Chemical Name: 3-Pyridinecarboxylic acid 3,3,5-trimethylcyclohexyl ester

Common Name: Cyclonicate

Structural Formula:

Chemical Abstracts Registry No.: 53449-58-4

Trade Name	Manufacturer	Country	Year Introduced
Bled	Poli	Italy	1978
Bled	Poli	Switz.	1981
Cortofludan	Knoll	W. Germany	_
Elastan 200	Byk Liprandi	Argentina	_

Raw Materials

trans-3.3.5-Trimethylcyclohexanol Niacin chloride hydrochloride Sodium hydroxide

Manufacturing Process

To a solution of 142 g (1 mol) of trans-3,3,5-trimethylcyclohexanol in 400 cc of anhydrous benzene heated to 70°C is added gradually 178 g (1 mol) of niacin chloride hydrochloride, Heating is carried out under reflux conditions for 3 hours, the solution is cooled, the ester hydrochloride is filtered off and then recrystallized in an ethanol-ethyl ether mixture to obtain 227 g (80% yield) of product melting at 155°C to 157°C.

By treating the hydrochloride with an aqueous solution of NaOH at 0°C, the free base is obtained in the form of a viscous white liquid which boils at 115°C under 0.05 mm.

References

Merck Index 2249 DOT 19 (1) 12 (1983) I.N.p. 231

British Patent 1,409,990; October 15, 1975; assigned to Poli Industria Chimica S.p.A. (Italy)

CICLOPIROXOLAMINE

Therapeutic Function: Antifungal

Chemical Name: 6-Cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridone ethanolamine sait

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 41621-49-2; 29342-05-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Batrafen	Cassella-Riedel	W. Germany	1980
Batrafen	Hoechst	Japan	1981
Loprox	Hoechst	Canada	1983
Loprox	Hoechst	U.S.	1983

Raw Materials

4-Methyl-6-cyclohexyl-2-pyrone Hydroxylamine hydrochloride Ethanolamine

Menufacturing Process

Ciclopirox may be produced as follows: 2 g of 4-methyl-6-cyclohexyl-2-pyrone were heated with 1 g of hydroxylamine hydrochloride and 5 g of 2-aminopyridine to 80°C for 8 hours.

The reaction mixture was then dissolved in methylene chloride, the amine was removed by shaking with dilute hydrochloric acid, the reaction product was extracted from the organic phase by means of dilute sodium hydroxide solution and the alkaline solution was acidified with acetic acid to a pH value of 6. The 1-hydroxy-4-methyl-6-cyclohexyl-2-pyridone precipitated in crystalline form. It was filtered off with suction, washed with water and dried. The yield was 1.05 g (49% of theory); melting point 143°C.

Reaction of ciclopirox with ethanolamine gives the desired product.

References

REM p. 1230

Merck Index 2250 DFU 4 (11) 795 (1979) Kleeman & Engel p. 206 PDR p. 940 OCDS Vol. 2 p. 282 (1980) DOT 17 (9) 364 (1981) LN. p. 231

Lohaus, G. and Dittmar, W.; U.S. Patents 3,972,888; August 3,1976; and 3,883,545; May 13, 1975; both assigned to Hoechst A.G.

CICLOXILIC ACID

Therapeutic Function: Choleretic

Chemical Name: cis-2-Hydroxy-2-phenylcyclohexanecarboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57808-63-6

Trade Name	Manufacturer	Country	Year Introduced
Plecton	Guidotti	Italy	1975
Sintiabil	Sintyal	Argentina	_

Raw Materials

2-Hydroxymethyl cyclohexanone Bromobenzene Potassium permanganate Magnesium

Manufacturing Process

25 g of 2-hydroxy-methyl-cyclohexanone, diluted in 20 cc of ether, were dropped into a vessel containing an ether suspension of phenyl-magnesium-bromide (prepared from 19.6 g of magnesium and 128 g of bromobenzene in 300 cc of ether according to usual techniques by stirring and external ice-cooling). The mixture was stirred for some time, then the magnesium compound was decomposed by pouring it carefully into water and ice; the magnesium hydroxide was dissolved in 50 cc of a saturated solution of ammonium chloride, the ether portion was separated and the aqueous portion extracted with further ether.

Collected and dried ether extracts were evaporated and the residue vacuum distilled yielded 15 g of a thick oil of boiling point at 0.1 to 0.2 mm Hg 127°C to 135°C.

This product crystallized by dissolving in ether and reprecipitation with petroleum ether yielded 7 g of 1-phenyl-2-hydroxy-ethylene-cyclohexan-1-ol, melting point (Kofler) 81°C to 83°C.

The thus obtained product was dried and finely powdered, and then suspended in 1.4 liters of an aqueous solution of 14 g of KMnO₄ and 7 g of Na₂CO₃, and the suspension was thoroughly stirred for one day.

After filtering off the MnO2, thus formed, a small amount of Na2SO3 was added until the violet coloration disappeared; MnO2 was filtered again and the alkaline solution was acidified with concentrated HCI.

After one day standing in a refrigerator, the product was filtered and washed with water, thus yielding 5 g of 2-phenyl-2-hydroxy-cyclohexane-carboxylic acid, melting point (Kofler) 143°C to 145℃.

References

Kleeman & Engel p. 207 DOT 15 (4) 185 (1979)

I.N. p. 18

Turbanti, L.; U.S. Patent 3,700,775; October 24, 1972

CIMETIDINE

Therapeutic Function: Antiulcer drug

Chemical Name: N-cyano-N'-methyl,N"-[2-[[(5-methyl-1H-imidazol-4-yl)methyl] thio] -

ethyl] guanidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51481-61-9

Trade Name	Manufacturer	Country	Year Introduced
Tagamet	SKF	U,K,	1977
Tagamet	SKF	U. S .	1977
Tagamet	SKF	France	1977
Tagamet	SKF	W. Germany	1977
Tagamet	SKF	Switz.	1977
Euroceptor	Zambon	Italy	1978
Tagamet	Fujisawa/SKF	Japan	1982
Cimetag	Cehasol	Austria	1983
Acibilin	Exa	Argentina	
Aciloc	Orion	Finland	
Altramet	Lek	Yugoslavia	_
Belomet	Belupo	Yugoslavia	_
Biomag	Pulitzer	Italy	
Brumetidina	Bruschettini	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Cimetum	Sintyal	Argentina	_
Cinamet	isis	Yugoslavia	_
Cinulcus	Wassermann	Spain	_
Citius	Prodes	Spain	_
Civent	Medica	Finland	
Fremet	Antibioticos	Spain	_
Gastromet	Sigurta	Italy	_
Itacem	Italchemie	Italy	_
Mansal	Vita	Spain	_
Peptol	Horner	Canada	_
Stomakon	Andromaco	Brazil	
Tametin	Giuliani	Italy	_
Tratul	Ricar	Argentina	_
Ulcedin	Agips	Italy	_
Ulcedine	I.C.NUsafarma	Brazil	_
Ulcerfen	Finadiet	Argentina	
Ulcestop	Gibipharma	Itaiy	_
Ulcimet	Farmasa	Brazil	-
Ulcodina	Locatelli	Italy	
Ulcomet	italfarmaco	Italy	
Ulhys	Farnex	Italy	_

Raw Materials

2-Chloroacetic acid ethyl ester	Formamide
Potassium hydroxide	Sodium
Cysteamine	Ammonia
Carbon disulfide	Cyanamide
Dimethyl sulfate	Methylamine

Manufacturing Process

In an initial step, 2-chloroacetic acid ethyl ester is reacted with formamide to give 5-methylimidazole 4-carboxylic acid ethyl ester. Then sodium in ammonia is used to convert that to 4-hydroxymethyl-5-methylimidazole-hydrochloride. Cysteamine HCl (HSCH2CH2NH2·HCl) is then reacted to give 4-(2-aminomethyl)-thiomethyl-5-methyl-imidazole di-HCl. Then Ncyanamido-5,5-dimethyl-dithio-carbonate (from cyanamid, KOH, CS₂ and (CH₃)₂SO₄) is reacted to give a further intermediate which is finally reacted with methylamine to give cimetidine.

The preparation of the pyridyl analogs of the imidazolyl compounds of the type of cimetidine are discussed in the patent cited below.

Further references are given by Kleeman & Engel in the reference below.

References

Merck Index 2254 DFU 1 (1) 13 (1976) Kleeman & Engel p. 20B PDR p. 1725 OCDS Vol. 2 p. 353 (1980) DOT 13 (5) 187 (1977) & 16 (11) 393 (1980) I.N. p. 232 REM p. 797

Durant, G.J., Emmett, J.C. and Ganellin, C.R.; U.S. Patent 3,876,647; April 8, 1975; assigned to Smith Kline & French Laboratories Limited

CINEPAZET MALEATE

Therapeutic Function: Antianginal

Chemical Name: 4-[1-Oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl] -1-piperazineacetic acid

ethyl ester (Z)-2-butenedioate (1:1)

Common Name: Ethyl cinepazate maleate

Structural Formula:

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_4\text{O} \end{array} \quad \text{CH} = \text{CHCO} - \text{N} \\ \begin{array}{c} \text{N} - \text{CH}_2\text{COOC}_2\text{H}_5 \\ \text{C} \\ \text{H}_4\text{O}_4 \\ \text{C} \\ \text{H}_4\text{O}_4 \\ \text{C} \\$$

Chemical Abstracts Registry No.: 50679-07-7; 23887-41-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Vascoril	Delalande	France	1971
Vascoril	Delalande	Italy	1974

Raw Materials

1-Piperazino ethyl acetate Sodium bicarbonate 3.4.5-Trimethoxy cinnamoyl chloride Maleic acid

Manufacturing Process

A solution of 1-piperazino ethyl acetate (0.2 mol) in benzene (300 ml) is treated with 3.4.5-trimethoxy cinnamoyl chloride (0.2 mol) in the presence of sodium bicarbonate (0.3 mol). After contacting for one hour at room temperature, the mixture is refluxed for a further hour. The benzene solution is then treated with an aqueous solution of sodium bicarbonate. After evaporation of the solvent, a solid product is obtained which is recrystallized from isopropyl ether. Melting point = 96° C. This base, when treated with hydrochloric acid, gives a hydrochloride having a melting point of 200° C with decomposition. By the action of malaic acid the acid maleate is obtained, having a melting point of 130° C.

References

Merck Index 2266 Kleeman & Engel p. 210 OCDS Vol. 3 p. 157 (1984) DOT 10 (12) 336 (1974) I.N. p. 233

Fauran, C., Huguet, G., Raynaud, G., Pourrias, B. and Turin, M.; U.S. Patent 3,590,034; June 29, 1971; assigned to Delalande S.A. (France)

CINNARIZINE

Therapeutic Function: Antihistaminic

Chemical Name: 1-(diphenylmethyl)-4-(3-phenyl-2-propenyl)piperazine

Common Name: -

Structural Formula:

$$\begin{array}{c} c_{6}H_{5} \\ c_{6}H_{5} \end{array}$$

Chemical Abstracts Registry No.: 298-57-7

Trade Name	Manufacturer	Country	Year Introduced
Stugeron	Janssen	U.K.	1961
Stutgeron	Janssen	W. Germany	1961
Midronal	Delalande	France	1962
Sturgeron	Janssen	Italy	1970
Aplactan	Janssen	Belgium	1970
Stugeron	Cilag-Chemie	Switz.	1980
Amynorai	Delalande	France	_
Annarizine	Sioe	Japan	_
Antigeron	Farmasa	Brazil	-
Aplactan	Eisai	Japan	_
Aplexal	Taivo	Japan	_
Apomiteri	Teizo	Japan	-
Apotomin	Kowa	Japan	
Apsatan	Wakamoto	Japan	_
Artate	Nippon Chemiphar	Japan	_
Carecin	Zensei	Japan	
Cerebolan	Tobishi	Japan	
Cerepar	Merckle	W. Germany	_
Cero-Aterin	Chassot	Switz,	_
Cinaperazine	Kinki	Japan	-
Cinazin	Siegfried	Switz.	_
Cinazyn	Italchimici	Italy	
Cinnabene	Merckle	W. Germany	_
Cinnacet	Schwarzhaupt	W. Germany	_
Cinnageron	Streuli	Switz.	-
Cinnarizine	Green Cross	Japan	_
Cinnipirine	A.C.F.	Neth.	_
Coldrin	J&J	U.S.	_
Corathiem	Ohta	Japan	_
Cysten	Tsuruhara	Japan	_
Denapol	Teikoku	Japan	_
Dismaren	Gerardo Ramon	Argentina	_
Ederal	Esteve	Spain	
Eglen	Tatsumi	Japan	_
Folcodal	Syncro	Argentina	_
Giganten	Tropen	W. Germany	_
Glanil	Leo	Sweden	_
Hilactan	Kyoritsu	Japan	_
Hirdsyn	Fuso	Japan	_
Izaberizin	Tohu	Japan	-
Katoseran	Hishiyama	Japan	_
Midronal	Delalande	France	_
Milactan	Miwa	Japan	- -
Myodel	Delalande	France	_
Olamin	Siegfried	Switz.	_
Pericephal	Hofmann	Austria	- - - - -
Plegitux	Carrion	France	_
Processine	Sankyo	Japan	_
Purazine	Lennon	S. Africa	_
Razlin	S.S. Pharm.	Japan	
Ribrain	Endophørm	W. Germany	
	•	•	

Trade Name	Manufacturer	Country	Year Introduced
Roin	Maruishi	Japan	
Salarizine	lwaki	Japan	_
Sapratol	Takeda	Japan	_
Sedatromin	Takata	Japan	_
Sefal	Nobel	Turkey	_
Sigmal	Fuji Zoki	Japan	_
Siptazin	Isei	Japan	_
Spaderizine	Kotobuki	Japan	_
Stunarone	Abic	Israel	_
Toliman	Corvi	Italy	_
Tolesmin	Sato	Japan	_
Torizin	Towa	Japan	_

Raw Materials

CinnamovI chloride Benzhydryl piperazine Lithium aluminum hydride

Manufacturing Process

This compound can be prepared by the reaction of cinnamoyl chloride with benzhydrylpiperazine. The reaction is carried out in dry benzene under reflux. The benzene is then evaporated, the residue taken up in chloroform, washed with dilute HCl and then made alkaline.

The chloroform layer is washed with a dilute aqueous sodium hydroxide solution, thereafter with water, and is finally dried over potassium carbonate. The residue, which is obtained after evaporation of the chloroform, is dissolved by heating in a mixture of 25% of toluene and 75% of heptane. On cooling this solution to about 20°C the product precipitates. That compound is reduced with LiAlH4 to give cinnarizine.

References

Merck Index 2281 DFU 3 (8) 572 (1978) Kleeman & Engel p. 272 OCDS Vol. 1 p. 58 (1977) DOT 16 (10) 360 (1974) & 18 (1) 27 (1982) I.N. p. 234

Janssen, P.A.J.; U.S. Patent 2,882,271; April 14, 1959; assigned to Laboratoria Pharmaceutica Dr. C. Janssen, Belgium

CINOXACIN

Therapeutic Function: Antibacterial

Chemical Name: 1-Ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 28657-80-9

Trade Name	Manufacturer	Country	Year Introduced
Cinobac	Lilly	U.K.	1979
Cinobac	Lilly	Switz.	1979
Cinobactin	Lilly	W, Germany	1980
Cinobac	Lilly	U.S.	1981
Cinobact	Shjonogi	Japan	1983
Cinobactin	Lilly	Sweden	1983

Raw Materials

1-Ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3-carbonitrile Hydrogen chloride

Manufacturing Process

About 23 g (0,095 mol) of 1-ethyl-6,7-methylenedioxy-4(1H)-oxocinnoline-3-carbonitrile were added to a mixture of 200 ml of concentrated hydrochloric acid and 200 ml of acetic acid. The resultant reaction mixture was heated under reflux for 18 hours. The excess acids were removed under vacuum, and the residue was taken up in 150 ml of a 5% sodium bicarbonate solution. The resultant solution was treated with 5 g of charcoal and filtered. The filtrate was made acidic by the addition of hydrochloric acid and the resulting precipitate was removed by filtration. 23 g, representing a yield of 91.6% of 1-ethyl-6,7-methylenedioxy-4(1H)oxocinnoline-3-carboxylic acid as light tan crystals which melted at 261°C to 262°C with decomposition were recovered.

References

Merck Index 2284 DFU 3 (1) 22 (1978) Kleeman & Engel p. 213 PDR p. 836 OCDS Vol. 2 p. 388 (1980) DOT 11 (10) 402 (1975) & 16 (2) 45 (1980) f.N. p. 235 REM p. 1216

White, W.A.; U.S. Patent 3,669,965; June 13, 1972; assigned to Eli Lilly & Company

CIPROFIBRATE

Therapeutic Function: Hypolipemic

Chemical Name: 2-[4-(2',2'-Dichlorocyclopropyl)phenoxy] -2-methylpropionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52214-83-3

Trade Name	Manufacturar	Country	Year Introduced
Lipanor	Winthrop	France	1983

Raw Materials

p-(2,2-Dichlorocyclopropyl)phenol	Acetone
Sodjum hydroxide	Chloroform

Manufacturing Process

A mixture of 8 g (0.0356 mol) of p-(2.2-dichlorocyclopropyl)phenol, 11.2 g (0.28 mol) of sodium hydroxide pellets, 11 g of chloroform and 350 ml of acetone was prepared at 0°C. The cooling bath was removed, the mixture stirred for a minute and then heated on a steam bath to reflux temperature. The reaction mixture was stirred at reflux for three hours and then concentrated in vacuo. The residual gum was partitioned between dilute hydrochloric acid and ether, and the ether layer was separated, dried and concentrated in vacuo. The residual oil (14 g) was partitioned between dilute aqueous sodium bicarbonate and ether. The sodium bicarbonate solution was acidified with concentrated hydrochloric acid and extracted with ether. The ether solution was dried over anhydrous sodium sulfate and concentrated. The residue (9.5 g of yellow oil) was crystallized twice from hexane to give 6.0 g of 2-[p-(2,2dichlorocyclopropyl)phenoxy] -2-methyl propionic acid in the form of a pale cream-colored solid, MP 114°C to 116°C.

References

Merck Index 2286 DFU 2 (5) 297 (1977) OCDS Vol. 3 p. 44 (1984) I.N. p. 235

Phillips, D.K.; U.S. Patent 3,948,973; April 6, 1976; assigned to Sterling Drug, Inc.

CITICOLINE

Therapeutic Function: Cerebral circulation stimulant

Chemical Name: Cytidine 5'-(trihydrogen diphosphate)mono [2-(trimethylammonio)ethyl] -

ester hydroxide inner salt

Common Name: Citidoline; cytidine diphosphate choline

Structural Formula:

Chemical Abstracts Registry No.: 987-78-0

Trade Name	Manufacturer	Country	Year Introduced
Nicholin	Cyanamid	Italy	1971
Rexort	Cassenne Takeda	France	1977
Alaton	Zambon	Italy	_
Andes	Nippon Kayaku	Japan	_
Brassel	Alfa Farmaceutici	Italy	_
CDP-Choline	Kowa	Japan	_
Cereb	Ohta	Japan	-
Ceregut	Kodama	Japan	_
Cidifos	Neopharmed	Italy	_
Colite	Nippon Chemiphar	Japan	_
Corenalin	Kaken	Japan	
Cyscholin	Kanto	Japan	-
Daicoline	Daisan	Japan	_
Difosfocin	Magis	Italy	_
Emicholine	Dojin	Japan	-
Emilian	Beppu	Japan	_
Ensign	Yamanouchi	Japan	_
Erholen	Nichiiko	Japan	_
Haibrain	Ono	Japan	_
Haocolin	Fuso	Japan	_
Hornbest	Hoei	Japan	
Intelon	Takata	Japan	-
Meibis	Sanken	Japan	_
Neucolis	Nippon Shinyaku	Japan	_
Nicholin	Takeda	Japan	-
Niticolin	Morishita	Japan	_
Plube	Mochida	Japan	_
Recognan	Toyo Jozo	Japan	-
Rupis	Vitacain	Japan	_
Sauran	Abello	Spain	_
Sinkron	Ripari-Gero	Italy	_
Sintoclar	Pulitzer	Italy	_
Somazina	Ferrer	Spain	-
Startonyl	Cyanamid	_	-
Suncholin	Mohan	Japan	-

Raw Materials

Cytidine-5'-monophosphate Choline Brevibacterium ammoniagenes

Manufacturing Process

A 250 ml conical flask containing 30 ml of a reaction liquor (pH 7.0) having a composition of 7.38 mg/ml of disodium salt of CMP (cytidine-5'-monophosphate), 24 mg/ml of choline, 10 mg/ml of glucose, 100 mg/ml of acetone-dried cells of Brevibacterium ammoniagenes ATCC 6872, 11.6 mg/ml of monopotassium phosphate, 20 mg/ml of dipotassium phosphate and 2.96 mg/ml of magnesium sulfate, (MgSO₄·7H₂O), was subjected to culturing at 30°C for 4 hours. Cytidine diphosphate choline was formed and accumulated at a concentration of 3.8 mg/ml in the culture liquor.

The pH of 1.2 liters of filtrate containing 3.8 mg/ml of cytidine diphosphate choline, obtained by removing solid matters from the culturing liquor, was adjusted to a pH of 8.5 with a 0.5 N KOH solution. The filtrate was passed through a column of strongly basic anion exchange resin, Dowex 1 x 2 (formic acid type). After washing the resin with water, a formic acid

solution was passed through the column with gradual increase in the concentration of formic acid (until 0.04N max.). A fraction of cytidine diphosphate choline was collected by elution according to the so-called gradient elution method and absorbed onto carbon powders. Then, elution was effected with acetone, and the eluate was concentrated and dried. 1.3 g of cytidine diphosphate choline powders were obtained.

References

Merck Index 2290 Kleeman & Engel p. 214 DOT 4 (2) 68 (1968) I.N. p. 237

Nakayama, K. and Hagino, H.; U.S. Patent 3,684,652; August 15, 1972; assigned to Kyowa Hakko Kogyo Co., Ltd. (Japan)

Nakamachi, H., Kamiya, K. and Nishikawa, M.; U.S. Patent 3,687,932; August 29, 1972; assigned to Takeda Chemical Industries, Ltd. (Japan)

CITIOLONE

Therapeutic Function: Treatment of hepatic disorders

Chemical Name: 2-Acetamido-4-mercaptobutyric acid γ-lactone

Common Name: Acetylhomocystein thiolactone; acetamido thiobutyrolactone

Structural Formula:

NHCOCH-

Chemical Abstracts Registry No.: 1195-16-0

Trade Name	Manufacturer	Country	Year Introduced
Citiolase	Roussel Maestretti	France	1970
Thioxidrene	Bottu	France	1972
Citiolase	Roussel Maestretti	Italy	1976
Mucorex	Berenguez-Beneyto	Spain	
Reducdyn	Nordmark	W. Germany	_
Sitilon	Roussel		_
Thioncycline	Merrell	France	_

Raw Materials

Acetyl methionine	Ammonia
Sodium	Hydrogen chloride

Manufacturing Process

12.73 kg of acetyl methionine are gradually introduced into a brine-cooled pressure-tight apparatus provided with a stirrer and containing 140 liters of liquid ammonia at –50°C. The amino acid is dissolved after a short time; 6.5 kg of sodium metal are then introduced over a period of from 4 to 5 hours at a temperature of from –40°C to –50°C. Eventually, a persistent blue coloration of the ammoniacal solution indicates the end of the reaction. The ammonia is distilled off and the residue is taken up in 70 liters of methanol. In order to remove ammonia which has been formed from sodium amide, 30 to 40 liters of methanol are distilled off and the residue is made up with methanol to 80 liters. The strongly alkaline solution is neutralized with 22 liters of concentrated aqueous hydrochloric acid. The solution is filtered

off from the precipitated sodium chloride and evaporated to dryness in vacuo. The closing of the thiolactone ring takes place as a result of the evaporation of the solution to dryness in the acid pH range and the N-acetyl homocystein originally present is converted into N-acetyl homocystein thiolactone. In order to isolate this compound, the residue is recrystallized from 25% aqueous alcohol.

9 kg of N-acetyl homocystein thiolactone are obtained, this corresponding to a yield of 85% of the theoretical.

References

Merck Index 2291 Kleeman & Engel p. 215 DOT 7 (1) 14 (1971) I.N. p. 237

British Patent 955,231; April 15, 1964; assigned to Deutsche Gold- und Silber-Scheideanstalt Vormals Roessler (Germany)

CLAVULANIC ACID

Therapeutic Function: Antibacterial

Chemical Name: 3-(2-Hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo [3,2,0] heptane-2-car-

boxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58001-44-8

Trade Name	Manufacturer	Country	Year Introduced
Augmentin	Beecham	U.K.	1981
Augmentin	Beecham	Switz,	1982
Augmentan	Beecham	W. Germany	1982
Synulox	Beecham	_	

Raw Materials

Dextrin Sovbean flour

Bacterium Streptomyces Clavuligerus

Manufacturing Process

100 ml of sterile water was added to a sporing culture which had been grown on Bennetts agar in a Roux bottle for 10 days at 26°C. A mycelium/spore suspension was produced and used to inoculate 75 liters of steam sterilized medium of the following composition in tap water.

Dextrin 2% W/V Arkasov '50'* 1% W/V 10% Pluronic L81 in soybean oil 0.03% V/V *Arkasoy is soybean flour supplied by British Arkady Co., Old Trafford, Manchester, UK

The pH of the medium was adjusted to 7.0

The medium was contained in a 100 liter stainless steel baffled fermenter, agitated by a 7½ inch vaned disc impeller at 140 rpm. Sterile air was supplied at 75 liters per minute and the tank incubated for 72 hours at 26°C.

The contents of the seed fermenter were used to inoculate 1.500 liters of steam sterilized medium of the following composition in tap water.

Arkasoy '50'	1.5% W/V
Glycerol	1.0% W/V
KH ₂ PO ₄	0.1% W/V
10% Pluronic L81 in soybean oil	0.2% V/V

The pH of the medium was adjusted to 7.0

The medium was contained in a 2,000 liter stainless steel fully baffled fermenter agitated by two 19 inch vaned disc impellers at 106 rpm.

Sterile air was supplied at 1,200 liters per minute. Antifoam was added in 25 ml amounts as required, (10% Pluronic L81 in soybean oil.) The fermentation was controlled at 26°C until a maximum yield of clavulanic acid was obtained between 3-5 days when 200-300 $\mu \mathrm{g/ml}$ of clavulanic acid were produced.

References

Merck Index 2311 DFU 2 (6) 372 (1977) PDR p. 659 DOT 19 (3) 169 (1983) I.N. p. 18 REM p. 1200

Cole, M., Howarth, T.T. and Reading, C.; U.S. Patent 4,110,165; August 29, 1978; assigned to Beecham Group, Ltd. (U,K.)

CLEMASTINE FUMARATE

Therapeutic Function: Antihistaminic

Chemical Name: 2-[2-[1-(4-chlorophenyl)-1-phenylethoxy] ethyl] -1-methylpyrrolidine

hydrogen fumarate

Common Name: Meclastin

Structural Formula:

Chemical Abstracts Registry No.: 14976-57-9; 15686-51-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tavegyl	Sandoz	France	1967
Tavegyl	Sandoz	Switz.	1967
Tavegil	Sandoz	W. Germany	1967
Tavegyl	Sandoz	Italy	1968
Tavegyl	Sankyo	Japan	1970
Tavegil	Sandoz	U.K.	1971
Tavist	Dorsey	U.S.	1978
Agasten	Sandoz	_	_
Alagyl	Sawai	Japan	_
Aloginan	Tobi s hi	Japan	_
Alphamin	S.S. Pharm,	Japan	_
Anhistan	Nippon Zoki	Japan	-
Antriptin	Nippon Yakuhin	Japan	-
Arrest	Taisho	Japan	_
Batomu	Zensei	Japan	
Benanzyl	Is ei	Japan	_
Chlonaryl	Ohta	Japan	_
Clemanil	Kyoritsu	Japan	_
Fuluminol	Tatsumi	Japan	_
Fumalestine	Hishiyama	Japan	
Fumaresutin	Hishiyama	Japan	_
Inbestan	Maruko	Japan	_
Kinotomin	Toa Eiyo	Japan	_
Lacretin	Toyo Tanabe	Japan	_
Lecasol	Kaken	Japan	_
Maikohis	Nichiiko	Japan	_
Mallermin-F	Taiyo Yakuko	Japan	_
Marsthine	Towa	Japan	_
Masletine	Shioe	Japan	-
Piloral	Nippon Kayaku	Japan	-
Raseltin	Maruishi	Japan	_
Reconin	Toyama	Japan	_
Romien	Fuji Zoki	Japan	-
Telgin G	Taiyo	Japan	_
Trabest	Hoei	Japan	_
Xolamin	Sanko	Japan	_

Raw Materials

Sodium amide @Methyl p-chlorobenzhydrol N-Methyl-pyrrolidyl-(2)-ethyl chloride Fumaric acid

Manufacturing Process

9.9 g of @-methyl-p-chlorobenzhydrol are added to a suspension of 2.3 g of powdered sodamide in 30 cc of benzene. Subsequently 7.4 g of N-methylpyrrolidyl-(2) ethyl chloride are added and the solution is heated to the boil at reflux for 20 hours. Then shaking is first effected with water and then 4 times each time with 25 cc of 2N hydrochloric acid. The acid extracts are made alkaline with potassium hydroxide solution while cooling strongly, and the precipitated oil is extracted with ether. After drying of the ethereal solution over potassium carbonate, the solvent is evaporated and the residue is fractionally distilled in a high vacuum, whereby N-methyl-2-[2'- $(\alpha$ -methyl-p-chlorobenzhydryloxy)-ethyl]-pyrrolidine boils over at 154°C/0.02 mm Hg. The base is converted to the fumarate by reaction with fumaric acid.

References

Merck Index 2314

Kleeman & Engel p. 216

PDR p. 1597

OCDS Vol. 2 p. 32 (1980)

I.N. p. 239 REM p. 1127

British Patent 942,152; November 20, 1963; assigned to Sandoz Ltd.

CLEMIZOLE

Therapeutic Function: Antihistaminic

Chemical Name: 1-[(4-Chlorophenyl)methyl]-2-(1-pyrrolidinylmethyl]-1H-benzimidazole

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 442-52-4; 1163-36-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Allercur	Roerig	Ú.S.	1960
Reactrol	Purdue Frederick	U <i>.</i> S.	1961
Allercur	Schering	Switz.	_
Allerpant	Panther-Osfa	Itaiy	_
Deliproct	S.E.P.S.S.	France	
Penargyl	Morgan	Italy	_
Ultralan	S.E.P.S.S.	France	_
Ultraproct	S.E.P.S.S.	France	_

Raw Materials

o-Nitrochlorobenzene	Hydrogen
p-Chlorobenzylamine	Pyrrolidine
Chloroacetyl chloride	

Manufacturing Process

From 13.1 g of N-p-chlorobenzyl-2-nitroaniline (MP 110°C, obtained in the form of orangered needles, from o-nitrochlorobenzene and p-chlorobenzylamine by reaction for 3 hours at 150°C) by reduction with Raney-nickel and hydrogen, in which reaction the substance may be suspended in methanol or dissolved in methanol-ethyl acetate at normal pressure and at about 40°C with combination of the theoretical quantity of hydrogen, 12.2 g are obtained of o-amino-N-p-chlorobenzylaniline, which after recrystallization from aqueous methanol has a MP of 90°C.

8 g of o-amino-N-p-chlorobenzylaniline and 2.8 g of pyridine are dissolved in dry ether and reacted with an ethereal solution of 3.9 g of chloracetyl chloride with cooling in a mixture of

ice and common salt. 8 g of N-p-chlorobenzyl-N'-chloracetyl-o-phenylene diamine are obtained which can be worked up in the form of the crude product and, in the slightly colored form, has a MP of 130°C.

7.6 g of this compound are boiled with 3.9 g of pyrrolidine in 70 cc of toluene for some hours under reflux. After extraction by shaking with water and treatment with hydrochloric acid the hydrochloride is produced of N-p-chlorobenzyl-N'-pyrrolidylacetyl-o-phenylene diamine together with some 1-p-chlorobenzyl-2-N-pyrrolidylmethyl-benzimidazole. The former, after recrystallization from butanol, melts with foaming at 205°C, the latter, after recrystallization from butanol melts at 239°C to 241°C, and is in the form of white microscopic rods, Boiling in nitrobenzene converts the former compound into the latter.

References

Merck Index 2315 Kleeman & Engel p. 217 OCDS Vol. 1 p. 324 (1977) I.N. p. 239

Schenck, M. and Heinz, W.; U.S. Patent 2,689,853; September 21, 1954; assigned to Schering A.G. (Germany)

CLENBUTEROL

Therapeutic Function: Antiasthmatic

Chemical Name: 4-Amino-3,5-dichloro-[[(1,1-dimethylethyl)amino] methyl] benzene-

methanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 37148-27-9

Trade Name	Manufacturer	Country	Year Introduced
Spiropent Monores	Thomae Valeas	W. Germany Italy	1977 1981
Monores	v aleas	Italy	1561

Raw Materials

1-(4'-Aminophenyl)-2-t-butylaminoethanol-(1)-HCl Chlorine Hydrogen chloride

Manufacturing Process

127 g of 1-(4'-aminophenyl)-2-t-butylaminoethanol-(1)-hydrochloride were dissolved in a mixture of 250 cc of glacial acetic acid and 50 cc of water, and chlorine added while stirring the solution and maintaining the temperature of the reaction mixture below 30°C by cooling with ice water. After all of the chlorine had been added, the reaction mixture was stirred for thirty minutes more, then diluted with 200 cc of water, and made alkaline with concen-

trated ammonia while cooling with ice, taking care that the temperature of the reaction mixture did not rise above 40°C. The alkaline mixture was extracted three times with 200 cc portions of chloroform, and the chloroform extract solutions were combined, dried with sodium sulfate and evaporated. The residue, the free base 1-(4'-amino-3',5'-dichlorophenyl)-2-t-butylaminoethanol-(1), was dissolved in absolute ethanol, gaseous hydrogen chloride was passed through the solution, and the precipitate formed thereby was collected. It was identified to be 1-(4'-amino-3',5'-dichlorophenyl)-2-t-butylaminoethanol-(1)-hydrochloride, melting point 174.0°C to 175.5°C (decomp.).

References

Merck Index 2316 DFU 1 (5) 221 (1976) Kleeman & Engel p. 218 DOT 14 (2) 59 (1978) & 17 (8) 339 (1981) I.N. p. 240

Keck, J., Kruger, G., Machleidt, H., Noll, K., Engelhardt, G. and Eckenfels, A.; U.S. Patent 3,536,712; October 27, 1970; assigned to Boehringer Ingelheim G.m.b.H. (Germany)

CLIDANAC

Therapeutic Function: Antiinflammatory; antipyretic

Chemical Name: 6-Chloro-5-cyclohexyl-2,3-dihydro-1H-indene-1-carboxylic acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 34148-01-1

Trade Name	Manufacturer	Country	Year Introduced
Indanal	Takeda	Japan	1981
Britai	Bristol Banyu	Japan	1981

Raw Materials

N-Chlorosuccinimide 5-Cyclohexyl-1-indancarboxylic acid

Manufacturing Process

N-chlorosuccinimide (8.2 g, 0.0614 mol) was added to a stirred, cooled (ice-water) solution of (±)-5-cyclohexyl-1-indancarboxylic acid (10.0 g, 0.0409 mol) in dimethylformamide (82 ml). The solution was stirred for fifteen minutes at 0°C, thirty minutes at 25°C, nine hours at 50°C, followed by eight hours at 25°C. The solution was diluted with cold water (400 ml) and stirred until the precipitated product turned granular (fifteen minutes). The crude product was collected, washed with cold water, and dried. Crystallization from Skellysolve B with charcoal treatment gave colorless crystals (6.65 g, 58%), MP 149°C to 150°C. The product was recrystallized twice from Skellysolve B to give (±)-6-chloro-5-cyclohexyl-1-indancarboxylic acid as colorless crystals, MP 150.5°C to 152.5°C.

References

Merck Index 2319 DFU 4 (3) 229 (1979) DOT 17 (8) 319 (1981)

I.N. p. 240

Juby, P.F., DeWitt, R.A.P. and Hudyma, T.W.; U.S. Patent 3,565,943; February 23, 1971; assigned to Bristol-Myers Co.

CLIDINIUM BROMIDE

Therapeutic Function: Anticholinergic

Chemical Name: 3-[(hydroxydiphenylacetyl)oxy] -1-methyl-1-azoniabicyclo[2.2.2] octane

bromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3485-62-9

Trade Name	Manufacturer	Country	Year Introduced
Librax	Roche	U.S.	1961
Quarzan	Roche	U.S.	1976
Dolibrax	Roche	France	-

Raw Materials

1-Azabicyclo [2,2,2] -3-octanol Sodium Diphenylchloroacetyl chloride Methyl bromide

Manufacturing Process

5.12 g of 1-azabicyclo[2.2.2]-3-octanol were refluxed with a suspension of 0.92 g of finely divided sodium in 50 cc of toluene, until most of the sodium had reacted (about 4 hours). The thus-obtained suspension of the white amorphous alcoholate was cooled with ice, and reacted with 10.16 g of diphenylchloroacetyl chloride, which was added in form of a solution in approximately 40 cc of toluene. The mixture was stirred for 1 hour at room temperature. Small amounts of unreacted sodium were destroyed with isopropanol, and 120 cc of 1 N hydrochloric acid were then added. The mixture was refluxed for ½ hour, in order to convert the first formed product, diphenylchloroacetic acid ester of 1-azabicyclo[2.2.2]-3-octanol, into the corresponding benzilic acid ester.

The toluene phase was separated and discarded. The aqueous phase, together with a precipitated water- and toluene-insoluble oil, was made alkaline and extracted repeatedly with chloroform. The chloroform solution was concentrated in vacuo. The residue was re-

crystallized from a mixture of acetone and ether (alternatively, from chloroform and ether), and formed needles melting at 164° to 165°C. It was identified as 3-benziloyloxy-1-azabicyclo [2.2.2] octane.

3-Benziloyloxy-1-azabicyclo [2.2,2] octane methobromide was prepared by adding 20 cc of a 30% solution of methyl bromide in ether to a solution of 2.5 g of 3-benziloyloxy-1azabicyclo [2.2.2] octane in 20 cc of chloroform. After standing for 3 hours at room temperature and 15 hours at +5°C, a crystalline precipitate had formed. This was filtered off and recrystallized from a mixture of methanol, acetone, and ether; prisms melting at 240° to 241°C.

References

Merck Index 2320 Kleeman & Engel p. 219 PDR pp. 1510, 1606, 1999 I.N.p. 240 REM p. 914

Sternbach, L.H.; U.S. Patent 2,648,667; August 11, 1953; assigned to Hoffmann-LaRoche,

CLINDAMYCIN HYDROCHLORIDE

Therapeutic Function: Antibacterial

Chemical Name: 7(S)-chloro-7-deoxylincomycin hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21462-39-5; 18323-44-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dalacin-C	Diethelm	Switz.	1968
Sobelin	Upjohn	W. Germany	1968
Cleocin	Upjohn	U.S.	1970
Dalacin-C	Upjohn	U.K.	1970
Dalacin	Sumitomo	Japan	1971
Dalacin C	Upjohn	Italy	1975
Dalacin	Alter	Spain	_

Raw Materials

Lincomycin hydrochloride Triphenyl phosphine

Acetonitrile Hydrogen chloride

Manufacturing Process

The following procedure is described in U.S. Patent 3,475,407. A solution of 50 g of lincomycin hydrochloride, 120 g of triphenylphosphine, and 500 ml of acetonitrile in a 3 liter flask equipped with a stirrer was cooled in an ice bath and 500 ml of carbon tetrachloride was added in one portion. The reaction mixture was then stirred for 18 hours without addition of ice to the cooling bath. The reaction was evaporated to dryness under vacuum on a 50° to 60°C water bath, yielding a clear, pale yellow viscous oil. An equal volume of water was added and the mixture shaken until all of the oil was dissolved. The resulting suspension of white solid (ϕ_3 PO) was filtered through a sintered glass mat and discarded. The filtrate was adjusted to pH 11 by addition of 6 N aqueous sodium hydroxide. A solid precipitated.

The resulting slurry was extracted with four 300 ml portions of chloroform. The aqueous phase was discarded. The combined chloroform extract was washed once with 100 ml of saturated aqueous sodium chloride solution and the sodium chloride phase was discarded. The chloroform phase was evaporated to dryness under vacuum on a 50° to 60°C water bath and an equal volume of methanol was added to the residue and the resulting solution heated at reflux for 1 hour. The methanol solution was evaporated to dryness under vacuum on a 50° to 60°C water bath. The residue was a clear pale yellow viscous oil. An equal volume of water and 10 ml of 37% aqueous HCl was added and the resultant was shaken until the oil dissolved and a white solid (more ϕ_3PO) remained in suspension. The suspension was filtered through a sintered glass mat at pH 1 to 2 and the solid discarded.

The filtrate was extracted twice with 100 ml of carbon tetrachloride. The carbon tetrachloride phase was discarded. The aqueous phase was adjusted to pH 11 by addition of 6 N aqueous sodium hydroxide and extracted four times with 300 ml portions of chloroform. The combined chloroform extract was washed three times with 100 ml of saturated aqueous sodium chloride solution and the sodium chloride phase was discarded. The chloroform extract was dried over anhydrous magnesium sulfate, filtered and the filtrate evaporated to dryness under vacuum on a 50° to 60°C water bath. The residue was a clear, colorless glass weighing 45 g analyzing about 95% 7(S)-chloro-7-deoxylincomycin. To the crude product there was added 100 ml of ethanol with warming until a clear solution was obtained. Then 150 ml ethyl acetate was added and the resultant filtered through a glass mat and the filtrate adjusted to pH 1 by the addition of saturated ethanolic HCl. Crystallization soon occurred. The resultant was allowed to stand at 0°C for 18 hours and then filtered through a sintered glass mat. The solid was dried under vacuum at 60°C for 18 hours yielding 35 g, a 67% yield of 7(S)-chloro-7-deoxylincomycin hydrochloride as an ethanoi solvate.

References

Merck Index 2321 Kleeman & Engel p. 220 PDR p. 1827 DOT 5 (1) 32 (1969) & 7 (5) 188 (1972) I.N.p. 240 REM p. 1209 Birkenmeyer, R.D.; U.S. Patent 3,475,407; October 28, 1969; assigned to The Upjohn

Kagan, F. and Magerlein, B.J.; U.S. Patent 3,509,127; April 28, 1970; assigned to The Upjohn Company

CLINOFIBRATE

Therapeutic Function: Antihyperlipoproteinemic

Chemical Name: 22'-[Cyclohexylidenebis(4,1-phenyleneoxy)] bis[2-methylbutanoic acid]

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 30299-08-2

Trade Name	Manufacturer	Country	Year Introduced
Lipocrin	Sumitomo	Japan	1981
Lipocyclin	Sumitomo	Japan	

Raw Materials

Bis-(phenyleneoxy)cyclohexane Methyl ethyl ketone

Manufacturing Process

Into a mixture of 6.0 g of a bishydroxyphenyl derivative,

end 44.0 g of methyl ethyl ketone was added 16.2 g of crushed potassium hydroxide or sodium hydroxide. Chloroform was added dropwise into the above mixture with stirring at 20°C to 80°C, and the resultant mixture was heated for 20 hours under reflux to complete the reaction. Thereafter the reaction mixture was concentrated to give a residue. Into the residue was added water. After cooling, the resultant mixture was treated with activated charcoal and acidified by diluted hydrochloric acid or sulfuric acid to give an oily substance. The oily substance was extracted by ether and the ether solution was contacted with aqueous diluted Na₂CO₃ solution. The separated aqueous layer was washed with ether, acidified and again extracted with ether. The obtained ester layer was dried over anhydrous sodium sulfate and concentrated to give 1.0 g of a crude product which was purified by recrystallization or chromatography, to give crystals MP 143°C to 146°C (decomp.).

References

Merck Index 2322 DFU 3 (12) 905 (1978) DOT 18 (5) 221 (1982) I.N. p. 241

Nakamura, Y., Agatsuma, K., Tanaka, Y. and Aono, S.; U.S. Patent 3,716,583; February 13, 1973; assigned to Sumitomo Chemical Co., Ltd. (Japan)

CLOBAZAM

Therapeutic Function: Tranquilizer

360

Chemical Name: 7-chloro-1-methyl-5-phenyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22316-47-8

Trade Name	Manufacturer	Country	Year Introduced
Urbany!	Diamant	France	1975
Frisium	Albert-Pharm,	Italy	1977
Frisium	Hoechst	W. Germany	1978
Urbanul	Hoechst	Switz.	1979
Frisium	Hoechst	U.K.	1979
Castilium	Hoechst	_	-
Clarmyl	Roussel-Iberica	Spain	_
Clopax	Prodes	Spain	_
Karidium	Hoechst		
Noiafren	Hoechst	_	_
Sentil	Hoechst	_	_
Urbadan	Roussel		_
Urbanil	Sarsa	Brazil	_
Urbanol	Roussel	_	

Raw Materials

N-Phenyl-N-(2-amino-5-chlorophenyl)malonic acid ethyl ester amide Sodium Ethanol Methyl jodide

Manufacturing Process

1.65 g of N-phenyl-N-(2-amino-5-chlorophenyl)-malonic acid ethyl ester amide of MP 108° to 109°C are added to a sodium ethoxide solution, prepared from 20 ml of absolute alcohol and 150 mg of sodium. The solution is allowed to rest for 5 hours at room temperature. Then 1 ml of methyl iodide is added and the reaction mixture is refluxed for 7 hours. After evaporation of the solution in vacuo it is mixed with water and the solution is shaken with methylene chloride. The methylene chloride phase is dried and evaporated. By treatment of the residue with ethyl acetate/charcoal are isolated 500 mg of 7-chloro-1-methyl-5-phenyl-1H-1,5-benzodiazepine-2,4-(3H,5H)-dione of MP 180° to 182°C. The yield amounts to 34% of theory.

References

Merck Index 2325 Kleeman & Engel p. 221 OCDS Vol. 2 p. 406 (1980) DOT 9 (6) 240 (1973), 11 (1) 39 (1975) & 16 (1) 9 (1980) I.N. p. 241 REM p. 1083

Hauptmann, K.H., Weber, K.-H., Zeile, K., Danneberg, P. and Giesemann, R.; South African Patent 68/0803; February 7, 1968; assigned to Boehringer Ingelheim GmbH, Germany

CLOBETASOL

Therapeutic Function: Corticosteroid, Antiinflammatory

Chemical Name: 21-chloro-9-fluoro-11β,17-dihydroxy-16β-methylpregna-1,4-diene-3,20-

dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 25122-41-2; 25122-46-7 (Propionate)

Trade Name	Manufacturer	Country	Year Introduced
Dermovate	Glaxo	U.K.	1973
Dermoxin	Glaxo	W. Germany	1976
Clobesol	Glaxo	Italy	1977
Dermovai	Glaxo	France	1978
Dermovate	Glaxo	Japan	1979
Dermadex	Glaxo	· _	_

Raw Materials

Betamethasone-21-methanesulfonate Lithium chloride Propionic anhydride

Manufacturing Process

A solution of betamethasone 21-methanesulfonate (4 g) in dimethylformamide (25 ml) was treated with lithium chloride (4 g) and the mixture heated on the steam bath for 30 minutes. Dilution with water gave the crude product which was recrystallized to afford the title compound, MP 226°C.

Clobetasol is usually converted to the propionate as the useful form by reaction with propionic anhydride.

References

Merck Index 2330 Kleeman & Engel p. 222 DOT 9 (8) 339 (1973) I.N. p. 242

Elks, J., Phillipps, G.H. and May, P.J.; U.S. Patent 3,721,687; March 20, 1973; assigned to Glaxo Laboratories Limited, England

CLOBUTINOL

Therapeutic Function: Antitussive

Chemical Name: 4-chloro- α -[2-(dimethylamino)-1-methylethyl]- α -methylbenzeneethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 14860-49-2; 1215-83-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Silomat	Boehr /Ingel.	Switz.	1960
Silomat	Thomae	W. Germany	1960
Camaldin	Boehr /Ingel.	Italy	1962
Silomat	Badrial	France	1969
Silomat	Morishita	Japan	1975
Biotertussin	Bioter	_	-
Lomisat	Boehr./Ingel.	_	_
Pertoxil	Violani-Farmavigor	Italy	_

Raw Materials

3-Methyl-4-dimethylamino-butanone-(2) Magnesium p-Chlorobenzyl chloride Hydrogen chloride

Manufacturing Process

A solution of 0.2 mol (33 g) of 3-methyl-4-dimethylamino-butanone-(2) [produced according to Mannich, Arch. Pharm., vol. 265, page 589 (1927)] in 50 cc absolute ether was added dropwise, while stirring and cooling with ice, to a Grignard solution of 0.4 mol pchlorobenzylmagnesium-chloride which was produced from 64.5 g p-chlorobenzyl-chloride and 9.8 g magnesium in 200 cc absolute ether. The reaction product was heated for an additional one-half hour under reflux to bring the reaction to completion, and thereafter the reaction mixture was decomposed into an ether phase and an aqueous phase with about 50 cc concentrated hydrochloric acid and about 200 g ice. The ether phase was discarded and the aqueous phase was adjusted to an alkaline pH with ammonia and then thoroughly extracted with ether. After concentrating the united, dried ether extract solutions, the oily residue was fractionally distilled. The reaction product was obtained in the form of a colorless oil having a boiling point of 179° to 181°C. The yield was 48.5 g corresponding to 95% of theory.

The hydrochloride addition salt of the above reaction product was prepared in customary fashion, that is, by reaction with hydrochloric acid, followed by fractional crystallization from a mixture of alcohol and ether. The two possible racemic forms were obtained thereby. The difficultly soluble racemate had a melting point of 169° to 170°C and the more readily soluble racemate had a boiling point of 145° to 148°C.

References

Merck Index 2332 Kleeman & Engel p. 224 OCDS Vol. 2 p. 121 (1980) I.N. p. 242

Berg, A.; U.S. Patent 3,121,087; February 11, 1964; assigned to Dr. Karl Thomae GmbH, Germany

CLOCAPRAMINE

Therapeutic Function: Neuroleptic

Chemical Name: 1'-[3-(3-Chloro-10,11-dihydro-5H-dibenz[b,f] azepin-5-yl)propyl] [1,4-bi-

piperidine] 4-carboxamide

Common Name: Clocarpramine

Structural Formula:

Chemical Abstracts Registry No.: 47739-98-0

Trade Name	Manufacturer	Country	Year Introduced
Clofekton	Yoshitomi	Japan	1974

Raw Materials

3-Chloro-5-(3-chloropropyl)-10,11-dihydro-5H-dibenz(b,f)azepine

4-Carbamoyl-4-piperidinopiperidine

Manufacturing Process

A mixture of 5.0 g of 3-chloro-5-(3-chloropropyl)-10,11-dihydro-5H-dibenz(b,f)azepine, 5.0 g of 4-carbamoyl-4-piperidinopiperidine and 50 ml of dimethylformamide is heated at 100°C for 10 hours. The solvent is distilled off. After the addition of a 2% sodium carbonate solution to the flask, the content is scratched to yield a semisolid, which is dissolved in 50 ml of isopropanol. A solution of 5 g of maleic acid in 50 ml of isopropanol is added, and the precipitate is collected by filtration and recrystallized from isopropanol to give 5.6 g of crystalline 3-chloro-5-{3-(4-carbamoyl-4-piperidino-piperidino)propyl]-10,11-dihydro-5H-dibenz-(b.f)azepine di(hydrogen maleate) with 1/2 molecule of water of crystallization melting at 181°C to 183°C.

References

Merck Index 2334 Kleeman & Engel p. 224 OCDS Vol. 2 p. 416 (1980) DOT 10 (5) 161 (1974) I.N. p. 243

Nakanishi, M. and Tashiro, C.; U.S. Patent 3,668,210; June 6, 1972; assigned to Yoshitomi Pharmaceutical Industries, Ltd. (Japan)

CLOFEZONE

Therapeutic Function: Analgesic; antiinflammatory

Chemical Name: Equimolar mixture of Clofexamide which is 2-(p-chlorophenoxy)-N-[2-(diethylamino)ethyl] acetamide with phenylbutazone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17449-96-6; 60104-29-2 (Dihydrate)

Trade Name	Manufacturer	Country	Year Introduced
Perclusone	Anphar-Rolland	France	1967
Perclusone	Heinrich Mack	W. Germany	1974
Panas	Grelan	Japan	1976
Perclusone	Pierrel	Italy	1976
Perclusone	Abic	Israel	-
Perclustop	Uquifa	Spain	-

Raw Materials

Phenylbutazone p-Chlorophenoxyacetic acid diethylamino ethylamide (Clofexamid)

Manufacturing Process

935 g of phenylbutazone are dissolved, with heating to a lukewarm state, in 2.7 liters of acetone containing 20% water, and the mixture is filtered if necessary. 853,5 g of p-chlorophenoxyacetic acid diethylamino ethylamide are dissolved in 300 cc of acetone containing 20% water, and the solution is poured into the phenylbutazone solution. There is slight heating, and the solution clarifies. The salt crystallizes rapidly. Drying is effected on a Buchner funnel and the mixture is washed in 450 cc of acetone containing 20% of water. The 1,702 g of product obtained is recrystallized in 2,450 cc of acetone containing 20% of water and, after drying in an oven at 37°C, 1,585 g (86%) of product are obtained. The product is in the form of a white crystalline powder having a melting point of from 87°C to 89°C in the Maguenne block.

References

Kleeman & Engel p. 227 I.N. p. 245

Rumpf, P. and Thuillier, J.E.; U.S. Patent 3,491,190; January 20, 1970

CLOFIBRATE

Therapeutic Function: Cholesterol reducing agent

Chemical Name: 2-(4-chlorophenoxy)-2-methylpropanoic acid ethyl ester

Common Name: Ethyl p-chlorophenoxyisobutyrate

Structural Formula:

Chemical Abstracts Registry No.: 637-07-0

Trade Name	Manufacturer	Country	Year Introduced
Atromid-S	I.C.I.	U.K.	1963
Skleromexe	Merckle	W. Germany	1964
Atromid-S	Ayerst	U.S.	1967
Atromidin	I.C. Pharma	Italy	1969
Liposid	Ohta	Japan	1970
Amotril	Sumitomo	Japan	-
Apoterin A	Seiko	Japan	_
Arterioflexin	Arcana	Austria	_
Arterioflexin	Protea	Australia	_
Artes	Farmos	Finland	-
Artevil	N.C.S.N.	Italy	
Ateculon	Nippon Chemiphar	Japan	
Ateles	Tokyo Hosei	Japan	_
Atemarol	Kowa	Japan	_
Ateriosan	Finadiet	Argentina	
Aterosol	Ferrosol	Denmark	_
Athebrate	Karenyaku	Japan	_
Atherolate	Fuji Zoki	Japan	
Atheromide	Ono	Japan	_
Atherolip	Solac	France	_
Atheropront	Mack	W. Germany	_
Atmol	Taisho	Japan	_
Atosterine	Kanto	Japan	_
Atrofort	Dif-Dogu	Turkey	_
Atrolen	Firma	italy	_
Atromidin	I.C.P.	Italy	_
Atrovis	Novis	Israel	
Auparton	Samya	Japan	
Binograc	Zeria	Japan	
Bioscleran	Pfleger	W, Germany	
Bresit	Toyo Jozo	Japan	_
Cartagyl	Sopar	Belgium	_
Cholenal	Yamanouchi	Japan	_
Cholestol	Toho	Japan	_
		•	_
Cholesrun	Hokuriku	Japan	
Citiflus	C.T. Sarbach	Italy France	_
Claresan	I.C.NUsafarma	Brazil	-
Claripex Clarol			-
	Toyama	Japan	_
Climinon	Meiji	Japan	_
Cloberat	Negroni	Italy	_
Clobrat	Weifa	Norway	-
Clobrate	Chugai	Japan	
Clobren	Morishita	Japan	
Clof	Siegfried	Switz.	-
Clofbate	Mohan	Japan	_
Clofibral	Farmochimica	Italy	-
Clofinit	Gentili	Italy	
Clofipront	Mack	W. Germany	_
Clofirem	Roland-Marie	France	_
Deliva	Nippon Kayaku	Japan	-
Geromid	Zoja	Italy	-
Healthstyle	Sawai	Japan	_
Hyclorate	Funay	Japan	_
Hypocerol	Fuso	Japan	_
lpolipid	Isnardi	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Klofiran	Remeda	Finland	
Levatrom	Abic	Israel	_
Lipavil	Farmades	Italy	_
Lipavlon	Avlon	France	_
Lipidicon	Aristochimica	Italy	_
Liprinal	Bristol	U.K.	-
Liprinal	Banyu	Japan	_
Miscleron	Chinoin	Hungary	_
Normolipol	Delagrange	France	
Novofibrate	Novopharm	Canada	_
Recolip	Benzon	Denmark	_
Scierovasal	I.T.I.	Italy	
Scrobin	Nikken	Japan	_
Sklero-Tablinen	Sanorania	W. Germany	_
Ticlobran	Siegfried	Switz.	_
Xyduril	Dorsh	W. Germany	_
Yoclo	Shinshin	Japan	_

Raw Materials

p-Chlorophenoxyisobutyric acid Ethanol

Manufacturing Process

The ethyl p-chlorophenoxyisobutyrate may be obtained by heating a mixture of 206 parts of dry p-chlorophenoxyisobutyric acid, 1,000 parts of ethanol and 40 parts of concentrated sulfuric acid under reflux during 5 hours. The alcohol is then distilled off and the residue is diluted with water and extracted with chloroform. The chloroform extract is washed with sodium hydrogen carbonate solution, dried over sodium sulfate and the chloroform removed by distillation. The residue is distilled under reduced pressure and there is obtained ethyl p-chlorophenoxyisobutyrate, BP 148° to 150°C/20 mm.

The p-chlorophenoxyisobutyric acid used as starting material may be obtained as follows. A mixture of 200 parts of p-chlorophenol, 1,000 parts of acetone and 360 parts of sodium hydroxide pellets is heated under reflux and 240 parts of chloroform are gradually added at such a rate that the mixture continues to reflux without further application of heat.

When addition is complete the mixture is heated under reflux during 5 hours and then the acetone is removed by distillation. The residue is dissolved in water, acidified with hydrochloric acid and the mixture extracted with chloroform. The chloroform extract is stirred with sodium hydrogen carbonate solution and the aqueous layer is separated. The alkaline extract is acidified with hydrochloric acid and filtered. The solid product is drained free from oil on a filter pump, then washed with petroleum ether (BP 40° to 60°C), and dried at 50°C. The solid residue, MP 114° to 116°C, may be crystallized from methanol (with the addition of charcoal) to give p-chlorophenoxyisobutyric acid, MP 118° to 119°C.

References

Merck Index 2340 Kleeman & Engel p. 227 PDR p. 613 OCDS Vol. 1 p. 119 (1977) & 2 pp. 79, 101, 432 (1980) DOT 11 (4) 141 (1975) I.N. p. 245 REM p. 863

Jones, W.G.M., Thorp, J.M. and Waring, W.S.; U.S. Patent 3,262,850; July 26, 1966; assigned to Imperial Chemical Industries Limited, England

CLOFIBRIDE

Therapeutic Function: Hypocholesterolemiant

Chemical Name: 3-(Dimethylaminocarbonyl)-propyl-4'-chlorophenoxyisobutyrate

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Lipenan	Charpentier	France	1974
Evimot	Muller Rorer	W. Germany	1978

Raw Materials

Ethyl 4'-chlorophenoxyisobutyrate 4-Hydroxy-N,N-dimethylbutyramide

Manufacturing Process

48.5 parts of ethyl 4'-chlorophenoxyisobutyrate are dissolved in 200 parts by volume of dry toluene in the presence of 26.2 parts of 4-hydroxy-N,N-dimethyl butyramide and 2 parts of aluminum isopropylate. The solution is heated for 8 hours, while collecting the toluene-ethanol azeotrope, in an apparatus provided with a distillation column at a controllable rate of reflux. After this it is filtered, the solvent is evaporated in vacuo and the residue is distilled. An almost colorless, slightly yellow oil is obtained, the purity of which by chromatographic examination in the gaseous phase is of the order of 99.5%. Its boiling point is 175°C under 0.1 torr.

This oil is kept supercooled at the ambient temperature. Crystallization may be obtained by cooling or by seeding with crystals of the product. The melting point is 34°C (instantaneous on the Maguenne block).

The product can be recrystallized. For this, it is dissolved, for example, at the ambient temperature in petrol ether, ethyl ether or isopropyl ether, and this solution is cooled at about -50°C while stirring. After drying over sulfuric acid under vacuum, white needles of very great purity are thus obtained.

References

DOT 9 (5) 169 (1973)

I.N. p. 246

Nordmann, J., Mattioda, G.D. and Loiseau, G.P.M.H.; U.S. Patent 3,792,082; February 12, 1974; assigned to Ugine Kuhlmann

CLOFOCTOL

Therapeutic Function: Antiinfective; bacteriostatic

Chemical Name: 2-(2,4-Dichlorobenzyl)-4-(1,1,3,3-tetramethylbutyl)-phenol

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 37693-01-9

Trade Name	Manufacturer	Country	Year Introduced
Octofene	Debat	France	1978

Raw Materials

p-(1,1,3,3-Tetramethylbutyl)phenol 2.4-Dichlorobenzyl chloride Zinc chloride

Manufacturing Process

The following were introduced into a 1 liter flask provided with a reflux condenser: 206 g (1 mol) of p-(1,1,3,3-tetramethylbutyl)-phenol,147 g (0.75 mol) of 2,4-dichlorobenzyl chloride, 27 g (0.2 mol) of pure melted zinc chloride, and 750 ml of anhydrous chloroform.

The mixture was heated to reflux for 24 hours. The chloroformic reaction mixture was washed with water, and then dried over anhydrous sodium sulfate. The chloroform was evaporated off and the oil obtained was fractionally distilled under a pressure of 0.2 mm Hg. The fraction distilling at 140°C to 160°C, being the desired product indicated above, was collected and crystallized. Yield: 94 g (32% of theory); MP 78°C (after recrystallization in petroleum ether).

References

Kleeman & Engel p. 228 DOT 15 (4) 171 (1979)

I.N. p. 246

Debat, J.; U.S. Patent 3,830,852; August 20, 1974; assigned to Institute de Recherches Chimiques et Biologiques Appliquees (I.R.C.E.B.A.) (France)

CLOMIPHENE DIHYDROGEN CITRATE

Therapeutic Function: Antiestrogen (fertility inducer)

Chemical Name: 2-[4-(2-Chloro-1 2-diphenylethenyl)-phenoxy] N,N-diethylethanamine di-

hydrogen citrate

Common Name: Ciomifen citrate

Structural Formula: (base)

Chemical Abstracts Registry No.: 5041-9; 911-45-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Clomid	Lepetit	Italy	1966
Clomid	Merrell Dow	U.K.	1966
Clomid	Doetsch Grether	Switz.	1967
Clomid	Merrell National	U.S.	1967
Dyneric	Merrell	W. Germany	1967
Clomid	Merrell	France	1968
Ser o phene	Serono	U.S.	1982
Clomivid	Draco	Sweden	_
Clostilbegyt	Egyt	Hungary	_
Gravosan	Spofa	Czechoslovakia	_
Ikaclomine	lka	Israel	_
Omifin	Inibsa	Spain	_
Prolifen	Chiesa	Italy	_

Raw Materials

4-(β-Diethylaminoethoxy)benzophenone	Hydrogen chloride
Benzyl magnesium chloride	Citric acid
N-Chlorosuccinimide	

Manufacturing Process

A mixture of 20 g of 1-[p-(β -diethylaminoethoxy)phenyl]-1,2-diphenylethanol in 200 cc of ethanol containing an excess of hydrogen chloride was refluxed 3 hours. The solvent and excess hydrogen chloride were removed under vacuum, and the residue was dissolved in a mixture of ethyl acetate and methylene chloride. 1-[p- $(\beta$ -diethylaminoethoxy)phenyl]-1,2-diphenylethylene hydrochloride was obtained, melting at 148° to 157°C. This hydrochloride salt was treated with N-chlorosuccinimide in dry chloroform under reflux. The product then obtained was converted to the free base and treated with citric acid. The dihydrogen citrate salt of 1- $[p-(\beta-diethylaminoethoxy)]$ -1,2-diphenylchloroethylene was obtained, melting at 116.5° to 118°C.

The intermediate 1- $[p-(\beta-d)]$ -diethylaminoethoxy)phenyl $\{-1,2-d\}$ -diethylaminoethoxy treating 4-(β -diethylaminoethoxy)benzophenone with benzylmagnesium chloride. It melted at 95° to 96°C.

References

Merck Index 2349 DFU 3 (11) 850 (1978) Kieeman & Engel p. 230 PDR pp. 1225, 1699 OCDS Vol. 1 pp. 105, 148 (1977) & 2 p. 127 (1980) I.N. p. 247 REM p. 990

Allen, R.E., Palopoli, F.P., Schumann, E.L. and Van Campen, M.G. Jr.; U.S. Patent 2 914,563; November 24, 1959; assigned to The Wm. S. Merrell Company

CLOMIPRAMINE

Therapeutic Function: Antidepressant

Chemical Name: 3-Chloro-10,11-dihydro-N,N-dimethyl-5H-dibenz[b,f] azepine-5-propanam ine

Common Name: Chlorimipramine

Structural Formula:

Chemical Abstracts Registry No.: 303-49-1; 17321-77-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Anafranil	Ciba Geigy	Switz.	1968
Anafranil	Ciba Geigy	W. Germany	1968
Anafranil	Fujisawa	Japan	1970
Anafranil	Ciba Geigy	Italy	1970
Anafranil	Ciba Geigy	U.K.	1970
Anafranii	Ciba Gelgy	Australia	1983
Marunil	Unipharm	Israel	-
Hydiphen	Arzneimittelwerk Dresden	E, Germany	

Raw Materials

3-Chloroiminodibenzyl

Sodium amide

Y-Dimethylaminopropyl chloride

Manufacturing Process

22.9 parts of 3-chloroiminodibenzyl are dissolved in 300 parts by volume of xylene, and 4 parts of sodium amide, pulverized and suspended in toluene, are added thereto while stirring and maintaining the whole under a nitrogen atmosphere. The xylene solution immediately turns dark colored, but upon crystallization of the sodium salt therefrom it becomes again light-colored. The reaction mixture is stirred for about 2 hours at 80°C until the development of ammonia has terminated. A solution of γ -dimethylaminopropyl chloride in toluene, prepared by setting free a corresponding amount of the free base from 17.4 parts of its hydrochloride salt by addition of aqueous sodium hydroxide solution in about 10% excess, extraction with toluene and drying for 2 hours over anhydrous sodium sulfate is added to the xylene solution containing the sodium salt mentioned above and the whole is stirred under reflux for 15 hours. Precipitated sodium chloride is filtered off and the filtrate is concentrated. The residue is diluted with ether, and the hydrochloride of 3-chloro-5-(γ-dimethylaminopropyl)-iminodibenzyl is precipitated by introducing dry, gaseous hydrogen chloride. It is filtered off under suction and purified by repeated recrystallization from acetone; the pure substance melts at 191.5°C to 192°C.

References

Merck Index 2350 Kleeman & Engel p. 231 DOT 4 (4) 143 (1968) & 9 (6) 218 (1973) I.N. p. 248

Schindler, W. and Dietrich, H.; U.S. Patent 3,515,785; June 2, 1970; assigned to Geigy Chemical Corp.

CLONAZEPAM

Therapeutic Function: Anticonvulsant

Chemical Name: 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1622-61-3

Trade Name	Manufacturer	Country	Year Introduced
Rivotril	Roche	France	1973
Rivotril	Roche	U.K.	1974
Clonopin	Roche	U.S.	1975
Rivotril	Roche	Italy	1975
Rivotril	Roche	W. Germany	1976
Rivotril	Roche	Switz,	1976
Rivotril	Roche	Japan	1980
Rancedon	Sumitomo	Japan	1981
Antelepsin	Arzneimittelwerk Dresden	E. Germany	_
Clonex	Teva	Israel	_
Iktorivil	Roche	_	_
Landsen	Sumitomo	Japan	_

Raw Materials

2-Amino-2'-nitrobenzophenone	Sodium nitrite
Hydrogen chloride	Hydrogen
Bromoacetyl bromide	Ammonia
Pyridine	Potassium nitrate
Sulfuric acid	

Manufacturing Process

The following description is taken from U.S. Patent 3,116,203. A stirred solution of 75 g of 2-amino-2'-nitrobenzophenone in 700 ml of hot concentrated hydrochloric acid was cooled to 0°C and a solution of 21.5 g of sodium nitrite in 50 ml of water was added in the course of 3 hours. The temperature of the suspension was kept at 2° to 7°C during the addition. The resulting clear solution was poured into a stirred solution of 37 g of cuprous chloride in 350 ml of hydrochloric acid 1:1. The solid which had formed after a few minutes was filtered off, washed with water and recrystallized from ethanol. Crystals of 2-chloro-2'-nitrobenzophenone melting at 76° to 79°C were obtained.

A solution of 20 g of 2-chloro-2'-nitrobenzophenone in 450 ml of ethanol was hydrogenated at normal pressure and room temperature with Raney nickel. After uptake of about 6 liters of hydrogen the catalyst was filtered off, and the alcohol then removed in vacuo. The residue was distilled in a bulb tube at 0.4 mm and a bath temperature of 150° to 165°C giving a yellow oil. The oil was dissolved in alcohol, and on addition of water, needles of 2-amino-2'-chlorobenzophenone melting at 58° to 60°C were obtained.

To a solution of 42 g of 2-amino-2'-chlorobenzophenone in 500 ml of benzene, 19 ml of bromoacetyl bromide was added dropwise. After refluxing for 2 hours, the solution was cooled, washed with 2 N sodium hydroxide and evaporated. The residue was recrystallized from methanol giving crystals of 2-bromo-2'-(2-chlorobenzoyl) acetanilide melting at 119° to 121°C.

To a solution of 14.5 g of 2-bromo-2'-(2-chlorobenzoyl)acetanilide in 100 ml of tetrahydrofuran, an excess of liquid ammonia (ca 150 ml) was added. The ammonia was kept refluxing with a dry-ice condenser for 3 hours after which time the ammonia was allowed to evaporate and the solution was poured into water. Crystals of 2-amino-2'-(2-chlorobenzoyl)acetanilide were collected, which after recrystallization from ethanol melted at 162° to 164°C.

A solution of 3 g of 2-amino-2'-(2-chlorobenzoyl)acetanilide in 50 ml of pyridine was refluxed for 24 hours after which time the pyridine was removed in vacuo. The residue was recrystallized from methanol and a mixture of dichloromethane and ether giving crystals of 5-(2-chlorophenyl)-3H-1,4-benzodiazepin-2(1H)-one melting at 212° to 213°C.

To a solution of 13.5 g of 5-(2-chlorophenyl)-3H-1,4-benzodiazepin-2(1H)-one in 60 ml of concentrated sulfuric acid, a solution of 5.5 g of potassium nitrate in 20 ml concentrated sulfuric acid was added dropwise. The solution then was heated in a bath at 45° to 50°C for 21/2 hours, cooled and poured on ice. After neutralizing with ammonia, the formed precipitate was filtered off and boiled with ethanol. A small amount of white insoluble material was then filtered off. The alcoholic solution on concentration yielded crystals of 7-nitro-5-(2-chlorophenyl)-3H-1,4-benzodiazepin-2(1H)-one which, after recrystallization from dichloromethane, melted at 238° to 240°C.

References

Merck Index 2352 Kleeman & Engel p. 232 PDR p. 1481 DOT 9 (6) 237 (1973) & 9 (12) 487 (1973) I.N. p. 248

REM p. 1077 Kariss, J. and Newmark, H.L.; U.S. Patents 3,116,203; December 31, 1963; and 3,123,529; March 3, 1964; both assigned to Hoffmann-LaRoche, Inc.

Keller, O., Steiger, N. and Sternbach, L.H.; U.S. Patents 3,121,114; February 11, 1964; and 3,203,990; August 31, 1965; both assigned to Hoffmann-LaRoche, Inc.

Focella, A. and Rachlin, A.I.; U.S. Patent 3,335,181; August 8, 1967; assigned to Hoffmann-LaRoche, Inc.

CLONIDINE HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: 2-(2,6-dichloroanilino)-2-imidazoline hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4205-91-8: 4205-90-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Catapresan	Boehr./Ingel	W. Germany	1966
Catapresan	Boehr./Ingel	Switz.	1966
Catapresan	Boehr./Ingel	Italy	1970

Trade Name	Manufacturer	Country	Year Introduced
Catapres	Tanabe	Japan	1970
Catapres	Boehr./Ingel	U.K.	1971
Catapresan	Boehr./Ingel	France	1971
Catapres	Boehr./Ingel	U.S.	1974
Bapresan	Chemie Linz.	Austria	_
Caprysin	Star	Finland	_
Clonilou	Hermes	Spain	
Clonisin	Leiras	Finland	
Clonnirit	Rafa	Israel	
Dixarit	W.B. Pharm	U.K.	_
Haemiton	Arzneimittelwerk Dresden	E. Germany	_
Ipotensium	Pierrel	Italy	_
Isoglaucon	Boehr./Ingel	W. Germany	_
Normopresan	Rafa	Israel	
Tensinova	Cheminova	Spain	_

2,6-Dichloroaniline Methyl iodide Hydrogen chloride

Ammonium thiocvanate Ethylene diamine

Manufacturing Process

N-(2.6-dichlorophenyl)thiourea (MP 149°C) was prepared in customary manner from 2,6dichloroaniline (Organic Synthesis III, 262-263) and ammonium thiocyanate. 16.0 g of this thiourea derivative were refluxed for 21/2 hours together with 16 g of methyl iodide in 150 cc of methanol. Thereafter, the methanol was evaporated out of the reaction mixture in vacuo, leaving as a residue 22 g of N-(2.6-dichlorophenyl)-S-methyl-isothiouronium hydroiodide of the formula

having a melting point of 170°C. The entire residue was then admixed with an excess (120%) above the molar equivalent of ethylenediamine, and the mixture was heated for about one hour at 130° to 150°C. Methyl mercaptan was given off. Thereafter, the reaction mixture comprising 2-(2',6'-dichloroanilino)-1,3-diazacyclopentene-(2) hydroiodide was taken up in hot dilute acetic acid, and the resulting solution was made alkaline with 2 N NaOH. A precipitate formed which was separated by vacuum filtration, washed with water and dried. 4.0 g of 2-(2',6'-dichloroanilino)-1,3-diazacyclopentene-(2) were obtained. The product had a melting point of 130°C.

The free base was then dissolved in absolute methanol, and the resulting solution was then adjusted to an acid pH value with an ethereal hydrochloric acid solution. The acidified solution was purified with charcoal and then dry ether was added thereto until crystallization took place. The hydrochloride, prepared in this customary manner, had a melting point of 305°C according to U.S. Patent 3,202,660.

References

Merck Index 2353 Kleeman & Engel p. 232 PDR p. 675 OCDS Vol. 1 p. 241 (1977) DOT 9 (3) 97 (1973) I.N. p. 249 REM p. 845

Zeile, K., Hauptmann, K.-H. and Stahle, H.; U.S. Patents 3,202,660; August 24, 1965; and 3,236,857; February 22, 1966; both assigned to Boehringer Ingelheim GmbH, Germany

CLOPENTHIXOL

Therapeutic Function: Antipsychotic

Chemical Name: 4-[3-(2-Chloro-9H-thioxanthen-9-ylidene)propyl] -1-piperazineethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 982-24-1; 633-59-0 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Ciatyl	Tropon	W. Germany	1961
Sordinol	Bracco	Italy	1967
Clopixol	Lundbeck	U.K.	1978
Cisordinol	Lundbeck	_	_
Sordenac	Lundbeck		_
Thiapax	lkapharm	israel	_

Raw Materials

2-Chloro 9-(3'-dimethylaminopropylidene)-thiaxanthene $N-(\beta-hydroxyethyl)$ -piperazine

Manufacturing Process

A mixture of 31.5 g (0.1 mol) of 2-chloro-9-(3'-dimethylaminopropylidene)-thiaxanthene (MP 97°C) and 100 g of N-(β -hydroxyethyl)-piperazine is heated to 130°C and boiled under reflux at this temperature for 48 hours. After cooling, the excess of N-(β -hydroxyethyl)piperazine is evaporated in vacuo, and the residue is dissolved in ether. The ether phase is washed with water and extracted with dilute acetic acid, and 2-chloro-9-[3'-N-(N'β-hydroxyethyl)-piperazinylpropylidene] -thiaxanthene separated from the aqueous acetic acid solution by addition of dilute sodium hydroxide solution to basic reaction. The free base is extracted with ether, the ether phase dried over potassium carbonate, the ether evaporated and the residue dissolved in absolute ethanol. By complete neutralization of the ethanolic solution with a solution of dry hydrogen chloride in absolute ethanol, the dihydrochloride of 2-chloro-9-[3'-N-(N' β -hydroxyethyl)-piperazinylpropylidene] -thiaxanthene is produced and crystallizes out as a white substance melting at about 250°C to 260°C with decomposition. The yield is 32 g.

References

Merck Index 2357 Kleeman & Engel p. 234 OCDS Vol. 1 p. 399 (1977) DOT 9 (6) 229 (1973)

I.N. p. 249

Petersen, P.V., Lassen, N.O. and Holm, T.O.; U.S. Patent 3,149,103; September 15, 1964; assigned to Kefalas A/S (Denmark)

CLOPERASTINE

Therapeutic Function: Antitussive

Chemical Name: 1-[2-[(p-chloro-α-phenylbenzyl)oxy] ethyl] piperidine

Common Name: ~

Structural Formula:

Chemical Abstracts Registry No.: 3703-76-2

Trade Name	Manufacturer	Country	Year Introduced
Hustazol	Yoshitomi	Japan	1972
Seki	Symes	Italy	1981

Raw Materials

p-Chlorobenzhydryl bromide Ethylene chlorohydrin **Piperidine**

Manufacturing Process

The manufacture of a related compound is first described. 28.1 parts of p-chloro-benzhydryl bromide are heated to boiling, under reflux and with stirring, with 50 parts of ethylene chlorohydrin and 5.3 parts of calcined sodium carbonate. The reaction product is extracted with ether and the ethereal solution washed with water and dilute hydrochloric acid. The residue from the solution in ether boils at 134° to 137°C under 0.2 mm pressure and is p-chloro-benzhydryl-(β -chloroethyl) ether.

28.1 parts of this ether are heated with 12 parts of methylethylamine (100%) in a sealed tube for 4 hours at 110°C. The product of the reaction is extracted several times with dilute hydrochloric acid, the acid solution made alkaline, in the cold, with concentrated caustic soda solution and the base which separates taken up in ether. The ether extract is washed with concentrated potassium carbonate solution, evaporated down, and the residue distilled in vacuo. The product is β -methylethyl aminoethyl p-chlorobenzhydryl ether, BP 152° to 153°C/0.1 mm.

Reaction with dimethylethylamine instead of methylethylamine leads directly to a quaternary compound, which type of compound can also be obtained by reacting the tertiary aminoethyl ether with reactive esters.

If 18 parts of piperidine are used instead of 12 parts of methylethylamine then the same procedure results in the formation of p-chloro-benzyhydril-(β-piperidino-ethyl) ether, boiling at 178° to 180°C under 0.15 mm pressure.

References

Merck Index 2358 Kleeman & Engel p. 234 I.N. p. 250

British Patent 670,622; April 23, 1952; assigned to Parke, Davis & Company

CLOPREDNOL

Therapeutic Function: Glucocorticoid

Chemical Name: 6-Chloro-11,17,21-trihydroxypregna-1,4,6-triene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5251-34-3

Trade Name	Manufacturer	Country	Year Introduced
Syntestan	Syntex	W, Germany	1980
Novacort	Syntex	Switz.	1983
Synclopred	Syntex	_	_

Raw Materials

6α-Chlorohydrocortisone 21-acetate Chloranii

Manufacturing Process

A mixture of 5 g of the 21-acetate of 60-chlorohydrocortisone, 7 g of chloranil and 100 cc of n-amyl alcohol was refluxed for 16 hours, cooled and diluted with ether. The solution was successively washed with water, 5% sodium carbonate solution and water, dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure. Chromatographic purification of the residue yielded the 21-acetate of 6-chloro- $\Delta^{1,4,6}$ -pregnatriene- $11\beta.17\alpha.21$ -triol-3.20-dione.

References

Merck Index 2361 DFU 2 (1) 18 (1977) OCDS Vol. 2 p. 182 (1980) DOT 17 (10) 393 (1981) I.N. p. 250

Ringold, H.J. and Rosenkranz, G.; U.S. Patent 3,232,965; February 1, 1966; assigned to Syntex Corp.

CLORAZEPATE DIPOTASSIUM

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-2,3-dihydro-2,2-dihydroxy-5-phenyl-1H-1,4-benzodiazepine-3-

carboxylic acid dipotassium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15585-90-7; 20432-69-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tranxene	Clin Comar	France	1968
Tranxilium	Mack	W. Germany	1969
Tranxilium	Cun Midy	Switz.	1969
Transene	Zambeletti	Italy	1970
Tranxene	Abbott	U.S.	1972
Tranxene	Boehr./Ingel,	U.K.	19 73
Mendon	Dainippon	Japan	1980
Anxidin	Orion	Finland	-
Azene	Endo	U.S.	_
Belseren	Mead Johnson	_	_
Enadine	York	Argentina	_
Nansius	Prodes	Spain	_
Noctran	Clin-Comar-Byla	France	
Tranex	Idravlje	Yugoslavia	_
Tranxilen	Leo	Sweden	_

Raw Materials

2-Amino-5-chlorobenzonitrile Methyl aminomalonate Potassium hydroxide

Bromobenzene Magnesium

Manufacturing Process

(A) Preparation of (2-Amino-5-Chlorophenyl)Phenylmethaneimine (4356 CB): A solution of 228.7 g (1.5 mols) of 2-amino-5-chlorobenzonitrile in 1,800 ml of dry ether is added slowly in the course of about 3.5 hours to a solution of phenyl magnesium bromide prepared from 109 g (4.5 g-atoms) of magnesium turnings and 848 g (5.4 mols) of bromobenzene in 3,600 ml of anhydrous ether, and the mixture then heated under reflux for 15 hours.

The complex is decomposed by stirring the reaction mixture into a solution prepared from 500 g of ammonium chloride in 2,000 ml of water to which 3 kg of crushed ice have been added. After extraction and washing, the ether is evaporated in vacuo at 40°C. The oily residue is taken up in 500 ml of petroleum ether and left to crystallize by cooling at -20°C. The yellowish crystals formed are dried (309 g); MPk (Kofler block): 74°C; yield: 92%.

(B) Preparation of 7-Chloro-3-Methoxycarbonyl-5-Phenyl-2-Oxo-2,3-Dihydro-1H-Benzo [f]-1,4-Diazepine (4347 CB): A solution of 9.2 g (0.04 mol) of compound 4356 CB in 20 ml of methanol is added dropwise, in the course of one hour and 30 minutes, to a boiling solution of 9.2 g (0.05 mol) of the hydrochloride of methyl aminomalonate in 30 ml of methanol. When this is completed, heating under reflux is continued for 30 minutes and the product then concentrated to dryness under reduced pressure. The residue is taken up in water and ether, the ethereal layer separated, the product washed with water and dried over sodium sulfate. The solvent is evaporated under reduced pressure. The residue, which consists of the methyl ester, could not be obtained in the crystalline state. It is dissolved in 25 ml of acetic acid, heated under reflux for 15 minutes, the product evaporated to dryness and the residual oil taken up in ether. A colorless solid separates which is filtered by suction and recrystallized from methanol. Colorless crystals are obtained (4.7 g); MP_k (Kofler block): 226°C. A second crop (1.5 g) is obtained on concentration of the mother liquor; MPk (Kofler block): 222°C; total quantity 6.2 g, corresponding to a yield of 47%.

(C) Preparation of Dipotassium Salt of [2-Phenyl-2-(2-Amino-5-Chlorophenyl)-1-Azavinyl] Malonic Acid (4306 CB): 50 g of caustic potash are dissolved in 1,350 ml of 96% ethyl alcohol, and 82 g (0.25 mol) of compound 4347 CB are then added all at once at a temperature of about 70°C. The solid dissolves rapidly to form a yellow solution which then loses color while simultaneously an abundant colorless precipitate appears.

After cooling, the solid is filtered by suction and washed with alcohol at 96°C. The product is dried at ordinary temperature in a high vacuum. A colorless solid is obtained (quantitative yield), which is completely soluble in water. The aqueous solution is strongly alkaline in reaction; when acidified with acetic acid and heated on a water bath, it yields a precipitate of 7-chloro-5-phenyl-2-oxo-2,3-dihydro-1H-benzo[f]-1,4-diazepine.

References

Merck Index 2364 Kleeman & Engel p. 311 PDR p. 553 DOT 4 (4) 137 (1968) & 9 (6) 238 (1973) I.N. p. 251 REM p. 1061 Schmitt, J.; U.S. Patent 3,516,988; June 23, 1970

CLOREXOLONE

Therapeutic Function: Diuretic

Chemical Name: 6-Chloro-2-cyclohexyl-2,3-dihydro-3-oxo-1H-isoindole-5-sulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2127-01-7

Trade Name	Manufacturer	Country	Year Introduced
Speciatensol	Specia	France	1966
Flonatril	Specia	France	_
Nefrolan	May & Baker	U.K.	_
Nefrolan	Teikoku Zoki	Japan	

4-Chlorophthalimide	Sulfuric acid
Cyclohexylamine	Stannous chloride
Tin	Sodium nitrite
Hydrogen chloride	Sulfur dioxide
Potassium nitrate	Ammonia

Manufacturing Process

4-chlorophthalimide (263 g) was reacted in amyl alcohol (2.6 g) with cyclohexylamine (143.5 g, 1 mol) at reflux temperature for 16 hours to give N-cyclohexyl-4-chlorophthalimide (250 g, 66%) as a solid, MP 134°C to 136°C.

N-cyclohexyl-1-chlorophthalimide (250 g) was dissolved in glacial acetic acid (2.5 \Re), concentrated hydrochloric acid (555 ml) and tin (278 g) were added and the suspension was heated on a steam bath for 16 hours. The cooled solution was filtered and concentrated to dryness in vacuo to give a white solid. This solid was dissolved in water and the precipitated oil extracted with chloroform. The chloroform solution was dried and concentrated in vacuo to give a solid which, after recrystallization, yielded 5-chloro-2-cyclohexylisoindolin-1-one (43%), MP 140°C to 142°C.

5-chloro-2-cyclohexylisoindolin-1-one (102.9 g) was dissolved in concentrated sulfuric acid (665 ml); potassium nitrate (723 g) in concentrated sulfuric acid (166 ml) was added at 0°C. The reaction mixture was allowed to warm to room temperature and stirred at 25°C for 12 hours. The reaction mixture was poured onto ice to give a cream solid which, after recrystallization from benzene, gave 5-chloro-2-cyclohexyl-6-nitroisoindolin-1-one (46.7 g, 44%) as a white solid, MP 164°C to 168°C.

5-chloro-2-cyclohexyl-6-nitroisoindolin-1-one (93.9 g) was reduced in concentrated hydrochloric acid (1,970 ml) with stannous chloride (376 g). The reaction temperature rose to 70°C. The resulting solution was cooled in ice and filtered. The product was washed well with water, filtered and dried to give 6-amino-5-chloro-2-cyclohexylisoindolin-1-one (74.1 g, 87.6%) which, after recrystallization from benzene, had a MP of 216°C to 218°C.

6-amino-5-chloro-2-cyclohexylisoindolin-1-one (42.5 g) was dissolved in concentrated hydrochloric acid (425 ml) and the solution diazotized by the addition of sodium nitrite (21,25 g) in water (125 ml). The resulting diazonium salt solution was added to a solution of liquid sulfur dioxide (93 ml) in glacial acetic acid (243 ml) containing cuprous chloride (2,25 g). A yellow solid was precipitated; this was filtered off, washed, dried and recrystallized from benzene to give 5-chloro-2-cyclohexylisoindolin-1-one-6-sulfonyl chloride (45 g. 80%) as a cream solid, MP 171°C to 174°C.

This sulfonyl chloride (23.7 g) was reacted with liquid ammonia (23.7 ml) to give 5-chloro-2-cyclohexyl-6-sulfamoylisoindolin-1-one (14.2 g, 53%), MP 259°C to 261°C.

References

Merck Index 2365 Kleeman & Engel p. 235 DOT 2 (4) 128 (1966) I.N. p. 251

Lee, G.E. and Wragg, W.R.; U.S. Patent 3,183,243; May 11,1965; assigned to May & Baker, Ltd.

CLORPRENALINE

Therapeutic Function: Bronchodilator

Chemical Name: 2-chloro-α-[((1-methylethyl)amino] methyl] benzenemethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3811-25-4; 5588-22-7 (Hydrochloride monohydrate)

Trade Name	Manufacturer	Country	Year Introduced
Asthone	Eisai	Japan	1970
Aremans	Zensei	Japan	-
Asnormal	Sawai	Japan	_
Bronocon	Wakamoto	Japan	-
Clopinerin	Nippon Shoji	Japan	_
Clorprenaline	Kongo	Japan	_
Conselt	Sana	Japan	-
Cosmoline	Chemiphar	Japan	_
Fusca	Hoei	Japan	_
Kalutein	Tatsumi	Japan	_
Pentadoll	Showa	Japan	
Propran	Kobayashi Kako	Japan	_
Restanolon	Isei	Japan	-
Troberin	Nippon Zoki	Japan	-

Raw Materials

o-Chloroacetophenone Sodium borohydride

Bromine Isopropylamine

Manufacturing Process

To a solution of 279 g of o-chloroacetophenone in 2 liters of anhydrous diethyl ether were added about 3 g of dibenzoyl peroxide. 5 g of bromine were added to the resulting solution, and after 3 minutes, the color of bromine had been discharged, indicating that the formation of ω -bromo-o-chloroacetophenone had been initiated. A further amount of 288 g of bromine was added dropwise to the reaction mixture over a 1½ hour interval. After the addition of the bromine had been completed, the reaction mixture was stirred for one-half hour and poured over about 1 kg of crushed ice.

After the ice had melted, the resulting aqueous and ethereal layers were separated. The ethereal layer containing ω-bromo-o-chloroacetophenone was washed with successive 500 ml quantities of water, 5% sodium carbonate solution and again with water to remove the hydrogen bromide formed as a by-product in the reaction. The ethereal layer was dehydrated by contacting with anhydrous magnesium sulfate. The drying agent was removed by filtration and the ether was evaporated from the filtrate. The residue remaining after the evaporation consisted of about 400 g of ω -bromo-o-chloroacetophenone.

A solution of 400 g of ω -bromo-o-chloroacetophenone in one liter of methanol was cooled to about 25°C. A cold solution of 92.5 g of sodium borohydride in one liter of methanol was added as rapidly as possible to this cooled solution while maintaining the temperature

below about 25°C. After the addition had been completed, the reaction mixture was allowed to stand for 4 hours at ambient room temperature, to complete the reduction of the keto group of the ω -bromo-o-chloroacetophenone. The reaction mixture containing a mixture of o-chlorophenyl ethylene- β -bromohydrin and o-chlorophenyl ethylene oxide was then evaporated in vacuo at room temperature to a syrup which was poured into about one liter of 5% hydrochloric acid to decompose any borate-alcohol complexes.

The two compounds were dissolved in diethyl ether by extracting the acidic layer three times with successive 500 ml portions of diethyl ether. The combined ether extracts were dried over anhydrous magnesium sulfate and filtered, and the ether was removed by evaporation in vacuo. A residue consisting of 400 g of a mixture of o-chlorophenyl ethyleneβ-bromohydrin and o-chlorophenyl ethylene oxide was obtained.

400 g of a mixture of o-chlorophenyl ethylene-β-bromohydrin and o-chlorophenyl ethylene oxide were dissolved in one liter of anhydrous ethanol. To this solution was added a solution of 306 g of isopropylamine in one liter of anhydrous ethanol. The reaction mixture was heated at refluxing temperature for about 16 hours, thus forming N- $[\beta$ -(o-chlorophenyl)- β -hydroxyethyl]-isopropylamine. The solvent was removed in vacuo, and to the residue was added a solution containing 200 ml of 12 N HCl in 2,500 ml of water.

The acidic solution was washed twice with 500 ml portions of ether which were discarded. The acidic layer was then made basic by the addition of 250 ml of 5% (w/v) sodium hydroxide, thus liberating the free base of N- $[\beta$ -(o-chlorophenyl)- β -hydroxyethyl]-isopropylamine. The free base was extracted with two successive one liter portions of diethyl ether. The combined ether extracts were dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to remove all of the solvents. N-[β-(o-chlorophenyl)-β-hydroxyethyl]isopropylamine was thus obtained, according to U.S. Patent 2,887,509.

The N-[\(\beta\)-(\(\rho\)-(h)orophenyl\)-\(\beta\)-hydroxyethyl\] -isopropylamine obtained by the foregoing procedure was dissolved in about 3 liters of ether and dry hydrogen chloride gas was bubbled into the solution until it was saturated, whereupon the hydrochloride salt of N-[β-(o-chloropheny!)-β-(hydroxy)-ethyl] isopropylamine precipitated. The salt was separated from the ether by filtration, and was dissolved in two liters of anhydrous ethanol. The alcoholic solution was decolorized with charcoal and filtered.

Three liters of anhydrous ether were added thereto and the N- $[\beta$ -(o-chlorophenyl)- β -hydroxyethyl] -isopropylamine hydrochloride precipitated in crystalline form as the monohydrate. The mixture was maintained at about 0°C for 40 hours and then filtered. The filter cake was washed with ether and dried. About 209 g of N-[\beta-(o-chlorophenyl)-\beta-(hydroxy)-ethyl] isopropylamine hydrochloride monohydrate, melting at about 163° to 164°C, were obtained according to U.S. Patent 2,816,059.

References

Merck Index 2368 Kleeman & Engel p. 236 OCDS Vol. 2 p. 39 (1980) I.N. p. 252

Mills, J.; U.S. Patent 2,816,059; December 10, 1957; assigned to Eli Lilly and Company Nash, J.F.; U.S. Patent 2,887,509; May 19, 1959; assigned to Eli Lilly and Company

CLORTERMINE HYDROCHLORIDE

Therapeutic Function: Antiobesity drug

Chemical Name: 2-chloro- α - α -dimethylbenzeneethanamine hydrochloride

Common Name: 1-(o-chlorophenyl)-2-methyl-2-aminopropane hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 10389-72-7; 10389-73-8 (Base)

Manufacturer

Voranil	USV	U.S.	1973	
Raw Materials				
o,α-Dichlorotoluene			Magnesium	
Acetone			Sulfuric acid	

Country

Year Introduced

Hydrogen chloride

Manufacturing Process

Sodium cyanide

Trade Name

To a Grignard reagent (prepared from 50.0 g of $o_i\alpha$ -dichloro-toluene and 7.45 g of magnesium in diethyl ether) is added 18.0 g of acetone at such rate that constant reflux is maintained. The reaction mixture is allowed to stand overnight at room temperature, and is then poured onto a mixture of 20% sulfuric acid and ice. The organic layer is separated, washed with water, an aqueous solution of sodium hydrogen carbonate and again with water, dried over magnesium sulfate and evaporated to dryness. The residue is distilled under reduced pressure to yield 42.6 g of 1-(o-chlorophenyl)-2-methyl-2-propanol, BP 120° to 122°C/12.5 mm.

To 29.0 ml of glacial acetic acid, cooled to 15°C, is added 11.5 g of sodium cyanide (98%) while stirring, and then dropwise 32.4 ml of concentrated sulfuric acid, dissolved in 29 ml of glacial acetic acid, while maintaining a temperature of 20°C. The 1-(o-chlorophenyl)-2-methyl-2-propanol is added moderately fast, allowing the temperature to rise spontaneously. After completing the addition, the reaction mixture is heated to 70°C and stirred, and is then poured onto a mixture of water and ice. The aqueous mixture is neutralized with sodium carbonate and extracted with diethyl ether. The organic solution is washed with water, dried over magnesium sulfate and evaporated to dryness.

The oily residue is taken up in 100 ml of 6 N aqueous hydrochloric acid and refluxed until a clear solution is obtained. The latter is made basic with aqueous ammonia and extracted with diethyl ether; the organic solution is separated, washed, dried and evaporated. The residue is distilled under reduced pressure to yield 26.3 g of 1-(o-chlorophenyl)-2methyl-2-propylamine, BP 116° to 118°C/16 mm.

The 1-(o-chlorophenyl)-2-methyl-2-propylamine hydrochloride is prepared by adding ethanolic hydrogen chloride to an ice-cold solution of the free base in ethanol; the desired salt precipitates and is recrystallized from ethanol, MP 245° to 246°C.

References

Merck Index 2369

Kleeman & Engel p. 236 I.N. p. 253 REM p. 891 Finocchio, D.V. and Heubner, C.F.; U.S. Patent 3,415,937; December 10, 1968; assigned to Ciba Corporation

CLOTIAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 5-(o-Chlorophenyi)-7-ethyl-1,3-dihydro-1-methyl-1H-thieno[2,3-e]-1,4-di-

azepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33671-46-4

Trade Name	Manufacturer	Country	Year Introduced
Rize	Yoshitomi	Japan	1979
Trecalmo	Trpon	W. Germany	1979

Raw Materials

2-N-Methyl-aminoacetamido-3-o-chlorobenzyl-5-ethylthiophene Acetic acid

Manufacturing Process

To a solution of 10 g of 2-N-methyl-aminoacetamido-3-o-chlorobenzoyl-5-ethylthiophene in 50 ml of pyridine are added 20 ml of benzene and 1.9 g of acetic acid. The resulting mixture is refluxed with stirring for 10 hours in a flask provided with a water-removing adaptor. The reaction mixture is concentrated, and the residue is extracted with chloroform. The chloroform layer is washed with water and then with a sodium hydrogen carbonate solution, then dried over magnesium sulfate. The chloroform is distilled off under reduced pressure, and toluene is added to the residue. Thus is precipitated white crystalline-5-o-chlorophenyl-7ethyl-1-methyl-1,2-dihydro-3H-thieno-{2,3-e} [1,4] diazepin-2-one, MP 105°C to 106°C.

References

Merck Index 2373 DFU 1 (8) 363 (1976) Kleeman & Engel p. 237 DOT 16 (1) 13 (1980)

I.N. p. 254

Nakanishi, M., Araki, K., Tahara, T. and Shiroki, M.; U.S. Patent 3,849,405; November 19, 1974; assigned to Yoshitomi Pharmaceutical Industries, Ltd.

CLOTRIMAZOLE

Therapeutic Function: Antifungal

Chemical Name: 1-[(2-chlorophenyl)diphenylmethyl]-1H-imidazole

Common Name: 1-(o-chlorotrityl)imidazole

Structural Formula:

Chemical Abstracts Registry No.: 23593-75-1

Trade Name	Manufacturer	Country	Year Introduced
Canesten	Bayer	U.K.	1973
Canesten	Bayer	Italy	1973
Canesten	Bayer	W. Germany	1973
Lotrimin	Schering	U.S.	1975
Empecid	Bayer	Ja pan	1976
Trimysten	Bellon	France	1978
Mycelex	Miles	U.S.	1979
Baycuten	Bayropharm	W. Germany	_
Gyne-Lotrimin	Debay	U.S.	-
Micoter	Cusi	Spain	
Myclo	Boehr./Ing.	· _	_
Mycosporin	Bayer	_	_

Raw Materials

o-Chlorophenyldiphenylmethyl chloride Imidazole

Manufacturing Process

156.5 g (0.5 mol) o-chlorophenyldiphenylmethyl chloride and 34 g (0.5 mol) imidazole are dissolved in 500 ml acetonitrile, with stirring, and 51 g (0.5 mol) triethylamine are added, whereupon separation of triethylamine hydrochloride occurs even at room temperature. In order to complete the reaction, heating at 50°C is carried out for 3 hours. After cooling, one liter of benzene is added and the reaction mixture is stirred, then washed salt-free with water. The benzene solution is dried over anhydrous sodium sulfate, filtered and concentrated by evaporation; giving 167 g crude 1-(o-chlorophenylbisphenylmethyl)-imidazole. By recrystallization from acetone, 115 g (= 71% of the theory) of pure 1-(o-chlorophenylbisphenylmethyl)-imidazole of MP 154° to 156°C are obtained.

References

Merck Index 2374 Kleeman & Engel p. 238 PDR pp. 1257, 1631 DOT 10 (1) 32 (1974) I.N. p. 254 REM p. 1227

Buechel, K.H., et al; South African Patent 69/0039; January 3, 1969; assigned to Farbenfabriken Bayer AG, Germany

Buechel, K.H., Regel, E. and Plempel, M.; U.S. Patent 3,660,577; May 2, 1972; and U.S. Patent 3,705,172; Dec. 5, 1972; both assigned to Farbenfabriken Bayer A.G. (Germany)

CLOXACILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-[[[3-(2-chlorophenyl)-5-methyl-4-isoxazolyl] carbonyl] -amino] -3,3-di-

methyl-7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid

Common Name: [3-(o-Chlorophenyl)-5-methyl-4-isoxazolyl]penicillin

Structural Formula:

Chemical Abstracts Registry No.: 61-72-3; 642-78-4 (Sodium Salt)

Trade Name	Manufacturer	Country	Year Introduced
Orbenin	Beecham	U.K.	1962
Cloxypen	Allard	France	1964
Orbenin	Beecham	W. Germany	1964
Tegopen	Bristol	U.S.	1965
Cloxapen	Beecham	U.S.	1976
Acucillin	Fuji	Japan	_
Ampiclox	Beecham	W. Germany	
Austrastaph	C.S.L.	Australia	_
Bactopen	Beecham	_	_
Benicil	lbsa	Switz.	_
Ellecid	Pharmax	Italy	_
Ekvacilline	Astra	_	_
Gelstaph	Beecham	_	_
Kloxerate	Duphar	U.K.	_
Methocillin-S	Meiji	Japan	
Novocloxin	Novopharm	Canada	
Orbenil	Teva	Israel	_
Orbenine	Beecham-Sevigne	France	_
Penstapho-N	Bristol	_	_
Prostaphlin	Galenika	Yugoslavia	_
Prostaphlin	Banyu	Japan	-
Rivoclox	Rivopharm	Switz.	_
Solcillin-C	Takeda	Japan	_
Staphybiotic	Delagrange	France	_
Syntarpen	Polfa	Poland	-
Totaclox	Beecham	Japan	-

Raw Materials

Ethyl acetoacetate

o-Chlorobenzohydroxamic acid chloride

6-Aminopenicillanic acid

Manufacturing Process

The reaction between 6-aminopenicillanic acid (6.5 g) and 3-o-chlorophenyl-5-methylisoxazole-4-carbonyl chloride (7.66 g) gave the sodium salt of 3-o-chlorophenyl-5-methyl-4-isoxazolyl-penicillin (9.98 g) as a pale yellow solid. Colorimetric assay with hydroxylamine against a benzylpenicillin standard indicated a purity of 68%.

The 3-o-chlorophenyl-5-methylisoxazole-4-carboxylic acid, from which the acid chloride was prepared, was obtained by hydrolysis of the ester product of the reaction between o-chlorobenzohydroxamic chloride and ethyl acetoacetate in methanolic sodium methoxide. Reaction with thionyl chloride gave the starting material.

References

Merck Index 2376 Kleeman & Engel p. 239 PDR pp. 673, 1606 OCDS Vol. 1 p. 413 (1977) I.N. p. 254 REM p. 1195

Doyle, F.P. and Nayler, J.H.C.; British Patent 905,778; September 12, 1962; assigned to Beecham Research Laboratories, Ltd.

Doyle, F.P. and Nayler, J.H.C.; U.S. Patent 2 996 501; August 15, 1961

CLOXAZOLAM

Therapeutic Function: Tranquilizer

Chemical Name: 10-chloro-11b-(2-chlorophenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d] [1,4] -

benzodiazepin-6(5H)-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24166-13-0

Trade Name	Manufacturer	Country	Year Introduced
Sepazon	Sankyo	Japan	1974
Enadel	Pfizer Taito	Japan	1974
Lubalix	Lubapharm	Switz.	1983
Betavel	Pharm, Investi	Spain	_
Olcadil	Sankyo	Japan	_
Tolestan	Roemmers	Argentina	_

Raw Materials

5-Chloro-2-bromoacetylamino-o-chlorobenzophenone Ethanolamine

Manufacturing Process

As described in U.S. Patent 3,772,371: To a solution of 5.8 g of 5-chloro-2-bromoacetylamino-o-chlorobenzophenone in 120 ml of ethanol were added 0.95 g of ethanolamine and 1.3 g of sodium acetate. The resulting mixture was heated under reflux for 16 hours. After completion of the reaction, the solvent was distilled off and the residue was extracted with dichloromethane. The extract was washed with water, dried over anhydrous sodium sulfate and the solvent was distilled off to give 3.25 g of the desired product melting at 202° to 204°C with decomposition.

References

Merck Index 2377 Kleeman & Engel p. 240 DOT 11 (1) 35 (1975)

I.N. p. 254

Tachikawa, R., Takagi, H., Kamioka, T., Fukunaga, M., Kawano, Y. and Miyadera, T.; U.S. Patents 3,696,094; October 3, 1972; and 3,772,371; November 13, 1973; both assigned to Sankyo Company Limited, Japan

CLOZAPINE

Therapeutic Function: Tranquilizer

Chemical Name: 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b,e] [1,4] diazepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5786-21-0

Trade Name	Manufacturer	Country	Year Introduced
Leponex	Wander	W. Germany	1974
Leponex	Wander	Switz.	1975
Clozarii	Sandoz	_	_

Raw Materials

2-Amino-4-chlorodiphenylamine-2'-carboxylic(4"-methyl)piperazide Phosphoroxychloride

Manufacturing Process

7.4 g of 2-amino-4-chlorodiphenylamine-2'-carboxylic acid (4"-methyl)piperazide and 35 ml of phosphoroxychloride are heated for 3 hours under reflux in the presence of 1.4 ml of N.N-dimethylaniline. Upon concentration of the reaction mixture in vacuo as far as possible, the residue is distributed between benzene and ammonia/ice water. The benzene solution is extracted with dilute acetic acid. The acid extract is clarified with charcoal and treated with concentrated ammonia water to precipitate the alkaline substance, which is dissolved in ether. The ethereal solution is washed with water and dried over sodium sulfate. The residue obtained yields, after recrystallization from ether/petroleum ether 2.9 q

(41% of the theoretical yield) of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b.e] [1.4] diazepine in the form of yellow grains of melting point 182° to 184°C (from acetone/petroleum ether).

References

Merck Index 2378 Kleeman & Engel p. 240 OCDS Vol. 2 p. 425 (1980) DOT 9 (1) 17 & (6) 232 (1973) I.N. p. 255

Schmutz, J. and Hunziker, F.; U.S. Patent 3,539,573; November 10, 1970

COLESTIPOL

Therapeutic Function: Antihyperlipoproteinemic

Chemical Name: N-(2-aminoethyl)-1,2-ethanediamine polymer with (chloromethyl)oxirane

Common Name: --

Structural Formula: See Chemical Name

Chemical Abstracts Registry No.: 26658-42-4

Trade Name	Manufacturer	Country	Year Introduced
Colestid	Upjohn	U.S.	1977
Colestid	Upjohn	U.K.	1978
Colestid	Upjohn	W. Germany	1978
Colestid	Upjohn	Switz.	1978
Lestid	Upjohn		

Raw Materials

Epichlorohydrin Tetraethylene pentamine

Manufacturing Process

Into a 1,000 gallon, jacketed, glass-lined reactor equipped with baffles and a two-speed (67 and 135 rpm) reversed impeller is introduced 200 g of Richonate 60B (a 60% aqueous slurry of sodium salts of alkylbenzenesulfonic acids) and 364 liters of deionized water, followed by 90.5 kg of tetraethylenepentamine rinsed in with 5 gallons of toluene. The solution is stirred at the low speed and then 500 gallons of toluene are added to form a dispersion. To the stirred dispersion is added 109 kg of epichlorohydrin, rinsed in with 5 gallons of toluene, and the resulting mixture is heated at reflux for two hours. The reaction mixture is cooled to about 20°C and then treated with 58.5 kg of a filtered 50% aqueous solution of sodium hydroxide. The mixture is removed from the reactor and filtered, and the copolymer is collected and dried by treating it first with hot (75°C to 80°C) filtered nitrogen and then with an 80°C air stream. The resulting crude product is returned to the reactor, washed extensively with filtered deionized water (at the low speed), dried with an 80°C air stream and blended until homogeneous to give about 155 kg of a dry tetraethylenepentamine-epichlorohydrin copolymer hydrochloride, particle diameter 0.002-0.02 inch.

References

Merck Index 2440 PDR p. 1832

DOT 14 (2) 69 (1978) I.N. p. 259 REM p. 864

Lednicer, D. and Peery, C.Y.; U.S. Patent 3,803,237; April 9, 1974; assigned to The Upjohn Co.

CORTISONE ACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 17 α ,21-dihydroxy-4-pregnene-3,11,20-trione-21-acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-04-4; 53-06-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cortone Acetate	MSD	U.S.	1950
Acetisone	Farmigea	Italy	_

Raw Materials

 $3(\alpha)$ -Hydroxy-21 acetoxy-11,20-diketopregnane Potassium cyanide Acetic acid Chromic acid Phosphorus oxychloride Osmium tetroxide

Manufacturing Process

The following technique is described in U.S. Patent 2,541,104. A solution of 2.0 g of $3(\alpha)$ -hydroxy-21-acetoxy-11,20-diketo-pregnane, which can be prepared as described in *Helv. Chim. Acta* 27, 1287 (1944), is treated in a mixture of 25 cc of alcohol and 6.4 cc of acetic acid at 0°C with 6.0 g of potassium cyanide. The solution is allowed to warm to room temperature and after 3 hours is diluted with water. The addition of a large volume of water to the alcohol-hydrogen cyanide mixture precipitates a gum which is extracted with chloroform or ethyl acetate. The extract is washed with water, and evaporated to small volume under reduced pressure. The crystalline precipitate (1.3 g) consists of $3(\alpha)$,20-dihydroxy-20-cyano-21-acetoxy-11-keto-pregnane; dec. 175° to 185°C.

A solution of 0.60 g of chromic acid in 1.2 cc of water and 11 cc of acetic acid is added to a solution containing about 1.2 g of $3(\alpha)$,20-dihydroxy-20-cyano-21-acetoxy-11-keto-pregnane at room temperature. After 1 hour, water is added and the product, which precipitates, is filtered and recrystallized from ethyl acetate to produce 3,11-diketo-20-hydroxy-20-cyano-21-acetoxy-pregnane; dec. 214° to 217°C.

390

0.40 cc of phosphorus oxychloride is added to a solution containing about 950 mg of 3, 11-diketo-20-hydroxy-20-cyano-21-acetoxy-pregnane dissolved in 3 cc of pyridine. After standing at room temperature for 24 hours, the solution is poured into water and dilute hydrochloric acid, extracted with benzene and concentrated to dryness. The crude product, after chromatography gives one main constituent, namely Δ^{17} -3,11-diketo-20-cyano-21-acetoxy-pregnene; MP 189° to 190°C.

A solution of 1.0 g of Δ^{17} -3,11-diketo-20-cyano-21-acetoxy-pregnene in 10 cc of benzene is treated with 1.0 g of osmium tetroxide and 0.43 g of pyridine. After standing at room temperature for 18 hours, the resulting solution is treated successively with 50 cc of alcohol, and with 50 cc of water containing 2.5 g of sodium sulfite. The mixture is stirred for 30 hours, filtered, and the filtrate acidified with 0.5 cc of acetic acid and concentrated to small volume in vacuo. The aqueous suspension is then extracted four times with chloroform, the chloroform extracts are combined, washed with water and concentrated to dryness in vacuo. Recrystallization of the residue from acetone gives 3,11,20-triketo-17(α)-21-dihydroxy-pregnane; MP 227° to 229°C. This compound is then treated with acetic anhydride and pyridine for 15 minutes at room temperature to produce 3,11,20-triketo-17(α)-hydroxy-21-acetoxy-pregnane or cortisone acetate.

References

Merck Index 2510 Kleeman & Engel p. 246 OCDS Vol. 1 pp. 188, 190 (1977)

I.N. p. 265 REM p. 964

Reichstein, T.; U.S. Patent 2,403,683; July 9, 1946

Gallagher, T.F.; U.S. Patent 2,447,325; August 17, 1948; assigned to Research Corporation Sarett, L.H.; U.S. Patent 2,541,104; February 13, 1951; assigned to Merck & Co., Inc.

CORTIVAZOL

Therapeutic Function: Glucocorticoid

Chemical Name: 11β ,17,21-trihydroxy-6,16 α -dimethyl-2'-phenyl-2'H-pregna-2,4,6-trieno-

[3,2-c] pyrazol-20-one-21-acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1110-40-3

Trade Name	Manufacturer	Country	Year Introduced
Diaster	Diamant	France	1972
Altim	Roussel	France	

Trade Name	Manufacturer	Country	Year Introduced
Idaltim	Roussel	-	_
Dilaster	Roussel	_	-

11β,17α,21-Trihydroxy-6,16α-dimethyl-4,6-pregnadiene-3,20-dione Formaldehyde Hydrogen chloride Ethyl formate Phenyl hydrazine Formic acid Acetic anhydride

Manufacturing Process

To a suspension of 25.0 g of 11β , 17α ,21-trihydroxy-6, 16α -dimethyl-4,6-pregnadiene-3,20-dione in 1.5 liters of alcohol-free chloroform cooled to about 5°C in an ice bath is added with constant stirring 750 ml of cold, concentrated hydrochloric acid and then 750 ml of formalin (low in methanol). The mixture is removed from the ice bath and stirred at room temperature for 7 hours. The layers are separated and the aqueous phase is back-extracted wice with chloroform. The combined organic layers are washed twice with a 5% solution of sodium bicarbonate, and twice with a saturated salt solution. The solution is dried over magnesium sulfate and evaporated to dryness under reduced pressure.

The residue is triturated with methanol to afford a crystalline solid. This material contains no detectable amount of starting material by paperstrip chromatography but shows two UV absorbing spots near the solvent front (methanol-formamide 2:1 vs benzene-n-hexane 1:1). An aliquot is recrystallized three times from a mixture of benzene and n-hexane to give $17\alpha,20,20,21$ -bis(methylenedioxy)- 11β -hydroxy- $6,16\alpha$ -dimethyl-4,6-pregnadiene-3-one which is used in the subsequent step of the synthesis without further purification.

 $17\alpha,20,20,21$ -bis(methylenedioxy)-11 β -hydroxy-6,16 α -dimethyl-4,6-pregnadiene-3-one (500 mg) is dissolved in 25 cc of benzene and then about 5 cc of benzene is removed by distillation at normal pressure. The resulting solution is cooled to room temperature. Then 0.75 cc of freshly distilled ethyl formate is added. The air in the system is replaced with nitrogen and 150 mg of sodium hydride (as a 57% dispersion in mineral oil) is added. The mixture is stirred under nitrogen at room temperature for three hours. Then 15 cc of a saturated aqueous solution of sodium dihydrogen phosphate is added and the product is extracted into ether.

The ether extracts are extracted with 2 N sodium hydroxide and the sodium hydroxide extracts are acidified with sodium dihydrogen phosphate and extracted again into ether. The ether extract is evaporated to dryness to give about 500 mg of a crude product. From the ether solution there is obtained about 290 mg of yellow crystals, MP 220° to 236°C which is 17α ,20,20,21-bis(methylenedioxy)-11 β -formyloxy-2-hydroxy-methylene-6,16 α -dimethyl-4,6-pregnadiene-3-one. The analytical sample is recrystallized from ethyl acetate and has a melting point of 249° to 255°C, [α] $_{\rm D}^{27}$ –217°, IR 5.81 and 8.37 μ . From the mother liquor is obtained about 127 mg of 17 α ,20,20-21-bis(methylenedioxy)-11 β -hydroxy-2-hydroxymethylene-6,16 α -dimethyl-4,6-pregnadiene-3-one. The analytical sample is recrystallized from ether and has a melting point of 200° to 204°C, [α] $_{\rm D}^{27}$ –197°, IR 6.05 to 6.2 and 6.4 μ .

The $17\alpha,20,20,21$ -bis(methylenedioxy)- 11β -hydroxy-2-hydroxymethylene-6, 16α -dimethyl-4,6-pregnadiene-3-one (1.19 g) is dissolved in 25 cc of ethanol. 300 mg of phenyl hydrazine is added and the mixture is refluxed under nitrogen for one hour. About 25 cc of water is added. The product is then extracted into 150 cc of ether. The extracts are washed with 2 N HCl, with saturated sodium bicarbonate, water and saturated sodium chloride solution, and then dried over sodium sulfate and evaporated to dryness to give about 1.2 g

of crude product. On crystallization from ether there is obtained as a major component the 17α,20,20,21-bis(methylenedioxy)-11β-hydroxy-6,16α-dimethyl-2'-phenyl-4,6-pregnadieno-[3,2-c] pyrazole.

17α,20,20,21-bis(methylenedioxy)-11β-hydroxy-6,16α-dimethyl-2'-phenyl-4,6-pregnadieno-[3,2-c] pyrazole (430 mg), is heated on a steam bath under nitrogen with 40 cc of a 60% aqueous solution of formic acid for about 30 minutes. About 40 cc of water is added and the mixture is then extracted into 200 cc of chloroform. The chloroform solution is washed with water, saturated sodium bicarbonate solution and water, then dried over sodium sulfate and evaporated under vacuum to give 430 mg of crude product. This is dissolved in 60 cc of absolute methanol, and 0.1 equivalent of sodium methoxide in methanol is added.

The mixture is stirred under nitrogen at room temperature for 15 minutes. It is then acidified with acetic acid and the solvent is removed under vacuum at room temperature. About 20 cc of water is added and the product is extracted into 150 cc of ethyl acetate. The ethyl acetate solution is washed with saturated sodium bicarbonate and then with water. It is then dried over sodium sulfate and taken to dryness to give an amorphous solid.

The crude product obtained above is dried in high vacuum and then dissolved in 4 cc of pyridine. About 3 cc of acetic anhydride is added. The mixture is then heated on the steam bath for about 15 minutes and then evaporated to dryness in vacuo. About 20 cc of water is added. The product is then extracted into 150 cc of ethyl acetate, washed with saturated sodium bicarbonate solution and water, and dried over sodium sulfate. The solvent is removed in vacuo to give a residue which is crystallized from ethyl acetatebenzene to yield about 250 mg of 11β,17α,21-trihydroxy-6,16α-dimethyl-20-oxo-2'-phenyl-4,6-pregnadieno-[3,2-c] pyrazole 21-acetate, as described in U.S. Patent 3,300,483.

References

Merck Index 2513 Kleeman & Engel p. 248 OCDS Vol. 2 p. 191 (1980) DOT 8 (10) 374 (1972) I.N. p. 265

Tishler, M., Steinberg, N.G. and Hirschmann, R.F.; U.S. Patents 3,067,194; December 4, 1962; and 3,300,483; January 24, 1967; both assigned to Merck & Co., Inc.

CREATINOLFOSFATE

Therapeutic Function: Cardiotonic

Chemical Name: 1-(2-Hydroxyethyl)-1-methylguanidine dihydrogen phosphate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6903-79-3

Year Introduced Trade Name Manufacturer Country 1968 Aplodan Simes Italy

Trade Name	Manufacturer	Country	Year Introduced
Dragosil	Farmasimes	Spain	_
Nergize	Byk Liprandi	Argentina	

Creatinol phosphate Polyphosphoric acid

Manufacturing Process

In a reactor put 80 kg of polyphosphoric acid having the following composition: HsP3O10 -60%; (HPO₃)₆ - 10%; H₄P₂O₇ - 15%; (HPO₃)_x - 10%; total content in P₂O₅ about 83%; this is heated to about 160°C.

Then 360 kg of creatinol phosphate are added to the polyphosphoric acid; continue to heat for about two hours under vacuum until the reaction water is eliminated.

The molten mass is then poured into ethanol at 95°C, the solution cooled down to 10°C and the precipitated product separated by centrifugation. The resulting product is dissolved in the minimum quantity of warm water and the solution poured into ethanol.

Thus 297 kg of the phosphoric ester of the creatinol are obtained having these characteristics: MP 240°C to 243°C.

References

Kleeman & Engel p. 249 I.N. p. 268 Allievi, E.; U.S. Patent 4,012,467; March 15, 1977

CROMOLYN SODIUM

Therapeutic Function: Bronchodilator

Chemical Name: 5.5'-[(2-Hydroxy-1,3-propanediyl)bis-(oxy)] bis[4-oxo-4H-1-benzopyran-2-carboxylic acid) disodium sait

Common Name: Cromogycinic acid sodium salt; disodium cromogycate

Structural Formula:

Chemical Abstracts Registry No.: 15826-37-6; 16110-51-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Intal	Fisons	U.K.	1969
Intal	Fisons	W. Germany	1970
Lomudal	Fisons	Switz.	1970
Intal	Fujisawa	Japan	1971
Frenasma	Italseber	Italy	1971

Trade Name	Manufacturer	Country	Year Introduced
Lomudal	Fisons	France	1972
Intal	Fisons	U.S.	1973
Aarane	Fisons	U.S.	1973
Natcrom	Fisons	Italy	1983
Aar a ne	Syntex	U.S.	_
Alercrom	Osiris	Argentina	
Colimone	Fisons	W. Germany	_
Cromo-Asma	Aldo	Spain	_
Cusicrom	Cusi	Spain	
Frenal	I.S.F.	Italy	_
Gastrofrenal	I.S.F.	Italy	_
Kromolin	litas	Turkey	
Lomupren	Fisons	W. Germany	_
Nalcrom	Fisons	U.K.	-
Nasmil	Lusofarmaco	Spain	_
Nebulasma	Septa	Spain	-
Opticron	Fisons	France	_
Rynacrom	Fisons	U.K.	_

2,6-Dihydroxyacetophenone Diethy! oxalate

Epichlorohydrin Sodium hydroxide

Manufacturing Process

To a solution of 970 parts of 2,6-dihydroxyacetophenone and 325 parts of epichlorohydrin in 1,500 parts of hot isopropanol was added, with stirring under reflux, a solution of 233 parts of 85% KOH in 2,500 parts of isopropanol and sufficient water (ca 100 parts) to dissolve the solid. The mixture was heated, with stirring, under reflux for 48 hours. Half the solvent was then distilled off and 5,000 parts of water were added. The mixture was cooled and the solid filtered off and washed with isopropanol and ether. It was then recrystallized from 12,500 parts of isopropanol to obtain a first crop of 380 parts and a second crop, after concentration, of 300 parts of 1,3-bis(2-acetyl-3-hydroxyphenoxy)-2hydroxypropane.

4.6 parts of 1,3-bis(2-acetyl-3-hydroxyphenoxy)-2-hydroxypropane were reacted with diethyl oxalate and the product cyclized to obtain 4.4 parts of pure diethyl ester of 1,3bis(2-carboxychromon-5-yloxy)-2-hydroxypropane as pale yellow crystals melting between 180° and 182°C from a mixture of benzene and petrol. 4 parts of the diethyl ester of 1.3-bis(2-carboxychromon-5-yloxy)-2-hydroxypropane were saponified with sodium hydroxide to obtain 3.2 parts of the disodium salt tetrahydrate as colorless crystals from aqueous alcohol.

References

Merck Index 2580 Kleeman & Engel p. 250 PDR p. 876 OCDS Vol. 3 pp. 66, 235 (1984) DOT 10 (7) 246 (1974) & 14 (7) 283 (1978) 1.N.p. 19 REM p. 1131

Fitzmaurice, C. and Lee, T.B.; U.S. Patent 3,419,578; December 31, 1968; assigned to Fisons Pharmaceuticals Limited, England

CROTAMITON

Therapeutic Function: Scabicide

Chemical Name: N-ethyl-N-(2-methylphenyl)-2-butenamide

Common Name: Crotonyl-N-ethyl-o-toluidine

Structural Formula: CH3CH = CHCONCH2CH3

Chemical Abstracts Registry No.: 483-63-6

Trade Name	Manufacturer	Country	Year Introduced
Eurax	Ciba Geigy	France	1949
Eurax	Ciba Geigy	U.S.	1949
Crotan	Owen	U.\$.	1982
Crotamitex	Tropon	W. Germany	_
Euraxil	Geigy	W. Germany	_
Servitamitone	Servipharm	Switz.	_
Veteusan	Veterinaria	Switz.	_

Raw Materials

Crotonyl chloride N-Ethyl-o-toluidine

Manufacturing Process

10.5 parts of crotonyl chloride are dropped in such a manner into 27 parts of N-ethyl-otoluidine, while stirring, that the temperature rises to 130° to 140°C. After cooling, the reaction product is dissolved in ether or other solvent that is immiscible with water, and the solution is washed successively with hydrochloric acid, alkali solution and water. After distilling off the solvent, the residue is distilled in vacuo. The crotonic-acid-N-ethyl-otoluidide boils at 153° to 155°C at a pressure of 13 mm and is a slightly yellowish oil. Instead of carrying the reaction out in the presence of an excess of N-ethyl-o-toluidine, it may be carried out in the presence of an acid-combining agent, for example, potash, advantageously in a solvent (e.g., acetone).

References

Merck Index 2583 Kleeman & Engel p. 251 I.N. p. 269

REM p. 1239

British Patent 615,137; January 3, 1949; assigned to J.R. Geigy AG, Switzerland

CRYPTENAMINE TANNATES

Therapeutic Function: Antihypertensive

Chemical Name: Complex alkaloid mixture

Common Name: -

Structural Formula: C32H40O6N·Tannate

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Unitensen	Neisler	U.S.	1954
Raw Materials			
Veratrum viride Triethylamine Tannic acid		Benzene Hydrogen o	chloride

Manufacturing Process

Initial Extraction Technique: Continuous extraction apparatus was employed, including an extractor designed to contain the starting plant materials, a distillation flask to hold the solvent mixture, the flask being equipped with a reflux condenser, a drip device to facilitate the removal of the volatilized mixture from the condenser and to percolate it through the continuous extractor, and a Soxhlet type return. Means for heating the continuous extraction system were provided.

1,000 g of Veratrum viride powder was placed in a continuous plant extractor and a mixture of 2,000 ml of benzene and 20 ml of triethylamine was poured over a Veratrum powder in the reactor and permitted to siphon into the distillation flask. Approximately 50 g of an inert desiccant (Drierite) was added to the distillation flask, heat applied to initiate the distillation of the reaction mixture in the flask, and the continuous extraction procedure continued for 8 hours, during which time constant, gentle heat was applied to insure refluxing of the mixture (about 80° to 90°C). The extraction procedure was discontinued and the contents of the distillation flask filtered. The resulting filtrate was concentrated by distilling off and recovering a large portion of the benzene solvent together with virtually all of the triethylamine base. 50 ml of the concentrated benzene solution was thus obtained.

Preparation of Alkaloid Mixture: 50 ml of the concentrated benzene solution, obtained as described was rapidly stirred, and a saturated solution of hydrogen chloride in ether added to the concentrated benzene solution until no more precipitate was obtained. The resulting precipitate was recovered by filtration and comprised the crude hydrochlorides of the extracted alkaloids and the hydrochloride of any unrecovered triethylamine. This material was dried by heating at a temperature of about 75°C for 6 hours, the crude, dried precipitate ground with 50 ml of isopropanol and to this slurry was added 1,000 ml of water. The resulting mixture was filtered. To the clear filtrate, cooled to 5°C, there was slowly added with rapid stirring, a 10% aqueous solution of ammonium hydroxide, until complete precipitation was accomplished. The precipitate was filtered off, washed with water and dried by heating at about 75°C for 6 hours.

There was thus obtained a mixture of Veratrum viride alkaloids having substantial utility as a hypertension reducing agent, without the concomitant marked side-actions normally associated with the clinical use of Veratrum viride extracts. This material may be clinically administered in this form, or further purification may be performed as described hereinafter.

Preparation of Alkaloid III: 100 q of the alkaloid mixture was dissolved in a liter of benzene and the resulting mixture filtered. The filtrate was diluted with approximately 4 liters of an aliphatic hydrocarbon solvent (Skellysolve B) and the resulting mixture filtered. The filtrate was cooled with Dry Ice to cause precipitation, and the alkaloid removed by filtration. There was thus obtained an alkaloid, which, for convenience, is called Alkaloid III, having analytical values consistent with a molecular formula $C_{32}H_{49}O_6N$, apparently an ester of a tertiary alkamine.

This material sinters at a temperature above about 125°C and melts at 130° to 135°C; UV absorption; λ maximum 255 mμ, λ minimum 240 mμ. It contains one ester group and no N-methyl groups.

Preparation of Alkaloid III Tannate: 20 g of Alkaloid III was dissolved in 200 ml of isopropyl alcohol at room temperature and a mixture of 30 g of tannic acid dissolved in 300 ml of isopropyl alcohol, maintained at 40° to 50°C was added thereto with rapid stirring. The mixture was cooled to 20°C, filtered and the precipitate dried at about 80°C. There was thus obtained 33.5 g of the tannate salt of Alkaloid III, as a pale yellow amorphous powder, relatively insoluble in water, and having an indefinite melting point.

References

Merck Index 2596 PDR p. 1875 I.N. p. 270 REM p. 850

Cavallito, C.J.; U.S. Patent 2,789,977; April 23, 1957; assigned to Irwin, Neisler and Com-

CYAMEMAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[3-(dimethylamino)-2-methylpropyl] -10H-phenothiazine-2-carbonitrile

Common Name: Cyamepromazine

Structural Formula:

Chemical Abstracts Registry No.: 3546-03-0

Trade Name Manufacturer Year Introduced Country Terckian Theraplix France 1972

Raw Materials

3-Chlorophenthiazine Cupric cyanide Sodium amide 1-Dimethylamino-2-methyl-3-chloropropane

Manufacturing Process

The 3-cyanophenthiazine used as starting material can be prepared by the action of cupric cyanide on 3-chlorophenthiazine in boiling quinoline. It has a first melting point of about 185°C and a second of about 203° to 205°C.

A solution of 3-cyanophenthiazine (10 g) in anhydrous xylene (75 cc) is heated under reflux and treated with 95% sodamide (2.15 g). The heating is continued for 1 hour and

then a solution of 1-dimethylamino-2-methyl-3-chloropropane (7.05 g) in xylene (70 cc) is added over 15 minutes. The mixture is heated under reflux for 20 hours and then cooled. The reaction mixture is treated with water (40 cc) and N methane-sulfonic acid (75 cc). The xylene phase is removed and the aqueous phase is made alkaline with sodium hydroxide. The free base obtained is extracted with ether and the ethereal extracts are dried over anhydrous potassium carbonate and concentrated to dryness. The residue is distilled in vacuo. 3-Cyano-10-(3-dimethylamino-2-methylpropyl)phenthiazine (8.5 g), BP 180° to 205°C/0.9 mm Hg, is thus obtained. The acid maleate prepared in and recrystallized from ethanol melts at 204° to 205°C.

References

Merck Index 2678 Kleeman & Engel p. 252 DOT 8 (6) 216 (1972) I.N. p. 271

Jacob, R.M. and Robert, J.G.; U.S. Patent 2,877,224; March 10, 1959; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

CYANOCOBALAMIN

Therapeutic Function: Hematinic

Chemical Name: 5,6-Dimethylbenzimidazocyl cyanocobamide

Common Name: Vitamin B₁₂

Structural Formula: NH2COCH2CH2 CH3 CH3 CH3CONH2

Chemical Abstracts Registry No.: 68-19-9

Trade Name	Manufacturer	Country	Year Introduced
Berubigen	Upjohn	U.S.	1949
Rubramin	Squibb	U.S.	1949
Bevidox	Abbott	U.S.	1949
Betalin	Lilly	U.S.	1949
Cobi o ne	MSD	U.S.	1949
Docibin	National	U.S.	1950
Ducobee	Breon	U.S.	1950
Dodex	Organon	U,S.	1950
Be-Dodec	Schieffelin	U.S.	1950

Trade Name	Manufacturer	Country	Year Introduced
B-Twelvora	Sherman	U.S.	1950
Crystamin	Armour	U.S.	1951
Bexil	Conal	U.S.	1951
Redisol	MSD	U.S.	1951
Bevatine	Dorsey	U.S.	1953
V ib a l t	Roerig	U.S.	1954
Bedoce	Lincoln	U.S.	1957
Vi-Twel	Cooper	U.S.	1960
Cyano-Gel	Maurry	U.S.	1961
Clarex	Minn, Pharm,	U.S.	1962
Cyredin	Merrell Nat	U.S.	1967
Feryl	Central	U.S.	1978
Dicopac	Kaken	Japan	1979
Anacobin	Allen & Hanburys	U.K.	
Actamin	Yashima	Japan	_
Apavit B12	Locatelli	Italy	
Antipernicin	Galenika	Yugoslavia	_
Arcavit B12	Arcana	Austria	
Arcored	Arco	Switz.	-
Arphos	Fournier	France	_
Bedocefarm	Wolner	Spain	_
Bedodeka	Teva	israel	-
Beduzin	Dincel	Turkey	
Behepan	Kabi-Vitrum	Sweden	-
Berubi	Redel	W. Germany	_
Betolvex	Dumex	Denmark	
Bexibee	N. American	U.S.	_
Bidocit	Ausonia	italy	_
B12 Mille	Delagrange	France	_
B12 Vicotrat	Heyl	W. Germany	_
Cabadon M	Reid-Provident	U.S.	
Cincomil Bedoce	Andromaco	Spain	_
Cobalomin	S. Pacific	Australia	-
Cobalparen	Saarstickstoff-Fatoo	W. Germany	_
Cobavite	Lemmon	U.S.	-
Cocavitan	Coca	Spain	_
Copharvit	Cophar	Switz.	_
Cyanabin	Stickley Adrian-Marinier	Canada France	_
Cylobomin	Kabi-Vitrum	Sweden	_
Cykobemin Cytakon	Glaxo	U.K.	_
Cytamen	Glaxo	U.K.	
Cytobion	Merck	W. Germany	
Dobetin	Angelini	Italy	
Docetasan	Santos	Spain	_
Docivit	Robisch	W. Germany	
Dodecabee	Miller	U.S.	_
Dodecavite	U.S.V.	U.S.	_
Dodevitina	C.T.	italy	
Eocill B12	Nessa	Spain	
Erftamin	Erfto-Chemie	W. Germany	
Eritron	Manetti-Roberts	italy	_
Eritrovit B12	Lisapharma	Italy	_
Erycytol	Sanabo	Austria	_
Fiviton B12	Alfar	Spain	_
Hemomin	Kirk	U.S.	
Hemosalus	Totalfarm	Italy	_
Hepacon B12	Consolidated	U.K.	_

Trade Name	Manufacturer	Country	Year Introduced
Hepcovite	Endo	U.S.	_
Juvabe	Dolder	Switz,	-
Lifaton B12	Lifasa	Spain	_
Lophakomb B12	Lomapharm	W. Germany	-
Milbedoc	Andromaco	Spain	
Millevit	Nordmark	W. Germany	-
Neo-Cytamen	Bilim	Turkey	
Neurobaltina	Sidus	Italy	-
Neuro Liser B12	Perga	Spain	_
Nova-Rubi	Nova	Canada	_
Noventabedoce	Andromaco	Spain	-
Omeogen	UCB-Smit	Italy	_
Optovite B12	Normon	Spain	_
Permicipur	Mulli	W. Germany	-
Plentasal	Lopez-Brea	Spain	-
Primabalt	Primedics	U.S.	
Rectocenga	Biotherax	France	-
Redamin	Washington	Italy	_
Reedvit	Celtia	Argentina	_
Retidex B12	Dexter	Spain	_
Rubesol	Central	U.S.	_
Rubraluy	Miluy	Spain	_
Ruvite	Savage	U.S.	_
Sancoba	Santen	Japan	_
Sorbevit B12	Casen	Spain	_
Sorbigen B12	Gentili	Italy	_
Surgevit	Maipe	Spain	_
Twel-Be	Pitman-Moore	U.S.	_
Vicapanbiz	Merckle	W. Germany	_
Viemin 12	Valeas	Italy	-
Vitarubin	Streuli	Switz.	_

Milorganite (activated sewage sludge)	Sodium nitrite
Potassium cyanide	Hydrochloric acid

Manufacturing Process

The following is taken from U.S. Patent 3,057,851. Milorganite was extracted with water to obtain an aqueous extract containing vitamin B₁₂ active substances. This aqueous extract was purified by treatment with an ion exchange resin according to the following method. An aqueous extract of milorganite, 100 ml containing 300 μ g of vitamin B₁₂ active substances and 4.5 grams of total solids, was combined with 0.5 gram of sodium nitrite and 0.4 gram of potassium cyanide. The resulting solution was adjusted to pH 4.0 with hydrochloric acid and heated to boiling. The boiled solution was filtered through a Super-Cel filter surface, and the filter was then washed with water. The filtrate was obtained in a total volume of 130 ml including the washings.

Amerlite XE-97, an ion exchange resin of the carboxyl type (Rohm and Haas), was classified to an average wet particle size of 100 to 150 mesh. The classified resin was utilized in the hydrogen form, and was not buffered during the ion exchange fractionation. The classified resin, in the amount of 35 ml, was packed into a glass column having a diameter of 25 mm and a height of 250 mm. The cyanide-treated aqueous extract of milorganite was infused gravitationally into the ion exchange bed at a rate of 3 ml per minute.

The effluent was discarded and the resin bed was then washed with the following solutions in the specified sequence: (1) 120 ml of an aqueous 0.1 N hydrochloric acid solution;

(2) 75 ml of an aqueous 85% acetone solution; and (3) 70 ml of an aqueous 0.1 N hydrochloric acid solution. After washing, the resin bed was eluted with an aqueous 60% dioxane solution containing 0.1 N of hydrochloric acid. In this elution, 8 ml of colored eluate was collected. This portion of the eluate was found to contain 295 μg of cyanocobalamin and 9 mg of total solids.

References

Merck Index 9822

Kleeman & Engel p. 252

PDR pp. 655, 785, 872, 905, 916, 966, 1083, 1603, 1989

I.N. p. 272

REM pp. 1020, 1022

Rickes, E.L. and Wood, T.R.; U.S. Patents 2,703,302 and 2,703,303; both dated March 1, 1955; both assigned to Merck & Co., Inc.

Speedie, J.D. and Hull, G.W.; U.S. Patent 2,951,017; August 30, 1960; assigned to The Distillers Company Limited, Scotland

McDaniel, L.E.; U.S. Patent 3,000,793; September 19, 1961; assigned to Merck & Co., Inc.

Long, R.A.; U.S. Patent 3,018,225; January 23, 1962; assigned to Merck & Co., Inc.

Van Melle, P.J.; U.S. Patent 3,057,851; October 9, 1962; assigned to Armour-Pharmaceutical Bernhauer, K., Friedrich, W. and Zeller, P.; U.S. Patent 3,120,509; February 4, 1964; assigned to Hoffmann-La Roche Inc.

CYCLACILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-(1-aminocyclohexanecarboxamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid

Common Name: 6-(1-aminocyclohexanecarboxamido)penicillanic acid; 1-aminocyclohexylpenicillin; ciclacillin

Structural Formula:

Chemical Abstracts Registry No.: 3485-14-1

Trade Name	Manufacturer	Country	Year Introduced
Ultracillin	Gruenenthal	W. Germany	1972
Wybital	Wyeth	Japan	1972
Vastollin	Takeda	Japan	1972
Ultracillin	Gruenenthal	Switz,	1973
Cyclapen	Wyeth	U.S.	1979
Calthor	Ayerst	U.K.	1980
Bionacillin-C	Takata	Japan	_
Citocilina	Medinsa	Spain	
Citosarin	Toyo Jozo	Japan	_
Orfilina	Orfi	Spain	-
Peamezin	Sawai	Japan	_
Syngacillin	Wyeth		_
Vasticillin	Takeda	Japan	_
Vipicil	Wyeth	-	_

6-Aminopenicillanic acid 1-Amino-1-cyclohexane carboxylic acid chloride

Manufacturing Process

To 21.6 g (0.10 mol) of 6-aminopenicillanic acid (6-APA) and 213 ml of methylene chloride in a dry 500 ml 3-neck flask fitted with stirrer, thermometer, nitrogen inlet and reflux condenser with drying tube, 25.3 g (0.25 mol) of triethylamine and 13.4 g (0.11 mol) of N,N-dimethylaniline were added. After stirring at reflux for one hour, the mixture was cooled and 21.7 g (0.20 mol) of trimethylchlorosilane was added dropwise at 12° to 15°C.

The mixture was refluxed for 45 minutes, cooled under nitrogen, and 19.8 g (0.10 mol) of 1-amino-1-cyclohexane-carboxylic acid chloride HCl was added portionwise at -10°C over 20 minutes. The mixture was stirred for an additional hour while the temperature rose to 20°C. The reaction mixture was poured into 200 ml of cold water with stirring and the two-phase mixture clarified by filtration. Dilute sodium hydroxide solution was added to the filtrate at 5° to 10°C to pH 5.4.

After stirring overnight at room temperature, the crystalline product was collected by filtration, washed with water and finally with acetone, and then dried at 45°C; yield of dihydrate, 29.9 g or 79% of theory based on 6-APA; iodometric assay, 922 mcg per mg; bioassay, 921 mcg per mg, as described in U.S. Patent 3,478,018.

References

Merck Index 2693 Kieeman & Engel p. 205 PDR p. 1945 OCDS Vol. 2 p. 439 (1980) DOT 8 (5) 168 (1972) I.N. p. 230 REM p. 1200

Alburn, H.E., Grant, N.H. and Fletcher, H. III; U.S. Patent 3,194,802; assigned to American Home Products Corporation

Robinson, C.A. and Nescio, J.J.; U.S. Patent 3,478,018; November 11, 1969; assigned to American Home Products Corporation

CYCLAMATE CALCIUM

Therapeutic Function: Nonnutritive sweetener

Chemical Name: Cyclohexylsulfamic acid calcium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 139-06-0

Trade Name	Manufacturer	Country	Year Introduced
Sucaryl Calcium	Abbott	U.S.	1953
Sucaryl Calcium	Abbott	France	1966

Cyclohexylamine Ammonium sulfamate Calcium hydroxide

Manufacturing Process

220 parts by weight, 2.22 mols, of cyclohexylamine and 57 parts by weight, 0.50 mol, of ammonium sulfamate were mixed at room temperature and heated with agitation. At the end of one-half hour of heating the temperature had reached 110°C and approximately one-half mol of ammonia had been evolved. Heating was continued under reflux at 133°C for 22 additional hours. A second half-mol of ammonia was liberated. The ammonia yield was 100%,

The reaction mixture was cooled to 100°C. To the mixture was added a water slurry containing 20.3 parts by weight, 0.55 equivalent, of calcium hydroxide and 700 parts by weight of water. Cyclohexylamine was then removed by azeotropic distillation with water.

The amine which was recovered can be reused after drying.

The residue from the distillation was evaporated to dryness in a vacuum oven at 50°C and the resulting product analyzed. The product weighing 105.5 parts by weight, 0.488 equivalent, was obtained which is a 98% yield of the technical calcium cyclohexylsulfamate dihydrate.

References

Merck Index 1636

I.N. p. 273

Cummins, E.W. and Johnson, R.S.; U.S. Patent 2,799,700; July 16, 1957; assigned to E.I. du Pont de Nemours & Co.

McQuaid, H.S.; U.S. Patent 2,804,477; August 27, 1957; assigned to E.I. du Pont de Nemours & Co.

Freifelder, M.; U.S. Patent 3,082,247; March 19, 1963; assigned to Abbott Laboratories Birsten, O.G. and Rosin, J.; U.S. Patents 3,361,798; January 2, 1968; and 3,366,670; January 30, 1968; both assigned to Baldwin-Montrose Chemical Co., Inc.

CYCLANDELATE

Therapeutic Function: Antispasmodic

Chemical Name: α-hydroxybenzeneacetic acid 3,3,5-trimethylcyclohexyl ester

Common Name: 3,3,5-trimethylcyclohexyl mandelate

Structural Formula:

Chemical Abstracts Registry No.: 456-59-7

Trade Name	Manufacturer	Country	Year Introduced
Cyclospasmol	Ives	U.S.	1958
Cyclospasmol	Beytout	France	1972
Acyclin	Arcana	Austria	-

Manufacturer	Country	Year Introduced
I.C.I.	Italy	_
Nippon Kayaku	Japan	_
Hokuriku	Japan	_
Takeda	Japan	_
Kowa	Japan	-
Mohan	Japan	_
Meiji	Japan	_
	Japan	_
	Japan	_
_	Japan	_
	Japan	
S.S. Pharm.	Japan	_
Hishiyama	Japan	
Norgine	U.K.	_
Taro	Israel	_
Sankyo	Japan	_
Tyama	Japan	_
Chibi	Italy	
Seiko	Japan	
Maruko	Japan	_
Toyo	Japan	_
Kowa	Japan	_
Biopharma	France	
Morishita	Japan	_
Santen	Japan	_
Sankyo	Japan	
Zeria	Japan	_
Ravizza	italy	
Kettelhack Riker	W. Germany	_
Orion	Finland	_
Morrith	Spain	
Farmos	Finland	_
Mochida	Japan	_
Nippon Shoji	Japan	-
	I.C.I. Nippon Kayaku Hokuriku Takeda Kowa Mohan Meiji Funai Kozani Ohta Nichiiko S.S. Pharm. Hishiyama Norgine Taro Sankyo Tyama Chibi Seiko Maruko Toyo Kowa Biopharma Morishita Santen Sankyo Zeria Ravizza Kettelhack Riker Orion Morrith Farmos Mochida	I.C.I. Italy Nippon Kayaku Japan Hokuriku Japan Takeda Japan Kowa Japan Mohan Japan Meiji Japan Funai Japan Kozani Japan Ohta Japan Nichiiko Japan S.S. Pharm. Japan Hishiyama Japan Norgine U.K. Taro Israel Sankyo Japan Tyama Japan Chibi Italy Seiko Japan Maruko Japan Maruko Japan Toyo Japan Kowa Japan Kowa Japan Sankyo Japan France Morishita Japan Sankyo Japan Kowa Japan Kowa Japan Ravizza Italy Kettelhack Riker W. Germany Orion Finland Mocrith Spain Farmos Finland Mochida Japan

- dl-Mandelic acid
- 3.3.5-Trimethylcyclohexanol

Manufacturing Process

50 g of dl-mandelic acid are heated for 6 hours at approximately 100°C with 50 g of 3,3,5-trimethylcyclohexanol (mixture of cis and trans isomers), while passing dry hydrochloric acid gas as a catalyst through the mixture. The reaction product is subsequently poured out into water. After neutralization with potassium bicarbonate the ester is extracted with ether. The ether extract is dried with sodium sulfate, the ether is distilled off and the residue is distilled in vacuo. The fraction, which has a boiling point of 192° to 194°C at 14 mm, consists of the 3,3,5-trimethylcyclohexyl ester of mandelic acid, which is obtained in a yield of about 70%. The liquid solidifies to a colorless solid substance having a melting point of 50° to 53°C, according to U.S. Patent 2,707,193.

It has been found that crude cyclandelate may be purified by the following procedure. Crude cyclandelate is dissolved in a solvent chosen for convenience from the class of saturated hydrocarbons. The crude cyclandelate solution is stirred for a suitable interval, typically 1 to 5 hours, with an aqueous solution of sodium borohydride (NaBH₄) at temperatures ranging from 25° to 65°C. The preferred temperature range is 40° to 50°C. The pH of the solution may be adjusted to any desired level in the range between 2.5 to 11.5. The preferred pH range is 8.0 to 11.0 because at lower pH levels borohydride is unstable

and decomposes rapidly. The amount of sodium borohydride used ranges from about 0.5 to 2.0 wt % of the amount of cyclandelate present.

At the end of the stirring period cyclandelate is recovered by well-known procedures. For instance, the aqueous organic layers may be separated gravimetrically and the product organic layer washed with an appropriate solvent and then distilled, according to U.S. Patent 3,663,597.

References

Merck Index 2695 Kieeman & Engel p. 254 PDR pp. 1606, 1947, 1999 OCDS Vol. 1 p. 94 (1977) I.N. p. 273 REM p. 852

Flitter, D.; U.S. Patent 3,663,597; May 16, 1972; assigned to American Home Products Corporation

Nauta, W.T.; U.S. Patent 2,707,193; April 26, 1955; assigned to N.V. Koninklijke Pharmaceutische Fabrieken Voorbeen Brocades-Stheeman & Pharmacia, Netherlands

CYCLARBAMATE

Chemical Name: 1,1-Dimethylol cyclopentane N,N'-diphenyl-dicarbamate

Common Name: Cyclopentaphene

Structural Formula:

CH200CNH -- C6H5 CAHA- HNCOOH2C

Chemical Abstracts Registry No.: 5779-54-4

Trade Name	Manufacturer	Country	Year Introduced
Casmalon	Cassenne	France	1961

Raw Materials

1,1-Dimethylol cyclopentane Phenyl isocyanate

Manufacturing Process

This compound is obtained by heating a mixture of 1,1-dimethylol cyclopentane and phenyl isocyanate at a temperature of 85°C to 90°C for one-half hour. The resultant product is washed with petroleum ether, recrystallized from methanol, dissolved in acetone (impurities are filtered off) and recrystallized from acetone.

The compound appears in the form of a white powder or of needle-shaped crystals (MP = 147°C to 149°C), which are tasteless and odorless.

References

Merck Index 2696 I.N. p. 274

Rosenberg, E.E.; U.S. Patent 3.067.240; December 4, 1962; assigned to Laboratoires Cassenne (France)

CYCLIZINE

Therapeutic Function: Antinauseant

Chemical Name: 1-diphenylmethyl-4-methylpiperazine

Common Name: -

Structural Formula: (C₆H₅)₂CH-N N-CH₃

Chemical Abstracts Registry No.: 82-92-8: 303-25-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Marezine	Burroughs-Wellcome	u.s.	1953
Marzine	Wellcome	France	1965
Bon Voyage	Cupal	U.K.	_
Cleamine	Kodama	Japan	<u></u>
Echnatol	Gerot	Austria	_
Fortravel	Chemofux	Austria	_
Happy Trip	Mepros	Neth.	_
Maremal	Gayoso Wellcome	Spain	_
Migwell	Wellcome	France	_
Motozina	Biomedica Foscama	Italy	_
Reis-Fit	A.P.F.	Neth.	_
Valoid	Burroughs-Wellcome	U.K.	_

Raw Materials

Benzhydryl chloride N-Methyl piperazine

Manufacturing Process

One-tenth mol (20 g) of benzhydryl chloride was mixed with 0.19 mol (19 g) of N-methylpiperazine and about 10 cc of benzene and the whole was heated on the steam bath four hours. The contents of the flask was partitioned between ether and water, and the ethereal layer was washed with water until the washings were neutral. The base was then extracted from the ethereal layer by N hydrochloric acid and the extract, made acid to Congo red paper, was evaporated under vacuum. 29.5 g of the pure dihydrochloride of N-methyl-N'-benzhydryl piperazine was recovered from the residue by recrystallization from 95% alcohol melting above 250°C with decomposition.

The addition of alkali to an aqueous solution of the dihydrochloride liberated the base which was recovered by recrystallization from petroleum ether melting at 105.5° to 107.5°C.

References

Merck Index 2703 Kleeman & Engel p. 254 PDR p. 754 OCDS Vol. 1 p. 58 (1977) I.N. p. 274 REM p. 807

Baltzly, R. and Castillo, J.C.; U.S. Patent 2,630,435; March 3, 1953; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

CYCLOBENZAPRINE

Therapeutic Function: Muscle relaxant

Chemical Name: 5-(3-Dimethylaminopropylidene)-dibenzo [a,e] cycloheptatriene

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 303-53-7; 6202-23-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Flexeril	Merck Sharp & Dohme	U.S.	1977

Raw Materials

Dibenzo[a,d] cycloheptene-5-one Magnesium 3-Dimethylaminopropyl chloride Hydrogen chloride

Manufacturing Process

In an initial step, dibenzo [a,d] cyclohepten-5-one is reacted with the Grignard reagent of 3-dimethylaminopropyl chloride and hydrolyzed to give 5-(3-dimethylaminopropyl)-dibenzo[a,d]-[1,4] cycloheptatriene-5-ol. Then 13 g of that material, 40 ml of hydrochloric acid, and 135 ml of glacial acetic acid is refluxed for 3½ hours. The solution is then evaporated to dryness in vacuo and added to ice water which is then rendered basic by addition of ammonium hydroxide solution. Extraction of the basic solution with chloroform and removal of the solvent from the dried chloroform extracts yields the crude product which when distilled in vacuo yields essentially pure 5-(3-dimethylaminopropylidene)-dibenzo[a,d] [1,4] cycloheptatriene, BP 173°C to 177°C at 1.0 mm.

References

Merck Index 2706 DFU 2 (5) 299 (1977) Kleeman & Engel p. 255 PDR p. 1178 OCDS Vol. 3 p. 77 (1984) DOT 14 (12) 467 (1978) I.N.p. 275

REM p. 926

Villani, F.J.; U.S. Patent 3,409,640; November 5, 1968; assigned to Schering Corporation

CYCLOBUTYROL

Therapeutic Function: Choleretic

Chemical Name: $\alpha(Hydroxy-1-cyclohexyl)$ butyric acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 512-16-3

Trade Name	Manufacturer	Country	Year Introduced
Hebucol	Logeais	France	1957
Bas-Bil	Isola-Ibi	Italy	_
Citoliver	Bayropharm	Italy	_
Cytinium	Roques	France	_
Dibilene	Logeais	France	_
Epo-Bon	Sierochimica	Italy	
Juvallax	Pierrel	Italy	-
Lipotrin	Eisai	Japan	_
Riphole N	Nichiko	Japan	_
Secrobil	Medital	Italy	_
Tribil	Biol. Italia	Italy	-
Tribilina	Farge	Italy	_
Trommogallol	Trommsdorf	W. Germany	

Raw Materials

Cyclohexanone Ethyl α-bromobutyrate Barium hydroxide

Zinc Sulfuric acid

Manufacturing Process

Into a balloon flask with two lateral necks furnished with an efficient mechanical agitator and protected from moisture by a calcium chloride guard, there are introduced 12 g (0.185 mol) of pure powdered zinc and 20 ml of a solution of 16.6 g (0.17 mol) of anhydrous cyclohexanone and 31.5 g (0.16 mol) of ethyl α -bromobutyrate in 25 ml of anhydrous benzene. With vigorous stirring in a manner to put the zinc into suspension, the balloon flask is gradually heated in an oil bath to 100°C to 105°C. After a few minutes, a reaction starts, causing violent boiling which is maintained while adding the balance of the reactants. Boiling is then continued for one hour. After cooling, the reaction mixture is turned into a beaker containing 30 ml of sulfuric acid to half (by volume) with ice. After agitation, the mixture is decanted into a container for separation. The aqueous phase is reextracted with benzene. The pooled benzene solutions are washed with dilute (10%) cold sulfuric acid, then with cold sodium carbonate (5%) and then with ice water, and dried over anhydrous sodium sulfate. The benzene is evaporated and the ester, which is ethyl α(hydroxy-1-cyclohexyl) butyrate, is distilled off under reduced pressure. The yield obtained was 17 to 19 g or 49% to 55%.

The ester was saponified with baryta in aqueous methanol as follows:

21.5 g (0.1 mol) of the above ethyl ester is saponified by boiling under reflux for 4 hours, while agitating, with 30 g (0.095 mol) of barium oxide hydrated to 8H₂O in 250 ml of a mixture of equal volumes of methanol and water. After concentration to one-half its volume under reduced pressure and filtration, the aqueous solution is washed with ether and then acidified at 0°C with 10% hydrochloric acid. The acid liberated in oily form is extracted with ether. The ether is washed with water, dried and evaporated. The yield is 75-80% (14-15 g of crude acid) which crystallizes spontaneously little by little. It can be crystallized in a mixture of ether and petroleum ether (1:10) or, with better yield, in light gasoline or oil (solubility of the pure acid ranges from 0.3% at 0°C to 100% at the boiling point). The yield of crystals is 75-80%. The α (hydroxy-1-cyclohexyl) butyric acid thus obtained is a colorless crystalline product with a melting point of 81°C to 82°C.

References

Merck Index 2709 Kleeman & Engel p. 256

I.N. p. 275

Maillard, J.G.A.E., Morin, R.M. and Benard, M.M.M.; U.S. Patent 3,065,134; November 20, 1962; assigned to Societe d'Exploitation des Laboratoires Jacques Logeais (S.A.R.L.) (France)

CYCLOFENIL

Therapeutic Function: Ovulation stimulant

Chemical Name: 4-[[4-(acetyloxy)phenyl] cyclohexylidenemethyl] phenol acetate

Common Name: p,p'-diacetoxybenzhydrilidenecyclohexane

Structural Formula:

Chemical Abstracts Registry No.: 2624-43-3

Trade Name	Manufacturer	Country	Year Introduced
Ondogyne	Roussel	France	1970
Sexovid	Teikoku Hormon	Japan	1972
Fertodur	Schering	W. Germany	1972
Ondonvid	Roussel	U,K.	1972
Fertodur	Schering	Italy	1974
Klofenil	Yurtoglu	Turkey	_
Neoclym	Poli	Italy	_
Sexovid	Ferrosan	Sweden	_

Raw Materials

p-Bromoanisole p-Hydroxyphenyl cyclohexyl ketone Potassium hydroxide Ammonium chloride Magnesium Acetic anhydride

Manufacturing Process

(A) Preparation of p-Hydroxy-p'-Methoxybenzhydrylidenecyclohexane: To a Grignard solution prepared from 110 g of magnesium (4.5 mols) and 840 g of p-bromoanisole (4.5 mols) in one liter of anhydrous ether, there was added dropwise with vigorous agitation 307 g of p-hydroxyphenyl cyclohexyl ketone (1.5 mols) dissolved in one liter of anhydrous ether. Upon completion of the addition the reaction mixture was refluxed for 2.5 hours with agitation, and was then cooled. Thereupon 15 mols of ammonium chloride dissolved in 3 liters of water were added. The ethereal layer was separated, washed with water, dried over anhydrous sodium sulfate and distilled. Yield: 370 g. BP 180° to 190°C at 0.1 mm. The substance was recrystallized from a mixture of carbon tetrachloride and petroleum ether. MP 145° to 146°C.

(B) Preparation of p.p'-Dihydroxybenzhydrylidenecyclohexane: A mixture of 118 g of

p-hydroxy-p'-methoxybenzhydrylidenecyclohexane (0.4 mol), 120 g of potassium hydroxide pellets and 500 ml of triethylene glycol was stirred 4 hours at 220°C. When the reaction mixture was poured into water the substance crystallized, and the crystals were filtered off and washed with water. The substance was then recrystallized from a mixture of ethanol and petroleum ether. Yield: 104 g. MP 235° to 236°C.

(C) Preparation of p,p'-Diacetoxybenzhydrylidenecyclohexane: 56 g of p,p'-dihydroxybenzhydrylidenecyclohexane (0.2 mol) was mixed with 250 ml of acetic anhydride and 500 ml of pyridine. The mixture was refluxed for 2 hours and was then poured into water, the substance crystallizing out. The crystals were filtered off and washed with water. Finally the substance was recrystallized from ethanol. Yield: 62 g. MP 135° to 136°C.

References

Merck Index 2714 Kleeman & Engel p. 256 DOT 7 (1) 11 (1971) I.N. p. 275

Oisson, K.G., Wahlstam, H.E.A., Sundbeck, B., Barany, E.H. and Miquel, J.F.; U.S. Patent 3,287,397; November 22, 1966

CYCLOMETHYCAINE

Therapeutic Function: Topical anesthetic

Chemical Name: 4-(cyclohexyloxy)benzoic acid 3-(2-methyl-1-piperidinyl)propyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 139-62-8

Trade Name	Manufacturer	Country	Year Introduced
Surfacaine	Liffy	U.S.	1948
Topocaine	Lilly	_	_

Raw Materials

Ethyl-p-hydroxybenzoate Sodium Cyclohexyl bromide Sodium hydroxide 3-(2'-Methylpiperidino)propyl chloride

Manufacturing Process

7.4 g of sodium are dissolved in 250 cc of isoamyl alcohol, 53 g of ethyl p-hydroxybenzoate are added and the mixture is heated to refluxing temperature for about 15 minutes. To the cooled mixture, 65 g of cyclohexyl bromide are added and the mixture is refluxed for about 3 hours. The isoamyl alcohol is removed by evaporation in vacuo and the residue is extracted with 10% aqueous sodium hydroxide solution to remove the unreacted ethyl p-hydroxybenzoate.

The alkali-insoluble residue comprising ethyl p-cyclohexyloxybenzoate is hydrolyzed by refluxing with 10% sodium hydroxide solution for about 3 hours. The alkaline reaction mixture is acidified with hydrochloric acid whereupon p-cyclohexyloxybenzoic acid precipitates. The precipitate is separated by filtration, washed with water and dried. It melts at about 178° to 180°C. Yield: about 7%.

62 g of p-cyclohexyloxybenozic acid and 49.5 g of 3-(2'-methylpiperidino)-propyl chloride are dissolved in 300 cc of dry isopropanol and the mixture refluxed for about 12 hours. About half of the isopropanol is then distilled off and the residual solution cooled to about 0°C. 3(2'-methylpiperidino)-propyl p-cyclohexyloxybenzoate hydrochloride precipitates as a white crystalline compound. It is filtered off, washed once with ether and recrystallized from isopropanol.

3(2'-Methylpiperidino)-propyl p-cyclohexyloxybenzoate hydrochloride thus prepared melted at about 178° to 180°C. Analysis showed the presence of 8.88% chlorine as compared with the calculated value of 8.96%.

References

Merck Index 2729 Kleeman & Engel p. 257 OCDS Vol. 1 p. 14 (1977) I.N. p. 276 REM p. 1055 McElvain, S.M. and Carney, T.P.; U.S. Patent 2,439,818; April 20, 1948

CYCLOPENTAMINE HYDROCHLORIDE

Therapeutic Function: Vasoconstrictor

Chemical Name: N-α-dimethylcyclopentaneethaneamine hydrochloride

Common Name: Cyclopentadrine

Structural Formula:

(base)

Chemical Abstracts Registry No.: 102-45-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Clopane	Lilly	U.S.	1951
Cyclonaranol	Hepatrol	France	· –
Nazett	A.L.	Norway	-

Raw Materials

Cyclopentanone Magnesium Cvanoacetic acid Methyl lodide Ammonium acetate Methylamine Hydrogen Hydrogen chloride

Manufacturing Process

A mixture of 126 q (1.5 mols) of cyclopentanone, 128 g (1.5 mols) cyanoacetic acid, 31 g (0.5 mol) of ammonium acetate and 200 cc of dry benzene is heated under a refluxing

condenser and a water trap. The mixture is refluxed for about 12 hours after which time no more water collects in the trap, and the formation of cyclopentylideneacetonitrile is complete. The reaction mixture comprising a mixture of cyclopentylideneacetonitrile and cyclopentylideneacetic acid is washed with about one liter of 2% hydrochloric acid and the benzene layer is separated and the mixture is distilled to cause decarboxylation of the cyclopentylideneacetic acid present. The distillate comprising cyclopentylideneacetonitrile which boils at 172° to 175°C is purified by distillation.

A mixture of 53.5 g (0.5 mol) of cyclopentylideneacetonitrile dissolved in 50 cc of absolute ethanol and 0.5 g of a palladium-carbon catalyst is hydrogenated with hydrogen at a pressure of about 40 lb for about 3 hours. An additional amount of 0.8 g of palladiumcarbon catalyst is then added and the hydrogenation continued for about 4 hours during which time the reduction is substantially completed and the cyclopentylideneacetonitrile is converted to cyclopentylacetonitrile. The reaction mixture is filtered to remove the catalyst and the alcohol is evaporated in vacuo.

The residue comprising chiefly cyclopentylacetonitrile is washed with dilute hydrochloric acid to remove any amine which may have been formed during the hydrogenation process, and the organic residue comprising cyclopentylacetonitrile is dissolved in ether, the ether solution dried over anhydrous magnesium sulfate and distilled. The cyclopentylacetonitrile boils at 185° to 187°C and has a refractive index of $n_D^{25} = 1.4456$.

To an ethereal solution of methyl magnesium iodide prepared from 26.7 g (1.1 mols) of magnesium and 160 g (1.13 mols) of methyl iodide in 200 cc of dry ether, is added a solution of 79 g (0.72 mol) of cyclopentylacetonitrile in 100 cc of dry ether. The reaction mixture is refluxed for 4 hours. The reaction mixture is then decomposed with ice in the usual way, and the ether layer containing the cyclopentylacetone is separated, is dried over anhydrous magnesium sulfate and the ether removed by evaporation. The residue comprising cyclopentylacetone is purified by distillation in vacuo. The cyclopentylacetone boils at 82° to 84°C at about 32 mm pressure.

A mixture of 75 g (0.6 mol) of cyclopentylacetone, 75 g (2.4 mols) of methylamine, and 10 g of Raney nickel catalyst is placed in a high pressure bomb previously cooled to a temperature below -6°C, and hydrogen is admitted under an initial pressure of about 2,000 psi. The bomb is then heated to about 135° to 150°C for about 2 hours, during which time reductive amination takes place and 1-cyclopentyl-2-methylaminopropane is produced. During the period of heating the reaction mixture is agitated by rocking the bomb. The bomb is then cooled and opened thus permitting the escape of hydrogen and most of the excess methylamine. The reaction mixture is filtered to remove the nickel catalyst and the filtrate comprising 1-cyclopentyl-2-methylaminopropane is purified by distillation under reduced pressure. 1-Cyclopentyl-2-methylaminopropane boils at 83° to 86°C at about 30 mm pressure.

1-Cyclopentyl-2-methylaminopropane thus produced is a colorless liquid of slightly ammoniacal odor. It has a refractive of $n_D^{25} = 1.4500$. Analysis showed the presence of 9.79% N as compared with a calculated value of 9.99% N.

141 g (1 mol) of 1-cyclopentyl-2-methylaminopropane are dissolved in 500 cc of dry ether. and dry hydrogen chloride is passed into the solution until the weight of the mixture and container has increased by 36 g. During the addition of the hydrogen chloride, the hydrochloric acid addition salt of 1-cyclopentyl-2-methylaminopropane precipitates as a white powder. The salt is filtered off and washed with dry ether. 1-Cyclopentyl-2-methylaminopropane hydrochloride thus prepared melts at about 113° to 115°C. The yield is practically quantitative.

References

Merck Index 2733 Kleeman & Engel p. 258 I.N. p. 277

Rohrmann, E.; U.S. Patent 2,520,015; August 22, 1950; assigned to Eli Lilly and Company

CYCLOPENTOLATE HYDROCHLORIDE

Therapeutic Function: Anticholinergic (ophthalmic)

Chemical Name: \(\alpha\)-(1-hydroxycyclopentyl)benzene-acetic acid 2-(dimethylamino)ethyl ester

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5870-29-1; 512-15-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cyclogyl	Schieffelin	U.S.	1953
Cyplegin	Santen	Japan	1972
Skiacol	P.O.S.	France	1976
Pentolair	Pharmafair	U.S.	1983
Ciclolux	Tubi Lux Pharma	Italy	_
Cicloplegic	Frumtost	Spain	_
Colircusi Ciclopejico	Cusi	Spain	_
Cyclomydrin	Alcon	u.s.	_
Cyclopen	Irving	Australia	
Cyclopentol	Cusi	Belgium	_
Mydplegic	Cooper Vision	Puerto Rico	_
Mydrilate	W.B. Pharm,	U.K.	
Oftan-Syklo	Star	Finland	-
Zykolate	Mann	W. Germany	_

Raw Materials

Sodium phenyl acetate Isopropyl bromide β-Chloroethyl dimethylamine Magnesium Cyclopentanone

Manufacturing Process

To a well stirred suspension of 9 g of sodium phenyl acetate and 2.4 g of magnesium turnings in 25 cc of anhydrous ether, a solution of 9.4 cc of isopropyl bromide in 50 cc of anhydrous ether are added. The mixture is refluxed for one hour (during which time propane is evolved) and then 5 cc of cyclopentanone in 25 cc of anhydrous ether are added dropwise. The mixture is then refluxed for one hour and poured over ice water containing some hydrochloric acid. The ether solution is separated and extracted with 200 cc of 5% sodium hydroxide. The alkaline solution on acidification gives the free acid which is filtered off, dried in a desiccator and recrystallized from a mixture of ethylene dichloride and petroleum ether.

The product is 2-phenyl-2-(1-hydroxycyclopentyl)ethanoic acid, melting at 95° to 97°C. Of this product, 4.5 g in 30 cc of dry isopropyl alcohol are refluxed for 16 hours with 2.5 g of β -chloroethyl dimethyl amine. The solution is cooled and filtered clear from the solid by-product. The solvent is removed under reduced pressure on the steam bath and the residue is washed with anhydrous ether. It is dissolved in ethyl acetate from which it crystallizes. It is the hydrochloride of β-(dimethylamino)ethyl ester of 2-phenyl-2-(1-hydroxycyclopentyl) ethanoic acid, melting at 134° to 136°C.

References

Merck Index 2740 Kleeman & Engel p. 259 OCDS Vol. 1 p. 92 (1977) 1.N.p. 277

REM p. 914

Treves, G.R.; U.S. Patent 2,554,511; May 29, 1951; assigned to Schieffelin & Co.

CYCLOPHOSPHAMIDE

Therapeutic Function: Antineoplastic

Chemical Name: N,N-Bis(2-chloroethyl)tetrahydro-2H-1,3,2-oxazaphosphorin-2-amine-

2-oxide

Common Name: Cyclophosphane; cytophosphane

Structural Formula:

Chemical Abstracts Registry No.: 50-18-0

Trade Name	Manufacturer	Country	Year Introduced
Cytoxan	Mead Johnson	U.S.	1959
Endoxan	Lucien	France	1960
Neosar	Adria	U.S.	1982
Carloxan	Laake	Finland	_
Cicloblastina	Montedison	W. Germany	_
Cyclostin	Farm, Carlo Erba	italy	_
Cytophosphan	Taro	Israel	
Edoxana	Asta	W. Germany	-
Edoxana	W.B. Pharm,	U.K.	_
Genoxal	Funk	Spain	
Procytox	Horner	Canada	_
Sendoxan	Pharmacia	Sweden	_

Raw Materials

N,N'-Bis(β -chloroethyl)phosphoric acid amide dichloride Triethylamine

1.3-Propanolamine

Manufacturing Process

A solution of 7.5 g (1/10 mol) of 1.3-propanolamine and 20.2 g of triethylamine in 100 cc of absolute dioxane is added dropwise at 25°C to 30°C while stirring well to a solution of 25.9 g ($\frac{1}{10}$ mol) of N,N-bis-(β -chloroethyl)-phosphoric acid amide dichloride in 100 cc of absolute dioxane. After the reaction is complete, the product is separated from the precipitated triethylamine hydrochloride and the filtrate is concentrated by evaporation in waterjet vacuum at 35°C. The residue is dissolved in a large amount of ether and mixed to saturation with water. The N,N-bis- $(\beta$ -chloroethyl)-N,O-propylene phosphoric acid diamide crystallizes out of the ethereal solution, after it has stood for some time in a refrigerator, in the form of colorless water-soluble crystals. MP 48°C to 49°C. Yield: 65% to 70% of the theoretical.

References

Merck Index 2741 Kleeman & Engel p. 259 PDR pp. 569, 719 OCDS Vol. 3 p. 161 (1984) DOT 16 (5) 169 (1980)

I.N. p. 278 REM p. 1146

Arnold, H., Brock, N. and Bourseaux, F.; U.S. Patent 3,018,302; January 23, 1962; assigned to Asta-Werke A.G. Chemische Fabrik (W. Germany)

CYCLOSERINE

Therapeutic Function: Antitubercular

Chemical Name: D-4-amino-3-isoxazolidinone

Common Name: Orientomycin

Structural Formula:

H₂N O NH

Chemical Abstracts Registry No.: 68-41-7

Trade Name	Manufacturer	Country	Year Introduced
Oxamycin	Merck Sharpe & Dohme	U.S.	1956
Seromycin	Lilly	U.S.	1956
Aristoserina	Aristochimica	Italy	-
Ciclovalidin	Bracco	Italy	_
Cyclomycin	Shionogi	Japan	-
Cycloserine	Lilly	U.S.	_
D-Cycloserin	Roche	W. Germany	_
Farmiserina	Farm, Carlo Erba	Italy	_
Micoserina	Beolet	Italy	_
Miroseryn	Morgan	Italy	_
Orientmycin	Kayaru-Kaken Yaku	Japan	_
Setavax	I.C.N.	_	_
Tisomycin	Lilly	_	

Raw Materials

eta-Aminoxyalanine ethyl ester	Soybean meal
Bacterium Streptomyces lavendulae	Potassium hydroxide

Manufacturing Process

Cycloserine may be made by a fermentation process or by direct synthesis. The fermentation process is described in U.S. Patent 2,773,878. A fermentation medium containing the following proportions of ingredients was prepared:

	Parts by Weight	
Soybean meal	30.0	
Cornstarch	5.0	
Corn steep liquor	3.0	
Sodium nitrate	3.0	

This material was made up with distilled water to provide 41 g per liter, and the mixture was adjusted to pH 7.0 with potassium hydroxide solution. To the mixture were added per liter 5.0 g of calcium carbonate and 7.5 ml of soybean oil. 2,000 ml portions of this medium were then added to fermentation vessels, equipped with stirrers and aeration spargers, and sterilized at 121°C for 60 minutes. After cooling the flasks were inoculated with a suspension of strain No. ATCC 11924 of Streptomyces lavendulae, obtained from the surface of agar slants. The flasks were stirred for 4 days at 28°C at approximately 1,700 rpm. At the end of this period the broth was found to contain cycloserine in the amount of about 250 C.D.U./ml of broth. The mycelium was separated from the broth by filtration. The broth had a pH of about 7.5. Tests showed it to be highly active against a variety of microorganisms.

The direct synthetic process is described in U.S. Patent 2,772,280. A solution of 73.3 g (0.332 mol) of β -aminoxyalanine ethyl ester dihydrochloride in 100 ml of water was stirred in a 500 ml 3-necked round-bottomed flask cooled in an ice-bath. To the above solution was added over a 30-minute period 65.6 g (1.17 mols) of potassium hydroxide dissolved in 100 ml of water. While the pH of the reaction mixture was 7 to 10.5, a red color appeared which disappeared when the pH reached 11 to 11.5. The light yellow solution was allowed to stand at room temperature for ½ hour and then added to 1,800 ml of 1:1 ethanol-isopropanol. The reaction flask was washed twice with 10 ml portions of water and the washings added to the alcohol solution. The precipitated salts were filtered out of the alcohol solution and the filtrate cooled to 5°C in a 5 liter 3-necked round-bottomed flask. To the cold, well-stirred solution was added dropwise over a 35-minute period sufficient glacial acetic acid to bring the pH of the alcohol solution to 6.0. When the pH of the solution had reached 7 to 7.5, the solution was seeded and no further acetic acid added until crystallization of the oil already precipitated had definitely begun. The crystalline precipitate was collected on a filter, washed twice with 1:1 ethanol-isopropanol and twice with ether. The yield of 4-amino-3-isoxazolidone was 22.7 g.

References

Merck Index 2747 Kleeman & Engel p. 260 PDR p. 1069 OCDS Vol. 3 p. 14 (1984) I.N. p. 278 REM p. 1210

Fermentation Process:

Shull, G.M., Routien, J.B. and Finlay, A.C.; U.S. Patent 2,773,878; December 11, 1956; assigned to Chas. Pfizer & Co., Inc.

Harned, R.L.; U.S. Patents 2,789,983; April 23, 1957; and 3,124,590; March 10, 1964; both assigned to Commercial Solvents Corporation

Howe, E.E.; U.S. Patent 2,845,433; July 29, 1958; assigned to Merck & Co., Inc. Synthetic Process:

Peck, R.L.; U.S. Patent 2,772,280; November 27, 1956; assigned to Merck & Co., Inc. Holly, F.W. and Stammer, C.H.; U.S. Patent 2,840,565; June 24, 1958; assigned to Merck & Co., Inc.

CYCLOSPORIN

Therapeutic Function: Immunosuppressive

Chemical Name: Cyclic oligopeptide (See Structural Formula)

Common Name: Ciclosporin

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Sandimmune	Sandoz	U.S.	1983
Sandimmun	Sandoz	U.K.	1983
Sandimmun	Sandoz	W. Germany	1983
Sandimmune	Sandoz	Switz.	1983

Raw Materials

Sucrose

Corn steep liquor

Fungus Cylindrocarpon Lucidum (NRRL 5760)

Manufacturing Process

10 liters of a nutrient solution (of which each liter contains 30 g of sucrose, 10 g of corn steep, 3 g of NaNO₃, 1 g of K_2HPO_4 , 0.5 g of MgSO₄·7H₂O, 0.5 g of KCl and 0.01 g of FeSO₄·7H₂O) are inoculated with 100 cc of a conidia and mycelium suspension of the strain NRRL 5760, and incubation is effected in 700 cc penicillin flasks at 27°C for 11 days.

The mycelium, which has been separated from the culture liquid, is extracted in a Turrax apparatus by crushing and stirring with 3.5 liters of 90% methanol, and the crushed mycelium. which is separated from the solvent by filtering with suction, is again treated twice in the same manner with 90% methanol. The combined filtrates are concentrated by evaporation in a vacuum at a bath temperature of 40°C to such an extent that the vapor mainly consists of water alone. The resulting mixture is extracted six times with the same volume of ethylene chloride by shaking, whereupon the combined ethylene chloride solutions are purified by extraction with water and are concentrated by evaporation in a vacuum at a bath temperature of 40°C. The resulting residue is chromatographed on 250 g of silica gel (silica gel 60 Merck). grain size 0.063-0.200 mm), using chloroform containing 2% of methanol as eluant, and is collected in 200 cc fractions. The fractions which are antibiotically active against Aspergillus niger in the plate diffusion test are combined, evaporated to dryness as described above, and after dissolving in methanol are chromatographed on 110 g of Sephadex LH20 with the same solvent, whereupon those 20 cc fractions showing an antibiotic effect against Aspergillus niger in the test indicated above, are combined. A test in the thin layer chromatogram, e.g., with silica gel on Polygram foils and hexane/acetone (1:1) as eluant, indicates that the residue of the methanol solution evaporated as described above mainly consists of the two new antibiotics S 7481/F-1 and S 7481/F-2. These are separated and simultaneously purified by a further chromatography of the mixture thereof, using a 1,000-fold amount of silica gel on the above indicated quality and chloroform contains 2% of methanol. A testing of the eluate fractions having a volume in milliliters which is half as large as the weight of the silica gel in grams, in the thin layer chromatogram, indicates that the antibiotic S 7481/F-1 appears first in the eluate, followed by a mixture of the two antibiotics and finally by homogeneous S 7481/F-2.

Further amounts of the two antibiotics may be obtained from the mixture by repeating chromatography under the same conditions.

References

Merck Index 2748 DFU 4 (8) 567 (1979) PDR p. 1592

DOT 19 (7) 413 & (12) 665 (1983)

I.N. p. 231

REM p. 1147

Harri, E. and Ruegger, A.; U.S. Patent 4,117,118; September 26, 1978; assigned to Sandoz. Ltd. (Switz.)

CYCLOTHIAZIDE

Therapeutic Function: Diuretic, Antihypertensive

Chemical Name: 3-bicyclo[2.2.1] hept-5-en-2-yl-6-chloro-3,4-dihydro-2H-1,2,4-benzothiadi-

azine-7-sulfonamide 1,1-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2259-96-3

Trade Name	Manufacturer	Country	Year Introduced
Anhydron	Lilly	U.S.	1963
Fluidil	Adria	U.S.	1980
Baronorm	Roussei	France	-
Cycloteriam	Roussel	France	_
Dimapres	Dieckmann	W. Germany	
Doburil	Pharmacia	Sweden	_
Doburil	Boehr/Ingel.	_	-
Tensodiural	Rafa	Israel	_
Valmiran	Boehr/Tanabe	Japan	_

Raw Materials

6-Chloro 4-aminobenzene 1,3-disulfonamide

2.5-Endomethylene- Δ^3 -tetrahydrobenzaldehyde

Manufacturing Process

A mixture of 8.5 g (0.03 mol) of 6-chloro-4-amino-benzene-1,3-disulfonamide, 4.0 g (0.033 mol) of 2,5-endomethylene- Δ^3 -tetrahydrobenzaldehyde and 25 cc of diethyleneglycol-dimethyl ether was heated for 2 hours at 100°C. During this time the major portion of the initially undissolved crystals went into solution; thereafter, the reaction mixture was allowed to stand for 14 hours at room temperature, during which the remaining undissolved crystals also went into solution. The reddish, clear solution thus obtained was admixed

with 50 cc of chloroform. The greyish-white precipitate formed thereby was separated by vacuum filtration, washed with a small amount of chloroform, dried and recrystallized from aqueous methanol. 7.5 g of white crystalline needles having a melting point of 229° to 230°C were obtained.

References

Merck Index 2749 Kleeman & Engel p. 261 OCDS Vol. 1 p. 358 (1977) 1.N.p. 278 REM p. 939

Müller, E. and Hasspacher, K.; U.S. Patent 3,275,625; September 27, 1966; assigned to Boehringer Ingelheim GmbH, Germany

CYCRIMINE HYDROCHLORIDE

Therapeutic Function: Muscle relaxant; Antiparkinsonism

Chemical Name: α-cyclopentyl-α-phenyl-1-piperidinepropanol hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 126-02-3; 77-39-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pagitane	Lilly	U.S.	19 53
Pagi ta ne	Lilly	Italy	-

Raw Materials

Bromobenzene Magnesium Cyclopentyl-\(\beta\)-(N-piperidyl)ethyl ketone Hydrogen chloride

Manufacturing Process

The manufacture of the cyclohexyl analog is as follows. Phenyl magnesium bromide was prepared from 48.5 g (0.308 mol) of bromobenzene, 7 g (0.29 mol) of magnesium, and 125 ml of dry ether. To it was added at 5°C over a period of ½ hour 40 g (0.18 mol) of cyclohexyl β-(N-piperidyl) ethyl ketone (BP 115° to 117°C/1 mm) in 125 ml of dry ether. The mixture was allowed slowly to come to room temperature, refluxed for one hour, and then poured into ice containing 80 ml of concentrated hydrochloric acid. Ammonium chloride (100 g) and 200 mi of concentrated ammonium hydroxide were added and the organic layer was separated. After drying and removing the solvent, the residue was distilled under reduced pressure. The base distilled at 158° to 170°C (1 mm) and solidified. Upon recrystallization from methanol it melted at 112° to 113°C.

References

Merck Index 2752 Kleeman & Engel p. 262 OCDS Vol. 1 p. 47 (1977)

I.N.p. 279 REM p. 932

Ruddy, A.W. and Becker, T.J.; U.S. Patent 2,680,115; June 1, 1954; assigned to Winthrop-Stearns Inc.

CYPROHEPTADINE

Therapeutic Function: Antipruritic, Antihistaminic, Appetite stimulant

Chemical Name: 4-(5H-dibenzo [a,d] cyclohepten-5-ylidene)-1-methylpiperidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 129-03-3; 969-33-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Periactin	Merck Sharp & Dohme	U.S.	1961
Nuran	Merck Sharp & Dohme	W. Germany	1961
Periactin	Chibret	Switz,	1961
Periactin	MSD	U.K.	1961
Periactin	MSD	Italy	1961
Periactine	MSD-Chibret	France	1962
Anarexol	MSD	-	_
Antegan	Frosst	Australia	_
Cipractin	Andromaco	Spain	_
Cipro	Beta	Argentina	_
Cypromin	Sawai	Japan	
Ifrasari	Showa	Japan	_
Oractine	Teva	(srae)	_
Perjactol	Sharp & Dohme	W. Germany	_
Peritol	Egyt	Hungary	_
Sigloton	Miluy	Spain	
Sipraktin	Kimya Evi	Turkey	
Siprodin	Saba	Turkey	_
Vimicon	Merck-Frosst	Canada	-

Raw Materials

Ethyl Bromide 4-Chloro-1-methyl piperidine Dibenzo[a,e] cycloheptatrien-5-one Hydrogen chloride

Magnesium Acetic anhydride Sodium hydroxide

Manufacturing Process

(A) Preparation of 1-Methyl-4-Piperidyl-Magnesium Chloride: Magnesium turnings (5.45 g. 0.22 g-atom) were placed in a 500 ml 3-necked flask provided with a condenser. Hershberg stirrer and dropping funnel and protected with a drying tube. An atmosphere of dry nitrogen was maintained in the apparatus throughout the reaction. The magnesium was covered with 20 ml of dry tetrahydrofuran. A crystal of iodine and 1.2 g of ethyl bromide were added and after the reaction had subsided (formation of ethylmagnesium bromide) a solution of 29.4 g (0.22 mol) of 4-chloro-1-methyl-piperidine in dry tetrahydrofuran (total volume, 103 ml) was added dropwise at such a rate that gentle reflux was maintained.

The solution of 4-chloro-1-methylpiperidine in tetrahydrofuran was dried over calcium hydride at ice-bath temperature prior to use. When the addition of the halide was complete the reaction mixture was refluxed with stirring for one hour. In some subsequent experiments this period of refluxing was omitted with no deleterious result.

(B) Preparation of 1-Methyl-4-(5-Hydroxy-5-Dibenzo[a,e] Cycloheptatrienyl)-Piperidine: The solution of the Grignard reagent prepared in (A) was cooled to 5° to 10°C and stirred while 22.7 g (0.11 mol) of dibenzo[a,e] cycloheptatrien-5-one was added in portions. After stirring for 1 hour during which time the reaction mixture was allowed to warm up to room temperature, the bulk of the tetrahydrofuran was distilled at 40° to 50°C under reduced pressure. Benzene, 150 ml, was added and the reaction mixture stirred and cooled in an ice-bath while water, 100 ml, was added gradually. The benzene layer was separated by decantation and the gelatinous residue extracted three times with 75 ml portions of boiling benzene.

The solvent was evaporated from the combined benzene extracts to give 33.4 g of a clear light brown resin. Crystallization from an alcohol-water mixture gave 19.5 g of 1-methyl-4-(5-hydroxy-5-dibenzo[a,e] cycloheptatrienyl)-piperidine, MP 156° to 157°C. Two recrystallizations from alcohol-water mixtures followed by two recrystallizations from benzene-hexane mixtures gave analytically pure product, MP 166.7° to 167.7°C.

(C) Preparation of 1-Methyl-4-(5-Dibenzo [a,e] Cycloheptatrienylidene)-Piperidine Hydrochloride: 1-Methyl-4-(5-hydroxy-5-dibenzo[a,e] cycloheptatrienyl)-piperidine (3.05 g, 0.01 mol) was dissolved in glacial acetic acid, 15 ml. The solution was saturated with dry hydrogen chloride with external cooling. A white solid separated. Acetic anhydride (3.07 g, 0.03 mol) was added and the mixture heated on the steam bath for one hour. The solid dissolved in the first 5 minutes of the heating period.

The reaction mixture was poured into 25 ml of water and the mixture made strongly basic with 10 N sodium hydroxide solution. The mixture was extracted 3 times with 50 ml portions of benzene, the combined extracts washed with water and concentrated to a volume of approximately 50 ml. The solution was saturated with dry hydrogen chloride and the white crystalline product collected and dried. The yield of product, MP 251.6° to 252.6°C (dec.) was 2.5 g. Recrystallization from a mixture of absolute alcohol and absolute ether gave a product, MP 252.6° to 253.6°C. A sample was analyzed after drying for 7 hours at 110°C over phosphorus pentoxide in vacuo.

(D) Preparation of 1-Methyl-4-(5-Dibenzo[a,e] Cycloheptatrienylidene)-Piperidine: The hydrochloride salt, 4.3 g, was suspended in 100 ml of warm water and the mixture made strongly alkaline by the addition of 15 ml of 5% sodium hydroxide. The mixture was extracted with four 50 ml portions of benzene and the extracts dried over sodium sulfate. Evaporation of the benzene on the steam-bath at reduced pressure left 3.7 g (97%) of the base, MP 110.3° to 111.3°C. Recrystallization from a mixture of alcohol and water gave product, MP 112.3° to 113.3°C.

References

Merck Index 2766

Kleeman & Engel p. 263 PDR pp. 830, 1208, 1606, 1999 OCDS Vol. 1 p. 151 (1977) I.N. p. 280

REM p. 1132

Engelhardt, E.L.; U.S. Patent 3,014,911; December 26, 1961; assigned to Merck & Co., Inc.

CYPROTERONE ACETATE

Therapeutic Function: Antiandrogen

Chemical Name: 6-chloro-1β,2β-dihydro-17-hydroxy-3'H-cyclopropa[1,2] pregna-1,4,6-

triene-3.20-dione acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2098-66-01

Trade Name	Manufacturer	Country	Year Introduced
Androcur	Schering	W. Germany	1973
Androcur	Schering	Switz.	1973
Androcur	Schering	U.K.	1974
Androcur	Schering	Italy	1975
Androcur	Schering	Japan	1982
Cyprostat	Schering	· <u> </u>	_
Diane	Schering	W. Germany	

Raw Materials

1.2 α -Methylene- $\Delta^{4,6}$ -pregnadiene-17 α -ol-3.20-dione-17-acetate Perbenzoic acid Acetic acid

Manufacturing Process

2.34 g of 1,2 α -methylene- $\Delta^{4/6}$ -pregnadiene-17 α -ol-3,20-dione-17-acetate are dissolved in 18.25 cc of ethylene chloride which contains 844 mg of perbenzoic acid. The solution is stored for 16 hours at +5°C and 7 hours at room temperature. It is then diluted with methylene chloride and, with aqueous ferrous sulfate solution, sodium bicarbonate solution and with water washed until neutral.

The organic phase is dried over sodium sulfate and then concentrated to dryness. 1.62 q of the thus obtained crude $1,2\alpha$ -methylene- $6,7\alpha$ -oxido- Δ^4 -pregnene- 17α -ol-3,20-dione-17acetate are dissolved in 109 cc of glacial acetic acid. This solution is then saturated at room temperature with hydrogen chloride gas and stored for 20 hours. It is then diluted with methylene chloride and washed with water until neutral.

The organic phase is dried over sodium sulfate and then concentrated to dryness. The thus obtained crude 6-chloro- 1α -chloromethyl- $\Delta^{4/6}$ -pregnadiene- 17α -ol-3,20-dione-17acetate is heated to boiling in 20 cc of collidine for 20 minutes under nitrogen. After dilution with ether it is washed with 4 N hydrochloric acid and washed with water until neutral.

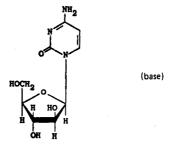
After drying over sodium sulfate and concentration to vacuum the remaining residue is subjected to chromatography over silica gel. Using a benzene-ethyl acetate mixture (19:1) there is eluated 900 mg of 6-chloro-1,2 α -methylene- $\Delta^{4/6}$ -pregnadiene-17 α -ol-3,20dione-17-acetate, which upon recrystallization from isopropyl ether melts at 200° to 201°C.

References

Merck Index 2769 Kleeman & Engel p. 263 OCDS Vol. 2 p. 166 (1980) DOT 10 (1) 12 (1974)

I.N. p. 280

Wiechert, R.; U.S. Patent 3,234,093; February 8, 1966; assigned to Schering AG, Germany


CYTARABINE HYDROCHLORIDE

Therapeutic Function: Cancer chemotherapy

Chemical Name: 4-amino-1 β -D-arabinofuranosyl-2(1H)-pyrimidinone hydrochloride

Common Name: B-cytosine arabinoside

Structural Formula:

Chemical Abstracts Registry No.: 69-74-9; 147-94-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cytosar	Upjohn	U.S.	1969
Cytosar	Upjohn	U.K.	1970
Alexan	Mack	W. Germany	1971
Kilocyde	Nippon Shinyaku	Japan	1971
Cytosar	Diethelm	Switz.	1971
Aracytine	Upjohn	France	1972
Aracytin	Upjohn	Italy	1972
Arabitin	Sankyo	Japan	_
Cyclocide	Nippon Kayaku	Japan	_
Erpalfa	Intes	Italy	_
Iretin	Torii	Japan	
Udicil	Upjohn	W. Germany	_

Raw Materials

1-(2.3.5-Tri-O-acetyl \(\beta\)-arabinofuranosyl)uracil Phosphorus pentasulfide Ammonia

Manufacturing Process

(A) Preparation of 1-(2.3.5-Tri-O-Acetyl-β-D-Arabinofuranosyl)-4-Thiouracil: A mixture of 1.85 g (5.0 mmol) of 1-(2,3,5-tri-O-acetyl-β-arabinofuranosyl)uracil, 1.23 g (5.55 mmol) of phosphorus pentasulfide, and 30 ml of pyridine was heated under gentle reflux for 2.5 hours with exclusion of moisture. The reaction mixture was cooled, and the supernatant solution was transferred by means of a pipette into a mixture of crushed ice and water. The reaction flask was washed twice with pyridine, and these washings were added to the ice-water mixture. This mixture was kept at about 25°C until the ice had melted, and was then stored at 0°C for one hour. A pale yellow precipitate that formed was collected on a filter, washed with ice-water, and dried in air.

This material was triturated with chloroform, and the chloroform mixture was filtered. A small amount of undissolved material collected on the filter and it was washed with chloroform. The chloroform solution (filtrate plus washings) was washed three times with ice-water, twice with ice-cold 3 N sulfuric acid, twice with ice-cold saturated aqueous sodium bicarbonate solution, twice with ice-water, and then dried over anhydrous sodium sulfate. The chloroform was removed under reduced pressure at a bath temperature of about 40°C, leaving a yellow, somewhat gummy residue. This yellow residue was dissolved in absolute methanol which was then evaporated at reduced pressure at about 40°C, and the residue was then held for 2 hours at 0.5 to 2.0 mm pressure and a bath temperature of about 50°C. There was thus obtained 1.69 g of 1-(2,3,5-tri-O-acetyl-β-D-arabinofuranosyl)-4-thiouracil.

(B) Preparation of 1-β-D-Arabinofuranosylcytosine: In a glass liner, a mixture of 1.16 g (3.0 mmol) of 1-(2,3,5-tri-O-acetyl-β-D-arabinofuranosyl)-4-thiouracil prepared in (A) and about 60 ml of absolute methanol which had been saturated with anhydrous ammonia at 0°C was heated in a steel bomb at 98° to 105°C for 35 hours. After cooling to about 25°C and venting the bomb, the dark solution was filtered into a round-bottom flask. The methanol and excess ammonia were then removed under reduced pressure at about 25°C. The residual syrup was dissolved in absolute methanol, and the methanol was removed under reduced pressure at a bath temperature of about 40°C. This procedure of dissolving in absolute methanol and removing the solvent was repeated, and the residue was held under reduced pressure at a bath temperature of 45°C for 12 hours.

The resulting semisolid was triturated thoroughly with absolute methanol, and the resulting suspension was chilled at 0°C. A pale tan solid that separated was collected on a filter and washed repeatedly with methanol. After washing with anhydrous ether, there was obtained 430 mg of 1- β -D-arabinofuranosylcytosine.

(C) Preparation of 1-β-D-Arabinofuranosylcytosine Hydrochloride: The absolute methanolic filtrate obtained after triturating and filtering the 1-β-D-arabinofuranosylcytosine in (B) above was warmed and stirred with decolorizing charcoal. The mixture was filtered through a bed of filter aid, and the filter bed was washed repeatedly with absolute methanol. The combined filtrate and washings were pale yellow. The solution was diluted to faint cloudiness with anhydrous ether, and an excess of anhydrous hydrogen chloride was introduced. Crystallization began at about 25°C and further crystallization was induced by chilling at 0°C for 14 hours. The crystalline product was collected on a filter, washed with anhydrous ether, and dried in air. There was thus obtained 180 mg of pale yellow 1-β-D-arabinofuranosylcytosine hydrochloride melting at 186° to 189°C.

The pale yellow product was dissolved in warm, absolute methanol, and the solution after mixing with decolorizing charcoal was filtered through a bed of filter aid. The filter bed was washed with warm absolute methanol, and the combined methanolic filtrate and

washings were warmed and diluted with anhydrous ether to incipient crystallization. The methanol-ether mixture was kept at about 25°C for about 1 hour and then chilled, first at 0°C, and then at -20°C. The resulting colorless needles were collected on a filter, washed with anhydrous ether, and dried at 85°C, yielding 100 mg of 1- β -D-arabinofuranosylcytosine hydrochloride having a melting point of 186° to 188°C.

References

Merck Index 2778 Kleeman & Engel p. 264 PDR p. 1833 DOT 13 (11) 477 (1977) I.N. p. 281 REM p. 1147

Hunter, J.H.; U.S. Patent 3,116,282; December 31, 1963; assigned to The Upjohn Company

DACTINOMYCIN

Therapeutic Function: Cancer chemotherapy

Chemical Name: Complex actinomycin, see structural formula

Common Name: Meractinomycin; Actinomycin D; Actinomycin Aiv

Structural Formula:

Chemical Abstracts Registry No.: 50-76-0

Trade Name	Manufacturer	Country	Year Introduced
Cosmegen	Merck Sharp & Dohme	U.S.	1965
Lyovac	Merck Sharp & Dohme	W. Germany	1966
Cosmegen	Merck Banyu	Japan	1969
Cosmegen	Merck Sharp & Dohme	Italy	1973

Raw Materials

Bacterium Actinomyces antibioticus
Nutrient medium

Manufacturing Process

An incubated culture of *Actinomyces antibioticus* was prepared using a medium consisting of 1% tryptone-peptone, 0.5% starch, 0.2% K_2 HPO₄, 0.2% NaCl and 0.25% agar in distilled water, grown at a temperature of approximately 25° to 35°C, the incubation being complete after 6 to 10 days. 50 liters of this incubated culture are extracted approximately six times with ether, using 20 liters of ether for each extraction.

The final extract is faintly pale yellow in color, whereas the previous extracts are orange. The combined ether extracts are concentrated to dryness and about 3 grams of a reddish-brown residue is obtained. The residue is stirred with approximately 400 cc of petroleum ether for two to three hours, the solvent decanted and the residue treated again with approximately 400 cc of petroleum ether. A pale yellow oil constituting crude actinomycin

B is recovered by evaporation from the petroleum ether.

The dark petroleum ether insoluble residue is dissolved in 1 liter of benzene with gentle heating. Usually a small amount of black amorphous material remains undissolved and is filtered off. The benzene solution is permitted to drop through a chromatographic tower (60×5 cm) packed with aluminum oxide (according to Brockman). The pigment is readily adsorbed. The column is washed with about 1 liter of benzene during which operation very little migration of the color bands occurs.

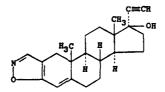
The column is then washed with benzene acetone solution (15:85) whereby a chromatogram develops. By continued washing, light yellow colored pigments pass out of the column. When the main band (orange-red) reaches the lower end of the column, a solution of 30:70 acetone-benzene is passed through the column. The latter solvent elutes the pigment and when the eluate is very pale in color, washing is discontinued.

The eluate is concentrated to dryness under reduced pressure, taken up in 25 cc of hot acetone, filtered, and diluted with ether. The pigment which crystallizes as red-brick colored platelets is essentially pure but may be recrystallized if desired from hot ethyl acetate. An analysis of the product showed C = 59.01; H = 6.81; N = 13.38.

References

Merck Index 2792 Kleeman & Engel p. 265 PDR p. 1151 I.N. p. 282 REM p. 1148

Waksman, S.A. and Woodruff, H.B.; U.S. Patent 2,378,876; June 19, 1945; assigned to Merck & Co., Inc.


DANAZOL

Therapeutic Function: Anterior pituitary suppressant

Chemical Name: 17α-pregna-2,4-dien-20-yno[2,3,-d] isoxazol-17-ol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17230-88-5

Trade Name	Manufacturer	Country	Year Introduced
Dano!	Winthrop	U.K.	1974
Danocrine	Sterling Winthrop	U.S.	1976
Winobanin	Winthrop	W. Germany	1976
Danatrol	Winthrop	Switz.	1976
Bonzol	Tokyo Tanabe	Japan	1983
Chronogyn	Winthrop	U.S.	_
Cyclomen	Winthrop	Canada	_

Trade Name	Manufacturer	Country	Year Introduced
Da natrol	Sterwin Espanola	Spain	_
Ladogal	Ross	U.S.	_
Ladogar	Winthrop	_	

Raw Materials

 17α -Ethynyl-2-hydroxymethylene-4-androsten-17 β -ol-3-one Hydroxylamine Sodium acetate Acetic acid

Manufacturing Process

Danazol was prepared from 4.32 grams of 17α-ethynyl-2-hydroxymethylene-4-androsten- 17β -ol-3-one, 1.00 gram of hydroxylamine hydrochloride, 1.12 grams of fused sodium acetate and 135 ml of acetic acid. To a 500 ml, 3-necked flask, equipped with a sealed Hershberg-type stirrer, a reflux condenser and a stopper, was added the above androstenone derivative in 300 ml of 95% ethanol. Stirring was commenced and a slurry of fused sodium acetate and hydroxylamine hydrochloride in glacial acetic acid was added.

The mixture was refluxed gently on a steam bath for 1½ hours. Fifteen minutes after initiating the reaction, the reaction mixture gave a negative ferric chloride test. Most of the ethanol and acetic acid were removed by distillation in vacuo, 300 ml of water and 300 ml of ether were added to the concentrate, and the mixture was shaken. The layers were separated, the aqueous layer extracted with fresh ether, and the combined ether extracts were washed with water, dried over anhydrous sodium sulfate, filtered and evaporated to dryness in vacuo. The residue was crystallized by trituration with ether, and the crystals were collected by filtration, washed with hexane and dried. The mother liquors were concentrated to dryness and dissolved in a minimum amount of acetone, whereupon a second crop was obtained. The two crops were combined, dissolved in ethyl acetate, decolorized with activated charcoal, and recovered by concentration.

There was thus obtained 2.35 grams of 17α -ethynyl- 17β -hydroxy-4-androsteno[2.3-d] isoxazole, MP 224.2°-226.8°C (corr.) when recrystallized from acetone; $[\alpha]_0^{25} = +7.5\pm0.2^{\circ}$ (in 95% ethanol); ultraviolet maximum at 286 m μ (E = 11,300).

References

Merck Index 2799 Kleeman & Engel p. 266 PDR p. 1907 OCDS Vol. 2 p. 157 (1980) DOT 11 (2) 52 (1975) & 18 (5) 223 (1982) I.N. p. 283 REM p. 997 Clinton, R. and Hanson, A.; U.S. Patent 3, 135,743; June 2, 1964; assigned to Sterling Drug

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 1-[[[5-(4-nitrophenyl)-2-furanyl]-methylene] amino]-2,4-imidazolidinedione

DANTROLENE SODIUM

sodium salt

Common Name: 1-[[5-(p-nitrophenyl)furfurylidene] -amino] hydantoin sodium salt

Chemical Abstracts Registry No.: 28468-30-0; 7261-97-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dantrium	Norwich Eaton	U,S.	1974
Dantrium	Eaton	U.K.	1975
Dantamacrin	Roehm	W. Germany	1978
Dantrium	Oberval	France	1979
Dantrium	Yamanouchi	Japan	1981
Dantrium	Formenti	Italy	1981
Dantrix	S.I.T.	Italy	_

Raw Materials

5-(p-Nitrophenyl)-2-furaldehyde 1-Aminohydantoin hydrochloride

Sodium hydroxide

Manufacturing Process

5-(p-Nitrophenyl)-2-furaldehyde (40.0 grams, 0.2 mol) is dissolved in dimethylformamide. An aqueous solution of 1-aminohydantoin hydrochloride (30.0 grams, 0.2 mol) is added. The solution is chilled and diluted with water. The crude material is collected and recrystallized from aqueous dimethylformamide to yield 10.0 grams (16%), MP 279°-280°C. This compound is then converted to the sodium salt.

References

Merck Index 2803 Kleeman & Engel p. 266 PDR p. 1273 OCDS Voi. 2 p. 242 (1980) DOT 17 (9) 384 (1981)

I.N. p. 284 REM p. 922

Davis, C.S. and Snyder, H.R. Jr.; U.S. Patent 3,415,821; December 10, 1968; assigned to The Norwich Pharmacal Company

DAPSONE

Therapeutic Function: Antibacterial (leprostatic)

Chemical Name: 4,4'-Sulfonylbisbenzamine

Common Name: bis(4-Aminophenyl)sulfone; Diaphenylsulfone

Structural Formula:

$$H_2N - So_2 - NH_2$$

Chemical Abstracts Registry No.: 80-08-0

Trade Name	Manufacturer	Country	Year Introduced
Aviosulfon	Ayerst	U.S.	1957
Dapsone	Jacobus	U.S.	_
Disulone	Specia	France	_
Maloprim	Wellcome	U.K.	
Novophone		_	
Protogen	Yoshitomi	Japan	
Sulfona Oral	Esteve	Spain	_
Udolac	I.C.I.	U.K.	_

Raw Materials

p-Chloronitrobenzene Stannous chloride Acetamidobenzene sodium sulfonate Hydrogen chloride

Manufacturing Process

p-Chloronitrobenzene is reacted with NaSO₂ C₆H₅NHCOCH₃ to give as an intermediate, O2NC6H5SO2C6H5NHCOCH3 which is then reduced and deacetylated to give the product, dapsone. Alternatively, benzene and sulfuric acid react to give phenyl sulfone which is nitrated, then reduced to give dapsone.

References

Merck Index 2808 Kleeman & Engel p. 267

PDR p. 951

OCDS Vol. 1 p. 139 (1977) & 2 p. 112 (1980)

I.N. p. 284

Weijiard, J. and Messerly, J.P.; U.S. Patent 2,385,899; October 2, 1945; assigned to Merck & Co., Inc.

DAUNORUBICIN

Therapeutic Function: Cancer chemotherapy

Chemical Name: (8S-cis)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy] -

7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12-naphthacenedione

Common Name: Rubidomycin, Antibiotic F.I. 1762

Structural Formula:

Chemical Abstracts Registry No.: 20830-81-3

Trade Name	Manufacturer	Country	Year Introduced
Cerubidine	Specia	France	1968
D a unoblastin	Farmitalia	W. Germany	1968
Daunoblastina	Farmitalia	Italy	1968
Daunomycin	Meiji Seika	Japan	1970
Cerubidin	May & Baker	U.K.	1971
Cerubidine	Ives	U.S.	1979
Cerubidine	Rhone-Poulenc	Canada	
Ondena	Bayer	_	_
Rubomycin	Medexport	U.S.S.R.	_

Raw Materials

Bacterium Streptomyces F.I. 1762 Glucose

Manufacturing Process

Two 300 ml Erlenmeyer flasks are prepared, each of them containing 60 ml of the following vegetative medium in tap water: 0.6% peptone, 0.3% dry yeast and 0.05% calcium nitrate. The pH after sterilization by heating in an autoclave to 120°C for 20 minutes is 7.2.

Each flask was inoculated with mycelium of Streptomyces F.I. 1762 whose quantity corresponds to one-fifth of a suspension in sterile water of the mycelium of a 10 day old culture growth in a test tube containing the following ingredients dissolved in tap water.

	Percent
Saccharose	2
Dry yeast	0.1
Potassium hydrogen phosphate	0.2
Sodium nitrate	0.2
Magnesium sulfate	0.2
Agar	2

The flasks are incubated at 28°C for 48 hours on a rotary shaker with a stroke of 60 mm at 220 rpm. 2 ml of a vegetative medium thus grown are used to inoculate 300 ml Erlenmeyer flasks containing 60 ml of the following productive medium in tap water at pH 7.0.

	Percent
Glucose	4
Dry yeast	1.5
Sodium chloride	0.2
Potassium hydrogen phosphate	0.1
Calcium carbonate	0.1
Magnesium sulfate	0.01
Iron sulfate	0.001
Zinc sulfate	0.001
Copper sulfate	0.001

(The medium had been sterilized at 120°C for 20 minutes, the glucose being previously sterilized separately at 110°C for 20 minutes.) It is incubated at 28°C under the conditions described for the vegetative media. After 120 hours of fermentation a maximum activity corresponding to a concentration of 60 µg/ml is achieved.

References

Merck Index 2815

PDR p. 1944 DOT 16 (11) 371 (1980) I.N. p. 285 REM p. 1148

British Patent 1 003 383; September 2, 1965; assigned to Sta Farmaceutical Italia, Italy

DEANOL ACETAMIDOBENZOATE

Therapeutic Function: Psychostimulant

Chemical Name: 4-(acetylamino)benzoic acid compound with 2-(dimethylaminoethanol)

(1:1).

Common Name: -

Structural Formula:

COOH HOCH2CH2N(CH3)2 NHCOCH₃

Chemical Abstracts Registry No.: 3635-74-3

Trade Name	Manufacturer	Country	Year Introduced
Deaner	Riker	U.S.	1958
Bimanol	Polfa	Poland	_
Cervoxan	S.M.B.	Belgium	_
Deano!	Kettelhack Riker	W. Germany	_
Diforene	Choay	France	
Pabenol	Gentili	italy	-

Raw Materials

p-Acetylaminobenzoic acid

2-Dimethylaminoethanol

Manufacturing Process

About 40 grams (0.223 mol) of p-acetylaminobenzoic acid was dissolved in 600 ml of absolute methanol, and the solution was heated to reflux temperature. Heating was discontinued, and, with mechanical stirring, 19.9 grams (0.223 mol) of 2-dimethylaminoethanol was added through a dropping funnel as fast as the exothermic nature of the reaction permitted. The reaction mixture was allowed to cool to room temperature (2.5-3 hours) under mechanical agitation, and the solution was suction-filtered through Celite filter aid. The filtrate was poured into 500 ml of anhydrous ethyl ether, seeded with a few crystals of 2-dimethylaminoethanol p-acetylaminobenzoate. The seeding crystals were obtained by introducing 3 to 6 drops of the filtered reaction mixture into a test tube containing 10 ml of anhydrous diethyl ether. The contents of the test tube were thoroughly shaken and allowed to stand at room temperature. The salt crystallized out within not more than 10-15 minutes.

The crude product (48.4 grams, 80.9% yield) was recrystallized from an absolute ethanolethyl acetate solvent system by suspending the salt in boiling anhydrous ethyl acetate and just enough absolute ethanol was gradually added to effect solution after which the solution was concentrated to about two-thirds of the original volume on the steam bath, charcoal treated, and suction-filtered through Celite filter aid. The white crystals of 2-dimethylaminoethanol p-acetylaminobenzoate obtained, dried at room temperature at a pressure of 0.08 mm Hg for 15 hours, melted at 159.0°-161.5°C.

References

Merck Index 2827 Kleeman & Engel p. 267 I.N. p. 285 REM p. 1136 British Patent 879,259; October 11, 1961; assigned to Riker Laboratories, Inc.

DEBRISOQUIN

Therapeutic Function: Antihypertensive

Chemical Name: 3,4-Dihydro-2(1H)-isoquinolinecarboximidamide

Common Name: Isocaramidine

Structural Formula:

Chemical Abstracts Registry No.: 1131-64-2; 581-88-4 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Declinax	Roche	U.K.	1967
Bonipress	Ikapharm	Israel	
Redu Pres	Protea	Australia	-
Tendor	Chinoin	Hungary	-

Raw Materials

1,2,3,4-Tetrahydroisoquinoline 2-Methyl-2-isothiourea sulfate

Manufacturing Process

27 g of 1 2 3 4 tetrahydroisoquinoline was added at room temperature to a solution of 28 g of 2-methyl-2-isothiourea sulfate in 80 ml of water. The resulting mixture was kept at room temperature with occasional shaking. After a short period of time, methylmercaptan began to escape, and the mixture warmed up slightly. After then standing for 24 hours, crystals formed. They were filtered off and rinsed with ice cold water. Recrystallization from approximately 100 ml of water yielded 1,2,3,4-tetrahydroisoquinoline-2-carboxamidine sulfate melting at 278°C to 280°C (uncorr.).

Another batch prepared in the same manner melted at 284°C to 285°C due to a minute difference in moisture content.

Both batches prepared above analyzed correctly for (C₁₀H₁₃N₃)₂·H₂SO₄.

References

Merck Index 2828

OCDS Vol. 1 p. 350 (1977) & 2 p. 374 (1980) DOT 16 (4) 137 (1980)

I.N. p. 286

Wenner, W.; U.S. Patent 3,157,573; November 17, 1964; assigned to Hoffmann-La Roche, Inc.

DEFOSFAMIDE

Therapeutic Function: Antineoplastic

Chemical Name: N,N,O-tris- $(\beta$ -chloroethyl)-N'- $(\gamma$ -hydroxy-n-propyl)-phosphoric acid ester

diamide

Common Name: Desmofosfamide; trichlorethoxyphosphamide

Structural Formula: (C1CH2CH2)2N \∥ Р—осн₂сн₂с1

Chemical Abstracts Registry No.: 3733-81-1

Trade Name Manufacturer Country Year Introduced Mitarson Asta-Werke W. Germany 1961

Raw Materials

N,N-bis(β -chloroethyl)phosphoric acid amide dichloride Ethylene chlorohydrin 1,3-Propanolamine

Manufacturing Process

A solution of 8 g of ethylene chlorohydrin and 10,2 g of triethylamine in 50 cc of absolute dioxane is slowly added dropwise to a solution of 25,9 g of N,N-bis- $(\beta$ -chloroethyl)-phosphoric acid amide dichloride in 100 cc of absolute dioxane. The mixture is then heated for 2 hours at 60°C. After cooling, a solution of 7.5 g of 1,3-propanolamine and 10.2 g of triethylamine in 50 cc of absolute dioxane is added dropwise while stirring well and at a temperature up to 30°C. The mixture is left to stand for another 12 hours. The liquid is filtered off with suction from the precipitated triethyamine hydrochloride. The filtrate is filtered through carbon and concentrated by evaporation in water-jet vacuum at 40°C. The residue is dissolved in a little alcohol. Copious amounts of ether are added and the solution is left overnight in a refrigerator. It is then again filtered through carbon, the ether is evaporated and the residual volatile fractions are removed under high vacuum at 55°C. The result is a yellowish, fairly viscous oil, which is insoluble in water.

References

Merck Index 2840

I.N. p. 288

Arnold, H., Bourseaux, F. and Brock, N.; U.S. Patent 3,035,080; May 15, 1962; assigned to Asta-Werke A.G. Chemische Fabrik (W. Germany)

DEMECARIUM BROMIDE

Therapeutic Function: Cholinergic (ophthalmic)

Chemical Name: 3,3'-[1,10-decanediylbis[(methylimino)carbonyloxy]] bis[N,N,N-trimethylbenzenaminium] dibromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56-94-0

Trade Name	Manufacturer	Country	Year Introduced
Humorsol	MSD	U.S.	1959
Tonilen	Frumtost	Spain	_
Tosmilen	Chibret	France	_
Tosmilen	Chugai	Japan	_
Tosmilen	Linz	Austria	****
Tosmilen	Lentia	W. Germany	_
Tosmilen	Astra	U,K,	-

Raw Materials

N,N,N,N-Tetramethyldecamethylene diamine Phosgene m-Dimethylaminophenol Sodium Methyl bromide

Manufacturing Process

N,N,N,N'-tetramethyldecamethylene diamine is reacted with phosgene in toluene under agitation. The phosgene which escapes through an ascending cooling tube together with the evolved methyl chloride is condensed in a cold trap. As soon as immixture has been completed, the temperature is raised to 100°C and the phosgene recovered in the trap is vaporized and bubbled through the solution again, the escaping gas being recondensed and returned once more. The repeated passage through the reagents of the phosgene that has not yet reacted is continued for 7 hours. When the solution is cool it is passed through a filter, the remaining phosgene is removed from the clear solution by distillation and the remainder distilled in vacuo.

A solution of 11.9 parts of m-dimethylaminophenol in 90 parts of xylene (isomer mixture) is added to a solution of sodium methylate consisting of 2.0 parts of sodium and 25 parts of methanol. The methanol is then completely removed by distillation and the temperature raised until the boiling point of the xylene is reached. The decamethylene-bis-(N-methyl carbamic chloride) is added to the remainder which contains the sodium salt of m-dimethylaminophenol in the form of solid crystals. The reagent mixture is heated and maintained at a temperature of 100°C and continuously agitated. After having been cooled it is washed three times in water, three times in a 5% solution of caustic soda, and another three times in water. The xylene is then evaporated in vacuo and the oily residue freed of any remaining traces of xylene by allowing it to stand in air when the product crystallized completely. In this manner 15.6 parts of decamethylene-bis-(N-methyl carbamic acid m-dimethylaminophenylester) are obtained. This is in turn reacted with methyl bromide to give the desired product. The decamethylene-bis-(N-methyl carbamic acid m-dimethylaminophenylesterbromomethylate) appears after precipitation from a solution in acetic acid with methyl ethyl ketone in the form of a finely crystalline powder with a micro melting point between 164° and 170°C.

References

Merck Index 2857 Kleeman & Engel p. 270 PDR p. 1182 I.N. p. 290 REM p. 898

Schmid, O.; U.S. Patent 2,789,981; April 23, 1957; assigned to Oesterreichische Stickstoffwerke AG, Austria.

DEMECLOCYCLINE HYDROCHLORIDE

Therapeutic Function: Antibacterial

Chemical Name: 7-chloro-4-dimethylamino-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-

pentahydroxy-1,11-dioxo-2-naphthacenecarboxamide

Common Name: 7-chloro-6-demethyltetracycline

Structural Formula:

C1 ON H CCH₃)₂
OH CONH₂
(base)

Chemical Abstracts Registry No.: 127-33-3; 64-73-3 (Hydrogen chloride)

Trade Name	Manufacturer	Country	Year Introduced
Declomycin	Lederle	U.S.	1959
Ledermycine	Lederle	Japan	1970
Ledermycine	Lederle	France	1971
Actaciclina	Courtois	Italy	_
Benaciclin	Jebena	Spain	
Bioterciclin	Lisapharma	Italy	_
Clortetrin	Medosan	italy	-
Compleciclin	Andromaco	Spain	_
Demebronc	Lederle	W. Germany	_
Demeplus	Boniscontro-Gazzone	Italy	_
Deme-Proter	Proter	Italy	_
Demetetra	Pierrel	Italy	_
Demetetraciclin	Bios	Italy	
Demetraclin	Weles	Italy	_
Demetraciclina	Librac	Italy	_
Detracin	Sierochimica	Italy	
Detravis	Vis	Italy	_
Dimeral	Panther-Osfa	Italy	_
D-Siklin	Dif-Dogu	Turkey	_
Duramycin	lisan	Turkey	-
Elk a micina	Biotraching	Italy	_
Fidocin	Farmaroma	Italy	_
Isodemetil	Isola Ibi	Italy	_
Latomicina .	Farber-R.E.F.	Italy	_
Ledermicina	Lederie	Italy	_
Magis-Ciclina	Tiber	Italy	
Meciclin	Citobios	Switz.	_

Trade Name	Manufacturer	Country	Year Introduced
Mexocine	Specia	France	_
Mirciclina	Francia	Italy	_
Neo-Cromaciclin	Panther-Osfa	Italy	_
Perciclina	Atral	Portugal	_
Provimicina	Lifasa	Spain	_
Temet	Colli	Italy	_
Tetradek	S.I.T.	Italy	
Tollercin	Scalari	Italy	-
Veraciclina	A.F.I.	Italy	-

Raw Materials

Bacterium S. aureofaciens Corn starch

Manufacturing Process

According to U.S. Patent 2.878,289, a suitable medium for the preparation of inocula for the fermentation may be prepared with the following substances.

Sucrose, g/l	30
(NH ₄) ₂ SO ₄ , g/l	2
CaCO ₃ , g/l	7
Corn steep liquor, ml/l	16,5

The pH of the medium thus prepared is about 6.8. An 8 ml portion is measured into an 8 inch 8rewer tube and sterilized at 120°C for 20 minutes. The sterilized medium is then inoculated with 0.5 ml of an aqueous spore suspension of a strain of S. aureofaciens capable of producing chlorodemethyltetracycline, such as S-604, containing approximately 40-60 million spores per milliliter. The inoculated medium is incubated for 24 hours at 28°C on a reciprocating shaker operated at 110 cycles per minute.

A suitable fermentation medium contains water and a source of assimilable carbon and nitrogen and essential mineral salts. A typical medium suitable for production of chlorodemethyltetracycline is as follows:

Corn starch, g/l	55
CaCO ₃ , g/l	7
$(NH_4)_2SO_4$, g/I	5
NH ₄ Cl, g/l	1.5
FeSO ₄ ·7H ₂ O, mg/l	40
MnSO ₄ ·4H ₂ O, mg/l	50
ZnSO ₄ ·7H ₂ O, mg/l	100
CoCl ₂ ·6H ₂ O, mg/l	5
Corn steep liquor, g/l	30
Cottonseed meal, g/l	2
Lard oil, % v/v	2.0

According to U.S. Patent 3,154,476, a culture of Streptomyces aureofaciens (ATCC 13900) is grown in approximately 50 ml of an aqueous medium containing, per 1,000 ml, 30 grams extraction process soybean meal, 1 gram sodium chloride, 50 grams glucose and 7 grams calcium carbonate in a 250 ml Erlenmeyer flask. The flask is agitated on a rotary shaker (280 cycles per minute) in a room maintained at 25°C for a period of 72 hours.

Ten percent of the resulting inoculum is then transferred to a 250 ml Erlenmeyer flask containing 50 ml of the medium employed above and the flask agitated a further 72 hours under the same conditions. One ml of the resulting inoculum is then employed for the inoculation of 10 ml of an aqueous medium containing, per 1,000 ml, 30 grams extraction process soybean meal, 1 gram sodium chloride, 50 grams glucose and 7 grams calcium carbonate, in a $1^{\circ} \times 6^{\circ}$ test tube.

In addition, 1 mg of sterile S-2-hydroxyethyl-DL-homocysteine is added to the tube and the tube is shaken on a rotary shaker at 280 cycles per minute at 25°C for seven days. The contents of the tube were then acidified to pH 2 by the addition of sulfuric acid and centrifuged. Examination of the supernatant liquid by paper chromatography employing the methods of Bohonos et al, *Antibiotics Annual* (1953-4, page 49), demonstrates the presence of 7-chloro-6-demethyltetracycline, 7-chlorotetracycline and tetracycline.

References

Merck Index 2858 Kleeman & Engel p. 270 PDR p. 1008 I.N. p. 290 REM p. 1204

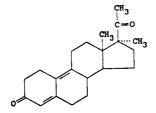
McCormick, J.R.D., Hirsch, U., Jensen, E.R. and Sjolander, N.O.; U.S. Patent 2,878,289; March 17, 1959; assigned to American Cyanamid Company

Szumski, S.A.; U.S. Patent 3,012,946; December 12, 1961; assigned to American Cyanamid Company

Goodman, J.J. and Matrishin, M.; U.S. Patent 3,019,172; assigned to American Cyanamid Company

Goodman, J.J.; U.S. Patent 3,050,446; August 21, 1962; assigned to American Cyanamid Company

Neidleman, S.L.; U.S. Patent 3,154,476; October 27, 1964; assigned to Olin Mathieson Chemical Corporation


DEMEGESTONE

Therapeutic Function: Progestin

Chemical Name: 17-methyl-19-norpregna-4,9-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 10116-22-0

Trade Name	Manufacturer	Country	Year Introduced
Lutionex	Roussel	France	1974

Raw Materials

3-Methoxy-19-nor- $\Delta^{1,3,5}$ (10) 16 -pregnatetraene-20-one	Lithium
Methyl iodide	Ammonia
Acetic acid	Bromine
Chromic acid	

Step A: Preparation of 3-Methoxy-17 α -Methyl-19-Nor- $\Delta^{1,3,5}$ (10)-Pregnatriene-20-one — Under agitation and an inert atmosphere, 1.150 grams of lithium were introduced into one liter of ammonia cooled to a temperature of -70°C. For 15 minutes this reaction mixture was agitated, then, while maintaining the temperature at about -75°C, one liter of ether were added thereto, followed by 20 grams of 3-methoxy-19-nor- $\Delta^{1,3,5}$ (10),16-pregnatetraene-20-one. The mixture was allowed to stand for 2 hours at a temperature of -75°C under continued agitation and under continued inert atmosphere. Next, 160 cc of methyl iodide were added and the reaction mixture was again agitated for 2 hours at -75°C.

Thereafter, the ammonia was evaporated, 1 liter of water was added thereto and the aqueous phase was separated and extracted with ether. The ethereal phases now combined were washed with water until the wash waters were neutral, then dried over sodium sulfate, filtered and distilled to dryness to obtain 21 grams of product, which was dissolved in 210 cc of ethanol under reflux. Next, 21 cc of acetic acid and 21 grams of Girard's reactant T were added thereto. The mixture was agitated for 1½ hours under an atmosphere of ritrogen while maintaining the reflux. Thereafter, the reaction mixture was cooled to room temperature and then poured into 1,050 cc of water. Next, 155 cc of 2 N sodium hydroxide solution were added and finally the mixture was extracted with ether.

The combined ethereal phases were washed with water until the wash waters were neutral, dried over sodium sulfate, filtered and evaporated to dryness to obtain 16.80 grams of raw product which was purified by redissolving the product obtained in acetone under reflux and by recrystallization by heating and cooling.

13.185 grams of 3-methoxy-17 α -methyl-19-nor- Δ^{1} , 3 , $^{5(10)}$ -pregnatriene-20-one were thus obtained in the form of a colorless, solid product. The product was easily soluble in ether, soluble in alcohol, benzene and chloroform and insoluble in water. This product had a melting point of 109°C and a specific rotation of $[\alpha]_0^{20} = +75^{\circ}\pm1^{\circ}$ (c = 0.5% in chloroform). The starting compound, 3-methoxy-19-nor- Δ^{1} , 3 , $^{5(10)}$, 16 -pregnatetraene-20-one, was obtained according to the process described by Burn, *J. Chem. Soc.* 1962, page 364.

Step B: Preparation of 3-Methoxy-17 α -Methyl-19-Nor- $\Delta^{2,5(10)}$ -Pregnadiene-20-ol — 500 cc of ammonia and a solution of 20 grams of 3-methoxy-17 α -methyl-19-nor- $\Delta^{1,3,5(10)}$ -pregnatriene-20-one were admixed with 400 cc of THF, and 10 cc of ethanol were added. The temperature was lowered to -35°C. 2.150 grams of lithium were added under an inert atmosphere and the reaction mixture was agitated for 15 minutes, after which 10 cc of ethanol and 2.150 grams of lithium were added. After agitating for 15 minutes, 30 cc of ethanol, then 2.150 grams of lithium were added. After maintaining the mixture at -35°C for 30 minutes, 30 cc of ethanol were added. The ammonia was evaporated by bringing the temperature to +20°C. 500 cc of water were added and the mixture was extracted with ether.

The aqueous phase was discarded and the combined ethereal phases were washed with water, dried over sodium sulfate, filtered and distilled to dryness, to obtain 20.240 grams of 3-methoxy-17 α -methyl-19-nor- $\Delta^{2,5\{10\}}$ -pregnadiene-20-ol, which product was utilized as such for the next step. The compound occurred in the form of an amorphous product which was soluble in alcohol, ether, benzene and acetone and insoluble in water.

Step C: Preparation of 17α -Methyl-19-Nor- $\Delta^{5\,(10)}$ -Pregnene-20-ol-3-one — 20 grams of the compound prepared in Step B were dissolved in 35 cc of acetone, while agitating the solution for 15 minutes at room temperature. Thereafter, 300 cc of acetic acid containing 25% of water were added to the reaction mixture, which was then agitated for 3 hours and thereafter poured into a water-ether mixture and agitated for 10 minutes. The aqueous phase was separated after extracting with ether. The ethereal phases were washed first with an aqueous solution of sodium bicarbonate, then with water, dried over sodium sulfate, filtered and distilled to dryness to obtain 19.140 grams of 17α -methyl-19-nor- $\Delta^{5\,(10)}$ -pregnene-20-ol-3-one. This product was utilized as such for the following step. The compound occurred in the form of a colorless, amorphous product which was soluble in alcohol, ether, benzene, acetone and chloroform and insoluble in water.

Step D: Preparation of 17α -Methyl-19-Nor- Δ ^{5 (10)}-Pregnene-3,20-Dione -20.5 grams of the compound prepared in Step C were dissolved in 615 cc of acetone under an atmosphere of nitrogen and under agitation. The solution obtained was cooled to -20°C. Next 21 cc of a solution of 54 grams of chromic acid anhydride and 46 cc of dilute sulfuric acid were added thereto. The solution was allowed to stand for 1 hour under agitation at about -10°C. It was then poured into 2 liters of a mixture of ice and water and extracted with benzene. The combined organic phases were washed first with water, then with a saturated solution of sodium bicarbonate and again with water. Next these phases were dried over magnesium sulfate and distilled to dryness.

20.40 grams of crude product were thus obtained, which was purified by subjecting it to chromatography through magnesium silicate and elution with benzene containing 2.5% of acetone, and recrystallization from isopropyl ether to obtain 8.50 grams of 17α -methyl-19nor- $\Delta^{s(10)}$ -pregnene-3,20-dione in the form of a colorless crystallized product. This product was soluble in alcohol, ether, acetone, benzene and chloroform and insoluble in water. This product had a melting point of 138°C, and a specific rotation of $[\alpha]_0^{20} = +168.5^{\circ}\pm3.5^{\circ}$ (c = 0.50% in chloroform).

Step E: Preparation of 17α -Methyl-19-Nor- $\Delta^{4,9}$ -Pregnadiene-3,20-Dione — Under agitation and an atmosphere of nitrogen, 8.50 grams of the compound prepared in Step D were dissolved in 85 cc of pyridine and cooled to 0°C. Next, 16.3 cc of a 29% bromine solution in methanol were added thereto. The agitation was continued for 30 minutes at the temperature of 0°C. Thereafter the temperature was raised to room temperature and the solution was allowed to stand for 16 hours under agitation. The solution was then poured into 850 cc of a mixture of ice and water and after 82 cc of hydrochloric acid were added, the mixture was extracted with methylene chloride. The combined organic phases were washed with water until the wash waters were neutral, then dried over magnesium sulfate and finally distilled to dryness to obtain 8,480 grams of a crude product which was purified by recrystallization from isopropyl ether. In this manner, 5.810 grams of 17α -methyl-19nor- $\Delta^{4,9}$ -pregnadiene-3.20-dione having a melting point of 106°C and a specific rotation $[\alpha]_D^{20} = -270^{\circ} \pm 4.5^{\circ}$ (c = 0.5% in ethanol) were obtained.

References

Merck Index 2860 Kleeman & Engel p. 271 DOT 11 (4) 143 (1975) I.N. p. 291

Vignau, M., Bucourt, R., Tessier, J., Costerousse, G., Nedelec, L., Gasc, J.-C., Joly, R., Warnant, J. and Goffinet, B.; U.S. Patent 3,453,267; July 1, 1969; assigned to Roussel-Uclaf, France

Joly, R., Warnant, J. and Farcilli, A.; U.S. Patent 3,547,959; December 15, 1970; assigned to Roussel-UCLAF, France

DEMEXIPTILINE HCI

Therapeutic Function: Antidepressant

Chemical Name: 5H-Dibenzo[a,d] cyclohepten-5-one-O-[2-(methylamino)ethyl] oxime

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Deparon	Aron	France	1981

Raw Materials

Sodium 5-Oximino-5H-dibenzo[a,d] cycloheptene Methylaminoethyl chloride Hydrogen chloride

Manufacturing Process

1.15 g of Na are dissolved in 100 ml of absolute ethanol; 10 g of 5-oximino-5H-dibenzo [a.d] cycloheptene are introduced, followed by boiling under reflux for 1 hour and evaporation to dryness. The residue is dissolved in dimethylformamide and part of the solvent is distilled off. The solution is now cooled to about 20°C and there are added 5.3 g of methylaminoethyl chloride which is prepared below 10°C from the corresponding hydrochloride by supersaturation with potassium carbonate. The mixture is then heated to 100°C for 1½ hours. Finally, the mixture is evaporated to dryness, the residue dissolved in ether/water and the ethereal phase washed with water. After drying of the ethereal phase with potassium carbonate, 8.5 g of the hydrochloride of 5 β-methylaminoethoxylmino-5H-dibenzo[a.d] cycloheptene (meiting point 232°C to 233°C) are obtained.

References

Merck Index 2862 DFU 7 (1) 19 (1982) DOT 17 (12) 548 (1981) I.N. p. 291

Schutz, S., Behner, O. and Hoffmeister, F.; U.S. Patent 3,963,778; June 15, 1976; assigned to Bayer A.G. (W. Germany)

DESERPIDINE

Therapeutic Function: Antihypertensive

Chemical Name: 17α -methoxy- 18β -[(3,4,5-trimethoxybenzoyl)oxy] -3β ,20 α -yohimban- 16β -

carboxylic acid methyl ester

Common Name: 11-desmethoxyreserpine

Structural Formula:

Chemical Abstracts Registry No.: 131-01-1

Trade Name	Manufacturer	Country	Year Introduced
Harmonyl	Abbott	U.S.	1957
Enduronyl	Abbott	U.S.	_
Harmonyl	Abbott	U,S.	_
Harmonyl	Abbott	U,K.	_
Oreticyl	Abbott	U.S.	-
Raunormine	Ono	Japan	_

Rauwolfia roots Methanol

Manufacturing Process

500 parts by weight of dried, finely ground roots of Rauwolfia canescens are extracted batchwise with methanol at its boiling point, using the following volumes and times, and filtering each extract while hot: 2,000 parts by volume, 1 hour; 1,000 parts by volume, 45 minutes; 1,000 parts by volume, 30 minutes; 1,000 parts by volume, 30 minutes. The extracts are combined and evaporated in vacuo to 75 parts by volume of a thick syrupy solution.

After the addition of 75 parts by volume of methanol and 150 parts by volume of acetic acid of 15% strength with adequate mixing, the solution is extracted with 2 portions each of 100 parts by volume of hexane. The combined hexane extracts are extracted with 15 parts by volume of acetic acid of 15% strength. The latter extract is added to the above acetic acid phase which is then extracted with 3 portions each of 75 parts by volume and 1 portion of 50 parts by volume of ethylene chloride.

The first three extracts are combined and washed with 60 parts by volume of 2 N sodium carbonate solution and then with 60 parts by volume of distilled water. These washing solutions are saved and used for the washing of the 4th and final ethylene chloride extract. The combined ethylene chloride extracts are dried over sodium sulfate, filtered and evaporated in vacuo to a constant weight of a tan, frothy solid. One part by weight of this residue is dissolved in 1.5 parts by volume of warm methanol and the solution cooled to 5°C for 18 hours, whereby crystallization of a mixture containing principally reserpine sets in. After filtering this mixture and washing it with cool methanol, the filtrate is freed of solvent in vacuo.

Two parts by weight of the resulting red-brown solid froth are triturated with 2 portions each of 25 parts by volume of benzene and filtered each time. The benzene insoluble material is saved for further treatment. The benzene soluble fraction is poured on to a column of 40 parts by weight of activated alumina (Woelm, Activity Grade I) which is then eluted first with 3 portions each of 50 parts by volume of benzene and then with 6 portions each of 50 parts by volume of benzene-acetone (9:1), the first of which benzeneacetone portions had been used for extraction of the abovementioned benzene insoluble material. The second of the 6 benzene-acetone elution fractions on removal of the solvents gives a light tan solid froth which on crystallization from methanol gives colorless prismatic needles of slightly impure deserpidine. Rechromatographing of 1 part by weight of this substance on 20 parts by weight of activated alumina (Woelm, Activity Grade I) using benzene and benzene containing 0.1% methanol as eluting agents followed by crystallization from methanol gives colorless prismatic needles of pure deserpidine, melting at 228°-232°C. Description obtained according to this example can be made up into pharmaceutical preparations.

References

Merck Index 2885 Kleeman & Engel p. 272 PDR pp. 515, 526, 543

OCDS Vol. 1 p. 320 (1977) I.N. p. 296 REM p. 909

Ulshafer, P.R.; U.S. Patent 2,982,769; May 2, 1961; assigned to Ciba Pharmaceutical

DESIPRAMINE HYDROCHLORIDE

Therapeutic Function: Psychostimulant

Chemical Name: 10,11-dihydro-N-methyl-5H-dibenz-[b,f] azepine-5-propanamine

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-28-6; 50-47-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pertofran	Geigy	U.K.	1963
Norpramine	Merrell	U.S.	1964
Pertofrane	U.S.V.	U.S.	1965
Pertofran	Ciba Geigy	Switz.	1965
Pertofran	Ciba Geigy	W. Germany	1965
Pertofran	Ciba Geigy	France	1966
Nortimil	Chiesi	Italy	1971
Deprexan	Unipharm	israel	_
Nebril	Montpellier	Argentina	
Norpolake	Lakeside	U.S.	_
Petylyl	Arzneimittelwerk Dresden	E. Germany	_
Sertofren	Geigy	_	_

Raw Materials

o-Nitrotoluene

Hydrogen

N-(3-Chloropropyl)-N-methylbenzamine

Manufacturing Process

Oxidative coupling of o-nitrotoluene gives 4,4'-dinitrodibenzyl which is reduced with hydrogen to the diamine. The diamine is pyrolyzed to give dihydrobenzazepine. This is reacted with N-(3-chloropropyl)-N-methylbenzamine to give N-benzyldesipramine. This is debenzylated by reductive cleavage and then reacted with HCl.

References

Merck Index 2886 Kleeman & Engel p. 273 PDR pp. 1232, 1819 OCDS Vol. 1 p. 402 (1977) DOT 9 (6) 218 (1973)

I.N. p. 296 REM p. 1094

British Patent 908,788; October 24, 1962; assigned to J.R. Geigy AG, Switzerland Biel, J.H. and Judd, C.I.; U.S. Patent 3,454,554; July 8, 1969; assigned to Colgate-Palmolive Co.

DESMOPRESSIN

Therapeutic Function: Antidiuretic

Chemical Name: 1-(3-Mercaptopropionic acid)-8D-arginine vasopressin

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 16679-58-6; 16789-98-3 (Diacetate)

Trade Name	Manufacturer	Country	Year Introduced
DAV	Ritter	Switz.	1974
DDAVP	Ferring	U.K.	1975
Minirin	Ferring	W. Germany	1976
DDAVP	U.S.V.	U.S.	1978
Desmopressin	Kyowa	Japan	1979
Minirin DDAVP	Valeas	italy	1979
Adiuretin	Spofa	Czechoslovakia	_
Defirin	Ferring	Sweden	-
Desurin	Ferring	Sweden	_
Minirin	Protea	Australia	_
Stimate	Armour	U.S.	-

Raw Materials

β-Benzylmercaptopropionyl-L-tyrosyl-L-phenyalanyl-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N-tosyl-D-arginyl glycinamide Sodium

Soaium

Ammonia

Acetic acid

Manufacturing Process

β-Benzylmercaptopropionyl-L-tyrosyl-L-phenylalanyl-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-NG-tosyl-D-arginyl-glycinamide (0.5 g) is reduced with sodium in liquid ammonia. The liquid ammonia is then evaporated and the residue dissolved in 5% aqueous acetic acid (800 ml). The solution is filtered to remove the undissolved portion and the filtrate is adjusted to a pH of 6.5 to 7 by addition of aqueous sodium hydroxide and it is then oxidized by known procedure, cf. Kimbrough, R.D., Jr.; Cash, W.D.; Branda, L.A.; Chan, W.Y.; and Du Vigneaud, V.; J. Biol. Chem. 238, 1411 (1963). The reaction mixture is thereupon adjusted to a pH of 4 to 4.5 by addition of acetic acid. The peptide is applied to a column of a carboxylate ion exchange resin, is eluted with 50% aqueous acetic acid and isolated by lyophilization (freeze-drying). The crude product is purified by known procedure using a carrier-free high-voltage electrophoresis, cf. Zaoral, M.; Sorm, F.; Collection Czechoslov. Chem Communs, 31, 310 (1966). Yield, 100 to 200 mg of 1-deamino-8-D-argine-vasopressin.

References

Merck Index 2888 Kleeman & Engel p. 274 PDR pp. 586, 1810

PDR pp. 586, 1810

DOT 12 (1) 27 (1976) & 16 (10) 359 (1980)

I.N. p. 297

REM p. 958

Zaoral, M., Vavra, I., Machova, A. and Sorm, F.; U.S. Patent 3,497,491; February 24, 1970; assigned to Ceskoslovenska Arademie Ved. (Czechoslovakia)

Ferring, A.B.; British Patents 1,539,317 and 1,539,318; both dated January 31, 1979

DESOGESTREL

Therapeutic Function: Progestin

Chemical Name: 13-Ethyl-11-methylene-18,19-dinorpregn-4-en-20-yn-17-ol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54024-22-5

Trade Name	Manufacturer	Country	Year Introduced
Dicromil	Organon	W. Germany	1981
Marvelon	Organon	U.K.	1982

Raw Materials

11,11-Methylene-18-methyl- Δ^4 -estren-17-one Potassium acetylide Sulfuric acid

Manufacturing Process

A solution of 1.0 g of 11,11-methylene-18-methyl- Δ^4 -estren-17-one in 33 ml tetrahydrofuran was added to a potassium-acetylide solution in tetrahydrofuran.

After 2 hours of stirring at 0°C to 5°C the reaction mixture was acidified with 2 N $\rm H_2SO_4$ and processed further.

By a chromatographic treatment on silica gel and crystallization from pentane 0.7 g of 11,11-methylene-17 α -ethynyl-18-methyl- Δ^4 -estren-17 β -ol with a melting point of 109°C to 110°C and an $[\alpha]_D$ of +55°C (CHCl3) was obtained.

References

Merck Index 2890 DFU 2 (12) 829 (1977) DOT 18 (8) 361 (1982) & 19 (10) 570 (1983) Van den Broek, A.J., U.S. Patent 3,927,046; December 16, 1975; assigned to Akzona, Inc.

DESONIDE

Therapeutic Function: Antiinflammatory

Chemical Name: 11,21-Dihydroxy-16,17-[(1-methylethylidene)bis(oxy)] pregna-1,4-diene-

3,20-dione

Common Name: Prednacinolone

Structural Formula:

Chemical Abstracts Registry No.: 638-94-8

Trade Name	Manufacturer	Country	Year Introduced
Tridesilon	Dome	U.S.	1972
Tridesilon	Dome	U.K.	1972
Steroderm	De Angeli	Italy	1973
Tridesonit	Miles	France	1976
Tridesilon	Klinge	W. Germany	1978
Prenacid	Sifi	W. Germany	1979
Locapred	Alimedic	Switz.	1983
Sterax	Alcon	Switz.	1983
Apolar	A.L.	Norway	-
Locapred	Fabre	France	_
Prednol	Mustafa Nevzat	Turkey	_
Reticus	Farmila	Italy	_
Sine-Fluor	Made	Spain	· -

Raw Materials

11 β ,16 α ,17 α ,21-Tetrahydroxy-1,4-pregnadiene-3,20-dione Acetone

Manufacturing Process

Preparation of 11β ,21-Dihydroxy- 16α , 17α -Isopropylidenedioxy-1,4-Pregnadiene-3,20-Dione: A solution of 11β , 16α , 17α ,21-tetrahydroxy-1,4-pregnadiene-3,20-dione (40 mg) in acetone (10 ml) containing hydrochloric acid (three drops; d 1.19) is boiled on the steam bath for two minutes and then allowed to stand for eighteen hours at room temperature. The reaction mixture is diluted with water (50 ml) and extracted with chloroform (3×25 ml), the combined extracts then being washed with water (30 ml) and dried over anhydrous sodium sulfate. The residue obtained by removal of solvent crystallized from ethyl acetate-petroleum ether as small plates (25 mg), melting point 257° - 260° C.

References

Merck Index 2892 Kleeman & Engel p. 275 PDR p. 1261 OCDS Vol. 2 p. 179 (1980) DOT 8 (6) 223 (1972) I.N. p. 297 REM p. 972

Bernstein, S. and Allen, G.R., Jr.; U.S. Patent 2,990,401; June 27, 1961; assigned to American Cyanamid Company

Diassi, P.A. and Principe, P.A.; U.S. Patent 3,549,498; December 22, 1970; assigned to E.R. Squibb & Sons, Inc.

DESOXIMETASONE

Therapeutic Function: Antiinflammatory

Chemical Name: 9-fluoro- 11β ,21-dihydroxy- 16α -methylpregna-1,4-diene-3,20-dione

Common Name: Desoxymethasone

Structural Formula:

Chemical Abstracts Registry No.: 382-67-2

Trade Name	Manufacturer	Country	Year Introduced
Topicorte	Roussel	France	1968
Topisolon	Hoechst	W. Germany	1974
Flubason	Albert Pharma	Italy	1974
Topicort	Roussel	Italy	1974
Topisolon	Hoechst	Switz.	1974
Topicort	Hoechst	U.S.	1977
Actiderm	Hoechst	_	_
Decolan	Hoechst	_	_
Dermo-Hidrol	Hoechst	_	_
Esperson	Hoechst	_	_
Ibaril	Hoechst	_	_
Topifram	Roussel	France	_
Topisolon	Cassella-Riedel	W. Germany	-

Raw Materials

Bacterium Curvularia lunata 16α-Methyldesoxycorticosterone Bacterium Bacillus lentus

Glucose Acetic anhydride Hydrogen fluoride

Manufacturing Process

(a) Production of 16α -Methyl-4-Pregnene- 11β ,21-diol-3,20-Dione (= 16α -Methylcorticosterone): A fermenter of stainless steel having a 50 liter capacity is charged with 30 liters of a nutrient solution containing:

	Percent
Glucose (starch sugar)	4.4
Malt extract	1.0
NaNO ₃	0.3
KH ₂ PO ₄	0.1
KCĪ	0.05
MgSO ₄	0.05
FeSO ₄	0.002
Corn steep	0.5

sterilized for ½ hour at 120°C and after cooling, inoculated with a spore suspension of Curvularia lunata which is obtained by rinsing a seven day corn culture (15 grams corn) with approximately 100 cc of physiological sodium chloride solution.

After two days of culturing at 25°C under stirring (220 revolutions per minute) and ventilating (1.65 m³/hr), 18 liters of the obtained culture are removed under sterile conditions and introduced into a fermenter of the same size charged with 28.2 liters of a nutrient solution containing:

	Percent
Glucose (starch sugar)	4.4
Malt extract	1.0
NaNO ₃	0.3
KH₃PÕ₄	0.1

After 24 hours cultivation under stirring and ventilation as described above, 7.5 grams of 16α-methyldesoxycorticosterone, obtained by saponification of the corresponding 21 acetate and melting at 102°-104°C, in 200 cc of ethanol are added and fermented under the same conditions for 28 hours.

The course of the fermentation is tested by removal of samples, which are extracted with methyl isobutyl ketone. The extract is analyzed by paper chromatography in a system of dioxane + toluene/propylene glycol.

After the end of the fermentation (28 hours) the culture broth is filtered off by suction over a large suction filter. The mycel residue is washed with water several times. The filtrate is extracted three times, each time with 10 liters of methyl isobutyl ketone. The extract is concentrated under vacuum in a circulating evaporator and in a round flask carefully dried under vacuum. The residue is crystallized from acetone/isopropyl ether. The melting point is 157°-158°C (fermentation yield = 60%). The pure product yield obtained after a second crystallization and chromatography of the mother liquor on silica gel amounts to 53% of the theoretical.

(b) 16α -Methyl- 9α -Fluoro- Δ^4 -Pregnene- 11β ,21-Diol-3,20-Dione: 7.5 grams of 16α -methyl- 9α -fluoro- Δ^4 -pregnene-21-ol-3,20-dione-21-acetate, obtained from Step (a) by acetylating with acetic anhydride in pyridine followed by reaction with HF in pyridine at 0°C, are fermented for 36 hours with Curvularia lunata (Mutant NRRL 2380), whereby the 21-acetate group is simultaneously saponified, and then further worked up. The residue is extracted with MIBK, subjected to chromatography on silica gel and there is obtained from chloroform/ethyl acetate (2:1) an eluate containing the 11β-hydroxy compound, which is further dehydrogenated as the crude product.

(c) 16α -Methyl- 9α -Fluoro- $\Delta^{1,4}$ -Pregnadiene- 11β ,21-Diol-3,20-Dione: 16α -methyl- 9α -fluoro- Δ^4 -pregnene-11 β ,21-diol-3,20-dione obtained as the crude product under Step (b) above,

is fermented with *Bacillus lentus* for 30 hours and further worked up. The residue is extracted with methyl isobutyl ketone and there is obtained as the crude product 16α -methyl- 9α -fluoro- $\Delta^{1,4}$ -pregnadiene- 11β ,21-diol-3,20-dione.

References

Merck Index 2894 Kleeman & Engel p. 277 PDR p. 946 I.N. p. 297 REM p. 972

Kieslich, K., Kerb, U. and Raspe, G.; U.S. Patent 3,232,839; February 1, 1966; assigned to Schering AG, Germany

DEXAMETHASONE ACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-Fluoro-11β,17-dihydroxy-21-acetoxy-16α-methylpregna-1,4-diene-3,20-

dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1177-87-3; 50-02-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dexacen	Central	U.S.	1977
Decadron-La	MS&D	∪.s.	1974
Dalalone	O'Neal Jones	U.S.	1982
Decasterolone	Biopharma	Spain	_
Decoderm	Igoda	Spain	_
Delladec	O'Neal Jones	U.S.	_
Deronil	Essex Espana	Spain	
Dexacortisyl	Roussel		_
Fortecortin	E. Merck	_	-
Panasone	Norbrook	U.K.	
Solurex	Hyrex	∪ <i>.</i> s.	_

Raw Materials

 9β ,11 β -Epoxy-17 α -hydroxy-21-acetoxy-16 α -methyl- $\Delta^{1,4}$ -pregnadiene-3,20-dione Hydrofluoric acid

Manufacturing Process

The preparation of dexamethasone acetate is described in U.S. Patent 3,007,923 as follows. 1.5 cc of dimethylformamide and 1.5 cc of anhydrous hydrofluoric acid are admixed and

treated with 480 mg of 9β ,11 β -epoxy-17 α -hydroxy-21-acetoxy-16 α -methyl- $\Delta^{1,4}$ -pregnadiene-3,20-dione (prepared according to E.P. Oliveto et al, J. Am. Chem. Soc., 80, 44331, 1958). The steroid dissolves in about 15 minutes. The reaction mixture is shaken for two hours at a temperature between 0° and +5°C, and then poured into 75 cc of water containing in suspension, 7.5 grams of sodium bicarbonate. The mixture is vacuum filtered, the filter cake washed and then dried at 100°C, yielding 460 mg of crude hexadecadrol contaminated with a small amount of the starting material. A single recrystallization from methylene chloride yields 370 mg of the pure product having a melting point of 170°C and 229°C. The mother liquor yields 62 mg of the starting material, and a remainder constituting a mixture of starting and final materials with little other contamination.

References

Merck Index 2906 Kleeman & Engel p. 278 PDR pp. 695, 928, 1156, 1286, 1569, 1606, 1723 OCDS Vol. 1 p. 199 (1977) I.N. p. 299 **REM p. 972**

Fried, J.; U.S. Patent 2,852,511; September 16, 1958; assigned to Olin Mathieson Chemical Corporation

Muller, G., Bardoneschi, R. and Jolly, J.; U.S. Patent 3,007,923; November 7, 1961; assigned to Les Laboratories Français de Chimiotherapie, France

DEXAMETHASONE-21-LINOLEATE

Therapeutic Function: Topical antiinflammatory

Chemical Name: 9α -Fluoro-11 β -17 21-trihydroxy-16 α -methylpregna-1,4-diene-3,20-dione-21 - (octadeca-cis-9 cis-12 dienoate)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 39026-39-6

Trade Name	Manufacturer	Country	Year Introduced
Topolyn	I.S.F.	Italy	1979

Raw Materials

 9α -Fluoro-11 β ,17 21-trihydroxy-16 α -methylpregna-1,4-diene-3,20-dione Methane sulfonvl chloride Potassium octadeca-cis-9,cis-13-dienoate

Manufacturing Process

To a stirred solution of 9 α -fluoro-11 β ,17,21-trihydroxy-16 α -methyl-pregna-1,4-diene-3,20dione (10 g, 25.5 mmol) in 20 ml pyridine and 12 ml acetone at -10°C, a cold solution of methane sulfonyl chloride (3 ml, 38.5 mmol) in 8 ml acetone was added dropwise. The addition was completed within about 3 hours and the mixture was then left standing in the cold for a further 1.5 hours after which 200 ml cold water were added. The resulting precipitate was separated by filtration and washed with water to give 11.5 g (96% of theoretical yield) of dexamethasone 21-mesylate, melting point 208°C to 210°C (decomposition).

The dexamethasone 21-mesylate (11.5 g, 24.5 mmol) prepared as described was added in a nitrogen atmosphere to a stirred slurry of potassium octadeca-cis-9, cis-12-dienoate (7.81 g, 24.5 mmol) in 70 ml DMF. After stirring for 1.5 hours at 50°C and evaporating the solvent in vacuo at the same temperature, the residue was washed by slurrying it into water and was then redissolved in methylene chloride, dried and the solvent evaporated. The residue was purified by chromatography on an inactivated (10% water) silica gel column (470 g) by using an ethyl acetate/hexane mixture (7:3) to give a very good yield of an oily product.

References

Merck Index 2906 DFU 1 (7) 316 (1976) Kleeman & Engel p. 281 OCDS Vol. 1 p. 199 (1977) I.N. p. 300

Piffer, G. and Pinza, M.; British Patent 1,292,785; October 11, 1972; assigned to I.S.F. SpA (Italy)

DEXAMETHASONE PHOSPHATE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-Fluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione-21-

phosphate disodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 312-93-6; 2392-39-4 (Disodium salt)

Trade Name	Manufacturer	Country	Year Introduced
Decadron Phosphate	MS&D	U.S.	1959
Hexadrol Phosphate	Organon	U.S.	1965
Maxidex	Algon	U.S.	1975
Dexacen 4	Central	U.S.	1977
Aacidexam	Aaciphar	Belgium	_
Cebedex	Chauvin-Blache	France	_
Cebefrasone	Chauvin-Blache	France	_
Chibro-Cardon	Chibret	France	_
Colvasone	Norbrook	U.K.	_
Cortcetine	Chauvin-Blache	France	_
Dalaron	O'Neal Jones	U.S.	_
Decaderm	Frosst	Australia	_

Trade Name	Manufacturer	Country	Year Introduced
Decadron	Banyu	Japan	_
Decalibour	MSD	France	_
Dekort	Deva	Turkey	_
Delladec	O'Neal Jones	U.S.	_
Desalark	Farm, Milanese	Italy	_
Dexacort	Ikapharm	Israel	-
Dexaderme	Chauvin-Blache	France	_
Dexa-Helvacort	Heivepharm	Switz,	_
Dexamed	Medice	W, Germany	_
Dexasone	Legere	U.S.	_
Eta-Cortilen	S.I.F.I.	Italy	
Megacort	Lancet	Italy	_
Orgadrone	Sankyo	Japan	_
Penthasone	Pentagone	Canada	_
Savacort	Savage	U.S.	_
Soldesam	Farm, Milanese	Italy	_
Solone	Liade	Spain	_
Soludecadron	MSD	France	
Solurex	Hyrex	U.S.	-
Spersadex	Dispersa	Switz.	
Vasodex	Smith, Miller & Patch	Puerto Rico	_

Phosphoric acid Triethylamine 9α -Fluoro- 11β , 17α , 21-trihydroxy- 16α -methyl-1, 4-pregnadiene-3, 20-dione-21methane sulfonate Sodium methoxide

Manufacturing Process

A solution of bis-triethylamine phosphate was prepared by slowly adding 2.36 ml of 85% phosphoric acid to 20 ml of acetonitrile containing 9.9 ml of triethylamine at 20°C. This solution was added to a stirred solution of 4.70 g of 9α -fluoro- 11β .17 α 21-trihydroxy- 16α methyl-1.4-pregnadiene-3.20-dione 21-methanesulfonate and 20 ml of acetonitrile. The mixture was heated under reflux for four hours and then evaporated under reduced pressure to a volume of 12 ml. This mixture was a concentrated solution of 9α -fluoro-11 β ,17 α ,21-trihydroxy-16α-methyl-1,4-pregnadiene-3,20-dione 21-phosphate triethylamine salt with some inorganic phosphate.

The mixture was cooled .25 ml of methanol added, and the cooled mixture treated with 33 ml of 1.89 N methanolic sodium methoxide solution. The precipitated inorganic phosphates were removed by suction filtration and washed thoroughly with methanol. The combined filtrates were evaporated under reduced pressure to a volume of 12 ml and treated with 30 ml of methanol. The resulting cloudy solution was clarified by filtration through diatomaceous earth. The volume of the filtrate was brought to 40 ml by the addition of methanol, and 120 ml of ether was added with stirring. The precipitated product, which was 9α -fluoro- 11β , 17α , 21-trihydroxy- 16α -methyl-1, 4-pregnadiene-3, 20-dione 21-phosphate sodium salt. was collected by suction filtration, and washed with acetone and then with ether. The weight of the air-dried material was 3.06 g.

References

Merck Index 2906 Kleeman & Engel p. 281 PDR p. 1033 OCDS Vol. 1 p. 199 (1977) I.N. p. 300

REM p. 965

Chemerda, J.M., Tull, R.J. and Fisher, J.F.; U.S. Patent 2,939,873; June 7, 1960; assigned to Merck & Co., Inc.

DEXBROMPHENIRAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: d-2-[4-bromo- α -(2-dimethylaminoethyl)benzyl] pyridine maleate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2391-03-9; 132-21-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Disomer	White	U.S.	1959
Dexbrom	Zenith	U.S.	_
Disophrol	Schering	U.S.	_
Drixoral	Schering	U.S.	_
Ebalin	Allergopharma	W. Germany	_

Raw Materials

3-(2-PyridyI)-3-p-bromophenyI-N,N-dimethylpropylamine (racemic) d-Phenylsuccinic acid Potassium carbonate Maleic acid

Manufacturing Process

The following is taken from U.S. Patent 3,061,517. Sixteen grams of racemic 3-(2-pyridyl)-3-p-bromophenyl-N,N,-dimethylpropylamine and 9.7 grams of d-phenylsuccinic acid are dissolved in 150 ml of absolute alcohol and kept at room temperature until crystallization is effected. The crystals are filtered, washed with absolute ethyl alcohol, and recrystallized from the same solvent using 5 ml thereof per gram of solid. Three subsequent crystallizations from 80% alcohol give d-3-(2-pyridyl)-3-p-bromophenyl-N,N-dimethylpropylamine-dphenylsuccinate; MP 152°-154°C; $[\alpha]_{D}^{25}$ 91 (concentration, 1% in dimethylformamide).

The free base, d-3-(2-pyridyl)-3-p-bromophenyl-N,N-dimethylpropylamine, is obtained from this salt with diethyl ether and aqueous potassium carbonate; $\left[\alpha\right]_{D}^{25}$ +42.7 (concentration, 1% in dimethylformamide). The free base is then reacted with maleic acid.

References

Merck Index 2907 Kleeman & Engel p. 283 PDR p. 1999 OCDS Vol. 1 p. 77 (1977) I.N. p. 302 REM p. 1132

Walter, L.A.; U.S. Patents 3,030,371; April 17, 1962; and 3,061,517; October 30, 1962; both assigned to Schering Corporation

DEXCHLORPHENIRAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: d-2-[p-chloro-α-(2-dimethylaminoethyl)benzyl] pyridine maleate

Common Name: -

Structural Formula: See dexbrompheniramine maleate substituting -Cl for -Br.

Chemical Abstracts Registry No.: 2438-32-6; 25523-97-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Polaramine	Schering	U.S.	1958
Celestamine	Cetrane	France	_
Destral	Tiber	Italy	_
Dexchlor	Schein	U.S.	_
Phenamin	Nyegaard	Norway	_
Polaramin	Aesca	Austria	
Polaramin	Essex	Italy	
Polaramine	Schering-Shionogi	Japan	_
Polaronii	Byk-Essex	W. Germany	_
Sensidyn	Medica	Finland	_

Raw Materials

3-(2-Pyridyl)-3-p-chlorophenyl-N,N-dimethylpropylamine

d-Phenylsuccinic acid

Potassium carbonate

Maleic acid

Manufacturing Process

Twenty grams of d-phenylsuccinic acid and 28 grams of 3-(2-pyridyl)-3-p-chlorophenyl-N,N-dimethylpropylamine are dissolved in 400 ml of absolute ethyl alcohol and allowed to stand at room temperature until crystallization is effected. The crystals are filtered, washed with absolute ethyl alcohol and recrystallized from 300 ml of this solvent in the same manner. The crystals are recrystallized twice from 80% ethyl alcohol using 3.5 ml per gram of compound in the manner described above and pure d-3-{2-pyridyl}-3-p-chlorophenyl-N,Ndimethylpropylamine-d-phenylsuccinate is obtained, melting point 145°-147°C.

This salt is shaken with 100 ml of diethyl ether and 50 ml of 20% aqueous potassium carbonate; the ether layer is separated, dried over anhydrous potassium carbonate, filtered and the ether is removed in vacuo. The d-3-(2-pyridyl)-3-p-chlorophenyl-N,N-dimethylpropylamine so obtained is a mobile oil.

4.3 grams of the above base and 1.8 grams of maleic acid are dissolved in 20 ml isopropyl acetate and kept at room temperature until crystallization is complete. The crystals are filtered, washed with ethyl acetate and recrystallized from 15 ml of this solvent in the same manner. The crystalline d-3-(2-pyridyl)-3-p-chlorophenyl-N,N-dimethylpropylamine maleate so formed is then filtered off and dried. MP 113°-115°C from U.S. Patent 3,030,371.

References

Merck Index 2908 Kleeman & Engel p. 284 PDR pp. 1606, 1648 OCDS Vol. 1 p. 77 (1977) I.N. p. 302 REM p. 1127

Walter, L.A.; U.S. Patents 3,061,517; October 30, 1962; and 3,030,371; April 17, 1962; both assigned to Schering Corporation

DEXETIMIDE

Therapeutic Function: Anticholinergic

Chemical Name: (+)-1-Benzyl-4-[(2,6-dioxo-3-phenyl)-3-piperidyl] piperidine

Common Name: Dexbenzetimide; dextrobenzetimide; benzetimide

Structural Formula:

Chemical Abstracts Registry No.: 21888-98-2

Trade Name	Manufacturer	Country	Year Introduced
Tremblex	Brocades	Italy	1981
Tremblex	Janssen	Switz.	-

Raw Materials

dl-1-Benzyl-4-(1,3-dicyano-1-phenylpropyl)piperidine HCi Sulfuric acid Hydrogen chloride

Manufacturing Process

400 parts glacial acetic acid are cooled to 10°C to 20°C . Then there are added first dropwise 300 parts concentrated sulfuric acid followed by portionwise addition of 50 parts di-1-benzyl-4-(1,3-dicyano-1-phenylpropyl)-piperidine hydrochloride at the same temperature. After the addition is complete, the whole is heated to 125°C in the course of 15 to 20 minutes. This temperature is then maintained for 10 minutes. After cooling, the reaction mixture is poured into ice, alkalized with NH₄OH at a temperature $<20^{\circ}\text{C}$ and extracted with chloroform. The chloroform layer is first washed twice with a $K_2\text{CO}_3$ 5% solution, and then washed twice with water, dried over MgSO₄, filtered and evaporated. The residue is dissolved in a mixture of 320 parts acetone and 600 parts diisopropylether, filtered and HCl gas is introduced into the filtrate. The solid hydrochloride is filtered off and dried, to yield 43 parts less pure 1-benzyl-4-(2,6-dioxo-3-phenyl-3-piperidyl)-piperidine hydrochloride, melting point 283°C to 294°C.

A sample of 4 parts is recrystallized from a boiling mixture of 80 parts isopropanol, 40 parts methanol and 500 parts water. The whole is filtered and after cooling the filtrate overnight at -20°C, 1-benzyl 4-(2,6-dioxo-3-phenyl-3-piperidyl)-piperidine hydrochloride is obtained, melting point 299°C to 301.5°C, as a white amorphous powder.

The dextro-isomer may be separated via the dextro-camphorsulfonate of the base.

References

Merck Index 2909 OCDS Vol. 2 p. 393 (1980) DOT 9 (5) 170 (1975) & 9 (6) 247 (1975) I.N. p. 302

Janssen, P.A.J.; U.S. Patent 3,125,578; March 17, 1964; assigned to Research Laboratorium Dr. C. Janssen NV (Belgium)

DEXPANTHENOL

Therapeutic Function: Gastrointestinal drug

Chemical Name: (R)-2,4-dihydroxy-N-(3-hydroxypropyl)-3,3-dimethylbutanamide

Common Name: Panthenol; pantothenyl alcohol

Structural Formula: CH:

HOCH, CH, CH, NHCOCHOHCCH, OH

Chemical Abstracts Registry No.: 81-13-0

Trade Name	Manufacturer	Country	Year Introduced
Bepanthene	Roche	France	1951
Hopan	Warren Teed	U.S.	1957
Cozyme	Travenol	U.S.	1958
Motilyn	Abbott	U.S.	1960
Beducene	Roche	_	_
Dexol	Legere	U.S.	
Intrapan	Elkins-Sinn	U.S.	_
May-Vita	Mayrand	U.S.	_
Pantene	Shionogi	Japan	_
Pantenyl	Kay	U.S.	_
Panthenol-Drobena	Drobena	W. Germany	_
Panthoderm	U.S.V.	U.S.	_
Pantol	Toa-Eiyo-Yamanouchi	Japan	-
Thenalton	Fulton	Italy	
Tonestat	A.V.P.	U.S.	_
Urupan	Merckle	W. Germany	_

Raw Materials

 $d(-)-\alpha$ -Hydroxy- β , β -dimethyl- γ -butyric acid lactone 3-Hydroxypropylamine

Manufacturing Process

130 parts by weight of d(-)- α -hydroxy- β , β -dimethyl- γ -butyric-acid-lactone are dissolved in 150 parts by volume of methyl alcohol. 75 parts by weight of 3-hydroxypropylamine are added, in one portion, to the solution and the mixture is well stirred. While the reaction sets in, the temperature of the mixture gradually rises by itself to about 50°C and then drops again after about two hours. To cause completion of the reaction, the mixture is allowed to stand at room temperature for 24 hours. The so obtained $(d+)-\alpha,\gamma$ -dihydroxy- β,β -dimethyl-butyric-acid-(3'-hydroxypropyl)-amide is freed from methyl alcohol in vacuo. It is a colorless, viscous oil, easily soluble in water. It boils under a pressure of 0.02 mm between 118° and 120°C.

References

Merck Index 2910 Kleeman & Engel p. 284 PDR pp. 563, 872, 1033, 1083 I.N. p. 302

REM p. 813

Schnider, O.; U.S. Patent 2,413,077; December 24, 1946; assigned to Hoffmann-La Roche Inc.

DEXTRAN 40

Therapeutic Function: Plasma extender

Chemical Name: Polymeric glucose (see structural formula) of molecular weight 40,000

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 9004-54-0

Trade Name	Manufacturer	Country	Year Introduced
LMD 10%	Abbott	U.S.	1967
Rheomacrodex	Pharmacia	U.S.	1967
Fruidex	Polfa	Poland	_
Gentran 40	Travenol	U.S.	_
Lomodex 40	Fisons	U.K.	_
Longasteril	Fresenius	W. Germany	_
Perfadex	Pharmacia	Sweden	_
Plander R	Pierrel	Italy	_
Reohem	Zdravlje	Yugoslavia	
Rheoslander	Roger Bellon	France	
Rheotran	Pharmachem	U.S.	-
Soludeks	Pliva	Yugoslavia	-

Sucrose

Bacterium Leuconostoc mesenteroides

Manufacturing Process

Sucrose is subjected to the action of the bacterium *Leuconostoc mesenteroides* B 512 and the crude, high-molecular weight dextran thus formed is hydrolyzed and fractionated to an average molecular weight of about 40,000 as measured by light-scattering techniques.

References

Merck Index 2911 PDR p. 1428 I.N. p. 303 REM p. 820

Gronwall, A.J.T. and Ingelman, B.G.A.; U.S. Patent 2,644,815; July 7, 1953; assigned to Aktiebolaget Pharmacia, Sweden

Shurter, R.A.; U.S. Patent 2,717,853; September 13, 1955; assigned to Commercial Solvents Corp.

Behrens, U. and Ringpfeii, M.; U.S. Patent 3,044,940; July 17, 1962; assigned to Vebserum-Werk Bernburg (W. Germany)

Novak, L.J. and Stoycos, G.S.; U.S. Patent 2,841,578; July 1, 1958; assigned to Commonwealth Eng. Co. of Ohjo

Novak, L.J. and Witt, E.E.; U.S. Patent 2,972,567; February 21, 1961; assigned to Commonwealth Eng. Co. of Ohio

DEXTROAMPHETAMINE SULFATE

Therapeutic Function: Central stimulant

Chemical Name: (S)- α -methylbenzeneethanamine sulfate

Common Name: d-β-phenylisopropylamine sulfate

Structural Formula:

$$\begin{bmatrix} & & & \\$$

Chemical Abstracts Registry No.: 51-63-8

Trade Name	Manufacturer	Country	Year Introduced
Dexedrine Sulfate	SKF	U.S.	1944
Domofate	Haag	U.S.	1954
Dexalme	Meyer	U.S.	1954
Amsusatain	Key	U.S.	1954
Evrodex	Evron	U.S.	1955
Cendex	Dentral	U.S.	1956
D-Ate	Lemmon	U.S.	1957
Perke One	Ascher	U.S.	1966
Dexaspan	U.S.V.	U.S.	1969
Dexa Sequels	Lederle	U.S.	1970
Dexamplex	Lemmon	U.S.	1976
Adiparthrol	Syntex-Medical	Switz.	_

Trade Name	Manufacturer	Country	Year Introduced
Amfe-Dyn	Pharma-Dyn	Italy	
d-Amfetasul	Pitman-Moore	U.S.	
Curban	Pasadena	U.S.	_
Dexamine	Streuli	Switz.	_
Obetrol	Rexar	U.S.	_
Simpamina	Recordat	italy	_
Stil-2	Castillon	Spain	_

 $\begin{array}{ll} \text{dl-}\alpha\text{-Methylphenethylamine} & \text{Sodium hydroxide} \\ \text{d-Tartaric acid} & \text{Sulfuric acid} \end{array}$

Manufacturing Process

Two mols, for example, 270 grams, of racemic α -methylphenethylamine base are reacted with one mol (150 grams) of d-tartaric acid, thereby forming dl- α -methylphenethylamine d-tartrate, a neutral salt. The neutral salt thus obtained is fully dissolved by the addition of sufficient, say about 1 liter, of absolute ethanol, and heating to about the boiling point. The solution is then allowed to cool to room temperature with occasional stirring to effect crystallization. The crystals are filtered off and will be found to contain a preponderance of the levo enantiomorph.

The residual solid in the mother liquors is repeatedly and systematically crystallized, yielding a further fraction of $1-\alpha$ -methylphenethylamine d-tartrate which may be purified by recrystallization. d- α -Methylphenethylamine may be readily recovered from the mother liquors by the addition of tartraic acid thereto for the formation of acid tartrates and separation of d- α -methylphenethylamine d-bitartrate by crystallization.

The free base of either optical isomer may be obtained by addition to the d-tartrate in the case of the levo isomer and the d-bitartrate in the case of the dextro isomer of alkali in excess, as, for example, by the addition of an aqueous solution of caustic soda, which will cause the base to separate as an oil which may be recovered and purified by any well-known procedure. The base is exactly neutralized with sulfuric acid to give the sulfate.

References

Merck Index 2918 PDR pp. 1450, 1711 OCDS Vol. 1 p. 70 (1977) I.N. p. 301 REM p. 881

Nabenhauer, F.P.; U.S. Patent 2,276,508; March 17, 1942; assigned to Smith, Kline & French Laboratories

DEXTROMETHORPHAN HYDROBROMIDE

Therapeutic Function: Antitussive

Chemical Name: d-3-Methoxy-N-methylmorphinan

Common Name: Racemethorphan hydrobromide

Structural Formula:

Chemical Abstracts Registry No.: 510-53-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Symptom 1	Parke Davis	U.S.	1977
Romilar HBR	Block	U.S.	1954
Methorate	Upjohn	U.S.	1958
Dormethan	Dorsey	U.S.	1958
Tusasade	Westerfield	U.S.	1964
Benylin	Parke Davis	U.S.	1978
Delsym	Pennwalt	U.S.	1982
Cremacoat	Vicks	U <i>.</i> S.	1983
Agrippol	Herdt & Charton	Canada	
Albatussin	Bart	U.S.	_
Ambenyl-D	Marion	U.S.	_
Balminil-DM	Rougier	Canada	
Broncho-Grippol	Herdt & Charton	Canada	_
Calmasan	Syntex-Pharm	Switz.	_
Calmerphan-L	Siegfried	Switz.	
Cardec	Schein	U.S.	_
Codimal	Central	U.S.	_
Comtrex	Bristol-Myers	U.S.	_
Congespirin	Bristol-Myers	U.S.	_
Contratuss	Eri	Canada	
Coryban D	Pfipharmecs	U.S.	_
Co Tylenol	McNeil	.U.S.	_
Coughcon	Santen	Japan	_
Demo-Cineol	Sabex	Canada	_
Dextphan	Hishiyama	Japan	_
Extuson	Ferrosan	Denmark	_
Histalet DM	Reid-Rowell	U.S.	_
Husmedin	Toho	Japan	_
Hustenstiller	Roha	W. Germany	_
Hustep	S.S. Pharm	Japan	_
Kibon S	Sawai	Japan	-
Koffex	Rougier	Canada	_
Methorcon	Kowa	Japan	_
Neo-DM	Neo	Canada	
Nycoff	Dover	U.S.	_
Pedia Care	McNeil	U.\$.	
Pulmex-DM	Therapex	Canada	-
Quelidrine	Abbott	U.S.	_
Rivodex	Rivopharm	Switz.	_
Robidex	Robins	U.S.	_
Scot-Tussin	Scot-Tussin	U.S.	_
Sedatuss	Trianon	Canada	_
Sedotus	Farge	Italy	_
Sisaal	Towa	Japan	_
Sorbutuss	Dalin	U.S.	_
St. Joseph Cough Syrup	Plough	U.S.	_
Testamin	Toyama	Japan	_
Triaminicol	Dorsey	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Trimpus	Zensei	Japan	_
Tussar D.M.	U.S.V.	U.S.	_
Tussidy!	Tika	Sweden	_
Tussi-Organidin	Wallace	U.S.	_
Val-Atux	Farm, Milanese	Italy	_

D.L-3-Hydroxy-N-methyl-morphinan Sodium carbonate Phenyl trimethyl ammonium chloride Hydrogen bromide D-Tartaric acid

Manufacturing Process

The methylation of 51.4 parts by weight of D,L-3-hydroxy-N-methyl-morphinan is carried out with a methylating solution obtained from 51.5 parts by weight of phenyl-trimethylammonium-chloride. The D,L-3-methoxy-N-methyl-morphinan is isolated in the form of its hydrobromide, which melts with 1 mol of water at 92°-94°C, without water at 239°-240°C. The base isolated from the agueous solution by means of sodium carbonate melts at 81°-83°C.

27.1 parts by weight of D.L-3-methoxy-N-methyl-morphinan base are dissolved with 15.0 parts by weight of D-tartaric acid in 150 parts by volume of hot alcohol. The solution is cooled and seeded with (+)-3-methoxy-N-methyl-morphinan-tartrate. The (+) form which is difficultly soluble in alcohol separates, is filtered by suction and washed with a little alcohol.

[The (-) form may be crystallized from the residue obtained by concentrating the mother liquor, separating therefrom as much as possible of the (+) form and adding acetone.] The (+)-3-methoxy-N-methyl-morphinan-tartrate melts with 1 mol of water at 195°-196°C $[\alpha]_0^{20} = +30.6^\circ$ (c = 1.5 in water). The (+) base melting at 108°-109°C may be obtained from the tartrate by means of sodium carbonate. The corresponding hydrobromide melts at $122^{\circ}-124^{\circ}C$ [α]_D²⁰ = +27.6° (c = 1.5 in water).

References

Merck Index 8009

PDR pp. 552, 654, 688, 727, 784, 829, 847, 851, 993, 1074, 1084, 1404, 1447, 1454, 1562, 1606, 1662, 1824, 1868, 1886, 1972

I.N. p. 304

REM p. 870

Schnider, O. and Grussner, A.; U.S. Patent 2,676,177; April 20, 1954; assigned to Hoffmann-La Roche Inc.

DIAMTHAZOLE DIHYDROCHLORIDE

Therapeutic Function: Antifungal

Chemical Name: 6-(2-Diethylaminoethoxy)-2-dimethylaminobenzathiazole dihydrochloride

Common Name: Dimazole dihydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 136-96-9; 95-27-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Asterol	Roche	U.S.	1951
Athelor	Roche	_	_
Atelora	Roche	_	-
Aterola	Roche	_	-
Kesten	Roche	_	_
Mycotol	Syntofarma	Poland	-

Raw Materials

2-Dimethylamino-6-hydroxybenzothiazole	Sodium hydroxide
1-Diethylamino-2-chloroethane	Hydrogen chloride

Manufacturing Process

19.4 g of 2-dimethylamino-6-hydroxybenzothiazole (MP 245°C) were sludged in a 500 cc threenecked flask with 250 cc of chlorbenzene. Then 4.4 g of sodium hydroxide flakes were added and the mixture heated with agitation to 90°C, 4 cc of water were dropped in, and the mixture then heated slowly to the boil while about 500 cc of the water-containing chlorbenzene were distilled off. 50 cc of dry chlorbenzene were then added and the distillation was continued until about 30 cc of the chlorbenzene were distilled off. The residue was the sodium salt of thiazole in chlorbenzene. To the residue were added at 90°C, 15 g of fresh distilled 1-diethylamino-2-chloroethane. The mixture was then refluxed at 133°C for three hours, then cooled to 35°C. 75 cc of water and 5 cc of (40% by volume) sodium hydroxide solution were added and the mixture stirred for one hour. The chlorbenzene layer which contained the reaction product was separated from the aqueous layer in a separatory funnel. The chlorbenzene solution was then dried with sodium sulfate for twelve hours. It was then filtered and HCI gas was passed into the chlorbenzene solution until saturated, while cooling and stirring. The dihydrochloride precipitated as a white crystalline, sandy powder. The precipitate was filtered and washed on the funnel with benzene and finally washed with ether. The filter cake was dried at 80°C to 90°C. The 2-dimethylamino-6-(β -diethylaminoethoxy)-benzothiazole dihydrochloride thus obtained is a white crystalline powder, MP 240°C to 243°C. It can be recrystallized from ethanol and ether, or methanol or acetone.

The free base, which is an oil, can be obtained from the aqueous solution of the dihydrochloride by adding dilute sodium hydroxide or sodium carbonate solution. The base is soluble in ether, methanol, ethanol, benzene and the like, but slightly soluble in water.

References

Merck Index 2955 Kleeman & Engel p. 313 I.N. p. 333

Steiger, N. and Keller, O.; U.S. Patent 2,578,757; December 18, 1951; assigned to Hoffmann-La Roche, Inc.

DIATRIZOATE SODIUM

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3,5-Bis(acetylamino)-2,4,6-triiodobenzoic acid

Common Name: Amidotrizoate sodium

Structural Formula:

Chemical Abstracts Registry No.: 737-31-5 (Sodium sait); 117-96-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hypaque Sodium	Winthrop	U. S .	1955
MD-50	Mallinckrodt	U.S.	1980
Urovist Sodium	Berlex	U.S.	1983
Trignost	Teva	israel	_
Urovison	Schering	W, Germany	-
Visotrast	Fahlberg-List	E. Germany	_

Raw Materials

3,5-Dinitrobenzoic acid Iodine Monochloride Hydrogen Acetic anhydride Sodium hydroxide

Manufacturing Process

3.5-Dinitrobenzoic acid (15.9 g) was dissolved in an equivalent amount of sodium hydroxide solution, and the solution was diluted to 310 ml with water. The solution was refluxed with Raney nickel for fifteen minutes, filtered, and the filtrate was hydrogenated at elevated pressure using platinum oxide catalyst. After the amount of hydrogen calculated to reduce both nitro groups had been absorbed, the mixture was filtered, and the filtrate was acidified with an equal volume of concentrated hydrochloric acid. Iodine monochloride (17 ml) in 100 ml of 6N HCl was then added with stirring. The reaction mixture was allowed to stand for two and one-half hours at room temperature, then diluted with an equal amount of water with vigorous stirring, and the solid material was collected by filtration and recrystallized from dilute methanol, giving 18.5 g of 3.5-diamino-2.4.6-triiodobenzoic acid, MP about 135°C with decomposition. The 18.5 g of 3,5-diamino-2,4,6-triiodobenzoic acid was suspended in 150 ml of acetic anhydride containing 5 drops of 70% perchloric acid, and the mixture was heated on a steam bath for three and one-half hours. The reaction mixture was poured into 300 ml of ice water, and then heated on a steam bath until crystallization took place. The solid material was collected by filtration, dissolved in dilute sodium hydroxide solution, filtered, and hydrochloric acid was added to the filtrate to reprecipitate the acid product. The latter was again dissolved in sodium hydroxide and reprecipitated with acid, giving 9 g of 3,5-diacetamido-2,4,6-trijodobenzoic acid, MP above 250°C.

The acid may be used as the sodium salt or as the meglumate,

References

Merck Index 2965

Kleeman & Engel p. 38 I.N. p. 68 REM p. 1268 British Patent 782,313; September 4, 1957; assigned to Mallinckrodt Chemical Works Larsen, A.A.; U.S. Patent 3,076,024; January 29, 1963; assigned to Sterling Drug, Inc.

DIAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 439-14-5

Trade Name	Manufacturer	Country	Year Introduced
Valium	Roche	Italy	1962
Valium	Roche	U.S.	1963
Valium	Roche	W. Germany	1963
Valium	Roche	U.K.	1963
Valium	Roche	France	1964
Novazam	Genevrier	France	1983
Aliseum	Zova	Italy	<u></u>
Amiprol	U.S. Vitamin	Argentina	_
Anksiyolin	Saglik	Turkev	_
Ansiolin	Scharper	Italy	_
Ansiolisina	Effepi	Italy	_
Anxium-5	Ethica	Canada	_
Anzepam	Arislo	India	_
Apaurin	Krka	Yugoslavia	_
Apozepam	A.L.	Norway	_
Armonil	Alet	Argentina	_
Assival	Assia	Israel	
Atensine	Berk	U.K.	_
Avex	Spemsa	Italy	_
Bensedin	Galenika	Yugoslavia	_
Betapam	Be-Tabs	S. Africa	_
Caimpose	Ranbaxy	India	
Canazepam	Paul Maney	Canada	_
Cercine	Takeda	Japan	_
Ceregulart	Kaken	Japan	_
Condition	Nagataki	Japan	-
Diaceplex	Salvat	Spain	_
Dialag	Lagap	Switz.	_
Diapam	Orion	Finland	_
Diapam	Dincel	Turkey	_
Diatran	Protea	S. Africa	_
Diaz	Taro	Israel	-
Diazem	Deva	Turkey	-
Diazemuls	Kabi Vitrum	Sweden	-
Diempax	Lafi	Brazil	<u>-</u>
Dipam	Alkaloid	Yugoslavia	-
Dizam	Pharmador	S. Africa	
Domalium	Valderrama	Spain	
Doval	Ormed	S. Africa	
Drenian	Ern	Spain	_
Ducene	Sauter	Australia	-
Duksen	Kobanyai	Hungary	
E-Pam	I.C.N.	Canada	
Eridan	UCB-Smit	Italy	_
_, ug	O OB OMIT	itary	

Trade Name	Manufacturer	Country	Year Introduced
Erital	Eri	Canada	-
Euphorin	Dojin	Japan	-
Eurosan	Mepha	Switz.	
Evacaim	Unimed	U.K.	_
Faustan	Arzneimittelwerk Dresden	E. Germany	-
Grewacalm	Heilmittelwerke Wien	Austria	_
Githitan	Toyama	Japan	_
Horizon	Yamanouchi	Japan	_
Lamra	Merckie	W. Germany	-
Lembrol	Gerardo Ramon	Argentina	=
Levium Liberetas	Sodelco Galup	Neth, Spain	_
Lizan	Nobel	Turkey	
Meval	Medic	Canada	_
Neo-Calme	Neo	Canada	_
Nervium	Saba	Turkey	_
Neurolytril	Dorsch	W. Germany	_
Noan	Ravizza	italy	_
Notense	Rio Ethicals	S. Africa	_
Novodipam	Novopharm	Canada	
Pacipam	Cox	U.K.	_
Pacitran	Grossmann	Mexico	_
Pacitran	Lafi	Brazil	
Pax	Lennon	S. Africa	_
Paxel	Elliott-Marion	Canada	_
Pro-Pam	Protea	Australia	-
Psychopax	Sigmapharm	Austria	_
Quetinil	Dompe	Italy	_
Quievita	Vita	Italy	-
Relivan	Scruple	S. Africa	_
Renborin	Nippon Chemiphar	Japan	_
Rival	Riva	Canada	-
Saromet	Sintyal	Argentina	-
Scriptopam	Propan-Lipworth	S. Africa	_
Sedapam	Duncan Flockhart	Ų.K.	_
Sedarii	Kodama	Japan	-
Sedipam	Medica	Finland	-
Seduxen	Gedeon Richter	Hungary	-
Serenack	Nordic	Canada	-
Serenamin	Medimpex	Hungary	_
Serenamin	Toyo Jozo	Japan	_
Serenzin Solis	Sumitomo	Japan	
	Galen Celtia	U.K.	-
Somasedan Sonacon	Delmar	Argentina	_
Sonacon	=	Canada Japan	
Stresolid	Chugai Dumex	Denmark	_
Stress-Pam	Sabex	Canada	_
Tensium	D.D.S.A.	U,K.	_
Tensopam	Pharmacal	Finland	_
Tranquase	Azuchemie	W. Germany	
Tranquo-Puren	Klinge	W. Germany	_
Tranquo-Fablinen	Sanorania	W. Germany	
Umbrium	Kwizda	Austria	_
Valibrin	Mulda	Turkey	_
Valitran	Firma	Italy	_
Vatran	Valeas	italy	_
•		•	

Trade Name	Manufacturer	Country	Year Introduced
Vival	A.L.	Norway	_
Vivol	Horner	Canada	_
Zepam	Aksu	Turkey	_

2-Amino 5-chlorobenzophenone-\(\beta\)-oxime Sodium hydroxide Chloroacetyl chloride Diazomethane Phosphorus trichloride

Manufacturing Process

Into a stirred, cooled (10°-15°C) solution of 26.2 grams (0.1 mol) of 2-amino-5-chlorobenzophenone β-oxime in 150 ml of dioxane were introduced in small portions 12.4 grams (0.11 mol) of chloracetyl chloride and an equivalent amount of 3 N sodium hydroxide. The chloracetyl chloride and sodium hydroxide were introduced alternately at such a rate so as to keep the temperature below 15°C and the mixture neutral or slightly alkaline. The reaction was completed after 30 minutes. The mixture was slightly acidified with hydrochloric acid, diluted with water and extracted with ether. The ether extract was dried and concentrated in vacuo. Upon the addition of ether to the oily residue, the product, 2-chloroacetamido-5-chlorobenzophenone β-oxime, crystallized in colorless prisms melting at 161°-162°C.

20 ml of 1 N sodium hydroxide were added to a solution of 6.4 grams (20 mmol) of 2chloroacetamido-5-chlorobenzophenone β -oxime. After 15 hours the mixture was diluted with ice cold 1 N sodium hydroxide and extracted with ether. The ether extract was discarded. The alkaline solution was acidified with hydrochloric acid and extracted with methylene chloride. The methylene chloride solution was concentrated to a small volume and then diluted with petroleum ether to obtain 7-chloro-5-phenyl-3H-1,4-benzodiazepin-2(1H)-one 4-oxide.

To a stirred suspension of 10 grams (35 mmol) of 7-chloro-5-phenyl-3H-1,4-benzodiazepin-2(1H) one 4-oxide in approximately 150 ml of methanol was added in portions an excess of a solution of diazomethane in ether. After about one hour, almost complete solution had occurred and the reaction mixture was filtered. The filtrate was concentrated in vacuo to a small volume and diluted with ether and petroleum ether. The reaction product, 7chloro-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2(1H)-one 4-oxide, crystallized in colorless prisms. The product was filtered off and recrystallized from acetone, MP 188°-189°C.

A mixture of 3 grams (0.01 mol) of 7-chloro-1-methyl-5-phenyl-3H-1,4-benzodiazepin-2(1H)one 4-oxide, 30 ml of chloroform and 1 ml of phosphorus trichloride was refluxed for one hour. The reaction mixture was then poured on ice and stirred with an excess of 40% sodium hydroxide solution. The chloroform was then separated, dried with sodium sulfate, filtered and concentrated in vacuo. The residue was dissolved in methylene chloride and crystallized by the addition of petroleum ether. The product, 7-chloro-1-methyl-5-phenyl-3H-1.4-benzodiazepin-2(1H)-one, was recrystallized from a mixture of acetone and petroleum ether forming colorless plates melting at 125°-126°C.

The manufacturing procedure above is from U.S. Patent 3,136,815. Purification of diazepam is discussed in U.S. Patent 3,102,116.

References

Merck Index 2967 Kleeman & Engel p. 288 PDR pp. 1506, 1517, 1999 OCDS Vol. 1 p. 365 (1977) & 2 p. 452 (1980) DOT 9 (6) 236 (1973); 18 (8) 380 (1982) & 19 (3) 170 (1983) I.N. p. 309 REM p. 1062

Chase, G.; U.S. Patent 3,102,116; August 27, 1963; assigned to Hoffmann-La Roche Inc. Reeder, E. and Sternbach, L.H.; U.S. Patent 3,109,843; November 5, 1963; assigned to Hoffmann-La Roche Inc.

Reeder, E. and Sternbach, L.H.; U.S. Patent 3,136,815; June 9, 1964; assigned to Hoffmann-La Roche Inc.

Reeder, E. and Sternbach, L.H.; U.S. Patent 3,371,085; February 27, 1968; assigned to Hoffmann-La Roche Inc.

DIAZOXIDE

Therapeutic Function: Antihypertensive

Chemical Name: 7-chloro-3-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide

Common Name: -

Structural Formula:

C1 S NH

Chemical Abstracts Registry No.: 364-98-7

Trade Name	Manufacturer	Country	Year Introduced
Eudemine	Allen Hanburys	U.K.	1970
Hyperstat	Schering	U. S .	1973
Hypertonalum	Byk-Essex	W. Germany	1973
Hyperstat	Essex	Switz,	1973
Proglicem	Byk-Essex	W. Germany	1974
Proglicem	Cetrane	France	1974
Proglicem	Essex	Italy	1975
Hyperstat	Cetrane	France	1976
Diapressin	Medica	Finland	_
Proglicem	Aesca	Austria	_
Proglycem	Schering	U.S.	

Raw Materials

Benzyl chloride	Thiourea
2,4-Dichloronitrobenzone	Chlorine
Ammonia	Iron
Ethyl orthoacetate	Orthoanilamide
Acetic anhydride	

Manufacturing Process

One route is described in U.S. Patent 2,986,573: Mix 63 grams of benzyl chloride, 38 grams of thiourea, 3 drops of concentrated ammonium hydroxide solution, and 250 ml of 95% ethanol. Reflux the mixture for 3 hours. Cool and add a solution containing 96 grams of 2,4-dichloro-nitrobenzene in 200 ml of ethanol. Heat the mixture to reflux and then add drop-wise a solution of 70 grams of potassium hydroxide in 500 ml of ethanol. Continue refluxing for 2 hours, and then cool and filter the solids produced. Wash the solid with aqueous ethanol and dry. There is thus produced 2-benzylthio-4-chloro-nitrobenzene. Sus-

pend 50 grams of 2-benzylthio-4-chloro-nitrobenzene in 1,000 ml of 33% aqueous acetic acid. Bubble chlorine gas through the suspension during a period of 2 hours, while maintaining the suspension at a temperature in the range of about 0° -5°C.

Extract the mixture 3 times with 400 ml each of chloroform, pool the extracts, and wash the chloroform solution with water. Dry the chloroform solution with anhydrous sodium sulfate and filter.

Evaporate the dried chloroform solution to a residue, add to the residue 400 ml of liquid ammonia, stir and allow the excess ammonia to evaporate, triturate the residue with hexane to form a crystalline solid, continue trituration with water, and filter the solid to yield substantially pure 2-sulfamyl-4-chloro-nitrobenzene. Recrystallize from aqueous methanol. Mix together 4.4 grams of ammonium chloride, 18 ml of methanol, 9 ml of water and 3.0 grams of 2-sulfamyl-4-chloro-nitrobenzene. Heat the mixture to reflux. Add portionwise 4.4 grams of iron filings during a period of about 1½ hours. Cool the mixture and filter. Concentrate the filtrate to a residue. Triturate the residue with 15 ml of water and filter the solid. Recrystallize the solid from aqueous methanol to yield substantially pure 2-sulfamyl-4-chloroaniline.

Heat a mixture of 6 grams of 2-sulfamyl-4-chloroaniline and 15 ml of ethyl orthoacetate at 100°-110°C for 1.5 hours. Cool and filter the solids. Recrystallize from aqueous ethanol yielding 3-methyl-7-chloro-1,2,4-benzothiadiazine-1,1-dioxide. This substance is a white crystalline solid melting at 330°C.

Another route is described in U.S. Patent 3,345,365: A mixture containing 10 grams of orthoanilamide, 10 cc of pyridine and 20 cc of acetic anhydride is heated for 3 hours at 50°-60°C and allowed to stand overnight. The solids obtained are filtered and crystallized from ethanol to yield 10.73 grams of N,N'-diacetyl-o-anilamide, MP 199°-200°C.

To a mixture of 3.0 grams of N,N¹-diacetyl-o-anilamide and 20 ml of acetic acid is added a previously prepared solution of 1.5 grams of chlorine in 31 cc of acetic acid. The reaction mixture is allowed to stand at room temperature for 3 hours and is then evaporated to dryness on a steam bath under reduced pressure. The resulting solid residue is recrystallized from ethanol, yielding the intermediate N,N¹-diacetyl-2-sulfamyl-4-chloroaniline. The intermediate compound is fused in an oil bath at 250-260°C for 15 minutes, cooled and the product so obtained is crystallized from 80% ethanol yielding 3-methyl-7-chloro-1,2,4-benzo-thiadiazine-1,1-dioxide. MP 330°C.

References

Merck Index 2975 Kleeman & Engel p. 290 PDR pp. 1130, 1630 OCDS Vol. 1 p. 355 (1977) & 2 p. 395 (1980) DOT 9 (11) 458 (1973) I.N. p. 310 REM p. 847

Topliss, J.G., Sperber, N. and Rubin, A.A.; U.S. Patent 2,986,573; May 30, 1961; assigned to Schering Corporation

Topliss, J.G., Sperber, N. and Rubin, A.A.; U.S. Patent 3,345,365; October 3, 1967; assigned to Schering Corporation

DIBEKACIN

Therapeutic Function: Antibacterial

Chemical Name: O-3-Amino-3-deoxy-α-D-glucopyranosyl-(1→6)-O-[2,6-diamino-2,3,4,6tetradeoxy-α-D-erythrohexopyranosyl(1→4)]-2-deoxy-D-streptamine

Common Name: Dideoxykanamycin

Structural Formula:

Chemical Abstracts Registry No.: 34493-98-6; 60594-69-6 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Panimycin	Meiji Seika	Japan	1975
Orbicin	Pfizer	W. Germany	1978
Kappabi	Farmitalia Erba	Italy	1980
loacine	Bristol	France	1981
Decabicin	Lefa	Spain	_
Debekacyl	Meiji	Japan	_
Duramycin	Pfizer-Roerig	` <u> </u>	_
Klobamicina	Admirall	Spain	_
Nipocin	Pliva	Yugoslavia	_
Panimycin	Gerardo Ramon	Argentina	

Raw Materials

Penta-N-benzyloxycarbonyl-2"-O-benzylsulfonyl-3',4'-dideoxy-3'-eno-kanamycin B Sodium Ammonia Hydrogen

Manufacturing Process

Penta-N-benzyloxycarbonyl-2"-O-benzylsulfonyl-3'.4'-dideoxy-3'-eno-kanamycin B (61 mg) was dissolved in about 18 ml of liquid ammonia at -50°C, followed by addition of about 120 mg of metal sodium. The mixture was gently stirred at -50°C for 1 hour, followed by addition of methanol to consume up the excess of the metal sodium. The reaction mixture was allowed to slowly raise up to ambient temperature while permitting the ammonia to evaporate, The residue so obtained was dissolved in water, and the aqueous solution was admixed with 4 ml of a cation-exchange resin, Dowex 50WX2 (H cycle) (a product of Dow Chemical Co., U.S.A.) under stirring. The admixture comprising the resin was placed on the top of a column of 3.5 ml of the same resin. Dowex 50WX2, and the whole resin column was well washed with water and then eluted using 1 M aqueous ammonia as the developing solvent. The eluate was collected in fractions, and such fractions which gave positive reaction with ninhydrin were combined together and concentrated to dryness, affording 3'.4'-dideoxy-3'-enokanamycin B in the form of its monocarbonate. The yield was 23.8 mg (97%).

The product (12.1 mg) obtained in the above step was dissolved in 0.3 ml of water, to which was then added a catalytic quantity (about 5 mg) of platinum oxide. Hydrogenation was made with hydrogen gas at a pressure of 3.5 kg/cm² for 1.5 hours. The reaction solution was filtered to remove the catalyst, and the filtrate was concentrated to dryness, giving the desired product 3',4'-dideoxykanamycin B in the form of its monocarbonate. The yield was 11.5 mg (95%). $\left[\alpha\right]_D^{25} + 110^\circ$ (c 1, water). The overall yield of 3',4'-dideoxykanamycin B based on the starting kanamycin B was 57%.

References

Merck Index 2976 Kleeman & Engel p. 290 DOT 12 (5) 211 (1976) I.N. p. 311

Umezawa, H., Umezawa, S. and Tsuchiya, T.; U.S. Patent 4,169,939; October 2, 1979; assigned to Zaidan Hojin Biselbutsu Kagaku Kenkyu Kai (Japan)

DIBENZEPIN HYDROCHLORIDE

Therapeutic Function: Psychostimulant

Chemical Name: 10-[2-(dimethylamino)ethyl]-5,10-dihydro-5-methyl-11H-dibenzo[b,e]-

[1,4] diazepin-11-one hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 315-80-0; 4498-32-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Noveril	Wander	Switz,	1965
Noveril	Wander	W. Germany	1965
Noveril	Sandoz	France	1967
Noveril	Wander	Italy	1968
Noveril	Wander	U.K.	1970
Noveril	Morishita	Japan	1975
Ansiopax	Andrade	Portugai	
Deprex	Novo	<u> </u>	
Ecatril	Sandoz	France	_
Neodit	Wander	_	_
Victoril	Unipharm	Israel	-

Raw Materials

5-Methyl-11-hydroxy-5H-dibenzo[b,e] [1,4]-diazepine Sodium amide $\beta\text{-Dimethylaminoethyl}$ chloride Hydrogen chloride

Manufacturing Process

4.48 grams of 5-methyl-11-hydroxy-5H-dibenzo-[b,e] [1,4]-diazepine and 0.86 gram of sodium amide were boiled for one hour in 50 ml of absolute dioxane. After adding a concentrated benzenic solution of β -dimethylamino-ethyl chloride freshly prepared from 3.75 grams of the hydrochloride with concentrated sodium hydroxide solution, taking up in benzene and drying the solution with potash, the mixture was boiled for 16 hours under reflux, whereupon the reaction mixture was concentrated to dryness and the residue distributed between ether and water. By exhaustive extraction of the basic fractions with dilute acetic acid, precipitation with ammonia, taking up the base in ether and working up the ethereal solution, there was obtained 5.05 grams (85% of the theoretical) of 5-methyl-10-β-dimethylamino-ethyl-10,11-dihydro-11-oxo-5H-dibenzo-[b,e,] [1,4]-diazepine in the form of a viscous yellowish resin with the boiling point 185°C/0.01 mm Hg. The base was crystallized from acetone-petroleum ether, MP 116°-117°C. Melting point of the monohydrochloride (from ethanol-ether) 234°-240°C.

References

Merck Index 2979 Kleeman & Engel p. 291 OCDS Vol. 1 p. 405 (1977) & 2 pp. 424, 471 (1980) DOT 2 (1) 4 (1966) I.N. p. 311

British Patent 961,106; June 17, 1964; assigned to Dr. A. Wander AG, Switzerland Schmutz, J. and Hunziker, F.; U.S. Patent 3,419,547; December 31, 1968; assigned to Dr. A. Wander, S.A. (Switzerland)

DIBUTOLINE SULFATE

Therapeutic Function: Anticholinergic

Chemical Name: Bis[Ethyl(2-hydroxyethyl)dimethylammonium] sulfate -bis(dibutylcarba-

mate)

Common Name: -

Structural Formula:

$$\begin{bmatrix} cH_{3} \\ (C_{4}H_{9})_{2}NCOOCH_{2}CH_{2}N_{1} - C_{2}H_{5} \\ CH_{3} \end{bmatrix} so_{4}^{2}$$

Chemical Abstracts Registry No.: 532-49-0

Trade Name	Manufactur er	Country	Year Introduced
Dibuline Sulfate	MSD	U.S.	1952

Raw Materials

β-Chloroethyl-di-n-butylcarbamate Dimethylamine Silver sulfate Ethyl iodide

Manufacturing Process

About 55.5 g of β -chloroethyi-di-n-butylcarbamate and about 22.6 g of dimethylamine are placed in a container, firmly sealed, and heated at about 95°C for about 16 hours. To the resulting crude mixture is added ethyl ether and the mixture filtered to remove dimethylamine hydrochloride formed during the course of the reaction. The ethereal solution is then extracted with 12 N hydrochloric acid. Under a fresh layer of ether and at a temperature under 10°C the aqueous acid extract is first neutralized with sodium carbonate and then made strongly aikaline with sodium hydroxide. The supernatant ethereal solution is then separated and dried over potassium hydroxide. The ethereal solution is finally concentrated and the residue obtained is fractionally distilled under vacuum. The β-dimethylaminoethyl-di-n-butylcarbamate is found to distill undecomposed at about 128°C to 130°C under approximately 2 mm pressure.

A mixture of about 100 g of β-dimethylaminoethyl-di-n-butylcarbamate and about 188 cc of ethyl iodide is held at about 25°C for two hours. The temperature is kept about 25°C by occasional cooling in an ice bath during the first half hour. About 1,600 cc of anhydrous ethyl ether is then added causing the precipitation of a dense white product. After standing for about 16 hours at 0°C the product is filtered off, washed thoroughly with anhydrous ether. and dried under diminished pressure at room temperature over sulfuric acid. The β -(dimethyle ethyl ammonium iodide) -ethyl di-n-butylcarbamate thus obtained is a white crystalline powder, slightly hygroscopic with a melting point of about 76°C to 77°C.

A mixture of about 150 g of β -(dimethyl ethyl ammonium iodide)-ethyl-di-n-butylcarbamate, 90 g of silver sulfate, 750 cc of water and 750 cc of ethanol is stirred at about 30°C for approximately 45 minutes. The silver iodide formed is removed and the excess silver remaining in solution is removed by bubbling in hydrogen sulfide for five minutes followed by filtration to remove the precipitated silver sulfide. The filtrate is concentrated to a thick syrup under vacuum and about one liter of benzene is added which is distilled off with stirring to atmospheric pressure to remove the last traces of water. The residual benzene is removed under vacuum and the product granulated by stirring with one liter of anhydrous ether for two hours. The product is removed, washed with anhydrous ether, and dried under diminished pressure over phosphorous pentoxide at 25°C. The β -(dimethyl ethyl ammonium sulfate)ethyl-di-n-butylcarbamate thus obtained is a very hygroscopic white solid having a melting point of about 166°C with decomposition.

References

Merck Index 3012 I.N. p. 313

Swan, K.C. and White, N.G.; U.S. Patent 2,432,049; December 2, 1947

DICHLORISONE ACETATE

Therapeutic Function: Topical antipruritic

Chemical Name: $9\alpha,11\beta$ -Dichloro-1,4-pregnadiene-17 $\alpha,21$ -diol-3,20-dione -21-acetate

Common Name: -

Structural Formula: CH₂OH

Chemical Abstracts Registry No.: 79-61-8; 7008-26-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Diloderm	Schering	U.S.	1960
Astroderm	Aristochimica	Italy	_
Dermaren	Areu	Spain	
Diclasone	Liberman	Spain	_
Disoderm	Schering	· -	_

1,4,9(11)-Pregnatriene-17α,21-diol-3,20-dione-21-acetate N-Chlorosuccinimide

Manufacturing Process

A solution of 1.0 g of 1.4.9(11)-pregnatriene-17 α 21-diol-3.20-dione-21-acetate and 5.0 g of lithium chloride in 40 ml of glacial acetic acid is treated with 0.410 g of N-chlorosuccinimide. followed by 0.104 g of anhydrous hydrogen chloride dissolved in 2.5 ml of tetrahydrofuran. The reaction mixture is stirred for 2 hours and poured into ice water. The crude product is filtered and washed with water to give 1.12 g of solid material, which is recrystallized from acetone-hexane to give substantially pure 90,11\(\beta\)-dichloro-1,4-pregnadiene-170,21-diol-3.20dione-21-acetate; MP 246°C to 253°C (dec.).

References

Merck Index 3030 Kleeman & Engel p. 292 OCDS Vol. 1 p. 203 (1977)

I.N. p. 314

Gould, D.H., Reimann, H. and Finckenor, L.E.; U.S. Patent 2,894,963; July 14, 1959; assigned to Schering Corp.

DICHLORPHENAMIDE

Therapeutic Function: Carbonic anhydrase inhibitor; glaucoma treatment

Chemical Name: 4,5-Dichloro-m-benzenedisulfonamide

Common Name: Diclofenamid

Structural Formula:

Chemical Abstracts Registry No.: 120-97-8

Trade Name	Manufacturer	Country	Year Introduced
Daranide	MSD	U.S.	1958
Oratrol	Alcon	U. S .	1960
Diclofenamid	Mann	W. Germany	1976
Antidrasi	I.S.F.	Italy	_
Barastonin	Santen	Japan	
Fenamide	Farmigea	Italy	_
Glajust	Hotta	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Glaucol	Star	Finland	_
Glauconide	Liorens	Spain	
Glaumid	S.I.F.I.	Italy	_
Hipotensor Oftalmico	C.M.C.	Spain	
Netex	C.M.C.	Spain	
Tensodilen	Frumtost	Spain	

Chlorosulfonic acid O-Chlorophenol Phosphorus pentachloride Ammonia

Manufacturing Process

In a 2 liter round-bottomed flask equipped with stirrer and dropping funnel is placed 1.585 grams (880 cc; 13.6 mols) of chlorosulfonic acid. To this is added dropwise with stirring during 5 hours 218 grams (1.7 mols) of o-chlorophenol. The mixture is allowed to stand 1 hour at room temperature and then is heated 1 hour on a steam bath. The mixture is then poured on ice.

A product consisting largely of 5-chloro-4-hydroxybenzene-1,3-disulfonyl chloride separates as a gum which solidifies on standing for about 1 hour. The solid product is collected on a Buchner funnel, washed with water and thoroughly dried in air at room temperature.

A mixture of this crude product (approximately 302 grams, 0.92 mol) and 480 grams (2.3 mols) of phosphorus pentachloride is heated for 1 hour at 120°-140°C in a 2 liter roundbottomed flask. The resulting clear solution is poured on ice. 4,5-Dichlorobenzene-1,3disulfonyl chloride separates immediately as a solid. It is collected by filtration and washed with water. While still moist, it is added in portions during about 20 minutes to 1 liter of concentrated ammonia water contained in a 3 liter beaker surrounded by a cold water bath. The reaction mixture is then allowed to stand for 1 hour without cooling after which it is heated on a steam bath for about 30 minutes while air is bubbled through it, in order to remove some of the excess ammonia. It is then filtered, acidified with concentrated hydrochloric acid and chilled.

The product separates as a gum from which the supernatant liquid is decanted, and the gum is triturated with 250 cc of water in order to induce crystallization. The crude product thus obtained is recrystallized from 3,200 cc of boiling water and then from 40% aqueous isopropyl alcohol yielding 4,5-dichlorobenzene-1,3-disulfonamide as a white solid, MP 228.5° to 229.0°C.

References

Merck Index 3062 Kleeman & Engel p. 294 PDR p. 1155 OCDS Vol. 1 p. 133 (1977) I.N. p. 316 REM p. 936 Schultz, E.M.: U.S. Patent 2 835,702; May 20, 1958; assigned to Merck & Co., Inc.

DICLOFENAC SODIUM

Therapeutic Function: Antiinflammatory

Chemical Name: 2-[(2,6-dichlorophenyi)amino] benzeneacetic acid monosodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15307-79-6; 15307-86-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Voltaren	Fujisawa	Japan	1974
Voltaren	Ciba Geigy	Italy	1975
Voltarene	Ciba Geigy	France	1976
Voltaren	Geigy	W. Germany	1976
Voltarol	Ciba Geigy	U.K.	1978
Adefuronic	Taiyo	Japan	_
Blesin	Sawai	Japan	_
Dichronic	Toyo	Japan	_
Docell	Nippon Kayaku	Japan	_
Irinatolon	Tatumi	Japan	_
Kriplex	Alfa Farm.	Italy	_
Neriodin	Teikoku	Japan	_
Shignol	Taisho	Japan	_
Sofarin	Nippon Chemiphar	Japan	_
Sorelmon	Towa Yakuhin	Japan	_
Thicataren	Isei	Japan	_
Tsudohmin	Toho	Japan	_
Valetan	Tobishi	Japan	_

Raw Materials

N-Chloroacetyl-N-phenyl-2,6-dichloroaniline Aluminum chloride Sodium hydroxide

Manufacturing Process

Four grams of N-chloroacetyl-N-phenyl-2,6-dichloroaniline and 4 grams of aluminum chloride are well mixed together and heated for 2 hours at 160°C. The melt is cooled and poured onto about 50 grams of ice while it is still warm. The oil which separates is dissolved in 50 ml of chloroform, the chloroform solution is washed with 10 ml of water, dried over sodium sulfate and concentrated under 11 torr. The residue is distilled. The 1-(2,6dichlorophenyl)-2-indolinone melts at 126°-127°C.

A solution of 186 grams of 1-(2,6-dichlorophenyl)-2-indolinone in 660 ml of ethanol and 660 ml of 2 N sodium hydroxide solution is refluxed for 4 hours. The solution is then cooled and left to stand for 4 hours at 0°-5°C. The crystals which form are filtered off and recrystallized from water. The sodium salt of 2-(2,6-dichloroanilino)-phenylacetic acid melts at 283°-285°C. The yield is 97% of theoretical, according to U.S. Patent 3,558,690.

References

Merck Index 3066 Kleeman & Engel p. 293 OCDS Vol. 2 p. 70 (1980) DOT 9 (9) 369 (1973) & 11 (3) 106 (1975) I.N. p. 316

Sallmann, A. and Pfister, R.; U.S. Patent 3,558,690; January 26, 1971; assigned to Geigy Chemical Corporation

Sallmann, A. and Pfister, R.; U.S. Patent 3,652,762; March 28, 1972; assigned to Ciba-Geigy Corporation

DICLOXACILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 6-[3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarboxamido] -3,3-dimethyl-

7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid sodium salt

Common Name: 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 13412-64-1; 3116-76-5 (Acid)

Trade Name	Manufacture r	Country	Year Introduced
Dichlor-Stapenor	Bayer	W. Germany	1965
Dynapen	Bristoi	U.S.	1968
Veracillin	Ayerst	U.S.	1968
Pathocil	Wyeth	U.S.	1968
Diclocil	Bristol	France	1968
Diclocil	Bristo!	Italy	1971
Dycill	Beecham	U.S.	1975
Clocil	Bristol Banyu	Japan	_
Combipenix	Toyo Jozo	Japan	_
Constaphyl	Grunenthal	W. Germany	_
Diclex	Meiji	Japan	
Diclo	Firma	İtaly	
Diclomax	Pulitzer	Italy	_
Dicloxapen	Magis	Italy	_
Nov a pen	I.B.P.	Italy	
Soldak	Ariston	Argentina	_
Staphicillin	Banyu	Japan	
Totocillin	Bayer	W. Germany	_

Raw Materials

6-Aminopenicillanic acid

3-(2',6'-Dichlorophenyl)-5-methylisoxazole-4-carbonyl chloride

Sodium bicarbonate

Manufacturing Process

A suspension of 6-aminopenicillanic acid (216 grams) in water (2 liters) was adjusted to pH 6.8 by the addition of N aqueous sodium hydroxide (approximately 1 liter) and the resulting solution was stirred vigorously while a solution of 3-(2',6'-dichlorophenyl)-5-methylisoxazole-4-carbonyl chloride (290 grams) in acetone (1.5 liters) was added in one portion.

Sallmann, A. and Pfister, R.; U.S. Patent 3,558,690; January 26, 1971; assigned to Geigy Chemical Corporation

Sallmann, A. and Pfister, R.; U.S. Patent 3,652,762; March 28, 1972; assigned to Ciba-Geigy Corporation

DICLOXACILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 6-[3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolecarboxamido] -3,3-dimethyl-

7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid sodium salt

Common Name: 3-(2,6-dichlorophenyl)-5-methyl-4-isoxazolylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 13412-64-1; 3116-76-5 (Acid)

Trade Name	Manufacture r	Country	Year Introduced
Dichlor-Stapenor	Bayer	W. Germany	1965
Dynapen	Bristoi	U.S.	1968
Veracillin	Ayerst	U.S.	1968
Pathocil	Wyeth	U.S.	1968
Diclocil	Bristol	France	1968
Diclocil	Bristo!	Italy	1971
Dycill	Beecham	U.S.	1975
Clocil	Bristol Banyu	Japan	_
Combipenix	Toyo Jozo	Japan	_
Constaphyl	Grunenthal	W. Germany	_
Diclex	Meiji	Japan	
Diclo	Firma	İtaly	
Diclomax	Pulitzer	Italy	_
Dicloxapen	Magis	Italy	_
Novapen	I.B.P.	Italy	
Soldak	Ariston	Argentina	_
Staphicillin	Banyu	Japan	
Totocillin	Bayer	W. Germany	_

Raw Materials

6-Aminopenicillanic acid

3-(2',6'-Dichlorophenyl)-5-methylisoxazole-4-carbonyl chloride

Sodium bicarbonate

Manufacturing Process

A suspension of 6-aminopenicillanic acid (216 grams) in water (2 liters) was adjusted to pH 6.8 by the addition of N aqueous sodium hydroxide (approximately 1 liter) and the resulting solution was stirred vigorously while a solution of 3-(2',6'-dichlorophenyl)-5-methylisoxazole-4-carbonyl chloride (290 grams) in acetone (1.5 liters) was added in one portion.

The temperature rose to 26°C and as reaction proceeded the free acid form of the penicillin separated as a white solid. After 30 minutes the suspension was cooled to 10°C and stirring was continued at this temperature for 1 hour more. The mixture was then cooled to 0°C, centrifuged, and the solid product washed with aqueous acetone (250 ml) and finally dried in an air oven at 30°C. The product (440 grams, 94%) had $[\alpha]_D^{20}$ + 106.3° (c., 1 in EtOH) and was shown by alkalimetric assay to be 97.5% pure.

The salt was prepared by dissolving the free acid form of the penicillin in the equivalent amount of aqueous sodium bicarbonate and freeze drying the resulting solution. The hydrated salt so obtained was shown by alkalimetric assay to be 94% pure and to contain 6% water.

References

Merck Index 3068 Kleeman & Engel p. 295 PDR pp. 697, 993, 1606, 1967 OCDS Vol. 1 p. 413 (1977) DOT 2 (2) 50 (1966) I.N. p. 316 REM p. 1196

Nayler, J.H.C.; U.S. Patent 3 239,507; March 8, 1966; assigned to Beecham Group Limited. England

DICYCLOMINE HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: (bicyclohexyl)-1-carboxylic acid 2-(diethylamino)ethyl ester hydrochloride

Common Name: Dicycloverin hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 67-92-5; 77-19-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Bentyl	Merrell National	U.S.	1950
Dyspas	Savage	U.S.	1974
Dicen	Mallard	U.S.	1980
Neoquess	O'Neal, Jones	U.S.	1981
A-Spas	Hyrex	U.S.	1983
Ametil	Corvi	ltaly	
Atumin	Merrell	W. Germany	-
Babyspasmil	Lacefa	Argentina	_
Benacol	C enci	U.Š.	_
Bentomine	Darby	U.S.	
Bentylol	Inibsa	Spain	_
Clomin	S.C.S. Pharmalab.	S. Africa	_
Cyclobec	Pharbec	Canada	_
Dicycol	Ohio Medical	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Esentil	Erba	Italy	_
Formulex	I.C.N.	Canada	
Icramin	Toho Iyaku	Ja pan	_
Incron	Seiko	Ja pan	_
Kolantyl	Merrill	U.K.	_
Lomine	Riva	Canada	
Mamiesan	Kyowa	Japan	_
Merbantal	Vitrum	Sweden	_
Merbenyl	Merrell	U.K.	
Mydocalm	Lennon	S. Africa	
Nomocramp	Salusa	S. Africa	
Notensyl	C.T.S.	Israel	
Or-Tyl	Ortega	U.S.	
Panakiron	Sato	Japan	_
Protylol	Pro Doc	Canada	_
Spascol	Vangard	U.S.	_
Spasmoban	Trianon	Canada	_
Viscerol	Medic	Canada	_

1-Phenylcyclohexane cyanide	
β-Diethylaminoethanol	
Sodium	

Sulfuric acid Ethanol Hydrogen

Manufacturing Process

155 grams of 1-phenylcyclohexanecyanide, 350 cc of concentrated sulfuric acid and 1,130 cc of ethyl alcohol are refluxed vigorously for 48 hours. The remaining alcohol is then removed by vacuum distillation and the residue is poured into 1 liter of ice water. An oil separates which is extracted 3 times with 200 cc portions of petroleum ether, the extracts are combined and heated on a steam bath to remove the ether. The resulting crude ester may be used directly for the reesterification operation or it may be distilled to purify it first. A mixture of the ester so obtained, 155 grams of β -diethylaminoethanol and 800 cc of dry xylene are placed in a reaction vessel with about 2 grams of sodium. The vessel is heated in an oil bath at 150°-160°C. A xylene-ethanol azeotrope distills over at about 78°-82°C over a period of 2 to 3 hours. The distillate is cooled and shaken with about 3 times its volume of water, the decrease in volume of the distillate being considered a measure of the amount of alcohol formed. When 80-90% of the theoretical amount of alcohol is obtained in the distillate the reaction mixture is subjected to vacuum distillation to remove most of the xylene and unreacted diethylaminoethanol. The residue is poured into 500 cc of benzene which is then extracted 3 times with 500 cc portions of water.

The washed benzene layer is diluted with an equal volume of ether and alcoholic hydrochloric acid is added until the mixture is acid to Congo red. A white crystalline solid forms which is dissolved in 300-400 cc of alcohol and diluted with ether to the point where precipitation starts. A few drops of butanone are added, the solution is cooled to -10°C, and filtered to recover the crystals which separate. The product is obtained in the form of white needles melting at 159°-160°C, in good yield.

13 parts of β -diethylaminoethyl 1-phenylcyclohexanecarboxylate hydrochloride, 125 parts of glacial acetic acid and 0.3 part of Adams' catalyst are heated to 70°C and shaken with hydrogen at 50 lb pressure until 90-100% of the theoretical hydrogen is absorbed. The acetic acid is then removed by distillation and the residue recrystallized from butanone, giving the above product as a crystalline hydrochloride melting at 165°-166°C, in good yields. This product may also be prepared by reacting cyclohexyl bromide with cyclohexyl cyanide with the use of sodamide followed by alcoholysis and reesterification.

References

Merck Index 3083 Kleeman & Engel p. 295 PDR pp. 830, 986, 993 OCDS Vol. 1 p. 36 (1977) I.N. p. 317 REM p. 915

Van Campen, M.G. Jr. and Tilford, C.H.; U.S. Patent 2,474,796; June 28, 1949; assigned to The Wm. S. Merrell Company

DIENESTROL

Therapeutic Function: Estrogen

Chemical Name: 4,4'-(1,2-diethylidene-1,2-ethanediyl)bisphenol

Common Name: Dienoestro!

Structural Formula:

H₃C OH

Chemical Abstracts Registry No.: 84-17-3

Manufacturer	Country	Year Introduced
Schering	U.S.	1947
Bruneau	France	1948
Vetoquinol	France	
Merit	U.S.	_
Reid-Provident	U.S.	_
Merrell Dow	U.S.	_
Schering	U.S.	-
Reid-Provident	U.S.	_
Farmaryn	W. Germany	_
Recordati	Italy	_
Medo	U.K.	-
Westerfield	U.S.	_
Stotzer	Switz.	_
Klimitschek	Austria	_
Merz	W. Germany	_
A.F.I.	Norway	_
	Schering Bruneau Vetoquinol Merit Reid-Provident Merrell Dow Schering Reid-Provident Farmaryn Recordati Medo Westerfield Stotzer Klimitschek Merz	Schering U.S. Bruneau France Vetoquinol France Merit U.S. Reid-Provident U.S. Merrell Dow U.S. Schering U.S. Reid-Provident U.S. Farmaryn W. Germany Recordati Italy Medo U.K. Westerfield U.S. Stotzer Switz. Klimitschek Austria Merz W. Germany

Raw Materials

4-Hydroxypropiophenone Benzoyl chloride Potassium hydroxide

Sodium Acetic anhydride Acetyl chloride

Manufacturing Process

Preparation of $\gamma \delta$ -Bis-(4-Hydroxylphenyl)-Hexane- $\gamma \delta$ -Diol: A sodium amalgam is prepared containing 6 grams of sodium and 400 grams of mercury. The amalgam is covered with a solution of 20 grams of 4-hydroxypropiophenone in a mixture of 30 ml of 5 N sodium

hydroxide solution and 220 ml of water and the mixture is heated to 28°-30°C and stirred gently. The reduction is accompanied by development of heat and the temperature of the solution rises to 34°-35°C, and then falls slowly. After 5 hours the alkaline solution is separated from the mercury and diluted with 3 or 4 times its volume of water, when, in order to form the benzoyl derivatives of the products, the solution is vigorously stirred, while it is being cooled, with 20 ml of benzoyl chloride, the solution being kept at a temperature of 15°-20°C. When the reaction is completed, the benzoyl derivatives are filtered off, washed with water and recrystallized from a mixture of benzene and alcohol, when a product with a melting point of 195°-215°C is obtained.

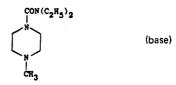
Preparation of Dienestrol: In order to obtain dienoestrol, 14.6 grams of dry 4,4'-dibenzoate are refluxed with a mixture of 40 ml of acetic anhydride and 40 ml acetylchloride by heating in an oil-bath at about 90°C for 6 hours after which the bath temperature is increased to 120°C and heating continued for a further 18 hours, after which time the evolution of hydrogen chloride practically ceases. The mixture is allowed to cool for several hours and the crystals which separate are filtered off and recrystallized from an alcoholbenzene mixture when the product melts at 210°-222°C. This product is converted into dienoestrol by adding 10.8 grams of it to 100 ml of 10% (w/v) alcoholic potassium hydroxide solution and then refluxing during 1 hour. After dilution with 200 ml of water and filtration from a small amount of insoluble material, dienoestrol is precipitated from the alkaline solution by treatment with carbon dioxide. It is filtered off, washed with water and recrystallized from dilute alcohol after which it melts at 233°-234°C according to U.S. Patent 2,464,203.

References

Merck Index 3085 Kleeman & Engel p. 296 PDR pp. 1225, 1294 OCDS Vol. 1 p. 102 (1977) I.N. p. 318 REM p. 988

Short, W.F. and Hobday, G.I; U.S. Patent 2,464,203; March 15, 1949; assigned to Boots Pure Drug Company Limited, England

Adler, E.: U.S. Patent 2,465,505; March 29, 1949; assigned to Hoffmann-La Roche Inc.


DIETHYLCARBAMAZINE CITRATE

Therapeutic Function: Anthelmintic

Chemical Name: N,N-Diethyl-4-methyl-1-piperazine-carboxamide citrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1642-54-2; 90-89-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hetrazan	Lederle	U.S.	1949

Trade Name	Manufacturer	Country	Year Introduced
Banocide	Burroughs-Wellcome	_	_
Difil	Evsco	U.S.	-
Filarcidin	Cidan	Spain	_
Filaribits	Norden	U.S.	_
Franocide	Burroughs-Wellcome	_	_
Loxuran	Egyt	Hungary	_
Notezine	Specia	_	_

Sodium hydroxide 1-Methylpiperazine Diethyl carbamyl chloride Sodium carbonate

Manufacturing Process

To 50 cc of water was added 18 grams of 1-methyl piperazine dihydrochloride and 8.34 grams of sodium hydroxide. When solution had been effected the beaker was cooled to 10°C and with stirring, 4.17 grams of sodium hydroxide dissolved in 15 cc of water and 14 grams of diethyl carbamyl chloride were added simultaneously. When all had been added, the solution was extracted 3 times with ether which was then dried and filtered. The ether solution was saturated with dry hydrogen chloride. A yellow gum appeared which on trituration gave a white, hygroscopic solid which was filtered and dried in a drying pistol. The 1-methyl-4-piperazine-N,N-diethyl carboxamide hydrochloride had a melting point of 150°-155°C.

If the compound itself is desired, the salt is dissolved in water and the solution saturated with a mild alkali such as potassium carbonate. The product is then extracted with chloroform, dried, and after removal of the chloroform, distilled.

References

Merck Index 3100 OCDS Vol. 1 p. 278 (1977)

I.N. p. 320 REM p. 1235

Kushner, S. and Brancone, L.: U.S. Patent 2,467,893; April 19, 1949; assigned to American Cyanamid Company

Kushner, S. and Brancone, L.; U.S. Patent 2,467,895; April 19, 1949; assigned to American Cyanamid Company

DIETHYLPROPION HCI

Therapeutic Function: Anorexic

Chemical Name: 2-(Diethylamino)-1-phenyl-1-propanone

Common Name: Amfepramone

Structural Formula: (base)

Chemical Abstracts Registry No.: 134-80-5; 90-84-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tenuate	Merrell National	U.S.	1959
Tepanil	Riker	U.S.	1959
Tenuate-Dospan	Merrell	France	1971
Adiposan	Phyteia	Switz.	1971
Anfamon	Ortscheit	W. Germany	_
Bonumin	Farmos	Finland	_
Brendalit	Dexter	Argentina	_
Delgamer	Merrell Dow		
Derfon	Lafon	France	_
Dietec	Pharbec	Canada	
Dietil-Retard	Trenker	Belgium	_
D.I.P.	Eri	Canada	-
Dobesin	Pharmacia	Sweden	_
Frekentine	Minerva-Chemie	Neth.	-
Lineal-Rivo	Rivopharm	Switz.	_
Linea Valeas	Valeas	Italy	-
Lipomin	Uriach	Spain	_
Liposlim	Pharma Farm, Spec.	Italy	-
Magrene	Ravasini	Italy	
Menutil	Merrell Dow	_	_
Moderatan	Theranol	France	_
Nobesine-25	Nadeau	Canada	_
Nulobes	Disprovent	Argentina	_
Prefamone	Dexo	France	_
Regenon	Temmler	W. Germany	_
Regibon	Medic	Canada	_
Slim-Plus	Pharma-Plus	Switz,	

Q-Bromopropiophenone Diethylamine Hydrogen chloride

Manufacturing Process

1,145 g of α-bromopropiophenone and 850 g of diethylamine are combined under stirring and heated on a water bath to boiling. The precipitate is filtered off under suction and washed with benzol. The filtrate is shaken up with aqueous hydrogen chloride, the aqueous solution made alkaline and etherified. The solution freed of the ether is fractionated. The boiling point (6 mm) is 140°C and the yield 800 g. The base is dissolved in acetic ester and precipitated with isopropanolic hydrogen chloride. After suction filtration and washing with ether the yield is found to be 750 g (80%) and the melting point 168°C.

References

Merck Index 3113 Kleeman & Engel p. 37 PDR pp. 991, 1453, 1606 DOT 9 (6) 213 (1973) I.N. p. 66 REM p. 891

Schutte, J.; U.S. Patent 3,001,910; September 26, 1961; assigned to Firma Temmler-Werke (W. Germany)

DIETHYLSTILBESTROL

Therapeutic Function: Estrogen

Chemical Name: 4,4'-(1,2-Diethyl-1,2-ethenediyl)bisphenol

Common Name: DES

Structural Formula:

Chemical Abstracts Registry No.: 56-53-1

Trade Name	Manufacturer	Country	Year Introduced
DES	Amfre-Grant	U.S.	1946
Stilbetin	Squibb	U.S.	1950
Microest	Massengill	U.S.	1958
Vagestrol	Norwich Eaton	U.S.	1969
Acnestrol	Dermik	U.S.	_
Agostiben	S pofa	Czechoslovakia	
Cyren A	Bayer	W. Germany	
Desma	Tablicaps	U. S ,	-
Des-Plex	Amfre-Grant	U.S,	-
Dicorvin	Amfre-Grant	U.S.	-
Distilbene	Ucepha	France	
Estilbin	Dumex	Denmark	_
Estrosyn	Cooper	U.S.	-
Furacin-E	Eaton	U.S.	
Gerex	Consul. Midland	U.S.	_
Makarol	Mallinckrodt	U.S.	_
Mase-Bestrol	Mason	U.S.	
Menopax	Nicholas	U.K.	_
Micrest	Beecham	U.S.	_
Oestrogen	Holzinger	Austria	-
Oestrol	Veterinaria	Switz.	_
Oestromon	Merck	W. Germany	
Pelestro!	Franklin	U.S.	-
Percutacrine	Besins-Iscovesco	France	-
Tylosterone	Lilly	U.S.	-

Raw Materials

p-Hydroxypropiophenone Sodium

Sodium hydroxide Hydrogen chloride

Manufacturing Process

50 parts by weight of p-hydroxypropiophenone are dissolved in 200 parts by weight of a 12.5% solution of caustic soda and shaken with 350 parts by weight of 3% sodium amalgam. The sodium salt of the pinacol thereby precipitating is reacted with glacial acetic acid, whereby the free pinacol is obtained (MP 205°C to 210°C, after purification 215°C to 217°C). The yield amounts to 95% of the theoretical. The pinacol is suspended in ether and gaseous hydrogen chloride introduced, whereby water separates and the pinacolin formed is dissolved in the ether, from which it is obtained by evaporation as a viscous oil (diacetate of MP 91°C). The yield is quantitative.

40 parts by weight of pinacolin are dissolved in ethyl alcohol and gradually treated with 80 parts by weight of sodium under reflux. The solution is decomposed with water and the pinacolin alcohol formed extracted from the neutralized solution with ether. The pinacolin alcohol is a viscous oil which is characterized by a dibenzoate of MP 172°C. The yield is 95% of the theoretical.

References

Merck Index 3115 Kleeman & Engel p. 298 PDR p. 1045 OCDS Vol. 1 p. 101 (1977) I.N. p. 321 REM p. 988

Adler, E., Gie, G.J. and von Euler, H.; U.S. Patent 2,421,401; June 3, 1947; assigned to Hoffmann-La Roche, Inc.

DIETHYLSTILBESTROL DIPHOSPHATE

Therapeutic Function: Estrogen; used in hormone therapy for prostate cancer

Chemical Name: 4,4'-(1,2-Diethyl-1,1-ethenediyl)bisphenol-bis(dihydrogen phosphate)

Common Name: Fosfestrol

Structural Formula:

Chemical Abstracts Registry No.: 522-40-7; 23519-26-8 (Tetrasodium sait)

Trade Name	Manufacturer	Country	Year Introduced
Stilphostrol	Dome	U.S.	1955
ST 52	Lucien	France	1955
Cytonal	VEB Berlin-Chemie	E. Germany	_
Honvan	Asta	W. Germany	-
Honvan	Funk	Spain	
Honvan	W.B. Pharm.	U.K.	_
Honvan	Noristan	S. Africa	_
Honvan	S chering	Italy	
Honvan	Asta-Kyorin	Japan	_
Stilbetin	S quibb	· -	_
Stibol	A.C.O.	Sweden	-

Raw Materials

 α,α' -Diethyl-4,4'-dihydroxystilbene Phosphorus oxychloride Sodium bicarbonate

Manufacturing Process

A solution of 1 part of α,α' -diethyl-4,4'-dihydroxystilbene in 5 parts of pyridine is added drop

by drop to the strongly cooled solution of 2 parts of phosphorus-hydroxy chloride in 5 parts of pyridine. The mixture soon solidifies to a crystalline magma. It is allowed to stand in ice for $\frac{1}{2}$ hour and then for an hour at room temperature. The mass is then poured into an excess of saturated sodium bicarbonate solution. Unconsumed parent material is removed by extraction with ether. The aqueous solution is then mixed with 2N-hydrochloric acid, whereupon the primary phosphoric acid ester of $\frac{1}{2}$, $\frac{1}{2}$ diethyl $\frac{1}{2}$, $\frac{1}{2}$ dihydroxystilbene of the formula

is precipitated in the form of a voluminous white powder. By recrystallization or reprecipitation this ester may be further purified.

References

Merck Index 4136 Kleeman & Engel p. 433 PDR p. 1261 OCDS Vol. 1 p. 101 (1977) I.N. p. 321 REM p. 989

Miescher, K. and Heer, J.; U.S. Patent 2,234,311; March 11, 1941; assigned to Ciba Pharmaceutical Products, Inc.

DIFENOXINE

Therapeutic Function: Antiperistaltic

Chemical Name: 1-(3-Cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid

Common Name: Difenoxilic acid

Structural Formula:

Chemical Abstracts Registry No.: 28782-42-5; 35607-36-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Lyspafena	Cilag Chemie	W. Germany	1980
Lyspafen	Protea	Australia	-

Raw Materials

t-Potassium butanolate Ethyl-1-(3-cyano-3,3-diphenylpropyl)-4-phenylisonipecotate HCl Acetic acid Hydrogen chloride

Manufacturing Process

To a stirred solution of 5.52 parts of t-potassium butanolate in 60 parts of dimethylsulfoxide are added 1.7 parts of ethyl-1-(3-cyano-3,3-diphenylpropyl)-4-phenylisonipecotate hydro-

chloride and the whole is stirred on an oil bath (90°C) for 4 hours. The reaction mixture is cooled (30°C) and poured onto 180 parts of water with stirring. After two extractions with benzene, the aqueous phase is acidified with glacial acetic acid to pH 6.5 with stirring. The precipitated product is filtered off, washed with water, dried, dissolved in 50 parts of 0.4 N potassium hydroxide and precipitated again with glacial acetic acid. The crude free base is filtered off and dissolved in a mixture of 2-propanol and chloroform and gaseous hydrogen chloride is introduced into the solution. The whole is filtered and the filtrate is evaporated. The residue is mixed with benzene and the latter is evaporated again. The residue is recrystallized from 2-propanol, yielding 1-(3-cyano-3,3-diphenylpropyl)-4-phenylisonipecotic acid hydrochloride.

References

Merck Index 3122 Kleeman & Engel p. 300 OCDS Vol. 2 p. 331 (1980) DOT 10 (6) 205 (1974)

I.N. p. 323

Soudyn, W. and van Wijngaarden, I.: U.S. Patent 3,646,207; February 29, 1972; assigned to Janssen Pharmaceutica, N.V. (Belgium)

DIFLORASONE DIACETATE

Therapeutic Function: Topical corticosteroid antiinflammatory

Chemical Name: $6\alpha.9\alpha$ -Diffuoro- $11\beta.17\alpha.21$ -trihydroxy- 16β -methylpregna-1.4-diene-3.20-

dione diacetate

Common Name: -

Structurel Formula:

Chemical Abstracts Registry No.: 2557-49-5; 33654-31-7 (Diacetate)

Trade Name	Manufacturer	Country	Year Introduced
Florone	Upjohn	U.S.	1978
Florone	Upjohn	Switz.	1979
Maxiflor	Herbert	U.S.	1980
Florone	Upjohn	W. Germany	1981
Florone	Basotherm	W. Germany	1982
Flutone	Rorer	U.S.	_

Raw Materials

 6α -Fluoro- 9α -bromo- 11β , 17α , 21-trihydroxy- 16α -methyl-1, 4-pregnadiene-3, 20-dione-21-acetate

Potassium acetate

Hydrogen fluoride

Orthoacetic acid trimethyl ester

Manufacturing Process

6 & Fluoro - 9 & epoxy - 17 & 21 - dihydroxy - 16 & methyl - 1,4-pregnadiene - 3,20-dione - 21-acetate: To a solution of 6.78 g of 6 & fluoro - 9 & bromo - 11 & flooro - 11 & flooro - 12 - decente - 13,20-dione - 21-acetate in 175 ml of acetone was added 6.78 g of potassium acetate and the resulting suspension was heated under reflux for a period of 17 hours. The mixture was then concentrated to approximately <math>60 ml volume at reduced pressure on the steam bath, diluted with water and extracted with methylene chloride. The methylene chloride extracts were combined, washed with water, dried over anhydrous sodium sulfate and evaporated. The residue was redissolved in methylene chloride and chromatographed over 500 g of Florisil anhydrous magnesium silicate. The column was eluted with 1 liter portions of hexanes (Skellysolve B) containing increasing proportions of acetone. There was so eluted 6 & fluoro - 9 & floris - 11 & fluoro - 11 & fluoro - 11 & fluoro - 11 & fluoro - 11 & fluoro - 11 & fluoro - 11 & fluoro - 11 & fluoro - 12 & fluoro - 12 & fluoro - 13 & fluoro - 13 & fluoro - 14 & fluoro - 14 & fluoro - 15 & fluoro - 14 & fluoro - 15 & f

 6α ,9α-Difluoro-11 β ,17α,21-trihydroxy-16α-methyl-1,4-pregnadiene-3,20-dione-21-acetate: To approximately 1.3 g of hydrogen fluoride contained in a polyethylene bottle and maintained at -60°C was added 2.3 ml of tetrahydrofuran and then a solution of 500 mg (0.0012 mol) of 6α-fluoro-9 β ,11 β -epoxy-16α-methyl-17α,21-dihydroxy-1,4-pregnadiene-3,20-dione-21-acetate in two ml of methylene chloride. The steroid solution was rinsed in with an additional 1 ml of methylene chloride. The light red colored solution was then kept at approximately -30°C for 1 hour and at -10°C for 2 hours. At the end of this period it was mixed cautiously with an excess of cold sodium bicarbonate solution and the organic material extracted with the aid of additional methylene chloride.

The combined extracts were washed with water, dried over anhydrous sodium sulfate and concentrated to approximately 35 ml. The solution was chromatographed over 130 g of Florisil anhydrous magnesium silicate. The column was developed with 260 ml portions of hexanes (Skellysolve B) containing increasing proportions of acetone. There was thus eluted 6α ,9 α -difluoro-11 β ,17 α ,21-trihydroxy-16 α -methyl-1,4-pregnadiene-3,20-dione-21-acetate which was freed of solvent by evaporation of the eluate fractions.

 6α ,9 α -Difluoro-11 β ,17 α ,21-trihydroxy-16 α -methyl-1,4-pregnadiene-3,20-dione: 3.25 g of 6α ,9 α -difluoro-11 β ,17 α ,21-trihydroxy-16 α -methyl-1,4-pregnadiene-3,20-dione-21-acetate was dissolved in 325 ml of methanol, previously purged of air-oxygen by passing nitrogen through it for 10 minutes and thereto was added a solution of 1.63 g of potassium bicarbonate in 30 ml of water, similarly purged of oxygen. The mixture was allowed to stand at room temperature for a period of 5 hours in a nitrogen atmosphere, thereupon neutralized with 2.14 ml of acetic acid in 40 ml of water. The mixture was concentrated to approximately one-third volume at reduced pressure on a 60° water bath. Thereupon 250 ml of water was added and the mixture chilled. The crystalline product was collected on a filter, washed with water and dried to give 6α ,9 α -difluoro-11 β ,17 α ,21-trihydroxy-16 α -methyl-1,4-pregnadiene-3,20-dione.

The diflorasone is reacted with orthoacetic acid trimethyl ester in the presence of toluene sulfonic acid to give diflorasone diacetate.

References

Merck Index 3124 DFU 2 (4) 238 (1977) Kleeman & Engel p. 301 PDR pp. 832, 932 DOT 15 (4) 445 (1979) I.N. p. 324 REM p. 972

Lincoln, F.H., Schneider, W.P. and Spero, G.B.; U.S. Patent 3,557,158; January 19, 1971; assigned to The Upjohn Company

Ayer, D.E., Schlagel, C.A. and Flynn, G.L.; U.S. Patent 3,980,778; September 14, 1976; assigned to The Upjohn Co.

DIFLUCORTOLONE VALERATE

Therapeutic Function: Antiinflammatory

Chemical Name: 6.9-Diffuoro-11.21-dihydroxy-16-methylpregna-1.4-diene-3.20-dione

valerate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59198-70-8; 2607-06-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nerisone	Schering	U.K.	1976
Temetex	Roche	U.K.	1976
Temetex	Roche	W. Germany	1977
Nerisone	Schering	France	1979
Nerisona	Schering	Italy	1979
Temetex	Roche	Italy	1980
Nerisona	Schering	Japan	1981
Texmeten	Roche	Japan	1981
Travocort	Schering	W. Germany	_

Raw Materials

 16α -Methyl- 6α , 9α -difluoro- Δ^4 -pregnene- 11β , 21-diol-3, 20-dione-21-acetate Bacterium Bacillus lentus Valeric acid chloride

Manufacturing Process

16 α -methyl-6 α ,9 α -difluoro- Δ^4 -pregnene-11 β ,21-diol-3,20-dione-21-acetate (MP = 229°/232°-234°C (with decomposition) is dehydrogenated in 1,2-position by means of Bacillus lentus, Mutant MB 284, whereby the 21-acetate group is simultaneously saponified. (It is possible under the same conditions to start with the free 21-hydroxyl compound.)

For this purpose a fermenter made of stainless steel having a 50 liter capacity is charged with 30 liters of a nutrient solution of 0.1% yeast extract, 0.5% cornsteep and 0.2% glucose, heated for one-half hour at 120°C for sterilization purposes, and after cooling, inoculated with a bacterial suspension of Bacillus lentus MB 284.

After 24 hours of growth at 28°C under stirring (220 revolutions per minute) and aeration (1.65 m³/hr), 1.8 liters of the obtained culture is removed under sterile conditions and transferred with 28 liters of the same sterilized nutrient medium into a fermenter of the same size.

Simultaneously, 6 g of 16 α -methyl-6 α ,9 α -difluoro- Δ ⁴-pregnene-11 β ,21-diol-3,20-dione-21-

acetate in 200 cc of dimethylformamide are added and the fermentation is continued for 50 hours under the same conditions.

The course of the fermentation is tested by removal of samples which are extracted with methyl isobutyl ketone. The extracts are analyzed by thin layer chromatography using a system of benzene/ethyl acetate (4:1).

After further working up there is obtained an oily crystalline residue which is subjected to chromatography on silica gel. The 16α -methyl- 6α ,9 α -difluoro- $\Delta^{1.4}$ -pregnadien- 11β ,21-diol-3,20-dione is eluated with ethyl acetate-chloroform (1:2), it is recrystallized from ethyl acetate/ether and then formed to melt at 240°/242°-244°C. The yield is 60% of the theoretical. The product is reacted with valeric acid chloride to give the valerate ester.

References

Merck Index 3126 Kleeman & Engel p. 302 OCDS Vol. 2 p. 192 (1980) DOT 12 (7) 259 (1976) I.N. p. 324

Kieslich, K., Kerb, U. and Raspe, G.; U.S. Patent 3,426,128; February 4, 1969; assigned to Schering A.G. (West Germany)

DIFLUNISAL

Therapeutic Function: Analgesic, antiinflammatory

Chemical Name: 2',4'-Difluoro-4-hydroxy-[1,1'-biphenyl]-3-carboxylic acid

Common Name: Difluorophenyl salicylic acid

Structural Formula:

Chemical Abstracts Registry No.: 22494-42-4

Trade Name	Menufacturer	Country	Year Introduced
Dolobid	Morson	U.K.	1978
Unisal	Chibret	Switz.	1978
Dolobid	MSD	Italy	1979
Dolobis	MDS-Chibret	France	1981
Fluniget	Sharp & Dohme	W. Germany	1981
Dolobid	MSD	Canada	1982
Adomal	Malesci	Italy	1982
Dolobid	MSD	U.S.	1982
Citidol	C.T.	Italy	
Diflonid	Dumex	Denmark	_
Diflunil	I.C.1.	<u>-</u>	_
Dugodol	Alkaloid	Yugoslavia	_

Trade Name	Manufacturer	Country	Year Introduced
Flovacil	Andromaco	Argentina	_
Flustar Reuflos	Firma Scharper	Italy	-
11001103	Scharper	Italy	_

4-(2',4'-Difluorophenyl)phenol Carbon dioxide

Manufacturing Process

A mixture of 10 g of 4-(2',4'-difluorophenyl)-phenol and 27.2 g of potassium carbonate is exposed to carbon dioxide at 1,300 psi and 175°C. The dark mass obtained from this carbonation is then dissolved in 300 ml of water and 200 ml of methylene chloride and the two layers separated. The water layer is then extracted with 100 ml of methylene chloride and then acidified with 2.5 N hydrochloric acid. This mixture is then filtered and the cake dried in vacuo to yield 5.32 g of the crude product. The crude product is then recrystallized from benzene-methanol. An additional crystallization of this semipure material from benzene-methanol yields analytically pure 2-hydroxy-5-(2',4'-difluorophenyl)-benzoic acid (MP 210°-211°C).

References

Merck Index 3127 Kleeman & Engel p. 303 PDR p. 1171 OCDS Vol. 2 p. 85 (1980) DOT 14 (7) 269 (1978) I.N. p. 324 REM p. 1116

Ruyle, W.V., Jarett, L.H. and Matzuk, A.R.; U.S. Patent 3,714,226; January 30, 1973; assigned to Merck & Co., Inc.

DIFLUPREDNATE

Therapeutic Function: Antiinflammatory

Chemical Name: 21-(Acetyloxy)-6,9-difluoro-11-hydroxy-17-(1-oxobutoxy)pregna-1,4-

diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23674-86-4

Trade Name Manufacturer Country Year Introduced 1978 **Epitopic** Clin-Midy France

Raw Materials

 $6\alpha.9\alpha$ -Diffuoroprednisolone Methyl orthobutyrate Oxalic acid Acetic anhydride

Manufacturing Process

Orthoesterification: A mixture of 1 g of 60,90-difluoroprednisolone, 10 mg of p-toluenesulfonic acid, 5 cc of dimethylformamide and 3 cc of methyl orthobutyrate is heated for 15 hours on an oil bath at 105°C while a slow stream of nitrogen is passed through the mixture so that the methanol produced as a by-product of the reaction, is distilled off. After addition of several drops of pyridine to neutralize the acid catalyst, the reaction mixture is evaporated under vacuum and there is obtained a solid residue which is taken up with methanol, and filtered. The product is recrystallized from a methylene chloride-methanol mixture to yield 682 mg of 6α ,9 α difluoroprednisolone 17 α ,21-methylgrthobutyrate, also identified as $17\alpha.21$ -(1'-methoxy)-n-butylidenedioxy- $6\alpha.9\alpha$ -difluoro- $\Delta^{1.4}$ -pregnadiene- 11β -ol-3,20-dione, MP 194°-198°C.

Upon chromatography of the mother liquor on a column of alumina another 338 mg of a crystalline mixture of the epimeric orthobutyrates are isolated.

Hydrolysis: A suspension of 1 g of the 60,90 diffuoroprednisolone 170,21-methylorthobutyrate in 10 cc of methanol is treated with 2 cc of a 2 N aqueous solution of oxalic acid and heated on a water bath at 40°-50°C for about 5-10 minutes and, afterwards, the mixture is concentrated under vacuum. The residue is then shaken with water, the insoluble product is filtered off and then dried. The solid material is recrystallized from acetone-ether and 6α , 9α-difluoroprednisolone 17-butyrate is obtained, MP 193°-196°C.

Esterification: A solution of 500 mg of $6\alpha,9\alpha$ -diffuoroprednisolone 17-butyrate in 2.5 cc of pyridine is treated with 1.25 cc of acetic anhydride and the reaction mixture permitted to stand overnight at 0°C. The reaction mixture is then poured into ice water and the crystalline precipitate formed is filtered off and recrystallized from a methylene chloride-ether-petroleum ether mixture to yield 494 mg of 6α,9α-difluoroprednisolone 17-butyrate, 21-acetate; MP 191°-194°C.

References

Merck Index 3131 Kleeman & Engel p. 303 OCDS Vol. 2 p. 191 (1980) DOT 15 (1) 25 (1979) I.N. p. 325

Ercoli, A. and Gardi, R.; U.S. Patent 3,780,177; December 18, 1973; assigned to Warner-Lambert Co.

DIHYDROSTREPTOMYCIN SULFATE

Therapeutic Function: Antibiotic

Chemical Name: O-2-Deoxy-2-(methylamino)-α-L-glucopyranosyl-(1→2)-O-5-deoxy-3-C-(hydroxymethyl)-α-L-lyxofuranosyl-(1→4)-N,N'-bis(aminoiminomethyl)-D-streptamine Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5490-27-7; 128-46-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dihydrostrepto	M S D	U.S.	1948
Abiocine	Lepetit	France	_
Didromycin	Specia	France	_
Didrothenat	Grunenthal	W. Germany	_
Diestreptopab	Martin Santos	Spain	_
Dihydro-Cidan Sulfato	Cidan	Spain	_
Dihydromycine	Specia	France	_
Dihydrostreptofor	Kwizda	Austria	_
Dihydrostreptomycin-Rafa	Rafa	Israel	_
Entera-Strept	Heyl	W. Germany	_
Estreptoluy	Miluy	Spain	_
Guanimycin	Allen & Hanburys	U.K.	_
Sanestrepto	Santos	Spain	_
Solvo-Strept	Heyl	W. Germany	
Streptoral	Taro	Israel	
Vibriomycin	Evans Medical	Australia	

Raw Materials

Streptomycin sulfate Hydrogen

Manufacturing Process

Dihydrostreptomycin sulfate may be prepared from streptomycin sulfate by catalytic hydrogenation (Merck, Pfizer, Cyanamid), electrolytic reduction (Schenley, Olin Mathieson), or by sodium borohydride reduction (Bristol), or by isolation from a fermentation process (Takeda).

References

Merck Index 3161 Kleeman & Engel p. 309 I.N. p. 328

Peck, R.L.; U.S. Patent 2,498,574; February 21, 1950; assigned to Merck & Co., Inc.

Carboni, R.A. and Regna, P.P.; U.S. Patent 2,522,858; September 19, 1950; assigned to Chas. Pfizer & Co., Inc.

Levy, G.B.; U.S. Patent 2,663,685; December 22, 1953; assigned to Schenley Industries, Inc.

Dolliver, M.A. and Semenoff, S.; U.S. Patent 2,717,236; September 6, 1955; assigned to Olin Mathieson Chemical Corp.

Sokol, H. and Popino, R.P.; U.S. Patent 2,784,181; March 5, 1957; assigned to American Cyanamid Co.

Kaplan, M.A.; U.S. Patent 2,790,792; April 30, 1957; assigned to Bristol Laboratories, Inc. Tatsuoka, S., Kusaka, T., Miyake, A., Inoue, M., Shiraishi, Y., Iwasaki, H. and Imanishi, M.; U.S. Patent 2,950,277; August 23, 1960; assigned to Takeda Pharmaceutical Industries, Ltd.

DIHYDROTACHYSTEROL

Therapeutic Function: Blood calcium regulator

Chemical Name: 9,10-secoergosta-5,7,22-trien-3β-ol

Common Name: Dichystrolum

Structural Formula:

Chemical Abstracts Registry No.: 67-96-9

Trade Name	Manufacturer	Country	Year Introduced
Hytakerol	Winthrop	U.S.	1950
Calcamine	Sandoz	France	1949
D.H.T.	Roxane	U.S.	1983
A.T. 10	Bayer	W. Germany	_
Atecen	Merck	W. Germany	_
Dygratyl	Ferrosan	Denmark	
Dihydral	Duphar	Belgium	_
Tachyrol	Duphar	Belgium	_
Tachystin	Ankerwerk .	E. Germany	

Raw Materials

Tachysteroi Hydrogen

Manufacturing Process

The process of isolating chemically uniform crystalline dihydrotachysterol comprises subjecting the solution of the crude hydrogenation product of tachysterol in benzine to chromatographic adsorption by means of active aluminum oxide while collecting the components having a minor tendency of being adsorbed, subjecting the said components to a repeated chromatographic adsorption and converting the components having a minor tendency of

being adsorbed into its ester by treatment with acetic anhydride in pyridine solution, isolating the ester formed from the reaction mixture, subjecting its solution in benzine to chromatographic adsorption while collecting the components having a minor tendency of being adsorbed, recrystallizing these components, saponifying the crystalline ester and recrystallizing the dihydrotachysterol obtained.

References

Merck Index 3163 Kleeman & Engel p. 309 PDR p. 1570 I.N. p. 329 REM p. 978

von Werder, F.; U.S. Patent 2,228,491; January 14, 1941; assigned to Winthrop Chemical Company, Inc.

DILAZEP HYDROCHLORIDE

Therapeutic Function: Coronary vasodilator

Chemical Name: 3,4,5-trimethoxybenzoic acid diester with tetrahydro-1H-1,4-diazepine-1,4(5H)-dipropanol dihydrochloride

Common Name: --

Structural Formula:

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{OCH}_3 \\ \text{$$

Chemical Abstracts Registry No.: 20153-98-4; 35898-87-4 (Base)

Trade Name	Manufacturer	Country	Year introduced
Cormelian	Asta	W. Germany	1972
Cormelian	Schering	Italy	1976
Comelian	Kowa	Japan	1979

Raw Materials

Bis (3-Hydroxypropy!) ethylene diamine

1.3-Chlorobromopropane

Triethylamine

3.4.5-Trimethoxybenzoic acid chloride

Manufacturing Process

528.8 grams of bis-(3-hydroxypropyl)-ethylene diamine [K. Schlögl and R. Schlögl, Monatschefte der Chemie 95 (1964) page 935] are dissolved in a mixture of 1,500 cc of anhydrous ethyl alcohol and 1,250 grams of triethylamine. 520 grams of 1,3-chlorobromopropane are added thereto dropwise over a period of about 3 hours while stirring and heating the reaction mixture in an oil bath of 50°C. After completion of the addition, the oil bath is heated to 60°C for 20 minutes while stirring of the reaction mixture is continued. With increasing reaction time, triethylamine hydrochloride is precipitated. After completion of the reaction, the mixture is allowed to cool to room temperature.

Triethylamine hydrochloride is separated by filtration and the filter cake is washed with 100 cc of anhydrous ethyl alcohol. The alcohol and the excess of triethylamine is distilled off in a vacuum of a water pump. The residue represents a light-yellowish brown viscous oil which is extracted 3 times with 500 cc of anhydrous benzene each time with stirring at 40° to 60°C. The benzene is distilled off on a water bath at 60°C. Thus, an oil is obtained which solidifies to a hard mass after some hours. This mass is crushed and dried over P_2O_5 in an exsiccator. The compound represents N,N¹-bis-(3-hydroxypropyl)homopiperazine. Yield: 128.5 grams. FP: 46°-47°C; BP $_{0.02mm}$: 141°-142°C.

21.6 grams of N,N'-bis-(3-hydroxypropyl)homopiperazine obtained as described and 63.8 grams of 3,4,5-trimethoxy benzoic acid chloride are dissolved in 600 parts by volume of anhydrous chloroform. The solution is heated to boiling for 5 hours. Thereafter, chloroform is distilled off in a vacuum. The residue is dissolved in water and the aqueous solution is washed with ether. Thereafter, the aqueous phase is rendered alkaline by the addition of soda lye and the separated oil base is extracted with ether. The ethereal solution is dried over $\rm Na_2SO_4$. Ether is separated in a vacuum and the highly viscous residue is dissolved in 150 parts by volume of ethyl alcohol. The calculated equivalent amount of ethereal HCl is added thereto.

The soon crystallizing dihydrochloride is separated by filtration, dried and recrystallized from 120 parts by volume of ethanol. Thus, after drying for 3 days over P_2O_5 , 40-50 grams (66-70% of the theoretical) of N,N'-bis-[(3,4,5-trimethoxy benzoloxy)propyl] homopiperazine dihydrochloride containing 1 mol of water of crystallization is obtained. This product has a melting point at 194°-198°C.

References

Merck Index 3187 Kleeman & Engel p. 312 DOT 8 (7) 255 (1972) I.N. p. 332

Arnold, H., Pahls, K., Rebling, R., Brock, N. and Lenke, H.-D.; U.S. Patent 3,532,685; October 6, 1970; assigned to Asta-Werke AG, Chemische Fabrik, Germany

DILTIAZEM HYDROCHLORIDE

Therapeutic Function: Coronary vasodilator

Chemical Name: cis-(+)-3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxy-

phenyl)-1,5-benzothiazepin-4(5H)-one hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33286-22-5; 42399-41-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Herbesser	Tanabe Seiyaku	Japan	1974
Tildiem	Dausse	Fran c e	1980

Trade Name	Manufacturer	Country	Year Introduced
Dilzem	Goedecke	W. Germany	1981
Cardizem	Marion	U.S.	1982
Cardizem	Nordic	Canada	1983
Tilazem	Parke Davis		_

β-Diethylaminoethyl chloride	Acetic anhydride
Sodium ethoxide	Sodium bicarbonate
2-Aminothiophenol	Hydrogen chloride
4-Methoxybenzaldehyde	Ethyl chloroacetate

Manufacturing Process

β-Diethylaminoethyl chloride is condensed with 2-(4-methoxyphenyl)-3-hydroxy-2,3-dihydro-1,5-benzothiazepin-4(5H)-one in a first step. Then a mixture of 1.5 grams of 2-(4-methoxyphenyl)-3-hydroxy-5-(β-dimethylaminoethyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one and 20 ml of acetic anhydride was heated on a water bath for 5 hours. The reaction mixture was evaporated under reduced pressure to remove acetic anhydride and the concentrated product was poured into ice water. The resulting mixture was made alkaline with sodium bicarbonate and extracted with chloroform. The chloroform layer was dried and evaporated to remove the solvent. The residue was dissolved in acetone, and an ethanol solution containing hydrogen chloride was added thereto producing 1.53 grams of 2-(4-methoxyphenyl)-3-acetoxy-5-(β-dimethylaminoethyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one hydrochloride having a melting point from 187° to 188°C.

The starting material is made by reacting 4-methoxybenzaldehyde with ethyl chloroacetate; that product with sodium ethoxide; and that product with 2 aminothiophenol.

References

Merck Index 3189 Kieeman & Engel p. 312 PDR p. 1074 OCDS Vol. 3 p. 198 (1984) DOT 10 (4) 127 (1974) I.N. p. 333 REM p. 862

Kugita, H., Inoue, H., Ikezaki, M. and Takeo, S.; U.S. Patent 3,562,257; February 9, 1971; assigned to Tanabe Seivaku Co., Ltd., Japan

DIMENHYDRINATE

Therapeutic Function: Antinauseant

Chemical Name: 8-chloro-3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione compound with 2-(diphenylmethoxy)-N,N'-dimethylethanamine (1:1)

Common Name: Chloranautine; O-benzhydryldimethylaminoethanol 8-chlorotheophyllinate

Structural Formula:

Chemical Abstracts Registry No.: 523-87-5

Trade Name	Manufacturer	Country	Year Introduced
Dramamine	Searle	U.S.	1949
Dramamine	Searle	France	1957
Dramocen	Centrai	U.S.	1977
Dimate	Totag	U.S.	1980
Dramaban	Mallard	U.S.	1983
Amalmare	Saita	Italy	_
Amosyt	Leo	Sweden	_
Andrumin	Ethnor	Australia	
Antemin	Streuli	Switz.	
Anti-Em	Adeka	Turkey	-
Antivomit	Farmos	Finland	_
Aviomarine	Polfa	Poland	_
Betadorm A	Woelm Pharma	W. Germany	_
Bontourist	Katwijk	Neth.	_
Calm-X	Republic	U.S.	_
Dimenest	Fellows-Testagar	U.S.	-
Dipendrate	Kenyon	U.S.	_
Dramarr	Quimia	Spain	_
Dramavir	Vir	Spain	_
Dramavol	Barlowe Cote	Canada	_
Dromvi	A.F.Z.	Norway	_
Dymenol	Dymond	Canada	_
Emedyl	Montavit	Austria	_
Epha	Woelm	W. Germany	_
Gravol	Horner	Canada	_
Gravol	Carter Wallace	U.K.	_
Hydrate	Hyrex	U.S.	_
Lomarin	Gevmonat	Italy	_
Mareosan	Bescansa	Spain	-
Marolin	Andreu	Spain	_
Motion Aid	Vangard	Ú, S .	
Nauseal	Eri	Canada	_
Nauseatol	Sabek	Canada	_
Neptusan	Benzon	Denmark	_
Novomina	Robisch	W. Germany	-
Novodimenate	Novopharm	Canada	_
Paranausine	Couvreur	Belgium	_
Pastillas Azules	Llano	Spain	
Reidamine	Reid-Provident	U.S.	
Removine	Kerkhoff-Unicura	Neth.	_
Solbrine	Solac	France	_
Stada-Reisedragees	Stada	W. Germany	_
Travamin	Teva	Israel	
Travamine	I.C.N.	Canada	_
Travel-Gum	Chemofux	Austria	-
Travin	Rondex	U.\$.	_
Trawel!	Chemofux	Austria	_
Troversin	Santuron	W. Germany	
Valontan	Recordati	Italy	•••
Vertirosan	Sigmapharm	Austria	_
Vomex	Endopharm	W. Germany	_
Voyal	Kwizda	Austria	_
Xamamina	Zambeletti	Italy	_

Raw Materials

8-Chlorotheophylline

B-Dimethylaminoethylbenzhydryl ether

Manufacturing Process

58.8 grams of 8-chlorotheophylline and 70 grams of β-dimethylaminoethyl benzohydryl ether are dissolved in 150 cc of hot methanol. Then 5 grams of activated charcoal are added and the mixture is boiled for an hour. It is filtered hot and the filtrate cooled. The crystalline precipitate of β -dimethylaminoethyl benzohydryl ether 8-chlorotheophyllinate is collected on a filter, washed with ether and dried. It melts at 96°-99°C. It is dissolved in boiling ethyl acetate, filtered hot to remove any insoluble material, and then chilled. The salt so obtained melts at 102.5°-104°C after filtration, washing with ether and drying.

References

Merck Index 3195 Kleeman & Engel p. 314 PDR pp. 1669, 1989 I.N. p. 334 REM p. 808 Cusic, J.W.; U.S. Patent 2,499,058; February 28, 1950; assigned to G.D. Searle & Co. Cusic, J.W.; U.S. Patent 2,534,813; December 19, 1950; assigned to G.D. Searle & Co.

DIMERCAPROL

Therapeutic Function: Heavy metal antidote

Chemical Name: 2,3-dimercapto-1-propanol

Common Name: 1,2-dithioglycerol

SH-CH₂-CH-CH₂-OH Structural Formula:

Chemical Abstracts Registry No.: 59-52-9

Trade Name	Manufacture r	Country	Year Introduced
Bal	Hynson/Westcott	U.S.	1944
Bal	Delalande	France	1950
Antoxol	Ferrosan	Denmark	_
Sulfactin	Homburg	W. Germany	_

Raw Materials

Glycerol 1,2-dibromohydrin Sodium sulfide Hydrogen

Manufacturing Process

1,2-Dithioglycerol is prepared in the following manner: 1,537 parts of sodium monosulfide nonahydrate and 411 parts of powdered sulfur are dissolved with stirring in 1,345 parts of water. Magnesium hydroxide is precipitated in the stirred sodium trisulfide solution by adding successively 97 parts of sodium hydroxide dissolved in 180 parts of water and then slowly 246 parts of magnesium chloride hexahydrate dissolved in 180 parts of water. The

magnesium hydroxide serves as a dispersing agent to maintain the resulting sulfide polymer in finely divided condition. The mixture is heated and stirred at 50°C while 1,329 parts of alveerol 1.2 dibromohydrin is added continuously during a period of 1.5 hours. The reaction is exothermic and external cooling is employed to maintain the temperature within the range of 50°-55°C. After the addition of the dibromohydrin is complete, the mixture is stirred and heated at 75°C for 6 hours.

The finely divided yellow sulfide polymer formed is then allowed to settle and the reaction liquor is separated by decantation. The product is washed by decantation five times with water and finally filtered by suction. The moist cake of polymer is then air dried. The vield is 988 parts including approximately 75 parts of magnesium hydroxide.

Thirty-two hundred fifty parts of the hydroxypropylene trisulfide containing magnesium hydroxide is charged into a steel autoclave equipped with a mechanical agitator. There is also charged into the autoclave 2,550 parts of dry dioxane and 350 parts of cobalt trisulfide catalyst pasted with 700 parts of dioxane. Hydrogen is charged into the autoclave to a pressure of 1,000 lb/in² and the autoclave is heated to a temperature of 125°C during 1.5 hours, agitation being employed during this operation. When the temperature reaches about 110°C the pressure commences to drop and is kept between the limits of 1,000 and 1,300 lb/in² by the addition of hydrogen. When the temperature reaches 125°C the pressure is raised to 1,700 lb/in2 with hydrogen. The rate of hydrogenation increases as the temperature rises and the process is about complete when a temperature of 125°C is reached.

After the hydrogen absorption ceases, the autoclave is cooled, vented, and the reaction mixture is filtered to separate the catalyst. The filtrate is then heated on a steam bath at 60-80 mm pressure to remove the dioxane. The less volatile residue consists of 1,933 parts of crude dithioglycerol, a viscous oil.

1,2-Dithioglycerol is isolated from the oil by distillation from an oil heated pot through a short still. The distillation is carried out at a pressure of less than 1 mm and at a bath temperature of 120°-175°C, the dithioglycerol distilling over at a head temperature of 60°-65°C/0.2 mm or 75°-80°C/0.8 mm. Starting from 550 parts of crude dithioglycerol, 340 parts of distillate is obtained which contains 53% of mercapto sulfur and is nearly pure 1,2-dithioglycerol. The overall yield of dithioglycerol from the glycerol dibromohydrin is 48% of theoretical.

References

Merck Index 3198 Kleeman & Engel p. 315 PDR p. 948 I.N. p. 335 REM p. 1224

Peppel, W.J. and Signaigo, F.K.; U.S. Patent 2,402,665; June 25, 1946; assigned to E.I. du Pont de Nemours & Company

DIMETACRINE TARTRATE

Therapeutic Function: Antidepressant

Chemical Name: N,N,9,9-Tetramethyl-10(9H)acridinepropanamine tartrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4757-55-5; 3759-07-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Isotonil	Siegfried	W. Germany	1967
Isotonil	Nippon Chemiphar	Japan	1976
Iso tonii	Triosol	Belgium	
Linostil	Siegfried	Switz.	_

Raw Materials

5,5-Dimethylacridan	Sodium amide
1-Chloro-3-dimethylaminopropane	Tartaric acid

Manufacturing Process

A mixture of 10.0 g of 5,5-dimethylacridan, 2.0 g of pulverized sodium amide and 6.5 g of 1-chloro-3-dimethylaminopropane in 50 ml of xylene is heated at reflux with stirring for one hour. To the cooled reaction mixture is added one volume of water. The organic layer is separated and extracted several times with diluted lactic acid. The acidic extracts are combined, washed with ether and neutralized by alkali. The crude 10-(3'-dimethylaminopropyl)-5,5-dimethylacridan is isolated by ether extraction and purified by distillation in a high vacuum. The yield is 6.4 g BP 170°-180°C/0.005 mm. $n_D^{29} = 1.5990$.

43 g of the base I are dissolved in 229 ml of 1 N aqueous d-tartaric acid and the clear solution so obtained is evaporated to dryness under reduced pressure. The residue is dissolved in 150 ml of 90% ethanol which solution after cooling gives the tartaric acid salt of I in white needies. The salt contains 1 mol of tartaric acid per 1 mol of the base. MP 155°-156°C. Easily soluble in cold water.

References

Merck Index 3201 Kleeman & Engel p. 316 OCDS Vol. 1 p. 397 (1977) DOT 4 (4) 150 (1968) I.N. p. 335 British Patent 933,875; August 14, 1963; assigned to Kefalas S/A Haring, M., Molnar, I. and Wagner-Jauregg, T.; U.S. Patent 3,284,454; November 8, 1966; assigned to Siegfried AG (Switzerland)

DIMETHICONE

Therapeutic Function: Antiflatulent

Chemical Name: Dimethylpolysiloxane

Common Name: Simethicone

Structural Formula:

$$\begin{array}{c} H_{3}C \\ H_{3}C - Si - O \\ H_{3}C \\ \end{array} \left[\begin{array}{c} CH_{3} \\ Si - O \\ CH_{3} \\ \end{array} \right] \left[\begin{array}{c} CH_{3} \\ Si - CH_{3} \\ CH_{3} \\ \end{array} \right]$$

n = 200 - 350

Chemical Abstracts Registry No.: 8050-81-5

Trade Name	Manufacturer	Country	Year Introduced
Silicote	Amer, Crit. Care	∪ .\$.	1953
Aeropax	Green Cross	Japan	
Bicolun	Warner	W. Germany	_
Ceolat	Kali-Chemie	W. Germany	_
Endo-Paractol	Homburg	W. Germany	_
Ganatone	Hokuriku	Japan	_
Gasace	Kanto	Japan	_
Gascon	Kissei	Japan	_
Gasless	Hishiyama	Japan	_
Gaspanon	Kotani	Japan	-
Gasteel	Fuso	Japan	_
Gaszeron	Nichiiko	Japan	_
Gersmin	Kowa	Japan	
Harop	Toyo	Japan	_
Kestomatine	Lircal	Italy	
Lefax	Asche	W. Germany	_
Margarte	Mohan	Japan	_
Mylicon	Parke Davis	Italy	_
Mylicon	Stuart	U.S.	_
Pleiazim	Guidotti	Italy	_
Polisilon	Midy	Italy	_
Polysilo	Toa	Japan	_
Silian	Lafare	Italy	
Silies	Nippon Shoji	Japan	
Silicogamma	I.B.P.	Italy	_
Sili-Met-San S	Nippon Shoji	Japan	
Spalilin	Maruishi	Japan	_
Trimax	Winthrop	Italy	
Unicare	United	U.S.	_

Raw Materials

Dimethyl diethoxy silane Trimethyl ethoxy silane Sodium hydroxide

Manufacturing Process

In a 5 liter three-necked flask, fitted with a reflux condenser, agitator and thermometer, were placed 1,393 g (9.41 mols) of redistilled (CH₃)₂Si (OEt)₂ and 1,110 g (9.41 mols) of (CH₃)₃SiOEt. To this solution was added 254 g (14.11 mols) of water containing 7.5 g of NaOH (approximately 1 NaOH per 100 silicon atoms). This insured the formation of only straight chain polymers. The mixture was heated to 40°C and the temperature continued to rise for nearly an hour. After adding 50 cc (20% excess) more water, the mixture was refluxed for two hours and then allowed to stand overnight.

Alcohol was then distilled off, until the temperature reached 100°C. 1,706.6 g of distillate was collected. (Theory 1,430 g.) This alcohol was poured into four times its volume of water and an insoluble oil separated (457 g). The insoluble fraction was added back to the copoly-

mer residue from the distillation and 555 cc of 20% hydrochloric acid was added. The acid mixture was refluxed for two hours, and the silicon oils were carefully washed with distilled water until neutral. The yield was 1,420 g. (Theory 1,409 g.)

References

Merck Index 8374 Kleeman & Engel p. 317 PDR p. 1826 Rem p. 774

Hyde, J.F.; U.S. Patent 2,441,098; May 4, 1948; assigned to Corning Glass Works

DIMETHINDENE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: N,N-dimethyl-3-[1-(2-pyridinyl)ethyl]-1H-indene-2-ethanamine maleate

Common Name: -

Structural Formula:

$$\begin{bmatrix} CH_{3}CH_{2}\mathring{N}H(CH_{3})_{2} \\ CHCH_{3} \end{bmatrix} HC_{4}H_{2}O_{4}^{-2}$$

Chemical Abstracts Registry No.: 3614-69-5; 5636-83-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Fenistil	Zyma	W. Germany	1961
Forhistal	Ciba	U. S .	1961
Fenostil	Zyma	U.K.	1963
Triten	Marion	U .S .	1971
Foristal	Ciba-Geigy-Takeda	Ja pan	_

Raw Materials

2-Ethylpyridine Phenyl lithium 2-(2-Dimethylaminoethyl)-indan-1-one Maleic acid

Manufacturing Process

26 grams of 2-ethylpyridine is added dropwise with cooling to 20°C and in an atmosphere of nitrogen to a stirred solution of 650 ml of an 0.37 molar solution of phenyl lithium in benzene. After two hours a solution of 10 grams of 2-(2-dimethylaminoethyl)-indan-1-one in 50 ml of dry ether is added over a period of five minutes while stirring and cooling to room temperature. After standing for 24 hours the organo-lithium compounds are decomposed by the addition of 50 ml of water with external cooling. After separating the water phase from the organic solution, the latter is washed several times with 50 ml of water, and then extracted with a mixture of 40 ml of concentrated hydrochloric acid and 100 ml of water.

The acidic solution, containing the 2-(2-dimethylaminoethyl)-1-[1-(2-pyridyl)-ethyl]-indan-1-ol is heated on the steam bath for thirty minutes to effect dehydration to the desired indene derivative. The solution is cooled, made strongly basic with an aqueous solution

of ammonia and then extracted with ether. The ether phase is dried over sodium sulfate. filtered, evaporated and the residue distilled.

At 15 mm pressure the excess of 2-ethylpyridine is removed, at 120°C/0.5 mm some unreacted 2-(2-dimethylaminoethyl)-indene distills and at 165°-175°C/0.5 mm the 2-(2-dimethylaminoethyl)-3-[1-(2-pyridyl)-ethyl] indene is collected. It may be converted to an aqueous solution of the dihydrochloride by dissolving it in the appropriate amount of dilute hydrochloric acid.

To a solution of 1.0 gram of 2-(2-dimethylaminoethyl)-3-[1-(2-pyridyl)-ethyl]-indene in 10 ml of ethanol is added while stirring and heating 0.4 gram of maleic acid. On cooling the 2-(2-dimethylaminoethyl)-3-[1-(2-pyridyl)-ethyl]-indene maleate crystallizes, is filtered off, washed with a small amount of ethanol and recrystallized from ethanol, MP 158°C.

References

Merck Index 3205 Kleeman & Engel p. 320

REM p. 1127

Huebner, C.F.; U.S. Patent 2,970,149; January 31, 1961; assigned to Ciba Pharmaceutical Products, Inc.

DIMETHISOQUIN

Therapeutic Function: Topical anesthetic

Chemical Name: 2-[(3-butyl-1-isoquinolinyl)oxy]-N,N-dimethylethanamine

Common Name: Quinisocaine

Structural Formula:

Chemical Abstracts Registry No.: 86-80-6; 2773-92-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Quotane	SKF	U.S.	1951
Quotane	Roger Bellon	France	1981
Isochinol	Chemipharm	W. Germany	_
Pruralgin	Pharmacia	Sweden	_
Pruralgin	Pharmacia	Italy	-

Raw Materials

β-Dimethylaminoethanol Sodium 3-Butyl-1-chloroisoquinoline

Manufacturing Process

A mixture of 10.0 grams of β -dimethylaminoethanol and 1.9 grams of sodium in 90 cc of dry xylene was heated at 95°C for 5 hours. To the resulting solution was added at 30°C, 18 grams of 3-butyl-1-chloroisoquinoline. The solution, which turned very dark, was heated at 100°-125°C for 3.5 hours. The mixture was extracted with two 100 cc portions of 2 N

hydrochloric acid solution. The acid solution was made strongly alkaline with 40% potassium hydroxide solution and the oil which separated was taken into ether. The ether solution was washed with two 100 cc portions of water saturated with sodium chloride, and then dried over anhydrous sodium sulfate for 3 hours. The sodium sulfate was removed by filtration and the ether by distillation. Distillation of the residual oil gave a colorless figuid, BP 155°-157°C/3mm.

References

Merck Index 3208 Kleeman & Engel p. 799 OCDS Vol. 1 p. 18 (1977) I.N. p. 835

REM p. 1055

Ullyot, G.E.; U.S. Patent 2,612,503; September 30, 1952; assigned to Smith, Kline & French Laboratories

DIMETHISTERONE

Therapeutic Function: Progestin

Chemical Name: 17β -hydroxy- 6α -methyl-17-(1-propynyl)androst-4-en-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 79-64-1

Trade Name	Manufacturer	Country	Year Introduced
Oracon	Mead Johnson	U.S.	1965
Secrosteron	Allen & Hanburys	U.K.	
Secrosteron	Santen-Yamanouchi	Japan	_

Raw Materials

3.3-Ethylenedioxy-60-methylandrost-4-ene-3,17-dione Propyl magnesium bromide Acetic acid

Manufacturing Process

A solution of a Grignard reagent, employing 1-propyne (8 grams) was prepared. To this reagent there was added the 3,3 ethylenedioxy derivative (4 grams) of 6α-methylandrost-4-ene-3,17-dione in tetrahydrofuran (100 ml), and the mixture heated under reflux for 3 hours. After decomposition of the complex with aqueous ammonium chloride, the product was isolated with ether and treated with 90% acetic acid (50 ml) for 30 minutes at 100°C. The product obtained by pouring the mixture into water and extracting with

ether was crystallized from aqueous methanol. 17β -Hydroxy- 6α -methyl- 17α -(prop-1-ynyl)androst-4-en-3-one formed plates MP 99° to 102°C.

References

Merck Index 3209 Kieeman & Engel p. 318 OCDS Vol. 1 pp. 176, 187 (1977) DOT 4 (1) 7 (1968)

I.N. p. 336

Ellis, B., Petrow, V., Stansfield, M. and Stuart-Webb, I.A.; U.S. Patent 2,927,119; Mar. 1, 1960; assigned to The British Drug Houses Limited, England

Barton, S.P., Burn, D., Cooley, G., Ellis, B., Petrow, V. and Stuart-Webb. I.A.: U.S. Patent 2,939,819; June 7, 1960; assigned to The British Drug Houses Limited, England

DIMETHOXANATE

Therapeutic Function: Antitussive

Chemical Name: 10H-Phenothiazine-10-carboxylic acid 2-[2-(dimethylamino)ethoxy] ethyl

ester

Common Name: -

Structural Formula: COOCH2CH2OCH2CH2N(CH3)2

Chemical Abstracts Registry No.: 477-93-0; 518-63-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Cothera	Ayerst	U. S.	1957
Cotrane	Midypharm	France	1960
Cothera	Ayerst	Italy	1961
Atuss	Arcana	Austria	-
Perlatos	Farm, Milanese	Italy	
Tossizid	Beolet	Italy	-

Raw Materials

Phenothiazine-10-carboxylic acid chloride Dimethylaminoethoxyethanol Hydrogen chloride

Manufacturing Process

5.23 g of phenothiazine-10-carboxylic acid chloride were suspended in 8 g of dimethylaminoethoxyethanol and heated, with stirring, under anhydrous conditions, first for 1 hour at a temperature of 50°-105°C, then for another hour at 108°-110°C. All the suspended acid chloride had dissolved after the final heating, and the solution was then allowed to cool slowly to 75°C over a period of one hour. Infrared examination of a sample showed that the esterification reaction was essentially complete after the second hour.

The reaction mixture was then poured on 1 liter of crushed ice, and the oily precipitate washed

repeatedly by decantation with ice water. It was then taken up in 75 ml of benzene, and again washed repeatedly with water until a pH of 8.2 in the washings indicated that substantially all of the excess β -dimethylaminoethoxyethanol had been removed. The benzene solution was then dried with anhydrous sodium sulfate, filtered, and the benzene evaporated in a current of dry nitrogen gas. The residual dark oil constituted the desired basic ester. B-Dimethylaminoethoxyethyl phenothiazine-10-carboxylate.

The basic ester may be dissolved in anhydrous ether and then precipitated by adding a slight excess of a solution of dry hydrogen chloride in ether and the hydrochloride salt may be isolated as an amorphous, glasslike product, which could be crystallized from anhydrous acetone or from methanol-ether. In this manner there was obtained as a stable, crystalline, colorless substance β -dimethylaminoethoxyethyl phenothiazine-10-carboxylate hydrochloride, one sample of which melted at 161°-163°C with decomposition.

References

Merck Index 3213 Kleeman & Engel p. 319 OCDS Vol. 1 p. 390 (1977) I.N. p. 336

von Seemann, C.; U.S. Patent 2,778,824; January 22, 1957; assigned to American Home Products Corp.

DIMETHYL SULFOXIDE

Therapeutic Function: Topical antiinflammatory

Chemical Name: Sulfinylbis[methane]

Common Name: Methyl sulfoxide

Structural Formula: (CH₃)₂SO

Chemical Abstracts Registry No.: 67-68-5

Trade Name	Manufacturer	Country	Year Introduced
Rimso	Research Industries	U.S.	1978
Damul	Pharm, Werk Meuselbach	E, Germany	_
Deltan	Serum & Impfinstitut	Switz.	_
Demasorb	Squibb		_
Demesco	MSD	_	
Demsodrox	Nezel	Spain	-
Dermialgida	Andromaco	Spain	_
Dipirartril	Pons	Spain	_
Dromisol	MSD	· -	_
Hyadur	Grunenthal		_
Infiltrina	Heyden	W. Germany	_
Intran	Kwizda	Austria	
Kemsol	Horner	Canada	
Somipront	Mack	W. Germany	_

Raw Materials

Dimethyl sulfide Oxygen Nitrogen dioxide

Manufacturing Process

A current of oxygen at the rate of 370 ml/min was bubbled through a 30-cm layer of dimethyl sulfide maintained at 26.5°C, thereby producing a gaseous mixture containing the stoichiometric amount of oxygen required for the oxidation of the sulfide to sulfoxide. Nitric oxide at the rate of 30 ml/min was added to the gaseous mixture as it passed into the first of a series of four reaction chambers, each consisting of a glass tube 4.3 cm in diameter and 100 cm in length. The reaction started immediately, the temperature of the reaction mixture reached a maximum of about 75°C in the first two tubes where most of the reaction occurred, and the reaction slowed down in the last two tubes. The crude, yellow product, which dropped from the tubes, contained about 10% dimethyl sulfide, about 2% dissolved nitrogen dioxide, about 2% methane sulfonic acid, and some water. The crude product was refluxed at 100°C for 30 minutes and the escaping gas was passed into the first reaction chamber. The dimethyl sulfide was removed by then heating the product to 150°C, the methane sulfonic acid was neutralized by adding slaked lime, and the dimethyl sulfoxide was distilled in vacuum. The yield of pure dimethyl sulfoxide (BP 63°C at 6 mm Hg) was 85% of the theoretical yield from the evaporated dimethyl sulfide.

References

Merck Index 3255 PDR p. 1450 DOT 1 (3) 94 (1965) I.N. p. 340

REM p. 1121

Smedslund, T.H.; U.S. Patent 2,581,050; January 1,1952; assigned to A.B. Centrallaboratorium Helsinki

Coma, J.G. and Gerttula, V.G.; U.S. Patent 3,045,051; July 17, 1962; assigned to Crown Zellerbach Corp.

DIMETHYL TUBOCURARINE IODIDE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 6,6',7',12'-tetramethoxy-2,2,2',2'-tetramethyltubocuraranium diiodide

Common Name: Metocurine iodide

Structural Formula:

Chemical Abstracts Registry No.: 7601-55-0

Trade Name	Manufacturer	Country	Year Introduced
Metubine lodide	Lilly	U.S.	1949
Mecostrin	Squibb	U.S.	_
Methyl Curarin	Ethicon	W. Germany	_

Curare Methyl iodide

Manufacturing Process

50 grams of crude, tarry curare as received in commerce and containing about 20% of dtubocurarine are suspended in 400 cc of 0.5 N methanolic potassium hydroxide, and the mixture is boiled for ten minutes. The dark brown insoluble material is filtered off and the filtrate is treated with 50 cc of methyl iodide and refluxed gently for about 8 hours. An additional amount of 25 cc of methyl iodide is added to the reaction mixture and the refluxing is continued for 8 hours.

The reaction mixture is evaporated to a small volume, whereupon the d-tubocurarine dimethyl ether iodide precipitates. The precipitate is filtered off and dissolved in boiling water. The hot solution is treated with a small amount of decolorizing carbon, the carbon filtered off and the filtrate cooled to about 0°C. The dimethyl ether of d-tubocurarine iodide crystallizes in white crystals which melt at about 267°-270°C with decomposition.

References

Merck Index 6020 Kleeman & Engel p. 319 I.N. p. 340 **REM p. 923**

Bray, M.D.; U.S. Patent 2,581,903; January 8, 1952; assigned to Eli Lilly and Company

DINOPROST TROMETHAMINE

Therapeutic Function: Smooth muscle stimulant

Chemical Name: $(5Z,9\alpha,11\alpha,13E,15S)-9,11,15$ -trihydroxyprosta-5,13-dien-1-oic acid tro-

methamine salt

Common Name: Prostaglandin F2 tromethamine

Structural Formula:

Chemical Abstracts Registry No.: 38562-01-5

Trade Name	Manufacturer	Country	Year Introduced
Prostin F2A	Upjohn	U.K.	1972
Prostin F2 Alpha	Upjohn	U.S.	1973
Prostalmon F	Ono	Japan	1974
Minprostin F2A	Upjohn	W. Germany	1975
Prostin F2 Alpha	Upjohn	Italy	1976
Pronalgon F	Sumitomo	Japan	1981
Amoglandin	Kabi Vitrum	Sweden	_
Enzaprost	Chinoin	Hungary	-
Enzaprost	Medica	Finland	

Trede Name	Manufacturer	Country	Year Introduced
Lutalyse	Upj oh n	_	-
Panacelan-F	Glaxo-Fuji	Japan	-
Zinoprost	Ono	Japan	-

Tris(Hydroxymethyl)aminomethane Prostaglandin F20

Manufacturing Process

A solution of tris(hydroxymethyl)aminomethane (1.645 grams) in 3.0 ml of water at 60°C is added with vigorous stirring to a solution of $PGF_{2\alpha}$ (5.00 grams) in 700 ml of acetonitrile which has just been brought to its boiling point. The vessel which contained the aqueous amine solution is rinsed with three 0.66 ml portions of water, each rinsing being added with vigorous stirring to the acetonitrile solution. The mixture is then cooled to 25°C by immersion of the vessel in cool water. At the cloud point, the vessel wall (glass) below the liquid surface is scratched vigorously with a glass rod. The mixture is then maintained at 25°C for 24 hours.

The resulting crystals are collected by filtration under nitrogen, washed on the filter with 50 ml of acetonitrile, and then dried by passing nitrogen at 50°C through the filter cake for one hour. Drying is completed in an oven at 70°C for 8 hours to give 5.965 grams of the tris(hydroxymethyl)aminomethane salt of PGF₂₀ in free flowing crystalline form; MP 100°-101°C.

References

Merck Index 7781 Kieeman & Engel p. 321 OCDS Vol. 1 pp. 27, 33 (1977) DOT 10 (4) 132 (1974) & 19 (6) 318 (1983) I.N. p. 343 REM p. 950

Morozowich, W.; U.S. Patent 3,657,327; April 18, 1972; assigned to The Upjohn Company

DINOPROSTONE

Therapeutic Function: Oxytocic; abortifacient

Chemical Name: 11,15-Dihydroxy-9-oxoprosta-5,13-dien-1-oic acid

Common Name: Prostagiandin E2, PGE2

Structural Formula:

Chemical Abstracts Registry No.: 363-24-6

Trade Name	Manufacturer	Country	Year Introduced
Prostin E ₂	Upjohn	U.K.	1972

Trade Name	Manufacturer	Country	Year Introduced
Prostarmon E	Ono	Japan	1976
Prostin E ₂	Upjohn	U.S.	1977
Minprostin	Upjohn	W. Germany	1978

Prostaglandin-A2 Hexamethyldisilizane Trimethylchlorosilane Hydrogen peroxide Aluminum amalgam

Manufacturing Process

Hexamethyldisilizane (1 ml) and trimethylchlorosilane (0.2 ml) are added with stirring to a solution of PGA₂ (250 mg) in 4 ml of tetrahydrofuran at 0°C under nitrogen. This mixture is maintained at 5°C for 15 hours. The mixture is then evaporated under reduced pressure. Toluene is added and evaporated twice. Then the residue is dissolved in 6 ml of methanol, and the solution is cooled to -20°C. Hydrogen peroxide (0.45 ml; 30% aqueous) is added. Then, 1 N sodium hydroxide solution (0.9 ml) is added dropwise with stirring at -20°C. After 2 hours at -20°C, an additional 0.3 ml of the sodium hydroxide solution is added with stirring at -20°C. After another hour in the range -10°C to -20°C, an additional 0.1 ml of the sodium hydroxide solution is added. Then, 1.5 ml of 1 N hydrochloric acid is added, and the mixture is evaporated under reduced pressure. The residue is extracted with ethyl acetate, and the extract is washed successively with 1N hydrochloric acid and brine, dried with anhydrous sodium sulfate and evaporated. The residue is dissolved in 5 ml of diethyl ether. To this solution is added 0.5 ml of methanol and 0.1 ml of water. Amalgamated aluminum made from 0.5 g of aluminum metal is then added in small portions during 3 hours at 25°C. Then, ethyl acetate and 3 N hydrochloric acid are added, and the ethyl acetate layer is separated and washed successively with 1 N hydrochloric acid and brine, dried with anhydrous sodium sulfate, and evaporated. The residue is chromatographed on 50 g of acid-washed silica gel, eluting first with 400 ml of a gradient of 50-100% ethyl acetate in Skellysolve B, and then with 100 ml of 5% methanol in ethyl acetate, collecting 25 ml fractions. Fractions 9 and 10 are combined and evaporated to give 18 mg of 11 β -PGE₂. Fractions 17-25 are combined and evaporated to give 39 mg of PGE₂.

References

Merck Index 7780 Kleeman & Engel p. 323 OCDS Vol. 1 pp. 27, 30, 33, 35 (1977) DOT 9 (10) 432 (1979); 11 (10) 388 (1975) & 14 (2) 74 (1978) I.N. p. 343 REM p. 947

Pike, J.E. and Schneider, W.P.; U.S. Patent 3, 948,981; April 6, 1976; assigned to The Upjohn Co.

DIOSMIN

Therapeutic Function: Bioflavonoid

Chemical Name: 5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one-7-

rutinoside

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 520-27-4

Trade Name	Manufacturer	Country	Year Introduced
Diosmil	Bellon	France	1971
Tovene	Kali-Chemie	W. Germany	1976
Dalfon	Servier	Italy	1977
Diosminil	Faes	Spain	_
Diovenor	Hommel	Switz.	
Flebotropin	Bago	Argentina	
Insuven	Lusofarmaco	Spain	_
Rioven	Hommel	Switz.	_
Varinon	Hommei	Switz.	
Ven-Detrex	Hommel	Switz.	
Venex	Lusofarmaco	Portugal	-
Venosmine	Hommel	Switz.	_
Venotrex	Hommel	Switz.	_
Venusmin	Hommel	Switz.	

Raw Materials

Hesperidin Bromine Acetic acid Acetic anhydride Sodium hydroxide

Manufacturing Process

A mixture of 72 g hesperidin, 288 ml acetic anhydride and 300 ml glacial acetic acid were boiled in reflux with 15 ml pyridine as the catalyst for 144 hours until during the control of the reaction the band disappeared at a wave length between 264 to 280 nm, and a new maximum appeared at 330 nm. Thereafter in a rotation evaporator the reaction mixture was concentrated by evaporation under vacuum conditions.

The residue was absorbed in 1,200 ml ethyl acetate, admixed with 20 ml ethanol and boiled for one hour under reflux action. The solution was filtered and compressed to dryness. The residue was dried in a vacuum drying cabinet. The yield amounted to 107.5 g.

35.8 g thereof were then dissolved in 280 ml glacial acetic acid and brominated with a solution of 6.05 g bromine in 30 ml glacial acetic acid. Thereafter the mixture compressed to dryness by means of the rotation evaporator, there being obtained a residue of 41.8 g. Such was dissolved in 150 ml methanol, admixed with a solution of 36 g sodium hydroxide in 180 ml water and stirred for one hour at 50°C.

The diosmin was precipitated out by adding 120 ml glacial acetic acid and stirring at 70°C for 30 minutes. The precipitate was filtrated in a suction filter or strainer, washed with methanol, water and again methanol and dried at 60°C in the drying cabinet. Raw yield: 17.0 g corresponding to 71% yield. Bromine content 0.51%.

10 g of the thus-obtained diosmin was dissolved in a solution of 24 g sodium hydroxide in 120 ml water, admixed with 100 ml methanol and 100 ml pyridine and stirred for one hour at 50° C. The diosmin was precipitated by the addition of 100 ml glacial acetic acid and stirred for 30 minutes at 70° C, filtered and washed with methanol and water and again methanol.

After drying at 60°C there was obtained a pure yield of 9.2 g diosmin (65% based upon the employed hesperidin) having a bromine content of 0.07%.

References

Merck Index 3300 Kleeman & Engel p. 324 DOT 12 (7) 263 (1976) I.N. p. 344

Schmid, C., Glasbrenner, M. and Heusser, J.; U.S. Patent 4,078,137; March 7, 1978; assigned

to Hommel A.G. (Switz.)

DIOXYLINE PHOSPHATE

Therapeutic Function: Vasodilator

Chemical Name: 1-(4-ethoxy-3-methoxybenzyl)-6,7-dimethoxy-3-methyl isoquinoline phos-

phate

Common Name: Dimoxyline

Structural Formula:

Chemical Abstracts Registry No.: 5667-46-9: 147-27-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Paveril	Lilly	U.S.	1951
Paverona	Lilly	Japan	-

Raw Materials

1-(3'4'-Dimethoxyphenyl)-2-propanone Hydroxylamine HCI Ammonia 3-Methoxy-4-ethoxyphenyl acetic acid Phosphorus oxychloride Sodium hydroxide

Manufacturing Process

A mixture of 150 grams of 1-(3',4'-dimethoxyphenyl)-2-propanone and 70 grams of hydroxylamine hydrochloride in 125 cc of water is stirred while a solution of 51.3 grams of sodium carbonate in 150 cc of water is added over the course of 15 minutes, and while maintaining the reaction mixture at 30° 40°C. The reaction mixture is stirred for an additional two and one-half hour period at room temperature, and is then diluted with an equal volume of water and extracted three times with 300 cc portions of ether. The combined ether extracts are washed with water, dried over anhydrous magnesium sulfate, and the

ether is distilled off. The residue, comprising 1-(3',4'-dimethoxypheny!)-2-propanone oxime, may be purified by fractional distillation in vacuo.

1-(3',4'Dimethoxyphenyl)-2-propanone oxime thus prepared boiled at about 165-175°C at 0.6 mm pressure. Analysis showed the presence of 7.23% of nitrogen, compared with the calculated amount of 6.69%.

A solution of 151 grams of 1-(3',4'-dimethoxyphenyl)-2-propanone oxime in 200 cc of absolute ethanol is treated with 5 grams of Raney nickel catalyst and ammonia in an autoclave at about 25 atm of pressure and at 75°-100°C. The reduction is complete in about one-half hour and the reaction mixture is filtered and fractionated under reduced pressure to recover the α -methylhomoveratrylamine formed by the reduction. α -Methylhomoveratrylamine thus prepared boiled at 163°-165°C at 18 mm pressure.

A mixture of 39.0 grams (0.2 mol) of α -methylhomoveratrylamine and 42.0 grams (0.2 mol) of 3-methoxy-4-ethoxyphenylacetic acid is heated at 190°-200°C for one hour. The reaction mixture is poured into about 100 cc of petroleum ether, whereupon crystals of N-(α-methylhomoveratryl)-3-methoxy-4-ethoxyphenylacetamide separate. The precipitate is filtered off, and recrystallized from 50% methanol-water.

N-(α-methylhomoveratryl)-3-methoxy-4-ethoxyphenylacetamide thus prepared melted at about 135°-136°C. Analysis showed the presence of 68.05% carbon and 7.62% of hydrogen compared with the calculated amount of 68.19% carbon and 7.54% hydrogen.

A solution of 50 grams of N-(α -methylhomoveratryl)-3-methoxy-4-ethoxyphenylacetamide, prepared as set out above, in 200 cc of benzene, is treated with 8 cc of phosphorus oxychloride. The mixture is refluxed for about 3 hours, cooled and then is shaken with a solution composed of 15 grams of sodium hydroxide dissolved in 60 cc of water. The aqueous layer is removed, and the benzene solution is washed with water. The washed benzene solution is dried over anhydrous magnesium sulfate, filtered and evaporated to dryness. The low-melting solid residue is 6,7-dimethoxy-3-methyl-1-(3'-methoxy-4'-ethoxybenzyl)dihydroisoguinoline base.

To a solution of 50 grams of 6,7-dimethoxy-3-methyl-1-(4'-ethoxy-3'-methoxybenzyl)-dihydroisoguinoline base in 200 ml of dry benzene are added 150 ml of decalin, and the mixture is distilled until its temperature reaches 180°C. 1.5 grams of 5% palladium on carbon are then added. The mixture is stirred under reflux for about 6 hours to dehydrogenate the dihydroisoquinoline. On cooling, the reaction mixture is diluted with petroleum ether and the precipitated 6,7-dimethoxy-3-methyl-1-(3'-methoxy-4'-ethoxybenzyl)-isoquinoline is filtered off and recrystallized from dilute ethanol.

6,7-Dimethoxy-3-methyl-1-(3'-methoxy-4'-ethoxybenzylisoguinoline thus prepared melted at 124°-125°C. Analysis showed the presence of 71.68% carbon and 7.07% hydrogen as compared with the calculated amount of 71.91% carbon and 6.85% hydrogen.

A solution of 5 grams of 6,7-dimethoxy-3-methyl-1-(4'-ethoxy-3'-methoxybenzyl)-isoquinoline in 100 cc of ethanol is treated with a solution of 1.5 grams of phosphoric acid in 10 cc of ethanol. 10 cc of water are added to effect complete solution, and the reaction mixture is then cooled and ether is added until precipitation of the salt is complete. The precipitate of 6,7-dimethoxy-3-methyl-1-(3'-methoxy-4'-ethoxybenzyl)-isoquinoline phosphate is filtered off and recrystallized from 85% ethanol by the addition of 2 volumes of ether.

References

Merck Index 3266 Kleeman & Engel p. 321 OCDS Vol. 1 p. 349 (1977) I.N. p. 342 Shepard, E.R.: U.S. Patent 2,728,769; December 27, 1955; assigned to Eli Lilly and Co.

DIPHEMANIL METHYLSULFATE

Therapeutic Function: Antispasmodic

Chemical Name: 4-(diphenylmethylene)-1,1-dimethylpiperidinium methyl sulfate

Common Name: -

Structural Formula:

$$\begin{bmatrix} c_6 H_5 & & & CH_3 \\ c_6 H_5 & & & & CH_3 \end{bmatrix} CH_3 So_4^-$$

Chemical Abstracts Registry No.: 62-97-5

Trade Name	Manufacturer	Country	Year Introduced
Prantal	Schering	U.S.	1952
Prantal	Unicet	France	1958
Demotil	Pharmacia	Sweden	
Prentol	Essex Espana	S pain	_

Raw Materials

Magnesium Bromobenzene 4-Benzoyl-N-methylpiperidine Sulfuric acid Dimethyl sulfate

Manufacturing Process

- (A) Preparation of Diphenyl-(N-Methyl-4-Piperidyl)Carbinol: To a Grignard solution prepared from 4.9 grams of magnesium, 100 cc of ether and 31.4 grams of dry bromobenzene is added 18.5 grams of 4-benzoyl-N-methylpiperidine in 200 cc of dry ether. The reaction mixture is heated with stirring for 4 hours on the steam bath and then decomposed. The organic layer is separated and the aqueous layer extracted with benzene. The combined organic extracts are concentrated and the residue, diphenyl-(N-methyl-4-piperidyl)carbinol, recrystallized from benzene-petroleum ether, MP 130°-131°C. The Grignard complex may also be decomposed with ice and hydrochloric acid and the insoluble hydrochloride of the carbinol isolated directly.
- (B) Preparation of Diphenyl-(N-Methyl-4-Piperidylidene)Methane: The carbinol can be dehydrated with 60% sulfuric acid. In general, to one part of the carbinol there is added 10 parts of 60% sulfuric acid. The mixture after heating for 6 hours is poured onto cracked ice, the solution made alkaline with dilute sodium hydroxide and the oily basic layer extracted with ether. The ether extracts after washing with water are dried over sodium sulfate, and after removing the ether, the residue is distilled in vacuo, MP 52°-53°C.
- (C) Preparation of Final Product: The product from (B) is reacted with dimethyl sulfate in benzene to give the final product, MP 196°-197°C.

References

Merck Index 3313 Kleeman & Engel p. 325 I.N. p. 346

Sperber, N., Villani, F.J. and Papa, D.; U.S. Patent 2,739,968; March 27, 1956; assigned to Schering Corporation

DIPHENADIONE

Therapeutic Function: Anticoagulant

Chemical Name: 2-(diphenylacetyl)-1H-indene-1,3(2H)-dione

Common Name: 2-diphenylacetyl-1,3-diketohydrindene; 2-diphenylacetyl-1,3-indandione

Structural Formula:

Chemical Abstracts Registry No.: 82-66-6

Trade Name	Manufacturer	Country	Year Introduced
Dipaxin	Upjohn	u.s.	1955
Didandin	Boots	_	_

Raw Materials

Dimethyl phthalate	Sodium
Diphenylacetone	Methano

Manufacturing Process

A solution of sodium methoxide was prepared by adding 2.76 grams (0.12 mol) of sodium to 50 ml of absolute methanol and gently warming the mixture to effect complete solution of the sodium. To this was added 300 milliliters of dry benzene with vigorous stirring, whereafter excess methanol was removed by concentrating the mixture to a volume of about 100 ml. To the resulting sodium methoxide suspension was added a solution of 19.4 grams (0.1 mol) of dimethyl phthalate in 200 ml of dry benzene. The mixture was heated to boiling and a solution of 21 grams (0.1 mol) of diphenylacetone in 200 ml of dry benzene was added dropwise thereto. During addition approximately 200 ml of liquid, which consisted of benzene together with methanol formed during the course of the reaction, was distilled from the reaction mixture. After addition of the diphenylacetone, the mixture was heated under reflux for about 6 hours, cooled and stirred vigorously with 200 ml of 5% sodium hydroxide solution.

The light yellow solid which separated was collected by filtration; the filtrate was reserved for treatment as described below. Suspension in water of the solid, which weighed 12 grams, and acidification of the mixture with dilute hydrochloric acid produced a gum which soon crystallized. Recrystallization of this solid from ethanol gave 10.2 grams (30%) of 2-diphenylacetyl-1.3-indandione as a light yellow crystalline solid, which melted at 146°-147°C.

The filtrate mentioned above consisted of 3 layers. An oily layer which was present between the aqueous and benzene layers was separated, acidified and extracted with ether. The aqueous layer was likewise separated, acidified and extracted with ether. The extracts were combined, dried and evaporated to yield a heavy gum which was crystallized from ethanol to give an additional 2.5 grams of product which melted at 146°-147°C. The total yield of 2-diphenylacetyl-1,3-indandione was 12.7 grams (37%).

References

Merck Index 3315 Kleeman & Engel p. 326 I.N. p. 346 REM p. 1257

Thomas, D.G.; U.S. Patent 2,672,483; March 16, 1954; assigned to The Upjohn Company

DIPHENHYDRAMINE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: 2-diphenylmethoxy-N,N-dimethylethanamine hydrochloride

Common Name: Benzhydramine hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 147-24-0; 58-73-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Benadryl	Parke Davis	U.S.	1946
Benylin	Parke Davis	France	19 6 4
Wehdryl	Hauck	U.S.	1964
Sominex	Williams	U.S.	1982
Aleryl	Farmos	Finland	
Alledryl	Teva	!sræel	_
Allerdryl	I.C.N.	Canada	
Allergan	Bouty	Italy	_
Allergin	Nyegaard	Norway	-
Allergina	De Angeli	Italy	_
Bax	McKesson	U.S.	-
Benadol	Taisho	Japan	_
Benadozol	Hokuriku	Japan	_
Benapon	Dainippon	Japan	
Benasin	Kanto	Japan	
Benhydramil	Barlow Cote	Canada	-
Benocten	Medinova	Switz.	_
Benzantine	Teva	Israel	-
Benzehist	Pharmex	U.S.	_
Bidramine	Adams	Australia	_
Bromanil	Schein	U.S.	_
Broncho-Rivo	Rivopharm	Switz.	_
Carphenamine	Carroll	U.S.	
Cathejell	Montavit	Austria	_
Dabylen	Schiefflin	U.S.	_
Dermistina	1.S.M.	ltaly	_
Dermodrin	Montavit	Austria	_
Desentol	Leo	Sweden	-
Dibondrin	Montavit	Austria	_
Dihydral	SCS Pharmalab	S. Africa	-
Dimidril	Pliva	Yugoslavia	_
Dobacen	Homberger	Switz.	
Dolestan	Much	W. Germany	_
Drama Ject	Mayrand	U.S.	_
Draminol	Luar	U.S.	_
Drylistan	Sigmapharm	Austria	_
Expectoryn	Pharma-Plus	Switz.	_
Fenylhist	Mallard	U.S.	_
Histaxin	Chemofux	Austria	
Hyrexin	Hyrex	U.S.	_
Insomnal	Welcker-Lyster	Canada	_

Trade Name	Manufacturer	Country	Year Introduced
Kendiphen	Key	U.S.	_
Lensen	Geneva	U.S.	
Mandrax	I.S.H.	France	_
Medidryl	Medica	Finland	_
Nautamine	Delagrange	France	
Niramine	Rachelle	U.S.	_
Noctomin	Medichemie	Switz.	
Phentamine	Restan	S. Africa	_
Pheramin	Kanoldt	W. Germany	
Prodryl	Progress	U.S.	-
Restamin	Kowa	Japan	_
Reston	Kowa	Japan	-
Serundal D	Woelm	W. Germany	-
Somenox	Cooper	Switz.	_
Valdrene	Vale	U.S.	_
Vilbin	Felbena	Switz.	-
Ziradryl	Parke Davis	U.S.	

Raw Materials

β-Dimethylaminoethanol Diphenylmethane

Sodium carbonate Bromine

Manufacturing Process

As described in U.S. Patent 2.421,714. (a) benzhydryl bromide is first prepared as follows: 840 parts by weight of diphenylmethane is heated to 130°C with stirring. In the presence of a 200 watt electric light 6 inches from the flask, 880 parts of bromine is added slowly. Liberation of HBr occurs and addition requires 1 hour and 45 minutes. The temperature is maintained at 130°C for an additional 30 minutes. A fine stream of air is blown in to remove HBr and Br₂ while the reaction mixture cools. Benzene (180 parts) is added and the solution used immediately in (b) below.

If pure benzhydryl bromide is desired the above reaction mixture is dissolved in ether. washed with water, sodium carbonate solution and finally with water. The ether is removed, benzene added and distilled off and the benzhydryl bromide distilled in vacuo. Yield 85%.

(b) 490 parts β -dimethylaminoethanol and 530 parts of anhydrous sodium carbonate are heated to 110°C with stirring. The addition of the benzene-benzhydryl bromide mixture is then begun. The temperature is raised to 120°-125°C. As reaction takes place carbon dioxide is evolved, the addition requires 11/2 hours. The mixture is kept at 125°C for 5 hours additional time. After cooling, 3,000 parts of water is added and the mixture stirred until the inorganic salts are dissolved. The mixture is transferred to a large separatory funnel and 1,500 parts of ether added. The ether solution is washed several times with water and then the ether layer extracted with 1 to 4 hydrochloric acid. The acid solution is treated with 30 parts of Darco and 30 parts Filter-Cel and filtered.

The free base is liberated from the acid solution with 20% sodium hydroxide solution and taken up in ether. The ether layer is washed with water, saturated with NaCl and then shaken with solid potassium hydroxide. The ether is removed by distillation, 200 parts of benzene added and distilled off. The residue is distilled in vacuo and the fraction 150°-165°C/2 mm is collected and amounts to 433 parts. The hydrochloride salt is prepared by dissolving the free base in anhydrous ether and slowly adding an alcoholic solution of hydrogen chloride. The solid is recrystallized from absolute alcohol-ether mixture or isopropanol-ether mixture and has a MP of 161°-162°C.

References

Merck Index 3320 Kleeman & Engel p. 327 PDR pp. 695, 830, 872, 993, 1033, 1317, 1397, 1569, 1606, 1989, 1999 OCDS Vol. 1 p. 41 (1977)

I.N. p. 347

REM p. 1128

Martin, H., Hafliger, F., Gatzi, K. and Grob, A.; U.S. Patent 2,397,799; April 2, 1946; assigned to J.R. Geigy AG, Switzerland

Rieveschi, G. Jr.; U.S. Patent 2,421,714; June 3, 1947; assigned to Parke, Davis & Co. Rieveschl, G. Jr.; U.S. Patent 2,427,878; September 23, 1947; assigned to Parke, Davis & Company

DIPHENIDOL

Therapeutic Function: Antinauseant

Chemical Name: α,α-diphenyl-1-piperidinebutanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 972-02-1

Trade Name	Manufacturer	Country	Year Introduced
Vontrol	SKF	u.s.	1967
Cephadol	Nippon Shinyaku	Japan	1974
Ansumin	S.S. Pharm	Japan	_
Antiul	Tokyo Hosei	Japan	_
Avomol	Landerlan	Spain	_
Celmidol	Tobishi	Japan	_
Cerachidol	Ono	Japan	_
Cerrosa	Toyo	Japan	-
Deanosari	isei	Japan	-
Degidole	Nihon Yakuhin	Japan	
Difenidolin	Taiyo	Japan	_
Gipsydol	Nihon Yakuhin	Japan	_
Maniol	Morishita	Japan	_
Meranom	Hokuriku	Japan	
Midnighton	Takata	Japan	_
Pineroro	Maruko	Japan	-
Promodor	Torii	Japan	
Satanoion	Tatsumi	Japan	
Sofalead	Nikken	Japan	_
Solnomin	Zensei	Japan	_
Tatimil	Mohan	Japan	_
Wansar	Hoei	Japan	-
Yesdoi	Toho lyaku	Japan	_
Yophadol	Horita	Japan	_

Raw Materials

Ethyl bromide N-[1-Chloropropyl-(3)] piperidine Magnesium Benzophenone

Manufacturing Process

2.6 grams magnesium, activated by means of iodine, is introduced into 20 cc of absolute ether and is caused to react with 0.6 cc of ethyl bromide. While warming gently, 16.2 grams (0.1 mol) of N-[1-chloropropyl-(3)]-piperidine in 40 cc of absolute ether are added and, after adding a further 0.5 cc of ethyl bromide, 14.5 grams (0.08 mol) of benzophenone in 50 cc of anhydrous ether are added in portions. The magnesium is used up fairly quickly and, after 10 hours, only traces are left. In working up, both with hydrochloric acid and with ammonium chloride, the hydrochloride of diphenyl-3-piperidinopropyl carbinol is precipitated as a dense precipitate. It is purified by recrystallization from chloroform-ethyl acetate. MP 212°-214°C.

References

Merck Index 3323 Kleeman & Engel p. 300 PDR p. 1731 OCDS Vol. 1 p. 45 (1977) DOT 3 (1) 32 (1967) I.N. p. 323 REM p. 808

Miescher, K. and Marxer, A.; U.S. Patent 2,411,664; November 26, 1946; assigned to Ciba Pharmaceutical Products, Inc.

DIPHENOXYLATE HYDROCHLORIDE

Therapeutic Function: Antidiarrheal

Chemical Name: 1-(3-cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid ethyl

ester hydrochloride

Common Name: -

Structural Formula:

$$\begin{array}{c} {\rm C_{6}H_{5}} \\ {\rm C_{C}H_{2}CH_{2}-N} \end{array} \begin{array}{c} {\rm Cooc_{2}H_{5}} \\ {\rm C_{6}H_{5}} \end{array}$$
 (base)

Chemical Abstracts Registry No.: 3810-80-8; 915-30-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Lomotil	Searle	U.S.	1960
Diarsed	Clin-Comar-Byla	France	_
Protector	I.F.L.	Spain	_
Reasec	Janssen	W. Germany	_
Retardin	Benzon	Denmark	_
Retardin	Leo	Sweden	_
Sedistal	Abic	Israel	

Rew Materials

- 4-Phenylisonipecotic acid ethyl ester
- 2,2-Diphenyl-4-bromobutyronitrile

Manufacturing Process

A mixture of 23 parts of the ethyl ester of 4-phenylisonipecotic acid and 15 parts of 2,2diphenyl-4-bromobutyronitrile in 19 parts of xylene is heated for 24 hours at 100°-120°C and then cooled and filtered to remove the precipitate of the hydrobromide of the ethyl ester of 4-phenylisonipecotic acid. The filtrate is then extracted with dilute hydrochloric acid and the extract is rendered alkaline by addition of concentrated aqueous potassium hydroxide and extracted with ether. This ether extract is treated with gaseous hydrogen chloride. The resulting precipitate is collected on a filter. The hydrochloride of the ethyl ester of 2,2-diphenyl-4-(4'-carboxy-4'-phenyl-1'-piperidino) butyronitrile thus obtained melts at about 220.5-222°C. See Meperidine hydrochloride for synthesis of 4-phenyl-isonipecotic acid ethyl ester.

References

Merck Index 3325 Kleeman & Engel p. 328 PDR pp. 993, 1569, 1690, 1999 OCDS Vol. 1 p. 302 (1977) & 2 331 (1980) I.N. p. 348 REM p. 813 Janssen, P.A.J.; U.S. Patent 2,898,340; August 4, 1959 Dryden, H.L. Jr. and Erickson, R.A.; U.S. Patent 4,086,234; April 25, 1978; assigned to G.D. Searle & Co.

DIPHENPYRAMIDE

Therapeutic Function: Antiinflammatory

Chemical Name: 2-(Diphenylacetylamino)-pyridine

Common Name: Difenpiramide

Structural Formula:

Chemical Abstracts Registry No.: 51484-40-3

Trade Name	Manufacturer	Country	Year Introduced
Difenax	Zambeletti	Italy	1977

Raw Materials

Diphenylacetic acid chloride 2-Aminopyridine

Manufacturing Process

23 g (0.1 mol) diphenylacetic acid chloride dissolved in 300 cc anhydrous ethyl ether are slowly added dropwise to a solution of 19 g (0.2 mol) 2-aminopyridine in 300 cc anhydrous ethyl ether. The reaction mixture is agitated and the temperature is kept at between 5°C and 10°C with an ice bath. After the addition has been completed, the agitation of the mixture is continued and the temperature is allowed to rise to 20°C to 25°C.

After leaving to stand for a few hours, the gummy precipitate solidifies and becomes filterable. After separating off the precipitate, the ether is evaporated under reduced pressure to a volume of about 100 cc.

The ether is left to stand at a low temperature below 10°C when the remaining portion of the product precipitates and is filtered off and added to the first precipitate. The product thus obtained is thoroughly washed, first in water and then in a solution of sodium bicarbonate, and then again in water. After drying in air, the product is crystallized from anhydrous ethanol or from acetone and water. The analytical data correspond to calculated values. Yield is 18 q: MP 122°C to 124°C.

References

Merck Index 3123 DFU 2 (12) 793 (1977)

I.N. p. 323

Molteni, L., Tenconi, F. and Tagliabue, R.; U.S. Patent 3,868,380; February 25, 1975

DIPHENYLPYRALINE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: 4-(diphenylmethoxy)-1-methylpiperidine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 132-18-3; 147-20-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Diafen	Riker	U.S.	1955
Hispril	Nopco	U.S.	1959
Lergoban	Riker	U.K.	1971
Allerzin	Virax	Australia	_
Anti-H10	S.M.B.	Belgium	_
Antinal	Arcana	Austria	
Belfene	Bellon	France	
Kolton Gelee	Promonta	W. Germany	_
Lyesipoll	Lyssia	W. Germany	
Pirazone	UCB-Smit	Italy	-

Raw Materials

1-Methyl-4-piperidinol Benzhydryl bromide Hydrogen chloride

Manufacturing Process

A mixture of 46 grams of 1-methyl-4-piperidinol (0.4 mol), 49.4 grams of benzhydryl bromide (0.2 mol) and 100 ml of xylene was refluxed for approximately 24 hours. The reaction mixture separated into two phases with the upper phase containing the desired

ether compound dissolved in xylene. The lower phase consisted of the hydrobromide salt of the excess 1-methyl-4-piperidinol. The upper phase was separated from the lower phase and the desired benzhydryl ether recovered in the crude state by distilling off the xylene under reduced pressure.

The crude benzhydryl ether was a clear reddish oil. It was dissolved in 75 ml of 20% hydrochloric acid and the agueous acid solution then washed three times with 50 ml portions each of ethyl ether. The aqueous acid solution was then decolorized with activated carbon and thereafter slowly admixed with 75 ml of 28% aqueous ammonia. The benzhydryl ether separated as an oily material and was removed from the aqueous mixture by extraction with three 50 ml portions of ethyl ether.

On evaporation of the ethyl ether from the ethyl ether solution, the benzhydryl ether was recovered as a pale yellow oil. The benzhydryl ether was dissolved in 60 ml of isopropanol and the isopropanol solution acidified to a pH of 3 with dry hydrogen chloride-methanol solution. The acidic propanol solution was then diluted with ethyl ether until a faint turbidity was observed. In a short time, the crystalline hydrochloride salt of the benzhydryl ether separated from the propanol solution. The crystallized salt was recrystallized once from 75 ml of isopropanol with the aid of ethyl ether in order to further purify the material. A yield of the pure hydrochloride salt of 1-methylpiperidyl-4-benzhydryl ether of 24.5 grams was obtained. This was 39% of the theoretical yield. The pure material had a melting point of 206°C.

References

Merck Index 3347 Kleeman & Engel p. 328 PDR p. 1717 I.N. p. 349 REM p. 1128

Knox, L.H. and Kapp, R.; U.S. Patent 2,479,843; August 23, 1949; assigned to Nopco Chemical Company

DIPIVEFRIN

Therapeutic Function: Adrenergic (Ophthalmic)

Chemical Neme: 2,2-Dimethylpropanoic acid 4-[1-hydroxy-2-(methylamino)ethyl]-1.2-

phenylene ester

Common Name: Dipivalyl epinephrine

Structural Formula:

Chemical Abstracts Registry No.: 52365-63-6

Trade Name	Manufacturer	Country	Year Introduced
Propine	Allergan	W. Germany	1978
Propine	Allergan	U.S.	1980
D-Epifrin	Allergan	_	-
Diopine	Allergan	_	-
Glaucothil	Thilo	W. Germany	-
Vistapin	Pharm-Allergan	W. Germany	-

Dipyridamole 523

Raw Materials

α-Chloro-3'.4'-dihydroxyacetophenone Methylamine PivalovI chloride Hydrogen

Manufacturing Process

First, 0.27 mol of α-chloro-3',4'-dihydroxyacetophenone are dissolved in 200 ml methanol with warming. Next, 100 ml of a 40% agueous solution of methylamine is slowly added and the mixture stirred at 50°C to 55°C for 2 hours. The reaction mixture is then stirred an additional 24 hours at room temperature.

The crude product separates as a solid from the reaction medium and is recovered by filtration, and it is then washed thoroughly with ether and dissolved in 350 ml 1N HCl. Then, approximately 250 ml of the aqueous solvent is removed with a rotary evaporator and the evaporation residue combined with 125 ml methanol and filtered through decolorizing charcoal. The product is precipitated as the HCl salt by the addition of 7 parts of acetone. The resulting crystalline material is removed by filtration dried at 40°C with vacuum, and has a melting point of about 242°C and is used without further purification.

Next, 25.3 g, 0.125 mol, of the above product are dissolved in 250 ml ethyl acetate and 0.125 mol perchloric acid as a 70% aqueous solution is slowly added thereto with continuous stirring. Then, an excess of pivaloyl chloride, 280 ml, is added and the mixture slowly warmed to reflux temperature. The reaction mixture is refluxed for about 5 hours and allowed to cool to room temperature with continuous stirring. The product is precipitated as the perchlorate salt by the addition of perchloric acid, HClO₄, in 500 ml ether. The product is isolated and purified by dissolving in 75 ml acetone and precipitating it with 150 to 200 ml of water.

To 20 g of the above compound dissolved in 300 ml 95% ethanol in a Parr reaction vessel is added 1.5 g Adams catalyst, platinum dioxide, and the mixture shaken under hydrogen at 50 psi for 1 hour at ambient temperature. The mixture is then filtered and the ethanol removed on a standard rotary evaporator. The resulting oil is dissolved in 200 ml ether and slowly added to 1,200 ml ether with continuous stirring. The product separates as crystals which are removed after 15 to 30 minutes by filtration. The compound melts at 146°C to 147°C and needs no further purification.

References

Merck Index 3356 Kleeman & Engel p. 329 OCDS Vol. 3 p. 22 (1984) I.N. p. 350 REM p. 891

Hussain, A. and Truelove, J.E.; U.S. Patents 3,809,714; May 7,1974; and 3,839,584; October 1, 1974; both assigned to Inter Rx Research Corp.

Henschler, D., Wagner, J. and Hampel, H.; U.S. Patent 4,085,270; April 18, 1978; assigned to Chemisch-Pharmazeutische Fabrik Adolf Klinge & Co. (W. Germany)

DIPYRIDAMOLE

Therapeutic Function: Coronary vasodilator

Chemical Name: 2,2',2",2"-{4,8-dipiperidinopyrimido[5,4-d] pyrimidine-2,6-diyldinitrilo}tetraethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-32-2

Trade Name	Manufacturer	Country	Year Introduced
Persantine	Boehr./Ingel.	U.S.	1961
Natyl	Nativelle	France	1961
Persantin	Boehr./Ingel.	U.K.	1961
Persantin	Thomae	W. Germany	1966
Agilease	lsei	Japan	_
Anginal	Yamanouchi	Japan	_
Atlantin	Dojin	Japan	_
Cardoxin	Rafa	Israel	_
Cleridium	Millot	France	_
Coribon	Radiumpharma	Italy	_
Coronamole	Nichiiko	Japan	_
Coronarine	Negma	France	_
Corosan	Saita	Italy	_
Coroxin	Malesci	Italy	_
Curantyl	Arzneimittelwerk Dresden	E. Germany	
Dipyrida	Schurholz	W. Germany	_
Drisentin	Drifa	Turkey	_
Functiocardon	Krewel	W. Germany	_
Gulliostin	Taiyo	Japan	_
lsephanine	Kanto	Japan	_
Justpertin	Horita	Japan	_
Padicor	Padil	Italy	_
Penselin	Sawai	Japan	_
Peridamol	Lab. Franc. Therap.	France	
Perkod	Generod	France	_
Permilitin	Zensei	Japan	-
Piroan	Towa	Japan	-
Prandiol	Botto	France	_
Protangix	Lefrancq	France	-
Royalcor	Morgan	Italy	-
Santhimon	Santen	Japan	-
Stenocor	Chemipharma	Italy	_
Stimolcardio	Phanthox & Burck.	Italy	_
Tinol	Teikoku	Japan	_
Trancocard	Benvegna	Italy	-
Trombostaz	Yurtoglo	Turkey	_
Viscor	ltal s uisse	Italy	-

Raw Materials

Urea Nitric acid Acetoacetic ester Hydrogen Potassium cyanate Phosphorus oxychloride Diethanolamine Piperidine

Manufacturing Process

Urea may be reacted with acetoacetic ester and that product nitrated to give 5-nitro-orotec acid That is hydrogenated, then reacted with urea and potassium cyanate to give tetrahydroxypyimidopyrimidine. The tetrahydroxy compound is converted to the tetrachloro compound POCI3. Reaction with diethanolamine and then with piperidine gives dipyridamole.

References

Merck Index 3366 Kleeman & Engel p. 330 PDR pp. 678, 830, 993, 1606, 1723, 1999 OCDS Vol. 1 p. 428 (1977) I.N. p. 351 REM p. 854

Fischer, F.G., Roch, J and Kottler, A.; U.S. Patent 3,031,450; April 24, 1962; assigned to Dr. Karl Thomae GmbH, Germany

DISOPYRAMIDE PHOSPHATE

Therapeutic Function: Antiarrhythmia

Chemical Name: α-[2-[bis(1-Methylethyl)amino] ethyl] -α-phenyl-2-pyridineacetamide

phosphate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22059-60-5; 3737-09-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Rythmodan	Cassenne	France	1969
Ritmodan	Maestretti	Italy	1970
Rhythmodan	Roussel	U.K.	1972
Norpace	Searle	U.K.	1976
Norpace	Searle	W. Germany	1977
Norpace	Searle	U.S.	1977
Rythmodul	Roussel	W. Germany	1977
Rythmodan	Hoechst-Roussel	Switz.	1978
Rythmodan	Roussel	Japan	1981
Dirytmin	Astra	Sweden	_
Disaloc	Medica	Finland	_
Rythmical	Unipharm	Israel	
Rytmilen	Leiras	Finland	_

Raw Materials'

Phenylacetonitrile Diisopropylaminoethyl chloride Sulfuric acid Phosphoric acid

2-Bromopyridine Sodium amide Sodium hydroxide

Manufacturing Process

To a solution of 35.3 parts of phenylacetonitrile and 47.6 parts of 2-bromopyridine in 175 parts of dry toluene is added 53.4 parts of sodamide slowly with stirring over a period of 45 minutes. The resultant mixture is stirred at 100°C for 2 hours before it is cooled and the excess sodamide is decomposed by the addition of water. The toluene layer is separated and washed with water to remove excess alkali. The toluene solution is extracted with 6 N hydrochloric acid and the acid extract is made alkaline and then extracted with toluene. The toluene solution is dried over sodium sulfate and the solvent is evaporated. Recrystallization of the residue from alcohol-hexane gives α-phenyl-2-pyridineacetonitrile melting at about 87°-88°C.

To a solution of 41 parts of α-phenyl-2-pyridineacetonitrile in 350 parts of dry toluene is added 9.2 parts of sodamide and the mixture is stirred and heated at 90°C for 30 minutes. Heating is stopped and a solution of 38.5 parts of 2-diisopropylaminoethyl chloride in 110 parts of dry toluene is added slowly over a period of 30 minutes. The mixture is stirred and refluxed for 6 hours before it is cooled and decomposed by the addition of water. The toluene layer is separated and washed with water and extracted with 6 N hydrochloric acid. The acid extract is made alkaline and extracted with toluene. The toluene solution is washed with water and dried and the solvent is evaporated. Distillation of the residue gives 4-diisopropylamino-2-phenyl-2-(2-pyridyl)-butyronitrile boiling at about 145°-160°C at 0.3 mm pressure.

A solution of 27.2 parts of 4-diisopropylamino-2-phenyl-2-(2-pyridyl)butyronitrile in 200 parts of concentrated sulfuric acid is heated on a steam bath for 4 hours and then poured onto ice. The resultant mixture is alkalized with 10 N sodium hydroxide, and the pH is adjusted to 6 by the addition of acetic acid. The solution is washed once with benzene before it is alkalized again with 10 N sodium hydroxide solution. The resultant mixture is extracted with benzene, and the solvent is evaporated from the benzene extract. The resultant residue is dissolved in ethanol and the alcohol solution is treated with charcoal and filtered. Evaporation of the solvent leaves a residue which is recrystallized from hexane to give 4-diisopropylamino-2-phenyl-2-(2-pyridyl)butyramide melting at about 94.5°-95°C. It may be converted to the phosphate with phosphoric acid.

References

Searle & Co.

Merck Index 3378 Kleeman & Engel p. 332 PDR pp. 673, 830, 993, 1691 OCDS Vol. 2 p. 81 (1980) & 3, 41 (1984) DOT 6 (6) 213 (1970) I.N. p. 352 REM p. 858 Cusic, J.W. and Sause, H.W.; U.S. Patent 3,225,054; December 21, 1965; assigned to G.D.

DISTIGMINE BROMIDE

Therapeutic Function: Cholinesterase inhibitor

Chemical Name: 3,3'-[1,6-Hexanediylbis[(methylimino)carbonyl]oxy] bis-[1-methylpy-

ridinium] dibromide

Common Name: Hexamarium bromide

Structural Formula:

Chemical Abstracts Registry No.: 15876-67-2

Trade Name	Manufacturer	Country	Year Introduced
Ubretid	Hormonchemie	W. Germany	1966
Ubretid	Berk	U.K.	
Ubretid	Lentia	W. Germany	_
Ubretid	Torii	Japan	_

Raw Materials

3-Oxypyridine Sodium Methanol

Hexamethylene-bis-(N-methyl carbamic acid chloride)

Methyl bromide

Manufacturing Process

2 parts of sodium are dissolved in 24 parts of methanol and to the solution of sodium methylate formed 8.25 parts of 3-oxypyridine and 90 parts of xylene (mixture of isomers) are added. Then the mixture is distilled in an atmosphere of nitrogen as protecting gas until the boiling point of xylene is reached and the methanol is completely removed. The remainder is brought together with a solution of 11.7 parts of hexamethylene-bis-(N-methyl carbamic acid chloride) in 45 parts of xylene and maintained 4 hours at a temperature of 80°C under vigorous stirring.

After having been cooled it is washed three times in water, three times in a 5% solution of caustic soda, and then another three times in water. The solution in xylene is dried over sodium sulfate and the xylene is completely distilled off in vacuo. Thus 11.0 parts of hexamethylene-bis-(N-methyl carbamic acid-3-pyridyl ester) are obtained.

7.3 parts of hexamethylene-bis-(N-methyl carbamic acid-3-pyridyl ester) are dissolved in 120 parts of acetone, then 22 parts of methyl bromide are added and the mixture is left to stand at room temperature until the reaction is finished, whereby crystals are precipitated. The reaction product after being drawn off and dried (9.9 parts) can be purified by dissolving in acetic acid and precipitating with methyl ethyl ketone. The hexamethylene-bis-(N-methyl carbamic acid-3-pyridyl ester bromomethylate) has a micro melting point between 147°C and 150°C.

References

Merck Index 3380 Kleeman & Engel p. 332 I.N. p. 353

Schmid, O.; U.S. Patent 2,789,981; April 23, 1957; assigned to Oesterreichische Stickstoffwerke A.G. (Austria)

DISULFIRAM

Therapeutic Function: Alcohol deterrent

Chemical Name: Tetraethylthioperoxydicarbonic diamide

Common Name: Tetraethyl thiuram disulfide

Structural Formula:

Chemical Abstracts Registry No.: 97-77-8

Trade Name	Manufacturer	Country	Year Introduced
Esperal	Millot Solac	France	1950
Antabuse	Ayerst	U.S.	1951
Abstenil	Sin tesina	Argentina .	_
Abstinyl	Pharmacia	Sweden	_
Antabus	Tosse	W. Germany	_
Antabuse	Ethnor	Australia	_
Antabuse	Crinos	Italy	_
Antabuse D	Tokyo Tanabe	Japan	_
Antietil	Ital farmaco	Italy	-
Antivitium	Reder	Spain	_
Aversan	A.F.I.	Norway	
Nocbin	Tokyo Tanabe	Japan	_
Ro-Sulfiram	Robinson	U.S.	_
Tetidis	Krka	Yugoslavia	_

Raw Materials

Diethyl amine Carbon bisulfide Sodium hydroxide Hydrogen peroxide

Manufacturing Process

Disulfiram may be made by the reaction of diethyl amine with carbon disulfide in the presence of sodium hydroxide. The (C2H5)2NCSSNa intermediate is oxidatively coupled using hydrogen peroxide to give disulfiram.

References

Merck Index 3382 Kleeman & Engel p. 333 PDR pp. 611, 830, 1606 OCDS Vol. 1 p. 223 (1977) DOT 10 (9) 324 (1974) I.N. p. 353

REM p. 1070

Adams, H.S. and Meuser, L.; U.S. Patent 1,782,111; November 18, 1930; assigned to The Naugatuck Chemical Company

Bailey, G.C.; U.S. Patent 1,796,977; March 17, 1931; assigned to The Roessler & Hasslacher Chemical Company

DITAZOL

Therapeutic Function: Antiinflammatory

Chemical Name: 2,2'-[(4,5-diphenyl-2-oxazolyl)imino] diethanol

Common Name: Diethamphenazol

Structural Formula:

Chemical Abstracts Registry No.: 18471-20-0

Trade Name	Manufacturer	Country	Year Introduced
Ageroplas	Serona	Italy	1973

Raw Materials

2-Chloro-4,5-diphenyl oxazole Diethanolamine

Manufacturing Process

A solution of 5.1 grams 2-chloro-4,5-diphenyl-oxazole, 6.3 grams diethanolamine and 50 ml absolute ethanol was refluxed for 4 hours. The solvent was stripped at 1 mm and the oily residue was added at 60°C to 100 ml 50% ethanol; by cooling the hydro-alcoholic solution. 4.5 grams of 2-bis(β -hydroxyethyl)amino-4.5-diphenyl-oxazole was obtained (yield. 69.5%). The product crystallized from ethyl ether + petroleum ether, with a MP of 96° to 98°C.

References

Merck Index 3386 DOT 10 (4) 135 (1974) I.N. p. 354

Marchetti, E.; U.S. Patent 3,557,135; January 19, 1971; assigned to Istituto Farmacologico Serono SpA, Italy

DITHIAZANINE IODIDE

Therapeutic Function: Anthelmintic

Chemical Name: 3-Ethyl-2-[5-[3-ethyl-2-(3H)-benzothiazolinylidene]-1,3-pentadienyl]ben-

zothiazolium iodide

Common Name: 3,3'-Diethylthiacarbocyanine iodide

Structural Formula:

Chemical Abstracts Registry No.: 514-73-8

Trade Name	Manufacturer	Country	Year Introduced
Delvex	Lilly	U.S.	1958
Abminthic	Pfizer	U.S.	1959

Trade Name	Manufacturer	Country	Year Introduced
Dilombrin	Pfizer	_	_
D.I.M.	Mediphar	Congo	-
Elmizin	Bouty	Italy	
Nectocyd	Pfizer	_	****
Ossiurene	A.M.S.A.	Italy	
Partel	Lilly	_	_
Telmid	Lilly	_	_

Raw Materials

1-Methylbenzthiazole ethiodide β -Ethyl thioacrolein diethyl acetal

Manufacturing Process

3.05 g of 1-methylbenzthiazole ethiodide, 1.11 g of β -ethyl thio acrolein diethyl acetal and 15 cc of pyridine were mixed and boiled gently under reflux for 15 minutes. The reaction mixture was then poured into an aqueous solution of potassium iodide. The dye was precipitated and was filtered off, and washed with ethyl alcohol and ether. Recrystallization from methyl alcohol solution yielded the dye as green needles. Melting point 248'C with decomposition.

References

Merck Index 3388

OCDS Vol. 1 p. 327 (1977)

I.N. p. 354

Kendall, J.D. and Edwards, H.D.; U.S. Patent 2,412,815; December 17, 1946; assigned to Ilford, Ltd.

DIXYRAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 2-[2-[4-[2-methyl-3-(10H-phenothiazin-10-yl)propyl]-1-piperazinyl] ethoxy]-

ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2470-73-7

Trade Name	Manufacturer	Country	Year Introduced
Esucos	UCB Chemie	W. Germany	1962
Esucos	UCB	Italy	1962
Esucos	UCB	France	1964
Esocalm	Assia	israel	-
Roscal	Rosco	Denmark	-

Raw Materials

Phenothiazine Sodium amide 1-Chloro-2-methyl-3-bromopropane 1-[2-(2-Hydroxyethoxy)ethyl] piperazine

Manufacturing Process

To a suspension of sodamide in liquid ammonia and made from sodium in liquid ammonia, there is added fractionally and with stirring phenothiazine. After an hour there is added thereto, while maintaining the stirring, 1-chloro-2-methyl-3-bromopropane, then 700 cc of toluene. The ammonia is then driven off and heating under reflux is carried out for one hour.

After cooling, water is added and the solution then decanted. The toluene phase is then evaporated in vacuo to constant weight. The residue is constituted of 10-(2-methyl-3chloro-propyl)-phenothiazine containing a certain quantity of phenothiazine which has not reacted. As this product is not readily soluble in petroleum ether, it is possible to eliminate it by extraction by means of this solvent.

By operating in this manner 10-(2-methyl-3-chloro-propyl)phenothiazine is obtained. A mixture of 10-(2-methyl-3-chloro-propyl)phenothiazine and 1-[2-(2-hydroxyethoxy)ethyl] piperazine is then heated at 110°-120°C for 20 hours. After cooling, the reaction product is dissolved in 200 cc of benzene and the solution washed several times with water.

The benzene phase is then extracted by dilute hydrochloric acid. The acid aqueous phase is decanted, it is made distinctly alkaline and then extracted with benzene. The benzene extract is dried and evaporated in vacuo. The condensation product could not be crystallized. It may be converted into the dihydrochloride which, after recrystallization from isopropanol, melts at 192°C.

References

Merck Index 3403 Kleeman & Engel p. 334 OCDS Vol. 1 p. 384 (1977) I.N. p. 356

Morren, H.; British Patent 861,420; February 22, 1961

DOBESILATE CALCIUM

Therapeutic Function: Vasodilator

Chemical Name: 2,5-dihydroxybenzenesulfonic acid calcium salt

Common Name: Hydroguinone calcium sulfonate

Structural Formula:

Chemical Abstracts Registry No.: 20123-80-2

Trade Name	Manufacturer	Country	Year Introduced
Doxium	Carrion	France	1971
Dexium	Delalande	W. Germany	1971
Doxium	Delalande	italy	1973
Dobesiphar	Farmila	Italy	-
Doxi-OM	O.M.	Switz.	_
Doxytrex	O.M.	Switz.	-
Romiven	Roche	_	_

Raw Materials

1,4-Benzoquinone Calcium bisulfite

Manufacturing Process

To an ether solution of 108 grams 1,4-benzoquinone, maintained below 0°C, one adds an also very cold solution of 102 grams of pure calcium bisulfite as a 50% solution in distilled water. The addition is made carefully so as to maintain a very low temperature (0° to 4°C) in the vessel, and under stirring so as to mix the water and ether phase.

At the end of the addition, an almost colorless ether layer swims on the surface of the strongly colored water layer. After removal of the ether layer, the water layer is concentrated to dryness under vacuum and a stream of an inert gas. An earthy precipitate is formed, which after recrystallization yields 100 grams of hydroquinone calcium sulfonate, which decomposes without melting above 250°C.

The product consists of very small crystals having a powdery aspect and a pink color which deepens on contact with air. This product is very soluble in water and alcohol, and insoluble in ether.

References

Merck Index 3406 Kleeman & Engel p. 135 I.N. p. 356

Esteve-Subirana, A.; U.S. Patent 3,509,207; April 28, 1970; assigned to Laboratories Om Societe Anonyme, Switzerland

DOBUTAMINE

Therapeutic Function: Cardiotonic

Chemical Name: 3,4-Dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]-β-phenethylamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34368-04-2: 52663-81-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Dobutrex	Lilly	U.K.	1977
Dobutrex	Lilly	U.S.	1978
Dobutrex	Lilly	W. Germany	1978
Dobutrex	Shionogi	Japan	1982
Dobutrex	Lilly	Italy	1983
Dobuject	Leiras	Finland	_
Inotrex	Lilly		_

Raw Materials

4-(p-Methoxyphenyl)-3-buten-2-one
Homoveratrylamine
Acetic acid
Hydrogen bromide
Hydrogen chloride

Manufacturing Process

In a stainless steel hydrogenation bottle were placed 17.6 g (0.1 mol) of 4-(p-methoxyphenyl)-3-buten-2-one, 80 ml of ethyl acetate, and 1 g of Raney nickel catalyst. The hydrogenation bottle was attached to a Paar low-pressure hydrogenation apparatus and the solution was hydrogenated under an initial hydrogen pressure of 50 psi. The hydrogenation was carried out at room temperature and after about 12 hours one equivalent of hydrogen had been absorbed. The catalyst was filtered from the reduction mixture and 18.1 g (0.1 mol) of homoveratrylamine were added to the reduction mixture.

To the reduction mixture was then added 3.5 g of 5% palladium on carbon catalyst and the mixture was hydrogenated under a hydrogen pressure of 50 psi at room temperature for 12 hours. The catalyst was removed by filtration and the filtrate was evaporated to a small volume. The concentrated filtrate was dissolved in diethyl ether and the ethereal solution was saturated with anhydrous hydrogen chloride. The reduction product, 3.4-dimethoxy-N-[3-4-methoxyphenyl)-1-methyl-n-propyl] phenethylamine was precipitated as the hydrochloride salt. The salt was filtered and recrystallized from ethanol melting at about 147°C to 149°C.

To a solution of 101.2 g of the trimethoxy secondary amine, obtained as described above, in 3,060 ml of glacial acetic acid was added 1,225 ml of 48% hydrobromic acid and the reaction mixture heated at the reflux temperature for 4 hours. The reaction mixture was then cooled and evaporated to a small volume. The crystalline residue which formed was filtered and dried in vacuo. The dried crystalline residue was then triturated with ethyl acetate and redried to yield 97.3 g of crude crystalline material. The crude product was dissolved in 970 ml of warm water to obtain a yellow solution. To the solution was added successively by dropwise addition 75 ml of 1 N and 75 ml of 2 N hydrochloric acid. Following the dropwise addition, the solution was allowed to stir with ice cooling. The impurities which precipitated were removed by filtration through a gauze filter. Concentrated hydrochloric acid was then added dropwise. When approximately 50 to 75 ml of the concentrated acid had been added with ice bath cooling a pale yellow oil precipitated along with a while solid precipitate. With continued stirring of the cold solution, the pale yellow oil crystallized.

The cold solution was then allowed to stand overnight and all crystalline material filtered through a sintered glass filter. The filtrate was treated with an additional 300 ml of concentrated hydrochloric acid to yield a heavy white precipitate. The precipitate was filtered, dried and combined with the initial precipitate obtained as described above. The combined precipitated product, 3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methyl-n-propyl-β-phenethylamine hydrochloride, had a melting point of about 184°C to 186°C after recrystallization from boiling 4N hydrochloric acid.

References

Merck Index 3407 DFU 2 (9) 579 (1977) Kleeman & Engel p. 334 PDR p. 1047 OCDS Vol. 2 p. 53 (1980) DOT 14 (10) 433 (1978)

I.N. p. 357 REM p. 882

Tuttle, R.R. and Mills, J.; U.S. Patent 3,987,200; October 19,1976; assigned to Eli Lilly & Co.

DOCUSATE CALCIUM

Therapeutic Function: Stool softener

Chemical Name: Sulfobutanedioic acid 1,4-bis(2-ethylhexyl)ester calcium sait

Common Name: Dioctyl calcium sulfosuccinate

Structural Formula:

$$\begin{bmatrix} c_2 H_5 \\ c H_2 COOC H_2 CH (CH_2)_3 CH_3 \\ c HCOOC H_2 CH (CH_2)_3 CH_3 \\ c SO_3 - c_2 H_5 \end{bmatrix} ca^{2+}$$

Chemical Abstracts Registry No.: 128-49-4

Trade Name	Manufacturer	Country	Year Introduced
Surfak	Hoechst	∪. S .	1959
Regutol	Schering	U.S.	1981
Doxidan	Hoechst	_	
Dioctocal	Schein	U.S.	_

Raw Materials

Dioctyl sodium sulfosuccinate Calcium chloride

Manufacturing Process

88 g of dioctyl sodium sulfosuccinate is first dissolved in 100 cc of isopropanol and 25 g of calcium chloride is dissolved in 50 cc of methanol. The solutions are then mixed and stirred for about 3 hours and then cooled with ice. The sodium chloride which precipitates in the cool mixture is removed by filtration and most of the alcohol is evaporated from the resulting filtrate with heat. The liquid remaining is poured into 88 cc of water, and the resulting precipitate washed with water until free of chloride ion. The washed calcium salt is then dried.

References

Merck Index 3408 PDR pp. 938, 945, 1606 I.N. p. 357 REM p. 805

Klotz, L.J.; U.S. Patent 3,035,973; May 22, 1962; assigned to Lloyd Brothers, Inc.

DOMIPHEN BROMIDE

Therapeutic Function: Topical antiinfective

Chemical Name: N,N-Dimethyl-N-(2-phenoxyethyl)-1-dodecanaminium bromide

Common Name: Phenododecinium bromide

Structural Formula:

$$\left[\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_2CH_2-\stackrel{\mathsf{H}_3}{\overset{\mathsf{H}_4}{\overset{\mathsf{H}_2}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}{\overset{\mathsf{H}_3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}_{1}}$$

Chemical Abstracts Registry No.: 538-71-6

Trade Name	Manufacturer	Country	Year Introduced
Bradosol	Ciba	U.S.	1958
Bradex-Vioform	Ciba	W. Germany	_
Brado	Ciba-Geigy-Takeda	Japan	_
Bradoral	Ciba	Italy	_
Neo-Bradoral	Ciba	Switz.	_
Oradol	Ciba-Geigy-Takeda	Japan	_

Raw Materials

β-Phenoxyethyl dimethylamine Dodecyl bromide

Manufacturing Process

7 parts of β -phenoxyethyl-dimethylamine are heated for 2 hours on the boiling water-bath with 11 parts of dodecyl bromide. A good yield of β -phenoxy-ethyl-dimethyl-dodecyl-ammonium bromide is obtained which, after recrystallization from acetone, melts at 112°C. It is a white crystalline powder which dissolves easily in water to give a neutral reaction.

References

Merck Index 3424 Kleeman & Engel p. 335 I.N. p., 359

Hartmann, M. and Bosshard, W.; U.S. Patent 2,581,336; January 8, 1952; assigned to Ciba Pharmaceutical Products, Inc.

DOMPERIDONE

Therapeutic Function: Antiemetic

Chemical Name: 5-Chloro-1-[1-[3-(2,3-dihydro-2-oxo-1H-benzimidazol-1-yl)-propyl] -4-piperidinyl] -1,3-dihydro-2H-benzimidazol-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57808-66-9

Trade Name	Manufacturer	Country	Year Introduced
Motilium	Cilag	Switz,	1979
Motilium	Janssen	W. Germany	1979
Motilium	Janssen	Italy	1981
Motilium	Janssen	U.K.	1982
Nauselin	Kyowa Hakko	Japan	1982
Motilium	Janssen-Le Brun	France	1983
Euciton	Roux-Ocefa	Argentina	
Moperidona	Sidus	Argentina	_

Raw Materials

1-(3-Chloropropyl)-1,3-dihydro-2H-benzimidazol-2-one 5-Chloro-1, 3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one

Manufacturing Process

A mixture of 2.3 parts of 1-(3-chloropropyl)-1,3-dihydro-2H-benzimidazol-2-one, 2.5 parts of 5-chloro-1, 3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one, 3,2 parts of sodium carbonate, 0.1 part of potassium iodide and 80 parts of 4-methyl-2-pentanone is stirred and refluxed for 24 hours. The reaction mixture is cooled to room temperature and water is added. The undissolved product is filtered off and purified by column chromatography over silica gel using a mixture of trichloromethane and 10% methanol as eluent. The pure fractions are collected and the eluent is evaporated. The residue is crystallized from 4-methyl-2-pentanone. The product is filtered off and recrystallized from a mixture of N,N-dimethylformamide and water, yielding 1.3 parts (30%) of 5-chloro-1-[1-[3-(1,3-dihydro-2-oxo-2H-benzimidazol-1-yl)propyl] -4-piperidinyl] -1,3-dihydro-2H-benzimidazol-2-one; MP 242.5°C.

References

Merck Index 3425 DFU 2 (10) 661 (1977) Kleeman & Engel p. 335 OCDS Vol. 3 p. 174 (1984) DOT 17 (1) 19 (1981) I.N. p. 360

Vanderberk, J., Kennis, L.E.J., Van der Aa, M.J.M.C. and Van Heertum, A.H.M.T.; U.S. Patents 4,066,772; January 3, 1978; 4,110,333; August 29, 1978; 4,126,687; November 21, 1978; 4,126,688; November 21, 1978; 4,160,836; July 10, 1979 and 4,175,129; November 20, 1979; all assigned to Janssen Pharmaceutica NV (Belgium)

DOXAPRAM HYDROCHLORIDE

Therapeutic Function: Respiratory stimulant

Chemical Name: 1-ethyl-4-(2-morpholinoethyl)-3,3-diphenyl-2-pyrrolidinone hydrochloride

monohydrate

Common Name: -

Structural Formula:

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Chemical Abstracts Registry No.: 7081-53-0; 309-29-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dopram	Robins	U.S.	1965
Doxapril	Farmalabor	Italy	1967
Dopram	Martinet	France	1969
Dopram	Robins	U.K.	1971
Dopram	Kissei	Japan	1976
Dopram	Brenner	W. Germany	1977
Stimulexin	Robins	U.S.	_

Raw Materials

Sodium amide Diphenylacetonitrile 1-Ethyl-3-chloropyrrolidine Sulfuric acid Morpholine Hydrogen chloride

Manufacturing Process

- (A) Preparation of α -(1-Ethyl-3-Pyrrolidyl)- α , α -Diphenylacetonitrile: A suspension of the sodium salt of diphenylacetonitrile was formed by the dropwise addition at 50°C of 193 grams (1.0 mol) of diphenylacetonitrile to a stirred suspension of 43 grams (1.1 mols) of sodium amide in 1 liter of dry toluene. After addition was complete, the mixture was refluxed for 4 hours and then, to the refluxing mixture, 1.0 mol of 1-ethyl-3-chloropyrrolidine was added at a rapid dropwise rate with continuous stirring. After addition was complete, stirring and refluxing were continued for 3 hours. The mixture was then cooled and extracted with one normal hydrochloric acid. The aqueous layer together with an oil layer were separated, made basic with dilute sodium hydroxide, and extracted with ether. The ethereal solution was dried over sodium sulfate and concentrated and the residue was distilled in vacuo. The material crystallized from a 4:1 ethanol-water mixture.
- (B) Preparation of 4-(β-Chloroethyl)-3,3-Diphenyl-1-Ethyl-2-Pyrrolidinone: A solution of α,α-diphenyl-α-(1-ethyl-3-pyrrolidyl)-acetonitrile in 70% sulfuric acid was heated at 130°-140°C for 48 hours, poured onto ice, made basic with sodium hydroxide, and extracted with chloroform. The chloroform solution was acidified with hydrogen chloride gas, dried over sodium sulfate and concentrated. The residue was refluxed in 500 ml of thionyl chloride for 3 hours; the resulting solution was concentrated in vacuo; and the residue was crystallized from isopropyl ether.
- (C) Preparation of Doxapram Hydrochloride [3,3-Diphenyl-1-Ethyl-4-(2-Morpholino-Ethyl)-2-Pyrrolidinone Hydrochloride Monohydrate]: A solution of 25 grams (0.076 mol) of 4-(2-chloroethyl)-3,3-diphenyl-1-ethyl-2-pyrrolidinone and 13.3 grams (0.153 mol) of morpholine in 500 ml of absolute ethanol was heated at 95°-120°C for 21 hours in a closed system and concentrated in vacuo. The residue was dissolved in 300 ml of two normal hydrochloric acid and extracted with 150 ml of ethyl acetate. A solid crystallized (13 g) during the extraction and was removed by filtration. MP 217°-219°C. The acid extracts were made basic with sodium hydroxide and extracted with ether, and the ether solution was concentrated in vacuo and the residue was suspended in six normal hydrochloric acid. Additional crystalline product formed and was recrystallized from two normal hydrochloric acid. Yield, 10 grams; MP 217°-219°C. Total yield, 23 grams (70%).

References

Merck Index 3433 Kleeman & Engel p. 337 PDR p. 1456 OCDS Vol. 2 p. 236 (1980) DOT 2 (2) 55 (1966) I.N. p. 362 **REM p. 867**

Lunsford, C.D. and Cale, A.D. Jr.; U.S. Patent 3,192,230; June 29, 1965; assigned to A.H. Robins Company, Inc.

DOXEPIN HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: N,N-dimethyl-3-dibenz[b,e] oxepin-11-(6H)-ylidene-1-propanamine hydro-

chloride

Common Name: -

Structural Formula:

CHCH2CH2N (CH3)2 (base)

Chemical Abstracts Registry No.: 1229-29-4; 1668-19-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sinequan	Pfizer	U.S.	1969
Sinequan	Pfizer	U.K.	1969
Aponal	Boehr./Mann.	W. Germany	1970
Sinequan	Pfizer	W. Germany	1970
Sinequan	Pfizer	Italy	1971
Sinequan	Pfizer	France	1971
Adapin	Pennwalt	U.S.	1973
Doksapan	Eczacibasi	Turkey	_
Dolat	Yurtoglu	Turkey	_
Doxal	Orion	Finland	
Doxedyn	Medica	Finland	_
Gilex	Ikapharm	israel	_
Novoxapin	Ester	Spain	_
Quitaxon	Phartec	France	-
Toruan	Boehr./Mann.	_	_

Raw Materials

1,3-Dibromopropane Dimethylamine 6,11-Dihydrodibenz-(b,e)oxepin-11-one Triphenyl phosphine Hydrogen bromide Butyl lithium

Manufacturing Process

(A) Preparation of 3-Bromopropyltriphenylphosphonium Bromide: Triphenylphosphine, 1.0 kg, and 770 grams of 1,3-dibromopropane are dissolved in 2.0 liters of xylene and the solution is stirred under a nitrogen atmosphere at 130°C. After 20 hours the mixture is cooled, and the crystalline product, which precipitates, is collected and washed with 20 liters of benzene. After drying in vacuo the product weighs 1,578 grams, MP 229°-230°C; titration for bromide ion: Found, 17.1%; calculated, 17.2%.

(B) Preparation of 3-Dimethylaminopropyltriphenylphosphonium Bromide Hydrobromide: A solution of 595 grams of anhydrous dimethylamine and 1,358 grams of 3-bromopropyltriphenylphosphonium bromide in 4 liters of ethanol is warmed to 70°C until solution is complete and the solution then is allowed to stand at room temperature for 20 hours. Volatile components are removed by distillation in a vacuum and the residue is suspended in 2.0 liters of ethanol and is redistilled to remove excess amine. The residue is dissolved in 3.0 liters of warm ethanol and gaseous hydrogen bromide is passed into the solution until the mixture is acidic. After filtration the solution is concentrated to a volume of 3.0 liters, is cooled, whereupon the product precipitates, and the precipitate is collected; it weighs 1,265 grams, MP 274°-281°C. Recrystallization from ethanol raises the MP to 280.5°-282.5°C. Bromide ion titration: Found, 31.2%; calculated 31.3%.

(C) Preparation of Doxepin: 1.530 grams of the product from step (B) is suspended in 4.5 liters dry tetrahydrofuran and 6.0 mols of butyl lithium in heptane is added during 1 hour. After an additional 30 minutes, 483 grams of 6,11-dihydrodibenz-(b,e)oxepin-11-one, prepared as described in Belgian Patent 641,498, is added to the deep red solution and the reaction was maintained at reflux for 10 hours. Water, 500 ml, is added at room temperature and the solvent is removed in vacuo. The crude residue is treated with 10% hydrochloric acid until acidic (pH 2) and then 1.5 liters benzene is added. After stirring, the mixture separates into 3 phases (an insoluble hydrochloride salt product phase, an aqueous phase and an organic phase).

The benzene layer is removed by decantation and the remaining mixture is rendered basic with 10% sodium hydroxide solution and is extracted with three 1,500 ml portions of benzene. The benzene extracts are washed, then dried with anhydrous sodium sulfate and concentrated in a vacuum leaving a residue of 1,530 grams, gas and thin layer chromatography analysis show this to be a cis/trans mixture (approx. 4:1) of 11-dimethylaminopropylidene-6,11-dihydrodibenz-(b,e)oxepin (90% yield). This mixture has substantially more activity pharmacologically than the cis/trans mixture obtained by the Grignard route disclosed in the Belgian Patent 641,498. This base is then converted to the hydrochloride with HCl.

References

Merck Index 3434 Kleeman & Engel p. 338 PDR pp. 1397, 1530 OCDS Vol. 1 p. 404 (1977) DOT 6 (2) 53 (1970) I.N. p. 362 REM p. 1094

Chas. Pfizer & Co., Inc.; British Patent 1,085,406; October 4, 1967 Bloom, B.M. and Tretter, J.R.; U.S. Patent 3,420,851; January 7, 1969; assigned to Chas.

Pfizer & Co., Inc.

Stach, K.; U.S. Patent 3,438,981; April 15, 1969; assigned to C.F. Boehringer & Soehne GmbH (Germany)

DOXORUBICIN

Therapeutic Function: Cancer chemotherapy

Chemical Name: (8S-cis)-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-7,8,9,10tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-naphthacenedione

Common Name: 14-Hydroxydaunomycin

Structural Formula:

Chemical Abstracts Registry No.: 23214-92-8; 25316-40-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Adriblastina	Farmitalia	Italy	1971
Adriamycin	Farmitalia	U.K.	1971
Adriblastina	Farmitalia	W. Germany	1972
Adriablastine	Roger Bellon	France	1974
Adriacin	Kyowa Hakko	Japan	1974
Adriamycin	Adria	U.S.	1974

Raw Materials

Glucose

Bacterium Streptomyces peucetius var. caesius

Manufacturing Process

Two 300 ml Erlenmeyer flasks, each containing 60 ml of the following culture medium for the vegetative phase, were prepared: peptone 0.6%; dry yeast 0.3%; hydrated calcium carbonate 0.2%; magnesium sulfate 0.01%; the pH after sterilization was 7.2. Sterilization has been effected by heating in autoclave to 120°C for 20 minutes. Each flask was inoculated with a quantity of mycelium of the mutant F.I.106 (the new strain thus obtained has been given the code F.I.106 of the Farmitalia microbiological collection and has been called Streptomyces peucetius var. caesius) corresponding to \(\frac{1}{5} \) of a suspension in sterile water of the mycelium of a 10 day old culture grown in a big test tube on the following medium: saccharose 2%; dry yeast 0.1%; bipotassium phosphate 0.2%; sodium nitrate 0.2%; magnesium sulfate 0.2%; agar 2%; tap water up to 100%. The flasks were then incubated at 28°C for 48 hours on a rotary shaker with a stroke of 30 mm at 220 rpm.

2 ml of a vegetative medium thus grown were used to inoculate 300 ml Erlenmeyer flasks with 60 ml of the following medium for the productive phase: glucose 6%; dry yeast 2.5%; sodium chloride 0.2%; bipotassium phosphate 0.1%; calcium carbonate 0.2%; magnesium sulfate 0.01%; ferrous sulfate 0.001%; zinc sulfate 0.001%; copper sulfate 0.001%; tap water to 100%. The glucose was previously sterilized separately at 110°C for 20 minutes. The resulting pH was 7. This was sterilized at 120°C for 20 minutes and incubated at 28°C under the same conditions by stirring, as for the vegetative media.

The maximum concentration of the antibiotic was reached on the 6th day of fermentation. The quantity of adriamycin produced at this time corresponds to a concentration of 15 $\mu q/mI$.

References

Merck Index 3435 Kleeman & Engel p. 338 PDR p. 557

DOT 8 (4) 132 (1972) & 16 (5) 170 (1980)

I.N.p. 362

REM p. 1149

Arcamone, F., Cassinelli, G., di Marco, A. and Gaetani, M.; U.S. Patent 3,590,028; June 29, 1971; assigned to Societa Farmaceutici Italia, Italy

Smith, T.H., Fujiwara, A.N., Henry, D.W. and Lee, W.W.; U.S. Patent 4,012,448; March 15, 1977; assigned to Stanford Research Institute

Arcamone, F., di Marco, A. and Penco, S.; U.S. Patents 4,058,519; November 15, 1977; and 4,098,798; July 4, 1978; both assigned to Societa Farmaceutici Italia S.p.A. (Italy)

DOXYCYCLINE

Therapeutic Function: Antibiotic

Chemical Name: $4\alpha S$ -(dimethylamino)-1,4,4 $a\alpha$,5,5 $a\alpha$,6,11,12a-octahydro-3,5a,10,12,12 $a\alpha$ -

pentahydroxy-6α-methyl-1,11-dioxo-2-naphthacenecarboxamide

Common Name: 6-deoxy-5-oxytetracycline

Structural Formula:

Chemical Abstracts Registry No.: 564-25-0

Trade Name	Manufacturer	Country	Year Introduced
Cyclidox	Protea	A ustralia	-
Doxitard	Mack	W. Germany	-
Doxy	Wolff	W. Germany	_
Doxy 200	Engelhard	W. Germany	_
Doxylin	A.L.	Norway	-
Doxy-Puren	Klinge	W. Germany	_
Doxyremed	Remed Econerica	W. Germany	
Dumoxin	Dumex	Denmark	_
Dura Doxal	Durachemie	W. Germany	
Geobiotico	Asia	Spain	_
Hiramicin	Pliva	Yugoslavia	
Liviatin	Juste	Spain	_
Medomycin	Medica	Finland	_
Mespatin	Merckle	W. Germany	_
Novelciclina	Lifasa	Spain	_
Tenutan	Chinoin	Hungary	-

Raw Materials

Methacycline Hydrogen

Manufacturing Process

Hydrogen was introduced into a standard hydrogenation vessel containing 10 grams 6deoxy-6-demethyl-6-methylene-5-oxytetracycline hydrochloride (methacycline), 150 ml methanol and 5 grams 5% rhodium on carbon. The pressure was maintained at 50 psi while agitating at room temperature for 24 hours. The catalyst was then filtered off, the cake washed with methanol and the combined filtrates were evaporated to dryness. The dry solids were slurried in ether, filtered and the cake dried. The resulting solids exhibited a bioactivity of 1,345 units per mg versus K. pneumoniae.

Water (35 ml) was employed to dissolve 8.5 grams of the above product and the pH was adjusted to 6.0 with triethylamine, sufficient dimethyl formamide being added to maintain the solids in solution. Cellulose powder (2 kg) was slurried in water-saturated ethyl acetate and packed into a tower of about 31/2 inches diameter, to a height of 3 ft. The product solution was then chromatographed over this column, developing with about 12 liters watersaturated ethyl acetate. The first product fraction to come from the tower yielded 1.85 grams 6-epi-6-deoxy-5-oxytetracycline. The next fraction contained 2.0 grams of 6-deoxy-6-demethyl-6-methylene-5-oxytetracycline. The third fraction yielded 0.8 grams 6-deoxy-5-oxytetracycline.

References

Merck Index 3436 Kleeman & Engel p. 339

PDR p. 1424

DOT 3 (3) 114 (1967) & 4 (3) 102 (1968)

I.N. p. 363

REM p. 1205

Blackwood, R.K., Rennhard, H.H., Beereboom, J.J. and Stephens, C.R. Jr.; U.S. Patent 3,200,149; August 10, 1965; assigned to Chas. Pfizer & Co., Inc.

DROMOSTANOLONE PROPIONATE

Therapeutic Function: Cancer chemotherapy

Chemical Name: 2α -methyl- 17β -(1-oxopropoxy)- 5α -androstan-3-one

Common Name: 2-methyldihydrotestosterone propionate

Structural Formula:

Chemical Abstracts Registry No.: 521-12-0; 58-19-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Drolban	Lilly	U.S.	1961
Masterone	Recordati	Italy	1962
Masterid	Gruenenthal	W. Germany	1969

Trade Name	Manufacturer	Country	Year Introduced
Permastril	Cassenne	France	1 96 9
Masteril	Syntex	U.K.	_
Mastisol	Shionogi	Japan	_
Metormon	1.F.L.	Spain	_

Raw Materials

Ethyl formate Dihydrotestosterone Propionic anhydride Sodium hydride

Manufacturing Process

A suspension of 10 grams of dihydrotestosterone in 500 cc of anhydrous benzene free of thiophene was mixed with 10cc of ethyl formate and 3 grams of sodium hydride and the mixture was stirred for 5 hours under an atmosphere of nitrogen and at a temperature of approximately 25°C. The resulting suspension was filtered, the resulting mixture of the sodium salt of the hydroxymethylene compound and the excess of sodium hydride was washed with benzene and dried. This mixture was slowly added to a vigorously stirred solution of 20 cc of concentrated hydrochloric acid in 500 cc of water, and the stirring was continued for 30 minutes at the end of which the precipitate was collected and well washed with distilled water. After drying in vacuo, there was obtained 9.7 grams of 2hydroxymethylene-dihydrotestosterone.

A mixture of 1 gram of 2-hydroxymethylene-dihydrotestosterone, 10 cc of pyridine and 2 cc of propionic anhydride was allowed to react at room temperature for 16 hours and then poured into water. The resulting suspension was heated for 1 hour on the steam bath to hydrolyze the excess of propionic anhydride, cooled and extracted with methylene dichloride. The extract was consecutively washed with dilute hydrochloric acid, sodium bicarbonate solution and water, dried over anhydrous sodium sulfate and evaporated to dryness under vacuum. There was thus obtained the dipropionate of 2-hydroxymethylenedihydrotestosterone which was treated with hydrogen, in methanol solution.

When the uptake of hydrogen ceased, the catalyst was filtered and the solution was evaporated to dryness under vacuum. The residue was dissolved in a mixture of benzene-hexane, transferred to a chromatographic column with neutral alumina and the product was eluted with mixtures of benzene-hexane, gradually increasing the proportion of benzene in the mixture. Crystallization of the eluates from acetone-hexane yielded the propionate of 2αmethyldihydrotestosterone.

References

Merck Index 3443 Kleeman & Engel p. 342 OCDS Vol. 1 p. 173 (1977) I.N. p. 366

REM p. 998

Ringold, H.J. and Rosenkranz, G.; U.S. Patent 2,908,693; October 13, 1959; assigned to Syntex SA, Mexico

Ringold, H.J. and Rosenkranz, G.; U.S. Patent 3,118,915; January 21, 1964; assigned to Syntex Corporation, Panama

DROPERIDOL

Therapeutic Function: Tranquilizer

Chemical Name: 1-[1-[4-(4-fluorophenyl)-4-oxobutyl]-1,2,3,6-tetrahydro-4-pyridinyl]-1,3-dihydro-2H-benzimidazol-2-one

Common Name: Dehydrobenzperidol

Structural Formula:

Chemical Abstracts Registry No.: 548-73-2

Trade Name	Manufacturer	Country	Year Introduced
Dehydrobenzperidol	Janssen	W. Germany	1963
Sintodian	Carlo Erba	italy	1965
Droleptan	Janssen	U.K.	1965
Droleptan	Janssen	France	1966
Inapsine	Mc Neil	U.S.	1970
Thalamonal	Sankyo	Japan	1972
Dridol	Leo	Sweden	_
Halkan	Thekan	France	_
Leptofen	Erba	Italy	
Neurolidol	Abic	Israel	

Raw Materials

γ-Chioro-4-fluorobutyrophenone

1-(1,2,3,6-Tetrahydro-4-pyridyl)-2-benzimidazolinone

Manufacturing Process

A mixture of 10 parts of γ -chloro-4-fluorobutyrophenone, 5.5 parts of 1-(1,2,3,6-tetrahydro-4-pyridyl)-2-benzimidazolinone, 4 parts of sodium carbonate, and 0.1 part of potassium iodide in 176 parts of 4-methyl-2-pentanone is stirred and refluxed for 64 hours. The cooled reaction mixture is filtered and the solvent is evaporated from the filtrate to leave an oily residue which is dissolved in toluene. The toluene solution is filtered and the solvent is evaporated. The resultant residue is recrystallized from a mixture of 32 parts of ethyl acetate and 32 parts of diisopropyl ether to give 1-[1-[(4-fluorobenzoyl)propyl]-1,2,3,6-tetrahydro-4-pyridyl]-2-benzimidazolinone hydrate melting at about 145°-146.5°C.

References

Merck Index 3444 Kleeman & Engel p. 341 PDR p. 954 OCDS Vol. 1 p. 308 (1977) DOT 9 (6) 235 (1973) I.N. p. 365

REM p. 1087

Janssen, P.A.J. and Gardocki, J.F.; U.S. Patent 3,141,823; July 21, 1964; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

Janssen, P.A.J.; U.S. Patent 3,161,645; December 15, 1964; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

DROPRENILAMINE HCI

Therapeutic Function: Coronary vasodilator

Chemical Name: N-(2-Cyclohexyl-1-methylethyl)-y-phenylbenzene-propanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57653-27-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Vaicor	Maggioni	Italy	1979

Raw Materials

3.3-Diphenylpropylamine Cyclohexylacetone Hydrogen

Manufacturing Process

The flask of a Parr hydrogenation apparatus was charged with 10.5 g of 3,3-diphenylpropylamine, 7.7 g of cyclohexylacetone, 50 ml methanol and 150 mg of platinum dioxide. Hydrogen at a pressure of 3 atmospheres was introduced and the mixture stirred. Upon absorption of the theoretical amount of hydrogen, stirring is discontinued, the catalyst is filtered off and the solution is evaporated to dryness. The residue is taken up with ether and the hydrochloride is precipitated with HCl in alcoholic solution. The product, as collected on a filter and washed with ether, is recrystallized from isopropanol. Yield: 17 g (92.5% of theory). MP: 175°C to 177°C.

References

Merck Index 3445 DFU 2 (11) 720 (1977) OCDS Vol. 3 p. 47 (1984) I.N. p. 366

Carissimi, M., Ravenna, F. and Picciola, G.; British Patent 1,461,240; January 13, 1977; assigned to Maggioni & Co. S.p.A. (Italy)

DYCLONINE HYDROCHLORIDE

Therapeutic Function: Topical anesthetic

Chemical Name: 1-(4-butoxyphenyl)-3-(1-piperidinyl)-1-propanone hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 536-43-6; 586-60-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dyclone	Dow	U.S.	1956
Resolve	Merrell Dow	U.S.	1980
Epicain Ace	S.S. Pharm.	Japan	-
Epirocain	Eisai	-	-

Raw Materials

p-n-Butoxyacetophenone Paraformaldehyde Piperidine hydrochloride Hydrogen chloride

Manufacturing Process

A mixture of 17.6 grams of p-n-butoxyacetophenone, 12.1 grams of piperidine hydrochloride, 4.5 grams paraformaldehyde, 0.25 cc concentrated hydrochloric acid, 52.5 cc nitroethane, 7.5 cc of 95% ethanol, and 15 cc of toluene was boiled under reflux for one hour, removing water formed in the reaction by means of a condensate trap. The mixture was then cooled. The crystals which formed were collected by filtration, washed with anhydrous ether and recrystallized from methyl ethyl ketone. The crystals thus obtained, which melted at 174°-175°C, were shown by analysis to be 4-n-butoxy-beta-piperidinopropiophenone hydrochloride.

References

REM p. 1056

Merck Index 3459 Kleeman & Engel p. 343 PDR p. 592 I.N. p. 369

Bockstahler, E.R.; U.S. Patent 2,771,391; November 20, 1956; assigned to Allied Laboratories, Inc.

Florestano, H.J., Jeffries, S.F., Osborne, C.E. and Bahler, M.E.; U.S. Patent 2,868,689; January 13, 1959; assigned to Allied Laboratories, Inc.

DYDROGESTERONE

Therapeutic Function: Progestin

Chemical Name: 9β , 10α -pregna-4,6-diene-3,20-dione

Common Name: 10α-isopregnenone; 6-dehydro-retro-progesterone

Structural Formula:

Chemical Abstracts Registry No.: 152-62-5

Trade Name	Manufacturer	Country	Year Introduced
Duphaston	Duphar	U.K.	1961
Duphaston	Duphar	France	1962
Duphaston	Philips Roxane	U,S.	1962
Dufaston	I.S.M.	Italy	1963
Duphaston	Thomae Duphar	W. Germany	1966
Gynorest	Mead Johnson	U.S.	1968
Duphaston	Ethnor	Australia	_
Terolut	Ferrosan	Denmark	_

Raw Materials

Retroprogesterone Chloranil

Manufacturing Process

A solution of 7.5 grams of retroprogesterone in 500 ml of freshly distilled tertiary butyl alcohol was refluxed with 12.75 grams of finely powdered chloranil, while stirring, for 5 hours in a nitrogen atmosphere. After cooling, 2 liters of water were added and extraction was performed three times with 200 ml of methylene dichloride. The combined extracts were then diluted with 1 liter of petroleum ether (40°-60°C) washed successively with 100 ml of diluted Na₂SO₄, four times with 75 ml of 1 N NaOH, and then water to neutral reaction.

By drying this solution on Na_2SO_4 and evaporating to dryness (last part in vacuo) 3.7 grams of crystalline residue was obtained. This residue was then dissolved in benzene. Filtration in benzene filtered through 35 grams of alumina (according to Brockmann was done and then the alumina was eluted with benzene. Evaporation of the benzene yielded 3.11 grams of crystalline residue. By crystallization with 15 ml of acetone at room temperature (at lower temperatures a by-product crystallized out) 900 mg of crystals, with a melting point of 165° - 170° C were obtained. Transfer of the acetone mother liquor into a mixture of ethanol and hexane yielded 1.7 grams of a solid substance with a melting point of 130° to 145° C. This solid was then recrystallized with acetone at room temperature, yielding 600 mg of a solid with a melting point of 166° to 171° C. The two fairly pure fractions (600 mg and 900 mg) yielded, after crystallization with a mixture of acetone and hexane, finally 1.0 gram of 6-dehydroretroprogesterone, melting point 169° to 170° C. From the mother liquors an additional fraction of 0.44 gram with a melting point of 168° to 169° C was obtained.

References

Merck Index 3460
Kleeman & Engel p. 343
I.N. p. 369
Reerink, E.H., Westerhof, P. and Scholer, H.F.L.; U.S. Patent 3,198,792; August 3, 1965;
assigned to North American Philips Company, Inc.

DYPHYLLINE

Therapeutic Function: Smooth muscle relaxant

Chemical Name: 7-(2,3-Dihydroxypropyl)-3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione

Common Name: (1,2-Dihydroxy-3-propyI)theophylline; diprophylline

Structural Formula:

Chemical Abstracts Registry No.: 479-18-5

Trade Name	Manufacturer	Country	Year Introduced
Neothylline	Lemmon	U.S.	1948
Neutraphylline	Houde	France	1949
Droxine La	Dermik	U.S.	1979
Diprophyline	Wakodo Seiyaku	Japan	1981
Oxystat	Hyrex	U.S.	1983
AFI-Phyllin	A.F.I.	Norway	_
Aristophyllin	Kwizda	Austria	_
Astamasit	Showa	Japan	_
Asthmolysin	Kade	W. Germany	_
Astrophyllin	Astra	_	_
Austrophyllin	Petrasch	Austría	_
Coeurophylline	Barlow Cote	Canada	_
Corphyllin	Nippon Shinyaku	Japan	_
Difilina	Liade	Spain	_
Dilor	Savage	U.S.	-
Diasthm ol	Trima	Israel	_
Dyflex	Econo-Rx	U.S.	-
Diurophylline	Monal	France	_
Dihydrophylline	Tokyo Hosei	Japan	-
Lufyllin	Mallinckrodt	U.S.	-
Neophyllin-M	Eisai	Japan	_
Neospect	Lemmon	U.S.	-
Neothylline	Lemmon	U.S.	_
Neo-Vasophylline	Katwijk	Neth.	_
Prophyllen	Streuli	Switz.	_
Protophylline	Rougier	Canada	_
Rominophyllin	Grelan	Japan	
Silbephylline	Berk	U.K.	_
Sintofillina	Sintetica	Switz.	_
Solufyilin	Pharmacia	Sweden	_
Theourin	Kanto	Japan	_
Thefylan	Pharmacia	Sweden	-

Raw Materials

Theophylline Sodium hydroxide

1-Chloro-2,3-dihydroxypropane

Manufacturing Process

180 grams of theophylline is dissolved in 500 cc of boiling water. To this solution is added 40 grams of sodium hydroxide or 56 grams of potassium hydroxide slowly and with constant stirring.

When solution is complete, 120 grams of 1-chloro-2,3-dihydroxypropane is slowly added. The thus provided mixture is brought to boiling and heating is continued until a temperature of 110°C is reached.

The resultant liquid is evaporated under reduced pressure to remove all traces of water. The resulting syrupy liquid is allowed to stand with occasional stirring until crystallization takes place. The compound is purified by recrystallization from alcohol. The product melts at 155°157°C.

References

Merck Index 3465
Kleeman & Engel p. 329
PDR pp. 1603, 1877
I.N. p. 350
REM p. 872
Jones, J.W. and Maney, P.V.; U.S. Patent 2,575,344; November 20, 1951; assigned to the State of Iowa

ECHOTHIOPATE IODIDE

Therapeutic Function: Cholinergic (ophthalmic)

Chemical Name: 2-[(diethoxyphosphinyl)thio]-N,N,N-trimethylethanaminium iodide

Common Name: O.O-diethyl-S-β-dimethylaminoethyl thiophosphate methyl iodide

Structural Formula:

$$\begin{bmatrix} c_2 H_5 0 & 0 & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ c_2 H_5 0 & & & & & & & \\ \end{bmatrix} P - 8CH_2 CH_2 \mathring{N} (CH_3)_3$$

Chemical Abstracts Registry No.: 513-10-0

Trade Name	Manufacturer	Country	Year Introduced
Phospholine Iodide	Ayerst	U.S.	1959
Phospholine lodide	Promedica	France	1966
Echiodide	Alcon	U.S.	1977
Phospholine lodide	Santen	Japan	_
Phospholine lodide	Ayerst	U.K.	_
Phospholine lodide	Chinoin	italy	-

Raw Materials

β-Dimethylaminoethyl merceptan hydrochloride Sodium Diethylchlorophosphate Methyl iodide

Manufacturing Process

The reaction is carried out in an atmosphere of nitrogen. To a solution of 4.60 grams sodium (0.20 mol) in 60 cc of methanol is added 14.17 grams β -dimethylaminoethyl mercaptan hydro chloride (0.10 mol), rinsed in with 10 cc methanol. Solvent is removed at a water-pump vacuum while blowing with a slow stream of nitrogen to $100^{\circ}\text{C}/20$ mm. To the residue suspended in 150 cc benzene and cooled in an ice bath is added 17.25 grams diethylchlorophosphate (0.10 mol) in 3 portions at 10-minute intervals. After each addition, the temperature increases from about 4° to about 14°C and then falls. The mixture is stirred in an ice bath for one-half hour and while warming to room temperature during 2 hours is washed with 35 and 5 cc portions of water with two 10 cc portions of saturated brine and is dried over calcium sulfate and filtered.

After removal of solvent by distillation under reduced pressure to 55°C/20 mm, the residue is 23.0 grams crude base (95% theory) as a pale yellow liquid. A sample of the crude base distills with some decomposition at 105° to 112°C/0.8 mm.

A sample of distilled base in cold isopropanol is treated with excess methyl iodide, left at room temperature overnight, diluted with 5 volumes of ethyl acetate and filtered from the methiodide salt. This is purified by crystallization from mixtures of isopropanol and ethyl acetate, filtering hot to remove an impurity of low solubility. The pure methiodide is obtained as a white solid, MP 124° to 124,5°C, containing 99 mol percent thiol isomer.

References

Merck Index 3481 Kleeman & Engel p. 345 PDR p. 632 I.N. p. 371 REM p. 898

Fitch, H.M.; U.S. Patent 2,911,430; November 3, 1959; assigned to Campbell Pharmaceuticals, inc.

ECONAZOLE NITRATE

Therapeutic Function: Antifungal

Chemical Name: 1-(2-[(4-chlorophenyl)methoxy]-2-(2,4-dichlorophenyl)ethyl)-IH-imidazole

nitrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24169-02-6; 27220-47-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pevaryl	Citag Chemie	France	1976
Pevaryl	Cilag	Italy	1978
Ecostatin	Fair Labs	U.K.	1978
Pevaryl	Cilag Chemie	W. Germany	1978
Skilar	Italchemie	Italy	1979
Paravale	Otsuka	Japan	1981
Spectazole	Ortho	U.S.	1983
Epi-Pevaryl	Cilag	W. Germany	
Gyno-Pevaryl	Cilag	W. Germany	_
Ifenec	Italfarmaco	Italy	_
Micoespec	Centrum	Spain	
Micofugal	Ion	Italy	-
Micogyn	Crosara	Italy	-
Mycopevaryl	Cilag	_	_

Raw Materials

α-(2,4-Dichlorophenyl)-imidazole-1-ethanoi Sodium hydride

p-Chlorobenzyl chloride Nitric acid

Manufacturing Process

A suspension of 10.3 parts of α -(2.4-dichlorophenyl)-imidazole-1-ethanol and 2.1 parts of sodium hydride in 50 parts of dry tetrahydrofuran is stirred and refluxed for 2 hours. After this reaction-time, the evolution of hydrogen is ceased. Then there are added successively 60 parts dimethylformamide and 8 parts of p-chlorobenzylchloride and stirring and refluxing is continued for another two hours. The tetrahydrofuran is removed at atmospheric pressure. The dimethylformamide solution is poured onto water. The product, 1-[2,4-dichloro- β -(p-chlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed with water, dried, filtered and evaporated in vacuo. From the residual oily free base, the nitrate salt is prepared in the usual manner in 2-propanol by treatment with concentrated nitric acid, yielding, after recrystallization of the crude solid salt from a mixture of 2-propanol, methanol and diisopropylether, 1-[2,4-dichloro-β-(p-chlorobenzyloxy)phenethyl] imidazole nitrate; MP 162°C.

References

Merck Index 3482 Kleeman & Engel p. 345 PDR p. 1309 OCDS Vol. 2 p. 249 (1980) DOT 11 (8) 310 (1975) I.N. p. 371 REM p. 1227

Godefroi, E.F. and Heeres, J.; U.S. Patent 3,717,655; February 20,1973; assigned to Janssen Pharmaceutica NV, Belgium

ECTYLUREA

Therapeutic Function: Sedative

Chemical Name: (Z)-N-(Aminocarbonyl)-2-ethyl-2-butenamide

Common Name: Ethylcrotonylurea

Structural Formula: H_2 NCONHCOC — CHCH3

CH,CH,

Chemical Abstracts Registry No.: 95-04-5

Trade Name	Manufacturer	Country	Year Introduced
Nostyn	Ames	U.S.	1956
Levanil	Upjohn	U.S.	1959
Cronil	Farmigea	Italy	_
Distasol	Locatelli	Italy	-
Ektyl	A.C.O.	Sweden	_
Neuroprocin	Minerva-Chemie	Neth.	_

Raw Materials

2-Bromo-2-ethylbutyryl urea (carbromal) Silver oxide

Manufacturing Process

54 g of carbromal (2-bromo-2-ethylbutyryl-urea) in 600 cc of isopropanol was stirred and refluxed for 3 hours with 27.8 g of anhydrous silver oxide. The reaction mixture was filtered and the silver residue was extracted with 100 cc of boiling isopropanol. The filtered and dried solids which separated weighed 22.5 g and melted at 189°C to 190.5°C. Concentration of the filtrate yielded an additional 3.3 g of product which melted at 160°C to 170°C. These two crops were separately obtained as white needles by crystallization from alcohol and exhibited slight solubility in water. The first crop gave 21.7 g of 2-ethyl-cis-crotonylurea with a melting point of 191°C to 193°C, and the second crop gave 0.9 g with a melting point of 191°C to 193°C for a total yield of 42.4 g or 63% of the theoretical.

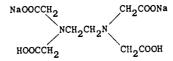
References

Merck Index 3484

OCDS Vol. 1 p. 221 (1977)

I.N. p. 372

Faucher, O.E.; U.S. Patents 2,854,379; September 30, 1958; and 2,931,832; April 5, 1960; both assigned to Miles Laboratories, Inc.


EDETATE DISODIUM

Therapeutic Function: Pharmaceutic aid (chelating agent)

Chemical Name: N,N'-1,2-Ethanediylbis[N-(carboxymethyl)glycine] -disodium salt

Common Name: EDTA disodium

Structural Formula:

Chemical Abstracts Registry No.: 139-33-3

Trede Name	Manufacturer	Country	Year Introduced
Endrate Disodium	Bersworth	U.S.	1959
Cheladrate	Pharmex	U.S.	_
Diso-Tate	O'Neal, Jones	U.S.	
Idranal	Riedel de Hahn	W. Germany	_
Komplexon III	Chemische Fabrik	Switz.	_
Uni Wash	United	U.S.	_

Raw Materials

Ethylene diamine Sodium cyanide Formaldehyde Sodium hydroxide

Manufacturing Process

10 mols of ethylene diamine as a 30% aqueous solution and 4 mols of solid caustic soda are placed in a steam heated kettle supplied with an agitator. 8 mols of sodium cyanide as a concentrated water solution (about 30%) are added and the solution heated to 60°C. About a 10 inch vacuum is applied to bring the liquid to incipient boiling. Formaldehyde (7.5 mols of 37% to 40% aqueous solution) is slowly added, the temperature being held at 60°C, and the

solution vigorously stirred. Then, when the evolution of ammonia has substantially stopped, an additional 8 mols of sodium cyanide, followed by 8 mols of formaldehyde are added as before. This is continued until 40 mols of cyanide and 40 mols of formaldehyde have been added. Then at the end about 2 mols more of formaldehyde are added, making 42 mols in all, to remove any last traces of cyanide. About 8 to 10 hours are required to complete the reaction. The resulting product, referred to herein as the crude reaction product, is essentially an aqueous solution of the sodium salt of ethylene diamine tetracetic acid.

$$\begin{array}{c} {\tt NaOOCCH_2} & {\tt CH_2COONa} \\ \\ {\tt NCH_2CH_2N} & {\tt CH_2COONa} \end{array}$$

To 1,000 g of the crude reaction product are added 264 g of ethylene diamine tetracetic acid. The mixture is preferably heated to incipient boiling to increase the rate of reaction, and then the mixture is allowed to cool and crystallize. The crystals formed are filtered off, washed with the smallest possible amount of ice water, and dried to a constant weight, which is 452 g. A representative sample of the product so prepared showed, upon analysis, 13.26% sodium against a theoretical of 13.70% for the disodium salt. The dialkali salt has a pH of about 5.3 and behaves like a weak acid, displacing $\rm CO_2$ from carbonates and reacting with metals to form hydrogen. It is a white crystalline solid.

References

Merck Index 3487 PDR p. 1826 I.N. p. 21 REM p. 838

Bersworth, F.C.; U.S. Patent 2,407,645; September 17, 1946; assigned to The Martin Dennis Co.

EDROPHONIUM CHLORIDE

Therapeutic Function: Cholinergic

Chemical Name: N-ethyl-3-hydroxy-N,N-dimethylbenzeneaminium chloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 116-38-1

Trade Name	Manufacturer	Country	Year Introduced
Tensilon	Roche	U.S.	1951
Tensilon	Roche	U.K.	
Antirex	Kyorin	Japan	_

Raw Materials

m-Dimethylaminophenol Ethyl lodide
Sodium hydroxide Silver nitrate
Hydrogen chloride

Manufacturing Process

A solution made up of 10 grams of m-dimethylaminophenol, 50 cc of acetone and 13 grams of ethyl iodide was heated at 50°C for five hours. On addition of ether to the cooled solution, (3-hydroxyphenyl)ethyl dimethylammonium iodide precipitated as an oil which soon crystallized. Upon recrystallization from isopropanol the compound had a MP of 113° to 115°C.

A slight excess of a 10% sodium hydroxide solution was added to a solution of 23 grams of silver nitrate in 300 cc of water. The precipitated silver oxide was washed free of silver ion with distilled water. To a suspension of the silver oxide in 200 cc of water, a solution of 25 grams of (3-hydroxyphenyl)ethyl dimethylammonium iodide in 300 cc of water was added. The precipitate of silver iodide was removed by filtration and the filtrate concentrated to a volume of about 100 cc in vacuo. The remainder of the water was removed by lyophilization. (3-hydroxyphenyl)ethyl dimethylammonium hydroxide was obtained as a hygroscopic, amorphous solid.

A solution of 5 grams of (3-hydroxyphenyl)ethyl dimethylammonium hydroxide in about 200 cc of water was neutralized with dilute hydrochloric acid. On concentration to dryness in vacuo, (3-hydroxyphenyl)ethyl dimethylammonium chloride crystallized. The compound was recrystallized from isopropanol; MP 162° to 163°C (with decomposition).

References

Merck Index 3492 Kieeman & Engel p. 346 PDR pp. 1504, 2009 I.N. p. 372 REM p. 899

Terrell, R.C.; U.S. Patents 3,469,011; September 23, 1969 and 3,527,813; September 8, 1970; both assigned to Air Reduction Company, Incorporated

EMYLCAMATE

Therapeutic Function: Tranquilizer

Chemical Name: 3-Methyl-3-pentanol carbamate

Common Name: -

Structural Formula:

CH2CH3

Chemical Abstracts Registry No.: 78-28-4

Trade Name Manufacturer Country Year Introduced Striatin MSD U.S. 1960

Raw Materials

3-Methyl-3-pentanol Potassium cvanate Trichloroacetic acid Sodium carbonate

Manufacturing Process

30.5 g of 3-methyl-3-pentanol, 8.1 g of potassium cyanate and 16.3 g of trichloroacetic acid are heated while stirring at 45°C to 50°C for 24 hours, neutralized by successive addition of anhydrous sodium carbonate. The precipitate is removed from the reaction mixture. Unreacted 3-methyl-3-pentanol is distilled off and the residue is added to a small volume of distilled water. After precipitation and filtration the resulting 3-methyl-3-pentanol carbamate is dried and recrystallized from petroleum ether. MP 54°C to 55°C.

References

Merck Index 3528 I.N. p. 376

Melander, B.O. and Hanshoff, G.; U.S. Patent 2,972,564; February 21, 1961; assigned to A/B Kabi (Sweden)

ENDRALAZINE

Therapeutic Function: Hypotensive

Chemical Name: 6-Benzoyl-3-hydrazino-5,6,7,8-tetrahydropyridol [4,3-c] pyridazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 39715-02-1

Trade Name	Manufacturer	Country	Year Introduced
Miretilan	Sandoz	S witz.	1981
Miretilan	Sandoz	W. Germany	1982

Raw Materials

2,3 A Aa,5,6,7,8-Octahydro-3-oxo-6-pyrido [4,3-c] pyridazine-carboxylic acid ethyl ester **Bromine** Hydrogen chloride Phosphorus oxychloride Benzovi chloride Maleic acid Hydrazine

Manufacturing Process

(a) 6-Carbethoxy-5,6,7,8-tetrahydro-3(2H)pyrido[4,3-c]pyridazinone: Produced from 450,5 g of 2,3,4,4a,5,6,7,8-octahydro-3-oxo-6-pyrido[4,3-c] pyridazinecarboxylic acid ethyl ester and 320 g of bromine. The bromine is added dropwise to a boiling solution of the ester in 200 cc of chloroform over one hour and the mixture is stirred for another hour at the same temperature. 1 kg of ice water is added to the mixture, the chloroform portion is separated, and the acid aqueous phase is again extracted with 500 cc of chloroform. The semicrystalline crude product obtained after concentrating the chloroform phase, is recrystallized with 250 cc of absolute ethanol, melting point 165°C to 168°C (decomp.).

A solution of 223.2 g of 6-carbethoxy-5,6,7,8-tetrahydro-3(2H)pyrido[4,3-c] pyridazinone in 1 liter of concentrated hydrochloric acid is heated to the boil at reflux for 22 hours while stirring. The mixture is concentrated in a vacuum, and the resulting crude crystalline hydrochloride of 5,6,7,8-tetrahydro-3(2H)pyrido[4,3-c] pyridazinone, having a melting point of 307°C to 310°C (decomposed from methanol), is suspended in 0.75 liter of methanol, and 0.4 liter of triethylamine is slowly added to the suspension. After stirring for 15 minutes and cooling the violet suspension, the crude base is obtained. 25 g of the crude base are recrystallized from 300 cc of methanol, mixed with 10 cc of concentrated ammonia and 40 cc of water, with the addition of a small amount of coal. 5,6,7,8-Tetrahydro-3(2H)pyrido[4,3-c]-pyridazinone has a melting point of 223°C to 225°C (decomp.).

- (b) 3-Chloro-5,6,7,8-tetrahydropyrido[4,3-c] pyridazine: Produced from 30.3 g of 5,6,7,8-tetrahydro-3(2H)pyrido[4,3-c] pyridazinone suspended in 250 cc of phosphorus oxychloride. The suspension is heated to the boil while stirring. The resulting solution is stirred for 1 hour at the boil and then concentrated to an oil in a vacuum. 150 cc of ice water and 40 cc of concentrated ammonia solution are added to this oil, and the mixture is extracted twice with a total of 300 cc of chloroform. The chloroform phase is concentrated in a vacuum.
- (c) The crude unstable base is converted into the maleate for working up. This is effected by boiling 24.8 g of the base in 150 cc of methanol with 17.5 g of maleic acid. Upon cooling the solution, the crude maleate is obtained, which is recrystallized from methanol with the addition of a small amount of coal. 3-Chloro-5,6,7,8-tetrahydropyrido[4,3-c] pyridazine maleate has a melting point of 162°C to 164°C (decomp.).

A mixture of 12.6 g of benzoyl chloride in 100 cc of ethylene chloride is added dropwise to a suspension of 25.6 g of 3-chloro-5,6,7,8-tetrahydropyrido[4,3-c] pyridazine maleate in 250 cc of ethylene chloride and 21.8 g of triethylamine within 18 minutes at room temperature while stirring. The mixture is stirred at room temperature for a further 14 hours, 200 cc of water are added, the organic phase is separated and concentrated to an oil in a vacuum. Upon adding ether/dimethoxyethane to this oil, crude 6-benzoyl-3-chloro-5,6,7,8-tetrahydropyrido-[4,3-c] pyridazine is obtained. After recrystallization from absolute ethanol with the addition of a small amount of coal, the compound has a melting point of 125°C to 127°C (decomp.). Displacement of the halogen with hydrazine leads to the formation of endralazine.

References

Merck Index 3538 DFU 3 (5) 375 (1978) OCDS Voi. 3 p. 232 (1984) I.N. p. 378

Schenker, E.; U.S. Patent 3,838,125; September 24, 1974; assigned to Sandoz Ltd. Schenker, E.; U.S. Patent 3,954,754; May 4, 1978; assigned to Sandoz, Ltd.

ENFLURANE

Therapeutic Function: Anesthetic

Chemical Name: 2-chloro-1-(difluoromethoxy)-1,1,2-trifluoroethane

Common Name: -

Structural Formula: CHF,OCF,CHFCI

Chemical Abstracts Registry No.: 13838-16-9

Trade Name	Manufacturer	Country	Year Introduced
Ethrane	Ohio Medical	U.S.	1972
Ethrane	Abbott	Italy	1974
Ethrane	Deutsche Abbott	W. Germany	197 5
Ethrane	Abbott	U.K.	1977
Ethrane	Abbott	France	1978
Ethrane	Dainippon	Japan	1981
Aerrane	Ohio Medical	U.K.	1983
Alyrane	Ohio Medical	-	-
Efrane	Abbott	-	_
Inheltran	Abbott	_	-

Raw Materials

2-Methoxy-2,2-difluoro-1-chloro-1-fluoroethane Chiorine Hydrogen fluoride

Manufacturing Process

Preparation of the Intermediate CHCI2OCF2CHFCI: To a 3-necked round-bottomed flask fitted with a Dry Ice condenser, a fritted glass gas inlet tube, a thermometer and a stirrer, was charged 1,180 grams (8 mols) of CH₃OCF₂CHFCl. After flushing the system with nitrogen, chlorine gas was added via the inlet tube while the reaction was stirred and illuminated with a 300 watt incandescent lamp. The chlorination was rapid and exothermic and the reactor was cooled to hold the temperature between 30° and 35°C. The effluent gases were led from the top of the condenser to a water scrubber which was titrated at intervals with standard base. When a total of 1,45 mols of HCI per mol of ether was titrated the reaction was stopped. The crude product obtained weighed 1,566 grams which corresponded to the addition of 1.41 mols of chlorine per mol of the starting ether. The product was flash distilled to yield 1,480 grams of product which had the following composition as determined by vapor phase chromatography: 45.3% CH₂CIOCF₂CHFCI; 50.5% CHCI₂OCF₂CHFCI, plus a small amount of CH₂ClOCF₂CFCl₂; 1.8% CHCl₂OCF₂CFCl₂ and 2.1% CCl₃OCF₂CHFCl.

Fractional distillation of this mixture using a 5 x 120 cm column packed with ¼" Penn State packing yielded 670 grams of product containing 95% CH2ClOCF2CHFCI and 5% CHCl₂OCF₂CHFCl; BP 55° to 60°C at 100 mm, $n_0^{20} = 1.3748$ to 1.3795; and 670 grams of CHCl₂OCF₂CHFCl (95% pure, containing 5% CH₂ClOCF₂CFCl₂); BP 60°C at 100 mm, $n_0^{20} = 1.3870$ to 1.3875. The still bottoms were comprised mostly of CCI₂OCF₂CHFCI and CHCl2OCF2CFCl2.

Preparation of CHF₂OCF₂CHFCI: To a mixture of 2,172 grams (10 mols) CHCl₂OCF₂CHFCI prepared as described above (containing approximately 5% CH2CIOCF2CFCl2) and 40 grams (2% by weight) SbCl_s was added anhydrous hydrogen fluoride while the temperature was maintained at 0±5°C. The reaction was carried out in a 3-necked stainless steel flask fitted with a stainless steel stirrer, a thermocouple well and a copper Dry Ice condenser. The amount of hydrogen fluoride added was measured by titration of the HCl given off. At the end of the reaction (total HCl evolved: 1.98 mols per mol of starting ether) the mixture was poured into water and the organic layer (1,803 grams, $n_0^{20} = 1.3080$) recovered. The crude product was flash distifled in a 60 x 2 cm column packed with 1/4" Penn State packing giving 1,594 grams of substantially pure CHF2OCF2CHFCI, BP 56° to 57°C. By further distillation 1,450 grams of the pure ether were obtained, BP 56.5°C, $n_0^{20} = 1.3030$ as described in each of the patents cited as references.

References

Merck Index 3541 Kleeman & Engel p. 346 DOT 9 (5) 173 (1973) & 11 (9) 347 (1975) I.N. p. 378

Enviomycin 559

REM p. 1041

Terrell, R.C.; U.S. Patents 3,469,011; September 23, 1969 and 3,527,813; September 8, 1970; both assigned to Air Reduction Company, Incorporated

ENVIONYCIN

Therapeutic Function: Antitubercular

Chemical Name: 1-(L-Threo-3,6-diamino-4-hydroxyhexanoic acid)-6-[L-2-(2-amino-1,4,5,6-

tetrahydro-4-pyrimidinyl)glycine) viomycin

Common Name: Tuberactinomycin-N

Chemical Abstracts Registry No.: 33103-22-9

Trade Name	Manufacturer	Country	Year Introduced
Tuberactin	Toyo Jozo	Japan	1975
TUM	Toyo Jozo	Japan	-

Raw Materials

Bacterium Streptomyces griseoverticillatus var. tuberacticus Glucose

Manufacturing Process

Two liters of an aqueous medium consisting of glucose 3%, starch 2%, soybean meal 3% and sodium chloride 1.5% were equally divided and introduced into twenty 500-ml Erlenmeyer flasks, adjusted to pH 6, sterilized at 120°C for 30 minutes, inoculated with Streptomyces griseoverticillatus var. tuberacticus N6-130 and then rotatively shake-cultured (radius 2.5 cm, 330 rpm) at 30°C for 7 days, obtaining 1.5 liter of cultured broth containing 2.360 mcg/ml of tuberactinomycin-N.

Filtered broth was passed at 2.5 ml/min through a resin column (2,5 cm diameter, 28 cm length) packed with 150 ml of ion exchange resin Amberlite IRC-50 sodium type (Rohm and Haas Co., U.S.A.). The column was washed with water, eluted with 0.5 N HCl at a flow rate 1,3 ml/min. The eluates were fractionated each 10 ml and tuberactinomycin-N activity was found at fractions No. 45-63 observed by ultraviolet absorption method and bioassay.

The thus yielded active fraction, about 200 ml, was neutralized with sodium hydroxide, concentrated to about 15 ml in vacuo, separating the precipitated inorganic salts therefrom. After decolorization with active carbon, 150 ml of methanol was added, the mixture was allowed to stand overnight at 5°C and the precipitate was collected by filtration. The precipitate was washed with methanol and dried in vacuo to yield crude tuberactinomycin-N hydrochloride (vield, 3.07 g; purity, 71.5%; recovery, 62%).

References

Merck Index 3551 Kleeman & Engel p. 347 DOT 13 (1) 21 (1977)

I.N. p. 988

Abe, J., Watanabe, T., Nagata, A., Ando, T., Take, T., Izumi, R., Noda, T. and Matsuura, K.; U.S. Patent 3,892,732; July 1, 1975; assigned to Toyo Jozo K.K. (Japan)

EPERISONE HCI

Therapeutic Function: Muscle relaxant

Chemical Name: 1-(4-Ethylphenyl)-2-methyl-3-(1-piperidinyl)-1-propanone hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 64840-90-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Myonal	Eisai	Japan	1983

Raw Materials

4-Ethyl-propiophenone Paraformaldehyde Piperidine hydrochloride Hydrogen chloride

Manufacturing Process

To 60 ml of isopropanol, there are introduced 120 g of 4-ethyl-propiophenone, 28.8 g of pformaldehyde and 107 g of piperidine hydrochloride, and the resulting mixture is heated to reflux on an oil bath with stirring. The heating is continued, and when the reaction mixture solidifies, the state being a sign of completion of the reaction, there are added 500 ml of acetone thereinto. The solidified mass is pulverized by crush, recovered by filtration and washed with acetone. 144 g of the crude dry crystalline substance is thus obtained, which is the hydrochloride of the purposed product. The hydrochloride is recrystallized from isopropanol, and there are obtained the crystalline needles having the melting point of 170°C to 172°C.

References

Merck Index 3555 DFU 7 (12) 907 (1982) DOT 19 (10) 583 (1983)

Morita, E. and Kanai, T.; U.S. Patent 3,995,047; November 30, 1976; assigned to Eisai Co., Ltd. (Japan)

EPICILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-[D-2-amino-2-(1,4-cyclohexadien-1-yl)acetamido] -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3,2,0] heptane-2-carboxylic acid

Common Name: D-α-amino-(1,4-cyclohexadien-1-yl)methylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 26774-90-3

Trade Name	Manufacturer	Country	Year Introduced
Dexacilline	Squibb	France	1974
Spectacillin	Sandoz	W. Germany	1975
Dexacillin	Squibb	Italy	1977
Florispec	Squibb	· -	
Omnisan	Squibb	_	
Spectacillin	Biochemie	Austria	_

Raw Materials

D-Phenylglycine Lithium

Ammonia Methyl acetoacetate

6-Amino penicillanic acid

Manufacturing Process

See Cephradine for preparation of D-2-amino-2-(1,4-cyclohexadienyl)acetic acid and then its methyl acetoacetic ester enamine as the starting material.

358 mg of 6-aminopenicillanic acid (APA) (1.66 mmol) are stirred well in 2.5 ml of water while 0.23 ml triethylamine is gradually added with the pH kept under 8.0. Final pH is 7.4; 0.85 ml acetone is added and the solution kept at -10° C.

469 mg methyl acetoacetate enamine of D-2-amino-2-(1,4-cyclohexadienyl)acetic acid sodium salt (1.715 mmol) are stirred in 4.25 ml acetone at -20°C. A microdrop of N-methyl-morpholine is added followed by the slow addition of 198 mg of ice cold ethyl chloroformate. Water, 0.43 ml, is added at this point and a turbid solution results. The reaction mixture is stirred for 10 minutes at -20°C.

The turbid solution of mixed anhydride is then added to the 6-APA solution. A complete solution is observed. The solution is stirred for 30 minutes at -10°C, then raised to room temperature, acidified to pH 2.0 with diluted HCl and, with good stirring, the pH is kept at that level for 10 minutes.

The solution is then extracted with 5 ml xylene. The aqueous layer is layered with 5 ml methyl isobutyl ketone and the pH adjusted to 5.0 with 1 N NaOH and chilled overnight. The resulting crystals are filtered off, washed with water and air dried. Yield, 272 mg (44%), decomposes at 202°C.

References

Merck Index 3563 Kleeman & Engel p. 348 DOT 9 (3) 101 (1973) I.N. p. 381 REM p. 1201 Weisenhorn, F.L., Dolfini, J.E., Bach, G.G. and Bernstein, J.; U.S. Patent 3,485,819; Dec. 23, 1969; assigned to E.R. Squibb & Sons, Inc.

EPIMESTROL

Therapeutic Function: Anterior pituitary activator

Chemical Name: 3-Methoxyestra-1,3,5(10)-triene-16,17-diol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7004-98-0

Trade Name	Manufacturer	Country	Year Introduced
Stimovul	Organon	W. Germany	1976
Stimovul	Ravasini	Italy	1980
Alene	Organon	_	-

Raw Materials

16-Keto-17(α)-hydroxyestratrienol-3-methyl Sodium amalgam

Manufacturing Process

Reduction of 16-keto-17(α)-hydroxyestratrienol-3-methyl to 16,17-dihydroxyestratrienol-3-methyl ether: A solution of 800 mg of the alpha ketol methyl ether in 100 cc of ethanol and 10 cc of acetic acid was carefully maintained at 40°C (water bath), and 200 g of freshly prepared sodium amalgam (2%) were added in small pieces with efficient swirling. Before all of the amalgam had been added, a precipitation of sodium acetate occurred, and at this point an additional 100 cc of 50% acetic acid were added. After all the reducing agent had been added, the mixture was transferred to a separatory funnel with ether and water. The mercury plus aqueous phase was separated, after partitioning, from the ether; the latter may be further washed with water, with 0.5 N sodium hydroxide, and again with water to purify the alpha glycol. Evaporation of the ethereal phase yielded a crystalline residue of the isomeric transoid $(16(\beta),17(\alpha)-dihydroxy-steroid-3-methyl)$ ether.

References

Merck Index 3566 Kleeman & Engel p. 348 OCDS Vol. 2 p. 13 (1980) DOT 13 (5) 191 (1977) I.N. p. 381

Huffman, M.N.; U.S. Patent 2,584,271; February 5, 1952; assigned to G.D. Searle & Co.

EPINEPHRYL BORATE

Therapeutic Function: Antiglaucoma drug

Chemical Name: 4-[1-hydroxy-2-(methylamino)ethyl] -1,2-benzenediol borate

Common Name: Methylaminoethanolcatechol borate; adrenalin borate

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Eppy Epinal	Barnes-Hind Alcon	U.S. U.S.	1961 —
-F ····			

Raw Materials

Epinephrine Boric acid

Manufacturing Process

Epinephrine may be made by isolation from animal adrenal glands or may be synthesized as described by Payne in *Ind. Chemist*, 37, 523 (1961).

It has been found that epinephrine solutions having a physiological pH and which are stable for months in storage can be prepared by combining with the epinephrine a small amount of sodium bisulfite, boric acid, and oxine (8-hydroxy-quinoline) hereinafter called 8-quinolinol and adjusting the pH with an alkali, such as sodium hydroxide, to the desired pH.

It has been found that from 0.001 to 0.1% of 8-quinolinol can be used. From 0.2 to 5% boric acid may be used. The amount of sodium bisulfite can be varied from 0.1 to 1%. The solutions can contain from 0.1 to 4% epinephrine. The pHs of the solutions can be adjusted to any value within the physiological range, i.e., from 6.5 to 8.5 using any convenient alkali such as sodium hydroxide.

References

Merck Index 3567 Kleeman & Engel p. 349 I.N. p. 382 REM p. 884

Riegelman, S.; U.S. Patent 3,149,035; September 15, 1964; assigned to The Regents of the University of California

EPIRIZOLE

Therapeutic Function: Antiinflammatory, analgesic, antipyretic

Chemical Name: 4-methoxy-2-(5-methoxy-3-methylpyrazol-1-yl)-6-methylpyrimidine

Common Name: Mepirizole

Structural Formula:

Chemical Abstracts Registry No.: 18694-40-1

Trade Name	Manufacturer	Country	Year Introduced
Mebron	Dalichi Seiyaku	Japan	1970
Mebron	Daiichi Seiyaku	Italy	1979
Daicon	I.B.I.	Italy	1979
Analock	Taito Pfizer	Japan	_
Mepiral	Rober	Spain	_

Raw Materials

4-Methyl-6-methoxy-2-pyrimidinyl-hydrazine Ethyl acetoacetate Diazomethane

Manufacturing Process

A mixture of 16.3 g of 4-methyl-6-methoxy-2-pyrimidinyl-hydrazine, 13.7 g of ethyl acetoacetate and 16,3 ml of methanol was refluxed 2 hours on a water bath. After a mixture of 4.7 g of sodium hydroxide, 4.7 ml of water and 27 ml of methanol was added dropwise thereto at about 50°C, the reaction mixture was refluxed for 2 hours more, then methanol was distilled off and the residue was dissolved in 130 ml of water. The solution was adjusted to pH 6 with acetic acid. The precipitate was filtered, washed with water and dried to give 24 g (yield: 95.3%) of crystals, MP 97° to 98°C. Recrystallization from ligroin gave 1-(4'-methyl-6'-methoxy-2'-pyrimidinyl)-3-methyl-3-pyrazoline-5-one, MP 102° to 103°C.

To a solution of 4.76 g of 1-(4'-methyl-6'-methoxy-2'-pyrimidinyl)-3-methyl-3-pyrazoline-5-one in 200 ml of ether was added an ether solution containing 6 molar equivalents of diazomethane and the reaction mixture was allowed to stand at room temperature for 20 hours. After distilling off the solvent, the residue was dissolved in 160 ml of water, made alkaline (pH 10) with sodium hydroxide solution and extracted three times with 140 ml of benzene. The extract was washed with a small amount of water, dried over sodium sulfate and evaporated to give a crystalline mass. Recrystallization from isopropylether gave 1-(4'-methyl-6'-methoxy-2'-pyrimidinyl)-3-methyl-5-methoxypyrazole (3.96 g, 84%) as colorless prisms, MP 90° to 92°C.

References

Merck Index 3571 Kleeman & Engel p. 349 OCDS Vol. 3 p. 152 (1984) I.N. p. 382

Naito, T., Oshima, Y., Yoshikawa, T., Kasahara, A., Dohmori, R., Nakai, Y. and Tsukada, W.; South African Patent Application 67/4936; January 19, 1968; assigned to Daiichi Seiyaku Company Limited, Japan

EPITIOSTANOL

Therapeutic Function: Antineoplastic

Chemical Name: 2.3-Epithioandrostan-17-ol

Common Name: Epithioandrostanol

Structural Formula:

Chemical Abstracts Registry No.: 2363-58-8

Trade Name	Manufacturer	Country	Year Introduced
Thiodrol	Shionogi	Japan	1977

Raw Materials

 2β -Thiocyanato- 3α -methanesulfonyloxy- 5α -androstan- 17β -ol-17-acetate Potassium hydroxide

Manufacturing Process

A solution of 2β -thiocyanato- 3α -methanesulfonyloxy- 5α -androstan- 17β -ol 17-acetate (0.82 part by weight) and potassium hydroxide (0.9 part by weight) in diglyme (20 parts by volume) is refluxed on a water bath for 24 hours while stirring. To the reaction mixture, there is added water, and the separated substance is collected by filtration and crystallized from hexane to give $2\beta . 3\beta$ -epithio- 5α -androstan- 17β -ol (0.60 part by weight) as crystals melting at 132.5°C to 134°C.

References

Merck Index 3573 Kieeman & Engel p. 350 DOT 14 (7) 274 (1978)

I.N. p. 383

Komeno, T.; U.S. Patent 3,230,215; January 18, 1966; assigned to Shionogi & Co., Ltd.

EPRAZINONE HCI

Therapeutic Function: Antitussive

Chemical Name: 3-[4-(2-Ethoxy-2-phenylethyl)-1-piperazinyl] -2-methyl-1-phenyl-1-pro-

panone

Common Name: -

Structural Formula:

$$0 = C - CHCH_2 - N - CH_2CHCC_2H_5$$
 (base)

Chemical Abstracts Registry No.: 10402-53-6; 10402-90-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mucitux	Riom	France	1969
Respien	Chugai	Japan	1974
Eftapan	Merckle	W. Germany	1977
Mucitux	Recordati	Italy	1981
Mukolen	Krka	Yugoslavia	_
Vopop	Lando	Argentina	_

Raw Materials

1-(2-Phenyl-2-ethoxy)piperazine dihydrochloride Propiophenone Trioxymethylene Hydrogen chloride

Manufacturing Process

61.4 g of 0.2 M of 1-(2-phenyl-2-ethoxy)piperazine dihydrochloride, 33.5 g (0.25 M) propiophenone, 75 g (0.25 M) trioxymethylene, 120 ml of ethanol and 0.4 ml of concentrated HCl are heated under reflux for 4 to 5 hours. The product is allowed to crystallize, then filtered and washed with alcohol. It is dried and recrystallized from methanol containing 10% H₂O.

There is thus obtained 60 g of a white crystalline powder soluble in water. Yield: 66%, Melting point: 160°C.

References

Merck Index 3575 Kleeman & Engel p. 350 OCDS Vol. 1 p. 64 (1977) I.N. p. 384

Mauvernay, R.Y.: U.S. Patent 3,448,192; June 3, 1969

EPROZINOL

Therapeutic Function: Bronchodilator

Chemical Name: $4-(\beta-methoxyphenethyl)-\alpha-phenyl-1-piperazinepropanol$

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32665-36-4

Trade Name	Manufacturer	Country	Year Introduced
Eupneron	Lyocentre	France	1973
Brovel	Lepetit	Italy	1978

Raw Materials

Styrene t-Butyl hypobromite Methanol Acetophenone Sodium borohydride

Piperazine Trioxymethylene

Manufacturing Process

- Stage 1: Preparation of 2-Phenyl-2-Methoxy-Ethyl Bromide 1.3 mols of tert-butyl hypobromite is added slowly and with agitation to a mixture of 107 grams (1 mol) of vinyl-benzene (styrene) and 250 ml of methanol (99%), kept at -10° C. When the addition of the reactant is finished, the mixture is allowed to return to ambient temperature, it is washed in water and dried on anhydrous Na₂SO₄. Rectification is effected in vacuo in order to obtain a colorless liquid BP₁₂ = 113°C, BP₂₋₅ = 84°C, $n_D^{20.6}$ = 1.5429, yield = 76%.
- Stage 2: Preparation of 1-[2-Phenyl-2-Methoxy]-Ethyl-Piperazine 210 grams of 2-phenyl-2-methoxy-ethyl bromide and 260 grams of anhydrous piperazine are heated for 5 to 6 hours to reflux in 600 ml of ethanol, 500 ml of ethanol is then distilled off and finally the solvent is removed in vacuo. The residue is taken up in 250 ml of benzene and the piperazine hydrobromide is filtered off. The benzene is removed in vacuo. The oily residue is taken up by 450 ml of water and acidification is effected up to pH = 1 by concentrated HCl. The aqueous solution is filtered; the latter is then made alkaline by 50% aqueous NaOH. The liberated base is decanted, the alkaline aqueous solution is washed twice by 150 ml ether. After distillation of the ether, the previously decanted oil is added to the residue and distillation is effected in vacuo. Thus, 135 grams of a colorless viscous oil, becoming carbonated in air, is obtained. BP₁₄ = 166° C, n_{D}^{20} = 1.5321, yield = 61%.
- Stage 3: Preparation of 1-[2-Phenyl-2-Methoxy]-Ethyl-4-[2-Benzoyl-Ethyl]-Piperazine Dihydrochloride There are heated to reflux and with agitation for 6 hours, 166 grams 1-[2-phenyl-2-methoxy]-ethyl-piperazine, 400 ml ethanol (96°), 260 ml absolute ethanol with 23% HCl gas, 112 grams acetophenone, 32 grams trioxymethylene and 0.8 ml concentrated aqueous HCl. After cooling, the product crystallizes. Recrystallization is effected in ethanol (96°) (1.400 liters for the quantity indicated). 246 grams of a white crystalline powder is thus obtained, slightly soluble in water and alcohol. MP (instant) = 168°C with decomposition, yield 77%.
- Stage 4: Preparation of 1-[2-Phenyl-2-Methoxy]-Ethyl-4-[3-Phenyl-3-Hydroxypropyl]-Piperazine Dihydrochloride In a double-neck flask equipped with a thermometer and a mechanical stirrer, there is placed in suspension in 800 ml of methanol, 233 grams of 1-[2-phenyl-2-methoxy]-ethyl-4-[2-benzoyl-ethyl]-piperazine dihydrochloride (0.55 mol). It is cooled to approximately 5°C, and 46 grams of NaOH pellets dissolved in 80 ml of H₂O are added. When the temperature is about 5°C, one addition of 29.2 grams of sodium borohydride in 40 ml H₂O is made. The ice-bath is then removed and stirring continued at ambient temperature for 6 hours.

Cooling is effected in the ice-bath while slowly adding concentrated HCl up to a pH of 2, while maintaining the temperature around 5° C. It is filtered and an equal volume of H₂O is added. If the solution is cloudy it is washed in ether. It is alkalized by aqueous NaOH (40%), and the oil formed is extracted with ether. The ether phase is washed with water saturated with NaCl, then it is dried over anhydrous Na₂SO₄.

After evaporation of the solvent, a very thick, colorless oil is obtained. This base is dissolved by 200 ml of absolute ethanol and the quantity of HCl to obtain the dihydrochloride is added. It is left for a few hours over ice, dried, washed with approximately 100 ml of anhydrous ether in order to obtain 190 to 195 grams of 1-[2-phenyl-2-methoxy]-ethyl-4-[3-phenyl-3-hydroxy]-propyl-piperazine dihydrochloride after drying at 60°C in vacuo. The yield is 80%. It is recrystallized from absolute ethanol. The product is in the form of white crystalline powder, soluble in water, slightly soluble in alcohol, insoluble in ethyl acetate.

References

Merck Index 3576 Kleeman & Engel p. 351 OCDS Vol. 2 p. 44 (1980) DOT 9 (5) 177 (1973) I.N. p. 384

Saunders, H.E. and Mauvernay, R.-Y.; British Patent 1,188,505; April 15, 1970

ERYTHROMYCIN

Therapeutic Function: Antibacterial

Chemical Name: See structural formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 114-07-8

Trade Name	Manufacturer	Country	Year Introduced
llotycin	Dista	U.S.	1952
Erythrocin	Abbott	U.S.	1952
E-Mycin	Upjohn	U.S.	1953
Robimycin	Robins	U.S.	1972
Kesso-Mycin	McKesson	U.S.	1973
Staticin	Westwood	U.S.	1980
Eryc	Faulding	U.S.	1980
I/T/S Ilotycin	Lilly	U.S.	1980
Ery Derm	Abbott	U.S.	1980
A/T/S	Hoechst	U.S.	1981
Ery-Tab	Abbott	U.S.	1981
T.Stat	Westwood	U.S.	1983
Erymax	Allergan	U.S.	1983
Abo macetin	Mochida	Japan	
Adamycin	Lederle	_	_
Aknemycin	Hermal	W. Germany	_
Benzamycin	Dermik	U.S.	
Bisolvanat	Thomae	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Clafanone	Roche	-	-
Dowmycin	Merrell-Dow	-	
Endoeritrin	Lopez-Brea	Spain	-
Eritrobios	Nuovo Cons. Sanit. Naz.	Italy	_
Eritonormo	Normon	Spain	_
Erycinum	Schering	W. Germany	_
Ery-Max	Astra	Sweden	_
Erythro ST	Nippon Kayaku	Japan	_
Estromycin	Orion	Finland	_
llosone	Lilly	Italy	_
Marocid	Lifepharma	Italy	_
Mistral	Dessy	Italy	_
Orizina	Perga	Spain	
Pediamycin	Ross	U.S.	-
Polarmicina	Medipolar	Sweden	-
Reciomycin	Recip	Sweden	_
Retcin	D.D.S.A.	U.K.	-
Rivotrocin	Rivopharm	Switz.	_
RP-Mycin	Reid-Provident	U.S.	
Taimoxin-F	Taiyo	Japan	-
Ytrocin	Lederle	_	-

Raw Materials

Bacterium Streptomyces erythreus Starch Soybean meal

Manufacturing Process

An inoculum broth is prepared having the following composition: 32 pounds starch; 32 pounds soybean meal; 10 pounds corn steep solids; 10 pounds sodium chloride; 6 pounds calcium carbonate; and 250 gallons water.

The broth is placed in an iron tank of 350 gallon capacity and is sterilized by heating it under pressure at a temperature of about 120°C for 30 minutes. The sterilized broth is cooled and inoculated aseptically with spores of Streptomyces erythreus, NRRL 2338. The organism is grown in the broth at about 26°C for a period of 45 hours. During the growth period the broth is stirred and aerated with sterile air in the amount of about 0.5 volume of air per volume of culture broth per minute.

In a 1,600-gallon iron tank is placed a fermentation broth having the following composition: 153 pounds starch; 153 pounds soybean meal; 51 pounds corn steep solids; 33 pounds calcium carbonate; 51 pounds sodium chloride; and 1,200 gallons water.

The culture broth is sterilized by heating it under pressure at about 120°C for about 30 minutes. The broth is cooled and the above inoculant culture is added aseptically. The organism is grown in the broth for 4 days at a temperature of 26°C. During the growth period the broth is stirred and sterile air is blown through the broth at a rate of about 0.5 volume of air per volume of broth per minute. At the end of the growth period the broth shows an antibiotic activity equivalent to about 150 mcg of erythromycin per ml of broth.

The culture broth (about 1,100 gallons in volume) is adjusted to pH 9.5 with 40% sodium hydroxide solution and is filtered to remove the mycelium, the filtration being assisted by use of 3% of Hyflo Super-Cel, a filter aid, (sold by Johns-Manville Company). The clear filtrate is extracted with amyl acetate in a Podbielniak extractor using a ratio of 1 volume of amyl acetate to 6 volumes of clarified broth. The amyl acetate extract is in turn extracted batchwise with water brought to about pH 5 by the addition of sulfuric acid. Two extractions are carried out, the first with 1/2 volume and the second with 1/4 volume of water adjusted to pH 5 with sulfuric acid. The aqueous extracts are combined and adjusted to pH 8.0 with sodium hydroxide solution.

The alkaline solution is concentrated in vacuo to a volume of about 30 gallons and the solution is then adjusted to pH 9.5 by the addition of aqueous sodium hydroxide and is allowed to stand. Erythromycin separates as a crystalline material. The crystals are filtered off, the mother liquor is adjusted to about pH 8 by the addition of dilute sulfuric acid and is concentrated in vacuo to a volume of about 30 gallons. The solution is adjusted to about pH 9.5 and allowed to stand, whereupon an additional amount of erythromycin separates in crystalline form. The total amount of erythromycin obtained is about 256 grams. The erythromycin is purified by several recrystallizations from aqueous acetone (2:1 mixture), according to U.S. Patent 2,653,899.

References

Merck Index 3624 Kleeman & Engel p. 353

PDR pp. 516, 831, 840, 888, 930, 935, 1307, 1345, 1429, 1557, 1606, 1895

I.N. p. 387

REM p. 1189

Clark, R.J. Jr.; U.S. Patent 2,823,203; February 11, 1958; assigned to Abbott Laboratories Friedland, W.C., Denison, F.W. Jr. and Peterson, M.H.; U.S. Patent 2,833,696; May 6, 1958; assigned to Abbott Laboratories

Bunch, R.L. and McGuire, J.M.; U.S. Patent 2,653,899; September 29, 1953; assigned to Eli Lilly and Company

ERYTHROMYCIN ESTOLATE

Therapeutic Function: Antibacterial

Chemical Name: Erythromycin propionate lauryl sulfate

Common Name: -

Structural Formula:

Chemicel Abstracts Registry No.: 3521-62-8

Trade Name	Manufacturer	Country	Year Introduced
llosone	Dista	U.S.	1958
Biomicron	Isa	Brazil	_
Chemthromycin	Chemo-Drug	Canada	_
Cimetrin	Cimex	Switz.	_
Dreimicina	Dreikehl	Spain	_
Endoeritrin	Lopez-Brea	Spain	_
Erimec	Isola-Ibi	Italy	_
Eriscel	Rachelle	U.S.	-
Eritrazon	Cipan	Portugal	-
Eritrobiotic	Panther-Osfa	Italy	_
Eritrocin	Maipe	Spain	_
Eritrodes	Dessy	Italy	_
Eritroveinte	Madariaga	Spain	-
Erito-Wolf	Incasa-Wolff	Spain	_
Ermysin	Farmos	Finland	-
Ery-Toxinal	Pharma-Selz	W. Germany	_
Erytrarco	Arco	Switz.	_
Erythromyctine	Barlowe Cote	Canada	_
Ery tro-Prot	Proto	Switz.	_
Laurilin	Deva	Turkey	-
Lauromicina	Dukron	Italy	_
Lubomycine	Polfa	Poland	
Manilina	Lepetit	Italy	_
Neo-Erycinum	S chering	W. Germany	_
Neo-Ilotylin	Lilly		_
Novorythro	Novopharm	Canada	_
Propiocine	Roussel	France	_
Proterytrin	Proter	Italy	_
Ritromin	Cophar	Switz.	_
Stellamicina	Pierrel	Italy	_
Togiren	Schwarzhaupt	W. Germany	_

Raw Materials

Monopropionylerythromycin Sodium laury! sulfate

Manufacturing Process

16.7 grams of monopropionylerythromycin are dissolved in 50 ml of warm acetone. To the solution are added 6.4 grams of sodium lauryl sulfate dissolved in 50 ml of distilled water containing 2 ml of glacial acetic acid. The white crystalline precipitate of monopropionylerythromycin lauryl sulfate which separates is filtered off and dried. It melts at about 135° to 137°C.

References

Merck Index 3625 Kieeman & Engel p. 354 PDR pp. 830, 838, 993, 1606 I.N. p. 388 REM p. 1191

Bray, M.D. and Stephens, V.C.; U.S. Patent 3,000,874; September 19, 1961; assigned to Eli Lilly and Company

ERYTHROMYCIN GLUCEPTATE

Therapeutic Function: Antibacterial

Chemical Name: Erythromycin glucoheptonic acid salt

Common Name: -

Structural Formula: See Erythromycin for structure of base

Chemical Abstracts Registry No.: 23067-13-2

Trade Name	Manufacturer	Country	Year Introduced
Hotycin Gluceptate	Dista	U.S.	1954
Erycinum	Schering	_	
llotycin Otic	Lilly	-	_

Raw Materials

Erythromycin d-Glucoheptonic acid lactone

Manufacturing Process

A solution of 10 grams of d-glucoheptonic acid lactone in 50 ml of distilled water is warmed on a steam bath for about 2 hours to hydrolyze the lactone to the acid. The mixture is cooled and 100 ml of 95% ethanol are added. To the solution of glucoheptonic acid are added about 37 grams of erythromycin and the volume of the reaction mixture is brought to 200 ml by the addition of 95% ethanol. The reaction mixture is stirred for about 2 hours and is filtered through a porcelain filter candle of porosity 02. To provide a sterile product, aseptic technique is used throughout the remainder of the procedure. To the filtered solution are added slowly and with stirring about 1,200 ml of anhydrous ether, to cause precipitation of erythromycin d-glucoheptonate and to keep in solution any excess of unreacted erythromycin. The precipitated erythromycin salt is removed by filtration through a sintered glass funnel, is washed with anhydrous ether and is dried in vacuo. Erythromycin d-glucoheptonate melts over a range of about 95° to 140°C.

References

Merck Index 3626 Kleeman & Engel p. 355 PDR p. 841 I.N. p. 388 REM p. 1190

Shepler, J.T.; U.S. Patent 2,852,429; September 16, 1958; assigned to Eli Lilly and Co.

ERYTHROMYCIN LACTOBIONATE

Therapeutic Function: Antibacterial

Chemical Name: Erythromycin lactobionate

Common Name: -

Structural Formula: See Erythromycin for structure of base.

Chemical Abstracts Registry No.: 3847-29-8

Trade Name	Manufacturer	Country	Year Introduced
Erythrocin Lactobionate	Abbott	U.S.	1954
Erythrocin Piggyback	_	∪. S .	_
Laurylin	Pierrel	Italy	_
Laurylin	Douglas	New Zealand	_
Lubomycine L	Polfa	Poland	_
Proterytrin IV	Proter	Italy	_

Raw Materials

Erythromycin Lactobiono-delta-lactone

Manufacturing Process

A solution of erythromycin free base is prepared by dissolving 8.0 grams of erythromycin in 25 cc of acetone. 4.0 grams of lactobiono-delta-lactone is dissolved in 25 cc of water. The free lactobionic acid is formed in this solution and it has the molecular formula C₁₂H₂₂O₁₂. The two solutions are mixed and evaporated to a gummy residue. This residue is dissolved in 60 cc of water and the solution is frozen and dried in vacuum by lyophilization. The dried residue of erythromycin lactobionate is a white amorphous powder and weighs 11.7 grams. The reaction product has an activity against B. subtilis of 420 units per milligram. Its solubility in water is about 200 mg/cc and the melting point of the white powdery reaction product is 145° to 150°C.

References

Merck Index 3627 Kleeman & Engel p. 356 PDR pp. 519, 872 I.N. p. 388 REM p. 1190

Hoffhine, C.E. Jr.; U.S. Patent 2,761,859; September 4, 1956; assigned to Abbott Laboratories

ERYTHROMYCIN STEARATE

Therapeutic Function: Antibacterial

Chemical Name: Erythromycin stearate

Common Name: -

Structural Formula: See Erythromycin for structure of base

Chemical Abstracts Registry No.: 643-22-1

Trade Name	Manufacturer	Country	Year Introduced
Erythrocin Stearate	Abbott	U.S.	1952
Bristamycin	Bristol	U.S.	1971
Ethril	Squibb	U.S.	1972
Erypar	Parke Davis	U.S.	1972
SK-Erythromycin	SKF	U.S.	1972
Qidmycin	Mallinckrodt	U.S.	1973
Pfizer-E	Pfizer	U.S.	1973
Dowmycin-E	Merrell Dow	U.S.	1974

Trade Name	Manufacturer	Country	Year Introduced
Erythromycin Stearate	Lederle	U.S.	1975
Wyamycin-S	Wyeth	U.S.	1978
Abboticine	Abbott	France	_
Cimetrin	Cimex	Switz.	
Dura Erythromycin	Durachemie	W. Germany	_
Emisin	Saba	Turkey	_
E-Mycin	Protea	Australia	_
Eratrex	Bristol	_	_
Erisul	Liba	Turkey	
Eritral	Helvepharm	Switz.	_
Eritro	litas	Turkey	_
Eritrolag	Lagap	Switz.	_
Ermysin S	Farmos	Finland	
Erostin	Knoll	Australia	_
Erymycin	Squibb	_	-
Eryprim	Scarium	Switz.	
Erythran	Spirig	Switz.	_
Erythrocin	Dainippon	Japan	-
Erythro-S	Sanko	Japan	_
Erythro-Teva	Teva	Israel	_
Ethryn	Faulding	Australia	_
Helvemycin	Helvepharm	Switz.	
Resibion	Leiras	Finland	_
Rossomicina	Pulitzer	Italy	-
Servitrocin	Servipharm	Switz.	_
Torlamicina	Torlan	Spain	_
Wemid	Bernabo	Argentina	_

Raw Materials

Erythromycin Stearoyl Chloride 1-Ethylpiperidine

Manufacturing Process

To a well-stirred solution of 3.18 grams (10.5 mmol) of stearoyl chloride and 1.24 grams (11.0 mmol) of 1-ethylpiperidine in 50 ml of methylene chloride is added 7.20 grams (10.0 mmol) of erythromycin. After a short time complete solution is obtained and stirring is then discontinued. The solution is allowed to stand overnight. The solution is diluted to 250 ml by the addition of methylene chloride and washed three times with 100 ml portions of water followed by two washes with 5% sodium bicarbonate solution. The organic layer is dried over anhydrous sodium sulfate and filtered, the solvent being removed under diminished pressure. The product is dried to constant weight at room temperature in a vacuum desiccator.

References

Merck Index 3629 Kieeman & Engel p. 356 PDR pp. 521, 993, 1346, 1723, 1999 I.N. p. 388 REM p. 1191

Booth, R.E., Dale, J.K. and Murray, M.F.; U.S. Patent 2,862,921; December 2,1958; assigned to The Upjohn Company

ESTAZOLAM

Therapeutic Function: Hypnotic, sedative

Chemical Name: 8-chloro-6-phenyl-4H-[1,2,4]-triazolo[4,3-a][1,4] benzodiazepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 29975-16-4

Trade Name	Manufacturer	Country	Year Introduced
Eurodin	Takeda	Japan	1975
Nuctalon	Cassenne-Takeda	France	1978
Esilgan	Cyanamid	Italy	1983
Domnamid	Lundbeck	_	

Raw Materials

7-Chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-thione Formic acid hydrazide

Manufacturing Process

A mixture of 5.74 grams (0.020 mol) of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-thione, 3.6 grams (0.060 mol) of formic acid hydrazide and 200 ml of 1-butanol was refluxed for 3.75 hours with a slow stream of nitrogen bubbling through the mixture. The mixture was concentrated, the residue was suspended in water and the suspension was filtered. The filter cake consisted principally of unchanged starting material. The filtrate was concentrated, ethyl acetate and Skellysolve B hexanes being added during the concentration, giving crude product (2.54 grams), MP 220.5° to 225°C. Recrystallization of this material from ethyl acetate-Skellysolve B hexanes gave 8-chloro-6-phenyl-4H-s-triazolo-[4,3-a] [1,4] benzodiazepine, MP 228° to 229°C.

References

Merck Index 3645 Kleeman & Engel p. 357 DOT 11 (5) 185, 211 (1975) & 12 (9) 353 (1976)

Hester, J.B. Jr.; U.S. Patent 3,701,782; October 31, 1972; assigned to The Upjohn Co.

ESTRADIOL CYPIONATE

Therapeutic Function: Estrogen

Chemical Name: Estradiol 17β -cyclopentanepropionate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No. 313-06-4

Trade Name	Manufacturer	Country	Year Introduced
Depo-Estradiol	Upjohn	U.S.	1952
Depa-Estradiol	Upjohn	U.S.	1952
Cicloestradiolo	Farmigea	Italy	_
Depoestra	Tennessee Pharm.	U.S.	_
Depogen	Hyrex	U.S.	-
E-Cypionate	Legere	U.S.	_
E-Ionate	Reid-Provident	U.S.	-
Estro-Cyp	Keene Pharm.	U.S.	-
Estrofem	Pasadena	U.S.	-
Estromed-PA	Medics	U.S.	
Femovirin	Hoechst	_	_
Neoginon Depositum	Lusofarmaco	Italy	_
Oestradiol-Retard	Hepatrol	France	
Pertradiol	Dexter	Spain	_
Spendepiol	Spencer-Mead	U.S.	_
T-E Cypionate	Legere	U.S.	_

Raw Materials

Estradiol-17 β Cyclopentanepropionyl chloride Potassium carbonate

Manufacturing Process

A solution of 80.0 grams (0.294 mol) of estradiol- 17β in 860 ml of pyridine was cooled in an ice-bath and 130.0 grams (0.81 mol) of cyclopentanepropionyl chloride was added dropwise with stirring during a period of about 20 minutes. The ice-bath was removed, stirring was continued for 1 hour and the reaction mixture was allowed to stand at room temperature overnight. The mixture was warmed on a steam bath and stirred for about 45 minutes, cooled and poured slowly onto about 1,000 grams of ice to which had been added 330 ml of concentrated sulfuric acid. The precipitated product was extracted with 400 to 500 ml of ether, and the extract was washed successively with two 100-ml portions of cold 1 N sulfuric acid, two 100-ml portions of saturated sodium carbonate solution and water until the pH was 7 and dried over anhydrous sodium sulfate. After removal of the drying agent, the solution was concentrated to a volume of about 250 ml and an equal volume of methanol was added.

After chilling overnight a total of 120.0 grams (78.5%) of estradiol 3,17 β -dicyclopentane-propionate was obtained which melted at 87° to 90°C. A sample recrystallized from ethermethanol for analysis melted at 90.5° to 91.5°C.

To a solution of 2.5 grams (18.1 mmol) of potassium carbonate in 25 ml of water was added 225 ml of methanol followed by 5.0 grams (9.6 mmol) of estradiol 3.17β -dicyclopentanepropionate. The mixture was stirred for $2\frac{1}{2}$ hours at $20\pm2^{\circ}$ C during which time some precipitation occurred. The mixture was poured into 700 ml of water with efficient stirring and the precipitated solid was removed by filtration, washed with water and dried.

Recrystallization of the crude product from 80% methanol gave 3.16 grams (83%) of estradiol 17β -cyclopentanepropionate melting at 148° to 151°C. Recrystallization from benzene-petroleum ether raised the MP to 151° to 152°C.

References

Merck Index 3651 Kleeman & Engel p. 360 PDR p. 1033 OCDS Vol. 1 p. 162 (1977) I.N. p. 391

REM p. 986

Ott, A.C.; U.S. Patent 2,611,773; September 23, 1952; assigned to The Upjohn Company

ESTRADIOL VALERATE

Therapeutic Function: Estrogen

Chemical Name: Estradiol valerate

Common Name: -

Structural Formula: See Estradiol Cypionate for form of salt

Chemical Abstracts Registry No.: 979-32-8

Trade Name	Manufactuer	Country	Year Introduced
Delestrogen	Squibb	U.S.	1954
Lastrogen	Key	U.S.	1961
Reposo-E	Canfield	U.S.	1961
Estraval PA	Tutag	U.S.	1970
Androtardyl-Oestradiol	S.E.P.P.S.	France	_
Ardefem	Burgin-Arden	U.S.	_
Atladiol	I.C.I.	U.S.	-
Depogen	Sig	U.S.	_
Diol-20	Blaine	U.S.	_
Dioval	Keene	U.S.	_
Ditate	Savage	U.S.	_
Dura-Estate	Ries	U.S.	
Dura-Estradiol	Myers-Carter	U.S.	-
Duratrad	Ascher	U.S.	_
Estate	Savage	U.S.	_
Estral-L	Pasadena	U.S.	_
Femogen	Fellows	U.S.	_
Femogex	Stickley	Canada	-
Menaval	Legere	U.S.	-
Oestrogynal	Asche	W. Germany	-
Ostrin Depo	I.E. Kimya	Turkey	_
Pelanin	Mochida	Japan	-
Primogyn-Depot	Schering	W. Germany	-
Progynon Depot	Schering	W. Germany	
Progynova	Schering	W. Germany	_
Repestrogen	Spencer-Mead	U.S.	_
Repo-Estra	Central	U.S.	_
Retestrin	Rocky Mountain	U.S.	-
Span-Est	Scrip	U.S.	

Trade Name	Manufactuer	Country	Year Introduced
Testaval	Legere	U.S.	_
Valergen	Hyrex	U.S.	-

Raw Materials

Estradiol n-Valeric anhydride Potassium carbonate

Manufacturing Process

2.3 parts of estradiol are mixed with 12 parts of pyridine and 10 parts of n-valeric anhydride and the mixture is heated for some time at 115°C in the oil bath. The cooled solution is mixed with 250 parts of water, whereupon an oil separates; this is extracted with ether. The separated ethereal solution is washed successively with N sulfuric acid, water, N sodium carbonate solution and water and then dried. The ether is then removed and the residue purified by distillation in a high vacuum. The estradiol di-n-valerate forms a yellowish oil according to U.S. Patent 2,205,627.

1 part of estradiol-3,17-n-divalerianate (boiling point at 0.01 mm = 220° to 230°C bath temperature; made, e.g., by the action of n-valeric anhydride on a solution of estradiol in pyridine) is mixed with 50 parts of a solution of 0.5% strength of potassium carbonate in methyl alcohol of 95% strength, and the whole is stirred for some time at 20°C. The oily n-di-valerianate passes gradually into solution. The solution is neutralized and the precipitate is produced by the addition of about 200 parts of water. This finely crystalline product is filtered and washed successively with water, dilute sodium carbonate solution and again with water. It may be further purified by crystallization from a mixture of methyl alcohol and water. The estradiol-17-mono-n-valerianate melts at 144° to 145°C according to U.S. Patent 2,233,025.

References

Kleeman & Engel p. 655 PDR pp. 1033, 1604 OCDS Vol. 1 p. 162 (1977) I.N. p. 391 REM p. 986

Miescher, K. and Scholz, C.; U.S. Patent 2,205,627; June 25, 1940; assigned to the Society of Chemical Industry in Basle, Switzerland

Miescher, K. and Scholz, C.; U.S. Patent 2,233,025; February 25, 1941; assigned to Ciba Pharmaceutical Products, Incorporated

ESTRAMUSTINE PHOSPHATE

Therapeutic Function: Cancer chemotherapy

Chemical Name: Estradiol-3-N-bis(β-chloroethyl)carbamate

Common Name: -

Structural Formula: (base)

(ClCH2CH2)2NCOO

Chemical Abstracts Registry No.: 4891-15-0

Trade Name	Manufacturer	Country	Year Introduced
Estracyt	Bastian-Werk	W. Germany	1973
Estracyt	Lundbeck	U.K.	1977
Estracyt	Roche	France	1981
Estracyt	Roche	Italy	1981
Emcyt	Roche	U.S.	1982
Estracyt	Abello	Spain	_
Estracyt	Leo	Sweden	_

Raw Materials

Bis(β-Chloroethyl)amine	Phosgene
Phosphorus oxychloride	Estradiol

Manufacturing Process

A solution in dry benzene of 82 grams of bis(β -chloroethy!) amine freshly liberated from its hydrochloride is added gradually to a solution of 36 grams of carbonyl chloride (phosgene) in benzene at a temperature below 10°C. The mixture is mechanically stirred for 3 hours, the precipitate of bis(β -chloroethyl)amine hydrochloride is removed by filtration and the benzene is distilled off on a water bath. The residue is distilled in vacuo and the N-chloroformyl-bis(β-chloroethyl)amine is obtained as a pale yellow oil with a BP of 114° to 116°C at 1 mm Hq.

To a solution of 16.35 grams of estradiol in 75 ml of dry pyridine, 21.00 grams of the abovementioned chloroformyl-bis(β -chloroethyl)amine are added while stirring and cooling with ice-water.

The reaction mixture is allowed to stand at room temperature for 60 to 70 hours under the exclusion of air humidity. Then the excess of the chloroformyl compound is hydrolyzed with crushed ice. Ethyl acetate is added and after shaking, the ethyl acetate solution is separated and washed with water, dried over sodium sulfate and evaporated in vacuo to dryness.

The residue is the 3-N-bis(β -chloroethyl)carbamate of estradiol. The compound melts at 101° to 103°C after recrystallization from isopropyl ether plus hexane (1:1).

To a solution of 2.3 ml of phosphorus oxychloride in 50 ml of dry pyridine is added a solution of 2.2 grams of 3-N-bis(β -chloroethyl)carbamate of estradiol while stirring and at a temperature of about -10°C. The reaction mixture is allowed to stand at about 0°C for 1½ hours, whereupon it is hydrolyzed by pouring it into ice-water. The main part of the pyridine is evaporated in vacuo, whereupon the residue is poured into 100 ml of cold 3.5 N hydrochloric acid with stirring. The precipitate thus obtained is isolated and washed with 0.1 N hydrochloric acid and water.

The compound, which consists of the 17-phosphate of estradiol-3-N-bis(β -chloroethyl)carbamate, melts under decomposition at about 155°C. It is soluble in an aqueous solution of alkali.

References

Merck Index 3653 Kleeman & Engel p. 361 PDR p. 1483 OCDS Vol. 3 p. 83 (1984) DOT 8 (11) 415 (1972) I.N. p. 392 REM p. 1155

Fex, H.J., Hogberg, K.B., Konyves, I. and Kneip, P.H.O.J.; U.S. Patent 3,299,104; Jan. 17, 1967; assigned to Leo AB, Sweden

ESTRIQL SUCCINATE

Therapeutic Function: Estrogen

Chemical Name: Estra-1,3,5(10)-triene-3,16 α ,17 β -triol succinate

Common Name: 16\alpha-hydroxyestradiol

Structural Formula:

Chemical Abstracts Registry No.: 514-68-1

Trade Name	Manufacturer	Country	Year Introduced
Hemostyptanon	Endopancrine	France	19 66
Orgastyptin	Organon	W. Germany	-
Ovestin	Ravasini	Italy	_
Synapause	Nourypharma	W. Germany	_
Synapause	Organon	France	_
Synapasa	Erco	Denmark	_

Raw Materials

Estriol

Succinic acid anhydride

Manufacturing Process

A mixture consisting of 8 grams of estriol, 20 grams of succinic acid anhydride and 60 ml of pyridine is heated at 90°C for 4 hours, after which the reaction mixture is poured into water. The aqueous solution is extracted with ether, the ether layer is separated, washed with diluted sulfuric acid and after that with water until neutral, then evaporated to dryness to obtain 14 grams of an amorphous substance. Melting point 82° to 86°C. This drying residue proves to consist of a mixture of estriol disuccinate and estriol monosuccinate, which are separated by repeated crystallization from a mixture of methanol and water.

References

Merck Index 3654 Kleeman & Engel p. 362 I.N. p. 392

Organon Laboratories Limited, England; British Patent 879,014; October 4, 1961

ETHACRYNIC ACID

Therapeutic Function: Diuretic

Chemical Name: [2,3-dichloro-4-(2-methylene-1-oxobutyl)phenoxy] acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-54-8

Trade Name	Manufacturer	Country	Year introduced
Hydromedin	MSD	W. Germany	1966
Edecrin	MSD	U.K.	1966
Edecrin	MSD	U.S.	1967
Edecrin	MSD	Italy	1967
Edecrine	MSD	France	1968
Crinuryl	Assia	Israel	
Edecril	Merck-Banyu	Japan	_
Reomax	Bioindustria	Italy	-
Taladren	Malesci	Italy	-

Raw Materials

2.3-Dichlorophenoxyacetic acid n-Butyryl chloride Aluminum chloride Paraformaldehyde Dimethylamine hydrochloride

Manufacturing Process

Step A: Preparation of 2,3-Dichloro-4-Butyrylphenoxy Acid - The product is prepared using the following ingredients: 22.1 grams (0.1 mol) 2,3-dichlorophenoxyacetic acid; 21.3 grams (0.2 mol) n-butyryl chloride; and 53.3 grams (0.4 mol) powdered aluminum chloride.

The 2,3-dichlorophenoxyacetic acid and n-butyryl chloride are placed in the reaction vessel and stirred while the aluminum chloride is added portionwise over a 45-minute period. The mixture then is heated on the steam bath for 3 hours and allowed to cool to room temperature. The gummy product obtained is added to a mixture of 300 ml of crushed ice and 30 ml concentrated hydrochloric acid. The resulting mixture is extracted with ether and the extract evaporated at reduced pressure. The residue is suspended in boiling water and dissolved by addition of a minimum quantity of 40% sodium hydroxide. After treatment with decolorizing charcoal and filtering, the hot filtrate is made acid to Congo red paper and chilled in ice.

The oil that separates is extracted with ether, the extract dried over anhydrous sodium sulfate and then evaporated at reduced pressure. The residue is dissolved in boiling benzene (75 ml) treated with decolorizing charcoal, filtered, treated with boiling cyclohexane (275 milliliters) and cooled to give 22.3 grams of 2,3-dichloro-4-butyrylphenoxyacetic acid. After several recrystallizations from a mixture of benzene and cyclohexane, then from methylcyclohexane, next from a mixture of acetic acid and water, and finally from methylcyclohexane, the product melts at 110° to 111°C (corr).

Step B: Preparation of 2,3-Dichloro-4-[2-(Dimethylaminomethyl)Butyryl] Phenoxyacetic Acid Hydrochloride - In a 100 ml round flask equipped with an outlet tube suitable for application of intermittent suction, an intimate mixture of 5.20 grams (0.0179 mol) 2.3dichloro-4-butyrylphenoxyacetic acid; 0.63 gram (0.0209 mol) paraformaldehyde: 1.59 grams (0.0195 mol) dry dimethylamine hydrochloride; and 4 drops acetic acid is heated on the steam bath for about 1.5 hours during which period suction is applied for about 1 minute intervals five or six times. Upon cooling, a solid is obtained.

The crude reaction product is triturated with ether to give 5.8 grams (85%) of 2,3-dichloro-4-[2-dimethylaminomethyl)butyryl] phenoxyacetic acid hydrochloride in the form of a white solid. After two recrystallizations from a mixture of methanol and ether, the product melts at 165° to 167°C.

Step C: Preparation of 2,3-Dichloro-4-(2-Methylenebutyryl)Phenoxyacetic Acid — The Mannich compound obtained as described above is treated with aqueous sodium bicarbonate to form 2,3-dichloro-4-(2-methylenebutyryl)phenoxyacetic acid, MP 115° to 118°C. Two recrystallizations from a mixture of benzene and cyclohexane give white solid material melting at 118.5° to 120.5°C.

References

Merck Index 3664 Kieeman & Engel p. 364 PDR p. 1173 OCDS Vol. 1 p. 120 (1977) & 2, 103 (1980) DOT 2 (1)14 (1966) I.N. p. 22 REM p. 942

Schultz, E.M. and Sprague, J.M.; U.S. Patent 3,255,241; June 7, 1966; assigned to Merck & Co., Inc.

ETHAMBUTOL HYDROCHLORIDE

Therapeutic Function: Antitubercular

Chemical Name: (R)-2,2'-(1,2-ethanediyldiimino)bis-1-butanol dihydrochloride

Common Name: -

ÇH₂OH ÇH₂OH Structural Formula:

CH3CH2CHNHCH2CH2NHCHCH2CH3.2HCI

Chemical Abstracts Registry No.: 74-55-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Myambutol	Lederle	U.S.	1967
Myambutol	Cyanamid	W. Germany	1967
Myambutol	Lederle	U.K.	1967
Miambutol	Cyanamid	Italy	1967
Myambutol	Lederle	France	1970
Abbutol	Abbott	_	_
Afimocil	Prodes	Spain	
Anvital	Cheminova Espanola	Spain	
Cidanbutol	Cidan	Spain	
Dexambutol	Sobio .	France	_
Ebutol	Kaken	Japan	
EMB-Fatol	Saarstickstoff-Fatol	W. Germany	-

Trade Name	Manufacturer	Country	Year Introduced
Embutol	Saba	Turkey	_
Esanbutol	Lederle	Japan	_
Etambrin	Lopez-Brea	Spain	_
Etambutol Beta	Beta	Argentina	_
Etambutyl	Stholl	italy	_
Etapiam	Piam	Italy	_
Etbutol	Leiras	Finland	_
Etibi	Zoja	Italy	_
Etibi	Gerot	Austria	_
Farmabutol	Farmabion	Spain	-
Fimbutol	Sanomed	Spain	-
inagen	Morgens	Spain	
Mycobutol	I.C.I.	Italy	
Olbutam	Carlo Erba	italy	_
Oributol	Orion	Finland	_
Stambu tol	Pharmacal	Finland	_
Sural	Chinoin	Hungary	_
Syntomen	VEB Berun-Chemie	E. Germany	-
Tam but ol	Atabay	Turkey	_
Tisiobutol	Capitol	Spain	_
Tuberol	Deva	Turkey	-

Raw Materials

2-Amino-1-butanol Hydrogen chloride

Ethylene dichloride Sodium hydroxide

Manufacturing Process

To 27 grams (2.55 mols) of 2-amino-1-butanol was added 100 grams (1.0 mol) of ethylene dichloride. The mixture was heated at reflux and in a few minutes, the exothermic reaction required the removal of exterior heating. After 10 minutes, exterior heating was recommenced for an additional 20 minutes. The hot mixture was then treated with 300 ml of methanol and then cautiously with 84 grams (2.1 mols) of sodium hydroxide in 80 ml of water. The precipitated sodium chloride was removed by filtration. The excess 2amino-1-butanol distilled as light yellow oil at 83° to 87°C/13 mm. The viscous residue distilled at 165° to 170°C/0.6 mm as a light yellow oil which tended to solidify in the air condenser; yield, 108 grams.

Recrystallization by dissolving in 80 ml of hot ethanol, adding about 150 ml of petroleum ether (BP 90° to 100°C) and cooling at 5°C overnight, gave 64 grams of white crystals melting at 128° to 132.5°C. This, on recrystallization from 100 ml of 95% ethanol, gave 35 grams of white crystals melting at 134.5° to 136°C and a second crop of 10 grams melting at 132.5° to 134°C which is the meso base. Its dihydrochloride melts at 202° to 203°C.

From the ethanolic filtrates upon addition of 130 ml of about 4 N ethanolic hydrochloric acid and cooling, there was obtained 55 grams of white crystals melting at 176.5° to 178°C and a second crop of 10 grams melting at 171.5° to 174.5°C. This is the di racemate dihydrochloride.

References

Merck Index 3666 Kleeman & Engel p. 367 PDR p. 1020 OCDS Vol. 1 p. 222 (1977) DOT 3 (4) 133 (1967) I.N. p. 395 REM p. 1214

Wilkinson, R.G. and Shepherd, R.G.; U.S. Patent 3,297,707; January 10, 1967; assigned to American Cyanamid Company

ETHAMIVAN

Therapeutic Function: Central and respiratory stimulant

Chemical Name: N,N-Diethyl-4-hydroxy-3-methoxybenzamide

Common Name: Vanillic acid diethylamide

Structural Formula:

Chemical Abstracts Registry No.: 304-84-7

Trade Name	Manufacturer	Country	Year Introduced
Emivan	U. S .V.	U.S.	1961
Corivanil	Sirt-B.B.P.	Italy	-
Romecor	Benvegna	italy	
Vandid	Riker	U.K.	_
Vandid	Lentia	W. Germany	_

Raw Materials

Vanillinic acid Diethylamine Phosphorus pentoxide

Manufacturing Process

4 g of vanillinic acid are mixed with 3.6 g of diethylamine, after cooling 2.2 g of phosphorus pentoxide and the same amount of glass powder are added, and then reacted with xylene until a thin paste has been formed. The latter is boiled for some hours in the reflux cooler, moisture being excluded. Decantation follows, and the residue is dissolved by means of a warm solution of potassium carbonate until only glass powder or small amount of impurities remain undissolved, and then the xylene solution is shaken up therewith. The xylene solution is then separated, the aqueous layer is again extracted with ether, and the ether extract is combined with the xylene solution. The mixture is then distilled under the lowest possible pressure, collecting the fraction between 170°C and 250°C (referred to 10 Torr), and purifying it by further fractionation. In this way a slightly yellowish oil is obtained, which crystallizes after some time. By dissolving in ligroin and crystallizing, pure vanillinic acid diethylamide is obtained in the form of white needles; MP 95°C to 95.5°C.

References

Merck Index 3667 Kleeman & Engel p. 365 OCDS Vol. 2 p. 94 (1980)

Kratzl, K. and Kvasnicka, E.; U.S. Patent 2,641,612; June 9, 1953; assigned to Oesterreichishe Stickstoffwerke A.G. (Austria)

ETHAMSYLATE

Therapeutic Function: Hemostatic

Chemical Name: 2,5-dihydroxybenzenesulfonic acid compound with N-ethylethanamine

Common Name: Diethylammonium cyclohexadien-4-ol-1-one-4-sulfonate

Structural Formula:

Chemical Abstracts Registry No.: 88-46-0

Trade Name	Manufacturer	Country	Year Introduced
Dicynone	Delalande	France	1965
Dicynene	Delalande	Italy	1967
Altodor	Delalande	W. Germany	1967
Dicynene	Delalande	U.K.	1971
Aglumin	Eisai	Japan	
Dicynone	Torii	Japan	_
Eselin	Ravizza	Italy	-

Raw Materials

Diethylamine bisulfite 1,4-Benzoquinone

Manufacturing Process

163 grams of pure diethylamine bisulfite are added to an ethyl alcohol solution of 108 grams of 1,4-benzoquinone at a temperature not above 5°C and under continuous stirring. After reaction, the alcohol is removed by distilling under vacuum. The product is recrystallized from ethyl alcohol at 80°C. Yield: 198 grams of diethylammonium cyclohexadienol-4-one-1-sulfonate-4. MP 125°C.

References

Merck Index 3669 Kleeman & Engel p. 366

Laboratories OM Societe Anonyme, Switzerland; British Patent 895,709; May 9, 1962

ETHCLORVYNOL

Therapeutic Function: Sedative, hypnotic

Chemical Name: 1-chloro-3-ethyl-1-penten-4-yl-3-ol

Common Name: Ethyl β -chlorovinyl ethynyl carbinol

Structural Formula:

Chemical Abstracts Registry No.: 113-18-8

Trade Name	Manufacturer	Country	Year Introduced
Placidyl	Abbott	U.S.	1965
Arvynol	Pfizer	U.K.	_
Arvynol	Taito Pfizer	Japan	_
Nostel	Dainippon	Japan	_
Roeridorm	Pfizer-Roerig	-	_
Serenesil	Abbott	U.K.	_

Raw Materials

Acetylene Lithium

Ethyl β -chlorovinyl ketone

Manufacturing Process

Acetylene was passed into a stirred solution of 3.05 grams (0.44 mol) of lithium in 300 ml of liquid ammonia until the blue color exhibited by the mixture had disappeared. Ethyl β-chlorovinyl ketone (47.4 grams; 0.40 mol) dissolved in 50 ml dry ether was then added to the resulting solution of lithium acetylide over a period of 20 minutes, during which the color deepened through yellow to reddish-brown. The mixture was stirred under reflux maintained with a Dry Ice condenser for 2 hours. Thereafter, dry ether (200 ml) was added and the ammonia was permitted to evaporate with stirring overnight.

The residue was poured into a slurry of ice and water containing 30 grams (0,50 mol) of acetic acid. After separating the ether layer, the aqueous layer was washed with two 200 milliliter portions of ether. The combined ether extracts were washed with saturated sodium bicarbonate solution, dried over anhydrous magnesium sulfate and evaporated in a stream of pure nitrogen. Three successive distillations of the residue gave 46.3 grams (80.2% yield) of a colorless liquid, boiling point 28.5° to 30°C at 0.1 mm Hg.

References

Merck Index 3677 Kleeman & Engel p. 369 PDR p. 551 I.N. p. 396 REM p. 1070

Bayley, A. and McLamore, W.M.; U.S. Patent 2,746,900; May 22, 1956; assigned to Chas. Pfizer & Co., Inc.

ETHIAZIDE

Therapeutic Function: Diuretic

Chemical Name: 6-chloro-3-ethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-

dioxide

Common Name: Acthiazidum

Structural Formula:

Chemical Abstracts Registry No.: 1824-58-8

Trade Name	Manufacturer	Country	Year Introduced
Ethiazide	T okyo Tanabe	Japan	1970
Hypertane	Medo-Chemicals	U.K.	-

Raw Materials

5-Chloro-2,4-disulfamylaniline Propionaldehyde

Manufacturing Process

A mixture of 2.9 grams of 5-chloro-2,4-disulfamyl-aniline in 20 ml of anhydrous diethyleneglycol dimethylether, 0.44 gram of propionaldehyde and 0.5 ml of a solution of hydrogen chloride in ethyl acetate (109.5 grams hydrogen chloride per 1,000 ml) is heated to 80° to 90°C and maintained at that temperature for 1 hour. The reaction mixture is concentrated under reduced pressure; on addition of water, the product separates and is then recrystallized from ethanol or aqueous ethanol to yield the desired 6-chloro-3-ethyl-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide, MP 269° to 270°C.

References

Merck Index 3681 Kleeman & Engel p. 370 OCDS Vol. 1 p. 358 (1977) I.N. p. 397

Ciba Limited, Switzerland; British Patent 861,367; February 22, 1961

ETHINAMATE

Therapeutic Function: Sedative

Chemical Name: 1-ethynylcyclohexanol carbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 126-52-3

Trade Name	Manufacturer	Country	Year Introduced
Valmid	Dista	U.S.	1955
Valamin	S chering	W. Germany	_

Raw Materials

1-Ethinyl-1-cyclohexanol Phosgene Ammonia

Manufacturing Process

A solution of 34 cc (0.5 mol) of liquid phosgene in 150 cc of absolute ether is reacted while cooling with a mixture of sodium chloride and ice, first with 62 grams (0.5 mol) of 1-ethinyl cyclohexanol-1 and then with 64 cc (0.5 mol) of quinoline. The precipitated quinoline chlorohydrate is filtered off and the filtrate is reacted with ammonia in ether. In this manner 45 grams of the carbamic acid ester of 1-ethinyl cyclohexanol are obtained. Yield: 53% of the theoretical yield. The ester boils at 108° to 110°C/3 mm and on recrystallization from cyclohexane, yields colorless needles melting at 94° to 96°C.

References

Merck Index 3682 Kleeman & Engel p. 370 PDR p. 846 I.N. p. 397 REM p. 1070

Junkmann, K. and Pfeiffer, H.; U.S. Patent 2,816,910; December 17, 1957; assigned to Schering AG, Germany

ETHINYLESTRADIOL

Therapeutic Function: Estrogen

Chemical Name: 19-Nor-17α-pregna-1,3,5(10)-trien-20-yne-3,17-diol

Common Name: 17-Ethinylestradiol

Structural Formula:

Chemical Abstracts Registry No.: 57-63-6

Trade Name	Manufecturer	Country	Year Introduced
Estinyl	Schering	U.S.	1944
Lynoral	Organon	U.S.	1945
Eticyclol	Ciba	U.S.	1947
Ethinyl Oestradiol	Roussel	France	1950
Diogyn-E	Pfizer	U.S.	1953
Provest	Upjohn	U.S.	1964
Norlestrin	Parke Davis	U.S.	1964
Oracon	Mead Johnson	U.S.	1965
Feminone	Upjohn	U.S.	1970
Demulen	Searle	U.S.	_
Duramen	Leo	Sweden	
Edrol	Virax	Australia	_
Ertonyl	Schering	_	_
Estigyn	Allen & Hanburys	U.K.	_
Etifollin	Nyegaard	Norway	_
Etivex	Leo	Sweden	_
Farmacyrol	Farmaryn	W. Germany	_
Follikoral	Arcana	Austria	_

Trade Name	Manufacturer	Country	Year Introduced
Gynetone	Schering	U.S.	_
Gynolett	Labopharma	W. Germany	_
Gynoral	Teva	Israel	_
Kolpi Gynaedron	Artesan	W. Germany	
Metroval	Kwizda	Austria	_
Oradiol	Van Pelt & Brown	U.S.	_
Orestralyn	McNeil	U.S.	_
Ovahormon	Telkoku Zoki	Japan	_
Ovex	Ratiopharm	W. Germany	_
Progynon	Schering	W. Germany	_
Turisteron	Jenapharm	E. Germany	_
Ylestrol	Ferndale	U.S.	_

Raw Materials

Potassium Ammonia Estrone Acetylene

Manufacturing Process

In about 250 cc of liquid ammonia (cooled with dry ice and acetone) are dissolved about 7.5 g of potassium and into the solution acetylene is passed until the blue color has disappeared (about 3 hours). Then slowly a solution or suspension of 3 g of estrone in 150 cc of benzene and 50 cc of ether is added. The freezing mixture is removed, the whole allowed to stand for about 2 hours and the solution further stirred overnight. Thereupon the reaction solution is treated with ice and water, acidified with sulfuric acid to an acid reaction to Congo red and the solution extracted five times with ether. The combined ether extracts are washed twice with water, once with 5% sodium carbonate solution and again with water until the washing water is neutral. Then the ether is evaporated, the residue dissolved in a little methanol and diluted with water. The separated product is recrystallized from aqueous methanol. The yield amounts to 2.77 g. The 17-ethinyl-estradiol-3,17 thus obtained melts at 142°C to 144°C.

References

Merck Index 3683 Kleeman & Engel p. 371 PDR pp. 1104, 1297, 1358, 1372, 1616, 1680, 1793, 1952, 1960, 1965, 1983 I.N. p. 397 REM p. 987

Inhoffen, H.H. and Hohlweg, W.; U.S. Patent 2,265,976; December 9, 1941; assigned to Schering Corp.

ETHIONAMIDE

Therapeutic Function: Antitubercular

Chemical Name: 2-ethyl-4-pyridinecarbothioamide

Common Name: Ethyl isonicotinic thioamide

Structural Formula:

Chemical Abstracts Registry No.: 536-33-4

Trade Name	Manufacturer	Country	Year Introduced
Trecator	Theraplix	France	1959
Trecator-SC	lves	U.S.	1962
Ethimide	Tanabe	Japan	-
Ethinamin	Takeda	Japan	_
Ethiocidan	Cidan	Spain	-
Iridocin	Bayer	· -	-
Itiocide	Kyowa	Japan	_
Nicotion	Leiras	Finland	-
Rigenicid	Gedeon Richter	Hungary	-
Sertinon	Daiichi	Japan	_
Teberus	Dainippon	Japan	
Thiomid	Nikken	Japan	-
Thioniden	Kaken	Japan	-
Trescaty	May & Baker	U.K.	-
Tubenamide	Seiko	Japan	-
Tubermin	Meiji	Japan	-
Tuberoid	Sankyo	Japan	-
Tuberoson	Shionogi	Japan	-

Raw Materials

Methyl ethyl ketone Ethyl oxalate Hydrogen chloride Phosphorus oxychloride Phosphorus pentoxide

Ammonia Cyanacetamid Ethanol Hydrogen Hydrogen sulfide

Manufacturing Process

Ethyl Propionyl-Pyruvate: 36 grams of methyl ethyl ketone and 73 grams of ethyl oxalate are condensed in the presence of sodium ethylate, the reaction mixture being refluxed in an alcoholic medium. 28 grams of the desired product having a boiling point of 100° to 105°C/6 mm are obtained.

3-Cvano-4-Carbethoxy-6-Ethyl-2-Pyridone: 205 cc of 60% alcohol, 22 grams of the product just obtained. 11 grams of cyanacetamide and 4.5 cc of piperidine are refluxed. 19 grams of product having a melting point of 211°C are obtained.

4-Carboxy-6-Ethyl-2-Pyridone: 30 grams of the cyanopyridone just obtained are refluxed with concentrated hydrochloric acid. 13.5 grams of product having a melting point of 308°C are obtained.

2-Chloro-4-Carbethoxy-6-Ethyl-Pyridine: 26 grams of the product just obtained are treated with 81 grams of phosphorus pentachloride in 45 cc of phosphorus oxychloride. The phosphorus oxychloride is distilled off in a vacuum and the residue is treated with absolute alcohol. After distillation there are obtained 24 grams of product having a boiling point of 127° to 131°C/8 mm.

Ethyl-2-Ethyl-Isonicotinate: 10 grams of the ester just obtained dissolved in 80 cc of absolute alcohol containing 5.5 grams of potassium acetate are hydrogenated catalytically on 5% palladium black. 8 grams of product having a boiling point of 120° to 124°C/14 mm are obtained.

2-Ethyl-Isonicotinic-Amide: 20 grams of the ether just obtained are agitated with 25 cc of concentrated ammonia, 11 grams of product having a melting point of 131°C are obtained.

2-Ethyl-Isonicotinic Nitrile: The 11 grams of the amide just obtained are treated with 15 grams of phosphorus anhydride at 160° to 180°C in a vacuum. 6 grams of a liquid residue are obtained

α-Ethyl-Isonicotinic Thioamide: The 6 grams of the liquid just obtained, in solution in 15 cc of absolute alcohol containing 2 grams of triethanolamine, are treated with hydrogen sulfide. 6.5 grams of the desired product having a melting point of 166°C are obtained.

References

Merck Index 3686 Kleeman & Engel p. 371 PDR p. 1982 OCDS Vol. 1 p. 255 (1977) I.N. p. 397 REM p. 1216

Chimie et Atomistique, France; British Patent 800,250; August 20, 1958

ETHOHEPTAZINE

Therapeutic Function: Analgesic

Chemical Name: Hexahydro-1-methyl-4-phenylazepine-4-carboxylic acid ethyl ester

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 77-15-6

Trade Name	Manufacturer	Country	Year Introduced
Zactane	Wyeth	U.S.	1957
Equagesic	Wyeth	U.S.	-
Mepro	S chein	U.S.	_
Panalgin	Padil	Italy	_
Zactipar	Wyeth	U.K.	_
Zactirin	Banvo	Japan	

Raw Materials

N-(2-Chloroethyl)dimethylamine Phenylacetonitrile Trimethylene bromide Sodium amide Ethanol Sulfuric acid

Manufacturing Process

As a starting material, phenylacetonitrile was reacted with N-(2-chloroethyl)dimethylamine. This then underwent the following reaction sequence.

Preparation of 1-Dimethylamino-3-Cyano-3-Phenyl-6-Bromohexane: 65,8 grams (0,35 mol) of 2-phenyl-4-dimethylaminobutyronitrile in 350 cc of absolute ether was dripped into a stirred suspension of 17.5 grams (0.45 mol) of sodamide in 350 cc of absolute ether during 1 hour, keeping the reaction mixture under a dry nitrogen atmosphere. The mixture was stirred an additional hour at room temperature and then 1 hour at reflux temperature. The mixture was diluted with 250 cc of absolute ether, cooled in an ice bath, then, while stirring, a solution of 74.7 grams (0.37 mol) of trimethylene bromide in 250 cc of absolute ether added at once. The yellow suspension continued to be stirred at ice-bath temperature for 1 hour, then at room temperature for 1 hour, and finally at reflux temperature for 3 hours. The mixture was cooled and the sodium bromide, which had precipitated in quantitative yield, was filtered off and washed with ether. The light yellow ethereal filtrate contained the product. This compound could be stored for some time in a hydrocarbon solvent, e.g., n-heptane, at +5°C.

Preparation of 4-Phenyl-4-Cyano-N-Methyl Azacycloheptane Methobromide: A 0.1 M nitrobenzene solution of 1-dimethylamino-3-cyano-3-phenyl-6-bromohexane was kept at 100°C for 1 hour whereby the quaternary salt precipitated out; MP 246° to 247°C.

Preparation of 4-Phenyl-4-Cyano-N-Methyl Azacycloheptane: 6.2 grams (0.02 mol) of the methobromide quaternary salt was suspended in 150 cc of tetralin. While vigorously stirring, the mixture was heated to its reflux temperature, whereupon the solid began to disintegrate and go into solution. The stirring and refluxing was continued 1 hour, then the mixture cooled, water added, and the layers separated. The tetralin solution was extracted with 3 M aqueous hydrochloric acid, the acid extract washed with ether, then made alkaline with aqueous sodium hydroxide and extracted with ether. The ether extracts were dried, filtered, and the solvent distilled off. Vacuum distillation of the liquid residue gave the tertiary amine, BP 119° to 121°C/0.25 mm.

Preparation of 4-Phenyl-4-Carbethoxy-N-Methyl Azacycloheptane: A solution of B.4 grams (0.04 mol) of the cyclic aminonitrile in 10.6 grams concentrated sulfuric acid and 2.6 grams water was kept at 110° to 120°C (bath temperature) for 3 hours. Then, while repeatedly adding absolute ethanol, 95% aqueous ethanol was slowly distilled off during 16 hours. The reaction mixture was concentrated to 50 cc, cooled, poured into 200 cc of a cold saturated aqueous solution of sodium carbonate and extracted with ether. The ether extract after drying and filtering yielded, by distillation, the aminoester, BP 122° to 124°C/0.3 mm.

References

Merck Index 3691 Kleeman & Engel p. 373 PDR p. 1606 OCDS Vol. 1 p. 303 (1977) I.N. p. 398 REM p. 1116

Diamond, J. and Bruce, W.F.; U.S. Patent 2,666,050; January 12,1954; assigned to American Home Products Corporation

ETHOPROPAZINE HYDROCHLORIDE

Therapeutic Function: Antiparkinsonian

Chemical Name: N,N-diethyl-\alpha-methyl-10H-phenothiazine-10-ethanamine hydrochloride

Common Name: Profenamin

Chemical Abstracts Registry No.: 1094-08-2; 522-00-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Parsido!	Warner Lambert	U.S.	1954
Parkin	Yoshitomi	Japan	1973
Parsido!	Sevenet	France	1981
Dibutil	Bayer	-	_
Lysivane	May & Baker	U.S.	_
Parsitan	Rhone-Poulenc	Canada	_
Parsotil	Rhodia Iberica	Spain	
Rodipal	Deutsches Hydrierwerk	E. Germany	_

Raw Materials

Phenthiazine	Magnesium
Methyl iodide	Hydrogen chloride
2-Chloro-1-diethylamino propane	

Manufacturing Process

6.2 grams of phenthiazine in 100 cc of warm dry benzene was added during 1 hour with stirring, and in an atmosphere of hydrogen, to the Grignard reagent prepared from 1 gram of magnesium, 6.2 grams of methyl iodide, and 20 cc of dry ether. After boiling for 30 minutes, a solution of 6.6 grams of 2-chloro-1-diethylamino propane in 10 cc of dry benzene was added during 1 hour to the boiling solution, and heating was maintained for a further 1.5 hours.

The reaction mixture was then cooled and treated with aqueous ammonium chloride and chloroform added to dissolve an oil at the interface of the benzene and aqueous layers. The chloroform-benzene extract was extracted with 2 N hydrochloric acid and the acid extract was basified at 5° to 10°C with 50% aqueous sodium hydroxide.

There was obtained a mixture of N-(2'-diethylamino-2'-methylethyl)phenthiazine and N-(2'-diethylamino-1'-methylethyl)phenthiazine in the form of a viscous yellow oil, BP 202° to 205°C/2 mm. This oil was treated in ethereal solution with ethereal hydrogen chloride and gave a white solid which was fractionally crystallized from ethylene dichloride. The less soluble fraction, N-(2'-diethylamino-2'-methylethyl)phenthiazine hydrochloride formed colorless rhombs, MP 223° to 225°C. The more soluble N-(2'-diethylamino-1'-methylethyl)phenthiazine hydrochloride was obtained as colorless prismatic needles, MP 166° to 168°C.

References

Merck Index 3696 Kleeman & Engel p. 765 PDR p. 1380 OCDS Vol. 1 p. 373 (1977) I.N. p. 807 REM p. 932

Berg, S.S. and Ashley, J.N.; U.S. Patent 2,607,773; August 19, 1952; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

ETHOSUXIMIDE

Therapeutic Function: Anticonvulsant

Chemical Name: 3-ethyl-3-methyl-2,5-pyrrolidinedione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 77-67-8

Trade Name	Manufacturer	Country	Year Introduced
Zarontin	Parke Davis	U.S.	1960
Suxinutin	Parke Davis	W. Germany	1960
Zarontin	Parke Davis	U.K.	1960
Zarontin	Parke Davis	France	1965
Zarontin	Parke Davis	Italy	1966
Asamid	Pliva	Yugoslavia	_
Emeside	Lab. For Appl. Biol.	U.K.	
Epileo-Petitmal	Eisai	Ja pan	_
Ethymal	Hillel	Israel	
Etomal	Orion	Finland	_
Petinamide	Gerot	Austria	_
Petnidan	Desitin	W. Germany	_
Pyknolepsinum	ICI Pharma	W. Germany	_
Simatin	Geistlich	Switz.	_

Raw Materials

Ethyl cyanoacetate Hydrogen cyanide Sulfuric acid

Methyl ethyl ketone Sodium hydroxide Ammonia

Manufacturing Process

α-Ethyl-α-methylsuccinimide is known in the prior art as a chemical entity, having been prepared according to the method described by Sircar, J. Chem. Soc., 128:600 (1927), and characterized in J. Chem. Soc., 128:1254 (1927).

In its manufacture, methyl ethyl ketone is condensed with ethylcyanoacetate to give ethyl-2-cyano-3-methyl-2-pentenoate. That, in turn, adds HCN to give ethyl-2,3-dicyano-3-methylpentanoate. Saponification and decarboxylation gives 2-methyl-2-ethyl succinonitrile. Heating with aqueous NH3 gives the diamide which loses NH3 and cyclizes to ethosuximide.

References

Merck Index 3697 Kleeman & Engel p. 373 PDR p. 1396 OCDS Vol. 1 p. 228 (1977) I.N. p. 398 REM p. 1078

Miller, C.A. and Long, L.M.; U.S. Patent 2,993,835; July 25, 1961; assigned to Parke, Davis and Company

ETHOTOIN

Therapeutic Function: Anticonvulsant

Chemical Name: 3-ethyl-5-phenyl-2,4-imidazolidinedione

Common Name: 3-ethyl-5-phenylhydantoin

Structural Formula:

Chemical Abstracts Registry No.: 86-35-1

Trade Name	Manufacturer	Country	Year Introduced
Peganone	Abbott	U.S.	1957
Accenon	Dainippon	Japan	—

Raw Materials

Urea Benzaldehyde cyanohydrin Ethyl iodide Hydrogen chloride

Manufacturing Process

Benzaldehyde cyanohydrin is reacted with urea to displace the hydroxyl group of the cyanohydrin. That intermediate is treated with HCl to convert the urea nitrogen to a nitrile. The resultant imine is hydrolyzed to the phenylhydantoin. Alkylation with ethyl iodide gives ethotoin, as described by A. Pinner in Chem. Ber. 21, 2325 (1888).

References

Merck Index 3698 Kleeman & Engel p. 374 PDR p. 546 OCDS Vol. 1 p. 245 (1977) I.N. p. 398 REM p. 1083

Close, W.J.; U.S. Patent 2,793,157; May 21, 1957; assigned to Abbott Laboratories

ETHOXZOLAMIDE

Therapeutic Function: Diuretic

Chemical Name: 6-ethoxy-2-benzothiazolesulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 452-35-7

Trade Name	Manufacturer	Country	Year Introduced
Cardrase	Upjohn	U.S.	1957
Ethamide	Allergan	U.S.	1967
Glaucotensil	Farmila	Italy	_
Redupressin	Thilo	W. Germany	_
Poenglausil	Poen	Argentina	_

Raw Materials

6-Ethoxybenzothiazole-2-thiol Ammonia Sodium hypochlorite Potassium permanganate

Manufacturing Process

Preparation of 6-Ethoxybenzothiazole-2-Sulfenamide: A solution prepared by dissolving 21.0 grams (0.1 mol) of 6-ethoxybenzothiazole-2-thiol, Sebrell and Boord, J. Am. Chem. Soc. 45: 2390 to 2399 (1923), in 75 ml of water containing 5 grams of sodium hydroxide, and 75 ml of 10% sodium hypochlorite solution were added simultaneously to 300 ml of concentrated ammonium hydroxide which was cooled to 0°C, and vigorously stirred. During the addition the temperature was not allowed to rise above 5°C. The resulting solid was recovered by filtration, washed thoroughly with water, and dried at room temperature under reduced pressure. There was obtained 21 grams of 6-ethoxybenzothiazole-2-sulfenamide melting at 132° to 155°C (decomposition). Recrystallization from ethyl acetate gave a product melting at 140.5° to 143°C (decomposition).

Preparation of 6-Ethoxybenzothiazole-2-Sulfonamide: A solution of 3.39 grams (0.015 mol) of the sulfenamide in 100 ml of acetone was treated dropwise, with stirring, with a solution of 3.5 grams of potassium permanganate in 100 ml of water. The temperature rose to 42°C. After stirring an additional 10 minutes the reaction mixture was filtered to remove manganese dioxide, the latter was washed with 100 ml of warm water, and the combined filtrates were concentrated under reduced pressure to remove acetone. The residual solution was treated with charcoal, filtered and acidified with concentrated hydrochloric acid. After standing in the refrigerator for 4 hours the solid sulfonamide was recovered by filtration, washed with water and dried. There was obtained 2.37 grams of 6ethoxybenzothiazole-2-sulfonamide melting at 180° to 190°C. Recrystallization from ethyl acetate-Skellysolve B gave 1.25 grams of material melting at 188° to 190.5°C.

References

Merck Index 3704 Kieeman & Engel p. 374 OCDS Vol. 1 p. 327 (1977) DOT 14 (5) 207 (1978) I.N. p. 399

Korman, J.; U.S. Patent 2,868,800; January 13, 1959; assigned to The Upjohn Company

ETHYL BISCOUMACETATE

Therapeutic Function: Anticoagulant

Chemical Name: 4-Hydroxy-α-(4-hydroxy-2-oxo-2H-1-benzopyran-3-yl)-2-oxo-2H-1-benzo-

pyran-3-acetic acid ethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 548-00-5

Trade Name	Manufacturer	Country	Year Introduced
Tromexan	Geigy	U.S.	1950
Biscouron	Ayerst	_	_
Stabilene	Auclair	France	_

Raw Materials

Benzotetronic acid
Glyoxylic acid ethyl ester ethyl alcoholate

Manufacturing Process

7 g of benzotetronic acid are dissolved in 750 cc of water at boiling temperature and thereafter 10.5 g of glyoxylic acid ethyl ester ethyl alcoholate are added. After a short while the liquid becomes turbid and gradually a white deposit is separated. The deposit is filtrated and dried in vacuo. The melting point is 172°C to 174°C; after recrystallization from methyl alcohol 153°C to 154°C.

The crude product is dissolved in sodium lye, filtrated by means of animal charcoal precipitated by means of hydrochloric acid, and recrystallized from methyl alcohol. The melting point is 153°C to 154°C.

References

Merck Index 3719 Kieeman & Engel p. 375 I.N. p. 400

Rosicky, J.; U.S. Patent 2,482,511; September 20, 1949; assigned to Spojene Farmaceuticke Zovody (Czechoslovakia)

ETHYLESTRENOL

Therapeutic Function: Anabolic

Chemical Name: 19-nor-17α-pregn-4-en-17-ol

Common Name: 17α -ethyl- 17β -hydroxy-19-norandrostene

Structural Formula:

Chemical Abstracts Registry No.: 965-90-2

Trade Name	Manufacturer	Country	Year Introduced
Maxibolin	Organon	U.S.	1964
Durabolin	Organon	_	_
Orabolin	Organon	U.K.	_
Orgabolin	Organon-Sankyo	Japan	_
Orgaboline	Organon	France	_

Raw Materials

17α-Ethyloestradiol-3-ethylether Lithium Ethylamine

Manufacturing Process

4.5 grams of lithium cut to small pieces are added to 435 ml of dry ethylamine which is cooled in ice. After the solution turns blue 9 grams of 17α-ethyloestradiol-3-ethylether dissolved in 900 ml of dry ether are added.

Subsequently, the reaction mixture is stirred at a temperature of 0° to 5°C for 20 hours, after which 50 ml of absolute ethanol are added. Then the ethylamine is distilled off at low pressure. To the remaining solution 50 ml of ether and 50 ml of water are added. The water layer is separated and extracted a few times with ether. The collected ether extracts are added to the ethereal layer, after which this ethereal solution is washed with a 2 N hydrochloric acid solution, subsequently with a saturated sodium bicarbonate solution, and then with water. The ethereal solution is then dried on sodium sulfate and finally evaporated to dryness.

The crude product is distributed between equal parts of petroleum ether and 70% methanol. From the petroleum ether layer 5.6 grams of Δ^4 -17 α -ethyl-17 β -hydroxy-19-norandrostene with a melting point of about 50°C are obtained.

References

Merck Index 3750 Kleeman & Engel p. 375 PDR p. 1286 OCDS Vol. 1 p. 170 (1977) I.N. p. 400 REM p. 1001

Szpilfogel, S.A. and de Winter, M.S.; U.S. Patent 2,878,267; March 17, 1959; assigned to Organon Inc.

Szpilfogel, S.A., Hanegraaf, J.A. and van Dijck, L.A.; U.S. Patent 3,112,328; Nov. 26, 1963 assigned to Organon Inc.

ETHYNODIOL DIACETATE

Therapeutic Function: Progestin; oral contraceptive ingredient

Chemical Name: 3β,17β-diacetoxy-17α-ethynyl-4-estrene

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 297-76-7

Trade Name	Manufacturer	Country	Year Introduced
Lutometrodiol	Searle	France	1965
Ovulen	Searte	U.S.	1966
Femulen	Searle	italy	1971
Femulen	Searle	U.K.	1973
Alfames E	Dr. Kade	W. Germany	
Conova	Searle	U.K.	_
Demulen	Searle	U.S.	_
Luteonorm	Seronol	Italy	_
Metrodiol	Byla	France	_
Metrulen	Searle	U. S .	_
Ovamin	Searle	U.K.	_

Raw Materials

 17α -Ethynyl-19-norandrost-4-ene-3 β ,17 β -diol (ethynodiol) Acetic anhydride

Manufacturing Process

A mixture of 30 parts of 17α -ethynyl-19-norandrost-4-ene-3 β , 17β -diol, 360 parts of dry pyridine, and 111 parts of acetic anhydride, under nitrogen, is stirred and heated at the reflux temperature for about 5 hours. This reaction mixture is cooled, then poured into approximately 3,500 parts of cold water and the resulting aqueous mixture is stirred at room temperature for about 0.5 hour. The precipitate which forms is collected by filtration, then is washed on the filter with water and dried in air. This solid material is extracted into ether, and the ether solution is washed successively with 10% aqueous hydrochloric acid and 5% aqueous sodium bicarbonate.

Drying over anhydrous sodium sulfate containing decolorizing carbon followed by removal of the solvent by distillation at reduced pressure affords an oil which solidifies on standing. Recrystallization of that solid by dropwise dilution with water of a methanol solution affords 17α -ethynyl-19-norandrost-4-ene-3 β ,17 β -diol 3,17-diacetate, melting at about 126° to 127°C.

References

Merck Index 3807

Kleeman & Engel p. 384 PDR p. 1680 OCDS Vol. 1 pp. 165, 186 (1977) DOT 4 (1) 9 (1966) REM p. 991

Klimstra, P.D.; U.S. Patent 3,176,013; March 30, 1965; assigned to G.D. Searle & Co.

ETIDOCAINE HCL

Therapeutic Function: Local anesthetic

Chemical Name: N-(2,6-Dimethylphenyl)-2-(ethylpropylamino)butanamide

Common Neme: --

Structural Formula:

Chemical Abstracts Registry No.: 36637-19-1; 36637-18-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Duranest	As tra	U.S.	1976
Duranest	Astra	W. Germ a ny	1976
Duranest	Bellon	France	1977

Raw Materials

2-Bromobutyric acid	Sulfonyl chloride
2,6-Xylidine	Potassium iodide
n-Propylamine	Diethyl sulfate
Hydrogen chloride	·

Manufacturing Process

 α -(n-Propylamino)-n-butyro-2,6-xylidide (0.243 mol) and freshly distilled diethyl sulfate (1,6 mols) were mixed in a flask equipped with reflux condenser, drying tube and stirrer. The mixture was stirred for 5 hours at 90°C. After cooling, water (110 ml) was added with stirring for 15 minutes followed by 4M HCl (110 ml). The solution was washed with ether (3 X 100 ml) and made alkaline with 7 M NaOH to pH 10-11. The freed base was taken up in ether (3 X 100 ml); the extracts were dried over sodium sulfate, filtered and evaporated. The residue was dissolved in absolute ether (200 ml) and the hydrochloride prepared by addition of ethereal hydrogen chloride. The precipitate was filtered, washed with ether, and recrystallized twice from absolute ethanol/ether and from isopropanol/isopropylether; MP 203°C to 203.5°C; yield: 0.126 mol (52%).

The starting material is prepared by reacting 2-bromobutyric acid with sulfonyl chloride to give the acid chloride. It is then reacted with 2.6-xylidine, then with potassium iodide followed by n-propylamine.

References

Merck Index 3811 Kleeman & Engel p. 376 PDR p. 591 OCDS Vol. 2 p. 95 (1980) I.N. p. 403 REM p. 1051

Adams, H.J.F., Kronberg, G.H. and Takman, B.H.; U.S. Patent 3,812,147; May 21, 1974; assigned to Astra Pharmaceutical Products, Inc.

ETIDRONATE DISODIUM

Therapeutic Function: Bone calcium regulator

Chemical Name: (1-Hydroxyethylidene)bisphosphonic acid disodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7414-83-7; 2809-21-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Etidron	Gentili	Italy	1977
Didronel	Procter & Gamble	U.S.	1978
Didronel	Gist Brocade	U.K.	1980
Didronel	Procter & Gamble	Switz.	1980
Didronel	Beytout	France	1982
Diphos	Boehr./Mann.	W. Germany	1982
Difosfen	Rubio	Spain	_
Diphosphonat	Procter & Gamble	U.S.	-

Raw Materials

Phosporous acid Acetic anhydride Sodium hydroxide

Manufacturing Process

Phosphorous acid was premixed with acetic acid to form a 50 wt % solution of phosphorous acid dissolved in acetic acid. The acids were mixed on a molar basis of 1,36:1, acetic acid to phosphorous acid, and this corresponded on a mol percentage basis to 57,6% acetic acid and 42.4% phosphorous acid. Acetic anhydride was continuously metered into a stream of the phosphorous acid-acetic acid mixture to form the reaction solution. The acetic anhydride was metered into the acid mixture at a mol ratio of 1.33 mols of acetic anhydride per mol of phosphorous acid. The metering rates were 18.5 lb/hr of the phosphorous acid/acetic acid premixed solution and 15.1 lb/hr acetic anhydride. The reaction solution was continuously passed through a heat exchanger where it was heated to 190°F then it was continuously fed into a two stage back-mix reaction zone where due to the heat of reaction the temperature rose to 275°F. The average residence in the reaction zone was 27 min. The reaction zone consisted of two back-mix reactors each having a capacity of 7.5 pounds of the reaction solution. A stream of reaction solution was continuously withdrawn from the second reactor and continuously mixed with a stream of water which was being metered at a rate of 2 lb/hr. This amount of water corresponded to 18% excess over the theoretical amount necessary to hydrolyze all of the acetyl-containing compounds in the reaction solution to free acids. The hydrolyzed solution was continuously passed through a heat exchanger and cooled to room temperature after which the solution was continuously passed to a crystallizer where, with agitation, the ethane-1-hydroxy-1,1-diphosphonic acid crystallized. The slurry was then filtered and the crystals were recovered and dried. Analysis of the product showed a conversion rate of phosphorous acid to ethane-1-hydroxy-1,1-diphosphonic acid of 86%. Sodium hydroxide may be used to give the disodium salt.

References

Merck Index 3812 Kleeman & Engel p. 377 PDR p. 1275 DOT 4 (3) 104 (1978) I.N. p. 23

REM p. 979

Rogovin, L., Brawn, D.P. and Kalberg, J.N.; U.S. Patent 3,400,147; September 3, 1968; assigned to The Procter & Gamble Co.

ETIFELMINE

Therapeutic Function: Central stimulant; antihypotensive

Chemical Name: 2-Diphenylmethylenebutylamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 341-00-4

Trade Name	Manufacturer	Country	Year Introduced
Etifelmine	Giulini	W. Germany	1963
Tensinase D	Chemiphar	Japan	1975
Gilutensin	Giulini	W. Germany	_

Raw Materials

2-Ethyl-3-hydroxy-3,3-diphenyl propionitrile Hydrogen Hydrogen chloride

Manufacturing Process

- (a) Preparation of 2-ethyl-3-hydroxy-3,3-diphenyl-propylamine: 10 g of 2-ethyl-3-hydroxy-3,3-diphenyl-propionitrile are dissolved in 200 ml of methanol. 10 ml of acetic acid are added to the mixture, and the mixture is hydrogenated in the presence of platinum as catalyst. After the hydrogen uptake or consumption has ceased, the reaction is interrupted, the catalyst is filtered off and the filtrate is evaporated in vacuo to dryness. The residue is dissolved in water and, after the addition of 1 ml of hydrochloric acid, the solution extracted with ether. The acidified ether-phase is discarded. The aqueous phase is made alkaline with ammonia, whereby the base crystallizes out. The crystals are recovered and recrystallized from methanol. The melting point of the 2-ethyl-3-hydroxy-3,3-diphenyl-propylamine thereby obtained is 132°C.
- (b) Preparation of 2-ethyl-3,3-diphenyl-1-amino-propene-(2)-hydrochloride: 5 g of 2-ethyl-3-hydroxy-3,3-diphenyl-propylamine are dissolved in 50 ml of acetic acid. Gaseous hydrogen chloride is passed through the solution for 10 minutes, and thereafter the solution is boiled for one hour under reflux. The solution is then distilled to dryness. The residue is dissolved in water and the acidified solution extracted with ether. The aqueous phase is separated, made alkaline with ammonia and extracted with ether. The ether phase is dried over sodium sulfate, the ether distilled off and the residue is dissolved in methanolic hydrogen chloride. On the addition of absolute ether, the hydrochloride of 2-ethyl-3.3-diphenyl-1-amino-propene-(2) is crystallized out. The crystalline substance thereby obtained has a melting point of 232°C.

References

Merck Index 3813

Kleeman & Engel p. 377 I.N. p. 403

Gebruder Giulini, G.m.b.H.; British Patent 936,041; September 4, 1963

ETIFOXINE

Therapeutic Function: Tranquilizer

Chemical Name: 2-Ethylamino-4-methyl-4-phenyl-6-chloro-4H-3,1-benzoxazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21715-46-8

Trade Name	Manufacturer	Country	Year Introduced
Stresam	Beaufour	France	1971

Raw Materials

5-Chloro-2-amino-&-methyl-&-phenylbenzyl alcohol Ethyl mustard oil (ethyl isothiocyanate) Mercury oxide

Manufacturing Process

- (a) A solution of 50 g of 5-chloro-2-amino- α -methyl- α -phenylbenzyl alcohol in 150 ml of ether is mixed with 35 g of ethyl mustard oil and kept for 48 hours at room temperature. Part of the solvent is then distilled off under reduced pressure and the crystalline residue is filtered to yield 53 g (= 79% of theory) of pure 5-chloro-2-(ω -ethylthioureido)- α -methyl- α -phenylbenzyl alcohol melting at 101°C to 103°C. On crystallization from benzene + petroleum ether a higher-melting modification melting at 112°C to 114°C is sometimes obtained.
- (b) 33.5 g of the thiourea derivative obtained under (a) are mixed with 43 g of mercury oxide in 300 ml of ethanol and stirred and refluxed for 30 minutes. The reaction mixture is filtered hot and the solvent is evaporated, to yield 2-ethyl-amino-4-methyl-4-phenyl-6-chloro-4H-3,1-benzoxazine as an almost colorless oil which soon solidifies in crystalline form. Recrystallization from petroleum ether furnishes 26 g (= 87% of theory) of colorless crystals melting at 90°C to 92°C .

References

Merck Index 3814 DFU 6 (9) 550 (1981) DOT 9 (6) 242 (1973)

Kuch, H., Schmitt, K., Seidl, G. and Hoffmann, I.; U.S. Patent 3,725,404; April 3, 1973; assigned to Farbwerke Hoechst AG

ETILEFRINE PIVALATE HYDROCHLORIDE

Therapeutic Function: Adrenergic

Chemical Name: 1-(3'-Pivalovloxyphenyl)-2-ethylaminoethanol-1 hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 943-17-9; 709-55-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Circupon	Troponwerke	W. Germany	1972
Amphodyn	Klinge	W. Germany	_
Effortil	Boehr/Ingel	W. Germany	_
Ethyfron	Sawai	Japan	_
Eti-Puren	Klinge	W. Germany	_
Hishiherin-S	Hishiyama	Japan	-
Hyurina	Seiko	Japan	_
Presotona	Erco	Denmark	_
Pulsamin	Teikoku	Japan	_
Soledoton M	Soledum	W. Germany	
Theoral	S.S. Pharm.	Japan	_
Tonus-Forte	Sanorania	W. Germany	
Tri-Effortil	Boehr/Ingel.	W. Germany	_

Raw Materials

1-(3'-Hydroxyphenyl)-2-(N-benzylaminomethyl)ethan-1-one Pivalic anhydride Hydrogen

Manufacturing Process

30 parts of 1-(3'-hydroxyphenyl)-2-(N-benzylaminomethyl)-ethan-1-one are mixed with 100 parts of pyridine and 30 parts of pivalic anhydride and dissolved while warming. After heating for 1 hour under reflux, the acylation is complete. After concentrating the reaction solution, the product is precipitated from acetone/ether. Yield: 96.4% of 1-(3'-pivaloyloxyphenyl)2-(N-benzylaminomethyl)-ethan-1-one.

3 parts of palladium/charcoal (10% strength) are prehydrogenated in water, thereafter 10 parts of 1-(3'-pivaloyloxyphenyl)-2-(N-benzylaminoethyl)-ethan-1-one, dissolved in a 10-fold amount of water, are added dropwise at room temperature and hydrogenation is carried out until 1 mol of hydrogen has been taken up. After filtering off the catalyst, a further 3 parts of palladium/charcoal are added and hydrogenation is carried out until a further mol of hydrogen has been taken up. The catalyst is separated off and after removal of the solvent the hydrogenation product is reprecipitated from acetone/petroleum ether and from methanol/ether until it is pure according to thin layer chromatography. Yield: 38.8% of 1-(3'-pivaloyloxyphenyl)-2-ethylaminoethanol-1 hydroxide, melting point 208°C to 209°C.

References

Merck Index 3815 DFU 4 (6) 413 (1979) Kleeman & Engel p. 378

I.N. p. 403

Chemisch-Pharmazeutische Fabrik, Adolf Klinge and Co.; British Patent 1,358,973; July 3, 1974

ETIROXATE

Therapeutic Function: Antihyperlipoproteinemic

Chemical Name: O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodo-\alpha-methyl tyrosine ethyl ester

Common Name: -

Structural Formula:

$$\mathsf{HO} = \mathsf{CH}_2 \mathsf{C} \mathsf{CH}_3 \mathsf{CH}_2 \mathsf{C} \mathsf{COOC}_2 \mathsf{H}_5 \mathsf{CH}_2 \mathsf{COOC}$$

Chemical Abstracts Registry No.: 17365-01-4

Trade Name Manufacturer Country Year Introduced
Skleronorm Gruenenthal W. Germany 1977

Raw Materials

α-Methylthyroxine Ethanol

Manufacturing Process

7.91 g of α -methyl thyroxine are suspended in 150 cc of ethanol. While heating, the solution is saturated with dry hydrogen chloride. Thereafter, the solvent is distilled off at reduced pressure. The residue is dissolved in a mixture of ethanol and water (1:1). Adding a 5% solution of sodium hydrogen carbonate in water, the ethyl ester of α -methyl thyroxine precipitates; melting point: 156°C to 157°C after recrystallization from ethanol. The yield is 6.05 g, i.e., 74% of the theoretical yield.

References

Merck Index 3820 Kleeman & Engel p. 378 DOT 13 (5) 197 (1977) I.N. p. 404

Kummer, H. and Beckmann, R.; U.S. Patent 3,930,017; December 30, 1975

ETODROXIZINE

Therapeutic Function: Hypnotic

Chemical Name: 2-[2-[4-(p-chloro-α-phenylbenzyl)-1-piperazinyl] ethoxy] ethoxy] ethoxy] ethoxy]

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17692-34-1

Trade Name	Manufacturer	Country	Year Introduced
Vesparax	UCB Chemie	W. Germany	1973
Drimyl	Cassenne	France	-
Indunox	UCB		_

Raw Materials

1-(2'-Hydroxyethyl)piperazine	Thionyl chloride
p-Chlorobenzhydryl chloride	Potassium carbonate
Diethylene glycol	

Manufacturing Process

A mixture of 1.5 mols of 1-(2'-hydroxyethyl) piperazine and 1 mol of p-chlorobenzhydryl chloride is heated at 150°C for 15 minutes. The substance is dissolved in water, basified by caustic soda and extracted with benzene.

By purifying the benzene extract in vacuo, a 75% yield is obtained of 1-p-chlorobenzhydryl-4-(2'-hydroxyethyl)piperazine which has a boiling point of 205°C/0.02 mm Hg.

0.2 mol of 1-p-chlorobenzhydryl-4-(2'-hydroxyethyl)piperazine is dissolved in 300 cc of dry benzene and a solution of 36 grams of thionyl chloride in 100 cc of dry benzene is added cold with agitation. Reflux heating is then carried out until sulfur dioxide has ceased to be evolved.

The solvent is evaporated in vacuo, the residue is dissolved in anhydrous acetone and the hydrochloride formed is filtered. The corresponding base is liberated by treating the aqueous solution of this hydrochloride with an excess of potassium carbonate. A benzene extraction is effected and the benzene solution of the base is dried over potassium carbonate.

This benzene solution is then added to an equimolecular solution of the monosodium derivative of diethyleneglycol in a considerable excess of diethyleneglycol. The benzene is removed by distillation and the residue is heated in a boiling water-bath with agitation for 3 hours.

The excess diethyleneglycol is removed in vacuo and the residue dissolved in water and then in benzene. The benzene extract is washed several times in water, then purified in vacuo. The 1-p-chlorobenzhydryl-4-(2'-[2"-(2"-hydroxyethoxy)-ethoxy]-ethyl)piperazine obtained distills at 250°C/0.01 mm Hg.

References

Merck Index 3823 Kleeman & Engel p. 379 I.N. p. 404 Morren, H.; British Patent 817,231; July 29, 1959

ETOFENAMATE

Therapeutic Function: Antiinflammatory

Chemical Name: 2-[[-3-(Trifluoromethyl)phenyl]amino]benzoic acid-2-(2-hydroxyethoxy)-

ethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 30544-47-9

Trade Name	Manufacturer	Country	Year Introduced
Rheumon	Troponwerke	W. Germany	1977
Rheumon	Bayer	Switz.	1979
Bayrogel	Bayro Pharm	Italy	1980
Flogoprofen	Wassermann	Spain	-

Raw Materials

N-(3-Trifluoromethylphenyl)anthranilic acid 2-(2-Chloroethoxy)ethanol

Manufacturing Process

16.0 g (0.05 mol) of the potassium salt of N-(3-trifluoromethylphenyl)-anthranilic acid are dissolved in 60 ml of dimethylformamide and heated to 110°C, and 6.2 g (0.05 mol) of 2-(2-chloroethoxy)-ethanol are slowly added. The reaction mixture is then heated to boiling for 2 hours. The precipitated potassium chloride is filtered off and the solvent is removed by evaporation. The residue is separated over a column with 400 g of silica gel (particle size 0.05 to 0.2 mm), using a 1:1 mixture of cyclohexane and glacial acetic acid as eluting agent. 16.0 g of the 2-(2-hydroxyethoxy)-ethyl ester of N-(3-trifluoromethylphenyl)-anthranilic acid are obtained in the form of a pale yellow oil which does not crystallize and cannot be distilled.

References

Merck Index 3824 Kleeman & Engel p. 380 DOT 14 (1) 9 (1978) I.N. p. 404

Boltze, K.H., Brendler, O. and Lorenz, D.; U.S. Patent 3,692,818; September 19, 1972; assigned to Troponwerke Dinklage & Co. (W. Germany)

ETOFIBRATE

Therapeutic Function: Hypolipemic

Chemical Name: 2-Hydroxyethylnicotinate-2-(p-chlorophenoxy)-2-methyl propionate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 31637-97-5

Trade Name	Manufacturer	Country	Year Introduced
Lipo-Merz	Merz	W. Germany	1974
Noflevan	Alter	S pain	_

Raw Materials

2-(p-Chlorophenoxy)-2-methylpropionic acid Ethylene oxide Nicotinic acid

Manufacturing Process

A stream of ethylene oxide is passed through a solution of 107 g of 2-(p-chlorophenoxy)-2-methylpropionic acid and 2 g of zinc chloride in 200 ml of toluene, previously heated to between 55°C and 60°C, until 24 g of the gas have been dissolved. The reaction is allowed to continue for five hours, with gentle stirring. After this time has elapsed, the solution is cooled and washed successively with water, dilute ammonia and water until its pH becomes neutral. It is dried over anhydrous sodium sulfate, the solvent is separated off under vacuum, and the resulting liquid is the monoglycol ester of 2-(p-chlorophenoxy)-2-methylpropionic acid.

The product thus prepared is sufficiently pure to be used in the subsequent reaction. In this way, 107 g of the ester are prepared, which represents a yield of 83%.

To a solution of 93.8 g of the monoglycol ester in 500 ml of benzene, there are added 55 g of nicotinic acid chloride and 25 g of trimethylemine dissolved in 200 ml of benzene. The solution is stirred gently at a temperature of 60° C for two hours. After this time, the solution is cooled and washed successively with water, dilute hydrochloric acid, dilute ammonia and water until neutrality, it is dried over anhydrous sodium sulfate, and the solvent is evaporated under vacuum: in this wey 110 g of glycol 2-(p-chlorophenoxy)-2-methylpropionate nicotinate is prepared, which represents a yield of 84%. The product is a slighly yellow oil having a refraction index of $n_D^{20} = 1.5422$ and which is distilled with decomposition et 214°C at a pressure of 0.3 mm.

References

Kleeman & Engel p. 380 DOT 11 (2) 459 (1975) I.N. p. 405

Letelier, C.S. and Grafulla, F.C.; U.S. Patent 4,028,369; June 7, 1977; essigned to Alter S.A. (Spain)

ETOFYLLINE CLOFIBRATE

Therapeutic Function: Hypolipemic

Chemical Name: 1-(Theophyllin-7-yl)ethyl 2-(p-chlorophenoxy)isobutyrete

Common Name: Theofibrate

Structural Formula:

Chemical Abstracts Registry No.: 519-37-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Duolip	Merckle	W. Germany	1981
Duolip	Mepha	S witz.	1981

Raw Materials

2-(p-Chlorophenoxy) isobutyric acid

7-Hydroxyethyltheophylline

Manufacturing Process

107.3 g (0.5 mol) 2-(p-chlorophenoxy) isobutyric acid and 56.0 g (0.25 mol) 7-hydroxyethyltheophylline were suspended together in 250 ml xylene. They were heated together for 15 hours in a water separator following the addition of 1.5 g p-toluenesulfonic acid. The solution was next agitated with dilute sodium bicarbonate solution (0.5 mol NaHCO3), water washed and evaporated in a rotary evaporator.

The residue was then crystallized from isopropanol, yielding 58.0 g (55% yield) of 1-(7-theophyllinyl)-2-ethyl [2-(p-chlorophenoxy)-isobutyrate]. The compound had a melting point of 131°C to 132°C.

References

Merck Index 9113 DFU 2 (12) 800 (1977) Kleeman & Engel p. 381 DOT 17 (9) 370 (1981) I.N. p. 405

Metz, G. and Specker, M.; U.S. Patent 3,984,413; October 5, 1976; assigned to L. Merckle K.G. (W. Germany)

ETOMIDATE HYDROCHLORIDE

Therapeutic Function: Intravenous hypnotic

Chemical Name: 1-(1-Phenylethyl)-5-(ethoxy-carbonyl)imidazole hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33125-97-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hypnomidate	Janssen	W. Germany	1977
Hypnomidate	Janssen	U.K.	1979
Amidate	Abbott	U.S.	1983
Radenarcon	Arzneimittelwerk Dresden	E. Germany	_

Raw Materials

dl-1-Phenylethylamine	Ethyl chloroacetate
Formic acid	Sodium
Potassium thiocyanate	Nitric acid
Sodium carbonate	

Manufacturing Process

To a mixture of 1,115 parts di-1-phenylethylamine and 950 parts dimethylformamide are added successively 655 parts triethylamine and 1,130 parts ethyl chloroacetate. After the addition is complete, the whole is stirred overnight. Then there are added 5,600 parts anhydrous ether and the whole is filtered.

The filtrate is washed four times with water, dried and evaporated, yielding dl-N-[(ethoxycarbonyl)methyl] -1-phenylethylamine. This residue is dissolved in 4,800 parts xylene while refluxing and to this solution are added 450 parts formic acid. After boiling for a few hours, the mixture is cooled and washed successively three times with a 20% solution of formic acid. water, sodium hydrogen carbonate solution,

The organic layer is then dried, filtered and evaporated. The oily residue is distilled in vacuo, vielding 1,600 parts dl-N-formyl-N-[(ethoxycarbonyl)methyl]-1-phenylethylamine (boiling point 160°C to 170°C at 0.8 mm pressure). 30 parts of a sodium dispersion, 50% in paraffin oil are added to 450 parts tetrahydrofuran and the whole is slowly heated to a temperature of 40°C, while stirring. While maintaining this temperature (cooling on a water bath is necessary) there are added portionwise 30 parts ethanol.

After the addition is complete, the whole is cooled on an ice bath and there is added dropwise a solution of 144 parts dl-N-formyl-N-[(ethoxycarbonyl)methyl] -1-phenylethylamine in 133 parts ethyl formate. After the addition is complete, the mixture is stirred overnight at room temperature.

Then there are added 160 parts ether. After stirring for 5 minutes the mixture is poured into 1.500 parts water. The aqueous layer is separated, washed twice with 80 parts disopropyl ether and then there are added successively 114 parts concentrated hydrochloric acid and 90 parts potassium thiocyanate in 200 parts water. The mixture is stirred for 24 hours, whereupon an oil is separated.

After the addition of 750 parts water, a crystalline product is precipitated. The mixture is further stirred overnight. The solid is then filtered off and recrystallized from a mixture of ethanol and water (1:1 by volume) to yield di-1-(1-phenylethyl)-2-mercapto-5-(ethoxycarbonyl)imidazole; its melting point is 129.8°C to 130.8°C.

To a stirred mixture of 140 parts nitric acid (d = 1.37), 1 part sodium nitrate and 240 parts water are added portionwise 89 parts dl-1-(1-phenylethyl)-2-mercapto-5-(ethoxycarbonyl)imidazole. After the addition is complete, the whole is stirred for 2 hours at room temperature. The free base is liberated by addition of solid sodium carbonate and the whole is extracted with 120 parts anhydrous ether while heating. The aqueous layer is separated and extracted twice with 80 parts anhydrous ether.

The combined extracts are dried over magnesium sulfate, filtered and to the filtrate is added

References

Merck Index 3828 DFU 1 (10) 461 (1976) Kleeman & Engel p. 381 OCDS Vol. 3 p. 135 (1984) DOT 15 (11) 475 (1979) I.N. p. 405 REM p. 1044

Godefroi, E.F. and Van Der Eijcken, C.A.M.; U.S. Patent 3,354,173; November 21, 1967; assigned to Janssen Pharmaceutica NV (Belgium)

ETOMIDOLINE

Therapeutic Function: Muscle relaxant

Chemical Name: 2-Ethyl-2,3-dihydro-3-[[4-[2-(1-piperidinyl)ethoxy] phenyl] -amino] -1H-

isoindol-1-one

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Smedolin	Yamanouchi	Japan	1976
Amidoline	Erba	Italy	_

Raw Materials

1-oxo-3-(Aminophenyl-p-ethoxypiperidino)isoindoline Sodium hydride Ethyl iodide

Manufacturing Process

31.3 g of 1-oxo-3-(aminophenyl-p-ethoxypiperidino)-isoindoline (0.0892 mol) are dissolved in 500 ml of anhydrous N,N-dimethylformamide. To this solution 5.75 g of NaH (0.105 mol) and 7.24 ml of CH_2CH_2l (0.0945 mol) are added and the resulted mixture is heated at 70°C for 1 hour, and then poured into an excess of water. 1-oxo-2-ethyl-3-(aminophenyl-p-ethoxypiperidino)-isoindoline (MP 106°C to 107°C) is obtained by crystallization with ligroin.

1-oxo-2-ethyl-3-(iminophenyl-p-ethoxypiperidino)-isoindoline (MP 103°C to 104°C) is obtained as a byproduct with the above compound. This latter compound was reduced to produce 1-oxo-2-ethyl-3-(aminophenyl-p-ethoxypiperidino)-isoindoline.

References

Merck Index 3829

I.N. p. 406

Giraldi, P.N. and Mariotti, V.; U.S. Patent 3,624,206; November 30, 1971; assigned to Carlo Erba S.p.A. (Italy)

ETOZOLIN

Therapeutic Function: Diuretic

Chemical Name: 2-Carbethoxymethylene-3-methyl-5-piperidino-thiazolidin-4-one ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 73-09-6

Trade Name	Manufacturer	Country	Year Introduced
Elkapin	Goedecke	W. Germany	1977
Elkapin	Goedecke	Italy	1983
Etopinil	Wassermann	Spain	-

Raw Materials

2-Carbethoxymethylene-3-methyl-4-thiazolidinone Bromine Piperidine

Manufacturing Process

To a stirred solution of 20 g (0.1 mol) 2-carbethoxymethylene-3-methyl-4-thiazolidinone in 120 ml chloroform is added, dropwise, a solution of 5 ml (0.1 mol) bromine in 20 ml chloroform. The solvent is removed by distillation and the residue crystallized from methanol to yield 18 g (65%) of 2-carbethoxymethylene-3-methyl-5-bromo-4-thiazolidinone, MP 76°C.

To a solution of 28 g (0.1 mol) 2-carbethoxymethylene-3-methyl-5-bromo-4-thiazolidinone prepared as described in 200 ml benzene is added (0.2 mol) piperidine and the mixture is allowed to stand for 3 hours at 25°C. The resulting suspension is filtered to remove the precipitated piperidine hydrobromide and the filtrate is evaporated to dryness. The residue is taken up in ether, filtered and the filtrate saturated with dry hydrogen chloride to yield the hydrochloride salt of 2-carbethoxymethylene-3-methyl-5-piperidino-4-thiazolidinone, MP 158℃ to 159℃.

References

Merck Index 3835 DFU 3 (4) 282 (1978) Kleeman & Engel p. 383 DOT 14 (6) 239 (1978)

J.N. p. 407

Satzinger, G.; U.S. Patent 3,072,653; January 8, 1963; assigned to Warner-Lambert Pharmaceutical Co.

ETRETINATE

Therapeutic Function: Antipsoriasis (and antitumor)

Chemical Name: Ethyl all-trans-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-2,4,6,8-

nonatetraenoate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Tigason	Roche	U.K.	1981
Tigason	Roche	Switz.	1982
Tigason	Roche	France	1983
Tigason	Roche	W. Germany	1983
Tigason	Roche	Sweden	1983
Tigason	Sauter	Switz.	_

Raw Materials

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpenta-2,4-diene-1-triphenylphos-

phonium bromide

Sodium hydride

3-Formylcrotonic acid butyl ester

Potassium hydroxide

Ethyl iodide

Potassium carbonate

Manufacturing Process

228 g of 5-(4-methoxy-2,3,6-trimethylphenyl)-3-methyl-penta-2,4-diene-1-triphenylphosphonium bromide are introduced under nitrogen gassing into 910 ml of dimethylformamide and treated with cooling at 5°C to 10°C within 20 minutes with 17.5 g of a suspension of sodium hydride (about 50% by weight) in mineral oil. The mixture is stirred for 1 hour at about 10°C, then treated at 5°C to 8°C dropwise with 61.8 g of 3-formylcrotonic acid butyl ester, heating for 2 hours at 65°C, subsequently introduced into 8 liters of ice water, and, after the addition of 300 g of sodium chloride, thoroughly extracted with a total of 18 liters of hexane. The extract is washed 5 times with 1 liter of methanol/water (6:4 parts by volume) each time and 2 times with 1.5 liter of water each time, dried over sodium sulfate and evaporated under reduced pressure to leave 9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid butyl ester, MP 80°C to 81°C as the residue.

125.8 g of 9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid

butyl ester are introduced into 2,000 ml of abs, ethanol and treated with a solution of 125,8 g of potassium hydroxide in 195 ml of water. The mixture is heated to boiling under nitrogen gassing for 30 minutes, then cooled, introduced into 10 liters of ice water and, after the addition of about 240 ml of concentrated hydrochloric acid (pH 2-4), thoroughly extracted with a total of 9 liters of methylene chloride. The extract is washed with about 6 liters of water to neutrality, dried over calcium chloride and evaporated under reduced pressure. The residue is taken up in 700 ml of hexane. The precipitated 9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid melts at 228°C to 230°C.

60 g of 9-(4-methoxy-2,3.6-trimethylphenyl)-3.7-dimethyl-nona-2.4.6.8-tetraen-1-oic acid are dissolved in 1,000 ml of acetone. After the addition of 128 g of ethyl iodide and 128 g of potassium carbonate, the solution is stirred under nitrogen gassing for 16 hours at 55°C to 60°C and subsequently evaporated under reduced pressure. The residue is dissolved in 1,300 ml of petroleum ether (BP 80°C to 105°C). The 9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid ethyl ester crystallizing out at -20°C, melts at 104°C to 105°C.

References

Merck Index 3836

DFU 2 (3) 199 (1977) (As Ro 10/9359) & 4 (12) 911 (1979) (As Etretinate) DOT 18 (3) 120 (1982)

I.N. p. 407

Bollag, W., Ruegg, R. and Ryser, G.; U.S. Patent 4,105,681; August 8, 1978; assigned to Hoffmann-La Roche, Inc.

Bollag, W., Ruegg, R. and Ryser, G.; U.S. Patent 4,215,215; July 29, 1980; assigned to Hoffmann-La Roche, Inc.

ETRYPTAMINE

Therapeutic Function: Central stimulant

Chemical Name: \alpha.Ethyl-1H-indole-3-ethanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2235-90-7

Trade Name	Manufacturer	Country	Year Introduced
Monase	Upjohn	U.S.	1961

Raw Materials

3-(2'-Ethyl-2'-nitrovinyl)indole Hydrogen

Manufacturing Process

A mixture of 5 parts of 3-(2'-ethyl-2'-nitrovinyl)indole in 80 parts of ethanol saturated with ammonia gas is shaken in an atmosphere of hydrogen at 100 atmospheres pressure and at 20°C

in the presence of 1 part of a 5% palladium on carbon catalyst until the theoretical amount of hydrogen is absorbed. The catalyst is removed by filtration. The ethanol and ammonia are then removed from the filtrate by distillation under reduced pressure. The residual oil is dissolved in 170 parts of dry ether, 50 parts of potassium hydroxide pellets are added and the solution is kept at 18°C to 22°C for 2 hours. The mixture is filtered and hydrogen chloride is passed into the filtrate to precipitate crude α-ethyltryptamine hydrochloride. This is purified by crystallization from methanol/ethyl acetate and it then has a MP of 221°C.

References

Merck Index 3837 I.N. p. 407

Young, E.H.P.; British Patent 933, 786; August 14, 1963; assigned to Imperial Chemical Industries Ltd.

EXALAMIDE

Therapeutic Function: Antifungal

Chemical Name: 2-(Hexyloxy)benzamide

Common Name: --

Structural Formula:

CONH 2

Chemical Abstracts Registry No.: 53370-90-4

Trade Name Manufacturer Year Introduced Country Hyperan S.S. Pharm 1980 Japan

Raw Materials

Salicylamide Sodium

Ethanol n-Hexyl bromide

Manufacturing Process

4.6 g sodium were dissolved in 150 mi ethanol and 27.4 g (0.2 mol) salicylamide added. The solution was refluxed gently and 24.6 g (0.2 mol) n-hexyl-bromide added gradually. The mixture was refluxed for six hours, the precipitated sodium bromide filtered off, and most of the alcohol removed by distillation. Water was then added to the residue, and the 2-n-hexyloxybenzamide filtered off. It crystallized from 50% aqueous ethanol in colorless crystals, MP 71°C.

References

Merck Index 3858 DOT 16 (8) 246 (1980)

I.N. p. 410

MacRae, F.J. and Seymour, D.E.; British Patent 726,786; June 5, 1952; assigned to Herts Pharmaceuticals Ltd.

EXIPROBEN

Therapeutic Function: Choleretic

Chemical Name: 2-[3-(Hexyloxy)-2-hydroxypropoxy] benzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 26281-69-6

Trade Name	Manufacturer	Country	Year Introduced
Droctil	Ciba Geigy	Italy	1971
Etopalin	Ciba Geigy	-	-

Raw Materials

p-Hydroxybenzoic acid methyl ester Sodium hydroxide 3-Hexoxy-2-hydroxy-1-chloropropane Hydrogen chloride

Manufacturing Process

p-Hydroxy-benzoic acid methyl ester was subjected to a condensation reaction with 3-hexoxy-2-hydroxy-1-chloropropane in the presence of sodium ethylate and ethanol as a solvent, yielding p-(3-hexoxy-2-hydroxy)-propoxy-benzoic acid methyl ester.

62 g of this intermediate product were admixed with 250 cc of 2 N sodium hydroxide and the resulting mixture was refluxed for three hours. The reaction mixture was allowed to cool and was made acid with concentrated hydrochloric acid while cooling it on ice. An oil separated out which was extracted with ether. The ether extract solution was dried over sodium sulfate and then the ether was distilled off, leaving a crystalline mass as a residue. The crystalline product was recrystallized from a mixture of benzene and petroleum ether, yielding a compound having a MP of 68°C.

References

Merck Index 3860 I.N. p. 410

Ohnacker, G.; U.S. Patent 3,198,827; August 3, 1965; assigned to Boehringer Ingelheim G.m.b.H. (Germany)

FAZIDINIUM BROMIDE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 1,1'-Azobis[3-methyl-2-phenylimidazo[1,2-a] pyridinium] dibromide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 49564-56-9

Trade Name	Manufacturer	Country	Year Introduced
Fazadon	Duncan Flockhart	U.K.	1976
Fazadon	Glaxo	Italy	1981

Raw Materials

2-(2-Acetylhydrazino)pyridine Hydrogen bromide 2-Bromopropiophenone Bromine

Manufacturing Process

- (a) 1-Acetamido-3-methyl-2-phenylimidazo[1,2-a] pyridinium bromide—A mixture of 2-(2-acetylhydrazino)pyridine (2 g) and 2-bromopropiophenone (2.84 g), in ethanol (10 ml) was heated in an open flask in a bath at 160°C to 170°C until the ethanol had evaporated; the residual melt was then heated for a further 0.25 hour. After cooling, the residual gum was triturated with acetone and the resulting solid (2.8 g) recrystallized from ethanol-ether giving the *bromide* as colorless prisms, MP 232°C to 234°C.
- (b) 1-Amino-3-methyl-2-phenylimidazo [1,2-a] pyridinium bromide—A solution of the acetamido compound (2.78 g) in 24% hydrobromic acid (12 ml) was boiled under reflux for 1 hour. The solution was then evaporated under reduced pressure and the residue dissolved in methanol. Addition of ether precipitated the *bromide* which crystallized from ethanol as colorless prisms, MP 243°C to 244°C (1.7 g).
- (c) 1,1'-Azobis [3-methyl-2-phenyl-1H-imidazo [1,2-a] pyridinium] dibromide—A warm (50°C) solution of the N-amino compound (0,6 g) in water (10 ml) was treated with saturated bro-

mine water (70 ml) and the precipitated orange solid filtered off and washed with water. The orange solid was sucked dry and then boiled with acetone (30 ml) until the suspended solid became yellow. Absolute acetone (10 ml) was then added and the solution filtered giving the dibromide (0.57 g) which crystallized from water as the yellow dihydrate, MP 215°C to 219°C (softened at 196°C).

References

Merck Index 3878 DFU 1 (10) 466 (1976) DOT 13 (3) 98 (1977) I.N. p. 413

Jack, D. and Glover, E.E.; U.S. Patents 3,773,746; November 20, 1973 and 3,849,557; November 19, 1974; both assigned to Allen & Hansburys Ltd.

FEBANTEL

Therapeutic Function: Anthelmintic

Chemical Name: Dimethyl [[2-(2-methoxyacetamido)-4-phenylthiophenyl]-imidacarbonyl] -

dicarbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58306-30-2

Trade Name	Manufacturer	Country	Year Introduced
Rintal	Bayer	W. Germany	1979

Raw Materials

2-Amino-5-phenylthiomethoxyacetanilide N,N'-Bis-methoxycarbonylisothiourea-S-methyl ether

Manufacturing Process

2-Amino-5-phenylthiomethoxyacetanilide in methanol solution is heated with N,N'-bis-methoxycarbonyl isothiourea-S-methyl ether with the addition of a catalytic amount of p-toluenesulfonic acid for three hours with stirring under reflux. The mixture is then filtered hot and after cooling the febantel product crystallizes out. It is filtered off, rinsed with ether and dried under high vacuum to give the final product, melting at 129°C to 130°C.

References

Merck Index 3879 DFU 3 (5) 377 (1978) I.N. p. 413

Kolling, H., Thomas, H., Widdig, A. and Wollweber, H.; U.S. Patent 4,088,780; May 9, 1978; assigned to Bayer AG

FEBUPROL

Therapeutic Function: Choleretic agent

Chemical Name: 3-n-Butoxy-1-phenoxy-2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3102-00-9

Trade Name	Manufacturer	Country	Year Introduced
Valbil	Rohm Pharma	W. Germany	1981
Valbil	Klinge	W. Germany	_

Raw Materials

n-Butylglycidyl ether Phenol Potassium hydroxide

Manufacturing Process

Initially, 4.5 g (0.08 mol) pulverized potassium hydroxide was dissolved in 300 ml isopropanol in a 500 ml four-neck flask equipped with stirrer, intensive cooler, dropping funnel and feed pipe for the gas treatment with nitrogen.

Then, 52.0 g (0.4 mol) n-butylglycidyl ether and 41.4 g (0.44 mol) phenol was added thereto. whereafter the material was heated to boiling under nitrogen. The material was stirred, about 8.5 hours, until no glycidyl ether could be determined, e.g., by gas chromatography.

After the suspension was cooled under nitrogen, the solvent was distilled off under vacuum. The residue was taken up in 200 ml water and the milky emulsion extracted exhaustively with ether. From the organic phase, the excess butylglycidyl ether was extracted with diluted potassium hydroxide solution. The ether phase was washed neutral with water and the solvent removed after drying with sodium sulfate. The remaining oily residue was distilled under vacuum; there was obtained a coloriess liquid of BP 123.5°C/0.07 mm. Yield: 81.8 g (91.1% of the theory).

References

Merck Index 3882 DFU 3 (3) 191 (1978) DOT 19 (12) 683 (1983)

I.N. p. 413

Hoffmann, H., Wagner, J., Hofrichter, G. and Grill, H.; U.S. Patent 3,839,587; October 1, 1974; assigned to Chemisch-Pharmazeutische Fabrik Adolf Klinge and Co.

FELYPRESSIN

Therapeutic Function: Vasoconstrictor

Chemical Name: Vasopressin 2-(L-phenylalanine)-8-L-lysine

Common Name: -

Cvs-Phe-Phe-Gln-Asn-Cys-Pro-Lys-GlyNH2 Structural Formula:

Chemical Abstracts Registry No.: 56-59-7

Trade Name	Manufacturer	Country	Year Introduced
Octapressin	Sandoz	W. Germany	1967
Octapressin	Sandoz	Japan	1971
Colupressine	Joullie	France	-

Raw Materials

N-Carbobenzoxy-L-prolyl-€-N-p-toluenesulfonyl-L-lysyl-glycinamide N-Carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-azide N-Carbobenzoxy-S-benzyl-L-cysteinyl-L-phenylalanyl azide Oxygen Ammonia Acetic acid Hydrogen bromide

Manufacturing Process

Preparation of N-Carbobenzoxy-L-GlutaminyI-L-AsparaginyI-S-BenzyI-L-CysteinyI-L-ProlyIe-N-p-Toluenesulfonyl-L-Lysylglycinamide: 200 parts by weight of N-carbobenzoxy-L-prolyl- ϵ -N-p-toluenesulfonyl-L-lysyl-glycinamide are dissolved in 1,000 parts by volume of anhydrous acetic acid which has been saturated with HBr, the mixture allowed to stand for 1 hour at 20°C and then evaporated under reduced pressure at below 40°C. The residue from this evaporation is carefully washed with diethyl ether and then added to a solution of 185 parts by weight of N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-azide and 48 parts by volume of triethylamine in 1,500 parts by volume of dimethylformamide. The mixture is allowed to stand overnight at 20°C and the mixture is then poured into twice its volume of acetone. The precipitate which settles out is filtered off, washed with water, and recrystallized from dimethylformamide-acetone. There are thus obtained 190 parts by weight of N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolylε-N p-toluenesulfonyl-L-lysyl-glycinamide; MP 165°C (decomposition).

Preparation of N-Carbobenzoxy-S-Benzyl-L-Cysteinyl-L-Phenylalanyl-L-Phenylalanyl-L- $Glutaminyl-L-Asparaginyl-S-Benzyl-L-Cysteinyl-L-Prolyl-<math>\epsilon$ -N-p-Toluenesulfonyl-L-Lysyl-Glycinamide: 50 parts by weight of N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl- ϵ -N-p-toluenesulfonyl-L-lysyl-glycinamide are dissolved in 400 parts by volume of anhydrous acetic acid which is saturated with HBr, and the mixture allowed to stand for 1 hour at 20°C. After evaporating off the solvent under reduced pressure at a temperature of 35°C (or another temperature below 40°C), the residue is carefully washed with diethyl ester, whereupon a solution of 32 parts by weight of N-carbobenzoxy-S-benzyl-L-cysteinyl-L-phenylalanyl-L-phenylalanyl-azide and 70 parts by volume of triethylamine in 500 parts by volume of dimethylformamide is added.

The mixture is allowed to stand for 2 days at 20°C, after which twice its volume of ethylacetate is added and the resultant precipitate then washed with warm methanol. There are obtained 45 parts by weight of N-carbobenzoxy-S-benzyI-L-cysteinyI-L-phenylalanyI-Lphenylalanyl-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl- ϵ -N-p-toluenesulfonyl-L-lysyl-glycinamide; MP 222°C.

Preparation of L-Cysteinyl-L-Phenylalanyl-L-Phenylalanyl L-Glutaminyl-L-Asparaginyl-L-

Cysteinyl-L-Prolyl-L-Lysyl-Glycinamide: Metallic potassium is stirred into a solution of 10 parts by weight of N-carbobenzoxy-S-benzyl-L-cysteinyl-L-phenylalanyl-L-phenylalanyl-L-qlutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl- ϵ -N-p-toluenesulfonyl-L-lysyl-glycinamide in 2,500 parts of dry liquid ammonia at boiling temperature of the solution, until a stable blue coloration appears. After the addition of 1.8 parts by weight of ammonium chloride, the solution is evaporated to dryness. The residue of this evaporation contains the desired L-cysteinyl-L-phenylalanyl-L-phenylalanyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-lysyl-glycinamide.

Preparation of Felypressin: The aforesaid residue, containing the L-cysteinyl-L-phenylalanyl-L-phenylalanyl-L-qlutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-lysyl-glycinamide, is dissolved in 20,000 parts by volume of 0.01 normal acetic acid and is then oxidized by passing air into the solution at a pH of 6.5 to 8.0 for 1 hour. The solution, which contains Felypressin, is adjusted to a pH of 4.0 to 5.0, whereupon 100 parts by weight of sodium chloride are added and the mixture evaporated to dryness, yielding a dry powder of good stability. It can be stored, and yields a clear solution, e.g., in water or other appropriate solvent. The solution may be used directly or, if desired, after dilution with water or a sodium chloride solution.

References

Merck Index 3885 Kleeman & Engel p. 385 I.N. p. 414 Boissonnas, R. and Guttmann, S.; U.S. Patent 3,232,923; February 1, 1966; assigned to Sandoz AG, Switzerland

FENBENDAZOLE

Therapeutic Function: Anthelmintic

Chemical Name: 5-Phenylmercapto-benzimidazole-2-methyl-carbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 43210-67-9

Trade Name	Manufacturer	Country	Year Introduced
Panacur	Hoechst	W. Germany	1980

Raw Materials

S-Methyl thiourea Chloroformic acid methyl ester 3.4-Diamino-diphenyl-thioether

Manufacturing Process

20.9 g of S-methyl-thiourea were dissolved in 27 ml of water with 13.5 ml of chloroformic acid methyl ester. Then, 45.7 ml of 25% sodium hydroxide solution were added dropwise. while stirring, at a temperature of 5°C to 10°C. After having stirred for 20 minutes, the reaction mixture was combined with 27 ml of glacial acetic acid, 100 ml of water and 29 g of 3.4-diamino-diphenyl-thioether. Stirring was continued for 90 minutes at a temperature of 85°C, during which time methyl-mercaptan was separated. After having allowed the whole to cool and stand overnight, the 5-phenylmercapto-benzimidazole-2-methyl-carbamate that had formed was filtered off with suction. After recrystallization from a mixture of glacial acetic acid and methanol, 14 g of 4-phenylmercapto-benzimidazole-2-methyl-carbamate melting at 233°C were obtained.

References

Merck Index 3891 OCDS Vol. 3 p. 176 (1984) DOT 14 (1) 45 (1978) I.N. p. 414

Loewe, H., Urbanietz, J., Kirsch, R. and Duwel, D.; U.S. Patent 3,984,561; October 5, 1976; assigned to Hoechst AG

Loewe, H., Urbanietz, J., Kirsch, R. and Duwel, D.; U.S. Patent 3,954,791; May 4, 1976; assigned to Hoechst AG

FENBUFEN

Therapeutic Function: Antiinflammatory

Chemical Name: 3-(4-Biphenylylcarbonyl)propionic acid

Common Name: -

Structural Formula:

- со(сн,),со,н

Chemical Abstracts Registry No.: 36330-85-5

Trade Name	Manufacturer	Country	Year Introduced
Cinopal	Cyanamid	Italy	1976
Lederfen	Cyanamid	W. Germany	1979
Lederfen	Lederle	U.K.	1979
Cinopal	Opopharma	Switz.	1979
Napanol	Lederle	Japan	1980
Cinopal	Cyanamid	France	1971
Bufemid	Lederle	_	_

Raw Materials

Biphenvl Succinic anhydride Aluminum chloride

Manufacturing Process

135 g of aluminum chloride is dissolved in 500 ml of nitrobenzene, the solution being held

below 10°C by external cooling. A finely ground mixture of 50 g of succinic anhydride and 75 g of biphenyl is added to the stirred solution, the temperature being held below 10°C. It is then held at room temperature for four days. After pouring the reaction mixture into a solution of 150 ml of concentrated hydrochloric acid in 1 liter of ice water, the nitrobenzene is removed by steam distillation. The solid is collected, dissolved in 4 liters of 3% hot sodium carbonate solution, clarified, and reprecipitated by the addition of excess 6 N sulfuric acid solution. The crude product is collected, dried, and recrystallized from ethanol to give the pure subject compound, MP 185°C to 187°C.

References

Merck Index 3893 DFU 1 (1) 26 (1976) Kleeman & Engel p. 386 OCDS Vol. 2 p. 126 (1980) DOT 13 (4) pp. 133, 136 (1977) I.N. p. 416

Tomcufcik, A.S., Child, R.G. and Sloboda, A.E.; U.S. Patent 3,784,701; January 8, 1974; assigned to American Cyanamid Co.

FENDILINE HYDROCHLORIDE

Therapeutic Function: Coronary vasodilator

Chemical Name: γ-phenyl-N-(1-phenylethyl)benzenepropanamine hydrochloride

Common Name: N-(1-phenylethyl)-3,3-diphenyl-propylamine

Structural Formula:

(C₆H₅)₂CHCH₂CH₂NHCHC₆H₅·HCI

Chemical Abstracts Registry No.: 13636-18-5; 13042-18-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sensit	Thiemann	W. Germany	1974
Sensit F	Ravasini	Italy	1981
Difmecor	UCM-Difme	italy	_
Fendilar	Spa	Italy	

Raw Materials

γ,γ-Diphenylpropylamine Hydrogen Acetophenone Hydrogen chloride

Manufacturing Process

21.13 grams of γ, γ -diphenyl-propylamine and 12.01 grams of acetophenone are hydrogenated in 200 ml of methanol at 55°C and a pressure of 10 atmospheres in the presence of palladium charcoal. On filtration of the catalyst the solution is concentrated and the remainder is distilled in vacuo at a pressure of 0.3 Hg mm. The main distillate is collected at 206° to 210°C. 25.38 grams of N-[1'-phenylethyl-(1')]-1,1-diphenyl-propyl-(3)-amine are obtained.

The product is dissolved in 134 ml of 96% ethanol whereupon 26.8 ml of concentrated hydrochloric acid and 201 ml of water are added while cooling with ice-water. The precipitate is filtered off and dried in vacuo at 100°C. 22.98 grams of N-[1'-phenylethyl)-(1')]-1.1-diphenyl-propyl-(3)-amine hydrochloride are obtained. MP 200° to 201°C. On recrystallization from 285 ml of a 2:1 mixture of water and 96% ethanol the melting point remains unchanged.

References

Merck Index 3903 Kleeman & Engel p. 389 DOT 10 (12) 337 (1974) I.N. p. 417

Harsanyi, K., Korbonits, D., Takats, K., Tardos, L. and Leszkovszky, G.; U.S. Patent 3,262,977: July 26, 1966; assigned to Chinoin Gyogyszer-es Vegyeszeti Terme'kek, Hungary

FENETHYLLINE HCI

Therapeutic Function: Central stimulant

Chemical Name: 3,7-Dihydro-1,3-dimethyl-7-[2-[(1-methyl-2-phenylethyl)amino] ethyl] -

1H-purine-2.6-dione

Common Name: Theophyllineethylamphetamine

Structural Formula:

Chemical Abstracts Registry No.: 1892-80-4; 3736-08-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Captagon	Homburg	W. Germany	1961
Gelosedine	Bayer	France	1964
Captagon	Gerda	France	_
Fitton	Teva	israel	_

Raw Materials

7-(β-Chloroethyl)-theophylline α-Methyl-β-phenyl ethylamine Hydrogen chloride

Manufacturing Process

1 mol of 7-(β -chloroethyl)-theophylline and 2½ mols of α -methyl- β -phenyl ethylamine are heated for 6 hours in an oil bath, if necessary with addition of alcohol or toluene. The reaction mixture is diluted with alcohol and acidified with alcoholic hydrochloric acid. The crystalline mass formed is filtered with suction and extracted by boiling with alcohol. A product having a melting point of 237°C to 239°C is formed. With prolonged extraction by boiling with alcohol, the melting point of the mass falls, preferably due to a change in modification, to 227°C to 229°C. However, analysis shows that both products are the pure condensation product.

Instead of the chloroethyl theophylline, it is also possible to use the corresponding bromine derivative. It was found that in this way the process is facilitated and the yield is improved.

References

Merck Index 3906 Kleeman & Engel p. 390 OCDS Vol. 1 p. 425 (1977)

I.N. p. 418

Kohlstaedt, E. and Klingler, K.H.; U.S. Patent 3,029,239; April 10, 1962; assigned to Chemiewerke Homburg

FENIPENTOL

Therapeutic Function: Choleretic

Chemical Name: \alpha-Butylbenzenemethanol

Common Name: Phenylpentanol

Structural Formula:

Chemical Abstracts Registry No.: 583-03-9

Trade Name	Manufacturer	Country	Year Introduced
Pancoral	Eisai	Japan	1973
Euralan	Badrial	France	1974
Billicol	Violoni-Farmavigor	ltaly	_
Cholipin	Boehr, Ingel,	italy	_
Critichol	Angelini	Italy	_
Epatolark	Farm, Mil.	Italy	_
Eprox	Off	Italy	-
Fabil-Valeas	Valeas	Italy	_
Florobil	Scalari	Italy	_
Kol	Mitim	Italy	-
Liverpen	Guidil	Italy	_
Pentabil	Off	Italy	_
Suiclisin	Nikken	Japan	

Raw Materials

Benzaldehyde Butyl bromide Magnesium

Manufacturing Process

The 1-phenyl-pentanol-(1) may be prepared in any convenient manner. Benzaldehyde may be reacted with n-butyl-magnesium bromide, and after purification 1-phenyl-pentanol-(1) is obtained in the form of a colorless oil at room temperature.

References

Merck Index 3909

Kleeman & Engel p. 391 DOT 10 (6) 203 (1974) I.N. p. 418

Scheffler, H. and Engelhorn, R.; U.S. Patent 3,084,100; April 2, 1963; assigned to Dr. Karl Thomae G.m.b.H.

FENOFIBRATE

Therapeutic Function: Antihyperlipoproteinemic

Chemical Name: 2-[4-(4-Chlorobenzoyl)phenoxy] -2-methylpropanoic acid-1-methylethyl

ester

Common Name: Procetofen

Structural Formula:

$$\mathbf{c1} - \begin{bmatrix} \mathbf{CH_3} \\ \mathbf{CH_3} \\ \mathbf{CH_3} \end{bmatrix} \mathbf{cH_3}$$

Chemical Abstracts Registry No.: 49562-28-9

Trade Name	Manufacturer	Country	Year Introduced
Lipantyl	Fournier	France	1975
Lipanthyl	Fournier	Switz.	1975
Lipanthyl	Pharma Holz	W. Germany	1978
Lipanthyl	Nativelle	Italy	1979
Lipidax	UCB-Smit	Italy	1979
Ankebin	Volpino	Argentina	_
Elasterin	Phoenix	Argentina	_
Fenobrate	Gerardo Ramon	Argentina	
Fenolibs	L.I.B.Ş.	France	-
Lipanthyl	Falorni	Italy	-
Lipidil	lbirn	Italy	_
Lipoclar	Farmacosmici	Italy	_
Lipofene	Selvi	Italy	-
Liposit	S.I.T.	Italy	_
Nolipax	Biomedica Foscama	Italy	-
Procetoken	Bernabo	Argentina	
Protolipan	Millet	Argentina	_
Sedufen	Microsules	Argentina	-

Raw Materials

4-Hydroxy-4'-chlorobenzophenone Acetone Chloroform Sodium hydroxide Thionyl chloride Isopropanol

Manufacturing Process

(a) Preparation of p-(4-chlorobenzoyl)-phenoxyisobutyric acid: 1 mol of 4-hydroxy-4'chlorobenzophenone is dissolved in anhydrous acetone and then 5 mols of powdered sodium hydroxide is added. The corresponding sodium phenoxide precipitates. Refluxing is effected, and then, 1.5 mols of CHCl3 diluted with anhydrous acetone is added and the resulting mixture is refluxed for 10 hours. After cooling, water is added, the acetone is evaporated, the

aqueous phase is washed with ether and acidified and the organic phase is redissolved in ether and extracted into a solution of bicarbonate. The bicarbonate solution is then acidified to obtain the desired acid, having a melting point of 185°C, with a yield of 75%.

(b) Preparation of fenofibrate: 1 mol of the acid obtained is converted into its acid chloride using thionyl chloride (2.5 mols). 1 mol of the acid chloride is then condensed with 1.05 mol of isopropyl alcohol in the presence of 0.98 mol of pyridine in an inert solvent such as benzene.

Since traces of SO₂ (which has a bad smell) may be obtained from the thionyl chloride, it is preferable to avoid this disadvantage by carrying out the esterification directly.

References

Merck Index 3912 Kleeman & Engel p. 392

I.N. p. 419

Mieville, A.; U.S. Patent 3,907,792; September 23, 1975

FENOPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: \alpha-methyl-3-phenoxybenzeneacetic acid

Common Name: m-phenoxyhydratropic acid

Structural Formula:

Chemical Abstracts Registry No.: 31879-05-7

Trade Name	Manufacturer	Country	Year Introduced
Fenopron	Dista	U.K.	1974
Feprona	Lilly	W. Germany	1975
Nalfon	Dista	U.S.	1976
Fepron	Lilly	Italy	1978
Nalgesic	Lilly	France	1979
Fenopron	Yamanouchi	Japan	1982
Fenoprex	Lilly	· -	_
Progesic	Lilly	_	_

Raw Materials

Bromobenzene m-Hydroxyacetophenone Copper Potassium carbonate Sodium cyanide Sodium borohydride Sodium hydroxide Phosphorus tribromide

Manufacturing Process

3-Phenoxyacetophenone: A mixture consisting of 908 grams (6.68 mols) of m-hydroxyacetophenone, 4.500 grams (28.6 mols) of bromobenzene, 996 grams (7.2 mols) of anhydrous potassium carbonate, and 300 grams of copper bronze was heated under reflux with stirring until water evolution was complete, using a Dean-Stark water separator. The mixture was then stirred and refluxed for 24 hours. After cooling to room temperature, the reaction was diluted with an equal volume of CHCl₃ and filtered. The filtrate was washed with 5% HCl, then with 5% NaOH, with water, dried over Na₂SO₄ and evaporated in vacuo. The residual oil was distilled through a 15 cm Vigreux column, yielding 918 grams of 3-phenoxy-acetophenone, BP 120° to 121°C (0.09 mm).

 α -Methyl-3-Phenoxybenzyl Alcohol: A stirred solution of 700 grams of m-phenoxyaceto-phenone in 3,000 ml anhydrous methanol was cooled to 0°C in an ice-acetone bath. Sodium borohydride, 136 grams (3.6 mols) was added to this solution in small portions at such a rate that the temperature never rose above 10°C. After borohydride addition was complete, the reaction mixture was allowed to warm to room temperature and stirred for 18 hours. It was then stirred and refluxed for 8 hours. About 400 ml of methanol was distilled out and the remaining solution was evaporated to about one-third its original volume in vacuo and poured into ice water. This mixture was extracted twice with ether, acidified with 6 N HCl, and again extracted with ether. The ether extracts were combined, washed with saturated NaCl solution, dried over anhydrous sodium sulfate, and evaporated in vacuo. The residual oil was distilled through a 15 cm Vigreux column, yielding 666 grams of α -methyl-3-phenoxybenzyl alcohol, BP 132° to 134°C (0.35 mm), n_D^{25} = 1.5809.

 α -Methyl-3-Phenoxybenzyl Bromide: A stirred solution of 1,357 grams of α -methyl-3-phenoxybenzyl alcohol in 5,000 ml anhydrous CCl₄ (predried over molecular sieve) was cooled to 0°C. To this was added 1,760 grams PBr₃, stirring and cooling being maintained at such a rate that the temperature remained at 0° to 5°C, during the addition. The reaction mixture was then allowed to warm to room temperature and was stirred at room temperature overnight (ca 12 hours). The reaction mixture was then poured into ice water and and the organic phase separated. The aqueous phase was extracted with CCl₄ and the combined extracts were washed three times with water, dried over anhydrous sodium sulfate and evaporated to dryness in vacuo to yield 1,702 grams of α -methyl-3-phenoxybenzyl bromide as a heavy viscous oil, n_0^{-25} = 1.5993.

 $2\cdot(3\cdot Phenoxyphenyl)Propionitrile:$ A well-stirred suspension of 316 grams of 98% sodium cyanide in 5,000 ml of anhydrous dimethyl sulfoxide (previously dried over molecular sieve) was warmed to 55° to 60°C and maintained at this temperature while 1,702 grams of α -methyl-3-phenoxybenzyl bromide was slowly added. After the bromide addition was completed, the temperature was raised to 75°C and the mixture stirred at this temperature for 1.5 hours. The mixture was then allowed to cool to room temperature and was stirred overnight at room temperature and then poured into ice water. The resulting aqueous suspension was extracted twice with ethyl acetate, and then with ether. The organic extract was washed twice with a sodium chloride solution, once with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent in vacuo left an oily residue which was distilled through a 15 cm Vigreux column to yield 1,136 grams of 2-(3-phenoxyphenyl)-propionitrile, BP 141° to 148°C (0.1 mm), $n_0^{25} = 1.5678$.

2-(3-Phenoxyphenyl)Propionic Acid: A mixture of 223 grams of 2-(3-phenoxyphenyl)-propionitrile and 400 grams of sodium hydroxide in 1,600 ml of 50% ethanol was refluxed with stirring for 72 hours. After cooling to room temperature, the reaction mixture was poured into ice water. The resulting solution was washed with ether, acidifed with concentrated HCl, and extracted with ether. The ether extract was washed with water, dried over anhydrous sodium sulfate, and evaporated to dryness in vacuo. The residual oil was distilled to yield 203.5 grams (84%) of 2-(3-phenoxyphenyl)propionic acid as a viscous oil; BP 168° to 171°C (0.11 mm), $n_D^{25} = 1.5742$.

References

Merck Index 3913 Kleeman & Engel p. 392 PDR p. 843 OCDS Vol. 2 p. 67 (1980) DOT 8 (1) 34 (1972) & 9 (9) 373 (1973)

I.N. p. 419 REM p. 1116

Marshall, W.S.; U.S. Patent 3,600,437; August 17, 1971; assigned to Eli Lilly and Company

FENOTEROL HYDROBROMIDE

Therapeutic Function: Bronchodilator

Chemical Name: 3,5-dihydroxy-α-[[(p-hydroxy-α-methylphenethyl)amino] methyl] benzyl

alcohol hydrobromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1944-12-3; 13392-18-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Berotec	Boehr, Ingel.	W. Germany	1972
Berotec	W.B. Pharm	U.K.	1977
Dosberotec	Boehr, Ingel,	Italy	1980
Berotec	Boehr, Ingel.	Switz.	1982
Airum	Promeco	Argentina	
Berotec	Fher	Spain	_
Partusisten	Boehr, Ingel,	· _	

Raw Materials

3,5-Diacetoxy acetophenone	Hydrogen chloride
1-p-Methoxyphenyl-2-benzylamino propane	Bromine
Hydrogen bromide	Hydrogen

Manufacturing Process

441 grams (1.4 mols) of 3,5-diacetoxy- α -bromo-acetophenone (MP 66°C), prepared by bromination of 3,5-diacetoxy-acetophenone, were added to a solution of 714 grams (2.8 mols) of 1-p-methoxyphenyl-2-benzylamino-propane in 1,000 cc of benzene, and the resulting solution mixture was refluxed for 1 hour. The molar excess of 1-p-methoxy-phenyl-2-benzylamino-propane precipitated out as its hydrobromide. After separation of the precipitated hydrobromide of the amino component, the hydrochloride of 1-p-methoxy-phenyl-2-(β -3',5'-diacetoxyphenyl- β -oxo)-ethyl-benzylamino-propane was precipitated from the reaction solution by addition of an ethanolic solution of hydrochloric acid. The precipitate was separated and, without further purification, was deacetylated by boiling it in a mixture of 2 liters of aqueous 10% hydrochloric acid and 1.5 liters of methanol.

The resulting solution was filtered through animal charcoal and, after addition of 2 liters of methanol, it was debenzylated by hydrogenation at 60°C over palladinized charcoal as a catalyst. After removal of the catalyst by filtration, the filtrate was concentrated by evaporation, whereupon the hydrochloride of 1-p-methoxyphenyl-2-(β -3',5'-dihydroxyphenyl- β -oxo)-ethylamino-propane (MP 244°C) crystallized out. For the purpose of demethylation,

the 350 grams of the hydrochloride thus produced were refluxed for 2 hours with 3.5 liters of aqueous 48% hydrobromic acid. Upon cooling of the reaction solution, 320 grams of 1-p-hydroxyphenyl-2-(\(\beta\)-3'.5'-dihydroxyphenyl-\(\beta\)-oxo)-ethylamino-propane hydrobromide (MP 220°C) crystallized out.

220 grams of 1-p-hydroxyphenyl-2- $(\beta$ -3',5'-dihydroxyphenyl- β -oxo)-ethylamino-propane hydrobromide were dissolved in 1 liter of methanol, the resulting solution was boiled with activated charcoal, the charcoal was filtered off and the filtrate was hydrogenated in the presence of Raney nickel at 60°C and 5 atmospheres gauge. Thereafter, the catalyst was filtered off, the methanolic solution was admixed with a small amount of concentrated hydrobromic acid, and the mixture was evaporated to dryness in vacuo. The residue was stirred with acetone, the mixture was vacuum filtered and the filter cake was recrystallized from a mixture of methanol and ether. The 1-p-hydroxyphenyl-2-(\(\beta\)-3'.5'-dihydroxyphenyl- β -hydroxy)-ethylamino-propane hydrobromide thus obtained had a melting point of 222° to 223°C.

References

Merck Index 3914 Kleeman & Engel p. 393 OCDS Vol. 2 p. 38 (1980) DOT 8 (1) 36 (1972), 9 (1) 21 (1973) & 11 (1) 20 (1975) I.N. p. 419

Zeile, K., Thoma, O. and Mentrup, A.; U.S. Patent 3,341,593; September 12, 1967; assigned to Boehringer Ingelheim GmbH, Germany

FENOXEDIL

Therapeutic Function: Vasodilator

Chemical Name: 2-(4-butoxyphenoxy)-N-(2,5-diethoxyphenyl)-N-[2-(diethylamino)ethyl] -

acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54063-40-0; 27471-60-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Suplexedil	Hepatrol	France	1974

Raw Materials

Triethylamine 2.5-Diethoxyaniline Sodium amide 4-Butoxyphenoxy acetyl chloride 2-Diethylamino-1-chloroethane

Manufacturing Process

420 grams of 2,5-diethoxy aniline are dissolved in 4 liters of dichloroethane and 230 grams

of triethylamine are added. The mixture is heated, while stirring, with 845 grams of 4butoxy phenoxy acetyl chloride. The temperature increases towards 40°C. The mixture is then heated for 2 hours at 80°C. After cooling the product is washed with normal hydrochloric acid, then with water, then with normal sodium carbonate and finally with water.

The organic phase is dried over sodium sulfate, filtered, the dichloroethane is evaporated off and the residue is crystallized from ethyl alcohol (95%). The product is dried in the oven and there is thus obtained about 800 grams (yield 90%) of the N-(2,5-diethoxyphenyl)-4-butoxy phenoxy acetamide, MP 101°C.

A vessel provided with a mechanical agitator, a thermometer and a refrigerant, is charged with 49.2 grams of sodamide (90%) in suspension in 300 ml of anhydrous toluene, and a solution of 465 grams of amide obtained as above in 2 liters of anhydrous toluene. The solution is poured in, little by little during 1.5 hours with slight warming. The mixture is maintained for 1 hour at 80°C during which ammonia is evolved. It is cooled to 45°C. there is added, in a single quantity, 170 grams of 2-diethyl-amino-1-chloroethane and the temperature is raised slowly to 100°C and is maintained there for 10 hours.

The mixture is cooled, the organic phase washed with water and dried over sodium sulfate. The toluene is evaporated and the residue taken up in 2 liters of normal acetic acid, with cooling. It is allowed to crystallize in the cold, filtered to remove the insoluble portion and the base precipitated from the filtrate by the addition of sodium carbonate: this is extracted with dichloroethane and the organic phase dried over sodium sulfate. After evaporation of the solvent an oil is distilled, BP 225° to 230°C/0.1 mm, weight 340 grams, yield 58%. The hydrochloride prepared by the action of gaseous hydrogen chloride on this oil in ethyl ether melts at 140°C.

References

Merck Index 3916 Kleeman & Engel p. 395 DOT 11 (2) 58 (1975) I.N. p. 420

Thuillier, G. and Geffroy, F.; U.S. Patent 3,818,021; June 18, 1974; assigned to CERPHA (Centre Europeen de Recherches Pharmacologiques), France

FENPROPOREX

Therapeutic Function: Anorexic

Chemical Name: 3-[(1-Methyl-2-phenylethyl)amino] propanenitrile

Common Name: N-2-Cyanoethylamphetamine

Structural Formula:

Chemical Abstracts Registry No.: 15686-61-0

Trade Name Manufacturer Country Year Introduced 1975 Fenproporex Chephasaar W. Germany

Trade Name	Manufacturer	Country	Year Introduced
Fenproporex	Bottu	France	1977
Desobesi	Luer	Brazil	_
Fenorex	Biosintetica	Brazil	_
Lineal	Roussel	_	_
Lipolin	ICN-Usafarma	Brazil	
Perphoxene	Bottu	France	_
Perphoxene	Siegfried	Switz.	_
Tegisec	Roussel	_	

Acrylonitrile α -Methyl β -phenylethylamine Hydrogen chloride

Manufacturing Process

- (a) 22 g of acrylonitrile and 27 g of racemic α -methyl- β -phenylethylamine were introduced into a 100 ml round-bottomed flask and left standing for 13 hours at ambient temperature, and then the mixture was boiled under reflux for 12½ hours. The excess acrylonitrile was then evaporated in vacuo and the residue distilled. 27.3 g (yield: 72.6%) of racemic N-(β -cyanoethyl)- α -methyl- β -phenylethylamine were obtained as an oily liquid, BP = 126°C to 127°C/2 mm Hg.
- (b) 22 g of the base obtained in (a) were dissolved in 80 ml of anhydrous diethyl ether and an ethereal solution of hydrochloric acid added until the pH value was 1. The salt was filtered off, dried and washed with 10 ml of diethyl ether. 18 g (yield: 68%) of N-(β -cyanoethyl- α -methyl- β -phenylethylamine hydrochloride were obtained, after recrystallization from absolute ethanol, as a white, microcrystalline, odorless powder having a bitter, acid taste; it was fairly soluble in water, ether and benzene. MP = 146°C on a Kofler block.

References

Merck Index 3922 DOT 9 (6) 213 (1973) I.N. p. 420

Rohrbach, P. and Blum, J.; U.S. Patent 3,485,924; December 23, 1969; assigned to Manufactures J.R. Bottu (France)

FENSPIRIDE

Therapeutic Function: Bronchodilator

Chemical Name: 8-(2-phenylethyl)-1-oxa-3,8-diazaspiro [4.5] decan-2-one

Common Name: Decaspiride

Structural Formula:

Chemical Abstracts Registry No.: 5053-06-5; 5053-08-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year introduced
Viarespan	Servier	France	1969
Respiride	Schiapparelli	Italy	1979
Abronquil	Soubeiran Chobet	Argentina	_
Decaspir	Pulitzer	Italy	_
Espiran	Fardeco	Italy	_
Fendel	Sidus	Argentina	
Fluiden	Lafare	Italy	_
Pneumorel	Biopharma	France	
Teodelin	Cuatrecasas-Darkey	Spain	-

1-(2-Phenylethyl)-4-piperidone Potassium cyanide Lithium aluminum hydride Diethyl carbonate

Manufacturing Process

A solution of 192 g of 1-phenethyl-4-hydroxy-4-aminomethyl piperidine in 800 cc of diethylcarbonate is heated for 21/2 hours to reflux at about 80°C in the presence of sodium methylate (prepared for immediate use from 2 g of sodium). After this time, the ethyl alcohol formed during the reaction is slowly distilled while the maximum temperature is reached. The excess ethyl carbonate is distilled under reduced pressure. A crystallized residue is then obtained, which is stirred with 400 cc of water and 400 cc of ether. The solution is filtered and 125 g (77.6%) of practically pure product melting at 232°C to 233°C, are obtained.

The starting material was prepared in a yield of 58% by reduction of the corresponding cyanohydrin. It in turn was prepared from 1-(2-phenylethyl)-4-piperidone and potassium cyanide to give the cyanohydrin which was reduced by lithium aluminum hydride.

References

Merck Index 3924 Kleeman & Engel p. 397 OCDS Vol. 2 p. 291 (1980) DOT 5 (4) 130 (1969) I.N. p. 421

Regnier, G., Canevari, R. and Le Douarec, J.-C., U.S. Patent 3,399,192; August 27, 1968; assigned to Science Union et Cie, Societe Francaise de Recherche Medicale, France

FENTANYL

Therapeutic Function: Narcotic analgesic

Chemical Name: N-phenyl-N-[1-(2-phenylethyl)-4-piperidinylpropanamide

Common Name: -

Structural Formula:

$$\begin{array}{c|c} \operatorname{CH_3CH_2CON} & & & \\ & \downarrow & & \\ & C_{e}H_{e} & & \\ \end{array}$$

Chemical Abstracts Registry No.: 437-38-7

Trade Name	Manufacturer	Country	Year Introduced
Fentanyl	Janssen	W. Germany	1963
Sublimaze	Janssen	U.K.	1965
Fentanest	Carlo Erba	Italy	1965
Sublimaze	McNeil	U.S.	1968
Fentanest	Sankyo	Japan	1972
Fentanyi Le Brun	Le Brun	France	1973
Beatryl	Abic	Israel	
Haldid	Janssen	_	_
Innovar	McNeil	U.S.	-
Leptanal	Leo	Sweden	
Thalamonal	Janssen	W. Germany	_

1-Benzyl-4-piperidone Lithium aluminum hydride β -Phenylethyl chloride

Aniline Propionic anhydride Hydrogen

Manufacturing Process

To the stirred solution of 5 parts of N-(4-piperidyl)propionanifide, 6,85 parts sodium carbonate, 0.05 part potassium iodide in 120 parts hexone is added portionwise a solution of 3.8 parts β -phenylethyl chloride in 24 parts 4-methyl-2-pentanone. The mixture is stirred and refluxed for 27 hours. The reaction mixture is filtered while hot, and the filtrate is evaporated. The oily residue is dissolved in 160 parts diisopropyl ether and the solution is filtered several times until clear, then concentrated to a volume of about 70 parts. The residue is then cooled for about 2 hours at temperatures near 0° C to yield N-[1-(β -phenylethyl)-4-piperidyl] propionanilide, melting at about 83° to 84°C as described in U.S. Patent 3,141,823.

The starting material is prepared by reacting 1-benzyl-4-piperidone with aniline, reducing the condensation product with lithium aluminum hydride, reacting the product thus obtained with propionic anhydride, then hydrogen.

References

Merck Index 3926 Kleeman & Engel p. 397 PDR pp. 954, 957 OCDS Vol. 1 pp. 299, 306, 309 (1977) & 3 p. 116 (1984) DOT 1 (1) 1 (1965) I.N. p. 421 REM p. 1108

Janssen, P.A.J. and Gardocki, J.F.; U.S. Patent 3,141,823; September 4, 1962; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

Janssen, P.A.J.; U.S. Patent 3,164,600; January 5, 1965; assigned to Research Laboratorium Dr. C. Janssen, NV, Belgium

FENTIAZAC

Therapeutic Function: Analgesic, antipyretic and antiinflammatory

Chemical Name: 4-(p-Chlorophenyl)-2-phenyl-thiazol-5-yl-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18046-21-4

Trade Name	Manufacturer	Country	Year Introduced
Norvedan	LPB	Italy	1975
Norvedan	Nippon Chemiphar	Japan	1982
Donorest	Wyeth	Japan	1982
Domureuma	Medici Domus	Italy	-
Flogene	Polifarma	Italy	_

Raw Materials

Methyl 3-(p-chlorobenzoyl)-3-bromopropionate Potassium thioacetate Potassium hydroxide Benzonitrile Acetic acid

Manufacturing Process

13.6 g methyl 3-(p-chlorobenzoyl)-3-bromopropionate in 30 ml methanol are added to a solution of 5.6 g potassium thioacetate in 30 ml methanol. Immediate precipitation of KBr is observed. The suspension is refluxed for 10 minutes.

It is cooled to ambient temperature, filtered, and the methanol is evaporated to dryness. 13.2 g methyl 3-(p-chlorobenzoyl)-3-thioacetylpropionate in the form of a chromatographically pure orange-colored oil are obtained.

A suspension of 13.2 g methyl 3-(p-chlorobenzoyl)-3-thioacetylpropionate is agitated in 500 ml of a 2 N aqueous solution of KOH for 6 hours at ambient temperature in an atmosphere of nitrogen, followed by extraction with ethyl ether. The aqueous phase, adjusted to a pH equal to 2 with 2 N HCl, is extracted with ethyl ether which was washed with water, dried over Na_2SO_4 , and finally evaporated to dryness.

9.8 g of crude 3-(p-chlorobenzoyl)-3-mercaptopropionic acid are obtained. By recrystallizing from isopropyl ether there are obtained 8.6 g of pure product, MP 96°C to 97°C (yield: 79%).

1.7 ml benzonitrile and 5.05 ml diethylamine are added to a solution of 4 g 3-(p-chlorobenzoyl)-3-thiol-propionic acid in 50 ml ethanol. The solution is agitated at ambient temperature for 60 minutes in an atmosphere of nitrogen. It is then evaporated to a syrupy consistency and 60 ml 50% aqueous acetic acid are added, whereupon the mixture is refluxed for 60 minutes. It is evaporated to a small volume, adjusted to a pH equal to 8 with a saturated solution of sodium bicarbonate and then extracted with ethyl ether. The aqueous phase is acidified with 2 N HCl (Congo red), and then again extracted with ethyl ether. It is dried over Na $_2$ SO $_4$ and evaporated to dryness. The evaporation residue is recrystallized from benzene and 4 g 4-(p-chlorophenyl)-2-phenyl-thiazol-5-yl-acetic acid are obtained (MP = 152°C to 154°C, yield - 74.3%).

References

Merck Index 3928

DOT 11 (9) 351 (1975) & 15 (7) 325 (1979)

I.N. p. 421

Laboratorio Prodotti Biologici Braglia SpA; British Patent 1,380,507; January 15, 1975 Brown, K.; U.S. Patent 3,476,766; November 4,1969; assigned to John Wyeth & Brother Ltd.

FENTONIUM BROMIDE

Therapeutic Function: Anticholinergic; antispasmodic

Chemical Name: [3(S)-Endo] -8-(2-[1,1'-biphenyl] 4-yl-2-oxaethyl)-3-(2-hydroxy-1-oxo-2phenylpropoxy)-8-methyl-8-azoniabicyclo [3.2.1] octane bromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5868-06-4

Trede Name	Manufacturer	Country	Year Introduced
Hoelcesium	Zambon	Italy	1972
Ulcesium	Inpharzam	W. Germany	1978
Dicasten	Fher	Spain	_
Ketoscilium	Zambon	Italy	_

Raw Materials

p-Phenylphenacyl bromide 1-Hyoscyamine

Manufacturing Process

5.50 g (0.02 mol) of p-phenylphenacyl bromide were dissolved in 56 cc of anhydrous acetone previously heated to about 40°C. This solution was added, with stirring, to a solution of 5.70 g (0.02 mol) of 1-hyoscyamine in 43 cc of anhydrous acetone; the reaction solution was maintained at 45°C and stirred for about six hours.

After standing overnight in the refrigerator, the precipitate was collected by filtration and dried in vacuo at 60° C. Yield: $10.2 \text{ g; MP} = 193^{\circ}$ C to 194° C.

References

Merck Index 3930 Kleeman & Engel p. 398 I.N. p. 422

Teotino, U. and Della Bella, D.; U.S. Patent 3,356,682; December 5, 1967 and U.S. Patent 3.436.458; April 1, 1969; both assigned to Whitefin Holding S.A. (Switz.)

FEPRAZONE

Therapeutic Function: Antiinflammatory

Chemical Name: 1,2-Diphenyl(3,5-dioxo-4-(3'-methyl-2'-butenyl)-pyrazolidine

Common Name: Phenyiprenazone, prenazone

Structural Formula:

Chemical Abstracts Registry No.: 30748-29-9

Trade Name	Manufacturer	Country	Year Introduced
Zepelin	De Angeli	Italy	1972
Methrazone	W.B. Pharm.	U.K.	1977
Zepelin	Boehr, Ingel.	W. Germany	1980
Zontal	Fujisawa	Japan	1983
Analud	Unifa	Argentina	_
Brotazona	Escaned	Spain	_
Danfenona	Larma	Spain	_
Grisona	Cusi	Spain	_
Metrazone	Boehr, Ingel.	Spain	_
Naloven	De La Cruz	Spain	_
Nazona	Reig Jofre	Spain	_
Nilatin	Llenas	Spain	-
Prenazon	Inexfa	Spain	
Rangozona	Mazuelos	Spain	_
Represil	Cecef	Spain	_
Tabrien	Callol	Spain	-
Zepelin	Bender	Austria	-
Zoontal	Boehr, Ingel.	_	

Raw Materials

Hydrazobenzene Sodium Diethyl-3-methyl-2-bu tenyl malonate Ethanol

Manufacturing Process

43.8 g (0.237 mol) of hydrazobenzene are added to a solution of sodium ethylate obtained by dissolving 6.55 g (0.285 mol) of sodium in 125 ml of anhydrous ethanol. 59.6 g (0.2612 mol) of diethyl 3-methyl-2-butenyl malonate are then added, with stirring, at the reflux temperature.

The reaction mixture is refluxed for 1 hour, then the solvent is slowly distilled off, the distillation being completed in vacuo. The solid residue so obtained is dissolved in 400 ml of water and washed with ether. The solution is acidified with 10% HCl and the 1,2-diphenyl-3,5-dioxo-4-(3'-methyl-2'-butenyl)-pyrazolidine which separates is purified by crystallization from ethanol (MP 155°C to 156°C).

References

Merck Index 3934 DOT 8 (10) 330 (1972)

I.N. p. 422

Casadio, S. and Pala, G.; U.S. Patent 3,703,528; November 21, 1972; assigned to Instituto de Angeli S.p.A.

FERROCHOLINATE

Therapeutic Function: Hematinic

Chemical Name: [hydrogen citrato(3—)] triaquoiron, choline salt

Common Name: Iron choline citrate

Structural Formula:

Chemical Abstracts Registry No.: 1336-80-7

Trade Name	Manufacturer	Country	Year Introduced
Ferrolip	Flint	U.S.	1953
Chel-Iron	Kinney	U.S.	1957

Raw Materials

Choline dihydrogen citrate Ferric hydroxide Tricholine citrate Ferric citrate

Manufacturing Process

As described in U.S. Patent 2,575,611, 107 parts of freshly prepared ferric hydroxide are added to 295 parts of choline dihydrogen citrate dissolved in 200 parts of distilled water and heated to approximately 80°C until a homogeneous solution occurs. The resulting reddish brown solution may be used as such or it may be dried by evaporating the water. The dried product is a reddish brown, amorphous solid presenting a glistening surface upon fracture. The dry product is somewhat hygroscopic and is freely soluble in water to give a stable solution. The following paragraph gives an alternative preparation.

One mol of tricholine citrate is dissolved in 6,000 ml of water and two mols of ferric citrate in solid form are added thereto. The reaction mass is then agitated until solution is effected, and until the reaction mass changes from brown to green. Water is removed either under vacuum, or as an azeotrope with benzene or toluene or by heating to a temperature of 110° to 115°C. There is thus obtained a gummy viscous mass which is treated with methanol, about five gallons, whereupon it solidifies, i.e., changes, into a green crystalline compound. Following the treatment with methanol, the mass is filtered and the green compound dried at about 70°C, according to U.S. Patent 2,865,938.

References

Merck Index 3970

I.N. p. 423

Bandelin, F.J.; U.S. Patent 2,575,611; November 20, 1951; assigned to Flint Eaton and Com-

Rosenfelder, W.J.; U.S. Patent 2,865,938; December 23, 1958

FERROGLYCINE SULFATE

Therapeutic Function: Hematinic

Chemical Name: Ferroglycine sulfate

Common Name: -

Structural Formula: (FeSO₄)_x(NH₂CH₂COOH)_v

Chemical Abstracts Registry No.: 17169-60-7

Trade Name	Manufacturer	Country	Year Introduced
Ferronord	Cooper	U.S.	1956
Fe-Cap	MCP Pure Drugs	U.K.	1970
Bonafer	Remeda	Finland	_
Ferrochel	C.F.C.	Australia	_
Ferrocontin	Napp	U.K.	-
Ferrosanol	Sanol	W. Germany	
Glycifer	Pharmacia	Sweden	
Orferon	Pliva	Yugoslavia	_
Plesmet	Napp	U.K.	_

Raw Materials

Ferrous sulfate Glycine

Manufacturing Process

10.0 g of ferrous sulfate and 2.7 g of glycine are thoroughly mixed and carefully heated under nitrogen to 70°C. Reaction occurs rapidly, and the complex compound is obtained as soon as the color turns uniformly light-brown. After cooling to 20°C, 12.7 g of ferrous sulfate-glycine complex are obtained, which contains 100 mg Fe⁺⁺-ions per 0.63 g.

References

Merck Index 3972

I.N. p. 12

Rummel, W.; U.S. Patent 2,877,253; March 10, 1959; assigned to Dr. Schwarz Arzneimittelfabrik GmbH, Germany

Rummel, W.; U.S. Patent 2,957,806; October 25, 1960; assigned to Dr. Schwarz Arzneimittelfabrik GmbH, Germany

FERROUS FUMARATE

Therapeutic Function: Hematinic

Chemical Name: Ferrous fumarate

Common Name: -

Structural Formula: FeC₄H₂O₄ (exact structure unknown)

Chemical Abstracts Registry No.: 141-01-5

Trade Name	Manufacturer	Country	Year Introduced
Toleron	Mallinckrodt	U.S.	1957
Ircon	Key	U.S.	1960
Tolferain	Ascher	U.S.	1961
Feostat	Westerfield	U.S.	1962
Ferlon	Madiand	U.S.	1964
Eldec	Parke-Davis	U.S.	
Ercofer	Erco	Denmark	_
Fem-Iron	Williams	U.S.	_
Feosol	Menley & James	U.S.	_
Feostim	Westerfield	U.S.	_
Fero-Folic	Abbott	U.S.	
Fero-Grad	Abbott	U.S.	_
Feroton	Paul Maney	Canada	_
Ferro-Delalande	Delalande	France	-
Ferrofume	Nordic	Canada	_
Ferrolina	Chemie Linz	Austria	_
Ferronat	Galena	Czechoslovakia	_
Ferrone	Wolfs	Belgium	
Ferrum Hausmann	Hausmann	Switz.	-
Fersaday	Glaxo		
Fersamal	Glaxo		
Ferumat	Continental Pharma	Belgium	_
Firon	Beard Glynn	U.S.	
Fumafer	Erco	Denmark	<u></u>
Fumafer	Aktiva	Sweden	_
Fumasorb	Marion	U.S.	-
Fumiron	Knoll	W. Germany	-
Hematon	Nova	Canada	_
Heptuna	Roerig	U.S.	_
Iberet	Abbott	U.S.	_
Ircon	Lakeside	U.S.	_
Irospan	Fielding	U.S.	_
Mevanin	Beutlich	U.S.	_
Neo-Fer	Nyegaard	Norway	_
Novofumar	Novopharm	Canada	
Palafer	Beecham	_	_
Pramet	Ross	U.S.	_
Soparon	Sopar	Belgium	_
Tolifer	Elliott-Marion	Canada	_

Raw Materials

Fumaric acid Sodium carbonate Ferrous sulfate

Manufacturing Process

Sodium carbonate (53.5 pounds of $Na_2CO_3 \cdot H_2O$) was dissolved in water (40 to 45 gallons)

and fumaric acid (50 pounds) was added slowly. During the addition the solution was stirred and heated. The resulting solution of sodium fumarate, having a pH of 6.8, was added slowly with mixing to a solution of ferrous sulfate (118 pounds FeSO₄·7H₂O in 33 gallons of water) having a pH of 3.3, both solutions being maintained at or near boiling temperature during the mixing. The resulting slurry of reddish-brown anhydrous ferrous fumarate was filtered and washed in a centrifuge and dried in a tray drier (15 hours at 110°C). Yield: 63 pounds, 86% of theory. Calculated for FeC₄H₂O₄: Fe, 32.9%. Found: Fe, 32.6%. Only 0.2% of ferric iron (Fe+++) was found.

References

Merck Index 3981 PDR pp. 524, 673, 876, 993, 1131, 1344, 1526, 1559, 1569 I.N. p. 447 REM p. 840

Bertsch, H.C. and Lemp, J.F.; U.S. Patent 2,848,366; August 19, 1958; assigned to Mallinckrodt Chemical Works

FIBRINOLYSIN

Therapeutic Function: Thrombolytic enzyme

Chemical Name: Complex protein, molecular weight about 75,000

Common Name: -

Structural Formula: See chemical name

Chemical Abstracts Registry No.: 9001-90-5

Trade Name	Manufacturer	Country	Year Introduced
Actase	Ortho	U.S.	1959
Thrombolysin	MSD	U.S.	1960
Elase	Parke Davis	U.S.	1960
Lyovac	MSD	U.S.	_
Thromboclase	Choay	France	_

Raw Materials

Human blood plasma	Oxalic acid
Calcium chioride	Ammonium sulfate

Manufacturing Process

A 5 gallon drum of frozen plasma oxalated with a known anticoagulant quantity and proportion of oxalic acid and sodium oxalate as described in U.S. Patent 2,394,566 is permitted to stand at room temperature (24° to 26°C) for 24 hours after which the remaining unmelted portion is broken up with an ice pick and a stainless steel warming coil containing running warm water at about 40°C is inserted into the mixture and the mixture stirred. The remaining frozen material is rapidly melted. The warming is then continued with vigorous agitation.

When the temperature of the plasma reaches about 5° to 8°C, the calculated quantity of calcium chloride solution is added in amount which is from 0.2 to 0.3% in excess of that needed to react with and precipitate the anticoagulant. The temperature of the plasma is allowed to rise to about 24°C. At 18° to 24°C strands of fibrin begin to appear and the

vigor of stirring is increased to prevent a gel of fibrin from forming. Stirring is continued for 30 minutes after the fibrin is whipped out to allow for complete conversion of all prothrombin to thrombin and for the antithrombin to completely destroy all thrombin. At the end of this time the stirring is stopped, the fibrin allowed to rise to the surface and the clear serum siphoned off.

If, through failure to stir with enough vigor, a gel forms instead of strands of fibrin, when the temperature reaches about 18°C, the serum can also be obtained from the fibrin by working and kneading the gel in a cheesecloth bag while draining off the clear serum. However, this method is time-consuming and it is preferred to prevent gel formation by very vigorous stirring of the mixture.

The clear serum of this example is an amber liquid free from prothrombin, thrombin, fibrinogen and fibrin. It contains profibrinolysin and is excellently suited to further purification by salt precipitation fractionation, as given below.

The special serum is brought to a temperature of about 4° to 6°C (preferably 5°C) and saturated ammonium sulfate solution added drop by drop with constant stirring to about 24 to 26% of saturation (preferably 25%). The precipitated protein impurities are then centrifuged off and the supernatant brought to about -1° to +1°C (preferably 0°C). The degree of its saturation is then brought to about 28 to 31% of saturation (preferably 29%) by further addition of ammonium sulfate solution with stirring. This further degree of saturation precipitates the profibrinolysin which is collected by centrifugation and separated from soluble impurities. By washing the profibrinolysin several times with ammonium sulfate solution of a strength which is 29% of saturation a practically white solid is obtained which can be freeze-dried (frozen and dried under reduced pressure) to give a dry, white, product containing purified profibrinolysin free from thromboplastin, prothrombin, thrombin, fibrinogen and fibrin, (from U.S. Patent 2,624,691), which is then activated to fibrinolysin.

References

Merck Index 4001 Kleeman & Engel p. 400 PDR p. 1343 I.N. p. 424 REM p. 1038

Loomis, E.C.; U.S. Patent 2,624,691; January 6, 1953; assigned to Parke, Davis & Co. Singher, H.O.; U.S. Patent 3,136,703; June 9, 1964; assigned to Ortho Pharmaceutical Corp. Hink, J.H. Jr. and McDonald, J.K.; U.S. Patent 3,234,106; February 8, 1966; assigned to Cutter Laboratories, Inc.

FLAVOXATE HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: 3-methyl-4-oxo-2-phenyl-4H-1-benzopyran-8-carboxylic acid 2-piperidinoethyl ester hydrochloride

Common Name: 2-piperidinoethyl 3-methylflavone-8-carboxylate

Structural Formula:

Chemical Abstracts Registry No.: 3717-88-2; 15301-69-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Urispas	S KF	U.S.	1971
Urispas	Syntex	U.K.	1971
Genurin	Recordati	Italy	1973
Spasuret	Asche	W. Germany	1978
Bladderon	Nippon Shinyaku	Japan	1979
Urispas	Negma	France	1981
Spasmal	lkapharm	Israel	_
Urispadol	Pharmacia	Sweden	_
Urispan	Byk Gulden		_
Urispas	Protea	Australia	_

Raw Materials

Salicylic acid	Propionyl chloride
Aluminum chloride	Benzoic anhydride
Thionyl chloride	Piperidinoethanol

Manufacturing Process

A mixture of 13.3 grams of anhydrous aluminum chloride and 100 ml of carbon disulfide is added to 19.4 grams of 2-propionyloxybenzoic acid (prepared from the reaction of propionyl chloride and 2-hydroxybenzoic acid). After an initial evolution of hydrogen chloride, the solvent is removed by distillation and the mixture is heated at 150° to 160°C for 4 hours. The cooled reaction mixture is treated with ice and hydrochloric acid and the product, 2-hydroxy-3-carboxypropiophenone, is obtained from the oily residue by distillation in vacuo.

A mixture of 1.9 grams of 2-hydroxy-3-carboxypropiophenone, 5.0 grams of sodium benzoate and 20.0 grams of benzoic anhydride is heated at 180° to 190°C for 6 hours. A solution of 15.0 grams of potassium hydroxide in 50 ml of ethanol and 20 ml of water is added and refluxed for 1 hour. The mixture is evaporated and the residue after addition of water yields 3-methylflavone-8-carboxylic acid.

To a suspension of 12.0 grams of 3-methylflavone-8-carboxylic acid in 200 ml of anhydrous benzene is added 10.0 grams of thionyl chloride. The mixture is refluxed for 2 hours during which the suspended solid goes into solution. The solvent is completely removed by distillation, the residue extracted with benzene and the extract evaporated to dryness. The product, 3-methylflavone-8-carboxylic acid chloride, is recrystallized from ligroin to give crystals melting at 155° to 156°C.

To 11.0 grams of 3-methylflavone-8-carboxylic acid chloride dissolved in 150 ml of anhydrous benzene is added at room temperature 4.8 grams of piperidinoethanol and the mixture refluxed for 2 to 3 hours. The separated solid is filtered, washed with benzene and dried. The product, piperidinoethyl 3-methylflavone-8-carboxylate hydrochloride is obtained as a colorless crystalline solid, MP 232° to 234°C, (from U.S. Patent 2,921,070).

References

Merck Index 4018 Kleeman & Engel p. 400 PDR p. 1731 OCDS Vol. 2 p. 392 (1980) DOT 7 (5) 171 (1971) I.N. p. 426 REM p. 920

Da Re, P.; U.S. Patent 2,921,070; January 12, 1960; assigned to Recordati-Laboratorio Farmacologico SpA, Italy

Da Re, P.; U.S. Patent 3,350,411; October 31, 1967; assigned to Societe d'Exploitation Chimiques et Pharmaceutiques Seceph SA, Switzerland

FLECAINIDE

Therapeutic Function: Antiarrhythmic

Chemical Name: N-(2-Piperidylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54143-55-4

Trade Name	Manufacturer	Country	Year Introduced
Tambocor	Kettelhack	W. Germany	1982
Tambocor	Riker	U.K.	1983

Raw Materials

2-Aminomethylpiperidine 2.2.2-Trifluoroethyl-2.5-bis(2.2.2-trifluoroethoxy)benzoate Hydrogen chloride

Manufacturing Process

Under a nitrogen atmosphere 2-aminomethylpiperidine (0.249 mol, 28.4 g) is treated dropwise over 25 minutes with 2,2,2-trifluoroethyl 2,5-bis(2,2,2-trifluoroethoxy)benzoate (0.0249 mol. 10.0 g). After 3 hours 50 ml of benzene is added to the thick mixture and stirred for about 40 hours at 45°C. The mixture is then concentrated under vacuum with heating to remove the volatile components. The residue solidifies after cooling, is steam distilled for further purification and is separated by filtration and extracted into dichloromethane. The dichloromethane solution is washed with saturated sodium chloride solution, and the organic layer is dried over anhydrous magnesium sulfate. The magnesium sulfate is removed by filtration and 4 ml of 8.4 N hydrogen chloride in isopropanol is added to the dichloromethane solution with stirring.

After 2 hours the mixture is cooled to about 0°C and the crude product is collected by filtration, washed with diethyl ether and dried in a vacuum oven. After treatment with decolorizing charcoal and recrystallization from an equivolume mixture of isopropanol and methanol, the product, 2,5-bis(2,2,2-trifluoroethoxy)-N-(2-piperidylmethyl)benzamide hydrochloride has a MP of 228°C to 229°C.

References

Merck Index 4019 DFU 2 (9) 586 (1977) OCDS Vol. 3 p. 59 (1984) DOT 18 (10) 549 (1974), 19 (2) 112 & (5) 252 (1983) I.N. p. 426

Banitt, E.H. and Brown, W.R.; U.S. Patent 3,900,481; August 19, 1975; assigned to Riker Laboratories, Inc.

FLOCTAFENINE

Therapeutic Function: Analgesic

Chemical Name: 2-[[8-(trifluoromethyl)-4-quinolinyl] amino] benzoic acid 2,3-dihydroxy-

propyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23779-99-9

Trade Name	Manufacturer	Country	Year Introduced
Idarac	Diamant	France	1976
Idarac	Roussel Maestretti	Italy	1977
Idarac	Albert Roussel	W. Germany	1978
Floktin	Yurtoglu	Turkey	-
Idalon	Roussel	-	· -

Raw Materials

o-Trifluoromethylaniline
Ethoxymethylene ethyl malonate
Phosphorus oxychloride
Methyl anthranilate
2,2-Dimethyl-4-hydroxymethyl-1,3-dioxolane
Sodium hydride
Hydrogen chloride

Manufacturing Process

Step A: Ortho-Trifluoromethylanilinomethylene Ethyl Malonate — A mixture of 54.8 grams of ortho-trifluoromethylaniline and 73.5 grams of ethoxymethylene ethyl malonate was heated to 120°C under an inert atmosphere and maintained for 1 hour at this temperature while distilling off the ethanol formed. The mixture was cooled and the elimination of ethanol was completed by distillation under reduced pressure. The mixture was cooled to obtain 115 grams of ortho-trifluoromethylanilinomethylene ethyl malonate which was used as is for the following stage. A sample of the product was crystallized from petroleum ether (BP = 65° to 75°C) to obtain a melting point of 94°C.

Step B: 3-Carbethoxy-4-Hydroxy-8-Trifluoromethylquinoline — A mixture of 113 grams of crude ortho-trifluoromethylanilinomethylene ethyl malonate from Step A, and 115 cc of phenyl oxide was heated rapidly under an inert atmosphere. At about 195°C, the ethanol formed began to distill off. At the end of about 30 minutes, the interior temperature reached 250°C and the reaction mixture was heated to reflux. Reflux was maintained for 1 hour and the mixture was then cooled, 25 cc of acetone were added and the mixture was allowed to crystallize. The mixture was filtered and the crystals thus formed were washed and dried to obtain 71.5 grams of 3-carbethoxy-4-hydroxy-8-trifluoromethylquinoline with a melting point of 210° to 214°C, which was used as is for the following stage. A sample of this product was crystallized from ethanol to show a melting point of 216°C.

Step C: 3-Carboxy-4-Hydroxy-8-Trifluoromethylquinoline - 70 grams of crude 3-carbethoxy-4-hydroxy-8-trifluoromethylquinoline, obtained in Step B, were introduced under an inert atmosphere into a mixture of 300 cc of water and 100 cc of aqueous 10 N solution of sodium hydroxide. The reaction mixture was heated to reflux and maintained there for 2 hours and forty-five minutes. The solution obtained was poured over a mixture of water. ice and 100 cc of aqueous 11.8 N solution of hydrochloric acid. The precipitate thus formed was isolated by filtration, washed with water and introduced into a solution of 20 grams of sodium bicarbonate in 2 liters of water.

The mixture was heated to 90°C and filtered to remove slight persisting insolubles. The filtrate was acidified with acetic acid to bring the pH to about 5.5 and the precipitate formed was isolated by filtration, washed and dried to obtain 58 grams of 3-carboxy-4hydroxy-8-trifluoromethylquinoline having a melting point of 290° to 292°C, which was used as is for the following stage. A sample of the product was crystallized from hot and cold acetone, treated with charcoal to obtain pure 3-carboxy-4-hydroxy-8-trifluoromethylquinoline having a melting point of 292°C.

Step D: 4-Hydroxy-8-Trifluoromethylquinoline — Under an inert atmosphere, 56,5 grams of crude 3-carboxy-4-hydroxy-8-trifluoromethylquinoline, obtained in Step C were introduced into 110 cc of phenyl oxide. The reaction mixture was rapidly heated to reflux and maintained at reflux for an hour and fifteen minutes. The reaction mixture was cooled to about 50°C and 20 cc of isopropyl ether were added thereto. The mixture was cooled to 20°C and allowed to crystallize. The precipitate formed was isolated by filtration, washed and dried to obtain 45.8 grams of 4-hydroxy-8-trifluoromethylquinoline having a melting point of 180°C. A sample of this product was crystallized from acetone, treated with charcoal to obtain pure 4-hydroxy-8-trifluoromethylquinoline having a melting point of 180°C.

Step E: 4-Chloro-8-Trifluoromethylquinoline - 44.3 grams of crude 4-hydroxy-8-trifluoromethylquinoline obtained in Step D were introduced in small amounts into 130 cc of phosphorus oxychloride and then the reaction mixture was held for 15 minutes at ambient temperature and heated to reflux and maintained at reflux for 1 hour. The mixture was cooled and excess phosphorus oxychloride was removed by distillation under reduced pressure. Water, ice, and then 80 cc of aqueous solution of ammonia at 22°Bé were added to the residue and the mixture was stirred and the aqueous phase was extracted with ether. The ethereal extracts were washed with a dilute aqueous solution of ammonia, then with water, dried, treated with charcoal and concentrated to dryness to obtain 45.4 grams of 4-chloro-8-trifluoromethylquinoline having a melting point of 78°C, which was used as is for the preparation of 4-(ortho-methoxycarbonylphenylamino)-8-trifluoromethylquinoline. A sample of crude 4-chloro-8-trifluoromethylquinoline was crystallized from petroleum ether (BP = 65° to 75°C) to get a product with a melting point of 78°C.

Step F: 4-(Ortho-Methoxycarbonyl)-Phenylamino-8-Trifluoromethylquinoline -- Into 100 cc of aqueous 2 N solution of hydrochloric acid, 23.15 grams of crude 4-chloro-8-trifluoromethylquinoline, obtained in Step E, then 15.85 grams of methyl anthranilate were introduced. The reaction mixture was heated to reflux and maintained there for 50 minutes. The mixture was cooled and the crystallation developed. The precipitate formed was recovered by filtration and introduced into 300 cc of a saturated aqueous solution of sodium bicarbonate. The mixture was agitated, methylene chloride was added and the mixture agitated and filtered to remove persisting insolubles. The organic phase was separated by decantation, washed with water and concentrated to dryness. The residue was crystallized from methanol to obtain 21.3 grams of 4-(ortho-methoxy-carbonylphenylamino)-8-trifluoromethylquinoline with a melting point of 176°C.

Step G: 4-[Ortho-(2',3'-Dihydroxypropyloxycarbonyl]-Phenyl]-Amino-8-Trifluoromethylquinoline Acetonide - 100 cc of toluene were added to 80 cc of 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane and the toluene was distilled off under reduced pressure to eliminate the water present. To the anhydrous 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane thus obtained, 0.25 gram of an oily 50% suspension of sodium hydride and then 21.3 grams of 4-

(ortho-methoxycarbonylphenylamino)-8-trifluoromethylquinoline were added under inert atmosphere. The mixture was agitated for 5 hours at 85°C under a vacuum of 50 to 100 mm of mercury. After cooling, an aqueous solution of sodium chloride was added to the reaction mixture and it was stirred. The aqueous phase was extracted with methylene chloride and the methylene chloride extracts were washed with water, dried and concentrated to dryness by distillation under reduced pressure.

The residue was washed with petroleum ether (BP 65° to 75°C), dried and crystallized from isopropyl ether to obtain 23.8 grams of 4-[ortho-(2',3'-dihydroxypropyloxycarbonyl)phenyl]-amino-8-trifluoromethylquinoline acetonide having a melting point of 108°C.

Step H: Preparation of 4-[Ortho-(2',3'-Dihydroxypropyloxycarbonyl)-Phenyl]-Amino-8-Trifluoromethylquinoline - Into a mixture of 60 cc of water and 12 cc of aqueous solution of 22°Bé hydrochloric acid there was introduced 19.8 grams of 4-[ortho-(2',3'-dihydroxypropyloxycarbonyl)-phenyl]-amino-8-trifluoromethylquinoline acetonide (obtained in Step G) and the temperature of the reaction mixture was raised to 95°C and maintained at this temperature for 15 minutes. The mixture was cooled to 0°C and crystallization was allowed. The crude hydrochloride was recovered by filtration, washed and introduced into a mixture of 60 cc of dimethylformamide, 40 cc of water and 10 cc of triethylamine.

Dissolution and the crystallization occurred and the precipitate was recovered by filtration and was washed and dried to obtain 16 grams of crude base having a melting point of 179° to 180°C. The crude base was crystallized from methanol with treatment with charcoal to obtain 11.95 grams of 4-[ortho-(2',3'-dihydroxypropyloxycarbonyl)-phenyl] -amino-8-trifluoromethylquinoline with a melting point of 179° to 180°C. The product is soluble in ether, chloroform and methylene chloride and insoluble in water.

References

Merck Index 4021 DFU 1 (2) 59 (1976) Kleeman & Engel p. 401 OCDS Vol. 3 p. 184 (1984) DOT 13 (4) 143 (1977) I.N. p. 427

Allais, A. and Meier, J.; U.S. Patent 3,644,368; February 22, 1972; assigned to Roussel-UCLAF, France

FLORANTYRONE

Therapeutic Function: Hydrocholeretic

Chemical Name: γ -Oxo-8-fluoranthenebutanoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 519-95-9

Trade Name	Manufacturer	Country	Year Introduced
Zanchol	Searle	U.S.	1957
Bilyn	Janus	Italy	_
Cistoplex	Borromeo	Italy	_
Idroepar	Beolet	ltaly	_
Zanchol	Dainippon	Japan	_

Fluoranthene Succinic anhydride

Manufacturing Process

50 g of fluoranthene and 26 g of succinic anhydride in 500 cc of nitrobenzene were treated at 0°C to 5°C with 75 g of anhydrous aluminum chloride. The temperature was held at 0°C for 4 hours and then allowed gradually to come to room temperature. The reaction mixture was allowed to stand for 16 hours. The reaction mixture was then worked up. In so doing, the reaction mixture was decomposed with dilute HCI, the nitrobenzene was removed by steam distillation and the residue after filtration was dissolved in hot sodium carbonate solution and filtered free of a small amount of nonacidic material. Precipitation from solution with HCl gave a light yellow product which crystallized from a 50-50 mixture of dioxanealcohol as fine platelets which melted at 192°C to 194°C and showed a neutral equivalent of 308 which corresponds closely to the theoretical value of 302 for β -fluoranthoylpropionic acid.

25 g of the crude acid was dissolved in 100 cc of water containing 13 g of sodium carbonate. On cooling a thick syrup was obtained. On dilution to 1 liter precipitation started and after standing 16 hours, the solid which separated was filtered (filtrate treated as below), suspended in water, acidified with HCl and filtered. Crystallization from alcohol gave a light yellow material melting at 199°C to 200°C and having a neutral equivalent of 303.

The filtrate mentioned above, upon acidification thereof with HCl gave a darker acid which melted over a wide range, but had a neutral equivalent which also corresponds to that of β fluoranthov/propionic acid.

References

Merck Index 4023 Kleeman & Engel p. 403

I.N. p. 427

Fancher, O.E.; U.S. Patent 2,560,425; July 10, 1951; assigned to Miles Laboratories, Inc.

FLOREDIL HYDROCHLORIDE

Therapeutic Function: Coronary stabilizer

Chemical Name: 1-(3',5'-Diethoxyphenoxy)-2-morpholinoethane hydrochloride

Common Name: -

CH₃CH₂O Structural Formula:

·OCH₂CH₂−Ń

Chemical Abstracts Registry No.: 53731-36-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Carfonal	Lafon	France	1973

Raw Materials

Sodium

Ethanol

3,5-Diethoxyphenol

1-Chloro-2-morpholinoethane hydrochloride

Manufacturing Process

Starting from 2.3 g (0.1 g atom) of sodium in 60 cc ethanol, 9.1 g (0.05 mol) of 3,5-diethoxyphenol in 25 cc of ethanol, and 9.3 g (0.05 mol) of 1-chloro-2-morpholinoethane hydrochloride in 15 cc of ethanol, 12 g (yield 72.4%) of white crystals melting at 183°C to 184°C were obtained after recrystallization from 50 cc of boiling isopropanol, which were soluble in water, slightly soluble in ethanol, and insoluble in hydrocarbons.

References

Merck Index 4024 Kleeman & Engel p. 403 DOT 9 (7) 285 (1973) I.N. p. 428

Lafon, L.; British Patent 1,262,785; February 9, 1972; assigned to Orsymonde

FLOXACILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-[3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolecarboxamido] -3,3dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid

Common Name: Flucloxacillin; 3-(2-chloro-6-fluorophenyl)-5-methyl-4-isoxazolylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 5250-39-5

Trade Name	Manufacturer	Country	Year Introduced
Floxapen	Beecham	U.K.	1970
Clupen	Fujisawa	Japan	1970
Staphylex	Beecham	W. Germany	1972
Flupen	Alfa	Italy	1974
Flopen	C.S.L.	Australia	_
Fluciox	Ayerst		

Trade Name	Manufacturer	Country	Year Introduced
Heracillin	Astra	_	
Penplus	Farma Labor	İtaly	_

2-Chloro-6-fluorobenzaldoxime Chlorine Sodium methoxide Methyl acetoacetate 6-Amino-penicillanic acid Thionyl chloride Sodium hydroxide

Manufacturing Process

3-(2-chloro-6-fluorophenyl)-5-methylisoxazole-4-carboxylic acid, MP 206° to 207°C, was obtained by chlorinating 2-chloro-6-fluorobenzaldoxime, then condensing the resulting hydroxamoy! chloride with methyl acetoacetate in methanolic sodium methoxide and hydrolyzing the resulting ester with hot alkali. The acid chloride resulted from treatment of the acid with thionyl chloride.

A suspension of 6-aminopenicillanic acid (36.4 grams) in water was adjusted to pH 7.2 by the addition of N aqueous sodium hydroxide and the resulting solution was treated with a solution of 3-(2-chloro-6-fluorophenyl)-5-methylisoxazole-4-carbonyl chloride (46.1 grams) in isobuty! methyl ketone. The mixture was stirred vigorously for 11/2 hours and then filtered through Dicalite. The layers were separated and the isobutyl methyl ketone layer was shaken with saturated brine. Then, precipitation of the sodium salt only took place after dilution of the mixture with ether. In this way there was obtained 60.7 grams of the penicillin sodium salt having a purity of 88% as determined by alkalimetric assay.

References

Merck Index 4025 Kleeman & Engel p. 405 OCDS Vol. 1 p. 413 (1977) DOT 7 (1) 18 (1971) I.N. p. 429 REM p. 1201

Nayler, J.H.C.; U.S. Patent 3,239,507; March 8, 1966; assigned to Beecham Group Limited, England

FLOXURIDINE

Therapeutic Function: Antiviral; cancer chemotherapy

Chemical Name: 2'-deoxy-5-fluorouridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-91-9

Trade Name	Manufacturer	Country	Year Introduced
FUDR	Roche	U.S.	1971

Raw Materials

Bacterium Streptococcus fecalis
Nutrient medium
5-Fluorouracil
Thymidine

Manufacturing Process

Cells of Streptococcus fecalis (ATCC-8043) were grown in the AOAC folic acid assay medium [Lepper, Official and Tentative Methods of the Association of Official Agricultural Chemists, Washington, D.C., 7th edition, 784 (1950)], supplemented with 2 mg per liter of thymine; following the teachings of Prusoff, Proc. Soc. Exp. Biol. & Med. 85, 564 (1954). After 20 hours of incubation at 37°C, the cells were harvested by centrifugation. The collected cells were washed three times with four volumes of potassium phosphate buffer solution (M/15 aqueous KH₂PO₄ solution, adjusted to pH 8.0 by addition of 2 N aqueous KOH) and the wet cells were weighed. The cells were finally suspended in the above potassium phosphate buffer solution and ground in a glass tissue homogenizer.

An amount of enzyme preparation equivalent to 900 mg of wet cells was made up to 25 ml with the above potassium phosphate buffer solution. 150 mg (1.15 mmol) of 5-fluorouracil and 1.0 gram of thymidine (4.12 mmol) were dissolved in 15 ml of the above potassium phosphate buffer solution. The mixture was incubated at 37°C for 18 hours. After this time, enzyme action was stopped by the addition of four volumes of acetone and one volume of peroxide-free diethyl ether. The precipitated solids were removed by filtration, and the filtrate was evaporated under nitrogen at reduced pressure until substantially all volatile organic solvent had been removed. About 20 ml of aqueous solution, essentially free of organic solvent, remained. This solution was diluted to 100 ml with distilled water.

Ten microliters of this solution were submitted to descending chromatography on a paper buffered with 0.2 N KH₂PO₄ (pH 7.8), using a solvent mixture of tertiary amyl alcohol:-water:n-butyl ether (80:13:7 by volume). A spot visible under ultraviolet light and having Rf = 0.55 was leached with 0.1 N HCl and assayed for deoxyribose by the method of Stumpf, *J. Biol. Chem.* 169, 367 (1947). This analysis indicated the presence of a minimum of 85.5 mg (0.35 mmol) of 2¹-deoxy-5-fluorouridine in the protein-free reaction mixture according to U.S. Patent 2,885,396. An alternate route from 5-fluorouracil via the mercury derivative, through toluoyl deoxyuridines and then toluoyl removal to give floxuridine is described in U.S. Patent 3,041,335.

References

Merck Index 4026 PDR p. 1485 DOT 8 (2) 63 (1972) I.N. p. 428

REM p. 1155

Heidelberg, C. and Duschinsky, R.; U.S. Patent 2,885,396; May 5, 1959

Hoffer, M.; U.S. Patent 2,949,451; August 16, 1960; assigned to Hoffmann-La Roche Inc. Duschinsky, R., Farkas, W.G. and Heidelberger, C.; U.S. Patent 2,970,139; January 31, 1961

Hoffer, M.; U.S. Patent 3,041,335; June 26, 1962; assigned to Hoffmann-La Roche Inc.

FLUAZACORT

Therapeutic Function: Antiinflammatory

Chemical Name: 21-(Acetyloxy)-9-fluoro-11-hydroxy-2'-methyl-5'H-pregna-1,4-dieno-[17,16-d] oxazole-3,20-dione

Common Name: Fluazacortenol acetate

Structural Formula:

Chemical Abstracts Registry No.: 19888-56-3

Trade Name	Manufacturer	Country	Year Introduced
Azacortid	Richter	Italy	1975
Azacortid	Lepetit	France	1981

Raw Materials

Pregna-1,4,9(11)-triene-21-ol-3,20-dione-[17α ,16 α -d] -2'-methyloxazoline-21-acetate N-Bromoacetamide Sodium hydroxide Hydrogen fluoride

Manufacturing Process

To a solution of 2.4 g of pregna-1.4.9(11)-triene-21-ol-3.20-dione-[17α ,16 α -d]-2'-methyloxazoline 21-acetate in 24 ml of tetrahydrofuran, 12.8 ml of 0.46 N perchloric acid are added at 15°C under stirring. N-bromoacetamide (1.1 g) is then added to the mixture which is kept far from light, and stirred for 4 hours at room temperature. After lowering the temperature to 10°C, a saturated solution of sodium bisulfite is added in order to decolorize the mixture, which is then poured into 120 ml of ice water. A product separates, which is collected by filtration, washed with water and then dried, thus obtaining 2.81 g of crude 90-bromo-pregna-1,4-diene-11 β ,21-diol-3,20-dione-[17 α ,16 α -d]-2'-methyloxazoline 21-acetate (yield 93%), MP 175°C to 176°C. An amount of 2.75 g of 9α -bromo-pregna-1,4-diene-11 β ,21-diol-3,20dione-[170.160 d]-2'-methyloxazoline 21 acetate is dissolved under nitrogen in 137 ml of a mixture methanol:chloroform (3:2). The solution is put in ice bath and 5.5 ml of 1 N NaOH are then added within 10 minutes followed by 5.5 ml within the next 40 minutes. A strong stirring is provided for 2 hours and the temperature is kept between 0°C and 5°C, then the pH is adjusted to 7 to 8 with glacial acetic acid. The solvent is evaporated in vacuo to 20 ml of volume of solution, that is poured into ice water (130 ml). The product is collected by filtration, washed with water and dried. Yield: 1.6 g (80%), MP 221°C to 222°C. It is pregna-1,4-diene-9 β ,11 β -epoxy-21-ol-3,20-dione-[17 α ,16 α -d]-2'-methyloxazoline.

An amount of 1 g of the above product is dissolved in 9.4 ml of a mixture obtained by mixing 4.67 ml of hydrofluoric acid with 8.5 ml of tetrahydrofuran at the temperature of 0°C. This solution is stirred for 20 hours at the same temperature, then under strong stirring and cooling 20 ml of tetrahydrofuran are added. The solution is subsequently neutralized by the addition of 24 g of sodium bicarbonate followed by 1 g of sodium sulfate. The inorganic substance is collected and washed with ethyl acetate. The filtrate is evaporated to dryness and the product is crystallized from acetone: 0.65 g (yield 61%) of pregna-1,4-dien-9 α -fluoro-11 β ,21-diol-3,20-dione-[17 α ,16 α -d]-2'-methyloxazoline are obtained, MP 241°C to 244°C [α]_D = +83.5 (c. 0.5, CHCl₃). The 21-acetate has MP 252°C to 255°C [α]_D = +54.8 (c. 0.5, CHCl₃).

References

Merck Index 4028 Kleeman & Engel p. 404 DOT 12 (10) 396 (1976)

I.N. p. 428

Nathansohn, G., Winters, G. and Testa, E.; U.S. Patent 3,461,119; August 12, 1969; assigned to Lepetit S.p.A. (Italy)

FLUBENDAZOLE

Therapeutic Function: Anthelmintic

Chemical Name: Methyl-N-[5(6)-p-fluorobenzoyl-2-benzimidazolyl] carbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 31430-15-6

Trade Name	Manufacturer	Country	Year Introduced
Fluvermal	Janssen Le Brun	France	1980
Flubenoi	Janssen	W. Germany	1982
Flumoxane	Le Brun	France	_

Raw Materials

Aluminum chloride Fluorobenzene Ammonia 4-Chloro-3-nitrobenzoyl chloride Hydrogen Methyl chloroformate

S-Methylthiourea sulfate

Manufacturing Process

To a stirred and cooled (ice bath) suspension of 25 parts of aluminum chloride in 52 parts of fluorobenzene is added dropwise a solution of 27.5 parts of 4-chloro-3-nitrobenzoyi chloride in 52 parts of fluorobenzene. Upon completion, stirring is continued overnight at room temperature. The reaction mixture is poured onto water and the product is extracted with methylene chloride. The extract is washed successively with sodium hydrogen carbonate solution and water, dried, filtered and evaporated in vacuo. The solid residue is crystallized from 2-propanol, yielding 4-chloro-4'-fluoro-3-nitrobenzophenone; MP 97.9°C.

A mixture of 24.5 parts of 4-chloro-4'-fluoro-3-nitrobenzophenone, 72 parts of methanol, 13 parts of sulfolane and 3.12 parts of ammonia is heated in a sealed tube for 20 hours at 120°C. To the reaction mixture is added successively 50 parts of water and 25 parts of a diluted hydrochloric acid solution and the whole is stirred and refluxed for 5 minutes. The reaction mixture is cooled and the precipitated product is filtered off. It is washed with 2propanol and recrystallized from 640 parts of toluene, yielding 4-amino-4'-fluoro-3-nitrobenzophenone; MP 199°C.

A mixture of 14.5 parts of 4-amino-4'-fluoro-3-nitrobenzophenone, 160 parts of methanol,

6 parts of concentrated hydrochloric acid solution and 0.5 part of platinum oxide is hydrogenated at normal pressure and at room temperature. After the calculated amount of hydrogen is taken up, hydrogenation is stopped. The catalyst is filtered off and the filtrate is evaporated. The residue is washed with 2-propanol and dried, yielding 3,4-diamino-4'-fluorobenzophenone hydrochloride; MP 226°C to 230.5°C.

A mixture of 8.9 parts of S-methylisothiourea sulfate, 6.05 parts of methyl chloroformate in 7 parts of water is cooled, and at a temperature of 5°C to 10°C, sodium hydroxide solution 25% is added until pH equals 8. Then there are added successively 6.4 parts of acetic acid, 2.6 parts of sodium acetate and 8.9 parts of 3,4-diamino-4'-fluorobenzophenone hydrochloride and the whole is stirred while heating at 85°C for 45 minutes (during this reaction time, water and 2-propanol is added). The precipitated product is filtered off, washed with methanol and recrystallized from a mixture of 200 parts of acetic acid and 80 parts of methanol, yielding methyl N-[5(6)-p-fluorobenzoyl-2-benzimidazolyl] carbamate; MP >260°C.

References

Merck Index 4030 DFU 3 (10) 739 (1978) Kleeman & Engel p. 404 OCDS Vol. 2 p. 354 (1980) DOT 16 (9) 307 (1980) & 17 (6) 259 (1981) I.N. p. 428

Van Gelder, J.L.H., Roevens, L.F.C. and Raeymaekers, A.H.M.; U.S. Patent 3,657,267; April 18, 1972; assigned to Janssen Pharmaceutica NV

FLUCLORONIDE

Therapeutic Function: Glucocorticoid

Chemical Name: 9,11β-dichloro-6α-fluoro-21-hydroxy-16α,17[(1-methylethylidene)bis-

(oxy)] -pregna-1,4-diene-3,20-dione

Common Name: Fluctorolone acetonide

Structural Formula:

Chemical Abstracts Registry No.: 3693-39-8

Trade Name	Manufacturer	Country	Year Introduced
Topilar	Syntex	U.K.	1971
Topilar	Syntex Daltan	France	1979
Gutanit	I.F.L.	Spain	_
Synemol	Syntex	_	-

6α-Fluoro-16α-hydroxycortisone-21-acetate Acetic anhydride Methane sulfonyl chloride Chlorine Selenium dioxide Potassium hydroxide Acetone

Manufacturing Process

To 6α-fluoro-16α-hydroxy-hydrocortisone 21-acetate, described by Mills et al, J. Am. Chem. Soc., volume 81, pages 1264 to 1265, March 5, 1959, there was added acetic anhydride in dry pyridine. The reaction mixture was left at room temperature overnight and was then poured with stirring into ice water. The resulting precipitate was filtered, washed with water and crystallized from acetone-hexane to give 6α-fluoro-16α-hydroxy-hydrocortisone-16α,21-diacetate. This was reacted with methane-sulfonyl chloride in dimethyl formamide in the presence of pyridine at 80°C for 1 hour. The mixture was cooled, diluted with water and extracted with ethyl acetate. The extract was washed with water, dried over anhydrous sodium sulfate and the ethyl acetate was evaporated. By recrystallization of the residue from acetone-hexane there was obtained 6α -fluoro- $\Delta^{4,9(11)}$ -pregnadiene- 16α , 17α , 21-triol-3, 20dione $16\alpha,21$ diacetate.

This was reacted with chlorine to give the dichloropregnene compound, then with selenium dioxide to give the dichloropregnadiene compound. By hydrolysis with methanolic potassium hydroxide there was obtained the free 6α -fluoro- 9α , 11β -dichloro- $\Delta^{1,4}$ -pregnadiene- 16α ,- $17\alpha,21$ -triol-3,20-dione. By treatment with acetone in the presence of perchloric acid, the 16,17-acetonide of 6α -fluoro- 9α ,11 β -dichloro- $\Delta^{1,4}$ -pregnadiene 16α ,17 α ,21-triol-3,20-dione was formed.

References

Merck Index 4033 Kleeman & Engel p. 405 OCDS Vol. 2 p. 198 (1980) DOT 7 (4) 130 (1971) I.N. p. 429

Bowers, A.; U.S. Patent 3,201,391; August 17, 1965; assigned to Syntex Corporation, Panama

FLUCYTOSINE

Therapeutic Function: Antifungal

Chemical Name: 5-fluorocytosine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2022-85-7

Trade Neme	Manufacturer	Country	Year Introduced
Ancobon	Roche	U.S.	1972
Ancotil	Roche	France	1974
Alcobon	Roche	U.K.	1974
Ancotil	Roche	W. Germany	1975
Ancotil	Roche	Japan	1979
Ancotil	Roche	Italy	1982

Raw Materials

Phosphorus oxychloride 5-Fluorouracil Ammonia Hydrogen chloride

Manufacturing Process

The preparation of 5-fluorouracil is given under "Fluorouracil." As described in U.S. Patent 3,040,026, 5-fluorouracil is then subjected to the following steps to give flucytosine.

Step 1: 2,4-Dichloro-5-Fluoropyrimidine - A mixture of 104 grams (0.8 mol) of 5-fluorouracil, 1,472 grams (9.6 mols) of phosphorus oxychloride and 166 grams (1.37 mols) of dimethylaniline was stirred under reflux for 2 hours. After cooling to room temperature, phosphorus oxychloride was removed by distillation at 18 to 22 mm and 22° to 37°C. The residue was then poured into a vigorously stirred mixture of 500 ml of ether and 500 gram of ice. After separating the ether layer, the aqueous layer was extracted with 500 ml, then 200 ml of ether. The combined ether fractions were dried over sodium sulfate, filtered, and the ether removed by vacuum distillation at 10° to 22°C. The residue, a yellow solid melting at 37° to 38°C, weighed 120 grams corresponding to a 90% yield. Vacuum distillation of 115 grams of this material at 74° to 80°C (16 mm) gave 108 grams of white solid melting at 38° to 39°C corresponding to an 84.5% yield.

Step 2: 2-Chloro-4-Amino-5-Fluoropyrimidine - To a solution of 10.0 grams (0.06 mol) of 2,4-dichloro-5-fluoropyrimidine in 100 ml of ethanol, 25 ml of concentrated aqueous ammonia were slowly added. A slightly opalescent solution resulted. The temperature gradually rose to 35°C. The solution was then cooled in ice to 18°C and thereafter remained below 30°C. After three hours, a Volhard titration showed that 0.0545 mol of chlorine was present in ionic form. Storage in a refrigerator overnight resulted in some crystallization of ammonium chloride. A white sludge, resulting from the evaporation of the reaction mixture at 40°C, was slurried with 75 ml of water, filtered and washed free of chloride. After drying in vacuo, the product melted at 196.5° to 197.5°C, yield 6.44 grams. Evaporation of the mother liquors yielded a second crop of 0.38 gram, raising the total yield to 6.82 grams (79.3%).

Step 3: 5-Fluorocytosine — A slurry of 34.0 grams (0.231 mol) of 2-chloro-4-amino-5fluoropyrimidine in 231 ml of concentrated hydrochloric acid was heated in a water bath at 93° to 95°C for 125 minutes. The reaction was followed by means of ultraviolet spectrophotometry using the absorption at 245, 285, and 300 m μ as a guide. The absorption at 300 mµ rose to a maximum after 120 minutes and then dropped slightly. The clear solution was cooled to 25°C in an ice bath, then evaporated to dryness under vacuum at 40°C. After slurrying with water three times and reevaporating, the residue was dissolved in 100 milliliters of water. To this solution, cooled in ice, 29 ml of concentrated ammonia were added dropwise. The resulting precipitate was filtered, washed free of chloride with water, then with alcohol and ether. After drying in vacuo at 65°C, the product weighed 22.3 grams. An additional 6.35 grams was obtained by evaporation of the mother liquor, thus yielding a total of 28.65 grams (96.0%).

References

Merck Index 4035

Kleeman & Engel p. 406 PDR p. 1472

DOT 8 (11) 418 (1972) I.N. p. 429

REM p. 1227

Heidelberger, C. and Duschinsky, R.; U.S. Patent 2,802,005; August 6, 1957

Duschinsky, R. and Heidelberger, C.; U.S. Patent 2,945,038; July 12, 1960; assigned to Hoffmann-La Roche Inc.

Duschinsky, R.; U.S. Patent 3,040,026; June 19, 1962; assigned to Hoffmann-La Roche Inc. Berger, J. and Duschinsky, R.; U.S. Patent 3,368,938; February 13, 1968; assigned to Hoffmann-La Roche Inc.

FLUDIAZEPAM HYDROCHLORIDE

Therapeutic Function: Anxiolytic

Chemical Name: 1-Methyl-7-chloro-5-(o-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepine-

2-one hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3900-31-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Erispan	Sumitomo	Japan	1981

Raw Meterials

2-Aminomethyl-1-methyl-5-chloro-3 (o-fluorophenyl)indole HCl Chromic anhydride Ammonia Hydrogen chloride

Manufacturing Process

A solution of 60 g of chromic anhydride in 40 ml of water was added dropwise to a suspension of 60 g of 2-aminomethyl-1-methyl-5-chloro-3-(o-fluorophenyl)-indole hydrochloride in 600 ml of acetic acid. The mixture was stirred at room temperature overnight. To the reaction mixture was added 1.1 liters of ether and 1 liter of water and then 800 ml of 28% ammonium hydroxide, in small portions. The ethereal layer separated, washed with water, dried, and concentrated under reduced pressure. The residue (51.8 g) was dissolved in 100 ml of ethanol, and 100 ml of 20% ethanolic hydrogen chloride was added to the solution and the mixture was cooled. The precipitate was collected by filtration to yield 46.5 g of 1-methyl-7-chloro-5-(o-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepine-2-one hydrochloride, melting point 218°C (decomposed). Recrystallization from ethanol raised the melting point to 218.5° C to 219° C (decomposed).

References

Merck Index 4036 DFU 6 (12) 774 (1981) DOT 18 (2) 68 (1982) I.N. p. 430

Yamamato, H., Inaba, S., Okamoto, T., Hirohashi, T., Ishizumi, K., Yamamoto, M., Maruyama, I., Mori, K., and Kobayashi, T.; U.S. Patents 3,723,461; March 27, 1973; 3,828,027; August 6, 1974 and 3,925,364; December 9, 1975; all assigned to Sumitomo Chemical Co., Ltd.

FLUDROCORTISONE ACETATE

Therapeutic Function: Antiinflammatory

Chemical Name: 9-fluoro-11\(\beta\),17,21-trihydroxy-pregn-4-ene-3,20-dione acetate

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 514-36-3; 127-31-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Alflorone Acetate	MSD	U.S.	1954
Florinef Acetate	Squibb	U.S.	1955
F-Cortef Acetate	Upjohn	U.S.	1955
Alfa-Fluorone	Ausonia	Italy	-
Alfanonidrone	Difer	Italy	_
Astonin	Merck	W. Germany	_
Blephaseptyl	Chauvin-Blache	France	-
Cortineff	Polfa	Poland	
Florotic	Squibb	U.S.	_
Fludrocortone	MSD	-	_
Myconef	Squibb	U.S.	-
Panotile	Inpharzam	W. Germany	
Panotile	Arsac	France	_
Schlerofluron	Schering	W. Germany	-

Raw Materials

Hydrocortisone acetate Phosphorus oxychloride Hypobromous acid Hydrogen fluoride

Manufacturing Process

Hydrocortisone acetate is first reacted with phosphorus oxychloride in pyridine to give the

corresponding olefin. Then a sequence consisting of hypobromous acid addition, ring closure to the epoxide and ring opening with hydrogen fluoride gives fludrocortisone acetate. Preparation of a crystalline product is described then in U.S. Patent 2,957,013.

References

Merck Index 4037 Kleeman & Engel p. 407 OCDS Vol. 1 p. 192 (1977) DOT 7 (6) 203 (1971) I.N. p. 430 REM p. 965

Graber, R.P. and Snoddy, C.S. Jr.; U.S. Patent 2,957,013; October 18, 1960; assigned to Merck & Co., Inc.

FLUMEQUINE

Therapeutic Function: Antibacterial

Chemical Name: 9-Fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-benzo[i,j] quinolizine-2-car-

boxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 42385-25-6

Trade Name	Manufacturer	Country	Year Introduced
Apurone	Riker	France	1977
Uribact	Diethelm	Switz.	1983
Flumural	Spa	Italy	

Raw Materials

6-Fluoro-2-methyltetrahydroquinoline Diethyl ethoxymethylenemalonate Polyphosphoric acid Sodium hydroxide

Manufacturing Process

6-Fluoro-2-methyltetrahydroquinoline (32.2 g, 0.2 mol) is mixed with diethyl ethoxymethylenemalonate, and the mixture is heated at 125°C to 130°C for 3 hours. Polyphosphoric acid (200 g) is added, and the solution is gradually heated to 115°C to 120°C in an oil bath with occasional stirring. The temperature is maintained for 1 hour, then the mixture is poured into 600 ml of water and neutralized with 40% sodium hydroxide solution. The product ester which precipitates is separated by filtration, washed with water and suspended in 2 liters of 10% sodium hydroxide solution. The mixture is heated on the steam bath for 1 hour, treated with decolorizing charcoal, filtered, then neutralized with concentrated hydrochloric acid. The solid product is isolated by filtration of the hot solution, washed with water and recrystallized from dimethylformamide.

References

Merck Index 4041 Kleeman & Engel p. 411 OCDS Vol. 3 p. 186 (1984) DOT 11 (10) 410 & 14 (8) 365 (1978) I.N. p. 431

Gerster, J.F.; U.S. Patent 3,896,131; July 22, 1975; assigned to Riker Laboratories, Inc.

FLUMETHASONE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: 6,9-Difluoro-11,17,21-trihydroxy-16-methylpregna-1,4-diene-3,20-dione

Common Name: 60-Fluorodexamethasone

Structural Formula:

Chemical Abstracts Registry No.: 2135-17-3

Trade Name	Manufacturer	Country	Year Introduced
Locacorten	Ciba	W. Germany	1964
Locorten	Ciba	italy	1965
Locorten	Ciba	U.K.	1965
Locorten	Ciba-Geigy	Japan	1970
Locorten	Ciba-Geigy	U.S.	1970
Cerson	VEB Leipziger	E. Germany	
Loriden	Polfa	Poland	_
Topicorten	Trima	Israel	_

Raw Materials

6 α -Fluoro 9 β ,11 β -epoxy-16 α -methyl-17 α ,21-dihydroxy-1,4-pregnadiene-3,20-dione-21-acetate Hydrogen fluoride

Manufacturing Process

To approximately 1.3 g of hydrogen fluoride contained in a polyethylene bottle and maintained at -60°C was added 2.3 ml of tetrahydrofuran and then a solution of 500 mg (0.0012 mol) of 6α -fluoro- 9β ,11 β -epoxy-16 α -methyl-17 α ,21-dihydroxy-1,4-pregnadjene-3,20-dione

21-acetate in 2 ml of methylene chloride. The steroid solution was rinsed in with an additional 1 ml of methylene chloride. The light red colored solution was then kept at approximately -30°C for 1 hour and at -10°C for 2 hours. At the end of this period it was mixed cautiously with an excess of cold sodium bicarbonate solution and the organic material extracted with the aid of additional methylene chloride. The combined extracts were washed with water, dried over anhydrous sodium sulfate and concentrated to approximately 35 ml. The solution was chromatographed over 130 g of Florisil anhydrous magnesium silicate. The column was developed with 260 ml portions of hexanes (Skellysolve B) containing increasing proportions of acetone. There was thus eluted $6\alpha.9\alpha$ -diffuoro- $11\beta.17\alpha.21$ -trihydroxy- 16α -methyl-1.4-pregnadiene-3.20-dione 21-acetate which was freed of solvent by evaporation of the eluate fractions.

References

Merck Index 4042 Kieeman & Engel p. 411 OCDS Vol. 1 p. 200 (1977) I.N. p. 431 REM p. 965

Lincoln, F.H., Schneider, W.P. and Spero, G.B.; U.S. Patent 3,557,158; January 19, 1971; assigned to The Upjohn Co.

FLUMETHIAZIDE

Therapeutic Function: Carbonic anhydrase inhibitor

Chemical Name: 6-(Trifluoromethyl)-2H-1 2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide

Common Name: Trifluoromethylthiazide

Structurel Formula:

Chemical Abstracts Registry No.: 148-56-1

Year Introduced Trade Name Manufacturer Country 1959 Adem oi Squibb U.S.

Raw Materials

3-Trifluoromethylaniline Chlorosulfonic acid Formic acid Ammonia

Manufacturing Process

Chilled 3-trifluoromethylaniline (32.2 g) is added dropwise over a 45-minute period to 150 ml of chlorosulfonic acid with stirring and cooling. The ice bath is removed and 140 g of sodium chloride is added over 3 hours. The mixture is heated on a water bath for 30 minutes, then gradually up to 160°C over 6 hours. The cooled reaction mixture is diluted with 500 ml of an ice water slurry and taken into ether. The ether is dried and evaporated to leave 5-trifluoromethylamine-2,4-disulfonyl chloride.

The crude residue is heated on the steam bath for 1 hour with 75 ml of concentrated ammonium

hydroxide. Cooling and filtration gives 2,4-disulfamyl-5-trifluoromethylaniline, MP 241°C to 243°C.

This intermediate is treated with an excess of 98% formic acid at steam bath temperature for 3 hours. Evaporation and dilution with water gives 7-sulfamyl-6-trifluoromethyl-1,2,4-benzothiadiazine-1,1-dioxide, MP 304°C to 308°C.

References

Merck Index 4043

OCDS Vol. 1 p. 355 (1977) & 2 p. 355 (1980)

I.N. p. 431

Smith Kline & French Laboratories; British Patent 861,809; March 1, 1961

FLUNARIZINE HCI

Therapeutic Function: Vasodilator

Chemical Name: 1-[Bis(4-fluorophenyl)methyl] -4(3-phenyl-2-propenyl)piperazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 30484-77-6; 52468-60-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sibelium	Janssen	W. Germany	1977
Sibelium	Janssen	Switz.	1980
Issium	Farmochimica	Italy	1981
Fluxarten	Zambeletti	Italy	1981
Dinaplex	Sidus	Argentina	_
Flugeral	Italfarmaco	Italy	_
Flunagen	Gentili	Italy	_
Gradient Polifarma	Polifarma	Italy	_
Mondus	Labinca	Argentina	_

Raw Materials

Di-(p-Fluorophenyl)chloromethane

1-Cinnamylpiperazine

Sodium carbonate

Manufacturing Process

A mixture of 14.3 parts of di-(p-fluorophenyl)-chloromethane, 10,1 parts of 1-cinnamylpiperazine, 12.7 parts of sodium carbonate, a few crystals of potassium iodide in 200 parts of 4-methyl-2-pentanone is stirred and refluxed for 21 hours. The reaction mixture is cooled

and 50 parts of water are added. The organic layer is separated, dried, filtered and evaporated. The oily residue is dissolved in 480 parts of anhydrous disopropyl ether. This solution is boiled with activated charcoal, filtered and to the clear filtrate is added an excess of 2-propanol, previously saturated with gaseous hydrogen chloride. The precipitated salt is filtered off and recrystallized from a mixture of 2-propanol and ethanol, yielding 1-cinnamyl-4-(di-p-fluorobenzhydryl)piperazine dihydrochloride, MP 251.5°C.

References

Merck Index 4045 Kleeman & Engel p. 412 OCDS Vol. 2 p. 31 (1980) DOT 14 (3) 109 (1978) I.N. p. 432

Janssen, P.A.J.; U.S. Patent 3,773,939; November 20, 1973; assigned to Janssen Pharmaceutica N.V.

FLUNISOLIDE

Therapeutic Function: Antiinflammatory

Chemical Name: $16\alpha,17\alpha$ -Isopropylidenedioxy- 6α -fluoro-1,4-pregnadiene- $11\beta,21$ -diol-

3.20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3385-03-3

Trade Name	Manufacturer	Country	Year Introduced
Syntaris	Syntex	U.K.	1978
Syntaris	Syntex	W. Germany	1979
Syntaris	Syntex	Switz.	1980
Nasalide	Syntex	U.S.	1981
Syntaris	Recordati	Italy	1982
Lunis	Valeas	Italy	1983
Aero Bid	Key	U.S.	_
Bronalide	Krewel	W. Germany	_
Lobilan Nasal	Astra	_	-
Lokilan Nasal	Syntex	-	
Rhinalar	Syntex	_	-

Raw Materials

6α-Fluoroprednisolone Bacterium Streptomyces roseochromogenus Acetone Perchloric acid

Manufacturing Process

- (a) Preparation of 6&fluoro-16&hydroxyprednisolone: 1.9 liters of whole mash containing 400 mg of 6α -fluoroprednisolone (6α -fluoro-11 β ,17 α ,21-trihydroxy-1,4-pregnadiene-3,20dione) acted upon by Streptomyces roseochromogenus AE-751 (or Waksman No. 3689) is filtered and the filtrate extracted three times with 2 liter portions of ethyl acetate. The mycelium is extracted with 500 ml of ethyl acetate and the mixture filtered. The combined ethyl acetate extracts are washed with 200 ml of water and concentrated to a residue. The residue is subjected to partition chromatograph using a 200 g column of diatomaceous earth moistened with the lower phase of an equilibrated solvent system composed of 1 volume of water, 5 volumes of dioxane, and 3 volumes of cyclohexane. The upper phase is used to develop the column and the activity of the eluent is followed by measuring the ultraviolet absorbance at 240 mµ. The cuts containing most of the activity are concentrated to a syrupy residue and triturated with acetone. Crystals (25 mg) form and recrystallization gives a product with a MP of 226°C to 230°C.
- (b) Preparation of 160,170 isopropylidenedioxy-60-fluoro-1,4-pregnadiene-11\(\beta\),21-diol-3.20-dione: 15 mg of crystalline 6\alpha fluoro-11\beta.17\alpha.21-tetrahydroxy-1.4-pregnadiene-3,20-dione [6α -fluoro- 16α -hydroxyprednisolone described in U.S. Patent 2,838,546 and prepared as described in (a) above] is dissolved in 2 ml of acetone and 0.02 ml of 70% perchloric acid is added. The solution is allowed to stand 1 hour. Then 0.5 ml of saturated sodium bicarbonate solution is added and the solution concentrated under reduced pressure to about 1 ml. The solution is allowed to stand overnight and the crystals which form are filtered. washed with ether and recrystallized from acetone-hexane. The crystals are the $16\alpha,17\alpha$ -isopropylidene derivative of 6α -fluoro- 16α -hydroxyprednisolone.

References

Merck Index 4046 DFU 3 (2) 81 (1979) Kleeman & Engel p. 413 PDR pp. 966, 1803 OCDS Vol. 2 p. 181 (1980) DOT 16 (8) 252 (1980) I.N. p. 432 REM p. 972

American Cyanamid Co.; British Patent 933,867; August 14, 1963

FLUNITRAZEPAM

Therapeutic Function: Hypnotic

Chemical Name: 5-(2-fluorophenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-

one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1622-62-4

Trade Name	Manufacturer	Country	Year Introduced
Roipnol	Roche	Italy	1976
Rohypnol	Roche	France	1978
Rohypnol	Roche	W. Germany	1979
Rohypnol	Sauter	U.K.	1982
Hypnodorm	Teva	israel	_
Hipnosedon	Roche		_
Narcozep	Roche	France	_

Raw Materials

p-Chloroaniline	Hydrogen
o-Fluorobenzoyl chloride	Bromoacetyl bromide
Ammonia	Potassium nitrate
Sulfuric acid	Sodium hydride
Methyl iodide	

Manufacturing Process

A mixture of 176 grams of orthofluorobenzovi chloride and 64 grams of para-chloroaniline was stirred and heated to 180°C, at which temperature 87 grams of zinc chloride was introduced, the temoerature raised to 200° to 205°C and maintained there for 40 minutes. The golden colored melt was quenched by the careful addition of 500 ml of 3 N hydrochloric acid and the resulting mixture refluxed for 5 minutes. The acid solution was decanted and the process repeated three times to remove all orthofluorobenzoic acid. The grey granular residue was dissolved in 300 ml of 75% (v/v) sulfuric acid and refluxed for 40 minutes to complete hydrolysis. The hot solution was poured over 1 kg of ice and diluted to 2 liters with water. The organic material was extracted with four 300 ml portions of methylene chloride, and the combined extracts subsequently washed with two 500 ml portions of 3 N hydrochloric acid to remove traces of para-chloroaniline, three 500 ml portions of 5 N sodium hydroxide solution to remove orthofluorobenzoic acid, and finally two 200 ml portions of saturated brine solution.

The combined methylene chloride extracts were dried over anhydrous sodium sulfate and the solvent removed to give the crude 2-amino-5-chloro-2'-fluorobenzophenone which upon recrystallization from methanol formed yellow needles melting at 94° to 95°C.

50.0 grams of 2-amino-5-chloro-2'-fluorobenzophenone in 300 cc of tetrahydrofuran was hydrogenated at atmospheric pressure in the presence of 10 grams of charcoal (Norite), 30.0 grams of potassium acetate and 2.5 cc of a 20% palladous chloride solution (20% by weight of palladium). After an initiation period varying from 10 minutes to an hour, hydrogen uptake was rapid and stopped completely after the absorption of the theoretical amount.

Filtration of the catalyst over a Hyflo pad and removal of the solvent left a yellow crystalline residue. The crude mixture of ketone and potassium acetate was partitioned between methylene chloride (300 cc) and water (1 liter). The layers were separated and the water layer washed with methylene chloride (3 x 50 cc). The organic layers were combined, washed with 3 N sodium hydroxide solution (2 x 50 cc), water (3 x 100 cc), dried over anhydrous sodium sulfate and filtered. The solvent was removed and the product recrystallized from ethanol to give 2-amino-2'-fluorobenzophenone as yellow prisms melting at 126° to 128°C.

A solution of 21.5 grams of 2-amino-2'-fluorobenzophenone in 500 cc of ether was treated with 20 cc of a 20% (v/v) solution of bromoacetyl bromide in ether. The mixture was shaken and allowed to stand for 5 minutes and then washed with water (20 cc). The process was repeated five times. The final solution was washed thoroughly with water (5 x 500 cc) and concentrated to 100 cc. The crystals were filtered and recrystallized from methanol to give 2-bromacetamido-2'-fluorobenzophenone as white needles melting at 117° to 118.5° C.

A solution of 23.7 grams of 2-bromoacetamido-2¹-fluorobenzophenone in tetrahydrofuran (100 cc) was added to liquid ammonia (approximately 500 cc) and allowed to evaporate overnight. The residue was treated with water (1 liter) and the crystals filtered off and refluxed in toluene (100 cc) for 30 minutes. The mixture was treated with decolorizing carbon (Norite) and filtered over Hyflo. The solution was concentrated to a small volume (25 cc) cooled, diluted with 20 cc of ether and allowed to stand. The product was recrystallized from acetone/hexane to give 5-(2-fluorophenyl)3H-1,4-benzodiazepin-2(1H)-one as white needles melting at 180° to 181°C.

23.8 grams of 5-(2-fluorophenyl)-3H-1,4-benzodiazepin-2(1H)-one was dissolved in 50 cc of concentrated sulfuric acid at 0°C. To the resulting mixture there was then added dropwise with stirring a solution of 7.1 grams of potassium nitrate in 20 cc of concentrated sulfuric acid. The mixture was stirred for 2½ hours at 0°C and then diluted with 300 grams of ice. The resulting solution was made alkaline with concentrated ammonium hydroxide solution, keeping the temperature at 0°C. The formed suspension was extracted thoroughly with methylene chloride (6 x 100 cc). The organic layers were combined, washed with saturated brine solution, dried over anhydrous sodium sulfate and filtered. Removal of the solvent yielded a brown gum which was taken up in a small amount of methylene chloride and filtered through a pad of grade I alumina. The alumina was eluted with methylene chloride, the solvent removed, and the residue crystallized from acetone/hexane to yield 7-nitro-5-(2-fluorophenyl)-3H-1,4-benzodiazepin-2(1H)-one as white needles melting at 210° to 211°C.

20.2 grams of the abovementioned 7-nitro-5-(2-fluorophenyl)-3H-1,4-benzodiazepin-2(1H)-one was dissolved in 60 cc of N,N-dimethyl formamide to which was then added 3.49 grams of a 50% suspension of sodium hydride in heavy mineral oil. The mixture was allowed to stir for 15 minutes in the cold, 11.2 grams of methyl iodide was added and the solution was stirred for a further 20 minutes. Solvent was removed under reduced pressure to give an oil which was partitioned between water and methylene chloride (1 liter/300 cc), the water layer was extracted with methylene chloride (5 x 200 cc), the organic layers combined and washed with water (2 x 100 cc), 3N hydrochloric acid (1 x 50 cc), water (3 x 100 cc), dried over anhydrous sodium sulfate and filtered.

Removal of the solvent gave an oil which was taken up in ether and filtered through a pad of Woelm grade I alumina. The eluent was concentrated and the residue was crystallized from methylene chloride/hexane yielding 1-methyl-7-nitro-5-(2-fluorophenyl)-3H-1,4-benzo-diazepin-2(1H)-one as pale yellow needles melting at 166° to 167°C.

References

Merck Index 4047 Kleeman & Engel p. 413 OCDS Vol. 2 p. 406 (1980) DOT 11 (5) pp. 177,211 (1975) & 19 (3) p. 163 (1983) I.N. p. 432 REM p. 1064

Kariss, J. and Newmark, H.L.; U.S. Patent 3,116,203; December 31, 1963; assigned to Hoff-mann-La Roche Inc.

Kariss, J. and Newmark, H.L.; U.S. Patent 3,123,529; March 3, 1964; assigned to Hoffmannia Roche Inc.

Keiler, O., Steiger, N. and Sternbach, L.H.; U.S. Patent 3,203,990; August 31, 1965; assigned to Hoffmann-La Roche Inc.

FLUOCINOLONE ACETONIDE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: $6\alpha,9$ -diffuoro- $11\beta,21$ -dihydroxy- $16\alpha,17$ -[(1-methylethylidene)bis(oxy)] - pregna-1,4-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 67-73-2

Trade Name	Manufacturer	Country	Year Introduced
Synalar	Syntex	U.S.	1961
Synalar	Cassenne	France	1961
Synalar	I.C.I.	U.K.	1961
Localyn	Recordati	Italy	1963
Fellin	Gruenenthal	W. Germany	1964
Synemol	Syntex	U.S.	1975
Fluonid	Herbert	U.S.	1983
Fluotrex	Savage	U.S.	1983
Alfabios	Iton	Italy	
Alvadermo	Alvarez-Gomez	Spain	_
Benam izol	Mohan Yakuhin	Japan	_
Biscosal	Onta Seiyaku	Japan	
Boniderma	Boniscontro	Italy	-
Coderma	Biotrading	Italy	_
Co-Fluosin	Sanchez-Covisa	Spain	_
Cordes F	ichthyol	W. Germany	-
Cortalar	Bergamon	italy	-
Cortiderma	Gazzini	Italy	_
Cortiphate	Tokyo Tanabe	Japan	_
Cortiespec	Centrum	Spain	-
Cortoderm	Lennon	S. Africa	-
Dermacort	P.S.N.	Italy	
Dermaisom	Isom	Italy	-
Dermalar	Teva	Israe!	_
Dermaplus	Ripari-Gero	Italy	_
Dermil	Cifa	Italy	_
Dermobeta	Amelix	italy	-
Dermobiomar	Dermologia Marina	S pain	
Dermofil	N.C.S.N.	Italy	-
Dermo Framan	Oftalmis o	S pain	_
Dermolin	Lafare	Italy	-
Dermomagis	Magis	Italy	_
Dermophyl	Rougier	Canada	-
Dermotergol	Wolner	Spain	_

Trade Name	Manufacturer	Country	Year Introduced
Doricum	Farmila	Italy	_
Ekaton	Pharma Farm, Spec.	Italy	
Esacinone	Lisapharma	Italy	_
Esilon	S.I.T.	Italy	_
Flucinar	Polfa	Poland	_
Flucort	Syntex-Tanabe	Japan	_
Fluocinil	Coli	Italy	_
Fluocinone	Panther-Osfa	Italy	_
Fluocit	C.T.	Italy	_
Fluoderm	Unipharm	israel	_
Fluodermol	Medosan	Italy	
Fluogisol	Washington	Italy	-
Fluolar	Riva	Canada	-
Fluomix	Savoma	Italy	_
Fluonide Dermica	Janus	italy	-
Fluordima	Intersint	Italy	-
Fluoskin	Dessy	Italy	_
Fluovitef	Italfarmaco	Italy	-
Flupollon	Kaigai	Japan	_
Flupolion	Ohta	Japan	_
Fluvean	Kowa	Japan	-
Fluzon	Taisho	Japan	-
Gelargin	Leciva	Czechoslovakia	-
Gelidina	I.F.L.	Spain	-
Intradermo	Pental	Spain	
Isnaderm	Isnardi	Italy	-
Isoderma	Isola-Ibi	Italy	-
Jellin	Gruenenthal	-	_
Mecloderm	I.C.I.	Italy	_
Monoderm	Pharbil	Neth.	-
Omniderm	Face	Italy	-
Oxidermiol Fuerte	Mazuelos	Spain	_
Percutina	Mitim	italy	_
Prodermin	Eufarma	Italy	-
Radiocin	Radiopharma	Italy	_
Roliderm	Neopharmed	Italy	_
Sterolone	Francia	Italy	_
Straderm	I.T.A.	italy	_
Synandone	I.C.I.	U.K.	_
Tefunote	Taiyo	Japan	_
Topifluor	Tiber	Italy	_
Ultraderm	Ecobi	italy	-
Ungovac	I.C.N.	_	-

Raw Materials

6α-Fluoro-16α-hydroxy-hydrocortisone Acetic anhydride Methane sulfonyl chloride N-Bromoacetamide

Hydrogen fluoride Selenium dioxide Potassium hydroxide

Manufacturing Process

A mixture of 1.2 grams of 6α -fluoro- 16α -hydroxy-hydrocortisone, 4 cc of acetic anhydride and 8 cc of pyridine was heated at 60°C for 2 hours and then kept at room temperature for 2 hours. Ice and water were added and the solid was collected, washed with water, dried and recrystallized from methylene chloride-methanol, thus giving 1.05 grams of the

16,21-diacetate of 6α -fluoro- 16α -hydroxy-hydrocortisone (solvated) of MP 182° to 187°C; concentration of the mother liquors afforded an additional 130 mg of the same compound, MP 184° to 187°C. By recrystallization from the same solvents there was obtained the compound with a lower constant melting point of 175° to 177°C.

2.94 grams of the 16,21-diacetate of 6\alpha-fluoro-16\alpha-hydroxy-hydrocortisone was mixed with 60 cc of dimethylformamide, 3.6 cc of pyridine and 2.4 cc of methane-sulfonyl chloride was heated on the steam bath for 2 hours. The diacetate of 6α -fluoro- 16α -hydroxy-hydrocortisone had been prepared as set forth above, and further dried by azeotropic distillation with benzene; the dimethylformamide had been previously distilled. After the 2 hours on the steam bath the mixture was cooled and poured into saturated aqueous sodium bicarbonate solution; the product was extracted with methylene chloride, the extract was washed with water, dried over anhydrous sodium sulfate and the solvent was evaporated.

The residue was chromatographed on 90 grams of silica gel eluting the product with methylene chloride-acetone (9:1) and then recrystallizing from methylene chloride-methanol. There was thus obtained 1.6 grams of the 16,21-diacetate of 6α -fluoro- $\Delta^{4,9(11)}$ -pregnadiene-16 α - 17α ,21-triol-3,20-dione with MP 110° to 114°C; the analytical sample melted at 115° to 117°C, $[\alpha]_0$ +23.5° (chloroform), λ max. 234 to 236 m μ , $\log \epsilon$ 4.18.

A mixture of 1.38 grams of the above compound and 15 cc of dioxane was treated with 1.9 cc of a 0.5 N agueous solution of perchloric acid and 600 mg of N-bromoacetamide, adding the latter in the dark, in three portions, in the course of half an hour and under continuous stirring. It was then stirred for a further 1% hours in the dark, then the excess of reagent was decomposed by the addition of aqueous sodium bisulfite solution and ice water was added; the product was extracted with methylene chloride, washed with water, dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure, thus giving a yellow oil consisting of the 16,21-diacetate of 6α -fluoro- 9α -bromo- 16α hydroxy-hydrocortisone which was used for the next step without further purification.

The above crude bromohydrin was mixed with 2.5 grams of potassium acetate and 60 cc of acetone and refluxed for 6 hours, at the end of which the acetone was distilled, water was added to the residue and the product was extracted with methylene chloride. The extract was washed with water, dried over anhydrous sodium sulfate and the solvent was evaporated. Recrystallization of the residue from methanol furnished 800 mg of the 16,21diacetate of 6α -fluoro- 9β .11 β -oxido- Δ^4 -pregnene- 16α .17 α .21-triol-3.20-dione with MP 120° to 124°C; by chromatography of the mother liquors on silica gel there was obtained 180 milligrams more of the same compound with MP 117° to 119°C. The analytical sample was obtained by recrystallization from methanol; it showed MP 125° to 127°C.

To a solution of 1.6 grams of anhydrous hydrogen fluoride in 2.85 grams of tetrahydrofurane and 10 cc of methylene chloride cooled to -60°C was added a solution of 650 mg of the 16,21-diacetate of 6α -fluoro- 9β ,11 β -oxido- Δ^4 -pregnene- 16α ,17 α ,21-triol-3,20-dione in 20 cc of methylene chloride and the mixture was kept at -10°C for 72 hours. It was then poured into saturated aqueous sodium bicarbonate solution and the organic layer was separated, washed with water, dried over anhydrous sodium sulfate and evaporated. The residue was reacetylated by heating with 3 cc of acetic anhydride and 6 cc of pyridine for 1 hour on the steam bath. The reagents were evaporated under reduced pressure and the residue was chromatographed on 30 grams of silica gel. Upon elution with methylene chloride-acetone (9:1) and recrystallization of the residue from methylene chloride-methanol there was obtained 290 mg of the 16,21-diacetate of 6α ,9 α -diffuoro-16 α -hydroxy-hydrocortisone which melted with loss of solvent at 140° to 150°C. Recrystallization from acetone-hexane afforded the analytical sample which was dried at 130°C; it then showed a MP of 182° to 185°C.

A mixture of 290 mg of the 16,21-diacetate of 6α , 9α -difluoro- 16α --hydroxy-hydrocortisone, 30 cc of t-butanol, 0.5 cc of pyridine and 150 mg of selenium dioxide was refluxed for 53 hours under an atmosphere of nitrogen and cooled; ethyl acetate was added and filtered through celite; the solvent was evaporated to dryness under reduced pressure, the residue

was triturated with water, the solid was collected by filtration, washed with water and dried. The product was then chromatographed on 10 grams of silica gel. The solid fractions eluted with acetone-methylene chloride (1:19) were recrystallized from methylene chloride, thus affording 68 mg of the 16,21-diacetate of 6α,9α-difluoro-16α-hydroxyprednisolone; MP 212° to 215°C.

A mixture of 430 mg of the 16,21-diacetate of 6α ,9 α -difluoro-16 α -hydroxy-prednisolone, 15 cc of methanol and 2.2 cc of a 4% aqueous solution of potassium hydroxide was stirred at 0°C in an atmosphere of nitrogen; the material entered rapidly in solution and reprecipitated after 30 minutes. The mixture was then stirred for 1 hour more at 0°C and under an atmosphere of nitrogen, then neutralized with acetic acid and the methanol was distilled under reduced pressure. The residue was triturated with water, the solid was collected, washed with water, dried and recrystallized from ethyl acetate-methanol, thus giving 285 milligrams of the free 6α , 9α -difluoro- 16α -hydroxy-prednisolone, MP 258° to 260°C; the analytical sample showed MP 266° to 268°C.

References

Merck Index 4050 Kleeman & Engel p. 414 PDR pp. 888, 930, 1429, 1606, 1800 I.N. p. 433 REM p. 966

Mills, J.S. and Bowers, A.; U.S. Patent 3,014,938; December 26, 1961; assigned to Syntex SA. Mexico

FLUOCINONIDE

Therapeutic Function: Antiinflammatory; glucocorticoid

Chemical Name: 21-(acetyloxy)-6α,9-difluoro-11β-hydroxy-16α,17-[(1-methylethylidene)-

bis(oxy)] pregna-1,4-diene-3,20-dione

Common Name: Fluocinolone acetonide acetate

Structural Formula:

Chemical Abstracts Registry No.: 356-12-7

Trade Name	Manufacturer	Country	Year Introduced
Topsyn	Recordati	Italy	1970
Lidex	S ynte x	U.S.	1971
Metosyn	I.C.I.	U.K.	1971
Topsym	Gruenenthal	W. Germany	1971
Topsyne	Cassenne	France	1971

Trade Name	Manufacturer	Country	Year Introduced
Topsyn	Tanabe	Japan	1975
Bestasone	Kodama	Japan	_
Cusigel	Cusi	Spain	_
Flu 21	Lanat	Italy	_
Fludex	San Carlo	Italy	_
Fluzon	Taisho	Japan	_
Novoter	Cusi	Spain	_
Supracort	Teva	israel	_

Raw Materials

6α-Fluoro-triamcinolone Acetone Perchloric acid Acetic anhydride

Manufacturing Process

To a suspension of 500 mg of 6α -fluoro-triamcinolone in 75 ml of acetone is added 0.05 milliliters of 72% perchloric acid and the mixture agitated at room temperature for 3 hours. During this period the crystals gradually dissolve and the clear solution is neutralized with dilute bicarbonate and the acetone removed in vacuo. The resulting crystalline suspension is filtered and the crystals washed with water. The dried material is recrystallized from 95% alcohol to give the pure acetonide.

A solution of 50 mg of 6α -fluoro-triamcinolone acetonide in 1 ml of pyridine and 1 ml of acetic anhydride is allowed to stand at room temperature for 18 hours. Removal of the reagents in vacuo gives a crystalline residue which after crystallization from acetone-hexane gives the pure 16α , 17α -isopropylidene 6α -fluoro-triamcinolone 21 acetate (fluocinonide), as described in U.S. Patent 3,197,469.

References

Merck Index 4051 Kleeman & Engel p. 415 PDR p. 1800 DOT 7 (6) 207 (1971) I.N. p. 433 REM p. 966

Ringold, H.J. and Rosenkranz, G.; U.S. Patent 3,124,571; March 10, 1964; assigned to Syntex Corporation, Panama

Ringold, H.J., Zderic, J.A., Djerassi, C. and Bowers, A.; U.S. Patent 3,126,375; March 24, 1964; assigned to Syntex Corporation, Panama

Fried, J.; U.S. Patent 3,197,469; July 27, 1965; assigned to Pharmaceutical Research Products, Inc.

FLUOCORTIN BUTYL

Therapeutic Function: Antiinflammatory

Chemical Name: 6-Fluoro-11-hydroxy-16-methyl-3,20-dioxopregna-1,4-dien-21-oic acid

butyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 41767-29-7; 33124-50-40 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Vaspit	Schering	W. Germany	1977
Vaspit	Schering	Switz.	1978
Vaspit	Schering	Italy	1981
Vaspid	Schering	Australia	_

Raw Materials

6α-Fluoro-11β.21-dihydroxy-16α-methyl-1,4-pregnadiene-3,20-dione Cupric acetate Methanol Manganese dioxide Butano!

Manufacturing Process

- (a) A solution of 11.3 g of 6α -fluoro-11 β ,21-dihydroxy-16 α -methyl-1,4-pregnadiene-3,20dione in 500 ml of absolute methanol is mixed with 3.0 g of copper (II) acetate in 500 ml of absolute methanol. The solution is agitated at room temperature for 170 hours, then clarified by filtration, and concentrated under vacuum. The residue is mixed with 10% ammonium hydroxide solution and extracted with methylene chloride. The organic phase is washed several times with water, dried over sodium sulfate, and concentrated under vacuum. The residue is chromatographed on 1.3 kg of silica gel. After recrystallization from acetone-hexane, with 6-7% acetone-methylene chloride, 1.40 g of the methyl ester of 6α-fluoro-11β,20α-dihydroxy-3-oxo-160-methyl-1,4-pregnadiene-21-oic acid is obtained, MP 191°C to 192°C.
- (b) 2.1 g of a mixture of the methyl ester of 6α -fluoro- 11β , $20\alpha_F$ -dihydroxy-3-oxo- 16α -methyl-1,4-pregnadiene-21-oic acid and the methyl ester of 6α -fluoro-11 β ,20 β _E-dihydroxy-3-oxo- 16α -methyl-1,4-pregnadiene-21-oic acid is dissolved in 20 ml of methylene chloride. The solution is mixed with 20 g of active manganese(IV) oxide ("precipitation active for synthesis purposes" by Merck, A.G.) and refluxed for 6 hours. Then, the reaction mixture is filtered off from the manganese(IV) oxide. The filtrate is evaporated and the residue is recrystallized from acetone-hexane, thus obtaining 450 mg of the methyl ester of 6α -fluoro-11 β -hydroxy-3,20-dioxo-16α-methyl-1,4-pregnadiene-21-oic acid, MP 182°C to 184°C.
- (c) A solution of 250 mg of the methyl ester of 6α -fluoro- 11β ,20 α _F-dihydroxy-3-oxo- 16α methyl-1,4-pregnadiene-21-oic acid in 3 ml of methylene chloride is mixed with 2,5 g of active manganese(IV) oxide and stirred for 45 minutes at room temperature. The manganese(IV) oxide is removed by filtration, the filtrate is evaporated to dryness, and the residue is recrystallized from acetone-hexane, thus producing 145 mg of the methyl ester of 6α -fluoro-11 β hydroxy-3,20-dioxo-16α-methyl-1,4-pregnadiene-21-oic acid, MP 188°C.
- (d) 4.3 g of the methyl ester of 6α-fluoro-11β,20β_E-dihydroxy-3-oxo-16α-methyl-1.4-pregnadiene-21-oic acid is dissolved, with the addition of 50 g of active manganese(IV) oxide, in 50 ml of isopropanol. The reaction mixture is agitated at room temperature for 25 hours and filtered off from the manganese(IV) oxide. After evaporation of the solvent, the residue

is recrystallized twice from hexane-acetone. Yield: 1.3 g of the methyl ester of 6α-fluoro-11 β -hydroxy-3,20-dioxo-16 α -methyI-1,4-pregnadiene-21-oic acid, MP 189 $^{\circ}$ C to 191 $^{\circ}$ C.

(e) 500 mg of 6α -fluoro-11 β -hydroxy-3,20-dioxo-16 α -methyl-1,4-pregnadiene-21-oic acid is dissolved in 100 ml of absolute ether, and mixed with 7 ml of butanol and 1.5 ml of dicyclohexyl carbodiimide. After 18 hours of agitation at room temperature, the reaction mixture is vacuum-filtered from the thus-precipitated dicyclohexyl urea. The filtrate is concentrated, and the crude product is chromatographed on silica gel. With 9-11% acetone-hexane, after recrystallization from acetone-hexane, 256 mg of the butyl ester of 6α -fluoro-11 β -hydroxy-3,20-dioxo-16@methyl-1,4-pregnadiene-21-oic acid is obtained, MP 185°C to 187°C.

References

Merck Index 4052 DFU 2 (10) 669 (1977) Kleeman & Engel p. 416 DOT 13 (12) 528 (1977) & 17 (9) 388 (1981) I.N. p. 434

Laurent, H., Wiechert, R., Prezewowsky, K., Hofmeister, H., Gerhards, E., Kolb, K.H. and Mengel, K.; U.S. Patent 3,824,260; July 16, 1974; assigned to Schering A.G. (West Germany)

FLUOCORTOLONE

Therapeutic Function: Glucocorticoid

Chemical Name: 6α -fluoro-11 β ,21-dihydroxy-16 α -methylpregna-1,4-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 152-97-6

Trade Name	Manufacturer	Country	Year Introduced
Ultralan	Schering	W. Germany	1965
Ultralan	Schering	Italy	1974
Ficoid	Fisons	U.K.	_
Myco-Ultralan	S.E.P.P.S.	France	_
Syracort	Beiersdorf	W. Germany	-
Ultrasalon	Schering	W. Germany	_

Raw Materials

16 α -Methyl- Δ^5 -pregnene-3 β ,21-diol-20-one-21-acetate N-Bromoacetamide

Hydrogen fluoride Chromic acid Bacterium *Curvularia lunata* Acetic anhydride Bacterium *Corynebacterium simplex*

Manufacturing Process

- (a) 16α -Methyl- 6α -Fluoro- Δ^4 -Pregnene- 11β ,21-Diol-3,20-Dione: 16α -methyl- 6α -fluoro- Δ^4 -pregnene-21-ol-3,20-dione-21-acetate (MP $132^\circ/134^\circ$ to 138° C, $UV\epsilon_{238}=15,000$) is hydroxylated with Curvularia lunata in 11β -position using the fermentation method whereby the 21-acetate group is simultaneously saponified. The hitherto unknown starting material 16α -methyl- 6α -fluoro- Δ^4 -pregnene-21-ol-3,20-dione-21-acetate is obtained from 16α -methyl- Δ^5 -pregnene- 3β ,21-diol-20-one-21-acetate, MP 152° to 154° C, by the addition of bromofluorine (from N-bromacetamide and hydrogen fluoride) onto the 5-6 double bond, oxidation of the 3β -hydroxyl group with chromic acid, introduction of the Δ^4 -double bond by splitting of the hydrogen bromide and acid isomerization of the 6β -fluoro substituent to the 16α -methyl- 6α -fluoro- Δ^4 -pregnene-21-ol-3,20-dione-21-acetate. By chromatographic purification on silica gel the 16α -methyl- 6α -fluoro- Δ^4 -pregnene- 11β ,21-diol-3,20-dione is: MP $166^\circ/167^\circ$ to 171° C.
- (b) 16α -Methyl- 6α -Fluoro- Δ^4 -Pregnene- 11β ,21-Diol-3,20-Dione-21-Acetate: By reaction of the compound of (a) with acetic anhydride in pyridine at room temperature, the acetate is obtained and recrystallized from ethyl acetate, MP 248°/249° to 251°C.
- (c) 16α -Methyl- 6α -Fluoro- $\Delta^{1.4}$ -Pregnadiene- 11β ,21-Diol-3,20-Dione: 16α -methyl- 6α -fluoro- Δ^4 -pregnene- 11β ,21-diol-3,20-dione is dehydrogenated with *Corynebacterium simplex*. The extraction residue is subjected to chromatography on silica gel and after recrystallization there is obtained from methylene chloride-isopropyl ether 16α -methyl- 6α -fluoro- $\Delta^{1.4}$ -pregnadiene- 11β ,21-diol-3,20-dione, MP $180^\circ/181^\circ$ to 182° C.

References

Merck Index 4053 Kleeman & Engel p. 417 OCDS Vol. 1 p. 204 (1977) I.N. p. 434

Kieslich, K., Kerb, U. and Raspe, G.; U.S. Patent 3,426,128; February 4, 1969; assigned to Schering AG, Germany

FLUOROMETHOLONE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: 9-fluoro-11β,17-dihydroxy-6α-methylpregna-1,4-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 426-13-1

Trade Name	Manufacturer	Country	Year Introduced
Oxylone	Upjohn	U.S.	1959
Efflumidex	Pharm-Allergan	W. Germany	1975
FML Liquifilm	Allergan	U.K.	1977
Fluaton	Tubi Lux	Italy	1977
Flumerol	Sumitomo	Jap a n	1971
Flucon	Alcon	France	1983
Cortilet	Hoechst	_	-
Cortisdin	Isdin	Spain	-
Delmeson	Hoechst	W. Germany	_
Ehrtolan	Albert-Roussel	W. Germany	_
Flu-Base	Kowa	Japan	
Flumetholon	Santen	Japan	-
Flumetol	Farmila	Italy	
Fluoderm	B.D.H.	U.K.	
Fluolon	Lundbeck	_	_
Loticort	Hoechst	Italy	_
Okilon	Summitomo	Japan	_
Regresin	Hoechst	-	_
Trilcin	B.D.H.	U.K.	-
Ursnon	Nippon Chemiphar	Japan	_

Raw Materials

1-Dehydro-6α-methyl-9α-fluorohydrocortisone Methanesulfonvl chloride Sodium iodide Sodium thiosulfate

Manufacturing Process

The following description is taken from U.S. Patent 2,867,637.

- (a) Preparation of 6α-Methyl-9α-Fluoro-118.17α,21-Trihydroxy-1.4-Pregnadiene-3.20-Dione 21-Methanesulfonate: A solution was prepared containing 250 mg of 1-dehydro-6α-methyl-9α-fluorohydrocortisone [G.B. Spero et al. J. Am. Chem. Soc. 79, 1515 (1957)] in 6 ml of pyridine. This solution was cooled to 0°C and treated with 0.25 ml of methanesulfonyl chloride. Thereafter the solution was allowed to stir at a temperature between 0° and 5°C for a period of 18 hours. Thereafter ice and 2 ml of water were added, followed by 30 ml of sufficient dilute (5%) hydrochloric acid to neutralize the pyridine. The mixture was then filtered, the precipitate washed with water and dried to give 197 mg of crude 6α methyl-9α-fluoro-11β,17α,21-trihydroxy-1,4-pregnadiene-3,20-dione 21-methanesulfonate of MP 165° to 185°C.
- (b) Preparation of 6α-Methyl-9α-Fluoro-118.17α-Dihydroxy-21-lodo-1.4-Pregnadiene-3.20-Dione: The crude 197 mg of methanesulfonate of 6α -methyl- 9α -fluoro- 11β , 17α , 21-trihydroxy-1,4-pregnadiene-3,20-dione was dissolved in 5 ml of acetone and treated with a solution of 197 mg of sodium iodide in 5 ml of acetone. The mixture was heated under reflux with stirring for a period of 15 minutes. The heating was then discontinued and the mixture concentrated to dryness at reduced pressure to give 6α -methyl- 9α -fluoro- 11β . 17α-dihydroxy-21-iodo-1,4-pregnadiene-3,20-dione.
- (c) Preparation of 6α -Methyl- 9α -Fluoro-11 β , 17 α -Dihydroxy-1,4-Pregnadiene-3,20-Dione: The crude 6α -methyl- 9α -fluoro- 11β , 17α -dihydroxy-21-iodo-1,4-pregnadiene-3,20-dione was slurried with 5 ml of acetic acid and stirred for a period of 45 minutes. Thereafter was added a solution of 250 mg of sodium thiosulfate pentahydrate in 5 ml of water causing the iodine color to disappear. Additional water was added (30 ml) and the reac-

tion mixture was filtered. The resulting solid precipitate was washed with water and dried to give 146 mg of crude 6α -methyl- 9α -fluoro- 11β , 17α -dihydroxy-1,4-pregnadiene-3,20-dione.

The crude material was then chromatographed by dissolving 120 mg of 6α -methyl- 9α -fluoro-11β,17α-dihydroxy-1,4-pregnadiene-3,20-dione in 300 ml of methylene chloride and allowing the thus obtained solution to be absorbed by a chromatographic column containing 10 grams of Florisil anhydrous magnesium silicate. The column was developed taking fractions of 20 ml each as follows:

Fraction	Solvent
1- 5	Skellysolve B-hexane-5% acetone
6-10	Skellysolve B-hexane-10% acetone
11-15	Skellysolve B-hexane-15% acetone
16-20	Skellysolve B-hexane-20% acetone
21-25	Skellysolve B-hexane-30% acetone
26-28	Acetone

Fractions 11 through 24 inclusive were combined, evaporated and twice recrystallized from acetone to give pure 6α -methyl- 9α -fluoro- 11β ,17 α -dihydroxy-1,4-pregnadiene-3,20-dione of melting point 292° to 303°C.

References

Merck Index 4081 Kleeman & Engel p. 418 OCDS Vol. 1 p. 203 (1977) I.N. p. 435 REM p. 966

Fried, J.; U.S. Patent 2,852,511; September 16, 1958; assigned to Olin Mathieson Chemical Corporation

Lincoln, F.H. Jr., Schneider, W.P. and Spero, G.B.; U.S. Patent 2,867,637; January 6, 1959; assigned to The Upjohn Company

Lincoln, F.H. Jr., Schneider, W.P. and Spero, G.B.; U.S. Patent 2,867,638; January 6, 1959; assigned to The Upjohn Company

Magerlein, B.J., Kagan, F. and Schlagel, C.A.; U.S. Patent 3,038,914; June 12, 1962; assigned to The Upjohn Company

FLUOROURACIL

Therapeutic Function: Cancer chemotherapy

Chemical Name: 5-fluoro-2,4(1H,3H)-pyrimidinedione

Common Name: 5-fluorouracil

Structural Formula:

Chemical Abstracts Registry No.: 51-21-8

Trade Name	Manufacturer	Country	Year Introduced
Efudex	Roche	U.S.	1962

Trade Name	Manufacturer	Country	Year Introduced
Efudix	Roche	France	1963
Efudix	Roche	W. Germany	1966
Fluoroplex	Herbert	U.S.	1970
Efudix	Roche	U.K.	1972
Adrucil	Adria	U.S.	1977
Arumel	SS Pharmaceutical	Japan	-
Benton	Toyo Jozo	Japan	-
Carzonal	Tobishi	Japan	_
Cinco-Fu	Montedison	W. Germany	-
Flacule	Nippon Kayaku	Japan	
Fluoroblastin	Erba	Italy	_
Fluorotop	Abic	Israel	_
Fluorouracil	Roche	U. S.	-
Kecimeton	Tatsumi	Japan	_
Lifril	Kissei	Japan	_
Timadin	Torii	Japan	-
Ulosagen	Kyowa Yakunin Osaka	Japan	-
Ulup	Maruko	Japan	_
Verrumal	Hermal	W. Germany	-

Raw Materials

Sodium fluoroacetate	Diethyl sulfate
Potassium ethylate	Ethyl formate
S-Methylisothiouronium sulfate	Sodium methoxide
Hydrogen chloride	

Manufacturing Process

A mixture of 200 grams (2 mols) of dry sodium fluoroacetate and 442 grams (2.86 mols) of diethyl sulfate was refluxed for 3½ hours in an oil bath. The reaction mixture was then distilled through a fractionating column, yielding 177.3 grams of crude ethyl fluoroacetate, having a boiling range of 116° to 120°C. The material was redistilled through a fractionating column, yielding purified ethyl fluoroacetate boiling at 114° to 118°C.

In a 2-liter, 3-neck, round bottom flask, provided with stirrer, dropping funnel and reflux condenser, was placed 880 ml of absolute diethyl ether, and 47.6 grams (1,22 mols) of potassium, cut into 5 mm pieces, was suspended therein. 220 ml of absolute ethanol was added dropwise, while stirring, whereby the heat of reaction produced refluxing. In order to obtain complete dissolution of the potassium, the mixture was finally refluxed on a steam bath. The reaction mixture was then cooled in an ice bath, and a mixture of 135 grams (1.22 mols) of ethyl fluoroacetate and 96.4 grams (1.3 mols) of freshly distilled ethyl formate was added dropwise, while stirring and cooling, over a period of 2½ hours. Upon completion of the addition of the ethyl formate, the reaction mixture was stirred for an additional hour while cooling, and then was allowed to stand overnight at room temperature.

At the end of this time the crystalline precipitate which had formed was filtered off with suction, washed with diethyl ether, and dried in a vacuum desiccator. The product comprised essentially the potassium enolate of ethyl fluoromalonaldehydate (alternative nomenclature, the potassium salt of fluoromalonaldehydic acid ethyl ester).

A mixture of 103.6 grams (0.6 mol) of the freshly prepared potassium enolate of ethyl fluoromalonaldehydate, 83.4 grams (0.3 mol) of S-methylisothiouronium sulfate and 32.5 grams (0.6 mol) of sodium methoxide was refluxed with stirring in 1,500 ml of absolute methanol. At first the reactants dissolved to a great extent, but very shortly thereafter precipitation occurred. The reaction mixture was refluxed for 2 hours and at the end of this time was evaporated to dryness in vacuo. The residue was treated with 280 ml of water: incomplete dissolution was observed.

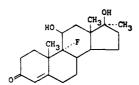
The mixture obtained was clarified by filtering it through charcoal. The filtrate was acidified (to a slight Congo red acid reaction) by adding concentrated aqueous hydrochloric acid. containing 37% by weight HCI (48 ml required). The material which crystallized from the acidified solution was filtered off, washed free of sulfates with water and dried at 100°C. yielding crude S-methyl ether of 2-thio-5-fluorouracil, having a melting range from 202° to 221°C. The latter material was recrystallized by dissolving it in 2,035 ml of boiling ethyl acetate and cooling to -20°C, yielding S-methyl ether of 2-thio-5-fluorouracil, MP 230° to 237°C, in a sufficient state of purity that it could be used directly for the next step. A sample of the material was recrystallized from water (alternatively, from ethyl acetate) thereby raising the melting point to 241° to 243°C. For analysis the material was further purified by subliming it in vacuo at 140° to 150°C/0.1 mm.

A solution of 10.0 grams of purified S-methyl ether of 2-thio-5-fluorouracil, MP 230° to 237°C, in 150 ml of concentrated aqueous hydrochloric acid (containing approximately 37% by weight HCI) was refluxed under nitrogen for 4 hours. The reaction mixture was then evaporated in vacuo. The crystalline brownish residue was recrystallized from water. The resulting recrystallized product was further purified by sublimation in vacuo at 190° to 200°C (bath temperature)/0.1 mm pressure. There was obtained 5-fluorouracil, in the form of colorless or pinkish-tan crystals, MP 282° to 283°C (with decomposition).

References

Merck Index 4088 Kleeman & Engel p. 419 PDR pp. 559, 931, 1483 OCDS Vol. 3 p. 155 (1984) DOT 9 (12) 495 (1973) & 16 (5) 174 (1980) I.N. p. 436 REM p. 1149

Heidelberger, C. and Duschinsky, R.; U.S. Patent 2,802,005; August 6, 1957 Heidelberger, C. and Duschinsky, R.; U.S. Patent 2,885,396; May 5, 1959


FLUOXYMESTERONE

Therapeutic Function: Androgen

Chemical Name: 9-fluoro-11β,17β-dihydroxy-17-methylandrost-4-en-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 76-43-7

Trade Name	Manufacturer	Country	Year Introduced
Halotestin	Upjohn	U.S.	1957
Ora-Testry1	Squibb	U.S.	1958
Ultandren	Ciba	U.S.	1958
Halotestin	Upjohn	France	1961

Android-F	Brown	U.S.	1981
Afluteston	Arcana	Austria	_
Androsterolo	Pierrel	Italy	_
Oralsterone	Bouty	italy	-
Testoral	Midy	Italy	_
U-Gono	Upjohn	_	_

Raw Materials

11α-Hydroxy-17-methyltestosterone p-Toluene sulfonyl chloride Hydrogen fluoride

N-Bromoacetamide Sodium hydroxide

Manufacturing Process

The following description is taken from U.S. Patent 2,793,218.

(a) Preparation of 9(11)-Dehydro-17-Methy/testosterone: A warm solution of 1 gram of 11α -hydroxy-17-methyltestosterone (U.S. Patent 2.660.586) in 2 ml of dry pyridine was mixed with 1 gram of para-toluenesulfonyl chloride. The mixture was maintained at room temperature for 18 hours and then poured into 25 ml of water. The mixture was stirred until the precipitated oil solidified. The solid was filtered, washed with water and dried to give 1.41 grams of 11α -(p-toluenesulfonyloxy)- 17α -methyl- 17β -hydroxy-4-androsten-3one which melted at 144° to 148°C with decomposition and, after crystallization from a mixture of methylene chloride and hexane hydrocarbons, melted at 141° to 144°C with decomposition.

A mixture of 1 gram of the thus-produced 11α -(p-toluenesulfonyloxy)- 17α -methyl- 17β hydroxy-4-androsten-3-one, 0.2 gram of sodium formate, 0.57 ml of water and 14 ml of absolute ethanol was heated at its refluxing temperature for 19 hours. The solution was cooled and then poured onto 50 grams of a mixture of ice and water with stirring. The resulting precipitate was filtered and dried to give 0.59 gram of 9(11)-dehydro-17-methyltestosterone which melted at 156° to 160°C and, after crystallization from a mixture of methylene chloride and hexane hydrocarbons, melted at 167° to 170°C.

- (b) Preparation of 9α -Bromo-11 β -Hydroxy-17-Methyltestosterone: To a solution of 1 gram of 9(11)-dehydro-17-methyltestosterone in 50 ml of acetone was added dropwise, with stirring, at 15°C, 1 gram of N-bromoacetamide dissolved in 25 ml of water. A solution of 20 ml of 0.8 N perchloric acid was then slowly added at the same temperature. After 20 minutes, there was added a sufficient amount of a saturated aqueous solution of sodium sulfite to discharge the yellow color of the solution. The resulting mixture was then diluted with 100 ml of water thereby precipitating 1 gram of 9α -bromo-11 β -hydroxy-17methyltestosterone as needles melting at 153° to 155°C.
- (c) Preparation of 9,11β-Epoxy-17-Methy/testosterone: A suspension of 1 gram of 9αbromo-11β-hydroxy-17-methyltestosterone in 30 ml of methanol was titrated with 1 M equivalent of 0.1 N aqueous sodium hydroxide. The resulting mixture was diluted with 50 ml of water and then chilled to about 0°C thereby precipitating 0.64 gram of 9,11βepoxy-17-methyltestosterone melting at 170° to 176°C which, after crystallization from dilute methanol, melted at 65° to 172°C (with sublimation).
- (d) Preparation of 9α -Fluoro-11 β -Hydroxy-17-Methyltestosterone: To a solution of 0.5 gram of 9,11β-epoxy-17-methyltestosterone in 10 ml of methylene chloride was added 2 ml of 48% aqueous hydrofluoric acid. The mixture was stirred at room temperature for 5 hours and then cautiously poured with stirring into a mixture of 6 grams of sodium bicarbonate in a mixture of ice and water. The precipitated steroid was extracted with methylene chloride, the extract washed with water and then dried. The solvent was distilled from the dried solution and the residue crystallized from methylene chloride to give 148 mg of 9α -fluoro-11 β -hydroxy-17-methyltestosterone melting at 265°C with decomposition.

References

Merck Index 4091 Kleeman & Engel p. 420 PDR pp. 730, 1606, 1844 OCDS Vol. 1 p. 175 (1977) I.N. p. 437

REM p. 998

Herr, M.E.: U.S. Patent 2,793,218; May 21, 1957; assigned to The Upjohn Company Herr, M.E.; U.S. Patent 2,813,881; November 19, 1957; assigned to The Upjohn Company

FLUPENTIXOL

Therapeutic Function: Tranquilizer

Chemical Name: 4-[3-[2-(trifluoromethyl)-9H-thioxanthen-9-ylidene] propyl]-1-piperazine-

ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2709-56-0; 2413-38-9 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Emergil	Labaz	France	1971
Siplarol	Erba	Italy	1972
Metamin	Takeda	Japan	1973
Depixol	Lundbeck	U.K.	_
Fluanxol	Labaz	France	_

Raw Materials

Ethyl bromide 2-Benzyloxyethanol p-Toluene sulfonyl chloride Magnesium Hydrogen chloride N-Ethoxycarbonylpiperazine Thionyl chloride 2-Trifluoromethyl-9-xanthenone 3-Bromopropanol Potassium hydroxide

Manufacturing Process

A mixture of 200 grams of 2-benzoyloxyethanol in 2 liters of pyridine at -5°C is treated with 275 grams of p-toluenesulfonyl chloride and the resulting mixture is stirred at 0°C for 2 hours. Water is added slowly at 0° to 5°C. Extracting with chloroform, washing the extract with dilute hydrochloric acid, water and potassium bicarbonate, and evaporating the solvent leaves benzyloxyethyl p-toluenesulfonate.

A mixture of 186 grams of the above prepared p-toluenesulfonate, 106 grams of N-ethoxycarbonylpiperazine, 44 grams of potassium carbonate and 800 ml of toluene is refluxed

for 21 hours, then filtered and extracted with dilute hydrochloric acid. The extract is basified with sodium hydroxide and extracted into chloroform. Evaporation of the chloroform and distillation of the residue in vacuo gives 1-benzyloxyethyl-4-ethoxy-carbonylpiperazine, BP 153° to 156°C (0.15 mm).

Hydrolysis and decarboxylation of this ester (188 grams) is accomplished by refluxing with 155 grams of potassium hydroxide, 155 ml of water and 1,550 ml of ethanol for four days. Filtering, concentrating, adding water to the residue, acidifying with hydrochloric acid, heating to 90°C, saturating with potassium carbonate, extracting into chloroform, evaporating and distilling the chloroform gives N-benzoyloxyethylpiperazine.

A mixture of 50 grams of the above prepared piperazine, 30.1 grams of sodium carbonate and 200 ml of benzene is heated to reflux and treated with 39.5 grams of 3-bromopropanol over 1.5 hours. The resulting mixture is refluxed for 2 hours, then filtered, extracted with dilute hydrochloric acid, basified, extracted with benzene, and the extracts are concentrated and distilled to give 1-benzyloxyethyl-4-(3-hydroxypropyl)-piperazine, BP 188° to 190°C (0.15 mm). The free base is converted to the dihydrochloride salt by treatment of an alcoholic solution with ethereal hydrogen chloride to separate the salt.

Thionyl chloride (67 grams) is added over 15 minutes to a mixture of 39.5 grams of the above prepared dihydrochloride salt and 400 ml of chloroform. Refluxing for 4 hours, cooling and filtering yields the dihydrochloride salt of 1-benzyloxyethyl-4-(3-chloropropyl)-piperazine, MP 201° to 202°C. The salt in aqueous solution is basified. Extraction with ether and evaporation of the solvent yields the free base.

Magnesium (1.3 grams) in 8 ml of refluxing tetrahydrofuran is treated with 1 ml of ethyl bromide. A solution of 22.7 grams of 1-benzyloxyethyl-4-(3-chloropropyl)-piperazine in 50 ml of tetrahydrofuran is added slowly and the mixture is refluxed for 1 hour.

A solution of 13.2 grams of 2-trifluoromethyl-9-xanthenone in tetrahydrofuran is added over 1 hour to 16.0 grams of 3-(4-benzyloxyethyl-1-piperazinyl)propylmagnesium chloride, prepared as above, in tetrahydrofuran while gently refluxing. Refluxing is continued for 2 hours. Concentrating, pouring the residue into ammonium chloride, ice and water, extracting with ether, evaporating the extracts and treating the residue with concentrated hydrochloric acid at 95°C for 1 hour gives a mixture of cis and trans 9-[3-(4-hydroxyethyl-1-piperazinyl)propylidene] -2-trifluoromethylxanthene dihydrochloride. Fractional crystallization from ethanol-ether separates the isomers. The free bases are obtained by neutralizing an aqueous solution of the dihydrochloride, extracting into ether and evaporating the ether in vacuo.

References

Merck Index 4092 Kleeman & Engel p. 421 DOT 4 (4) 155 (1968) & 9 (6) 229 (1973) I.N. p. 437

Smith Kline & French Laboratories; British Patent 925,538; May 8, 1963 Craig, P.N. and Zirkle, C.L.; U.S. Patent 3,282,930; November 1, 1966; assigned to Smith

Kline & French Laboratories

FLUPHENAZINE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: 4-[3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl] propyl] -1-piperazineethanol dihydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 146-56-5; 69-23-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Prolixin	S quibb	U.S.	1959
Permitii	S chering	U.S.	1959
Anatensol	S quibb	Italy	
Anatensol	Showa	Japan	_
Calmansial	S quibb		-
Dapotum	Heyden	W. Germany	_
Eutimox	Soc. Gen. De Farmacia	Spain	_
Flumezine	Yoshitomi	Japan	-
Lyogen	Byk Gulden	W. Germany	_
Lyorodin	Deutsches Hydrierwerk	E. Germany	_
Modecate	S quibb	France	-
Moditen	S quibb	France	-
Motipress	S quibb	U.K.	-
Omca	Heyden	W. Germany	_
Pacino!	Schering	_	-
Seditin	Taro	israel	_
Selecten	Unipharm	Israel	-
Sevinol	Schering-Shionogi	Japan	_
Siqualine	Iquinosa	Spain	_
Siquatone	A stra	Sweden	_
Trancin	Schering	_	_

Rew Materials

2-Trifluoromethylphenothiazine	Sodium amide
1-(3'-Hydroxypropyl)piperazine	Methyl formate
Thionyl chloride	Sodium hydroxide
β-Bromoethyl acetate	Hydrogen chloride

Manufacturing Process

A suspension of 69.0 grams of 2-trifluoromethylphenothiazine in 1 liter of toluene with 10.9 grams of sodium amide is heated at reflux with high speed stirring for 15 minutes. A solution of 54.1 grams of 1-formyl-4-(3'-chloropropyl)-piperazine, [prepared by formylating 1-(3'-hydroxypropyl)-piperazine by refluxing in an excess of methyl formate, purifying the 1-formyl-4-(3'-hydroxypropyl)-piperazine by vacuum distillation, reacting this compound with an excess of thionyl chloride at reflux and isolating the desired 1-formyl-4-(3'-chloropropyl)-piperazine by neutralization with sodium carbonate solution followed by distillation] in 200 ml of toluene is added. The reflux period is continued for 4 hours. The cooled reaction mixture is treated with 200 ml of water. The organic layer is extracted twice with dilute hydrochloric acid. The acid extracts are made basic with ammonia and extracted with benzene. The volatiles are taken off in vacuo at the steam bath to leave a dark brown oil which is 10-[3'-(N-formylpiperazinyl)-propyl] -2-trifluoromethylphenothiazine. It can be distilled at 260°C at 10 microns, or used directly without distillation if desired.

A solution of 103.5 grams of 10-[3'-(N-formylpiperazinyl)-propyl] -2-trifluoromethylphenothiazine in 400 ml of ethanol and 218 ml of water containing 26 ml of 40% sodium hydroxide solution is heated at reflux for 2 hours. The alcohol is taken off in vacuo on the steam bath. The residue is swirled with benzene and water. The dried benzene layer is evaporated in vacuo. The residue is vacuum distilled to give a viscous, yellow oil, 10-(3'-piperazinylpropyl)-2-trifluoromethylphenothiazine, distilling at 210° to 235°C at 0.5 to 0.6 mm.

A suspension of 14.0 grams of 10-(3'-piperaziny|propy|)-2-trifluoromethylphenothiazine, 6.4 grams of β -bromoethyl acetate and 2.6 grams of potassium carbonate in 100 ml of toluene is stirred at reflux for 16 hours. Water (50 ml) is added to the cooled mixture. The organic layer is extracted into dilute hydrochloric acid. After neutralizing the extracts and taking the separated base up in benzene, a viscous, yellow residue is obtained by evaporating the organic solvent in vacuo. This oil is chromatographed on alumina. The purified fraction of 7.7 grams of $10-[3'-(N-acetoxyethylpiperaziny|)-propy|]-2-trifluoromethylphenothiazine is taken up in ethyl acetate and mixed with 25 ml of alcoholic hydrogen chloride. Concentration in vacuo separates white crystals of the dihydrochloride salt, MP 225° to <math>227^{\circ}C$.

A solution of 1.0 gram of 10-[3'-(N-acetoxyethylpiperazinyl)-propyl] -2-trifluoromethylphenothiazine in 25 ml of 1 N hydrochloric acid is heated at reflux briefly. Neutralization with dilute sodium carbonate solution and extraction with benzene gives the oily base, 10-[3'-(N-β-hydroxyethylpiperazinyl)-propyl] -2-trifluoromethylphenothiazine. The base is reacted with an excess of an alcoholic hydrogen chloride solution. Trituration with ether separates crystals of the dihydrochloride salt, MP 224° to 226°C, (from U.S. Patent 3.058.979).

References

Merck Index 4094 Kleeman & Engel p. 423 PDR pp. 1646, 1759 OCDS Vol. 1 p. 383 (1977) DOT 3 (1) 60 (1967) & 9 (6) 228 (1973) I.N. p. 438 REM p. 1088

Ullyot, G.E.; U.S. Patent 3,058,979; October 16, 1962; assigned to Smith Kline & French Laboratories

FLUPREDNIDENE ACETATE

Therapeutic Function: Topical antiinflammatory

Chemical Name: 21-(acetyloxy)-9-fluoro-11β,17-dihydroxy-16-methylenepregna-1,4-diene-

3.20-dione

Common Name: 16-methylene-9α-fluoroprednisolone 21-acetate

Structural Formula:

Chemical Abstracts Registry No.: 1255-35-2

Trade Name	Manufacturer	Country	Year Introduced
Etacortin	Hermal	W. Germany	1968
Decoderm	Bracco	italy	1972
Decoderme	Merck-Clevenot	France	1974
Decoderm	Merck	U.K.	_
Candio-Hermal	Hermal	W. Germany	_
Corticoderm	Merck	W. Germany	
Crino-Hermal	Hermal	W. Germany	_
Emcortina	Merck	U.S.	_

Raw Materials

 9α -Fluoro- 11β , 17α , 21-trihydroxy- 16α -methyl-1, 4-pregnadiene-3, 20-dione Semicarbazide Acetic anhydride t-Butyl hydroperoxide Hydrogen bromide

Manufacturing Process

Preparation of 3,20-Disemicarbazone of 9α -Fluoro-11 β ,17 α ,21-Trihydroxy-16 α -Methyl-1,4-*Pregnadiene-3,20-Dione:* A mixture of 1.00 gram of 9α -fluoro-11 β ,17 α ,21-trihydroxy-16 α methyl-1,4-pregnadiene-3,20-dione, 750 mg of semicarbazide base, 280 mg of semicarbazide hydrochloride in 20 ml of methanol and 10 ml of dimethylformamide is refluxed for 20 hours under nitrogen. The mixture is cooled to 20°C and 100 ml of water is added with stirring. The precipitated 3,20-disemicarbazone of 9α -fluoro-11 β ,17 α ,21-trihydroxy-16 α methyl-1,4-pregnadiene-3,20-dione is filtered, washed with water, and dried in air; MP over 300°C.

Preparation of 9α-Fluoro-118.21-Dihydroxy-16-Methyl-1.4.16-Pregnatriene-3.20-Dione 21-Acetate: A solution of 500 mg of the 3.20-disemicarbazone of 9α -fluoro-118.17 α .21-trihydroxy-16α-methyl-1,4-pregnadiene-3,20-dione in 10 ml of acetic acid and 0.5 ml acetic anhydride is refluxed under nitrogen for one hour to produce the corresponding 3,20disemicarbazone of 118,21-dihydroxy-16-methyl-1,4,16-pregnatriene-3,20-dione 21-acetate. The reaction mixture is cooled, 13 ml of water is added and the mixture heated on the steam bath for 5 hours. It is then concentrated in vacuo nearly to dryness and water and chloroform added. The mixture is thoroughly extracted with chloroform, and the chloroform extract washed with excess aqueous potassium bicarbonate and saturated salt solution and dried over magnesium sulfate. Chromatography of the residue on neutral alumina and crystallization of pertinent benzene-chloroform fractions gives 9α -fluoro-11 β .21-dihydroxy-16-methyl-1,4,16-pregnatriene-3,20-dione 21-acetate; MP 228° to 233°C.

Preparation of 9α-Fluoro-11β,21-Dihydroxy-16β-Methyl-16α,17α-Oxido-1,4-Pregnadiene-3,-20-Dione 21-Acetate: To a stirred solution of 500 mg of 9α -fluoro-11 β ,21-dihydroxy-16methyl-1,4,16-pregnatriene-3,20-dione 21-acetate in 5 ml of benzene and 5 ml of chloroform are added 0.50 ml of t-butyl hydroperoxide and 0.1 ml of a 35% methanolic solution of benzyl-trimethyl ammonium hydroxide. After 18 hours at room temperature, water is added and the mixture thoroughly extracted with chloroform. The chloroform extract is washed with saturated aqueous sodium chloride and dried over magnesium sulfate. Evaporation of the solvent and crystallization of the residue from acetone-ether gives 9α -fluoro- 11β ,21-dihydroxy- 16β -methyl- 16α , 17α -oxido-1,4-pregnadiene-3,20-dione 21-acetate.

Preparation of 9α-Fluoro-11β,17α,21-Trinydroxy-16-Methylene-1,4-Pregnadiene-3,20-Dione 21-Acetate: To a stirred solution of 600 mg of 9α -fluoro-11 β ,21-dihydroxy-16 β -methyl-16α,17α-oxido-1,4-pregnadiene-3,20-dione 21 acetate in 10 ml of acetic acid maintained at 10° to 15°C is added 3 ml of cold 10% hydrogen bromide in acetic acid. After 30 minutes the mixture is concentrated to dryness in vacuo (temperature 15°C) and the residue chromatographed on neutral alumina. Combination of pertinent benzene-chloroform fractions and crystallization leads to the desired 9α -fluoro- 11β , 17α , 21-trihydroxy-16-methylene-1,4-pregnadiene-3,20-dione 21 acetate.

References

Merck Index 4095 Kleeman & Engel p. 423 DOT 4 (2) 80 (1968)

I.N. p. 439

Wendler, N.L. and Taub, D.; U.S. Patent 3,065,239; November 20, 1962; assigned to Merck & Co., Inc.

Taub, D. and Wendler, N.L.; U.S. Patent 3,068,224; December 11, 1962; assigned to Merck & Co., Inc.

Taub, D., Wendler, N.L. and Hoffsommer, R.D. Jr.; U.S. Patent 3,068,226; December 11, 1962; assigned to Merck & Co., Inc.

Wendler, N.L., Taub, D. and Hoffsommer, R.D. Jr.; U.S. Patent 3,136,760; June 9, 1964; assigned to Merck & Co., Inc.

FLUPREDNISOLONE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: 6α-fluoro-11β,17α,21-trihydroxypregna-1,4-diene-3,20-dione

Common Name: 6\alpha-fluoroprednisolone

Structural Formula:

Chemical Abstracts Registry No.: 53-34-9

Trade Name	Manufacturer	Country	Year Introduced
A lphadrol	Upjohn	U.S.	1961
Decoderme	Merck-Clevenot	France	_
Etadrol	Farmitalia	Italy	_
Isopredon	Hoechst	W. Germany	_
Selectren	Albert Pharma	Spain	_

Raw Materials

 5α ,11 β ,17 α -Trihydroxy- 6β -fluoro-21-acetoxyallopregnane-3,20-dione-3-ethylene ketal Sulfuric acid Sodium bicarbonate

Acetic acid

Bacterium *Septomyxa affinis* Acetic anhydride Hydrogen chloride

Manufacturing Process

 5α , 11β , 17α -Trihydroxy- 6β -Fluoro-21-Acetoxyallopregnane-3, 20-Dione: A solution of 0.47 gram of 5α , 11β , 17α -trihydroxy- 6β -fluoro-21-acetoxyallopregnane-3, 20-dione 3-ethylene ketal in 35 ml of acetone and 4 ml of 1 N sulfuric acid solution was gently boiled on the steam bath for 10 minutes, cooled and neutralized with dilute sodium bicarbonate solution. Addition of water and cooling gave 0.33 gram of 5α , 11β , 17α -trihydroxy- 6β -fluoro-21-acetoxy-allopregnane-3, 20-dione, MP 230° to 240° C.

 6β -Fluoro-11 β ,17 α -Dihydroxy-21-Acetoxy-4-Pregnene-3,20-Dione (6β -Fluorohydrocortisone Acetate): A solution of 100 mg of 5 α ,11 β ,17 α -trihydroxy-6 β -fluoro-21-acetoxyallopregnane-3,20-dione in 4.9 ml of acetic acid and 0.1 ml of water was refluxed for a period of 1 hour, cooled, diluted with 50 ml of water and evaporated to dryness under reduced pressure. The residue was chromatographed over Florisil (synthetic magnesium silicate) to give one fraction (77 mg) eluted with methylene chloride plus 10% acetone. Crystallization from acetone-Skellysolve B-hexanes gave 38 mg of 6 β -fluoro-11 β ,17 α -dihydroxy-21-acetoxy-4-pregnene-3,20-dione (6β -fluorohydrocortisone acetate), MP 210° to 218°C.

6β-Fluoro-11β,17α-Dihydroxy-21-Acetoxy-1,4-Pregnadiene-3,20-Dione: A medium consisting of 1% dextrose hydrate, 2% cornsteep liquor of 60% solids and Kalamazoo tap water was adjusted to pH 4.9 with sodium hydroxide. The medium was steam sterilized at 15 pounds pressure for 30 minutes, cooled, and then inoculated with a 24-hour growth, from spores, of Septomyxa affinis, ATCC 6737. The medium was agitated, sparged with sterile air at the rate of one-tenth volume of air per volume of medium per minute. At the end of 24 hours of fermentation at room temperature, the pH was about 7.4.

To this culture there was added a solution of 6β -fluoro- 11β , 17α -dihydroxy-21-acetoxy-4-pregnene-3,20-dione (6β -fluorohydrocortisone acetate), dissolved in diethylformamide. The solution was prepared by dissolving five parts of the steroid in 100 parts of the solid and adding about 10 cm of the solution per liter of the medium. Fermentation was continued for a period of 48 hours whereupon the mycelium and beer were extracted thoroughly with methylene chloride. The extract was washed with sodium bicarbonate solution and then with water, dried and concentrated in vacuo to a slightly viscous residue. The residue, after reacetylation with acetic anhydride in pyridine, was fractionated chromatographically and 6β -fluoro- 11β , 17α -dihydroxy-21-acetoxy-1,4-pregnadiene-3,20-dione was recovered as a light-colored crystalline solid. Isomerization to the 6α -fluoro product is effected by streaming dry HCl into a cold chloroform/ethanol solution of the 6β -epimer.

References

Merck Index 4096 Kleeman & Engel p. 425 I.N. p. 439 REM p. 972 Hogg J.A. and Spero, G.

Hogg, J.A. and Spero, G.B.; U.S. Patent 2,841,600; July 1, 1958; assigned to The Upjohn Company

FLURANDRENOLIDE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: 6α -Fluoro- 11β ,21-dihydroxy- 16α ,17-[(1-methylethylidene)bis(oxy)] pregn-4-ene-3 20-dione

Common Name: Flurandrenolone; fludroxycortide

Structural Formula:

Chemical Abstracts Registry No.: 1524-88-5

Trade Name	Manufacturer	Country	Year Introduced
Haelan	Lilly	U.K.	1962
Sermaka	Lilly	W, Germany	1964
Haelan	Lilly	Italy	1964
Haelan	Lilly	France	19 6 6
Cortide Tape	Nichiban	Japan	1981
Cordran	Lilly	U.S.	_
Drenison	Dainippon	Japan	_
Drenison	Lilly	U.K.	_
Drocort	Lilly	_	_
Sermaform	Lilly	W. Germany	_

Raw Materials

6α-Fluoro-16α-hydroxycortisol Acetone

Perchloric acid

Manufacturing Process

 $6\alpha\text{-Fluoro-16}\alpha\text{-hydroxycortisol}$ is condensed with acetone by treating the solution in acetone with 70% perchloric acid.

References

Merck Index 4099

Kleeman & Engel p. 408

PDR p. 837

OCDS Vol. 2 p. 180 (1980)

I.N. p. 430

REM p. 967

Casas-Campillo, C.; U.S. Patent 3,119,748; January 28, 1964; assigned to Syntex Corporation, Panama

Ringold, H.J., Zderic, J.A., Djerassi, C. and Bowers, A.; U.S. Patent 3,126,375; March 24, 1964; assigned to Syntex Corporation, Panama

FLURAZEPAM

Therapeutic Function: Hypnotic

Chemical Name: 7-chloro-1-[2-(diethylamino)ethyl]-5-(o-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17617-23-1; 1172-18-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Dalmane	Roche	U.S.	1970
Flunox	Boehr. Biochem.	italy	1973
Daimadorm	Roche	W. Germany	1974
Dalmane	Roche	U.K.	1974
Dalmadorm	Roche	italy	1974
Dalmate	Roche	Japan	1975
Benozil	Kyowa Hakko	Japan	1975
Flunox	Robin	Italy	1975
Insumin	Kyorin	Japan	1979
Benodil	Kyowa	Japan	_
Felison	Sigurta	Italy	_
Fluzepam	Krka	Yugoslavia	_
Lunipax	Beecham	_	_
Natam	Unifa	Argentina	
Novoflupam	Novopharm	Canada	-
Remdue	Biomedia Foscama	Italy	_
Somlan	Sintyal	Argentina	
Sompan	I.C.N.	Canada	-
Valdorm	Valeas	Italy	_

Raw Materials

5-(2-Fluorophenyl)-7-chloro-2,3-dihydro-1H-benzodiazepinone(2) Sodium methoxide Diethylaminoethyl chloride

Manufacturing Process

13 grams of 5-(2-fluorophenyl)-7-chloro-2,3-dihydro-1H-1,4-benzodiazepinone-(2) were dissolved in 100 ml of N,N-dimethylformamide and treated with 10.3 ml of a solution of sodium methoxide in methanol containing 54 mmol or 2.95 grams of sodium methoxide. The resulting solution was stirred at about 20°C for 1 hour and then cooled in an ice-salt mixture to 0°C. A solution of diethylamino-ethyl chloride was prepared by dissolving 13.8 grams of diethylamino-ethyl chloride hydrochloride in cold dilute sodium hydroxide solution and extracting the base four times with 50 ml of toluene each time. The toluene extracts were combined, dried over anhydrous sodium sulfate, filtered and added to the reaction mixture.

The mixture was allowed to stand for 70 hours and then concentrated to a small volume under reduced pressure. The residue was dissolved in 100 ml of methylene chloride,

washed with 75 ml of water, three times with 50 ml of saturated brine solution each time and filtered over neutral alumina (grade 1). The filtrate was evaporated to dryness and the resulting colorless oil taken up in ether, which was then saturated with hydrogen chloride. The pale yellow precipitate was filtered off and recrystallized from methanol/ether yielding 1-[2-(diethylamino)ethyl] -5-(2-fluorophenyl)-7-chloro-2,3-dihydro-1 H-1,4-benzodiazepinone-(2) dihydrochloride as pale yellow rods melting at 190° to 220°C with decomposition, (from British Patent 1,040,548).

References

Merck Index 4100 Kleeman & Engel p. 426 PDR p. 1509 DOT 9 (6) 237 (1973) & 6 (6) 217 (1970) I.N. p. 440 REM p. 1062

F. Hoffmann-La Roche & Co., AG, Switzerland; British Patent 1,040,547; Sept. 1, 1966 F. Hoffmann-La Roche & Co., AG, Switzerland; British Patent 1,040,548; Sept. 1, 1966 Fryer, R. and Sternbach, L.H.; U.S. Patent 3,567,710; March 2, 1971; assigned to Hoffman-La Roche, Inc.

FLURBIPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: 2-(2-Fluoro-4-biphenylyl)propionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5104-49-4

Trade Name	Manufacturer	Country	Year Introduced
Froben	Boots	U.K.	1977
Froben	Boots	Switz.	1978
Froben	Kakenyaku Kako	Japan	1979
Froben	Boots	France	1979
Froben	Thomae	W. Germany	1980
Froben	Formenti	Italy	1981
Ansaid	Upjohn	_	_
Cebutid	Boots-Dacour	France	_
Flugalin	Galenika	Yugoslavia	_

Raw Materials

Sulfur 3-Acetyl-2-fluorobiphenyl Morpholine Ethanol Diethyl carbonate Dimethyl sulfate

Manufacturing Process

A mixture of 3-acetyl-2-fluorobiphenyl, MP 95°C to 96°C, (73.5 g) [prepared from 4-bromo-

3-nitroacetophenone (Oelschlage, Ann., 1961, 641, 81) via-4-acetyl-2-nitrobiphenyl, MP 106°C to 108°C (Ullman reaction), 4-acetyl-2-aminobiphenyl, MP 124°C to 125°C (reduction), and finally the Schiemann reaction], sulfur (17.4 g) and morpholine (87 ml) was refluxed for 16.5 hr, and then the resulting thiomorpholide was hydrolyzed by refluxing with glacial acetic acid (340 ml) concentrated sulfuric acid (54 ml) and water (78 ml) for 24 hr. The cooled solution was diluted with water, and the precipitated crude 2-fluoro-4-biphenylylacetic acid was collected. (A sample was purified by recrystallization to give MP 143°C to 144.5°C; Found (%): C, 73.2; H, 4.8. C₁₄H₁₁FO₂ requires C, 73.1; H, 4.8.)

A sodium carbonate solution of the crude acetic acid was washed with ether and then acidified with hydrochloric acid; the required acid was isolated via an ether extraction and was esterified by refluxing for 6 hr with ethanol (370 ml) and concentrated sulfuric acid (15 ml). Excess alcohol was distilled, the residue diluted with water and the required ester isolated in ether. Distillation finally gave ethyl 2-fluoro-4-biphenylacetate, BP 134°C to 136°C/0.25 mm.

This ester (70 g) and diethyl carbonate (250 mg) were stirred at 90°C to 100°C while a solution of sodium ethoxide [from sodium (7.8 g) and ethanol (154 ml)] was added over 1 hr. During addition, ethanol was allowed to distill and after addition distillation was continued until the column heat temperature reached 124°C. After cooling the solution to 90°C, dimethyl sulfate (33 ml) was followed by a further 85 ml of diethyl carbonate. This solution was stirred and refluxed for 1 hr and then, when ice cool, was diluted with water and acetic acid (10 ml). The malonate was isolated in ether and fractionally distilled to yield a fraction boiling at 148°C to 153°C/0.075 mm, identified as the alpha-methyl malonate. This was hydrolyzed by refluxing for 1 hr at 2.5 N sodium hydroxide (350 ml) and alcohol (175 ml), excess alcohol was distilled and the residual suspension of sodium salt was acidified with hydrochloric acid to give a precipitate of the alpha-methyl malonic acid. This was decarboxylated by heating at 180°C to 200°C for 30 minutes and recrystallized from petroleum ether (BP 80°C to 100°C) to give 2-(2-fluoro-4-biphenyly!)propionic acid, MP 110°C to 111°C.

References

Merck Index 4101 DFU 1 (7) 323 (1976) Kleeman & Engel p. 427 DOT 9 (9) 377 (1973) & 14 (9) 407 (1978) I.N. p. 440

Adams, S.S., Bernard, J., Nicholson, J.S. and Blancafort, A.R.; U.S. Patent 3,755,427; Aug. 28, 1973; assigned to The Boots Company Ltd.

FLUROTHYL

Therapeutic Function: Central stimulant; convulsant

Chemical Name: 1,1'-oxybis[2,2,2-trifluoroethane]

Common Name: Hexafluorodiethyl ether; bis(trifluoroethyl) ether

Structural Formula: CF₃CH₂OCH₂CF₃

Chemical Abstracts Registry No.: 333-36-8

Trade Name Manufacturer Country Year Introduced Indoklon Ohio Medical U.S. 1964

Raw Materials

2,2,2-Trifluoroethanol

Sodium p-Toluene sulfonyl chloride

Manufacturing Process

23 parts of sodium metal were placed in 300 parts of dry dioxane in a reactor equipped with an agitator and reflux condenser. The dioxane was heated to reflux while stirring. 150 parts of 2,2,2-trifluoroethanol were added very slowly in the period of about 1 hour, or until the sodium was all reacted, to form sodium 2,2,2-trifluoroethylate. 250 parts of 2,2,2-trifluoroethyl p-toluenesulfonate prepared by reacting 2,2,2-trifluoroethanol with p-toluenesulfonyl chloride were placed in another reactor and heated to about 160° to 185°C. The solution of sodium 2,2,2-trifluoroethylate in dioxane was added very slowly over a period of about 1½ hours. Bis(2,2,2-trifluoroethyl) ether formed continuously and distilled from the reactor with the dioxane into a cooled receiving vessel. The condensed effluent from the reactor was fractionally distilled, yielding 46.5 parts of products boiling at 55° to 73°C.

The crude product was washed successively with concentrated HCI, 62% H $_2SO_4$, concentrated H $_2SO_4$ and 5% NaOH solution. It was dehydrated over a drying agent and then refractionated in a still. 20 parts of bis(2,2,2-trifluoroethyl) ether were recovered (BP 62.5° to 63.5° C).

References

Merck Index 4103 Kleeman & Engel p. 428 I.N. p. 440 REM p. 1138 Olin, J.F.; U.S. Patent 3,363,006; January 9, 1968; assigned to Pennsalt Chemicals Corp.

FLUROXENE

Therapeutic Function: Inhalation anesthetic

Chemical Name: (2,2,2-trifluoroethoxy)ethene

Common Name: 2,2,2-trifluoroethyl vinyl ether

Structural Formula: CF3CH2OCH=CH2

Chemical Abstracts Registry No.: 406-90-6

Trade Name	Manufacturer	Country	Year Introduced
Fluoromar	Ohio Medical	U.S.	1961

Raw Materials

2,2,2-Trifluoroethanol Potassium Acetylene

Manufacturing Process

The following process description is taken from U.S. Patent 2,830,007.

270 grams 2,2,2-trifluoroethanol was added slowly to 15 grams of a cooled suspension of

potassium metal in 250 ml of ethyl ether with stirring. When all the potassium metal had reacted, the resulting solution was fractionally distilled in order to remove the ethyl ether. The residue was placed in a bomb and the air was removed from the bomb by flushing with acetylene. The bomb was sealed and heated to 150°C. Acetylene was then introduced at 245 to 260 psi and the gas pressure was maintained for a period of 5 hours under mechanical agitation throughout the reaction. At the end of this time, heating was discontinued, the flow of acetylene was shut off and the bomb was allowed to cool to room temperature. The excess pressure in the bomb was reduced to atmospheric pressure by venting any gases through a dry ice cooled trap.

The reaction mixture comprising 2,2,2-trifluoroethyl vinyl ether, 2,2,2-trifluoroethanol and potassium 2,2,2-trifluoroethylate was fractionally distilled, whereupon crude 2,2,2-trifluoroethyl vinyl ether was obtained which boiled at 42° to 45°C at 760 mm. More 2,2,2-trifluoroethyl vinyl ether was obtained when the distillation residue was returned to the bomb and reacted with acetylene in the same manner as hereinabove described.

The alkali metal hydroxides, instead of the alkali metals per se, can be employed to produce the alkali metal 2,2,2-trifluoroethanolate. However, this introduces water in the reaction mixture which requires removal prior to vinylation with acetylene. The crude products, on further distillation, yielded 2,2,2-trifluoroethyl vinyl ether having a boiling point of 43.1°C at 759 mm.

References

Merck Index 4104 Kleeman & Engel p. 428 I.N. p. 440 REM p. 1042

Shukys, J.G.; U.S. Patent 2,830,007; April 8, 1958; assigned to Air Reduction Company Townsend, P.W.; U.S. Patent 2,870,218; January 20, 1959; assigned to Air Reduction Co.

FLUSPIRILENE

Therapeutic Function: Tranquilizer

Chemical Name: 8-[4,4-bis(p-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5] decan-4-

one

Common Name: -

Structural Formula:

$$\mathbf{F} = \begin{array}{c} \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 \\ \mathbf{N} \end{array}$$

Chemical Abstracts Registry No.: 1841-19-6

Trade Name	Manufacturer	Country	Year Introduced
Imap	Janssen	W. Germany	1972
Redeptin	SKF	U.K.	1975
lmap	McNeil	U.S.	-

Cyclopropyl di-(4-fluorophenyl)carbinol Thionyl chloride Hydrogen 1-Phenyl 4-oxo-1,3,8-triazaspiro(4,5)-decane

Manufacturing Process

To a solution of 130 parts cyclopropyl-di-(4-fluorophenyl)-carbinol in 240 parts benzene are added dropwise 43 parts thionylchloride. The whole is refluxed until no more gas is evolved. The reaction mixture is then evaporated. The residue is distilled in vacuo, yielding 4-chloro-1,1-di-(4-fluorophenyl)-1-butene, boiling point 165° to 167°C at 6 mm pressure; $n_0^{20} = 1.5698$; $d_{20}^{20} = 1.2151$.

A solution of 61 parts 4-chloro-1,1-di-(4-fluorophenyl)-1-butene in 400 parts 2-propanol is hydrogenated at normal pressure and at room temperature in the presence of 5.5 parts palladium-on-charcoal catalyst 10% (exothermic reaction, temperature rises to about 30°C). After the calculated amount of hydrogen is taken up, hydrogenation is stopped. The catalyst is filered off and the filtrate is evaporated. The oily residue is distilled in vacuo, yielding 1-chloro-4,4-di-(4-fluorophenyl)-butane, boiling point 166° to 168°C at 6 mm pressure; $n_D^{20} = 1.5425$; $d_{20}^{20} = 1.2039$.

A mixture of 7.3 parts 1-chloro-4,4-di-(4-fluorophenyl)-butane, 5.1 parts 1-phenyl-4-oxo-1,3,8-triaza-spiro(4,5)-decane, 4 parts sodium carbonate, a few crystals of potassium iodide in 200 parts 4-methyl-2-pentanone is stirred and refluxed for 60 hours. After cooling the reaction mixture is treated with water. The organic layer is separated, dried, filtered and evaporated. The solid residue is recrystallized from 80 parts 4-methyl-2-pentanone, yielding 1-phenyl-4-oxo-8-[4,4-di-(4-fluorophenyl)-] butyl-1,3,8-triaza-spiro(4,5)decane, melting point 187.5° to 190°C.

References

Merck Index 4105 Kleeman & Engel p. 428 OCDS Vol. 2 p. 292 (1980) DOT 9 (6) 235 (1973) I.N. p. 441

Janssen, P.A.J.; U.S. Patent 3,238,216; March 1,1966; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

FLUTAMIDE

Therapeutic Function: Antiandrogen

Chemical Name: 2-Methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide

Common Name: Niftolid

Structural Formula:

Chemical Abstracts Registry No.: 13311-84-7

Trade Name	Manufacturer	Country	Year Introduced
Flugerel	Byk Essex	W. Germany	1983
Drogenil	Schering	Chile	1983

Raw Materials

4-Nitro-3-trifluoromethylaniline Isobutry! chloride

Manufacturing Process

To a stirred, cooled solution of 100 g of 4-nitro-3-trifluoromethylaniline in 400 ml of pyridine, slowly and in a dropwise fashion, add 54 g of isobutyrylchloride and then heat the reaction mixture on a steam bath for 1.5 hours. Cool and pour the resulting mixture into ice water, filter and water-wash the crude anilide and crystallize the product of this example from benzene to obtain analytically pure material, MP 111.5°C to 112.5°C.

References

Merck Index 4106 DFU 1 (3) 108 (1976) OCDS Vol. 3 p. 57 (1984)

I.N. p. 441

Gold, E.H.; U.S. Patent 3,847,988; November 12, 1974; assigned to Schering Corp.

FLUVOXAMINE MALEATE

Therapeutic Function: Antidepressant

Chemical Name: 5-Methoxy-4'-trifluoromethylvalerophenone O-(2-aminoethyl)oxime

maleate (1:1)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54739-18-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Floxyfral	Kali-Duphar	Switz.	1983
Solvay	Kali-Duphar	W. Germany	1983
Floxyfral	Duphar	U.K.	-

Raw Materials

5-Methoxy-4'-trifluoromethylvalerophenone 2-Aminooxyethylamine dihydrochloride Maleic anhydride

Manufacturing Process

20.4 mmol (5.3 g) of 5-methoxy-4'-trifluoromethylvalerophenone (MP 43°C to 44°C), 20.5 mmol (3.1 g) of 2-aminooxyethylamine dihydrochloride and 10 ml of pyridine were refluxed for 15 hr in 20 ml of absolute ethanol. After evaporating the pyridine and the ethanol in vacuo, the residue was dissolved in water. This solution was washed with petroleum ether and 10 ml of 50% sodium hydroxide solution were then added. Then three extractions with 40 ml of ether were carried out. The ether extract was washed successively with 20 ml of 5% sodium bicarbonate solution and 20 ml of water. After drying on sodium sulfate, the ether layer was evaporated in vacuo. Toluene was then evaporated another three times (to remove the pyridine) and the oil thus obtained was dissolved in 15 ml of absolute ethanol. An equimolar quantity of maleic acid was added to the solution and the solution was then heated until a clear solution was obtained. The ethanol was then removed in vacuo and the residue was crystallized from 10 ml of acetonitrile at +5°C. After sucking off and washing with cold acetonitrile, it was dried in air. The MP of the resulting compound was 120°C to 121.5°C.

References

Merck Index 4108 DFU 3 (4) 288 (1978)

I.N. p. 441

Welle, H.B.A. and Claassen, V.; U.S. Patent 4,085,225; April 18, 1978; assigned to U.S. Phillips Corp.

FOLIC ACID

Therapeutic Function: Treatment of B vitamin (folacin) deficiency

Chemical Name: N-[4-[[(2-amino-1,4-dihydro-4-oxo-6-pteridinyl)methyl] amino] benzoyl] -

L-glutamic acid

Common Name: Pteroylglutamic acid

Structural Formula:

Chemical Abstracts Registry No.: 59-30-3

Trade Name	Manufacturer	Country	Year Introduced
Foivite	Lederle	U.S.	1946
Foldine	Specia	France	1947
Folicet	Mission	U.S.	1981
Acfol	Torlan	Spain	_
Cefol	Abbott .	U.S.	_
Cevi-Fer	Geriatric	U.S.	_
Cytofol	Lappe	W. Germany	_
Eldec	Parke-Davis	U.S.	-
Eldercaps	Mayrand	U.S.	_
Enviro-Stress	Vitaline	U.S.	_
Fefol	SKF	U.K.	_
Feosol	Menley & James	U.S.	-
Fero-Folic	Abbott	U.S.	_
Ferrocap	Consolidated	U.K.	_
Ferrograd	Abbott	U.K.	-

Ferromyn Calmic U.K. — Filibon Lederle U.S. — Folacid U.C.B. — — Folacin Kabi-Vitrum Sweden — Folaemin O.P.G. Neth. — Folaemin Becker Austria — Folan Farmakos Yugoslavia — Folasic Adams Australia — Folisic Adams Australia — Folettes Fawns & McAllan Australia — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Folical Shionogi Japan — Folicet Mission U.S. — Folico Mitim Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folacid U.C.B. — — — — — — — — — — — — — — — — — —
Folacin Kabi-Vitrum Sweden — Folaemin O.P.G. Neth. — Folamin Becker Austria — Folan Farmakos Yugoslavia — Folasic Adams Australia — Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S.
Folaemin O.P.G. Neth. — Folamin Becker Austria — Folan Farmakos Yugoslavia — Folasic Adams Australia — Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S.
Folamin Becker Austria — Folan Farmakos Yugoslavia — Folasic Adams Australia — Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S.
Folan Farmakos Yugoslavia — Folasic Adams Australia — Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S.
Folasic Adams Australia — Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folbiol I.E. Kimya Evi Turkey — Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folettes Fawns & McAllan Australia — Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folex Rybar U.K. — Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folical Shionogi Japan — Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Foliamin Takeda Japan — Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folicet Mission U.S. — Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folico Mitim Italy — Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folina Tosi Italy — Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Folirivo Rivopharm Switz. — Hemocyte U.S. Pharm. U.S. —
Hemocyte U.S. Pharm. U.S
Iberet Abbott U.S
Ircon Key U.S. –
Irofol Abbott U.K. –
Iromin Mission U.S. –
Lipo Legere U.S
May-Vita Mayrand U.S. –
Mega-B Arco U.S. –
Megadose Arco U.S. –
Methiofoline Hepatrol France -
Mevanin Beutlich U.S
Niferex Central U.S. –
Nifolin Ferrosan Denmark –
Novofolac Novopharm Canada –
Nu-Iron Mayrand U.S. –
Pramet Ross U.S
Pramilet Ross U.S. –
Pregaday Glaxo U.K. –
Prenate Bock U.S
Pronemia Lederle U.S. –
Stuartnatal Stuart U.S. —
Trinsicon Glaxo U.S. –
Vicon Glaxo U.S. –
Vitafol Everett U.S. –
Zenate Reid-Rowell U.S. –
Zincvit R.A.M. Labs U.S. –

Raw Materials

1,3,3-Trichloroacetone

2,4,5-Triamino-6-hydroxypyrimidine HCl

p-AminobenzoyIglutamic acid

Bromine Sodium bisulfite

Manufacturing Process

The following description is taken from U.S. Patent 2,956,057.

100 grams of 1,3,3-trichloroacetone are heated on a boiling water bath and 95 grams of bromine are added thereto in drops while being stirred and the stirring is continued for about 1 hour. The resulting reaction solution is distilled under reduced pressure. 115

grams of 1-bromo-1,3,3-trichloroacetone are obtained having a boiling point of 85° to 95°C/17 mm (Hg).

For the preparation of the hydrate, 100 grams of water are added to 100 grams of 1bromo-1,3,3-trichloroacetone, which is agitated and cooled. A white scaly crystal of hydrate of 1-bromo-1,3,3-trichloroacetone is obtained (100 grams), having a melting point of 52° to 53°C.

8.9 grams of 2,4,5-triamino-6-hydroxypyrimidine hydrochloride and 8 grams of p-aminobenzoylglutamic acid are dissolved in 400 cc warm water, which is cooled at 35° to 27°C and adjusted to pH 4 by using 20% caustic soda solution. To this solution was simultaneously added dropwise a solution obtained by dissolving 13.4 grams of 1-bromo-1,3,3-trichloroacetone hydrate in 90 cc of 50% methanol and 24 grams of 35% agueous sodium bisulfite solution over a period of approximately 2 hours. During this period, in order to maintain the pH value of the reaction solution at 4 to 5, 20% caustic soda solution is added from time to time. The precipitate, formed by stirring for 5 hours after dropping was finished, is filtered, and the filtrated precipitate is refined; 5.6 grams of pure pteroylglutamic acid is obtained.

References

Merck Index 4110

Kleeman & Engel p. 430

PDR pp. 508, 524, 581, 673, 785, 830, 875, 905, 916, 969, 1010, 1033, 1050, 1083, 1131. 1264, 1344, 1441, 1449, 1559, 1786, 1808, 1869

I.N. p. 24

REM pp. 1014, 1023

Sletzinger, M. and Tishler, M.; U.S. Patent 2,786,056; March 19, 1957; assigned to Merck & Co., Inc.

Sietzinger, M. and Tishler, M.; U.S. Patent 2,816,109; December 10, 1957; assigned to Merck & Co., Inc.

Sletzinger, M. and Tishler, M.; U.S. Patent 2,821,527; January 28, 1958; assigned to Merck & Co., Inc.

Sletzinger, M. and Tishler, M.; U.S. Patent 2,821,528; January 28, 1958; assigned to Merck & Co., Inc.

Kawanishi, S.; U.S. Patent 2,956,057; October 11, 1960; assigned to Kongo Kagaku KK, Japan

FOMINOBEN HCI

Therapeutic Function: Antitussive: respiratory stimulant

Chemical Name: 3'-Chloro-α-[methyl[(morpholinocarbonyl)methyl] amino] -o-benzo-

toluidide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18053-32-2; 18053-31-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Noleptan	Thomae	W. Germany	1973
Terion	Lusofarmaco	Italy	1979
Noleptan	Tanabe Seiyaku	Japan	1983
Deronyl	Arzneimittelwerk Dresden	E. Germany	-
Finaten	Finadiet	Argentina	-
Oleptan	Bender	Austria	_
Tussirama	Serpero	Italy	_

Raw Materials

6-Chloro-2-dibenzoylaminobenzyl bromide Morpholine Sarcosine methyl ester Hydrogen chloride Ethyl chloroformate

Manufacturing Process

- (a) A mixture consisting of 9.75 g of 6-chloro-2-dibenzoylamino-benzyl bromide, 2.34 g of sarcosine methyl ester, 3.18 ml of triethylamine and 250 ml of chloroform was refluxed for five hours. Thereafter, an addition 0.5 g of sarcosine methyl ester was added, and the mixture was again refluxed for five hours. Subsequently, the chloroform was evaporated in vacuo, the residue was taken up in ethylacetate, the insoluble matter was separated by filtration, and the filtrate was again evaporated in vacuo. The residual oil was dissolved in methanol, the solution was admixed with 25 ml of 2 N sodium hydroxide, and the mixture was allowed to stand overnight at about 20°C. Thereafter, the methanol was evaporated in vacuo, and the residual aqueous solution was adjusted to pH 2 with 2N hydrochloric acid, then extracted with ethyl acetate and then adjusted to pH 6 with 2N sodium hydroxide. The crystalline product precipitated thereby was collected by vacuum filtration and recrystallized from water. yielding N-(2-benzoylamino-6-chloro-benzyl)-N-methyl-glycine, MP 150°C to 152°C.
- (b) 80.7 g of N-(2-benzoylamino-6-chlorobenzy!)-N-methyl-glycine and 38 ml of triethylamine were dissolved in 1 liter of dry chloroform. While stirring the resulting solution at -15°C to -5°C, 23.4 ml of ethyl chloroformate were rapidly added dropwise, and the mixture was stirred for 40 minutes more at -15°C to -5°C. Therafter, 50 ml of morpholine were added all at once, and the mixture was allowed to stand at 20°C for 20 hours. Subsequently, the chloroformic reaction solution was washed three times with brine, dried over magnesium sulfate and evaporated in vacuo, and the oily residue was taken up in ether, whereupon it crystallized. The crystalline product was recrystallized from methanol, yielding N-(2-benzoylamino-6-chloro-benzyl)-N-methyl-glycine-morpholide, MP 122.5°C to 123°C, of the formula

The product was dissolved in isopropanol, and the solution was acidified with anhydrous hydrochloric acid, yielding the hydrochloride, MP 206°C to 208°C (decomp.).

References

Merck Index 4124 Kleeman & Engel p. 432 DOT 9 (7) 288 (1973) I.N. p. 442

Kruger, G., Zipp, O., Keck, J., Nickl, J., Machleidt, H., Ohnacker, G., Engelhorn, R. and Puschmann, S.; U.S. Patent 3,661,903; May 9, 1972; assigned to Boehringer Ingelheim G.m.b.H. (W. Germany)

FOMOCAINE

Therapeutic Function: Local anesthetic

Chemical Name: 4-[3-[4-(phenoxymethyl)phenyl] propyl] morpholine

Common Name: ~

Structural Formula:

$$\mathsf{C_6H_3} - \mathsf{OCH_2} - \underbrace{\hspace{1cm}} \mathsf{CCH_2)_3} - \mathsf{N} \\$$

Chemical Abstracts Registry No.: 17692-39-6

Trade Name	Manufacturer	Country	Year Introduced
Erbocain	Heilit	W. Germany	1967
Panacain	Hermal	W. Germany	-

Raw Materials

γ-(4-Chloromethylphenyl)propyl chloride Sodium phenolate Morpholine

Manufacturing Process

64 parts of dry sodium phenolate are dissolved in 300 parts of methylisobuty! ketone by heating at 110°C. 103 parts of γ -(4-chloromethylphenyl)propyl chloride are added dropwise with agitation, and the mixture is maintained at 110°C for a period of 4 hours with constant agitation. After cooling, the reaction mixture is washed 2 or 3 times with 100 parts of water and the methylisobutyl ketone is distilled off under reduced pressure. The residue is taken up in 200 parts of petroleum-ether and γ-(4-phenoxymethylphenyl)propyl chloride is crystallized by addition of ice water. The crystals are filtered off employing a suction pump and dried at 100°C in vacuo (10 mm Hg) for 1 to 2 hours. The γ-(4-phenoxymethylphenyl)propyl chloride melts at 55°C to 56°C after recrystallization from petroleum-ether.

130 parts of γ-(4-phenoxymethylphenyl)propyl chloride are heated under reflux at 140°C for 24 hours with 130 parts of morpholine. The reaction mixture is treated to give N-(γphenoxymethylphenyl)propyl]-morpholine, which forms colorless crystals melting at 52°C to 53°C when crystallized from n-heptane.

References

Merck Index 4115

I.N. p. 442

Chemische Fabrik Promonta G.m.b.H.; British Patent 786,128; November 13, 1957

FONAZINE MESYLATE

Therapeutic Function: Analgesic

Chemical Name: 10-[2-(dimethylamino)propyl]-N,N-dimethylphenothiazine-2-sulfonamide

methane sulfonate

Common Name: Dimethothiazine

Structural Formula:

Chemical Abstracts Registry No.: 7455-39-2; 7456-24-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Migristene	Rhone Poulenc	France	1965
Migristene	Rhone Poulenc	W. Germany	1967
Migristene	Rhone Poulenc	U.K.	1968
Migristene	Rhone Poulenc	Italy	1972
Migristen	Shionogi	Japan	1973
Alius	Scharper	Italy	_
Banistyl	May & Baker	U.K.	
Bistermin	Toyo Shinyaku	Japan	_
Calsekin	Kanto	Japan	_
Demethotiazine	Mohan	Japan	_
Normelin	Sawai	Japan	_
Serevirol	Fuji Zoki	Japan	_

Raw Materials

3-Dimethylsulfamovlphenthiazine Sodium amide 1-Dimethylamino-2-chloropropane Hydrogen chloride Methane sulfonic acid

Manufacturing Process

A solution of 3-dimethylsulfamoylphenthiazine (10 grams) in xylene (100 cc) is heated under reflux for 3 hours with sodamide (1.5 grams). A solution of 1-dimethylamino-2chloropropane (4.4 grams) in anhydrous xylene (30 cc) is then added and heating under reflux continued for 4 hours. After cooling the suspension obtained is agitated with water (50 cc) and ether (30 cc). The aqueous layer is separated and the basic products are extracted from the organic phase with 10% hydrochloric acid. The xylene layer is discarded and, after the combined acid solutions have been made alkaline with sodium carbonate, the base is extracted with chloroform. The chloroform solutions are then washed with water and dried over anhydrous potassium carbonate. After evaporation of the solvent under reduced pressure there is obtained a crude resinous base (9.7 grams).

On the addition of ethereal hydrogen chloride to a solution of the base in isopropanol and recrystallization from anhydrous ethanol of the salt formed, there is obtained 3-dimethylsulfamoyl-10-(2-dimethylaminopropyl)phenthiazine hydrochloride (2.1 grams), MP 214°C with decomposition. After dissolving the product in anhydrous ethanol and adding methanesulfonic acid there is obtained fonazine mesylate.

References

Merck Index 4116 Kleeman & Engel p. 320 DOT 3 (2) 57 (1967) & 9 (6) 226 (1973) I.N. p. 341

Societe des Usines Chimiques Rhone-Poulenc, France; British Patent 814,512; June 3, 1959

FORMOCORTAL ACETATE

Therapeutic Function: Glucocorticoid; antiinflammatory

Chemical Name: 3-(2-chloroethoxy)-9-fluoro-11 β ,16 α ,17,21-tetrahydroxy-20-oxopregna-

3,5-diene-6-carboxaldehyde, cyclic 16,17-acetal-21-acetate

Common Name: -

Structural Formula:

$$\begin{array}{c} \text{CH}_2\text{OCOCH}_3\\ \text{C} = 0\\ \text{CH}_3\\ \text{CH}_3\\ \text{CR}_3\\ \text{CR}_3\\ \text{CR}_3\\ \text{CH}_3\\ \text{C$$

Chemical Abstracts Registry No.: 2825-60-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Fluderma	Farmitalia	Italy	1970
Deflamene	Pharmitalia	U.K.	1971
Deidral	Montedison	W. Germany	_
Formaftil	Farm igea	Italy	_

Raw Materials

 9α -Fluoro-4-pregnene- 11β , 16α , 17α ,21-tetrol-3,20-dione-21-acetate- 16α , 17α -acetate- 16α , 17α -bethylene glycol Ethyl orthoformate Trichloroethylene

Phosphorus oxychloride

Manufacturing Process

4.8 grams of 9α -fluoro-4-pregnene- 11β , 16α , 17α , 21-tetrol-3, 20-dione-21-acetate- 16α , 17α -acetonide, melting at 248° to 250° C and prepared by acetylation of the corresponding 21-alcohol (*J. Amer. Chem. Soc.*, 1959, 81, page 1689), were refluxed for 20 hours with 80 cc of dioxane, 5.2 cc of ethylene glycol, 4.8 cc of ethyl orthoformate and 60 mg of p-toluenesulfonic acid. After cooling, 0.6 cc of pyridine were added and the mixture was concentrated in vacuo, diluted with ethyl acetate, poured into a separatory funnel, and washed with water, with a solution of 5% aqueous sodium bicarbonate and then with water to neutrality. After distilling off the solvent, a residue of 5.5 grams remained, which was dissolved in benzene and chromatographed over 100 grams of Florisil (chromatographic adsorbent). 3 grams of 9α -fluoro-5-pregnene- 11β , 16α , 17α , 21-tetrol-3, 20-dione-21-acetate-3-ethyleneketal- 16α , 17α -acetonide, melting at 145° to 147° C, were collected from the fractions eluted with benzene-ether 9:1.

1 gram of this 9α -fluoro-5-pregnene- 11β , 16α , 17α , 21-tetrol-3, 20-dione-21-acetate-3-ethylene-ketal- 16α , 17α -acetonide in 2 cc of dimethylformamide and 2 cc of trichloroethylene was heated for 3 hours on an oil bath at 70° C with the reagent obtained from 0.5 cc of dimethylformamide in 4 cc of trichloroethylene with 0.5 cc phosphorus oxychloride. After cooling to 0° C, 1 gram of sodium acetate dissolved in 3 cc of water were slowly added with stirring. The mixture was extracted with ethyl acetate and the extracts were washed with

water, with a 5% aqueous solution of sodium bicarbonate and then with water to neutrality. On distillation of the solvent 1.1 grams of a residue was obtained from which, after dissolution in ether and precipitation with petroleum ether, 0.500 gram of 3-(2'-chloroethoxy)-6formyl- 9α -fluoro-3,5-pregnadien-11 β ,16 α ,17 α ,21-tetrol-20-one-21-acetate-16 α ,17 α -acetonide, melting at 180° to 182°C were obtained.

References

Merck Index 4126 Kleeman & Engel p. 433 OCDS Vol. 2 p. 189 (1980) DOT 7 (1) 21 (1971) I.N. p. 443

Camerino, B., Patelli, B. and Sciaky, R.; U.S. Patent 3,314,945; April 18, 1967; assigned to Societa Farmaceutici Italia, Italy

FOSFOMYCIN

Therapeutic Function: Antibiotic

Chemical Name: (Cis-1,2-epoxypropy!)phosphonic acid

Common Name: Phosphonomycin

Structural Formula:

Chemical Abstracts Registry No.: 23155-02-4

Trade Name	Manufacturer	Country	Year Introduced
Fosfocin	Crinos	Italy	1977
Fosfocine	Clin Midy	France	1980
Fosfocin	Boehr, Mann.	W. Germany	1980
Fosmicin	Meiji Seika	Japan	1981
Fosfocine	Boehr, Mann.	Switz.	1983
Biocin	lbirn	Italy	_
Faremicin	Lafare	Italy	
Fonofos	Pulitzer	Italy	
Fosfogram	Firma	Italy	_
Fosfotricina	Italfarmaco	Italy	_
Francital	Francia	Italy	_
Lancetina	Lancet	ltaly	_
Lofoxin	Locatelli	Italy	_
Palmofen	Zambon	Italy	_
Priomicina	San Carlo	Italy	
Selemicina	Italchemi	Italy	_
Valemicina	Valeas	Italy	-

Raw Materials

Acetaldehyde t-Butyl hypochlorite Hydroxymethylphosphonic acid Zinc-copper couple

Manufacturing Process

- (A) The preparation of ((1-chloroethoxy)chloromethyl] phosphonic acid: Acetaldehyde (1.1 mol) and hydroxymethylphosphonic acid (1 mol) in 500 ml of benzene are saturated with hydrogen chloride gas at 10°C to 15°C. The mixture is aged at 25°C for 24 hr, the solvent distilled out in vacuo and the residue flushed three times with benzene to remove all traces of hydrogen chloride. The residue is taken up in benzene (500 ml), treated with tert-butyl hypochlorite (0.8 mol) and azobisisobutyronitrile (0.8 mm) at 40°C until titration shows the absence of hypochlorite and the solution is then evaporated to yield [(1-chloroethoxy)chloromethyl] phosphonic acid in the form of an oil.
- (B) The preparation of (cis-1,2-epoxypropyl)phosphonic acid: [(1-chloroethoxy)chloromethyl] phosphonic acid (1.0 g) is added with stirring to tetrahydrofuran (50 ml) to which has been added a crystal of iodine and a zinc-copper couple (15.0 g). The mixture is then heated under reflux for 24 hr and the resulting solution filtered to yield (cis-1,2-epoxypropyl)-phosphonic acid.

There is also a fermentation route to Fosfomycin as noted by Kleeman & Engel.

References

Merck Index 4137 Kleeman & Engel p. 434 DOT 9 (7) 294 (1973) I.N. p. 444

DCM = 101

REM p. 1212

Christensen, B.G. and Firestone, R.A.; U.S. Patent 3,632,691; January 4, 1972; assigned to Merck & Co., Inc.

Firestone, R.A. and Sletzinger, M.; U.S. Patent 3,584,014; June 8, 1971; assigned to Merck & Co., Inc.

Firestone, R.A. and Glamkowski, E.J.; U.S. Patent 3,632,609; January 4, 1972; assigned to Merck & Co., Inc.

Firestone, R.A.; U.S. Patent 3,637,765; January 25, 1972; assigned to Merck & Co., Inc.

Glamkowski, E.J. and Sletzinger, M.; U.S. Patent 3,637,766; January 25, 1972; assigned to Merck & Co., Inc.

Poliak, P.I., Wendler, N.L. and Christensen, B.G.; U.S. Patent 3,649,619; March 14, 1972; assigned to Merck & Co., Inc.

FRUCTOSE

Therapeutic Function: Fluid and nutrient replenisher

Chemical Name: Fructose

Common Name: Levulose and fruit sugar

Structural Formula:

Chemical Abstracts Registry No.: 57-48-7

Trade Name	Manufacturer	Country	Year Introduced
Levugen	Baxter	U.S.	1953
Fructosteril	Fresenius	W. Germany	_
Inulon	Boehr, Mann,	W. Germany	_
Laevoral	Laevosan	Austria	_
Laevosan	Laevosan	Austria	_
Laevuflex	Geistlich	U.K.	
Levulose	Biosedra	France	_
Levupan	Sirt-B.B.P.	Italy	_

Raw Materials

Bacterium Leuconostoc mesenteroides Corn steep liquor

Manufacturing Process

200 gal of medium containing 2% sucrose, 2% corn steep liquor solids, 0.1% potassium dihydrogen phosphate, and traces of mineral salts, was inoculated with Leuconostoc mesenteroides NRRL B-512 and incubated at 25°C. During growth, alkali was added automatically as needed to maintain the pH between 6.6 and 7.0. Fermentation was completed in 11 hours and the culture was immediately adjusted to pH 5 to maintain enzyme stability. Bacterial cells were removed by filtration and yielded a culture filtrate containing 40 dextransucrase units per ml, where one unit is the amount of dextransucrase which will convert 1 mg of sucrose to dextran, as determined by the amount of fructose liberated, measured as reducing power in 1 hour,

10 gal of the above culture filtrate was diluted to 40 gal with water, 33.3 lb of sucrose was added to give a 10% solution, and toluene was added as a preservative. Dextran synthesis was complete before 22 hours, and dextran was harvested at 24 hours by the addition of alcohol to be 40% on a volume basis.

The alcoholic supernatant liquor obtained was evaporated to recover the alcohol and yielded a thick syrup, rich in fructose. Analysis showed the syrup to contain 50.1% of reducing sugar, calculated as monosaccharide and to have an optical rotation equivalent to 35.1% fructose. The percentages are expressed on a weight/volume basis, and reducing power was determined by the method of Somogyi, Jour. Biol. Chem. 160, 61 (1945). A portion (4.3 liters) of the syrup was cooled to 3°C. One-tenth of this volume was treated by slow regular addition, with rapid stirring, of a 6-fold volume of cold 20% calcium oxide suspension. A second portion was treated in the same manner, and this process was continued until the entire volume of crude fructose syrup had been utilized. The reaction mixture became thick with a white sediment containing a profusion of microscopic needlelike crystals of calcium levulate. Stirring was continued for 2 hours.

The calcium levulate precipitate was separated from the reaction mixture by filtration and washed with cold water. The precipitate was suspended in water to give a thick slurry, and solid carbon dioxide added until the solution was colorless to phenolphthalein. A heavy precipitate of calcium carbonate was now present and free fructose remained in the solution. The calcium carbonate precipitate was removed by filtration, and the filtered solution was found to contain 1,436 g of fructose as determined by optical rotation. A small amount of calcium bicarbonate was present as an impurity in solution and was removed by the addition of oxalic acid solution until a test for both calcium and oxalic acid was negative. The insoluble calcium oxalate precipitate was removed by filtration.

The fructose solution was decolorized by treatment with activated charcoal and concentrated under vacuum to a thick syrup. Two volumes of hot 95% ethyl alcohol were added, and the solution was heated to a boil and filtered to remove a small amount of insoluble material. After cooling, three volumes of ethyl ether were added, and the solution was allowed to stand overnight in the refrigerator. Fructose separated from the solution as a thick syrup and was

separated from the supernatant liquid by decantation. The syrup was seeded with fructose crystals and after standing in the cold for 4 days, became a crystalline mass of fructose. The yield of dry fructose was 928 g. Additional recoverable quantities of fructose are present in the crystallization mother liquor. In continuous operation this mother liquor may be recycled for addition to subsequent quantities of fructose syrup and the combined liquors crystallized as in the foregoing example.

References

Merck Index 4149 I.N. p. 445 REM p. 1029

Koepsell, H.J., Jackson, R.W. and Hoffman, C.A.; U.S. Patent 2,729,587; January 3, 1956; assigned to the Secretary of Agriculture

Cantor, S.M. and Hobbs, K.C.; U.S. Patent 2,354,664; August 1, 1944; assigned to Corn Products Refining Co.

FUMAGILLIN

Therapeutic Function: Antibiotic

Chemical Name: 2,4,6,8-Decatetraenedioic acid mono [5-methoxy-4-[2-methyl-3-(methyl-2butenyl)oxiranyl] -1-oxaspiro[2.5] oct-6-yl] ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23110-15-8

Trade Name	Manufacturer	Country	Year Introduced
Fugillin	Upjohn	U.S.	1953
Fumidil	Abbott	U.S.	1953

Raw Materials

Corn steep liquor Bacterium Aspergillus fumigatus

Manufacturing Process

A fermentation medium comprising 4,600 gal of sterile corn steep-glucose-calcium carbonate medium in a 6,000-gal fermentation tank is adjusted to pH 6.0 with sodium carbonate prior to sterilization and thereafter inoculated with 200 gal of vegetative inoculum of Aspergillus fumigatus NRRL 2436. The inoculated medium is incubated for approximately 108 hours at a temperature of 26°C and agitated by an impeller rotating at 114 rpm and aerated at a rate of 500 cfm. An antifoam agent of the type used in penicillin fermentation is used as required.

The clarified liquid obtained from the fermentation medium (beer) by filtration in any of the

usual apparatus for removing mycelia and suspended solids from fermentation beers, after first adjusting the pH of the contents of the fermentation tank to above about pH 7.0 and preferably to between pH 7.5 and pH 8.5 with, for example, the addition of an alkaline material such as sodium carbonate, is intimately mixed with hexane with a Podbielniak extractor and the hexane layer containing undesirable fatty material discarded. The pH of the defatted liquid is adjusted to about pH 3 by the addition of H₂SO₄, and the defatted liquid is extracted with chloroform. The chloroform is removed under reduced pressure without external heating. After the removal of all of the chloroform the residual syrup is dissolved in acetone. The acetone solution is cooled to 5°C whereupon a small quantity of brown precipitate separates which is removed by filtration. The precipitate is washed with acetone and the washings added to the original filtrate. A portion of the above acetone solution is concentrated under reduced pressure at room temperature under an atmosphere of nitrogen. The resulting thick suspension is placed in a 1-liter centrifuge cup, under nitrogen, and cooled at -30°C for 18 hours. The suspension is centrifuged for 1 hour at 1,500 to 1,700 rpm. The supernatant liquid is decanted from the residual solids which are washed 5 times at room temperature with several portions of tert-butanol. A residual solid material remains after the wash and after drying at room temperature. This material, after recrystallization from a mixture of equal parts of water and of methanol has a MP of 190°C to 192°C.

References

Merck Index 4164 Kleeman & Engel p. 434

1.N.p. 447

Peterson, M.H., Goldstein, A.W. and Denison, F.W. Jr.; U.S. Patent 2,803,586; August 20, 1957; assigned to Abbott Laboratories

FURALTADONE

Therapeutic Function: Antibacterial

Chemical Name: 5-(4-Morpholinylmethyl)-3-[[(5-nitro-2-furanyl)methylene] amino] -2-

oxazolidinone

Common Name: Furmethanol and nitrofurmethone

Structural Formula:

Chemical Abstracts Registry No.: 139-91-3

Trade Name	Manufacturer	Country	Year Introduced
Altafur	Norwich Eaton	U.S.	1959
Altabactina	Esteve	Spain	_
Darifur	Norwich Eaton	U.S.	_
Furasol	SKF	U.S.	-
Medifuran	Hess & Clark	U.S.	_
Valsyn	Pharmacia	Sweden	_

Raw Materials

3-(N-Morpholinyl)-1,2-epoxypropane

Hydrazine hydrate 5-Nitro-2-furaldehyde

Diethyl carbonate Hydrogen chloride

Manufacturing Process

11.17 g (0.78 mol) 3-(N-morpholinyl)-1,2-epoxypropane, BP 76.5°C to 78°C, 3.9 mm, prepared by Eisleb's method for 3-(1-piperidyl)-1,2-epoxypropane (U.S. Patent 1,790,042) is added dropwise in 12 minutes to 19.5 g (0.39 mol) 100% hydrazine hydrate, which has been warmed to 85°C on the steam bath, and is being mechanically stirred. The heat of the reaction maintains the internal temperature at 90°C to 100°C without further external heating. The reaction mixture is then warmed on the steam bath for an additional two hours (90°C to 95°C). The excess hydrazine hydrate is removed in vacuo. The residue of viscous 1-hydrazino-3-morpholinyl-2-propanol is not distilled, but is mixed with 10.16 g (0.086 mol) diethyl carbonate and a solution of 0.3 g sodium metal in 15 ml methyl alcohol. The mixture is refluxed about 2 hours under a 15 cm Widmer column, the alcohol being removed leaving a thick, green liquid residue, which is cooled and the precipitate which forms is removed by filtration and washed well with ether. Yield 82%, MP 114°C to 116°C. Recrystallization from isopropanol gives purified 3-amino-5-(N-morpholinyl)-methyl-2-oxazolidone, MP 120°C as the intermediate.

It is not necessary that the intermediate be separated from the reaction medium in the preparation of the end product. Instead, the reaction mixture, after cooling, is treated with 200 ml of water acidified with 42 ml 10% hydrochloric acid solution, and filtered. To the clear, light yellow filtrate is added dropwise a solution of 9.8 g (0.07 mol) 5-nitro-2-furaldehyde in 100 ml ethyl alcohol. An orange solution of the hydrochloride results. The free base is precipitated as yellow plates by making the solution basic with saturated sodium carbonate solution. 14 g of the compound is filtered off by suction, washed with alcohol, and dried. The yield, MP 204°C to 205°C (dec.), is 53% of theoretical based on 3-(N-morpholinyl)-1,2-epoxy-propane. Recrystallization from 95% alcohol (75% recovery) raises the melting point to 206°C (dec.).

The hydrochloride salt is isolated quantitatively by suspending the base in alcohol and adding sufficient aqueous concentrated HCl solution. The precipitate becomes pale yellow, is filtered off, and recrystallized from 80% alcohol. The MP range is about 223°C to 228°C (dec.).

References

Merck Index 4170 OCDS Vol. 1 p. 229 (1977)

I.N. p. 448

Gever, G.; U.S. Patent 2,802,002; August 6, 1957; assigned to The Norwich Pharmacal Co.

FURAZABOL

Therapeutic Function: Anticholesteremic

Chemical Name: 17α -methyl- 5α -androstano[2,3-c]-[1,2,5] oxadiazol- 17β -ol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1239-29-8

Trade Name	Manufacturer	Country	Year Introduced
Miotolon	Daiichi	Japan	1969

Raw Materials

2.3-Dihydroxyimino-17 α -methyl-5 α -androstan-17 β -ol Ethylene glycol

Manufacturing Process

A mixture of 2.0 grams of 2,3-dihydroxyimino-17 α -methyl-5 α -androstan-17 β -ol, 5 ml of piperidine and 10 ml of ethylene glycol was heated at a temperature between 180° and 190°C for 30 minutes. After the resulting product was cooled, water was added thereto, and the separated product was filtered, washed with water and dried. The product was dissolved in benzene and passed through a column of alumina. The column was washed with ether, and the eluted fractions were collected and condensed. Subsequently, the residue was recrystallized from ether or aqueous methanol to produce 1.53 grams of 17β -hydroxy- 17α -methyl- 5α -androstano [2,3-C] furazan which has a melting point of 152°C.

References

Merck Index 4174 Kleeman & Engel p. 435 I.N. p. 448

Ohta, G., Takegoshi, T., Onodera, T., Kasahara, A., Oshima, Y., Shimizu, M. and Ueno, K.; U.S. Patent 3,245,988; April 12, 1966; assigned to Daiichi Seiyaku KK, Japan

FURAZOLIDONE

Therapeutic Function: Topical antiinfective

Chemical Name: 3-[[(5-nitro-2-furanyl)methylene]-amino]-2-oxazolidinone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 67-45-8

Trade Name	Manufacturer	Country	Year Introduced
Tricofuron	Norwich Eaton	U.S.	1955
Furoxone	Norwich Eaton	U.S.	1958
Furoxane	Oberval	France	1963
Colivan	Croce Bianca	Italy	_
Diafuron	Arnaldi	Italy	_
Dialidene	S.A.M.	Italy	
Enteroxon	Bieffe	Italy	_
Furall	Farnam	U.S.	_
Furazon	Daiko Seiyaku	Japan	
Giarlam	Laquifa	Portugal	_

Trade Name	Manufacturer	Country	Year Introduced
Ginvel	Fujita	Japan	_
Intefuran	Crosara	Italy	_
Medaron	Yamanouchi	Japan	_
Nifulidone	Abic	Israel	_
Nifuran	Pharmamed	E. Germany	_
Sclaventerol	Sclavo	U.S.	_
Trifurox	Pharmacia	Sweden	_
Viofuragyn	Violani-Farmavigor	l taly	_

Raw Materials

N-(Benzylidene)-3-amino-2-oxazolidone 5-Nitro-2-furaldehyde diacetate

Manufacturing Process

In 212 cc of water are mixed 21.2 grams (0.112 mol) of N-(benzylidene)-3-amino-2-oxazolidone, 8.93 grams of concentrated sulfuric acid, and 30.1 grams (0.124 mol) of 5-nitro-2-furaldehyde diacetate. This mixture is heated to effect the hydrolysis of N-(benzylidene)-3-amino-2-oxazolidone, steam distillation of the benzaldehyde and hydrolysis of 5-nitro-2-furaldehyde diacetate. Approximately 1½ hours are required for this reaction to take place. When the bulk of the benzaldehyde has been removed, 50 cc of 99% isopropanol are added, the reaction mixture is refluxed a short time, and the crystals of N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone are filtered from the hot suspension. The product is washed with water and isopropanol and dried; a yield of 23.3 grams, 92.8% based on N-(benzylidene)-3-amino-2-oxazolidone of MP 254° to 256°C is obtained, according to U.S. Patent 2,759,931.

References

Merck Index 4175 Kleeman & Engel p. 435 PDR p. 1279 OCDS Vol. 1 p. 229 (1977) I.N. p. 448

Drake, G.D., Gever, G. and Hayes, K.J.; U.S. Patent 2,759,931; August 21, 1956; assigned to The Norwich Pharmacal Company

Gever, G. and O'Keefe, C.J.; U.S. Patent 2,927,110; March 1, 1960; assigned to The Norwich Pharmacal Company

FUROSEMIDE

Therapeutic Function: Diuretic

Chemical Name: 5-(aminosulfonyl)-4-chloro-2-[(2-furanylmethyl)amino] benzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54-31-9

Trade Name	Manufacturer	Country	Year Introduced
Lasix	Hoechst	W. Germany	1964
Lasix	Hoechst	U.K.	1964
Lasilix	Hoechst	France	1965
Lasix	Hoechst	Italy	1965
Lasix	Hoechst	U.S.	1966
Eutensin	Hoechst	Japan	1981
Aisemide	Hotta	Japan	_
Accent	Toyama	Japan	-
Arasemide	Arakawa	Japan	-
Beronald	Kowa	Japan	-
Desal	Biofarma	Turkey	
Desdemin	Vitacain	Japan	_
Disal	Med-Tech	U.S.	
Diumide	Napp	U.K.	-
Diural	A.L.	Norway	-
Diuresal	Lagap	Switz.	-
Diuríx	Helvepharm	Switz.	-
Diurolasa	Lasa	Spain	_
Diusemide	Nakataki	Japan	_
Diuzol	Wakamoto	Japan	_
Dryptal	Berk	U.K.	_
Errolon	Disprovent	Argentina	
Franyl	Seiko Eiyo	Japan	
Frusemin	Toho	Japan	_
Frusetic	Unimed	U.S.	-
Frusid	D.D.S.A.	U.K.	_
Fulsix	Tatsumi	Japan	_
Fuluvamide	Kanto	Japan	_
Furantral	Polfa	Poland	
Furantril	Farmakhim	Bulgaria	
Furesis	Farmos	Finland	_
Furetic	Script Intal	S. Africa	-
Furex	Siegfried	Switz.	-
Furfan	Nippon-Roussel-Chugai	Japan	
Furix	Benzon	Denmark	
Furix	Medica	Finland	-
Furomex	Orion	Finland	_
Furopuren	Klinge	W. Germany	_
Furosedon	Santen	Japan	_
Furoside	I.C.N.	Canada	_
Fusid	Teva	Israel	_
Hydro-Rapid	Sanorania	W. Germany	
Impugan	Dumex	Denmark	
Katlex	lwaki	Japan	
Kutrix	Kyowa	Japan	_
Lizik	Aksu	Turkey	-
	Maruro	Japan	_
Lowpston Macasirool	Hishiyama	Japan Japan	_
Mirfat	Merckie	•	
	*****	W. Germany	-
Moilarorin	Toho Alet	Japan	_
Nephron		Argentina	_
Nicorol	Lundbeck	Cita	_
Oedemex	Mepha	Switz.	_
Panseman	Ono Talua Hassi	Japan	- -
Polysquall	Tokyo Hosei	Japan	_
Profemin	Toa Eiyo	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Promedes	Fuso	Japan	_
Protargen	Ohta	Japan	_
Puresis	Lennon	S. Africa	_
Radiamin	Nippon Shinyaku	Japan	_
Radonna	Nippon Kayaku	Japan	_
Rasisemid	Kodama	Japan	_
Rosemid	Toyo	Japan	_
Sigasalur	Siegfried	Switz.	_
Transit	Inca	Argentina	_
Trofurit	Chinoin	Hungary	
Uremide	Protea	Australia	_
Urex	Mochida	Japan	
Urex	Fawns & McAllan	Australia	_

Raw Meterials

3-Sulfamyl-4,6-dichlorobenzoic acid Furfurylamine

Manufecturing Process

10.8 grams of 3-sulfamyl-4.6-dichlorobenzoic acid (0.04 mol) and 11.7 grams of furfurylamine (0.12 mol) are heated in 30 cc of diethyleneglycol-dimethylether for 6 hours under reflux. When pouring the reaction mixture into 300 cc of 1 N hydrochloric acid, the reaction product is immediately separated off in the form of crystals. The light-yellow crude product is purified by dissolving it in 100 cc of warm 1 N sodium bicarbonate solution, precipitation by means of hydrochloric acid and subsequent recrystallization from ethanol/water, with addition of charcoal. Colorless prisms are obtained which decompose at 206°C while adopting a brown coloration, and with evolution of gas.

References

Merck Index 4186 Kieeman & Engel p. 436 PDR pp. 592, 872, 939, 993, 1349, 1606, 1723, 1999 OCDS Vol. 1 p. 134 (1977) & 2,87 (1980) DOT 1 (1) 5 (1965) I.N. p. 450 REM p. 943

Stürm, K., Siedel, W. and Weyer, R.; U.S. Patent 3,058,882; October 16, 1962; assigned to Farbwerke Hoechst AG, Germany

FURSULTIAMINE

Therapeutic Function: Enzyme cofactor vitamin

Chemical Name: N-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-N'-[4-hydroxy-1-methyl-2-[(tetrahydrofurfuryl)dithio] -1-butenyl] formamide

Common Name: Thiamine tetrahydrofurfuryl disulfide

Structural Formula:

Chemical Abstracts Registry No.: 804-30-8

Trade Name	Manufacturer	Country	Year Introduced
Alinamin F	Takeda	Japan	1961
Adventan	Abello	Spain	-
Benlipoid	Heilmittelwerke Wien	Austria	
Bevitol Lipophil	Lanacher Heilmittel	Austria	
Judolor	I.C.N.	W. Germany	

Raw Materials

Thiamine hydrochloride Sodium hydroxide Sodium tetrahydrofurfuryl thiosulfate

Manufacturing Process

To a solution of 20 parts of thiamine hydrochloride in 30 parts of water is added an aqueous solution of sodium hydroxide (7.2 parts of NaOH in 30 parts of water), and the mixture is cooled with water. The mixture is allowed to stand for 30 minutes, 60 parts of chloroform is added, followed by a solution of 30 parts of crude sodium tetrahydrofurfurylthiosulfate in 30 parts of water, and the whole is stirred for 30 minutes. The chloroform layer is separated and the aqueous layer is extracted twice with 20 parts of chloroform. All the chloroform solutions are combined and shaken with 50 parts of 5% hydrochloric acid. The acid solution is decolorized and neutralized with alkali carbonate, whereupon thiamine tetrahydrofurfuryl disulfide separates out in the resinous state but soon solidifies [MP 129°C (decomp.)]. The yield is 16 parts. Recrystallization from ethyl acetate gives colorless prisms melting at 132°C (decomp.).

References

Merck Index 4188 Kleeman & Engel p. 436 I.N. p. 451

Yuruqi, S. and Fushimi, T.: U.S. Patent 3,016,380; January 9, 1962; assigned to Takeda Pharmaceutical Industries, Ltd. (Japan)

FURTRETHONIUM IODIDE

Therapeutic Function: Parasympathomimetic

Chemical Name: N.N.N-Trimethyl-2-furamethaminium iodide

Common Name: -

Structural Formula: CH₃-N(CH₃)₃ I

Chemical Abstracts Registry No.: 7618-86-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Furmethide	SKF	U.S.	1944

Raw Materials

Dimethyl amine Formic acid

Fusafungine 713

Methyl iodide **Furfural**

Manufacturing Process

Furfuryl dimethyl amine is first produced. This may conveniently be accomplished by employing the Leuckart synthesis known to those skilled in the art, which involves the use of an aldehyde or a ketone, and formate of ammonia or an amine, or corresponding formamide derived by dehydration of formate of ammonia or an amine.

For example, 5 mols of dimethyl amine and 5 mols of formic acid and water are distilled to 135°C; distilling off most of the water. To the remaining liquid, consisting for the most part of the formyl derivative of dimethyl amine, 1 mol of furfural mixed with 1 mol of formic acid is slowly added with heating, the temperature being maintained at 150°C to 170°C, until the reaction is complete. The mixture is then distilled into a receiver. The course of this reaction may be illustrated as follows:

$$CH=0 + 2(CH_3)_2N-CH=0 \rightarrow CH_2-N(CH_3)_2 + CO_2 + (CH_3)_2NH$$

Part of the formic acid used in the above reaction functions to react with the dimethyl amine liberated in the reaction.

After the furfural has all been added and the reaction has subsided, the residue is cooled, diluted with water, made strongly alkaline and distilled until all volatile substances are removed. The distillate is then made acid with formic acid and distilled with steam as long as nonbasic substances are carried over by the steam. The residue is then made strongly basic with caustic soda and the volatile amines again distilled with steam. The distillate is then treated with strong alkali and then extracted with ether to extract the base. The extract is dried by the addition of caustic potash, the ether removed and the residual amine purified by distillation. Furfuryl dimethyl amine boils over the range 145°C to 150°C.

To obtain the quaternary salt, furfuryl dimethyl amine so prepared is dissolved in dry benzene and to the solution is added slightly more than one equivalent of methyl iodide. Inducement of crystallization of the quaternary salt which separates may be effected as, for example, by scratching the side of the vessel containing the mixture or seeding with a small quantity of the crystalline quaternary salt.

References

Merck Index 4190 I.N. p. 451

Nabenhauer, F.P.; U.S. Patent 2,185,220; January 2, 1940; assigned to Smith Kline & French

FUSAFUNGINE

Therapeutic Function: Antibacterial

Chemical Name: See note under Structural Formula

Common Name: —

Structural Formula: Complex Antibotic

Chemical Abstracts Registry No.: 1393-87-9

Trade Name	Manufacturer	Country	Year Introduced
Locabiotal	Servier	France	1963
Locabiotal	Servier	U.K.	1964
Locabiotal	Stroder	Italy	1973
Locabiosol	Pharmacodex	W. Germany	1973
Fusaloyos	Servier	France	_
Fusarine	Couchoud	-	-

Raw Materials

Glucose

Bacterium Fusarium lateritium

Manufacturing Process

In a 5-liter round flask provided with two tubes, one of which is adapted for subsequent connection to a source of sterile air, 2 liters of fermentation medium are prepared according to the following formulation:

	Percentage
Peptone	1.
Crude glucose	3.
Sodium nitrate	0.1
Monohydrogen potassium phosphate	0.1
Magnesium sulfate	0.05
Potassium chloride	0,05
Water, balance to	100.

Both openings of the flask are stopped with cotton wool and the medium is sterilized by placing it in an autoclave for 30 minutes at 120°C. The flask is then cooled to 29°C to 30°C and a small sample is taken to check the sterility and the pH value which should be approximately 5.

The spores from an inclined culture of *Fusarium lateritium* Wr, CSB 119.63 on a gelose medium are extracted with sterilized distilled water to obtain a suspension containing about 600,000 spores per ml. This suspension is then used to seed the medium prepared as earlier described. The contents of the flask are left to incubate at 27°C. Sterile air is injected into the liquid to effect thorough agitation and uniform supply of oxygen into the medium.

After 55 hours of fermentation, the contents of the round flask is transferred under aseptic conditions into a metal reactor of about 100 liters capacity containing 60 liters of sterile medium prepared as follows:

	Percentage
Peptone	0.5
Saccharose	4.
Ammonium nitrate	0.5
Dihydrogen potassium phosphate	0.1
Potassium chloride	0.5
Magnesium sulfate	0.5
Ferric sulfate	0.002
Water, balance to	100.

The culture is incubated at a temperature of 28°C in the reactor for 60 hours with mechanical agitation and constant aeration. The resulting broth is seeded into 600 liters of a sterile culture medium contained in a metal fermenting vat 1,800 liters in capacity and prepared according to the following formulation:

	Percentage
Saccharose	5.
Cerelose *	0.5
Ammonium nitrate	1.
Sodium chloride	0.3
Magnesium sulfate	0.25
Potassium chloride	0.03
Bacon oil (axonge oil)	0.1
Water, balance to	100.
*Trade Mark	

The culture is incubated for 55 hours at 28°C with constant forced aeration and agitation, and the broth is seeded into the production medium. In a fermentation vat 12 cubic meters in capacity provided with suitable stirring means, a temperature-control jacket, sterile air-injecting and dispersing means, and means for automatically injecting sterile antifoaming agent if required, there are prepared 6 cubic meters of a culture medium of the following formulation:

	Percentage
Saccharose	5.5
Cerelose*	0.5
Ammonium nitrate	1.
Sodium chloride	0.3
Dihydrogen potassium phosphate	0.5
Magnesium sulfate	0.25
Water, balance to	100.
*Trade Mark	

The medium is sterilized by heating it at 120°C for 40 minutes and is then cooled to 30°C. After seeding, the medium is incubated for about 60 hours, the temperature being maintained at 30°C. Throughout the period of fermentation, agitation is maintained at a rate of 20-40 rpm and sterile air is injected into the bottom of the vat at a rate of 4.8 cubic meters per minute by means of the air-dispersing device. Fermentation is arrested when about 90% of the carbohydrates have been consumed. The average Fusafungine content in the fermentation broth is then found to be about 0.5 to 0.8 grams per liter. The fermented broth is filtered under pressure and the content of the filter-press frames is washed with 2 cubic meters of water, then the filter cake is partially dried in a blast of compressed air. The mycelium is then dried in a ventilated oven at 70°C for 30 hours, dried and ground.

The yield obtained is 88 kilograms of dry product, containing 5.71% of Fusafungine. This is extracted from the crude product as follows: the dry powder is suspended in 836 liters of methanol, and 44 liters of an acetic buffer at pH 4.25 (0.05M) is added. The mixture is agitated for one hour at ordinary temperature, then drained to separate the exhausted powder from the methanol solution. This solution is transferred into an evaporator in which its volume is reduced to 200 liters. 100 liters of hexane are added, followed by 200 liters of water with agitation. After 15 minutes agitation, the mixture is allowed to stand for 30 minutes and the underlying phase is drawn off. The hexane extract is exhausted with three 25-liter batches of a methanol/water mixture, 3/1 by volume. The methanol mixture is then concentrated to 12.5 liters under reduced pressure. In this concentration step, the methanol is evaporated so that the water content of the residue increases regularly and the Fusafungine precipitates.

The resulting suspension is placed in a round flask equipped with a scraper-agitator device, and agitation is effected for 48 hours in an ice water bath. The antibiotic is isolated from the mother liquor by filtration through a Buchner filter. The filter cake is washed with 5 liters of a methyl alcohol and water mixture (1/2.5 by volume) cooled to 4°C. After drying in an oven at reduced pressure, 2.805 kilograms of a greyish-yellow crude product is obtained.

This crude product is dissolved in 140 liters anhydrous undenatured methyl alcohol, then 100 grams of discoloring carbon black, and 100 grams of a filtering aid are added. The mixture is agitated 30 minutes. The carbon black, filtering agent and insoluble impurities are filtered out. The filter cake is washed with 14 liters of methyl alcohol. The filtrate is placed in a receiving vessel, and 280 liters of distilled water at 70°C temperature are poured in with agitation. While continuing to agitate slowly, the mixture is allowed to cool gradually to a temperature of about 35°C. Crystallization is then initiated by adding a few crystals of pure Fusafungine, and agitation is continued for another 12 hours. The crystallization is allowed to proceed for 48 hours at +4°C. The pure Fusafungine crystals are collected by filtration. The filter cake is washed with 10 liters of methanol/water (1/2 by volume) mixture preliminarily cooled to +4°C and then with 20 liters of distilled water. The crystals are dried in an oven at 40°C under reduced pressure. A yield of 2.110 kilograms of pure Fusafungine antibiotics has thus been obtained.

References

Merck Index 4191 I.N. p. 451

Servier, J.; British Patent 1,018,626; January 26, 1966; assigned to Biofarma (France)

GALLAMINE TRIETHIODIDE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 2,2',2"-[1,2,3-benzenetriyltris(oxy)] tris[N,N,N-triethylethanaminium]

triiodide

Common Name: Benzcurine iodide

Structural Formula:

Chemical Abstracts Registry No.: 65-29-2

Trade Name	Manufacturer	Country	Year Introduced
Flaxedil	Davis/Geck	U.S.	1951
Flaxedil	May & Baker	U.K.	_
Flaxedil	Rhodia Iberica	Spain	_
Relaxan	Gea	Denmark	_
Sincurarina	Carlo Erba	Italy	-
Tricuran	Deutsches Hydrierwerk	E. Germany	_

Raw Materials

Pyrogallol Sodium amide Diethylaminochloroethane Ethyl iodide

Manufacturing Process

12.6 grams of pyrogallol are dissolved in 100 cc of hot toluene. 14 grams of sodamide (85%) are added to the solution at about 100°C in 5 portions over a period of 15 minutes, with agitation. There are then added with agitation, over a period of 30 minutes, 100 cc of a toluene solution containing 474 grams of diethylaminochlorethane per liter of toluene.

The mixture is then heated for 1 hour, the toluene being refluxed, whereafter it is left to cool, 50 cc of water are added and, after decanting, the solution is again washed with two quantities of 50 cc of water. The toluene solution is dried over potassium carbonate and distilled in vacuo. There is thus obtained 28 grams of 1.2.3-tri-(β -diethylaminoethoxy)-benzene, boiling at 206°C under 1 mm pressure.

20 grams of 1.2.3-tri-(β -diethylaminoethoxy)-benzene is heated for 5 hours under reflux on the water bath with 30 grams of ethyl iodide. The hot mixture is dissolved in 50 cc of

water, filtered after addition of 2 grams of decolorizing black, evaporated to dryness on the water bath and recrystallized from 120 cc of alcohol. The product can be further recrystallized in mixtures of acetone and water.

The triethiodide of 1.2.3-tri-(β -diethylaminoethoxy)-benzene is thus obtained as white crystals which, after drying, have a rather indefinite melting point at about 152° to 153°C, (Maguenne block).

References

Merck Index 4214 Kleeman & Engel p. 437 I.N. p. 454 REM p. 923

Fourneau, E.; U.S. Patent 2,544,076; March 6, 1951; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

GEMEPROST

Therapeutic Function: Prostaglandin; cervical softener

Chemical Name: 11,15-Dihydroxy-16,16-dimethyl-9-oxoprosta-2,13-dien-1-oil acid methyl

ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 64318-79-2

Trade Name	Manufacturer	Country	Year Introduced
Preglandin	Ono	Japan	1982

Raw Materials

Ethyl 9a-hydroxy-11a,15a-bis(2-tetrahydropyranyloxy)-16,16-dimethyl-prosta-trans-2.trans-13-dienoate Potassium hydroxide Manganese sulfate Acetic acid

Manufacturing Process

Synthesis of 9-oxo-11\alpha,15\alpha-bis-(2-tetrahydropyranyloxy)-16,16-dimethyl-prosta-trans-2, trans-13-dienoic acid: 4 g of ethyl 9α -hydroxy-11 α ,15 α -bis-(2-tetrahydropyranyloxy)-16,16dimethyl-prosta-trans-2 trans-13-dienoate were dissolved in 130 ml of a mixture of ethanolwater (3:1), mixed with 3.9 g of potassium hydroxide and stirred at 25°C for 2 hours. The reaction mixture was acidified with aqueous solution of oxalic acid to pH 5, and diluted with 100 ml of water, extracted with ethyl acetate. The extracts were washed with water, dried over sodium sulfate and concentrated under reduced pressure to obtain 3,88 g of 9@hydroxy- $11\alpha,15\alpha$ -bis-(2-tetrahydropyranyloxy)-16,16-dimethyl-prosta-trans-2,trans-13-dienoic acid.

The obtained compound 2.46 g were dissolved in 72 ml of diethyl ether and stirred at 3°C. To which a solution of manganese sulfate (15 g), 3.1 g of chromium trioxide, 72 ml of water and 3.5 ml of sulfuric acid was added. After stirring for 3.5 hours at 3°C, extracted with diethyl ether. The organic layer was washed with water, dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate-benzene (1:1) as eluent to give 2.35 g of the title compound.

Synthesis of 16,16-dimethyl-trans- Δ^2 -PGE 1: 2.35 g of the bis-tetrahydropyranyl ether were dissolved in 6 ml of tetrahydrofuran and 60 ml of 65%-acetic acid aqueous solution and the solution stirred at 60°C to 70°C for 20 minutes. The reaction mixture was extracted with ethyl acetate, and the organic layer was washed with water, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate-cyclohexane (2:3) as eluent to yield 270 mg of the title compound.

References

Merck Index 4245 DFU 4 (2) 911 (1979) DOT 19 (7) 414 (1983)

I.N. p. 456

Hayashi, M., Kori, S. and Wakasata, H.; U.S. Patent 4,052,512; October 4, 1977; assigned to Ono Pharmaceutical Co. (Japan)

GEMFIBROZIL

Therapeutic Function: Hypocholesterolemic agent

Chemical Name: 2,2-Dimethyl-5-(2,5-xylyloxy)valeric acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 25812-30-0

Trade Name	Manufacturer	Country	Year Introduced
Lopid	Warner Lambert	U.S.	1982
Organolipid	Godecke	W. Germany	1982

Raw Materials

Isobutyric acid 3-(2,5-Xylyloxy)propyl bromide n-Butvl lithium

Manufacturing Process

With stirring, 44.1 g of isobutyric acid is added to a mixture of 51.0 g of diisopropylamine, 23.2 g of a 57% sodium hydride dispersion in mineral oil, and 350 ml of tetrahydrofuran. When gas evolution subsides, the mixture is heated at reflux for 15 minutes, cooled to 0°C, and treated with 345 ml of a 1.45 M solution of n-butyllithium in heptane. After 5 hr, the

mixture is warmed one-half hour at 30°C, cooled to 0°C, and treated with 122.0 g of 3-(2,5-xylyloxy)propyl bromide. After one more hour, it is stirred with 500 ml of water and the aqueous phase is separated and acidified with 150 ml of 6N hydrochloric acid. The acidic mixture is extracted with ether and the ether extract is washed with saturated sodium chloride solution, dried over magnesium sulfate, concentrated almost to dryness, and distilled in vacuo. A distillate of 2,2-dimethyl-5-(2,5-xylyloxy)valeric acid is collected at boiling point 158°C to 159°C at 0.02 mm of Hg; melting point 61°C to 63°C following crystallization from hexane.

The same product is obtained by substituting $4.4\,\mathrm{g}$ of lithium hydride for the sodium hydride in the above procedure.

The same product is also obtained in the following manner. A mixture of 26.4 g of isobutyric acid, 6.0 g of magnesium oxide powder, and 250 ml of toluene is stirred and heated at reflux with continuous removal of the water formed in the reaction. When water formation ceases, the resulting mixture containing magnesium isobutyrate is concentrated to one-half its original volume, cooled in an ice bath, and treated with 31.0 g of diisopropylamine in 200 ml of dry tetrahydrofuran and then with 179 ml of 1.68 M n-butyllithium in heptane while the temperature is maintained below 10°C. After 15 more minutes, the mixture is warmed at 30°C for one-half hour, cooled to 0°C to 10°C, and treated with 75.0 g of 3-(2,5-xylyloxy)-propyl bromide. The mixture is then stirred for 18 hr at room temperature and diluted with 125 ml of 6 N hydrochloric acid and 250 ml of water. The organic phase is separated, concentrated, and the residue distilled in vacuo to give 2,2-dimethyl-5-(2,5-xylyloxy)valeric acid.

References

Merck Index 4246 DFU 1 (11) 520 (1976) PDR p. 1364 OCDS Vol. 3 p. 45 (1984) DOT 18 (11) 582 (1982) I.N. p. 456 REM p. 864

Creger, P.L.; U.S. Patent 3,674,836; July 4, 1972; assigned to Parke, Davis & Co.

GENTAMICIN SULFATE

Therapeutic Function: Antibacterial

Chemical Name: See structural formula

Common Name: -

Chemical Abstracts Registry No.: 1405-41-0; 1403-66-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Garamycin	Schering	U.S.	1966
Garramycin	Kirby-Warrick	U.K.	1966
Refobacin	Merck	W. Germany	1967
Gentalyn	Essex	Italy	1967
Gentalline	Unicet	France	1968
Genoptic	Allergan	U.S.	1979
U-Gencin	Upjohn	U.S.	1980
Bristagen	Bristol	U.S.	1980
Apogen	Beecham	U.S.	1980
Jenamicin	Hauck	U.S.	1982
Gentafair	Pharmafair	U.S.	1983
Biogen	Cusi	Spain	_
Biomargen	Biologia Marina	Spain	_
Cidomycin	Roussel	Ú.K.	_
Duramycin	Durachemie	W. Germany	_
Espectrosina	Centrum	Spain	_
Gensumycin	Roussel	· -	_
Genta	I.E. Kimya Evi	Turkey	_
Genta-Gobens	Normon	Spain	_
Gentabac	Infan	Mexico	_
Gentacin	Schering-Shionogi	Japan	_
Gentadavur	Davur	Spain	_
Gentamedical	Medical	Spain	
Gentamicin-Pos	Ursapharm	W. Germany	_
Gentamin	Medix	Spain	_
Gentamina	Essex	Argentina	
Gentamival	Vailes Mestre	Spain	_
Gentam orgens	Morgens	Spain	_
Gentamytrex	Mann	W. Germany	_
Gentaroger	Roger	Spain	_
Gentasillin	Nobel	Turkey	
Gentibioptal	Farmila	Italy	_
Genticina	Antibioticos	Spain	_
Genticol	S.I.F.I.	Italy	_
Gento	Bryan	Spain	_
Gentona	Asla	Spain	_
Gent-Ophtal	Winzer	W. Germany	_
Getamisin	Deva	Turkey	
Gevramycin	Essex Espana	Spain	_
Glevomicina	Bago	Argentina	_
G-Mycin	Neofarma	Finland	_
Miramycin	Teva	Israel	_
Ophtagram	Chauvin-Blache	France	_
Plurisemina	Northia	Argentina	_
Ribomicin	Farmigea	Italy	_
Sulgemicin	Larma	Spain	_
Sulmycin	Byk Essex	W. Germany	_
	_ /	5, 61.7	

Raw Materials

Bacterium Micromonospora purpurea Soybean meal

Manufacturing Process

Germination Stage: A lyophilized culture of M. purpurea is added to a 300 ml shake flask

containing 100 ml of the following sterile medium: 3 grams bacto-beef extract; 5 grams tryptose; 1 gram dextrose; 24 grams starch (soluble); 5 grams yeast extract; and 1,000 ml tap water. The flask and its contents are incubated for 5 days at 37°C on a rotary shaker (280 rpm, 2 inch stroke).

Inoculum Preparation Stage: Two batches of inoculum of about 50 gallons each are prepared by the following method: A 25 ml inoculum (from the germination stage) is transferred to each of four 2-liter flasks, each containing 500 ml of the sterile medium utilized for germination. The flasks and contents are incubated for 5 days at 28°C on a rotary shaker (280 rpm, 2 inch stroke).

The contents of the flasks are pooled, a 25 ml inoculum (taken from the pool) is added to each of twenty 2-liter flasks, each containing 500 ml of the following sterile medium: 30 grams soybean meal; 40 grams dextrose (cerelose); 1 gram calcium carbonate; 1,000 milliliters tap water. The flasks and their contents are incubated for 3 to 5 days at 28°C on a rotary shaker (280 rpm, 2 inch stroke). The broth is pooled and aseptically transferred into a sterile inoculum flask having a side arm (total volume, about 10 liters).

The 10 liters of inoculum is asentically transferred to a 65-gallon fermenter containing 50 gallons of the following sterile medium: 600 grams bacto-beef extract; 1,000 grams bacto-tryptose; 200 grams dextrose (cerelose); 4,800 grams starch (soluble); 1,000 grams yeast extract; 100 ml antifoamer GE 60 (General Electric Co. brand of silicone defoamer), or other defoamer; and tap water, gs to 50 gallons.

The pH is adjusted to 6.9 to 7.0 before sterilization and aerobic fermentation is effected for 24 hours (until the packed cell volume is about 10 to 15%) under the following conditions: temperature, 37°C; sterile air input, 54 ft³/min; pressure, 7 psi; and agitation, 180 rpm.

Fermentation Stage: One 50-gallon batch of inoculum is aseptically transferred to a 675-gallon fermenter (fermenter A) containing the following medium: 54.0 kg soybean meal; 72.0 kg cerelose; 9.0 kg calcium carbonate; 300 ml antifoamer GE 60; and 450 gallons soft water. The other 50-gallon batch of inoculum is aseptically transferred to a similar fermenter (fermenter B) containing the same medium as fermenter A with the addition of 200 mg of CoCl₂·6H₂O. Fermentation is effected in each fermenter at 35°C while agitating at 120 rpm with air input at 7 psi and 15 ft³/min. At various times, samples of the fermented broth are withdrawn and assayed for antibiotic production by the disc assay method. The following table shows the increase in yield effected by the presence of cobalt, (as described in U.S. Patent 3,136,704).

	Yield of Gentamicin (units/ml)		
Fermentation Time (hours)	Fermenter A (no cobalt)	Fermenter B (cobalt present)	
24	9.3	13	
40	34	133	
48	49	185	
60	70	332	
72	77	440	
96	75	420	

The conversion of the broth to gentamicin sulfate is described in U.S. Patent 3,091,572.

References

Merck Index 4251 Kleeman & Engel p. 438 PDR pp. 872, 888, 1397, 1429, 1606, 1621 DOT 2 (3) 99 (1966) & 17 (3) 106 (1981) I.N. p. 457

REM p. 1180

Luedemann, G.M. and Weinstein, M.J.; U.S. Patent 3,091,572; May 28, 1963; assigned to Schering Corporation

Charney, W.; U.S. Patent 3,136,704; June 9, 1964; assigned to Schering Corporation

GEPEFRIN

Therapeutic Function: Antihypotensive

Chemical Name: 3-(2-Aminopropyl)phenol

Common Name: Alpha-methyltyramine

Structural Formula:

Chemical Abstracts Registry No.: 18840-47-6

Trade Name	Manufacturer	Country	Year Introduced
Pressionorm	Helopharm	W. Germany	1981

Raw Materials

D-(+)-1-(3-methoxyphenyl)-2-aminopropane Hydrogen chloride

Manufacturing Process

Hydrolysis of D-(+)-1-(3-methoxyphenyl)-2-aminopropane: 2.42 mols (40 g) of the compound are dissolved in 6N hydrochloric acid in a bomb tube consisting of stainless steel and having a capacity of 500 ml. Hydrogen chloride gas is passed into the ice-cooled solution until this is saturated. The solution is then heated to 130°C for 2 hours in an air bath. After cooling and driving off the hydrochloric acid at a slightly elevated temperature, the hydrochloride of the 3-hydroxyphenyl derivative is present in the form of a yellowish syrup.

The free base can be liberated from the hydrochloride by extracting a butanol solution of the hydrochloride several times with sodium bicarbonate solution. After recrystallization from isopropanol/ligroin, the yield of D-(+)-1-(3-hydroxyphenyl)-2-aminopropane amounts to 33.0 g, corresponding to 90.1% of theory relative to the D-form. Melting point = 152°C to 154°C.

References

Merck Index 4262

I.N. p. 458

Helopharm W. Petrik & Co., K.G.; British Patent 1,527,479; October 4, 1978

GLAFENINE

Therapeutic Function: Analgesic

Chemical Name: 2-[(7-Chloro-4-quinolinyl)amino] benzoic acid 2,3-dihydroxy-propyl ester

Common Name: Glycerylaminophenaquine

Structural Formula:

Chemical Abstracts Registry No.: 3820-67-5

Trade Name	Manufacturer	Country	Year Introduced
Glifanan	Roussel	France	1965
Glifanan	Albert Roussel	W. Germany	1968
Adalgur	Roussel	France	_
Glifan	Roussel-Maestretti	ltaly	_
Glifan	Nippon Roussel-Chugai	Japan	_

Raw Materials

2,2-Dimethyl-4-hydroxymethyl-1,3-dioxolane

o-Nitrobenzovi chloride

Hydrogen

4.7-Dichloroquinoline

Manufacturing Process

Step A: Preparation of (2,3-isopropylidenedioxy)-propyl o-nitrobenzoate-59.6 g of 2,2-dimethyl 4 hydroxymethyl 1,3 dioxolane were dissolved under agitation in 60 cc of anhydrous pyridine. The solution was cooled to +5°C and 86.5 g of o-nitrobenzoyl chloride (prepared by Leckermann et al., Ber. vol. 80, p. 488, 1947) were slowly introduced into it. The reaction mixture was agitated for a period of two hours at room temperature and then was poured into 500 cc of ether. The mixture was filtered and the filtrate was washed successively with 0.5 N sulfuric acid solution, with aqueous sodium bicarbonate solution and finally with water until the wash waters were neutral. The washed solution was dried over sodium sulfate and filtered again. The filtrate was distilled to dryness under vacuum to obtain 116.5 g (being a vield of 92%) of (2.3-isopropylidenedioxy)-propyl o-nitrobenzoate in the form of a vellow oil which distilled at 178°C to 180°C at a pressure of 1 mm.

Step B: Preparation of (2,3-isopropylidenedioxy)-propyl anthranilate-80 g of (2,3-isopropylidenedioxy)-propyl o-nitrobenzoate, obtained as described in Step A, were subjected to hydrogenation for a period of one hour in 800 cc of absolute alcohol in the presence of 2 q of palladized carbon black as catalyst. The reaction mixture was filtered and the filtrate was evaporated under vacuum to obtain 70.5 g (being a yield of 98.5%) of (2,3-isopropylidenedioxy)-propyl anthranilate in the form of a yellow oil which distilled at 159°C to 160°C under 0.5 mm of pressure.

Step C: Preparation of the α-monoglyceride of 4-(2'-carboxyphenylamino)-7-chloro-quinoline-A mixture of 48 g of (2,3-isopropylidenedioxy)-propyl anthranilate, 36 g of 4,7-dichloro-quinoline, 36 cc of concentrated hydrochloric acid and 300 cc of water was agitated while heating to reflux for a period of two hours. The reaction mixture was filtered and the filtrate was allowed to stand at a temperature of 0°C for a period of three hours. The hydrochloride salt was then vacuum filtered and the salt was taken up in 600 cc 50% methanol at reflux. The solution was made alkaline by the addition of 120 cc of ammonia solution and iced for a period of one hour. The crystalline precipitate obtained was vacuum filtered. washed with water and dried to obtain 38.5 g (being a yield of 56%) of the α -monoglyceride of 4-(2'-carboxyphenylamino-7-chloro-quinoline having a melting point of 165°C.

The product occurred in the form of pale yellow prisms and was insoluble in water, ether, benzene, diluted alcohols, olive oil and chloroform, slightly soluble in absolute alcohol, dioxane, tetrahydrofuran and acetone, and soluble in dilute aqueous acids and alkalis.

References

Merck Index 4293 Kleeman & Engel p. 441 OCDS Vol. 1 p. 342 (1977) DOT 2 (4) 139 (1966) I.N. p. 460

Allais, A. and Meier, J.; U.S. Patent 3,232,944; February 1, 1966; assigned to Roussel-Uclaf S.A. (France)

GLAUCARUBIN

Therapeutic Function: Amebicide

Chemical Name: 11,20-Epoxy-1,2,11,12-tetrahydroxy-15-(2-hydroxy-2-methyl-1-oxobutoxy)picras-3-ene-16-one

Common Name: \alpha-Kirondrin

Structural Formula:

OH CH3

Chemical Abstracts Registry No.: 1448-23-3

Trade Name	Manufacturer	Country	Year Introduced
Glarubin	Massengill	U.S.	1959

Raw Materials

Aceituno meal Water

Manufacturing Process

The preparation of pure glaucarubin from Aceituno meal is conveniently carried out by extracting the Aceituno meal with water, using about 100 gallons of the water per hundred pounds of meal. If the meal is in the form of a relatively solid cake, it should be soaked in the water for a time to cause disintegration. The temperature of the water is then raised to about 70°C for the actual extraction, and the mixture is moderately agitated, while maintaining a temperature of about 70°C for a period of about three hours, until extraction is substantially complete. If desired, the extraction may be conducted at lower temperatures down to about room temperature although at such lower temperatures, the extraction is much slower and less efficient at temperatures substantially higher than 70°C, there may be partial destruction or decomposition of the product being recovered.

The slurry or extraction mixture is filtered while hot, and the resulting filter cake is washed

with about five to ten gallons of hot water; the primary filtrate and wash water are combined and held for further processing. In order to insure complete extraction of the desired material, the filter cake is again extracted with about 100 gallons of water at 70°C. Although not essential, it is desirable to add to the second extraction a small quantity of acetic acid. The acetic acid appears to aid in obtaining a complete and thorough extraction. After extraction for about three hours with agitation at a temperature of about 70°C, the slurry is again filtered and the cake washed as before with about five to ten gallons of hot water. The resulting filtrate and wash are then combined with the primary filtrate and wash.

The combined filtrates or total aqueous extracts are cooled to about room temperature and filtered to remove any residual solids from solution. The clarified aqueous extract is then concentrated to about 70 gallons at a temperature below about 50°C, thus reducing the volume to about one-third the original volume. The resulting concentrate is cooled to room temperature or below and filtered to remove any tar or gum that may have separated. The presence of tar or gum at this stage of the process will vary depending upon the starting material and the manner in which the primary extraction has been carried out. It has been found. however, that unless any tar or gum present in the initial extract is removed by the procedure described, it will seriously interfere with the further concentration and crystallization steps hereinafter described.

After removal of such tar or gum, the concentrate is further evaporated at a temperature below about 50°C to about one-fourth the volume, i.e., 70 gallons is concentrated to about 15 to 20 gallons. This concentrate is cooled to a temperature of about 0°C to 5°C and allowed to stand for an extended period, such as overnight, whereupon there is a separation of crude crystalline glaucarubin therefrom. The crude crystals thus formed are removed by filtration and the mother liquors again concentrated to about one-half volume and cooled to permit separation of a second batch of crude glaucarubin crystals. The two batches of crude glaucarubin crystals are combined and dried preparatory to further purification.

The crude glaucarubin crystals obtained as above described from 100 pounds of Aceitung meal are slurried with about seven-and-one-half gallons of anhydrous methanol and refluxed until the crystals dissolve. The hot solution is then filtered and the resulting filter cake washed with methanol. The filter cake is then again extracted with an additional seven-and-one-half gallon quantity of anhydrous methanol in the manner described, and filtered. The methanol filtrates and washes are combined and concentrated at atmospheric pressure until crystals begin to appear, i.e., generally after concentration to about one-fifteenth volume. The solution is then cooled to about 0°C to 5°C and allowed to stand for crystallization to go substantially to completion. The resulting crystals are filtered off and the mother liquors are further concentrated and cooled to collect a second crop of crystals. The two crops of crystals are then combined and may be further purified by redissolving in methanol, filtering through activated charcoal, and recrystallizing after concentration of the methanol filtrate.

The purified crystalline glaucarubin thus obtained is colorless and odorless and is estimated to have a purity of about 96% to 97%. It has the formula $C_{25}H_{36}O_{10}$ and melts at 262°C to 263°C with decomposition (capillary tube).

References

Merck Index 4295 I.N. p. 460

Shafer, H.M.; U.S. Patent 2,864,745; December 16, 1958; assigned to Merck & Co., Inc.

GLAZIOVINE

Therapeutic Function: Tranquilizer

Chemical Name: (±)-[Hydroxy-6-methoxy-5-methyl-11H-cyclopenta[i,j]-isoquinoline]-7-spiro-1'(2,5-cyclohexadiene-4-one)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17127-48-9

Trade Name	Manufacturer	Country	Year Introduced
Suavedol	Simes	Italy	1976

Raw Materials

p-Benzyloxyphenylacetic acid 3-Methoxy-4-hydroxyphenethylamine Phosphorus oxychloride Sodium borohydride

Hydrogen

Formaldehyde Sodium nitrite Sulfuric acid Nitric acid

Manufacturing Process

The thermal condensation of p-benzyloxyphenylacetic acid and of 3-methoxy-4-hydroxyphenethylamine occurs and gives, with a yield of 86% to 92%, the N-(3-methoxy-4-hydroxyphenethyl-p-benzyloxyphenylacetamide; from this latter, by cyclization according to Bischler-Napieralski with phosphorus oxychloride in acetonitrile, followed by reduction with sodium borohydride, there is obtained with a yield of 75% to 80% the 1-(p-benzyloxybenzyl)-6-methoxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline, which is methylated with formaldehyde and formic acid giving 1 (p-benzyloxybenzyl)-2-methyl-6-methoxy-7-hydroxy-1,2,3,4-tetrahydroisoquinoline with a yield of 90%.

This intermediate is then nitrated with 65% nitric acid. The nitro compound is then hydrogenated to give a hydroxybenzylamino compound.

A solution of 94,2 g of 1-(p-hydroxybenzyl)-2-methyl-6-methoxy-7-hydroxy-8-amino-1,2,3,4tetrahydrojsoguinoline in 3 liters of 1 N sulfuric acid is supplemented, with stirring, between 0°C and 5°C, with 21 grams of sodium nitrite. The diazonium sulfate solution thus obtained is made alkaline with 2.5 liters of 2 N sodium hydroxide: the diazo-oxide which is separated at the outset as a yellow precipitate is redissolved by the excess alkali, the solution is diluted to 10 liters with deaerated water and subjected, in a nitrogen atmosphere at 15°C in a Pyrex glass apparatus, to the radiations of a 2,000 W high-pressure mercury vapor lamp until the yellow hue is discharged (about 30 to 40 minutes). The solution is brought to a pH of 8.6 with hydrochloric acid and is stirred with 1.5 liters of chloroform. The two phases are filtered, the chloroform is separated and the aqueous phase is extracted four times with 1.5 liters of chloroform. The extracts are evaporated under reduced pressure to a small volume and percolated through a chromatographic column containing 1.3 kilograms of neutral alumina (activity rating IV of the Brockmann scale). The column is then further eluted with chloroform. The eluates are evaporated under reduced pressure and the residue is recrystallized from ethyl acetate. There are thus obtained 40.2 grams (yield 45% of theory) of pure (±)glaziovine, having a melting point of 220°C to 222°C.

References

Kleeman & Engel p. 442 DOT 13 (1) 24 (1977)

I.N. p. 460

Casagrande, C. and Canonica, L.; U.S. Patent 3,886,166; May 27, 1975; assigned to Siphar S.A. (Switz.)

GLIBORNURIDE

Therapeutic Function: Oral hypoglycemic

Chemical Name: [1S-(endo,endo)] -N-[[(3-hydroxy-4,7,7-trimethylbicyclo[2.2.1] hept-2-yl)-

amino] carbonyl] -4-methylbenzenesulfonamide

Common Name: 1-(p-toluenesulfonyl)-3-(2-endo-hydroxy-3-endo-D-bornyl)urea

Structural Formula:

Chemical Abstracts Registry No.: 26944-48-9

Trade Name	Manufacturer	Country	Year Introduced
Glutril	Roche	W. Germany	1972
Glutril	Roche	France	1973
Glutril	Roche	U.K.	1975
Glitrim	Roche	-	_
Gluborid	Gruenenthal	W. Germeny	
Glytril	Roche	_	-
Logiston	Laake	Finland	_

Raw Materials

- 3-Endo-eminoborneol HCl
- o-Methyl-N-p-toluene sulfonyl urea

Manufacturing Process

2.1 grams of 3-endo-aminoborneol hydrochloride and 2.4 grams of O-methyl-N-p-toluenesulfonyl-urea are heated at 125°C for 3 hours with 2 ml of dimethylformamide. After cooling, the reaction mixture is stirred with 100 ml of water for 10 minutes, while a pH of 3.5 is maintained by the addition of a few drops of dilute hydrochloric acid. The precipitate is removed by filtration, washed with water and suspended in 100 ml of water. The suspension is dissolved by the addition of 20 ml of 1 N caustic soda. The alkaline solution is extracted with ether, acidified with dilute hydrochloric acid and filtered. The precipitate is washed with water and recrystallized from alcohol/water to yield 1-(p-toluenesulfonyl)-3-(2-endo-hydroxy-3-endo-bornyl)-urea having a melting point of 193° to 195°C.

References

Merck Index 4299

Kleeman & Engel p. 443 OCDS Vol. 2 p. 117 (1980) DOT 8 (3) 88 (1972) I.N. p. 461

Bretschneider, H., Grassmayr, K., Hohenlohe-Oehringen, K. and Grussner, A.; U.S. Patent 3,654,357; April 4, 1972; assigned to Hoffmann-La Roche Inc.

GLICLAZIDE

Therapeutic Function: Oral hypoglycemic

Chemical Name: 1-(hexahydrocyclopenta[c] pyrrol-2(1H)-yl)-3-(p-tolylsulfonyl)urea

Common Name: N-(4-methylbenzenesulfonyl)-N'-(3-azabicyclo[3,3,0]-3-octyl)urea

Structural Formula:

Chemical Abstracts Registry No.: 21187-98-4

Trade Name	Manufacturer	Country	Year Introduced
Diamicron	Servier	France	1972
Diamicron	Servier	Italy	1977
Diamicron	Servier	Switz.	1979
Diamicron	Pharmacodex	W. Germany	1980
Diamicron	Servier	U.K.	1980
Dramion	Maggioni	Italy	

Raw Materials

4-Methylbenzenesulfonyl urethane N-Amino-3-azabicyclo (3.3.0) octane

Manufacturing Process

To a suspension containing 4.86 parts of 4-methylbenzenesulfonyl urethane (MP 80° to 82°C) and 36 parts of anhydrous toluene there are rapidly added 2.5 parts of N-amino-3azabicyclo(3,3.0)octane (BP/18 mm = 86°C). The reaction mixture is heated under reflux for 1 hour. The resulting clear solution crystallizes on cooling. The crystals are filtered, washed with 2 parts of toluene, then recrystallized from anhydrous ethanol. There are obtained 3.8 parts of the desired product, MP 180° to 182°C.

References

Merck Index 4300 Kleeman & Engel p. 444 DOT 8 (4) 136 (1972) I.N. p. 461

Beregi, L., Hugon, P. and Duhault, J.; U.S. Patent 3,501,495; March 17, 1970; assigned to Science Union et Cie, Societe Française de Recherche Medicale, França

GLIPIZIDE

Therapeutic Function: Oral hypoglycemic

Chemical Name: 1-cyclohexyl-3-[[p-[2-(5-methylpyrazinecarboxamido)ethyl]phenyl]-

sulfonyl] urea

Common Name: Glydiazinamide

Structural Formula:

Chemical Abstracts Registry No.: 29094-61-9

Trade Name	Manufacturer	Country	Year Introduced
Minidiab	Carlo Erba	Italy	1973
Glibenese	Pfizer	France	1974
Glibenese	Pfizer	U.K.	1975
Minodiab	Farmitalia	U.K.	1975
Glibenese	Pfizer	W. Germany	1977
Glucotrol	Roerig	U.S.	_
Melizid	Medica	Finland	_
Mindiab	Aesca	Austria	_
Minibetic	łkapharm	Israel	

Raw Materials

5-Methylpyrazine-2-carboxylic acid $p-(\beta-Aminoethyl)$ benzenesulfonamide Thionyl chloride Cyclohexyl isocyanate

Manufacturing Process

5-Methyl pyrazine-2-carboxylic acid is refluxed with thionyl chloride in anhydrous benzene for approximately 12 hours. Benzene and thionyl chloride excess is removed by distillation. Then some anhydrous dioxane is added and this acid chloride solution is allowed to drop into p- $(\beta$ -aminoethyl)-benzenesulfonamide suspension in dioxane and anhydrous pyriding. The resulting mixture is then refluxed for 3 hours. Dioxane is removed by distillation and then the residue is washed with water and acetic acid. The raw acylated suffonamide is then filtered and crystallized from 95% ethanol, thus obtaining a product of MP 200° to 203°C.

This product is then reacted with cyclohexyl isocyanate to give glipizide.

References

Merck Index 4302 Kleeman & Engel p. 444 PDR p. 1525 OCDS Vol. 2 p. 117 (1980)

DOT 8 (11) 435 (1972) & 9 (11) 463 (1973)

I.N. p. 462 **REM p. 977**

Ambrogi, V. and Logemann, W.; U.S. Patent 3,669,966; June 13, 1972; assigned to Carlo Erba SpA, Italy

GLIQUIDONE

Therapeutic Function: Oral hypoglycemic

Chemical Name: N-[(cyclohexylamino)carbonyl] -4-[2-(3,4-dihydro-7-methoxy-4,4-dimethyl-

1.3-dioxo-2(1H)-isoquinolinyl)ethyll benzenesulfonamide

Common Name: Gliquidor

Structural Formula:

Chemical Abstracts Registry No.: 33342-05-1

Trade Name	Manufacturer	Country	Year Introduced
Glurenorm	Thomae	W. Germany	1975
Glurenorm	Winthrop	U.K.	1979
Glurenor	Boehr. Ingel.	_	_

Raw Materials

1,2,3,4-Tetrahydro-4,4-dimethyl-7-methoxy-isochromane-1,3-dione

4-Aminosulfonvl-phenvl-(2)-ethylamine

Potassium-t-butylate Cyclohexyl isocyanate

Manufacturing Process

A mixture consisting of 4 grams of 1,2,3,4-tetrahydro-4,4-dimethyl-7-methoxy-isochromanedione (1.3) (MP 95° to 97°C), 2.53 grams of 4-aminosulfonyl-phenyl-(2)-ethylamine and 150 ml of xylene was heated for 2 hours at its boiling point in an apparatus provided with a water separator. Thereafter, the reaction mixture was allowed to cool and was then vacuum-filtered, and the filter cake was recrystallized from n-propanol in the presence of activated charcoal, 2.9 grams (58% of theory) of 1,2,3,4-tetrahydro-4,4-dimethyl-2-[p-aminosulfonylphenyl-(2)-ethyl]-7-methoxy-isoquinolinedione-(1,3), MP 203° to 205°C, of the formula below were obtained.

32.2 grams of 1,2,3,4-tetrahydro-4,4-dimethyl-2-[p-aminosulfonylphenyl-(2)-ethyl] -7-methoxy-isoquinolinedione-(1,3) were dissolved in 700 ml of dimethylformamide, 9,1 grams of potassium tert-butylate were added to the solution, and, while cooling the mixture with ice, 14.9 grams of cyclohexyl isocyanate were added dropwise thereto.

Subsequently, the reaction mixture was stirred for 5 hours on an ice bath and was then allowed to stand overnight at -2°C. Thereafter, the reaction solution was admixed with water, the precipitate formed thereby was separated by vacuum-filtration, the filtrate was admixed with more water, and the aqueous solution was acidified with 2 N hydrochloric acid. A greasy substance precipitated out which crystallized after a brief period of contact with boiling methanol. 2.6 grams (85% of theory) of 1,2,3,4-tetrahydro-2-[p-(N'-cyclo-

hexyl-ureido-N-sulfonyl)-phenethyl] -4,4-dimethyl-7-methoxy-isoquinolinedione-(1,3), MP 180° to 182°C, were obtained.

References

Merck Index 4303 Kleeman & Engel p. 445 DOT 11 (7) 281 (1975) & 16 (2) 47 (1980) I.N. p. 462

Kutter, E., Griss, G., Grell, W. and Kleemann, M.; U.S. Patent 3,708,486; January 2, 1973; assigned to Boehringer Ingelheim GmbH, Germany

GLISOXEPID

Therapeutic Function: Oral hypoglycemic

Chemical Name: N-[2-[4-[[[[(hexahydro-1H-azepin-1-yl)amino] carbonyl] amino] sulfonyl] -

phenyll ethyll -5-methyl-3-isoxazolecarboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 25046-79-1

Trade Name	Manufacturer	Country	Year Introduced
Pro-Diaban	Bayer	W. Germany	1974
Pro-Diaban	Schering	W. Germany	1974
Glysepin	Bayer	italy	1978
Glucoben	Farmades	Italy	1979

Raw Materials

5-Methyl-isoxazole-(3)-carboxylic acid chloride 4-(β-Aminoethyl)benzene sulfonamide hydrochloride Chloroformic acid methyl ester

N-Amino-hexamethylene imine

Manufacturing Process

There is obtained from $4-[\beta-[5-methyl-isoxazolyl-(3)-carboxamido]-ethyl]-benzene-sulfon$ amide (prepared from 5-methyl-isoxazole-(3)-carboxylic acid chloride and 4-(β -aminoethyl)benzene-sulfonamide hydrochloride, MP 213° to 214°C in pyridine) and chloroformic acid methyl ester, in a yield of 69%, the compound N-[[-4- $[\beta$ -[5-methyl-isoxazolyl-(3)-carboxamido] -ethyl]] -benzene-sulfonyl]] -methyl-urethane in the form of colorless crystals of MP 173°C.

From the sulfonyl-urethane described above and N-amino-hexamethylene-imine, there is obtained, in a yield of 70%, the compound 4-[$[4-[\beta-[5-methy]-isoxazoly]-(3)-carboxamido]$ ethyl]-benzene-sulfonyl]]-1,1-hexamethylene-semicarbazide in the form of colorless crystals of MP 189°C.

References

Merck Index 4304 Kleeman & Engel p. 445 DOT 10 (10) 257 (1974) & 16 (1) 15 (1980)

I.N. p. 462

Plumpe, H. and Puls, W.; U.S. Patent 3,668,215; June 6, 1972; assigned to Farbenfabriken Bayer AG, Germany

GLUCAGON

Therapeutic Function: Antidiabetic

Chemical Name: Polypeptide of molecular weight approximately 3,550; see Structural

Formula

Common Name: Hg-Factor; HGF

Structural Formula:

His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-

Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Tyr-Leu-Met-Asn-Thr

Chemical Abstracts Registry No.: 9007-92-5

Trade Name	Manufacturer	Country	Year Introduced
Glucagon	Lilly	U.S.	1960
Glukagon	Lifly	W. Germany	1962
Glucagon	Novo	Italy	1964
Glucagon	Novo	France	. 1966
Glucagon Novo	Kodama	Japan	1977

Raw Materials

Pancreatic gland material Acetone

Manufacturing Process

The process comprises treating pancreatic gland material having hyperglycemic activity in aqueous solution at pH 3-4 with 3-4 volumes of acetone to precipitate the hyperglycemic activity material, separating the precipitate and dializing the precipitate to remove inorganic salts and dialyzable low molecular weight impurities, and crystallizing the undialyzed hyperglycemic activity material from aqueous glycine buffer.

References

Merck Index 4307 PDR p. 1050 I.N, p. 463 REM p. 974

Eli Lilly & Co.; British Patent 762,885; December 5, 1956

GLUTETHIMIDE

Therapeutic Function: Sedative, hypnotic

Chemical Name: 3-ethyl-3-phenyl-2,6-piperidinedione

Common Name: 3-ethyl-3-phenyl-2,6-dioxopiperidine

Structural Formula:

Chemical Abstracts Registry No.: 77-21-4

Trade Name	Manufacturer	Country	Year Introduced
Doriden	U.S.V.	U.S.	1955
Doridene	Ciba Geigy	France	1956
Alfimid	Pliva	Yugoslavia	_
Elrodorm	Deutsches Hydrierwerk	E. Germany	_
Glimid	Polfa	Poland	_
Glutethimide	Danbury	U.S.	_
Rigenox	Gedeon Richter	_	_

Raw Materials

lpha-Phenylbutyric acid nitrile Sodium hydroxide Methyl acrylate Acetic acid Sulfuric acid

Manufacturing Process

The 2-phenyl-2-ethyl-pentane-1,5-diacid-mononitrile-(1) of melting point 72° to 76°C, used as starting material in this process, can be produced for example from α -phenyl-butyric acid nitrile by condensation with acrylic acid methyl ester and subsequent hydrolysis of the thus-obtained 2-phenyl-2-ethyl-pentane-1,5-diacid-monomethyl ester-mononitrile-(1) of boiling point 176° to 185°C under 12 mm pressure.

140 parts by weight of 2-phenyl-2-ethyl-pentane-1,5-diacid-mononitrile-(1) are dissolved in 200 parts by volume of glacial acetic acid and, at an initial temperature of 60°C, 100 parts by volume of concentrated sulfuric acid added in portions. In this operation the temperature of the reaction mixture rises to 100°C. The whole is finally maintained for a short time on the boiling water bath, then cooled and poured on ice and neutralized with alkali to a pH of 6. Extraction with chloroform is then effected and the chloroform extract washed with dilute caustic soda solution, dried over calcium chloride, the chloroform evaporated and the residue crystallized from ethyl acetate with addition of ligroin. The obtained 3-phenyl-3-ethyl-2,6-dioxo-piperidine melts at 78° to 81°C.

References

Merck Index 4338 Kleeman & Engel p. 446 PDR pp. 830, 1606, 1812 OCDS Vol. 1 p. 257 (1977) I.N. p. 466 REM p. 1071

Hoffmann, K. and Tagmann, E.; U.S. Patent 2,673,205; March 23, 1954; assigned to Ciba Pharmaceutical Products, Inc.

GLYBUZOLE

Therapeutic Function: Oral hypoglycemic

Chemical Name: N-(5-tert-Butyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide

Common Name: Desaglybuzole

Structural Formula:

Chemical Abstracts Registry No.: 1492-02-0

Trade Name	Manufacturer	Country	Year Introduced
Gludease	Kyowa Hakko	Japan	1972

Raw Materials

2-Amino-5-t-butyl-1,3,4-thiadiazole Benzene sulfonyl chloride

Manufacturing Process

15.7 g of 2-amino-5-tert-butyl-1,3,4-thiadiazole (0.1 mol) and 17.6 g of benzene sulfonyl chloride (0.1 mol) were dissolved in 150 ml dry pyridine and heated over steam for 4 hr. The pyridine was removed by distillation under reduced pressure and the residue treated with 50 ml 2 N HCl. The solid product, MP 162° to 163°C, was filtered off and regrystallized once from benzene and twice from 50% agueous EtOH.

References

Merck Index 4341 Kleeman & Engel p. 447 I.N. p. 466

MacRae, F.J. and Drain, D.J.; British Patent 822,947; November 4, 1959; assigned to T.J. Smith & Nephew Limited

GLYCOPYRROLATE

Therapeutic Function: Antispasmodic

Chemical Name: 3-[(Cyclopentylhydroxyphenylacetyl)oxy]-1,1-dimethylpyrrolidinium

bromide

Common Name: Glycopyrronium bromide

Structural Formula:

Chemical Abstracts Registry No.: 596-51-0

Trade Name	Manufacturer	Country	Year Introduced
Robinul	Robins	U.S.	1961
Robinul	Robins	U.K.	1962
Robinul	Kaken	Ja pan	1975
Robinul	Brenner	W. Germany	1975
Asecryl	Martinet	France	_
Gastrodyn	Medica	Finland	_
Nodapton	Geistlich	Switz.	_
Robanul	Lasa	Spain	_
Tarodyl	Lundbeck	· <u></u>	_

Raw Materials

Sodium Methyl-α-cyclopentyl mandelate Hydrogen chloride 1-Methyl-3-pyrrolidinol Methyl bromide

Manufacturing Process

A mixture of 42.5 grams (0.17 mol) of methyl \alpha-cyclopentyl mandelate and 18 grams (0.175 mol) of 1-methyl-3-pyrrolidinol in 500 ml of heptane was refluxed under a Dean & Stark moisture trap, with the addition of four 0.1 gram pieces of sodium at 1-hour intervals. After 5 hours' refluxing the solution was concentrated to one-half volume, and extracted with cold 3 N HCI. The acid extract was made alkaline with aqueous sodium hydroxide and extracted with ether which was washed, dried over sodium sulfate, filtered and concentrated. The residue was fractionated at reduced pressure. Yield 33 grams (64%); BP 151° to 154°C/0.2 mm, $n_D^{23} = 1.5265$.

The hydrochloride salt was precipitated as an oil from an ethereal solution of the base with ethereal hydrogen chloride. It was crystallized from butanone; MP 170° to 171.5°C.

The methyl bromide quaternary was prepared by saturating a solution of the base in dry ethyl acetate with methyl bromide. After standing for 9 days the resulting crystalline solid was filtered and recrystallized from butanone and from ethyl acetate: MP 193° to 194.5°C.

References

Merck Index 4365 Kleeman & Engel p. 448 PDR pp. 830, 1466 DOT 18 (3) 128 (1982) 1.N. p. 467 REM p. 915

Lunsford, C.D.; U.S. Patent 2,956,062; October 11, 1960; assigned to A.H. Robins Co., Inc.

GLYMIDINE

Therapeutic Function: Antidiabetic

Chemical Name: N-[5-(2-Methoxyethoxy)-2-pyrimidinyl] benzenesulfonamide

Common Name: Glycodiazine

Structural Formula:

Chemical Abstracts Registry No.: 339-44-6

Trade Name	Manufacturer	Country	Year Introduced
Redul	Bayer/Schering	W. Germany	1964
Gondafon	Schering	U.K.	1966
Gondafon	Schering	Italy	1968
Glycanol	Bayer	Italy	_
Glyconormal	Bayer	France	
Lycanol	Bayer	Japan	_

Raw Materials

Methoxyethoxyacetaldehyde-di-methoxyethyl acetal Phosphorus pentachloride Dimethylformamide Sodium hydroxide Guanidine nitrate Benzene sulfonyl chloride

Manufacturing Process

210 g phosphorus pentachloride are gradually added to 252 g methoxyethoxyacetaldehyde-di-methoxyethylacetal with agitation. The mixture is externally cooled with ice to hold the reaction temperature below 25°C. Moisture is carefully excluded. After addition of the condensation agent is completed, the reaction mixture is further agitated at room temperature for 30 minutes. 225 ml dimethylformamide are then added drop by drop while the reaction temperature is held at 20°C to 25°C by external cooling of the reaction vessel with ice. When the dimethylformamide has been added, the temperature is raised to 60°C, and this temperature is maintained for 70 minutes.

The temperature is again lowered to 20° C to 25° C and maintained at this value by cooling with ice while 500 ml methanol are added drop by drop. The resulting solution is admixed drop by drop to a suspension of 240 g powdered caustic soda in 800 ml methanol at 20° C to 25° C. After mixing is completed, stirring is continued for 30 minutes at room temperature. The solution now contains inorganic salts and β -dimethylamino- α -methoxyethoxyacrolein.

200 g guanidine nitrate and thereafter 70 g sodium hydroxide are added to the solution. The methanol is evaporated with agitation. The residue is dissolved in 1.5 liters water and is repeatedly extracted with chloroform. The combined chloroform extracts are evaporated to dryness, and the residue is recrystallized from carbon tetrachloride. 80 g of 2-amino-5-methoxyethoxypyrimidine of MP 80°C to 81°C are obtained.

This material is then dissolved in pyridine. Benzenesulfonylchloride is added and the resulting mixture is heated two hours to 60°C. It is then poured into 300 ml water. The precipitate formed thereby is filtered off and dissolved in dilute ammonium hydroxide. The solution is purified with charcoal, and filtered. The filtrate is acidifed with acetic acid to give glymidine.

62 g 2-benzenesulfonamido-5-methoxyethoxypyrimidine are dissolved jointly with 8 g sodium hydroxide in 250 ml ethanol. The solution is evaporated to dryness, and the residue is suspended in 300 ml acetone. The sodium salt of 2-benzenesulfonamido-5-methoxyethoxypyrimidine may be filtered off, washed with acetone, and dried. The yield of glymidine sodium is about 60 g, the MP 220°C to 223°C.

References

Merck Index 4371 Kleeman & Engel p. 448

OCDS Vol. 1 p. 125 (1977)

DOT 1 (2) 72 (1965) & 2 (3) 104 (1966)

I.N.p. 468

Priewe, H. and Gutsche, K.; U.S. Patent 3,275,635; September 27, 1966; assigned to Schering

A.G. (W. Germany)

GRAMICIDIN

Thereapeutic Function: Antibacterial

Chemical Name: Gramicidin D

Common Name: -

Structural Formula: HCO-Vai-Gly-Ala-Leu-Ala-Vai-Vai- Trp-Leu -Trp-NHCH2CH2OH

(L) (D) (L) (D) (L) (D) (L) (D) (L) (L)

Chemical Abstracts Registry No: 113-73-5

Trade Name	Manufacturer	Country	Year Introduced
Gramoderm	Schering	U.S.	1949
Mytrex	Savage	U.S.	_
Neosporin	Burroughs-Wellcome	U.S.	
Nyst-Olone	Schein	U.S.	_
Tri-Thalmic	S chein	U.S.	_

Raw Materials

Tyrothricin fermentation liquor	Ethanol
Pentane	Benzene

Acetone

Manufacturing Process

5 lb of acid precipitated solid (Hotchkiss, Advances in Enzymology, pages 157-158) from 30 gal of tyrothricin fermentation liquor containing about 40 g (2%) of tyrothricin were extracted with 12 liters of absolute ethyl alcohol and filtered. The filtrate was evaporated in vacuo to 1 liter, and the concentrate extracted twice with 1 liter of pentane. The pentane layers were discarded.

40 g of decolorizing charcoal were added to the pentane-extracted filtrate and filtered off.

To 500 ml of the charcoal-treated filtrate were added 200 ml benzene and 300 ml water, the whole shaken thoroughly, centrifuged, and the benzene layer separated. This treatment of the charcoal-treated filtrate was repeated twice, all benzene fractions were combined and evaporated in vacuo.

200 ml of absolute acetone were added to the residue and concentrated by boiling to 150 ml. The concentrate was refrigerated overnight. The crystals which had formed in the concentrate were filtered off, and the mother liquor concentrated first to 50 ml and then to 25 ml,

the two concentrates refrigerated overnight, and the formed crystals filtered off. Total yield of crystalline gramicidin was 3.85 g = 19.2% of estimated tyrothricin in the initial material.

The combined crystal crops were redissolved in 50 ml absolute acetone, and the solution refrigerated overnight. After filtering, the formed crystals were dried in vacuo. The total yield of crystalline gramicidin thus obtained was 2.5 g.

References

Merck Index 4405 PDR pp. 758, 1604, 1606 I.N. p. 470 REM p. 1203

Baron, A.L.; U.S. Patent 2,534,541; December 19, 1950; assigned to S.B. Penick & Co.

GRISEOFULVIN

Therapeutic Function: Antifungal

Chemical Name: (2S-trans)-7-chloro-2',4,6-trimethoxy-6'-methylspiro[benzofuran-2(3H),-

1'-[2] cyclohexene] -3,4'-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 126-07-8

Trade Name	Manufacturer	Country	Year Introduced
Grifulvin	McNeil	U.S.	1959
Fulvicin	Schering	U.S.	1959
Grisactin	Ayerst	U.S.	1959
Fulcine Forte	I.C.I.	France	1972
Gris-Peg	Dorsey	U.S.	1975
Delmofulvina	Coli	Italy	_
Fulcin	Cepharma	Italy	_
Fungivin	Nyegaard	Norway	_
Gricin	Arzneimittelwerk Dresden	E. Germany	_
Grifulin	Teva	Israel	
Grifulvin	Yamanouchi	Japan	_
Grisefuline	Clin-Comar-Byla	France	_
Grisetin	Nippon Kayaku	Japan	_
Grisovin	Fujisawa	Japan	
Guservin	Chugai	Japan	_
Lamoryi	Lovens	Denmark	-
Likuden	Hoechst	W. Germany	_

Raw Materials

Bacterium *Penicillium patulum*Corn steep liquor

740

Manufacturing Process

Corn steep liquor nitrogen	0.40% w/v
KH ₂ PO ₄	0.40% w/v
CaCO ₃	0.40% w/v
KCI	0.20% w/v
Mobilpar S	0.0275% v/v
White mineral oil	0.0275% v/v
H ₂ SO ₄	0.0125% v/v
Preinoculation volume	800 gal
Fermentation temperature	25°C
Inoculum volume	10%

The experiment was carried out on the 1,000 gallon scale. Three impellers 1'8" diameter at 220 rpm were employed. The air rates were 0 to 5 hours, 40 cfm, 5 to 10 hours, 80 cfm and after 10 hours, 125 cfm. The inoculum rate was 10% v/v. It was prepared by the standard inoculum development technique on the following medium:

Corn steep liquor nitrogen	0.30% w/v
Brown sugar	2.0% w/v
Chalk	1.0% w/v
Maize oil	1.0% v/v
Hodag MF	0.033% v/v

This was inoculated with a spore suspension of *P. patulum* (1 liter containing 3-5 x 10⁷ spores/ml) and grown at 25°C in 100 gallon tank. The inoculum is transferred at 40 hours or when the mycelial volume (after spinning 10 minutes at 3,000 rpm) exceeds 25%. The fermentation is conducted as near to the ideal pH curve as possible by addition of crude glucose, according to U.S. Patent 3,069,328.

References

Merck Index 4420 Kleeman & Engel p. 449 PDR pp. 621, 931, 1307, 1620 OCDS Vol. 1 p. 314 (1977) I.N. p. 471 REM p. 1228

Hockenhull, D.J.D.; U.S. Patent 3,069,328; December 18, 1962; assigned to Glaxo Laboratories Limited, England

Dorey, M.J., Mitchell, I.L.S., Rule, D.W. and Walker, C.; U.S. Patent 3,069,329; Dec. 18, 1962; assigned to Glaxo Laboratories Limited, England

GUAIFENESIN

Therapeutic Function: Expectorant

Chemical Name: 3-(2-Methoxyphenoxy)-1,2-propanediol

Common Name: Guaiacol glyceryl ether

Structural Formula:

Chemical Abstracts Registry No.: 93-14-1

Trade Name	Manufacturer	Country	Year Introduced
GG Cen	Central	U.S.	1975
Breonesin	Breon	U.S.	1980
Cremacoat	Vicks	U.S.	1983
Ambenyl	Marion	U.S.	_
Asbron G	Sandoz	U.S.	_
Balminil	Rougier	Canada	
Bromphen	Schein	U.S.	_
Bronchol	Streuli	Switz.	_
Broncovanil	Scharper	Italy	
Brondecon	Parke Davis	U.S.	_
Bronkolixir	Winthrop-Breon	U.S.	_
Bronkotuss	Hyrex	U.S.	_
Congess	Fleming	U.S.	_
Cortussin	Xttrium	U.S.	_
Corutrol	Dow	U.S.	_
Coryban	Pfipharmecs	U.S.	_
Deconsal	Adams	U.S.	_
Detussin	Schein	U.S.	-
Dilaudid	Knoii	U.S.	_
Dilur-G	Savage	U.S.	_
Donatussin	Laser	U.S.	_
Dorcol	Dorsey	U.S.	_
Dura-Vent	Dura	U.S.	_
Entex	Norwich-Eaton	U.S.	<u>-</u>
Entuss	Hauck	U.S.	_
Fedahist		U.S.	_
	Rorer	Canada	_
Gaiapect	Eri Sanfa	Canada Czechoslovakia	_
Guajacuran	Spofa		_
Guajasyl Guiatuss	Mepha Sebala	Switz. U.S.	_
	Schein	Yugoslavia	_
Gvaja	Lek		_
Head & Chest	Procter & Gamble	U.S.	-
Histalet	Reid-Rowell	U.S.	_
Humibid	Adams	U.S.	-
Hustosil	Kyoto	Japan	-
Hycotuss	Du Pont	U.\$.	_
Hytuss	Hyrex	U.S.	
Lufyllin	Wallace	U.S.	
Mucostop	Verla	W. Germany	_
Mudrane	Poythess	U.S.	-
Naldecon	Bristol	U.S.	-
Neo-Spec	Neo	Canada	-
Novahistine	Lakeside	U.S.	-
Nucofed	Beecham	U.S.	_
Quibron	Mead Johnson	U.S.	
Reorganin	Brunnengraber	U.S.	_
Resyl	Ciba	italy	_
Robitussin	Robins	U.S.	_
Ru-Tuss	Boots	U.S.	-
Scot-Tussin	Scot-Tussin	U.S.	
Sinufed	Hauck	U.S.	-
Sorbutuss	Dalin	U.S.	_
Triaminic	Dorsey	U.S.	
Tussar	U.S.V.	U.S.	_
Tussend	Merrell-Dow	U.S.	_
Zephrex	Bock	U.S.	
	+	× • • •	

Raw Materials

o-Methoxyphenol (guaiacol) Glycidol

Manufacturing Process

A mixture of o-methoxyphenol (57 g), glycidol (32 g) and pyridine (1 g) is warmed to 95°C at which temperature a vigorous reaction takes place. The reaction mixture is cooled to prevent the temperature rising above 110°C. When the exothermic reaction has subsided the reactants are heated at 95°C for one hour longer and then distilled under low pressure. The main fraction boils in the range 176°C to 180°C/0.5 mm. It crystallizes on cooling. Recrystallization from benzene gives the pure product, MP 78.5°C to 79.0°C.

References

Merck Index 4432 Kleeman & Engel p. 449 OCDS Vol. 1 p. 118 (1977) I.N. p. 472

REM p. 868

Bradley, W. and Forrest, J.; British Patent 628,497; August 30, 1949; assigned to British Drug Houses, Ltd.

GUANABENZ

Therapeutic Function: Antihypertensive

Chemical Name: 2-[(2,6-Dichlorophenyl)methylene] hydrazinecarboximidamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5051-62-7

Trade Name	Manufacturer	Country	Year Introduced
Wytensin	Wyeth	U.S.	1982
Rexitene	L.P.B.	italy	_

Raw Materials

2.6-Dichlorobenzaldehyde Aminoguanidine bicarbonate

Manufacturing Process

A mixture of 14.0 g of 2,6-dichlorobenzaldehyde, 10.8 g of aminoguanidine bicarbonate and 100 ml of pyridine was refluxed for 3 hours. The reaction mixture was poured into water and the crystalline precipitate filtered off; MP 225°C to 227°C.

References

REM p. 846

Merck Index 4436 DFU 1 (11) 523 (1976) Kleeman & Engel p. 451 PDR p. 1997 OCDS Vol. 2 p. 123 (1980) DOT 15 (11) 481 (1979) I.N. p. 473

Yates, J. and Haddock, E.; British Patent 1,019,120; February 2,1966; assigned to Shell International Research Maatschappii N.V. (Netherlands)

GUANADREL SULFATE

Therapeutic Function: Antihypertensive

Chemical Name: (1,4-Dioxaspiro [4.5] decan-2-ylmethyl)guanidine sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 40580-59-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hylorel	Pennwait	U.S.	1983
Hycoral	Pennwalt	W. Germany	1983
Anarel	Cutter	U.S.	_

Raw Materials

- 1,4-Dioxaspiro [4.5] decane-2-methylamine
- 2-Methyl-2-thiopseudourea sulfate

Manufacturing Process

A mixture of 10.5 g of 1,4-dioxaspiro [4.5] decane-2-methylamine and 8.6 g of 2-methyl-2-thiopseudourea sulfate in 40 ml of water was heated on the steam bath for 4 hours during which 2.0 g of methylmercaptan was collected in a dry ice bath connected to the reaction flask through a water cooled reflux condenser. The reaction mixture was then evaporated at 15 mm pressure to a solid residue which was then dissolved in 80 ml of 50/50 methanolethanol. The solution was filtered and evaporated to approximately 50 ml volume and allowed to cool and crystallize, giving a crop melting at 213.5°C to 215°C of 1,4-dioxaspiro-[4.5] decan-2-ylmethyl)-guanidine sulfate.

References

Merck Index 4438 Kleeman & Engel p. 451 PDR p. 1398 OCDS Vol. 1 p. 400 (1977) DOT 16 (4) 140 (1980) I.N. p. 473

REM p. 907

Hardie, W.R. and Aaron, J.E.; U.S. Patent 3,547,951; December 15, 1970

GUANETHIDINE SULFATE

Therapeutic Function: Antihypertensive

Chemical Name: [2-(hexahydro-1(2H)-azocinyl)ethyl] guanidine sulfate

Common Name: -

Structural Formula:

N - CH₂CH₂NHC NH NH₂ (base)

Chemical Abstracts Registry No.: 60-02-6; 55-65-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ismelin	Ciba	U.S.	1960
Ismelin	Ciba	W. Germany	1960
Ismelin	Ciba	U.K.	1960
Ismelin	Ciba	İtaly	1961
Ismeline	Ciba Geigy	France	1963
Abapresin	Polfa	Poland	
Anti p res	Protea	Australia	_
Dopom	Galter	Italy	_
Ganda	Smith & Nephew	U.K.	_
Iporal	Euro-Labor	Portugal	_
Ipotidina	Francia	Italy	_
Izobarin	Pliva	Yugoslavia	_
Normalin	Taro	Israel	-
Pressedin	Chiesi	Italy	
Santotensin	Egyt	Hungary	_
Visutensil	I.S.F.	Italy	

Raw Materials

Chloroacetyl guanide Heptamethyleneimine Lithium aluminum hydride Sulfuric acid

Manufacturing Process

13.6 grams of chloroacetyl guanide is added while stirring to a solution of 22.6 grams of heptamethylene imine in 200 ml of benzene. After warming for 1 hour, and then cooling, the solution is filtered and the filtrate concentrated under reduced pressure. The residue, containing the 2-(1-N,N-heptamethylene-imino)-acetic acid guanide, is suspended in tetrahydrofuran and added to a refluxing solution of 6 grams of lithium aluminum hydride in tetrahydrofuran. After completion of the reaction, the excess of lithium aluminum hydride is decomposed by adding water, then aqueous sodium hydroxide. The solid material is filtered off, the filtrate is acidified with sulfuric acid and the 2-(1-N,N-heptamethylene-imino)-ethyl-guanidine sulfate can be recovered and recrystallized from aqueous ethanol, MP 276° to 281°C (with decomposition).

References

Merck Index 4441

Kleeman & Engel p. 452

PDR p. 797

OCDS Vol. 1 p. 282 (1977) & 2, 100 (1980)

DOT 16 (4) 137 (1980)

I.N. p. 474

Mull, R.P.; U.S. Patent 2,928,829; March 15, 1960; assigned to Ciba Pharmaceutical Products, Inc.

Mull, R.P.; U.S. Patent 3,006,913; October 31, 1961; assigned to Ciba Pharmaceutical Products, Inc.

Mull, R.P.; U.S. Patent 3,055,882; September 25, 1962; assigned to Ciba Corporation

GUANFACINE

Therapeutic Function: Antihypertensive

Chemical Name: N-(Aminoiminomethyl)-2,6-dichlorobenzeneacetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 29110-47-2; 29110-48-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Estulic	Sandoz	Switz.	1980
Estulic	Sandoz	U.K.	1980
Estulic	Sandoz	W. Germany	1980
Estulic	Wander	France	1981
Estulic	Sandoz	France	1981
Hipertensal	Finadiet	Argentina	_

Raw Materials

2,6-Dichlorophenylacetic acid chloride Guanidine Hydrogen chloride

Manufacturing Process

2.6-Dichlorophenyl-acetyl-guanidine: A solution of 3.245 g (0.055 mol) of guanidine in isopropanol is added to a solution of 11.7 g (0.05 mol) of 2,6-dichlorophenyl-acetic acid ethyl ester (BP 142°C to 143°C/12 mm of Hg) in 20 cc of isopropanol. The reaction mixture is allowed to stand overnight and is subsequently concentrated by evaporation. After recrystallizing the residue from methanol/ether 2,6-dichlorophenyl-acetyl-guanidine is obtained in the form of white grains having a MP of 225°C to 227°C.

2.6-Dichlorophenyl-acetyl-guanidine hydrochloride: A solution of 5.6 g (0.025 mol) of 2.6dichlorophenylacetic acid chloride (BP 137°C to 138°C/12 mm of Hg) in 10 cc of toluene is

added dropwise to a mixture of 4.5 g (0.076 mol) of guanidine and 60 cc of toluene. The reaction mixture is allowed to stand at room temperature for 20 minutes, is then heated on a steam bath for 2 hours and is subsequently cooled. The resulting precipitate is filtered off and washed twice with 25 cc amounts of water in order to separate the guanidine hydrochloride. The residue (2.6-dichlorophenyl-acetyl-quanidine) is washed with chloroform for further purification and is then dissolved in 50 cc of isopropanol. The pH-value of the solution is adjusted to 6 with ethanolic hydrochloric acid and the solution is cooled. The resulting white needles are again washed with chloroform. The resulting 2,6-dichlorophenyl-acetyl-guanidine hydrochloride has a MP of 213°C to 216°C.

References

Merck Index 4442 DFU 2 (4) 278 (1977) OCDS Vol. 3 p. 40 (1984) DOT 16 (12) 416 (1980) I.N. p. 474 REM p. 846

Bream, J.B. and Picard, C.W.; U.S. Patent 3,632,645; January 4, 1972; assigned to Dr. A. Wander S.A. (Switz.)

GUANOXABENZ HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: 1-(2.6-Dichlorobenzylideneamino)-3-hydroxyguanidine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24047-25-4 (Base)

Trade Name Manufacturer Country Year Introduced Benezrial Houde France 1978

Raw Materials

S-Methylisothiosemicarbazide hydroiodide Hydroxylamine hydrochloride 2.6-Dichlorobenzaldehyde

Manufacturing Process

2 N sodium hydroxide solution (5 ml) is added to a stirred suspension of S-methylisothiosemicarbazide hydroiodide (2.33 g) and hydroxylamine hydrochloride (0.70 g) in water (6 ml) and stirred for 48 hours. The solution is evaporated in vacuo to provide 1-amino-3-hydroxyguanidine. One-third of the residue is dissolved in 16 ml of ethanol and 2,6-dichlorobenzaldehyde (0.6 g) is added to this solution. The reaction mixture is then stirred for 48 hours. The solution is then evaporated in vacuo and the residue dissolved in ether (30 ml) and in hydrochloric acid (30 ml). The aqueous phase is rendered alkaline with 2 N sodium carbonate solution and extracted with ether. The ether layer is dried with sodium sulfate and evaporated. The residue is dissolved in ether and excess dry hydrogen chloride is passed into the solution.

The resultant mixture is evaporated in vacuo and the residue triturated with methylene chloride to afford a crude product. Recrystallization from ethanol-ether (1:3) provides 1-(2,6-dichlorobenzylideneamino)-3-hydroxyguanidine hydrochloride; MP 173°C to 175°C. When the above process is carried out and S-benzylisothiosemicarbazide hydroiodide is used in place of S-methylisothiosemicarbazide hydroiodide, the identical product is again obtained.

References

Merck Index 4449 Kleeman & Engel p. 453 OCDS Vol. 2 p. 123 (1980) DOT 14 (6) 244 (1978) I.N. p. 474

Houlihan, W.G. and Manning, R.E.; U.S. Patent 3,591,636; July 6, 1971; assigned to Sandoz-Wander, Inc.

H

HALAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-Chloro-1,3-dihydro-5-phenyl-1-(2,2,2-trifluoroethyl)-2H-1,4-benzodi-

azepine-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23092-77-3

Trade Name	Manufacturer	Country	Year Introduced
Paxipam	Schering	U. S .	1981

Raw Materials

7-Chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-one Sodium Methanol 2.2.2-Trifluoroethyl iodide

Manufacturing Process

Prepare a solution of sodium methylate by dissolving 3.9 g of sodium metal in 500 ml of methanol. Add 39.0 g of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepine-2-one. Evaporate the reaction mixture to a residue and dissolve the residue in 170 ml of dimethylformamide. Add 30 g of 2,2,2-trifluoroethyl iodide and stir at room temperature for ½ hour, then heat to 60°C to 70°C for an additional 7 hours. Add 19 g of 2,2,2-trifluoroethyl iodide and resume the heating and stirring at 60°C to 70°C for an additional 16 hours. Filter off the solids and evaporate the filtrate to a residue in vacuo. Triturate the residue with water and extract with ethyl ether. Wash the ethereal extract with water, dry over anhydrous sodium sulfate and evaporate the solvent to a residue.

Extract the residue with ethyl ether and filter. Concentrate the ethereal extract to a residue. Dissolve the residue in benzene and chromatograph on 300 g of alumina contained in a glass column 1.5 inches in diameter to give the crude product. Elute with benzene. Crystallize this product from acetone-petroleum ether to obtain the product.

References

Merck Index 4472

DFU 3 (2) 109 (1978)

PDR p. 1645

DOT 9 (6) 237 (1973), 11 (5) 191, 211 (1975) & 18 (8) 367 (1982)

I.N. p. 476

REM p. 1062

Topliss, J.G.; U.S. Patents 3,429,874; Feb. 25, 1969 and 3,641,147; Feb. 8, 1972; both assigned to Schering Corp.

HALCINONIDE

Therapeutic Function: Topical corticosteroid

Chemical Name: 21-Chloro- 9α -fluoro- Δ^4 -pregnene- 11β ,16 α ,17 α -triol-3,20-dione 16,17-

acetonide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3093-35-4

Trade Name	Manufacturer	Country	Year Introduced
Halog	Squibb	U.S.	1974
Halciderm	Squibb	U.K.	1974
Halciderm	Squibb	Italy	1976
Halog	Von Heyden	W. Germany	1977
Halog	Squibb	France	1979
Halciderm	Squibb	U.S.	1980
Adcortin	Sankyo	Japan	1982
Beta Corton	Spirig	Switz.	_
Dihalog	Heyden	W. Germany	_
Halcimat	Heyden	W. Germany	_
Halcort	Fair	U.K.	_
Volog	Squibb	_	_

Raw Materials

16α-Hydroxy-9α-fluorohydrocortisone acetonide Methane suifonvi chioride

Lithium chloride

Manufacturing Process

(A) 160-Hydroxy-90-fluorohydrocortisone acetonide 21-mesylate: To a solution of 1.5 g of 16α-hydroxy-9α-fluorohydrocortisone acetonide in 15 ml of dry pyridine is added at 0°C, 1.5 ml of methane-sulfonyl chloride. After standing in the refrigerator for 2½ hours, excess methane-sulfonyl chloride is destroyed by the addition of a small amount of ice, after which

ice-water is added slowly to precipitate the reaction product. After 1/2 hour in the refrigerator the material is filtered off, washed thoroughly with water and dried in vacuo. The resulting crude material after recrystallization from acetone-hexane gives the pure 21-mesylate of the following properties: melting point about 225°C to 227°C (decomposition); $[\alpha]_D^{23} + 112^\circ$ (c, 0.5 in chloroform).

(B) 21-Chloro-9 α -fluoro- Δ^4 -pregnene-11 β ,16 α ,17 α -triol-3,20-dione 16,17-acetonide: A solution of 200 mg of the acetonide 21-mesylate from part (A) and 900 mg of lithium chloride in 25 ml of dimethylformamide is kept at 100°C for 24 hours. The mixture is poured on ice, extracted with chloroform and the chloroform extract washed with water and dried over sodium sulfate. Evaporation of the solvent in vacuo furnishes the crystalline chloride, which after recrystallization from acetone-ethanol has a melting point about 276°C to 277°C.

References

Merck Index 4474 Kleeman & Engel p. 454 PDR p. 1745 OCDS Vol. 2 p. 187 (1980) DOT 10 (11) 305 (1974) I.N. p. 477 REM p. 972

Difazio, L.T. and Augustine, M.A.; U.S. Patent 3,892,857; July 1, 1975; assigned to E.R. Squibb & Sons, Inc.

HALOPERIDOL

Therapeutic Function: Antidyskinetic; antipsychotic

Chemical Name: 4-[4-(4-Chlorophenyl)-4-hydroxy-1-piperidinyl]-1-(4-fluorophenyl-1-

butanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52-86-8

Trade Name	Manufacturer	Country	Year Introduced
Haldol	Janssen Le Brun	France	1960
Haldol	McNeil	U.S.	1967
Serenace	Searte	U.K.	1969
Fortunan	Steinhard	U.K.	1983
Bioperidolo	Firma	Italy	_
Brotopon	Pfizer Taito	Japan	_
Einalon S	Maruko	Japan	_
Eukystol	Merckle	W. Germany	_
Halidol	Abic	Israel	_
Halo Just	Horita	Japan	_
Haloperidol	Mohan	Japan	_
Halosten	Shionogi	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Keselan	Sumitomo	Japan	-
Linton	Yoshitomi	Japan	_
Pacedol	Protea	Australia	_
Peluces	isei	Japan	
Peridor	Unipharm	Israel	_
Selezyme	Sawai	Japan	
Serenace	Dainippon	Japan	_
Serenase	Lusofarmaco	Italy	_
Serenase	Orion	Finland	
Sigaperidol	Siegfried	Switz.	_
Vesadol	Le Brun	France	-

Raw Materials

4-(4-Chlorophenyl)piperidin-4-ol hydrochloride 1,1-Dimethoxy-1-(4-fluorophenyl)-4-chlorobutane Hydrogen chloride Ammonia

Manufacturing Process

A stirred slurry of 120.0 parts 4-(4-chlorophenyl)-piperidin-4-ol hydrochloride and 40.0 parts of potassium iodide in 500 parts of water is warmed to a temperature of about 35°C under a nitrogen atmosphere. Then, 70.0 parts of potassium hydroxide is added. After further heating to about 55°C, 138,0 parts of 1,1-dimethoxy-1-(4-fluorophenyl)-4-chlorobutane is added. The temperature is then raised to about 102°C and heating continued for 3.5 hours. After cooling to about 75°C, 785 parts of toluene is added to the reaction mixture and stirred for about 5 minutes. An additional 320 parts of toluene is added and the water and organic layers separated. 102 parts of methanol is used to rinse the flask and added to the organic layer to provide a solution of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4,4-dimethoxybutyl]-piperidin 4-ol. Then, 59 parts of concentrated hydrochloric acid is added to a stirred solution of the organic layer to precipitate a solid. The solid is filtered, rinsed twice with 550 parts by volume portions of a 10:9:1 acetone-toluene-methanol mixture, twice with 400 parts by volume portions of a 10:1 acetone-methanol mixture, and air-dried. The dried solid is then dissolved in 1,950 parts of methanol with gentle heating on a steam bath. The resulting solution is filtered and 300 parts by volume of concentrated ammonium hydroxide is added. Heating is continued to reflux and maintained thereat for about 1 hour. Then, 2,520 parts of water is added and the slurry stirred at about 75°C for 1,5 hours. After cooling to about 25°C, the solid is filtered, washed twice with 600 parts by volume portions of a 3:1 mixture of watermethanol, and air-dried. The resulting product, 4-[4-chlorophenyl)-4-hydroxypiperidino] -4'-fluorobutyrophenone, is obtained in 32.5% yield. This product melts at about 148.5°C to 150.5°C.

References

Merck Index 4480 Kleeman & Engel p. 454 PDR p. 1089 OCDS Vol. 1 p. 306 (1977) DOT 9 (6) 234 (1973) I.N. p. 478 REM p. 1088

Dryden, H.L. Jr. and Erickson, R.A.; U.S. Patent 4,086,234; April 25, 1978; assigned to G.D. Searle & Co.

HALOPREDONE ACETATE

Therapeutic Function: Topical antiinflammatory

Chemical Name: 17,21-Bis(acetyloxy)-2-bromo-6,9-difluoro-11-hydroxypregna-1,4-diene-

3.20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57781-14-3; 57781-15-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Topicon	Pierrel	Italy	1983

Raw Materials

2-Bromo-6 β -fluoro-17 α ,21-dihydroxy-9 β ,11 β -oxido-pregna-1,4-diene-3,20-dione-17-21-diacetate Hydrogen fluoride

Manufacturing Process

100 ml of a 70% hydrofluoric acid aqueous solution were cooled to -10°C in a polyethylene flask equipped with electromagnetic stirrer. 10 g of 2-bromo-6 β -fluoro-17 α ,21-dihydroxy-9 β , 11β -oxido-pregna-1,4-diene-3,20-dione-17,21-diacetate were added under stirring during 15 minutes. After ½ hour the reaction mixture was precipitated in water and ammonia. The solid was collected by filtration, washed with water and dried to a constant weight, giving about 9.5 g of 2-bromo- 6β ,9 α -difluoro- 11β ,17 α ,21-trihydroxypregna-1,4-diene-3,20-dione-17,21-diacetate.

References

Merck Index 4481 DFU 1 (11) 526 (1976) Kieeman & Engel p. 456 OCDS Vol. 3 p. 99 (1984) I.N. p. 478

Riva, M. and Toscano, L.; U.S. Patent 4,272,446; June 9, 1981; assigned to Pierrel S.p.A. (Italy)

HALOPROGIN

Therapeutic Function: Antibacterial

Chemical Name: 3-iodo-2-propynyl 2,4,5-trichlorophenyl ether

Common Name: 2,4,5-trichlorophenyl γ -iodopropargyl ether

Structural Formula:

Chemical Abstracts Registry No.: 777-11-7

Trade Name	Manufacturer	Country	Year Introduced
Halotex	Westwood	U. S .	1972
Mycanden	Schering	W. Germany	1975
Mycilan	Schering	France	1978
Mycilan	Theraplix	France	_
Polik	Meiji	Japan	-

Raw Materials

2,4,5-Trichlorophenyl propargyl ether Cuprous chloride Iodine

Manufacturing Process

4.7 grams of 2,4,5-trichlorophenyl propargyl ether (MP 64° to 65°C) are added to an aqueous solution of cupro-ammonium complex salt which has been prepared by warming a mixture of 4.0 grams of cuprous chloride, 11.0 grams of ammonium carbonate and 20 cc of water to 50°C. The resulting admixture is shaken vigorously. The cuprous acetylide deposited is filtered, washed with water and suspended in 100 cc of water, and the suspension is mixed under agitation with a solution of 5.0 grams of iodine and 5.0 grams of potassium iodide in 15 cc of water. The mixture is stirred for a period of 1 hour. The precipitate is filtered, washed with water and extracted with ether. After the drying of the ethereal extract, the solvent is distilled off. Recrystallization of the residue from n-hexane gives about 5.6 grams of 2,4,5-trichlorophenyl iodopropargyl ether, MP 114° to 115°C.

References

Merck Index 4483 Kleeman & Engel p. 456 PDR p. 1891 DOT 8 (8) 292 (1972) I.N. p. 478 REM p. 1228

Seki, S., Nomiya, B. and Ogawa, H.; U.S. Patent 3,322,813; May 30, 1967; assigned to Meiji Seika Kaisha, Ltd., Japan

HALOTHANE

Therapeutic Function: Inhalation anesthetic

Chemical Name: 2-bromo-2-chloro-1,1,1-trifluoroethane

Common Name: -

Structural Formula: F3CCHBrCl

Chemical Abstracts Registry No.: 151-67-7

Trade Name	Manufacturer	Country	Year Introduced
Fluothane	Ayerst	U.S.	1958
Fluopan	Propan-Lipworth	S. Africa	_
Fluothane	I.C.I.	U.K.	_
Halan	Arzneimittelwerk Dresden	E. Germany	_
Halothan Hoechst	Hoechst	W. Germany	-
Halovis	Vister	Italy	_
Narcotan	Spofa	Czechoslovakia	_
Rhodialothan	Rhodia Pharma	W. Germany	_
Somnothane	Hoechst	_ `	_

Raw Materials

1.1.1-Trifluoro-2-chloroethane **Bromine**

Manufacturing Process

According to U.S. Patent 2,849,502, the apparatus used consisted of a 2" x 24" silica tube packed with silica chips and enclosed in a vertical electric furnace, 1,1,1-trifluoro-2-chloroethane as vapor and bromine as liquid were introduced into a narrow tube passing down the inside of the reaction tube. The mixed reactants then passed up through the reaction tube which was maintained at a temperature of about 465°C. The reaction products were passed through a water-cooled condenser which condensed out most of the desired 1,1,1trifluoro-2-bromo-2-chloroethane along with any high boiling by-products and unchanged bromine.

This condensate was washed with dilute caustic soda solution and dried over calcium chloride. The exit gases from this condenser were scrubbed with water and dilute caustic soda solution, dried and passed to a condenser cooled with a mixture of solid carbon dioxide and trichloroethylene which caused the unchanged 1,1,1-trifluoro-2-chloroethane to condense. This second condensate was then combined with the first and the mixture was fractionally distilled.

During a run of 2 hours 620 grams of 1,1,1-trifluoro-2-chloroethane and 630 grams of bromine were fed to the reactor and the product was worked up as described above. On fractional distillation there was obtained a first cut up to 50°C consisting of unchanged 1,1,1-trifluoro-2-chloroethane, then a middle cut between 50° and 52°C consisting of substantially pure 1,1,1-trifluoro-2-bromo-chloroethane and a higher boiling residue that contained a further quantity of the desired product together with some 1,1,1-trifluoro-2,2dibromo-2-chloroethane. On redistillation of the middle fraction pure 1,1,1-trifluoro-2bromo-2-chloroethane was obtained with BP 50° to 50.5°C.

References

Merck Index 4486 Kleeman & Engel p. 457 PDR p. 620 I.N. p. 479 REM p. 1042

Suckling, C.W. and Raventos, J.; U.S. Patent 2,849,502; August 26, 1958; assigned to Imperial Chemical Industries Limited, England

Suckling, C.W. and Raventos, J.; U.S. Patent 2,921,098; January 12, 1960; assigned to Imperial Chemical Industries, Limited, England

Scherer, O. and Kuhn, H.; U.S. Patent 2,959,624; November 8, 1960; assigned to Farbwerke Hoechst AG vormals Meister Lucius & Bruning, Germany

McGinty, R.L.; U.S. Patent 3,082,263; March 19, 1963; assigned to Imperial Chemical Industries Limited, England

HEPARIN

Therapeutic Function: Anticoagulant

Chemical Name: See structural formula

Common Name: -

Structural Formula:

desulfated heparin

Chemical Abstracts Registry No.: 9005-49-6

Trade Name	Manufacturer	Country	Year Introduced
Heparin	Upjohn	U.S.	1942
Heprinar	Armour	U.S.	1976
Chemyparin	S.I.T.	Italy	_
Clearane	Jamco	Italy	_
Disebrin	Tubi Lux Pharma	Italy	-
Embolex	Sandoz	U.S.	-
Endoprin	Endo	U.S.	-
Eparina	Vister	Italy	_
Eparinoral	Bruco	Italy	_
Eparinovis	Vis	Italy	_
Fioricet	Sandoz	U.\$.	_
Hamocura	Nordmark	W. Germany	_
Hepacort Plus	Rona Labs	U.K.	
Hepa Gel	Spirig	Switz.	
Heparin-Pos	Ursapharm	W. Germany	_
Heparin Sodium	Tokyo Tanabe	Japan	-
Heparinin	Sankyo	Japan	-
Hepathromb	Arzneimittelwerk Dresden	E. Germany	_
Hep-Lock	Elkins-Sinn	U.S.	_
Hepsal	Weddel	U.K.	_
Liquaemin	Organon	U. \$.	
Minihep	Leo	U.K.	_
Percase	Solac	France	-
Praecivenin	Pfleger	W. Germany	-
Pularin	Evans	U.K.	-
Thrombareduct	Azuchemie	W. Germany	-
Thromophob	Nordmark	W. Germany	-
Thrombo-Vetren	Promonta	W. Germany	-

Raw Materials

Beef intenstine Water
Chloroform Toluene

Manufacturing Process

5,000 pounds of beef intestine was introduced into a stainless steel reactor, jacketed with thermostated water and steam. 200 gallons of water and 10 gallons of chloroform were added. The mixture was agitated, the temperature was raised to 90°F and the agitation

stopped. 5 gallons of toluene was added and the vessel closed. Autolysis was continued for 17 hours

The extractant solution, consisting of 30 gallons of glacial acetic acid, 35 gallons of 30% aqueous ammonia, 50% sodium hydroxide to adjust the pH to 9.6 at 80°F and water to make 300 gallons, was added to the tissue. With agitation, the temperature was raised to 60°C and held there for 2 hours. Then steam was applied and the temperature was raised to boiling. 200 pounds of coarse filter aid (perlite) was added and the mixture filtered through a string discharge vacuum filter. The cake was washed with 200 gallons of hot water on the filter.

The filtrate was allowed to stand overnight and the fat skimmed off the top. After cooling to 100°F, the filtrate was transferred to a tank with thermostated water and the temperature set at 95° to 100°F. 24 gallons of pancreatic extract, prepared as described above, was added in 4-gallon increments every 12 hours for 3 days. The batch was brought to a boil and cooled to room temperature.

The batch was then filtered into a vessel and assayed for heparin content. 40,000,000 units were found in 1,000 gallons of filtrate. 20 kg of n-octylamine was added and 105 pounds of glacial acetic acid was added to bring the pH to 6.5. 20 gallons of methyl isobutyl ketone was added and the whole mixture was vigorously agitated for 1 hour. The mixture was then allowed to stand overnight. The clear, aqueous phase was drained off and discarded. The grayish-brown interphase was then removed, together with a small amount of the ketone phase, and transferred into a small kettle. The interphase volume was 7 gallons.

30 gallons of methanol was added and the mixture warmed to 120°F and then the pH was adjusted to 9.0. The mixture was then allowed to settle overnight. The solids were collected with vacuum and washed with 5 gallons of methanol. The cake was then suspended in 5 gallons of water and the heparin precipitated with 10 gallons of methanol. The solids were collected under vacuum. The dry weight of the cake was 1,000 grams and the total units were 38,000,000, according to U.S. Patent 2,884,358.

References

Merck Index 4543 Kleeman & Engel p. 458 PDR pp. 872, 887, 1286, 1581, 1845, 1949 I.N. p. 481 REM p. 828

Bush, J.A., Freeman, L.D. and Hagerty, E.B.; U.S. Patent 2,884,358; April 28, 1959; assigned to Southern California Gland Company

Nomine, G., Penasse, L. and Barthelemy, P.; U.S. Patent 2,989,438; June 20, 1961; assigned to UCLAF, France

Toccaceli, N.; U.S. Patent 3,016,331; January 9, 1962; assigned to Ormonoterapia Richter SpA, Italy

HEPRONICATE

Therapeutic Function: Peripheral vasodilator

Chemical Name: Nicotinic acid triester with 2-hexyl-2-(hydroxymethyl)-1,3-propanediol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7237-81-2

Trade Name	Manufacturer	Country	Year Introduced
Megrin	Yoshitomi	J ap a n	1972

Raw Materials

2-Hexyl-2-(hydroxymethyl)-1,3-propanediol Nicotinic acid p-Toluene sulfonyl chloride

Manufacturing Process

In 50 ml of pyridine were dissolved 50 grams of nicotinic acid and 50 grams of p-toluenesulfonyl chloride. While stirring, the mixture gradually became hot and colorless, and finally solidified. To the mixture was added dropwise a solution of 19 grams of 2-hexyl-2-(hydroxymethyl)-1,3-propanediol in 400 ml of pyridine at a temperature below 80°C. The mixture was heated at 115° to 125°C on an oil bath for 1 hour. After cooling, the mixture was poured into 300 ml of ice water, and extracted with toluene. The toluene layer was washed in sequence with water, aqueous sodium carbonate and water, dried over potassium carbonate, and then the toluene was distilled off. The oily residue was crystallized from ethanol to give 30 grams of 2-hexyl-2-(hydroxymethyl)-1,3-propanediol trinicotinate, melting at 94° to 96°C. The yield was 59.5%.

References

Merck Index 4545 Kleeman & Engel p. 459 DOT 8 (8) 314 (1972) I.N. p. 482

Nakanishi, M., Kobayashi, R. and Arimura, K.; U.S. Patent 3,384,642; May 21, 1968; assigned to Yoshitomi Pharmaceutical Industries, Ltd., Japan

HEPTABARBITAL

Therapeutic Function: Hypnotic; sedative

Chemical Name: 5-(1-Cyclohepten-1-yl)-5-ethyl-2,4,6(1H,3H,5H)-pyrimidinetrione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 509-86-4

Trade Name	Manufacturer	Country	Year Introduced
Medomine	Ciba Geigy	France	1948
Medomin	Geigy	U.S.	1955

Raw Materials

Cycloheptanone	Sodium
Cyanoacetic acid methyl ester	Ethanol
Ethyl bromide	Urea
Hydrogen chloride	

Manufacturing Process

112 g of cycloheptanone (suberone) are mixed with 130 g of cyanoacetic acid methyl ester, 2 g of piperidine are added, and the mixture is heated on the water bath at 60° C for several hours until no more water separates from the reaction mixture. The water layer is removed, and the remainder is subjected to distillation in vacuo. The fraction distilling at 160° C to 175° C under a pressure of 20 mm is collected separately; it consists of cycloheptenyl-cyanoacetic acid methyl ester. The first fractions can be subjected to a fresh condensing reaction after addition of more piperidine.

The cycloheptenyl-cyanoacetic acid methyl ester so obtained is a colorless liquid boiling at 174°C under a pressure of 20 mm.

Into this compound, an ethyl radical is introduced at the same C-atom to which the cycloheptenyl radical is connected. This is done, for example, in the following way:

19.3 g of the above ester are added to a solution of 2.3 g of sodium in 40 cc of absolute ethyl alcohol. To this mixture, 13.0 g of ethyl bromide are gradually added while cooling, and the reaction mixture is heated under reflux on a water bath until it has become neutral. The mixture is then taken up in water, the aqueous layer is separated and the cycloheptenyl-ethyl-cyanoacetic acid methyl ester so formed distills at 169°C to 170°C under a pressure of 20 mm.

22.1 g of this latter substance are dissolved in a solution of 4.6 g of sodium in 100 cc of absolute ethyl alcohol. 12 g of urea are further added thereto, and the whole solution is heated to about 80°C for about eight hours. The alcohol is then distilled off in vacuo, the residue is dissolved in cold water, and from this solution, C-C-cycloheptenyl-ethyl barbituric acid is obtained by saponification with diluted hydrochloric acid. The crude product is recrystallized from diluted ethyl alcohol and forms colorless needles of faintly bitter taste and melting point 174°C.

The sodium salt of this acid may be prepared by dissolving 2.5 g of the acid in a solution of 0.23 g of sodium in 20 cc of ethyl alcohol, and the salt forms, after evaporating the alcohol, a colorless, water-soluble powder.

References

Merck Index 4546 Kleeman & Engel p. 459 OCDS Vol. 1 pp. 269, 272 (1977) I.N. p. 482 Taub, W.; U.S. Patent 2,501,551; March 21, 1950

HETACILLIN POTASSIUM

Therapeutic Function: Antibacterial

Chemical Name: 6-(2,2-dimethyl-5-oxo-4-phenyl-1-imidazolidinyl)-3,3-dimethyl-7-oxo-4-

thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid potassium salt

Common Name: Phenazacillin

Structural Formula:

Chemical Abstracts Registry No.: 5321-32-4; 3511-16-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Natacillin	Bristol-Banyu	Japan	1970
Versapen	Bristol	Italy	1970
Versapen	Bristol	France	1970
Versapen	Bristol	U.S.	1971
Hetabiotic	Bristol-Myers	_	_
Hetacin-K	Bristol	_	_
Penplenum	Bristol	W. Germany	_
Uropen	Bristol	-	-

Raw Materials

Acetone

Manufacturing Process

To 100 grams of α-aminobenzylpenicillin slurried in 2,500 ml of acetone is added 200 ml of a 22% solution of potassium ethylhexanoate in dry n-butanol and the mixture is warmed to 45°C whereupon the acid dissolves. After the mixture is agitated for 1 hour at 40° to 45°C, the product begins to crystallize out. Agitation is continued for 4 hours at 45°C after which the product, the potassium salt of hetacillin, is collected by filtration, washed with 500 ml of dry acetone, dried for 17 hours at 40°C and found to weigh 70.0 grams.

References

Merck Index 4564 Kleeman & Engel p. 460 OCDS Vol. 1 p. 414 (1977) DOT 3 (1) 12 (1967) I.N. p. 483 REM p. 1200

Johnson, D.A. and Panetta, C.A.; U.S. Patent 3,198,804; August 3, 1965; assigned to Bristol-Myers Company

HEXACHLOROPHENE

Therapeutic Function: Topical antiinfective

Chemical Name: 2,2'-methylenebis(3,4,6-trichlorophenol)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 70-30-4

Trade Name	Manufacturer	Country	Year Introduced
Gamophen	Ethicon	U.S.	1950
Phisohex	Winthrop	U.S.	1954
Germa-Medica	Huntington	U.S.	1979
Hexascrub	Prof. Disposables	U.S.	1980
Pre-Op	Davis & Geck	U.S.	1980
Turgex	Xttrium	U.S.	1981
Coopaphene	McDougall & Robertson	U.K.	-
Dermadex	Alconox	U.S.	-
Dermohex	Hartz	Canada	_
G-11	Givaudan	Switz.	_
Germibon	Gamir	Spain	_
Heksaden	Deva	Turkey	-
Hexal	Fischer	Israel	-
Solu-Heks	Mustafa Nevzat	Turkey	-
Soy-Dome	Dome	U.S.	-
Ster-Zac	Hough	U.K.	_
Wescohex	West	U.S.	_
Westasept	West	U.S.	_

Raw Materials

2.4.5-Trichlorophenol Paraformaldehyde

Manufacturing Process

A mixture of 198 grams of 2,4,5-trichlorophenol and 18.8 grams of paraformaldehyde was heated to 65°C and well stirred. 65 grams of oleum 20% was added dropwise and the addition was so regulated that the temperature increased, without the application of external heat, until it reached 135°C at the end of the acid addition, which took 10 to 15 minutes. The contents of the reaction vessel were stirred for 2 minutes more and then allowed to run into a solution of 100 grams of sodium hydroxide in 1,000 cc of water.

The reaction flask was washed with a solution of 25 grams of sodium hydroxide in 250 cc of water. The combined alkaline solutions were heated to boiling for 5 minutes. A small amount (6 grams) of alkali-insoluble material remained and was filtered off. Sulfuric acid (62% H₂SO₄ content) was then added at room temperature dropwise under stirring to the filtrate until a pH of 10.3 was reached. This required about 80 grams of the acid. The monosodium salt of bis-(3,5,6-trichloro-2-hydroxyphenyl) methane precipitated out of solution and was filtered and then washed with 200 cc of water. The salt was then sus-

pended in 2,000 cc of water and sulfuric acid (62% H₂SO₄ content) was added under stirring until the contents were acid to Congo red paper. This required about 30 grams of the acid.

The resulting bis-(3,5,6-trichloro-2-hydroxyphenyl) methane was filtered, washed with water until acid-free and dried to constant weight at 100°C (170 grams, MP 154° to 158°C). Crystallization of the 170 grams of dried bis-(3,5,6-trichloro-2-hydroxyphenyl) methane from 300 grams toluene yielded a first crop amounting to 105 grams of substantially pure bis-(3.5.6-trichloro-2-hydroxyphenyl) methane, having a MP of 161° to 163°C (from U.S. Patent 2,435,593).

References

Merck Index 4574 Kleeman & Engel p. 461 PDR p. 1926 I.N. p. 484 REM p. 1161

Gump, W.S.; U.S. Patent 2,250,480; July 29, 1941; assigned to Burton T. Bush, Inc. Luthy, M. and Gump, W.S.; U.S. Patent 2,435,593; February 10, 1948; assigned to Burton T. Bush, Inc.

Gump, W.S., Luthy, M. and Krebs, H.G.; U.S. Patent 2,812,365; November 5, 1957; assigned to The Givaudan Corporation

HEXAMETHONIUM BROMIDE

Therapeutic Function: Antihypertensive

Chemical Name: N,N,N,N',N',N'-Hexamethyl-1,6-hexanediaminium bromide

Common Name: -

Structural Formula: (CH₃)₃N⁺(CH₂)₆N⁺(CH₂)₃·2Br⁻

Chemical Abstracts Registry No.: 60-26-4 (Hexamethonium)

Trade Name	Manufacturer	Country	Year Introduced
Bistrium	Squibb	U.S.	1951
Hexanium	Adrian-Marinier	France	_
Methobromin	Yamanouchi	Japan	-
Vegolysen	May & Baker	_	_

Raw Materials

Hexamethylene diamine	Dimethyl sulfate
Sodium hydroxide	Hydrogen bromide

Manufacturing Process

Hexamethylene diamine (116 g), sodium carbonate (466 g), and water (800 ml) were heated to 60°C, and dimethyl sulfate (830 g) added with stirring over 1½ hours keeping the temperature below 90°C. The reaction mixture was then stirred at 90°C for 2 hours, then cooled to 20°C, acetone (1,200 ml) added and the whole cooled to 0°C.

The solid formed was removed by filtration and washed with acetone (150 ml). Filtrate and washings were diluted with water to 4 liters and heated to 60°C under reflux. To this was

added a solution prepared from embonic acid (388 g), sodium hydroxide (80 g) and water (5 liters), the whole refluxed for 10 minutes and thereafter allowed to cool overnight.

The resultant embonate (530 g) was fiftered off, washed twice with a solution of acetone (75 ml) in water (425 ml), and dried at 100°C to give an amorphous yellow powder, MP 290°C to 291°C (with decomp.). 588 g of the embonate was dissolved in boiling water (4 liters).

Hydrobromic acid 50% w/w (325 g) diluted with water (2 liters) was added slowly at the boil and the precipitated embonic acid removed by filtering hot and washing twice with hot water (1 liter). The filtrate and washings were evaporated to dryness in a steam pan and the residue recrystallized from ethyl alcohol (1,200 ml), to yield the dibromide (320 g).

References

Merck Index 4582 Kleeman & Engel p. 462 I.N. p. 485

Barber, H.J.; U.S. Patent 2,641,610; June 9, 1953; assigned to May & Baker, Ltd. (U.K.)

HEXESTROL

Therapeutic Function: Estrogen

Chemical Name: 4,4'-(1,2-diethyl-1,2-ethanediyl)bisphenol

Common Name: dihydrodiethylstilbestrol; hexoestrol

Structural Formula:

Chemical Abstracts Registry No.: 84-16-2

Trade Name	Manufacturer	Country	Year Introduced
Estra Plex	Rowell	U.S.	1956
Cycloestrol	Bruneau	France	_
Estrene	Lepetit	_	_
Femirogen	Fuso	Japan	_
Folliplex	Recip	Sweden	_
Hexron	Teikoku Zori	Japan	0400a
Hormoestrol	Siegfried	W. Germany	_
Syntex	Pharmacia	Sweden	_
Synthovo	Boots	U.K.	_

Raw Materials

Sodium amalgam p-Hydroxypropiophenone Hydrogen iodide Hydrogen chloride Phosphorus (Red)

Manufacturing Process

50 parts by weight of p-hydroxy-propiophenone are dissolved in 200 parts by weight of a 12.5% solution of caustic soda and shaken with 350 parts by weight of 3% sodium amalgam. The sodium salt of the pinacol thereby precipitating is reacted with glacial acetic acid, whereby the free pinacol is obtained (MP 205°C to 210°C, after purification 215°C to 217°C). The yield amounts to 95% of the theoretical. The pinacol is suspended in ether and gaseous hydrogen chloride introduced, whereby water separates and the pinacolin formed is dissolved in the ether, from which it is obtained by evaporation as a viscous oil (diacetate of MP 91°C). The yield is quantitative.

40 parts by weight of pinacolin are dissolved in ethyl alcohol and gradually treated with 80 parts by weight of sodium under reflux. The solution is decomposed with water and the pinacolin alcohol formed extracted from the neutalized solution with ether. The pinacolin alcohol is a viscous oil which is characterized by a dibenzoate of MP 172°C. The yield is 95% of the theoretical.

30 parts by weight of pinacolin alcohol are dissolved in 25 parts by weight of glacial acetic acid and heated for 30 minutes to 135°C to 140°C after having added 20 parts by weight of hydriodic acid (specific gravity = 1.94) and 5 parts by weight of red phosphorus. The whole is filtered, the solution poured into water, extracted with ether and the ether solution washed with bicarbonate. The oil remaining after distilling off the ether is taken up in chloroform, whereby hexoestrol $[\alpha\beta]$ -(p.p-dihydroxy-diphenyl)- $\alpha\beta$ -diethyl-ethane] crystallizes out. MP after recrystallization from benzene: 185°C. Yield: 20%.

References

Merck Index 4593 DFU 8 (5) 413 (1983) Kleeman & Engel p. 466 OCDS Vol. 1 p. 102 (1977) I.N. p. 486

Wallis, E.S. and Bernstein, S.; U.S. Patent 2,357,985; September 12, 1944; assigned to Research Corporation

Adler, E., Gie, G.J. and von Euler, H.; U.S. Patent 2,421,401; June 3, 1947; assigned to Hoffmann-La Roche, Inc.

HEXETIDINE

Therapeutic Function: Antifungal

Chemical Name: 1,3-Bis(2-ethylhexyl)hexahydro-5-methyl-5-pyrimidinamine

Common Name: -

Structural Formula:

Chemical Abstrects Registry No.: 141-94-6

Trade Name	Manufacturer	Country	Year Introduced
Sterisil	Warner Lambert	U.S.	1956
Oraseptic	Parke Davis	Italy	1960
Hextril	Substantia	France	1961

Trade Name	Manufacturer	Country	Year Introduced
Hexoral	Goedecke	W. Germany	1967
Oraldene	Warner	France	1969
Oraldene	Warner	U.K.	1969
Bactidol	Warner-Chilcott	_	
Bucosept	La Campana	Mexico	_
Collu-Hextril	Substantia	France	_
Drossadin	Drossapharm	Switz.	
Glypesin	Stada	W. Germany	_
Sterisol	Warner-Chilcott		

Nitroethane 2-Ethylhexylamine Formaldehyde Hydrogen

Manufacturing Process

Nitroethane and formaldehyde are first reacted to give 2-methyl-2-nitro-1,3-propanediol. This is reacted with 2-ethylhexylamine and formaldehyde to give 5-nitro-1,3-bis(2-ethylhexyl)-5-methyl-hexahydropyrimidine.

To a hydrogenation apparatus containing 500 ml of methanol and 10 g of Raney nickel catalyst were continuously added over a period of one hour, 240 g of 5-nitro-1,3-bis(2-ethylhexyl)-5-methylhexahydropyrimidine. During the one-hour period, the resulting mixture was hydrogenated at approximately 1,000 pounds per square inch utilizing room temperature as the initial temperature and gradually increasing the temperature to about 70°C. At the end of the one-hour period, hydrogenation was stopped. The reaction mixture was first filtered to remove the catalyst and was then distilled at atmospheric pressure at a temperature of 70°C to remove methanol. 197.5 g of 5-amino-1, 3-bis (2-ethylhexyl)-5-methylhexahydropyrimidine were collected.

References

Merck Index 4597 Kleeman & Engel p. 463 I.N. p. 487

Bell, W.O. and Neckar, A.E.; U.S. Patent 3,054,797; September 18, 1962; assigned to Commercial Solvents Corp.

HEXOBENDINE

Therapeutic Function: Vasodilator

Chemical Name: 3,4,5-Trimethoxybenzoic acid 1,2-ethanediylbis-[(methylimino)-3,1-propanediyl] ester

Common Name: -

Structurel Formula:

Chemical Abstracts Registry No.: 54-03-5; 50-62-4 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Reoxyl	Hormonchemie	W. Germany	1966
Ustimon	Merck Clevenot	France	1969
Flussicor	Farmalabor	Italy	1971
Andiamine	Polfa	Poland	_
Hityl	Biosedra	France	
Instenon	Byk Gulden	W. Germany	_

Raw Materials

Methyl acrylate	N,N'-Dimethylethylenediamine
Lithium aluminum hydride	3,4,5-Trimethoxybenzoyl chloride

Manufacturing Process

Methyl acrylate and N,N'-dimethylethylenediamine are first reacted and that product reduced with lithium aluminum hydride to give a compound A.

To a solution of 13 parts of compound A and 12 parts by volume of absolute pyridine in 80 parts by volume of absolute dioxane there are added dropwise and under constant stirring 35 parts of 3.4.5-trimethoxybenzoyl chloride dissolved in 70 parts by volume of absolute dioxane in the course of 30 minutes. The mixture is stirred for a further 3 hours at a temperature of 100°C and the excess solvent is then evaporated in vacuo. The residue of the evaporation is treated with ethyl acetate and saturated sodium carbonate solution, whereafter the organic phase is separated, treated with water, dried with sodium sulfate and the solvent is removed in vacuo. The residue thus obtained is taken up in ether and separated from 4 parts of insoluble trimethoxy benzoic acid anhydride by filtration. After evaporation of the ether there are obtained 32.5 parts of N,N'-dimethyl-N,N'-bis-[3-(3,4,5-trimethoxybenzoxy)propyl] ethylene diamine, corresponding to a yield of 86% of the theoretical. MP: 75°C to 77°C.

The di-tertiary base thus obtained is dissolved in ether and the solution is saturated with hydrogen chloride gas. After isolation and reprecipitation from methanol-ether there is obtained the dihydrochloride melting at 170°C to 174°C.

References

Merck Index 4600 Kleeman & Engel p. 464 OCDS Vol. 2 p. 92 (1980) I.N. p. 487

Kraupp, O. and Schlogl, K.; U.S. Patent 3,267,103; August 16, 1966; assigned to Oesterreichische Stickstoffwerke AG (Austria)

HEXOCYCLIUM METHYL SULFATE

Therapeutic Function: Antispasmodic

Chemical Name: 4-(2-cyclohexyl-2-hydroxy-2-phenylethyl)-1,1-dimethylpiperazinium

methyl sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 115-63-9

Trade Name	Manufacturer	Country	Year Introduced
Tral	Abbott	U.S.	1957
Traline	Abbott	France	1959

Raw Materials

N-Phenacyl-N'-methylpiperazine Magnesium Cyclohexyl bromide Dimethyl sulfate

Manufacturing Process

In a 2-liter, 3-necked, round-bottomed flask equipped with a stirrer, dropping funnel, and a condenser protected with a calcium chloride drying tube is placed 13.7 grams (0.57 mol) of magnesium turnings and the magnesium is covered with 200 cc of anhydrous ether. A crystal of iodine is added to the flask and 92.9 grams (0.57 mol) of cyclohexyl bromide dissolved in 300 cc of anhydrous ether is added dropwise with stirring while the reaction proceeds. After the addition of the cyclohexyl bromide is completed, the resulting mixture is stirred and heated on a steam bath for 3 hours. The mixture is cooled to room temperature and 49.5 grams (0.227 mol) of N-phenacyl-N'-methylpiperazine dissolved in 50 cc of anhydrous ether is added dropwise and the resulting mixture is stirred and refluxed for about 16 hours.

The reaction mixture is cooled and 50 grams of ammonium chloride dissolved in 200 cc of water is added dropwise thereto with stirring. The decomposed Grignard complex is then filtered. Benzene is added to the ether filtrate and the solvents are removed therefrom on a steam bath. The residue is fractionated and the base, N-(β-cyclohexyl-β-hydroxyβ-phenyl-ethyl)N'-methylpiperazine, is obtained as a liquid having a boiling point of 196° to 203°C at a pressure of 4.0 mm.

To 3.8 grams of the base dissolved in 35 cc of ethyl alcohol is added 1.6 grams of dimethyl sulfate. The solution is allowed to stand at room temperature for about 12 hours. The salt formed is filtered, recrystallized from ethyl alcohol, and is found to have a melting point of 203° to 204°C.

References

Merck Index 4601 Kleeman & Engel p. 465 PDR p. 553 I.N. p. 488 REM p. 918

Weston, A.W.; U.S. Patent 2,907,765; October 6, 1959; assigned to Abbott Laboratories

HEXOPRENALINE

Therapeutic Function: Bronchodilator

Chemical Name: 4,4'-[1,6-hexanediylbis[imino(1-hydroxy-2,1-ethanediyl)]] bis-1,2-benzene-

diol

Common Name: N,N'-bis[2-(3,4-dihydroxyphenyl)-2-hydroxyethyl] hexamethylenediamine

Structural Formula:

Chemical Abstracts Registry No.: 3215-70-1

Trade Name	Manufacturer	Country	Year Introduced
Éto sc ol	Byk-Gulden	W. Germany	1973
Hexoprenaline	Morishita	J ap a n	1976
Leanol	Yoshitomi	Japan	1976
Bronalin	Byk Liprandi	Argentina	-
Gynipral	Chemie Linz	Austria	_
Ipradol	Chemie Linz	Austria	-
Prelin	Farmos	Finland	-

Raw Materials

Chloroaceto pyrocatechol N,N'-Dibenzylhexamethylene diamine Hydrogen

Manufacturing Process

The N,N'-dibenzyl-N,N'-bis-[2-(3',4'-dihydroxyphenyl)-2-oxoethyl] -hexamethylene-diaminedichlorohydrate-monohydrate used as the starting material was prepared as follows: 2 mols of chloroaceto pyrocatechin were dissolved in 2,000 cc of acetone and heated to boiling with 2 mols of N,N'-dibenzylhexamethylene-diamine for 12 hours, almost the theoretical quantity of N.N'-dibenzylhexamethylene-diamine-dichlorohydrate being precipitated and removed by suction after cooling. Excess HCl was added to the filtrate, approximately 66% of the theoretically possible quantity of crude dichlorohydrate of the N,N'-dibenzyl-N.N'-bis-[2-(3'.4'-dihydroxyphenyl)-2-oxoethyl] -hexamethylene-diamine being precipitated. The product was cleaned by recrystallization from water with the addition of animal charcoal. After drying the substance contained water of crystallization at ambient temperature, MP 206° to 209.5°C.

Five grams of N,N'-dibenzyl-N,N'-bis[2-(3',4'-dihydroxyphenyl)-2-oxoethyl] -hexamethylenediamine-dichlorohydrate as a monohydrate were hydrogenated under considerable agitation by means of 2.0 grams of 10% palladium-carbon, with hydrogen in a mixture of 270 cc of methanol and 50 cc of water at 45°C and normal pressure. After about 4 hours the theoretical quantity of hydrogen (4 mols of hydrogen per 1 mol of substance) was absorbed for the splitting off of the two benzyl radicals and the reduction of the two carbonyl groups to carbinol groups, and the hydrogenation came to a stop.

After separation of the catalyst the product was concentrated until dry, the residue was triturated with acetone, the resulting crystallizate was removed by suction and washed with acetone. The yield of N,N'-bis-[2-(3',4'-dihydroxyphenyl)-2-hydroxyethyl] -hexamethylenediamine-dichlorohydrate was 3.3 grams, i.e., 92% of the theoretical value. A quantity of 2.8 grams having a melting point of 197.5° to 198°C was obtained by precipitation from a mixture of methanol-ether.

Free N,N'-bis-[2-(3',4'-dihydroxyphenyl)-2-hydroxyethyl] -hexamethylene-diamine can be separated from these salts by the addition of the equivalent quantity of caustic alkali solution. It has a melting point of 162° to 165°C and contains half a mol of water of crystallization.

N,N'-bis-[2-(3',4'-dihydroxyphenyl)-2-hydroxyethyl]-hexamethylene-diamine-sulfate (MP

222° to 228°C) can be obtained by reacting the base with the equivalent quantity of sulfuric acid in an alcohol solution, followed by concentration and precipitation from wateralcohol solution.

References

Merck Index 4603 Kleeman & Engel p. 466 I.N. p. 488

Schmid, O., Lerchenthal, H.S.-M., Zolss, G., Gratz, R. and Wismayr, K.; U.S. Patent 3,329,709; July 4, 1967; assigned to Oesterreichische Stickstoffwerke AG, Austria

HEXYLCAINE HYDROCHLORIDE

Therapeutic Function: Local anesthetic

Chemical Name: 1-cyclohexylamino-2-propylbenzoate hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 532-76-3; 532-77-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Cyclaine	MSD	U.S.	1952

Raw Materials

1-Cyclohexylamino-2-propanol Benzoyl chloride Hydrogen chloride

Manufacturing Process

A solution of 0.1 mol of 1-cyclohexylamino-2-propanol in 30 grams of chloroform was saturated with dry hydrogen chloride gas, with cooling. A solution of 0.1 mol of benzoyl chloride in 30 grams of chloroform was added and the solution was heated in a bath at 50° to 55°C for four days under a reflux condenser protected from atmospheric moisture. Then the solvent was removed by vacuum distillation while the mixture was warmed on a water bath. Benzene was then added to the syrupy residue and the reaction product crystal lized out after the benzene was removed by vacuum distillation.

The crystallized solid residue was washed with anhydrous ether to remove any unreacted benzoyl chloride. The 1-cyclohexylamino-2-propyl benzoate hydrochloride obtained was purified by two recrystallizations from absolute alcohol. It melted at 177° to 178.5°C.

References

Merck Index 4605 Kleeman & Engel p. 467 OCDS Vol. 1 p. 12 (1977) I.N. p. 488 REM p. 1056

Cope, A.C.; U.S. Patent 2,486,374; November 1, 1949; assigned to Sharp & Dohme, Inc.

HOMOFENAZINE

Therapeutic Function: Tranquilizer

Chemical Name: Hexahydro-4-[3-[2-(trifluoromethyl)phenothiazin-10-yl]propyl]-1H-1,4-

diazepine-1-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3833-99-6

Trade Name	Manufacturer	Country	Year Introduced
Pasaden	Homburg	italy	1972
Oldagen	Purissimus	A rgentina	_

Raw Materials

Sodium amide 3-Trifluoromethyl-phenothiazine 2-Chloroethanol 3-Bromopropyl-homopiperazine

Manufacturing Process

35 parts of 3-trifluoromethyl-phenothiazine in 200 parts of toluene were reacted with 6.1 parts soda amide and then with 28.8 parts of 3-bromopropyl-homopiperazine. After a 2 hour reaction period the reaction mixture was washed with water twice and then extracted with dilute HCI, the resulting extract alkalized with excess K2CO3 and the precipitated base taken up in ether. After drying the ether extract and evaporation of the ether, the residue was distilled. 20,3 parts of 3-trifluoromethyl-10-(3'-homopiperazino)-propylphenothiazine having a boiling point of 225° to 230°C at 1 mm Hg pressure were obtained.

20 parts of 3-trifluoromethyl-10-(3'-homopiperazino)-propyl-phenothiazine in 100 parts of butanol were refluxed for 4 hours together with 5.5 parts of 2-chloroethanol and 11 parts potassium carbonate. The reaction mixture was diluted with 200 parts of ether, then washed three times with water and dried with potassium carbonate. After evaporation of the solvent the residue was distilled under a vacuum of 1 mm Hg. 17.5 parts of 3-trifluoro methyl-10-[3'-(4"-(2"-hydroxyethyl)-homopiperazino)-propyl]-phenothiazine distilled over at 230° to 240°C. The difumarate of this base had a melting point of 148°C.

References

Merck Index 4633 Kleeman & Engel p. 468 I.N. p. 492

Schuler, W.A., Beschke, H. and von Schlichtergroll, A.; U.S. Patent 3,040,043; June 19, 1962; assigned to Deutsche Gold- und Silber-Scheideanstalt vormals Roessler, Germany

HYDRALAZINE HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: 1(2H)-phthalazinone hydrazone hydrochloride

Common Name: 1-hydrazinophthalazine hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 304-20-1; 86-54-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Apresoline HCI	Ciba	U.S.	1952
Lopres	Tutag	U.S.	1971
Aiselazine	Hotta	Japan	
Alphpress	Unipharm	Israel	_
Anaspasmin	Vitacain	Japan	_
Aprelazine	Kaigai	Japan	_
Apresazide	Ciba	U.S.	_
Aprezine	Kanto	Japan	_
Basedock D	Sawai	Japan	
Deselazine	Kobayashi	Japan	
Diucholin	Toyama	Japan	_
Dralzine	Lemmon	U.S.	_
Homoton	Horii	Japan	_
Hydrapres	Rubio	Spain	_
Hydrapress	Isei	Japan	
Hydroserpine	Zenith	U.S.	_
Hypatol	Yamanouchi	Japan	
Hyperazine	Seiko	Japan	_
Hypos	Nippon Shinyaku	Japan	
Ipolina	Lafare	Italy	_
Lopress	Reid Provident	U.S.	_
Pressfall	Nissin	Japan	_
Prospectin	Maruishi	Japan	_
Ser-Ap-Es	Ciba	U.S.	_
Serpasil	Ciba	U.S.	
Solesorin	Hishiyama	Japan	_
Supres	Protea	Australia	_
Tetrasoline	Maruko	Japan	_
Unipres	Reid-Rowell	U.S.	

Raw Materials

Phthalazone Hydrazine hydrate Phosphorus oxychloride Hydrogen chloride

Manufacturing Process

30 parts by weight of phthalazone are converted to 1-chlorophthalazine by the method described in Ber. d. deutsch. chem. Ges., vol 26, page 521 (1893). The freshly obtained yet moist chloro compound is heated on the water bath for two hours in a mixture of 100 parts by volume of ethyl alcohol and 90 parts by volume of hydrazine hydrate. Preferably after filtering, 1-hydrazino-phthalazine crystallizes out in yellow needles on cooling,

It is filtered with suction and washed with cold ethyl alcohol. The compound is crystallized from methyl alcohol, and melts, when rapidly heated, at 172° to 173°C. On warming in alcoholic or aqueous hydrochloric acid, the hydrochloride of MP 273°C (with decomposition) is obtained.

References

Merck Index 4661 Kleeman & Engel p. 468 PDR pp. 789,812,830,993,1449,1600,1999 OCDS Vol. 1 p. 353 (1977) I.N. p. 494 REM p. 847

Hartmann, M. and Druey, J.; U.S. Patent 2,484,029; October 11, 1949; assigned to Ciba Pharmaceutical Products, Inc.

HYDROCHLOROTHIAZIDE

Therapeutic Function: Diuretic

Chemical Name: 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide

Common Name: Chlorosulthiadil

Structural Formula:

Chemical Abstracts Registry No.: 58-93-5

	Trade Name	Manufacturer	Country	Year Introduced
1	Hydrodiuril	MSD	U.S.	1959
(Oretic	Abbott	U.S.	1959
- 1	Esidrix	Ciba	U .S .	1959
1	Esidrex	Ciba Geigy	France	1960
-	Thiuretic	Parke Davis	U.S.	1974
	Lexxor	Lemmon	U.S.	1974
٠,	Aldactazide	Searle	U.S.	-
	Aldoril	MSD	U.S.	-
	Apresazide	Ciba	U.S.	
	Apresoline	Ciba	U.S.	
(Catiazida	Infale	Spain	_
(Chemhydrazide	Chemo-Drug	Canada	_
	Clothia	lwaki	Japan	_
	Chlorzide	Foy	U.S.	_
-	Deidran	Pharma.Farm.Spec.	Italy	_
	Delco-Retic	Delco	U.S.	-
	Dichlorosal	Teva	Israel	-
	Dichlotride	Merck-Banyu	Japan	
	Didral	Caber	Italy	-
	Dihydran	A.F.I.	Norway	_
	Diidrotiazide	Omikron-Gagliardi	Italy	
	Direma	Distillers	U.K.	_

Trade Name	Manufacturer	Country	Year Introduced
Dithiazid	Arcana	Austria	_
Diuchlor H	Medic	Canada	_
Diurogen	Gentili	italy	_
Diursana H	Santos	Spain	_
Dixidrasi	Vaillant	Italy	_
Dyazide	SKF	U.S.	_
Esoidrina	Bouty	Italy	
Esimil	Ciba	U.S.	-
HHR	Schein	U.S.	_
Hidrosaluretil	Gayoso Wellcome	Spain	
Hyclosid	Pharmacal	Finland	
Hydoril	Cenci	U.S.	_
Hydrazide	Powell	Canada	_
Hydrex	Orion	Finland	_
Hydrite	Verdun	Canada	-
Hydro-D	Haisey	U.S.	_
Hydrodiuretex	Barlow Cote	Canada	-
Hydropres	MSD	U.S.	_
Hydroserpine	Schein	U.S.	_
Hydrozide	Elliott-Marion	Canada	-
Hytrid	Leiras	Finland	-
Idrodiuvis	Vis	Italy	-
Inderide	Ayerst	U.S.	_
Ivaugan	Voigt	W. Germany	
Jen-Diril	Jenkins	U.S.	-
Lopressor	Geigy	U.S.	_
Loqua	Columbia	U.S.	_
Manuril	I.C.N.	Canada	_
Maschitt	Showa	Japan	_
Maxzide	Lederle	U.S.	_
Mikorten	Zensei	Japan	-
Moduretic	MSD	U.S.	<u>-</u>
Natrimax	Trianon	Canada	_
Nefrol	Riva	Canada	
Neo-Codema	Neo	Canada	_
Neo-Flumen Neo-Minzil	Serono	Italy	_
Neo-Minzii Neo-Saluretic	Valeas Lafar	italy	
	Towa	Italy	-
Newtolide Novodiurex	Oti	Japan	-
Novohydrazide	Novopharm	Italy Canada	_
Pantemon	Tatsumi	Japan	<u>-</u>
Ro-Hydrazide	Robinson	U.S.	
Saldiuril	Bieffe	Italy	_
Ser-Ap-Es	Ciba	U.S.	_
Serpasil	Ciba	U.S.	_
Spironazide	Schein	U.S.	_
Tenzide	Metro Med	U.S.	_
Thiadril	Vangard	U.S.	
Thiaretic	Blue Line	U.S.	
Timolide	MSD	U.S.	_
Unazid	Pliva	Yugoslavia	
Unipres	Reid-Rowell	U.S.	_
Urirex	Pharmador	S. Africa	_
Urodiazin	Apogepha	E, Germany	_
Urozide	I.C.N.	Canada	_
Zide	Reid Provident	U.S.	
		0.0.	

5-Chloro-2.4-disulfamylaniline Paraformaldehyde

Manufacturing Process

As described in U.S. Patent 3,163,645, a mixture of 2.9 grams of 5-chloro-2,4-disulfamyl aniline in 15 ml of anhydrous diethyleneglycol dimethyl ether, 0.5 ml of an ethyl acetate solution containing 109.5 grams of hydrogen chloride per 1,000 ml and 0.33 grams (0,011 mol) of paraformaldehyde is heated to 80° to 90°C and maintained at that temperature for 1 hour. The resulting mixture is cooled to room temperature and concentrated to onethird of its volume under reduced pressure, diluted with water, then allowed to crystallize. The product is filtered off and recrystallized from water, to yield the desired 6-chloro-7sulfamyl-3,4-dihydro-2H-[1,2,4]-benzothiadiazine-1,1-dioxide, MP 266° to 268°C, yield 1,4 grams. By replacing paraformaldehyde by 0.84 gram of 1.1-dimethoxymethane and proceeding as above, the same compound is obtained.

As described in U.S. Patent 3,025,292, the desired product may be made by hydrogenation of chlorothiazide. Three grams of 6-chloro-7-sulfamyl-1,2,4-benzothiadiazine-1,1dioxide (chlorothiazide) is suspended in 100 ml of methanol. Then 1.0 gram of a 5% ruthenium on charcoal catalyst is added, and the mixture is reduced at room temperature and at an initial hydrogen pressure of 39 psig. The theoretical amount of hydrogen to form the 3,4-dihydro derivative is absorbed after a period of about 10 hours,

The reduction mixture then is heated to boiling and filtered hot to remove the catalyst. The catalyst is washed with a little methanol and the combined filtrate is concentrated to a volume of about 25 ml by evaporation on a steam bath. Upon cooling to room temperature, white crystals separate which are filtered, washed with water, and dried in vacuo at room temperature over phosphorus pentoxide overnight. The weight of 6-chloro-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide obtained is 1.26 grams; MP 268.5° to 270°C. Dilution of the above filtrate with water to a volume of about 125 ml gives a second crop of product having the same melting point and weighing 1.22 grams, giving a combined yield of 83%. When the product is mixed with an authentic sample of 6-chloro-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide, prepared by another method, the melting point is not depressed.

References

Merck Index 4683

Kieeman & Engel p. 469

PDR pp. 546, 625, 789, 812, 896, 1014, 1137, 1184, 1201, 1211, 1449, 1606, 1674, 1713, 1999

OCDS Vol. 1 p. 358 (1977)

DOT 16 (4) 141 (1980), (8) 266 (1980), 17 (5) 213 (1981), 19 (3) 172 (1983) and 19 (9) 496 (1983)

I.N. p. 495

REM p. 939

Jones, W.H. and Novello, F.C.; U.S. Patent 3,025,292; March 13, 1962; assigned to Merck &

Downing, G.V., Jr.; U.S. Patent 3,043,840; July 10, 1962; assigned to Merck & Co., Inc. de Stevens, G. and Werner, L.H.; U.S. Patent 3,163,645; December 29, 1964; assigned to Ciba Corporation

Irons, J.S. and Cook, T.M.; U.S. Patent 3,164,588; January 5, 1965; assigned to Merck & Co., Inc.

HYDROCORTAMATE HCI

Therapeutic Function: Adrenocortical steroid

Chemical Name: Cortisol 21-ester with N.N-diethylglycine

Common Name: -

Structural Formula:
$$\begin{array}{c} \operatorname{CH}_2 \operatorname{OCCCH}_2 \operatorname{N} \left(\operatorname{C}_2 \operatorname{H}_5 \right)_2 \\ \\ \operatorname{CH}_3 \\ \\ \operatorname{CH}_3 \\ \end{array}$$

Chemical Abstracts Registry No.: 76-47-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Magnacort	Pfizer	U.S.	1956
Etacort	Angelini	Italy	_

Raw Materials

Hydrocortisone Chloroacetic anhydride Diethylamine

Manufacturing Process

1 g of hydrocortisone is introduced with stirring into 5 cc of anhydrous pyridine. After heating to 45°C and then cooling again to 0°C to 5°C there is slowly added dropwise a freshly prepared solution of 0.52 g (1 mol + 10%) of chloracetic anhydride in 4 cc of absolute ether. The reaction temperature should not exceed 10°C. During the whole time of reaction a stream of nitrogen is passed through the reaction mixture in order to achieve an exhaustive evaporation of the added ether. The batch is slowly allowed to come to room temperature, an operation requiring 4 to 5 hours, and then 0.1 cc of water is added for decomposition of the excess of anhydride. The reaction solution is introduced dropwise with stirring within 1 hour into 100 cc of water as a result of which the 21-chloracetate of hydrocortisone is deposited. After filtration with suction, washing is carried out with water, 5% hydrochloric acid, water, 2% sodium bicarbonate solution and water again. The substance is then dried in a vacuum desiccator. The white chloracetate thus obtained melts at 213°C to 214°C with decomposition. It is free from nitrogen and the yield amounts to 93.4% of the theoretical.

1 g of hydrocortisone-21-chloracetate is dissolved in 15 cc of anhydrous and peroxide-free tetrahydrofuran. The solution produced is treated with a solution of 0.42 g of diethylamine in 15 cc of tetrahydrofuran. The reaction mixture is allowed to stand for 24 hours at room temperature. The separated diethylamine hydrochloride is filtered with suction and the filtrate evaporated under vacuum in a nitrogen atmosphere at 40°C. The residue is triturated with a little absolute ether and suction filtered. It is washed on the filter with a little ether and then with hexane. The 21-diethylaminoacetate of hydrocortisone melts at 150°C to 162°C. The base can be recrystallized from ethyl acetate but its melting point remains practically unchanged at 162°C to 163°C. The yield amounts to 72.5% of the theoretical. For conversion of the base into the hydrochloride it is suspended in ether and the suspension treated with ethereal hydrochloric acid. The hydrochloride is filtered with suction and recrystallized from ethanol; MP 222°C with decomposition.

With a starting quantity of 14 g, the yield amounted to 85.4% of the theoretical.

References

Merck Index 4688

I.N.p.497 Schering A.G.; British Patent 879,208; October 4, 1961

HYDROCORTISONE

Therapeutic Function: Glucocorticoid

Chemical Name: 11\(\beta\),17,21-trihydroxypregn-4-ene-3,20-dione

Common Name: 17-hydroxycorticosterone

Structural Formula: CH_2OH СНЗ

Chemical Abstracts Registry No.: 50-23-7

Trade Name	Manufacturer	Country	Year Introduced
Hydrocortone	MSD	U.S.	1952
Cortef	Upjohn	U.S.	1953
Cortril	Pfizer	U.S.	1954
Cortifan	Schering	U.S.	1954
Otosone-F	Broemmel	U.S.	1955
Cortispray	National	U.S.	1956
Domolene-HC	Dome	U.S.	1960
Texacort	Texas Pharm	U.S.	1960
Cortenema	Rowell	U.S.	1966
Lubricort	Texas Pharm	U.S.	1968
Proctocort	Rowell	U.S.	1969
Hautosone	Merrell National	U.S.	1970
Dermacort	Rowell	U.S.	1972
Rectoid	Pharmacia	U.S.	1977
Alphaderm	Norwich Eaton	U.S.	1978
H-Cort	Pharm. Assoc.	U.S.	1979
Dermolate	Schering	U.S.	1979
Clear-Aid	Squibb	U.S.	1980
Hycort	Elder	U.S.	1981
Prep-Cort	Whitehall	U.S.	1981
Corizone-5	Thompson	U.S.	1982
Flexicort	Westwood	U.S.	1982
Aeroseb	Allergan	U.S.	_
Ala-Cort	Del Ray	U.S.	_
Algicortis	Vaillant	Italy	_
Allersone	Mallard	U.S.	
Alphacortison	Norwich-Eaton	U.S.	_
Alphaderm	Norwich	U.S.	_
Balneol-HC	Rowell	U.S.	_
Barseb -HC	Barnes-Hind	U.S.	-
Bio-Cortex	Ries	U.S.	-

Trade Name	Manufacturer	Country	Year Introduced
Carmol HC	Syntex	U.S.	_
Cleiton	Kodama	Japan	
Cobadex	Cox	U.K.	_
Cortanal	Canada Pharmacal	Canada	_
Cort-Dome	Dome	U.S.	_
Cortes	Taisho	Japan	-
Cortesal	Pharmacia	Sweden	_
Corticaine	Glaxo	U.S.	-
Cortifair	Pharmafair	U.S.	_
Cortiment	Ferring	Sweden	-
Cortiphate	Travenol	U.S.	-
Cortisporin	Burroughs Wellcome	U.S.	_
Cortolotion	Kempthorne-Prosser	N.Z.	-
Cortril	Pfizer	U.S.	-
Cremesone	Dalin	U.S.	-
Di-Hydrotic	Legere	U.S.	_
Dioderm	Dermal	U.K.	
Durel-Cort	Durel Star	U.S.	_
Ecosone	Star	U.S.	_
Efcortelan	Glaxo	U.K.	
Egocort	Ego	Australia	<u>-</u> _
Excerate FEP	Foji Zoki Boots	Japan	_
· - ·	Lyocentre	U.S. France	_
Gyno-Cortisone HC-Cream	C&M Pharmacal	U.S.	-
Heb-Cort	Barnes-Hind	U.S.	_
Hidroal tesona	Alter	Spain	_
Hycor	Sigma	Australia	-
Hycort	Douglas	U.S.	_
Hycortole	Premo	U.S.	<u>-</u>
Hydrocort	Ferring	W. Germany	_
Hydrocortex	Kenyon	U.S.	_
Hydrofoam	U.S.V.	U.S.	_
Hydrotisona	Roussel-Lutetia	Argentina	_
Hytone	Dermik	U.S.	
Idracemi	Farmigea	ltaly	_
Lexocort	Lexington	U.S.	_
Microcort	Alto	U.S.	_
Milliderm	A.L.	Norway	_
Octicair	Pharmafair	U.S.	_
Optef	Upjohn	_	_
Otic-HC	Hauck	U.S.	-
Otobiotic	Schering	U.S.	-
Otocort	Lemmon	U.S.	_
Pedicort	Pedinol	U.S.	
Penecort	Herbert	U.S.	
Pyocidin	Berlex	U.S.	-
Rectocort	Welcker-Lyster	Canada	
Rectoid	Pharmacia	Sweden	
Sigmacort	Sigma	Australia	
Signef	Fellows-Testagar	U.S.	_
Sterocort	Omega	Canada	_
Synacort	Syntex	U.S.	
Tega-Cort	Ortega	U.S.	_
Vanoxide	Dermik	U.S.	_
Vioform	Ciba	U.S.	_
Viosol	Wallace	U.S.	-
Vytone	Dermik	U.S.	_

Bacterium Cunninghamella blakesleeana 11-Desoxy-17-hydroxycorticosterone

Manufacturing Process

The following example from U.S. Patent 2,602,769 illustrates the preparation of 17-hydroxycorticosterone (compound F) from 11-desoxy-17-hydroxycorticosterone (compound S). A medium was prepared from 0.5% peptone, 2% dextrose, 0.5% soybean meal, 0.5% KH₂PO₄, 0.5% sodium chloride and 0.3% yeast extract in tap water. To 200 ml of this sterilized medium was added an inoculum of the vegetative mycella of Cunninghamella blakes/eeana. The spores had first been transferred from a sport slant to a broth medium and the broth medium was aerobically incubated at 24°C for 24 to 72 hours in a reciprocating shaker until the development of vegetative growth. The inoculated medium containing added vegetative mycella of Cunninghamella blakesleeana was incubated for 48 hours at 24°C following which was added 66 mg of compound S, 11-desoxy-17-hydroxycorticosterone in solution in a minimum of ethanol, and incubation was maintained for 7 hours at 24°C. The beer containing steroid was diluted with 800 ml of acetone, shaken 1 hour on a reciprocating shaker and filtered. The cake was suspended in 500 ml of acetone. shaken another hour and again filtered. The filtrates were combined and the acetone was volatilized under reduced pressure at 50°C. Acetone was then added, if necessary, to bring the concentration to 20% acetone and this resulting aqueous acetone solution was extracted five times each with one-third volume of Skellysolve B petroleum ether to remove fatty materials. These extracts were back washed two times with one-tenth volume of 20% agueous acetone and the washings were added to the main acetone extract.

The combined acetone extracts were extracted six times with one-fourth volume of ethylene dichloride and the ethylene dichloride extract was evaporated under vacuum to leave the steroid residue. This steroid residue was taken up in a minimum of methylene chloride and applied to the top of a column packed with 30 grams of silica which had been previously triturated with 21 ml of ethylene glycol. Then various developing mixtures, saturated with ethylene glycol, were passed over the column. Cuts were made as each steroid was eluted as determined by the lowering of the absorption of light at 240 mu on the automatic chromatographic fraction cutter.

Band	Solvent	Tu b e N o. (60 ml)	Crude Solids (mg)
1	Cyclohexane	1-4	11
2	Cyclohexane-methylene chloride 3:1	5-13	6.4 compound S
3	Cyclohexane-methylene chloride 1:1	14-16	3.0
4	Cyclohexane-methylene chloride 2:3	17-23	6.0 compound E
5	Cyclohexane-methylene chloride 1:4	24-38	12.2 compound F
6	Methylene chloride	39-59	4.8

A 7.7 mg portion of band 5 was taken up in a minimum of acetone and refrigerated until crystals separated. This cold acetone mixture was centrifuged and the supernatant liquid removed by pipette. To the remaining crystals, a few drops of ice-cold ether-acetone, three to one mixture, were added, shaken, recentrifuged and the supernatant wash liquid removed by pipette. The ether-acetone wash was repeated. The resulting crystals were dried under vacuum yielding 3.3 mg of pure compound F, 17-hydroxycorticosterone.

References

Merck Index 4689 Kleeman & Engel p. 470 PDR pp. 671, 684, 739, 821, 833, 908, 928, 933, 1033, 1073, 1250, 1397, 1404, 1429, 1446, 1576, 1645, 1800, 1886

OCDS Vol. 1 p. 190 (1977)

DOT 12 (9) 343 (1976)

I.N. p. 497

REM p. 967

Murray, H.C. and Peterson, D.H.; U.S. Patent 2,602,769; July 8, 1952; assigned to The Upjohn Company

Murray, H.C. and Peterson, D.H.; U.S. Patent 2,649,400; August 18, 1953; assigned to The Upjohn Company

Murray, H.C. and Peterson, D.H.; U.S. Patent 2,649,402; August 18, 1953; assigned to The Upjohn Company

Mann, K.M., Drake, H.A. and Rayman, D.E.; U.S. Patent 2,794,816; June 4, 1957; assigned to The Upjohn Company

HYDROCORTISONE SODIUM PHOSPHATE

Therapeutic Function: Glucocorticoid

Chemical Name: 11β ,17-Dihydroxy-21-(phosphonoxy)pregn-4-ene-3,20-dione disodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6000-74-4; 3863-59-0 (Phosphate base)

Trade Name	Manufacturer	Country	Year Introduced
Corphos	Tilden Yates	U. S .	1959
Hydrocortone Phosphate	MSD	U.S.	1960
Cortiphate	Travenol	U .S .	1962
Ocu-Cort	Dome	U.S.	1963
Actocortin	Cooper	W. Germany	_
Efcortesol	Glaxo	U.K.	_
Flebocortid	Richter	Italy	-
Gleiton	Sankyo Zoki	Japan	-

Raw Materials

21-lodo-11 β :17 α -dihydroxypregn-4-ene-3,20-dione Phosphoric acid Sodium hydroxide

Manufacturing Process

21-iodo-11β:11α-dihydroxypregn-4-ene-3:20-dione (5.0 g) in pure acetonitrile (125 ml) was mixed with a solution of 90% phosphoric acid (2.5 ml) and triethylamine (7.5 ml) in acetonitrile (125 ml) and boiled under reflux for 4 hours. The solvent was removed in vacuo and the residue, dissolved in ethanol (20 ml) and water (80 ml), was passed down a column of Zeo-Karb 225 (H⁺ form) (60 g) made up in 20% alcohol. Elution was continued with 20%

alcohol (50 ml), 50% alcohol (50 ml) and alcohol (150 ml). The eluate was at first cloudy. but by the end of the elution it was clear and nonacid.

The eluate was titrated to pH 7 with 0.972 N NaOH (63 ml). Removal of solvent left a gum, which was boiled with methanol (400 ml) for 20 minutes. The solid insoluble inorganic phosphate was filtered off and washed with methanol (200 ml). The slightly cloudy filtrate was filtered again, and evaporated to dryness in vacuo. The residual gum dissolved readily in water (40 ml) and on addition of acetone (600 ml) to the solution a mixture of sodium salts of hydrocortisone 21-phosphate separated as a white solid. This was collected after 2 days, washed with acetone and dried at 100°C/0.1 mm/2 hr to constant weight. Yield 4.45 g.

References

Merck Index 4691 Kleeman & Engel p. 473 I.N. p. 498 REM p. 968

Elks, J. and Phillips, G.H.: U.S. Patent 2,936,313; May 10, 1960; assigned to Glaxo Laboratories, Ltd. (U.K.)

HYDROFLUMETHIAZIDE

Therapeutic Function: Diuretic, antihypertensive

Chemical Name: 3,4-dihydro-6-(trifluoromethyl)-2H-1,2,4-benzothiadiazine-7-sulfonamide

1,1-dioxide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 135-09-1

Trade Name	Manufacturer	Country	Year Introduced
Saluron	Bristol	U.S.	1959
Leodrine	Leo	France	1960
Diucardin	Ayerst	U.S.	1974
Di-Ademil	Squibb-Showa	Japan	_
Enjit	Meiji	Japan	_
Fluorodiuvis	Vis	Italy	_
Hydrenox	Boots	U.K.	_
Leodrine	Leo	France	_
Naclex	Glaxo	U.K.	_
Olmagran	Heyden	W. Germany	_
Plurine	Leo	France	_
Rivosil	Benvegna	Italy	_
Robezon	Mitsui	Japan	_
Rontyl	Leo- S ankyo	Japan	_
Vergonil	Ferrosan	Denmark	_

 $\alpha.\alpha.\alpha$ -Trifluoro-m-toluidine Chlorosulfonic acid

Ammonia Paraformaldehyde

Manufacturing Process

(a) Preparation of 5-Trifluoromethylaniline-2,4-Disulfonyl Chloride: 113 ml of chlorosulfonic acid was cooled in an ice-bath, and to the acid was added dropwise while stirring 26.6 grams of α,α,α -trifluoro-m-toluidine. 105 grams of sodium chloride was added during 1 to 2 hours, whereafter the temperature of the reaction mixture was raised slowly to 150° to 160°C, which temperature was maintained for 3 hours. After cooling the mixture, ice-cooled water was added, whereby 5-trifluoromethylaniline-2,4-disulfonyl chloride separated out from the mixture.

(b) Preparation of 5-Trifluoromethyl-2,4-Disulfamylaniline: The 5-trifluoromethylaniline-2.4-disulfonyl chloride obtained in step (a) was taken up in ether and the ether solution dried with magnesium sulfate. The ether was removed from the solution by distillation, the residue was cooled to 0°C and 60 ml of ice-cooled, concentrated ammonia water was added while stirring. The solution was then heated for one hour on a steam bath and evaporated in vacuo to crystallization. The crystallized product was 5-trifluoromethyl-2,4disulfamylaniline, which was filtered off, washed with water and dried in a vacuum exsiccator over phosphorus pentoxide. After recrystallization from a mixture of 30% ethanol and 70% water the compound had a MP of 247° to 248°C.

(c) Preparation of 6-Trifluoromethyl-7-Sulfamyl-3,4-Dihydro-1,2,4-Benzothiadiazine-1,1-Dioxide: 3.2 grams of 5-trifluoromethyl-2,4-disulfamylaniline was added to a solution of 0.33 gram of paraformaldehyde in 25 ml of methyl Celiosolve (2-methoxy ethanol) together with a catalytic amount of p-toluenesulfonic acid, and the mixture was boiled with reflux for 5 hours. The solvent was then distilled off in vacuo, and the residue triturated with 30 ml of ethyl acetate. 6-trifluoromethyl-7-sulfamyl-3.4-dihydro-1.2.4-benzothiadiazine-1.1dioxide crystallized out. After recrystallization from methanol/water the substance had a MP of 272° to 273°C.

References

Merck Index 4695 Kleeman & Engel p. 474 PDR pp. 617, 709, 1606, 1999 OCDS Vol. 1 p. 358 (1977) I.N. p. 499 REM p. 939

Lund, F., Lyngby, K. and Godtfredsen, W.O.; U.S. Patent 3,254,076; May 31, 1966; assigned to Lovens Kemiske Fabrik Ved A. Kongsted, Denmark

HYDROQUINONE

Therapeutic Function: Depigmentor

Chemical Name: 1.4-Benzenediol

Common Name: Quinol

Structural Formula:

Chemical Abstracts Registry No.: 123-31-9

Trade Name	Manufacturer	Country	Year Introduced
Quinnone	Dermohr	U.S.	1980
Melanek	Neutrogena	U.S.	1981
Black & White	Plough	U.S.	_
Eldopaque	Elder	U.S.	_
Eldoquin	Elder	U.S.	_
Phiaquin	Phial	Australia	_
Phiaquin	Robins	U.S.	_
Solaquin	Elder	U.S.	_

Raw Materials

Acetylene Methanol

Manufacturing Process

Into a pressure reactor there was charged 100 ml of methanol and 1 g of diruthenium nonacarbonyl. The reactor was closed, cooled in solid carbon dioxide/acetone, and evacuated. Acetylene, to the extent of 1 mol (26 g), was metered into the cold reactor. Carbon monoxide was then pressured into this vessel at 835-980 atmospheres, during a period of 16.5 hours; while the reactor was maintained at 100°C to 150°C. The reactor was then cooled to room temperature and opened.

The reaction mixture was removed from the vessel and distilled at a pressure of 30-60 mm, and a bath temperature of 30°C to 50°C until the methanol had all been removed. The extremely viscous tarry residue remaining in the still pot was given a very crude distillation, the distillate boiling at 82°C to 132°C/2 mm. In an attempt to purify this distillate by a more careful distillation, 5.3 g of a liquid distilling from 53°C to 150°C/5 mm was collected. At this point, much solid sublimate was noted not only in this distillate but in the condenser of the still. 7 g of the solid sublimate was scraped out of the condenser of the still. Recrystallization of the sublimate from ethyl acetate containing a small amount of petroleum ether gave beautiful crystals melting at 175°C to 177°C (5 g). Infrared analysis confirmed that this compound was hydroquinone (9% conversion).

References

Merck Index 4719 PDR pp. 865, 1268 I.N. p. 499 REM p. 788

Howk, B.W. and Sauer, J.C.; U.S. Patent 3,055,949; September 25, 1962; assigned to E.I. du Pont de Nemours & Co.

HYDROXOCOBALAMIN

Therapeutic Function: Hematopoietic vitamin

Chemical Name: Cobinamide hydroxide phosphate 3'-ester with 5,6-dimethyl-1-α-D-

ribofuranosylbenzimidazole inner salt

Common Name: Vitamin B12a

Chemical Abstracts Registry No.: 13422-51-0

Trade Name	Manufacturer	Country	Year Introduced
Alpha-Redisol	MSD	U.S.	1962
Ducobee-Hy	Breon	U.S.	1962
Rubramin-OH	Squibb	U.S.	1963
Hycobal-12	Canfield	U.S.	1964
Hydroxo B-12	Philips Roxane	U.S.	1964
Neo-Vi-Twel	SMP	U,S.	1964
Neo-Betalin 12	Lilly	U.S.	1964
Sustwelve	Ascher	U.S.	1964
Rubesol-LA	Central	U.S.	1965
Sytobex-X	Parke Davis	U.S.	1966
Acimexan	Cimex	Switz.	-
Anemisol	Tobishi	Japan	_
Aquo-B	Nippon Zoki	Japan	_
Aquo-Cytobion	Merck	W. Germany	-
Axion	Albert-Roussel	W. Germany	_
Behepan	Kabi Vitrum	Sweden	_
Berubi	Redel	W. Germany	_
Bistin	Yamanouchi	Japan	
Bradiruba	łbirn	Italy	_
Cobalidrina	Italsuisse	İtaly	-
Cobalamin H	Otsuka	Japan	_
Cobalvit	Tosi-Novara	italy	_
Colsamine	Kanyo	Japan	-
Docevita	Boizot	Spain	_
Dolevern	Seiko	Japan	
Erycytol	S anabo	Austria	-
Fravit B-12	Francia	Italy	_
Fresmin S	Takeda	Japan	_
Funacomin-F	Funai	Japan	_
Hicobala	Mitaka	Japan	
Hicobalan	Maruko	Japan	_
Hydocobamin	Hishiyama	Japan	_
Hydocomin	Sanwa	Japan	_
Hydroxo 5000	Heptatrol	France	-
Hydroxomin	Tokyo Ho s ei	Japan	
Idoxo B12	Ferrosan	Denmark	-
ldro-Apavit	Locatelli	Italy	_
Idrobam ina	Tiber	Italy	_
Idrocobalmin	Pan ther-Osfa	Italy	_
Idrospes B12	Ausonia	Italy	_
Idrozima	Labif	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Laseramin	Choseido	Japan	
Longicobal	Farber-R.E.F.	Italy	
Masblon H	Fuso	Japan	
Natur B12	Panthox & Burck	Italy	-
Nichicoba	Nichiiko	Japan	-
Novobedouze	Bouchara	France	_
OH-BIZ	Morishita	Japan	_
Oxobemin	Vitrum	Sweden	_
Rasedon	Sawai	Japan	-
Red	Neopharmed	Italy	_
Red-B	Kowa	Japan	_
Redisol H	Merck-Banyu	Japan	_
Rossobivit	Medici	Italy	_
Rubitard B12	Proter	Italy	-
Runova	Squibb-Sankyo	Japan	_
Solco H	Tobishi	Japan	_
Tsuerumin S	Mohan	Japan	_
Twelvmin	Mohan	Japan	-
Vigolatin	Kowa	Japan	-

Vitamin B₁₂ (cyanocobalamín) Hydrogen

Manufacturing Process

A solution containing 26.3 mg of vitamin B₁₂ in 15 ml of water was shaken with 78 mg of platinum oxide catalyst and hydrogen gas under substantially atmospheric pressure at 25°C for 20 hours. Hydrogen was absorbed. During the absorption of hydrogen the color of the solution changed from red to brown. The solution was separated from the catalyst and evaporated to dryness in vacuo. The residue was then dissolved in 1 ml of water and then diluted with about 6 ml of acetone.

After standing for several hours a small amount of precipitate (about 2 to 3 mg) was formed and was then separated from the solution. This solution was diluted with an additional 2 ml of acetone and again allowed to stand for several hours. During this time about 4 to 5 mg of noncrystalline precipitate formed. This solid was separated from the solution and an additional 2 ml of acetone was added to the solution. On standing, vitamin B_{12a} began to crystallize in the form of red needles. After standing for 24 hours, the crystalline material was separated, yield 12 mg. By further dilution of the mother liquor with acetone additional crystalline precipitate formed (from U.S. Patent 2,738,302).

References

Merck Index 4720 Kleeman & Engel p. 475 I.N. p. 500 REM pp. 1020, 1023

Kaczka, E.A., Wolf, D.E. and Folkers, K.; U.S. Patent 2,738,301; March 13, 1956; assigned to Merck & Co., Inc.

Kaczka, E.A., Wolf, D.E. and Folkers, K.; U.S. Patent 2,738,302; March 13, 1956; assigned to Merck & Co., Inc.

HYDROXYCHLOROQUINE SULFATE

Therapeutic Function: Antimalarial

Chemical Name: 2-[[4-{(7-chloro-4-quinolinyl)amino] pentyl] ethylamino] ethanol sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 747-36-4; 118-42-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Plaquenil	Winthrop	U.S.	1956
Plaquenii	Winthrop	France	1960
Ercoquin	Erco	Denmark	_
Eroquin	S hion o gi	Japan	_
Oxiklorin	Orion	Finland	_
Quensyl	Winthrop	W. Germany	_
Rhyumapirine S	Nichiiko	Japan	_
Toremonil	lwaki	Japan	_

Raw Materials

1-Chloro-4-pentanone Ammonia N-Ethyi-N-2-hydroxyethylamine Hydrogen 4,7-Dichloroquinoline Phosphoric acid Sulfuric acid

Manufacturing Process

A mixture of 323 grams of 1-chloro-4-pentanone, 480 grams of N-ethyl-N-2-hydroxyethylamine and 400 grams of sodium chloride (to aid in subsequent filtration) in 1.3 liters of xylene was heated with stirring on a steam bath for two hours and then refluxed for three hours. After standing overnight, the mixture was filtered and the filter cake washed with xylene. The filtrate was fractionally distilled, yielding 207.3 grams of a fraction distilling at 89° to 90°C at 0.35 mm; $n_0^{25} = 1.4600$. This fraction, 1-(N-ethyl-N-2-hydroxyethylamino)-4-pentanone, was used in the next step of the synthesis. A sample of the fraction was further purified by distillation through a column and gave an analytically pure sample of 1-(N-ethyl-N-2-hydroxyethylamino)-4-pentanone, boiling at 85° to 87°C at 0.4 mm.

The 1-(N-ethyl-N-2-hydroxyethylamino)-4-pentanone from above (284.2 grams) was dissolved in 300 grams of 28% ammoniacal methanol and reduced catalytically with Raney nickel (at an initial pressure of 1,000 pounds) at room temperature. After 24 hours the catalyst was filtered off and the product distilled in vacuo through a column, yielding 254 grams of a fraction distilling at 88.5° to 96°C at 0.3 mm and comprising mainly 5-(Nethyl-N-2-hydroxyethylamino)-2-pentylamine. An analytical sample of this fraction distilled at 93°C at 0.6 mm.

A mixture of 90 grams of 4,7-dichloroquinoline, 90 grams of phenol, 1 gram of potassium iodide and 132 grams of 5-(N-ethyl-N-2-hydroxyethylamino)-2-pentylamine from above was heated with stirring for 13 hours at 125° to 130°C. Methanol (1.9 liters) was added and the the mixture was filtered with charcoal. The filtrate was treated with 270 cc of a solution of 100 grams of phosphoric acid in 300 cc of methanol. The walls of the flask containing the filtrate were scratched with a glass rod and the mixture was allowed to stand for two days. The solid was filtered off, washed with methanol and dried, yielding 101 grams of crude 7-chloro-4-[5-(N-ethyl-N-2-hydroxyethylamino)-2-pentyl] aminoquinoline diphosphate, MP 155° to 156°C.

Additional quinoline diphosphate was obtained as a gummy mass from the filtrate by concentrating the latter to about half its volume and adding acetone. The crude gummy diphosphate was dissolved in water, basified with ammonium hydroxide and the resulting liberated basic quinoline extracted with chloroform. After removal of the chloroform by distillation, the residue was dissolved in ether and crystallization was induced by scratching the walls of the flask with the glass rod. About 30 grams of the crude quinoline base, melting at 77° to 82°C, separated. Recrystallization of this material from ethylene dichloride or ethyl acetate yielded the purified 7-chloro-4-[5-(N-ethyl-N-2-hydroxyethylamino)-2-pentyl] aminoquinoline, MP 89° to 91°C.

The base may then be dissolved in ethanol and precipitated as the sulfate by reaction with an equimolar quantity of sulfuric acid.

References

Merck Index 4729 Kleeman & Engel p. 476 PDR p. 1926 OCDS Vol. 1 p. 342 (1977) I.N. p. 502 REM p. 1220

Surrey, A.R.; U.S. Patent 2,546,658; March 27, 1951; assigned to Sterling Drug Inc.

HYDROXYDIONE SODIUM SUCCINATE

Therapeutic Function: General anesthetic

Chemical Name: 21-(3-Carboxy-1-oxopropoxy)-5 β -pregnane-3,20-dione sodium salt

Common Name: --

Structural Formula: CH2COCCH2CH2COONa

Chemical Abstracts Registry No.: 53-10-1

Trade Name	Manufacturer	Country	Year Introduced
Viadril	Pfizer	U.S.	1957
Predion	V.N.I.Kh.F.I.	USSR	_

Raw Materials

Desoxycorticosterone Hydrogen Succinic anhydride

Manufacturing Process

A solution of 20 g of desoxycorticosterone in 190 ml of absolute ethanol was stirred in an atmosphere of hydrogen in the presence of 1.68 g of 25% palladium on calcium carbonate

catalyst. After 20 hours, approximately 1 molar equivalent of hydrogen had been absorbed and hydrogen uptake had ceased. The catalyst was removed by filtration and the filtrate evaporated in vacuo to yield 20 g of nearly pure product, MP 135°C to 140°C. The crude product was demonstrated to be free of starting material by paper chromatography. A highly purified product was obtained by recrystallization from acetone-water with cooling in an ice bath, yield 14.5 g, MP 152°C to 154°C. The product was characterized by analysis and by absence of ultraviolet absorption.

A solution of 14 g of 21-hydroxypregnane-3,20-dione and of 14 g of recrystallized succinic anhydride in 140 ml of dry pyridine was allowed to stand at room temperature for 18 hours, then cooled in an ice bath and poured in a fine stream into 1.5 liters of ice water. Excess pyridine was neutralized with 3N hydrochloric acid and the solution further diluted with 2 liters of ice water. The precipitated product was filtered, washed with water and dried in vacuo at 50°C affording 18 g of solid MP 192°C to 195°C. Recrystallization of a small sample afforded analytically pure material, MP 200°C.

References

Merck Index 4734 I.N. p. 502

Laubach, G.D.; U.S. Patent 2,708,651; May 17, 1955; assigned to Chas. Pfizer & Co., Inc.

HYDROXYPHENAMATE

Therapeutic Function: Minor tranquilizer

Chemical Name: 2-Phenyl-1_2-butanediol-1-carbamate

Common Name: Oxyfenamate

Structural Formula:

Chemical Abstracts Registry No.; 50-19-1

Trade Name	Manufacturer	Country	Year Introduced
Listica	Armour	U.S.	1961
Listica	Armour Montagu	France	1975

Raw Materials

2-Phenyl-1_2-butanediol Ethyl chloroformate Ammonia

Manufacturing Process

2-Phenyl-2-hydroxy-butyl carbamate was prepared by the following method:

49.81 g of 2-phenyl-1,2-butanediol and 25.01 g of pyridine were dissolved in 500 ml of benzene and cooled to 5°C. 34.01 g of ethyl chloroformate was added over a period of % hour at 4°C to 8°C. The reaction mixture was warmed to room temperature and stirred for 2 hours and then extracted with 100 cc each of the following:

Water, 15% hydrochloric acid, 10% sodium bicarbonate and finally water. The solvent was stripped off. The residual oil was mixed with 300 ml of 28% aqueous ammonia for 1 hour. The ammonia and water were vacuum distilled at a temperature of 40°C or less. Then 300 cc of carbon tetrachloride was added and the solution dried with sodium sulfate. The solution was cooled at 0°C and then filtered. The crystals were washed with cold carbon tetrachloride and vacuum dried. The yield was 57 g of dried product having a melting point of 55°C to 56.5°C.

References

Merck Index 4756 OCDS Vol. 1 p. 220 (1977) I.N. p. 718

Sifferd, R.H. and Braitberg, L.D.; U.S. Patent 3,066,164; November 27, 1962; assigned to Armour Pharmaceutical

HYDROXYPROGESTERONE CAPROATE

Therapeutic Function: Progestin

Chemical Name: 17-[(1-oxohexyl)oxy] pregn-4-ene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 630-56-8

Trade Name	Manufacturer	Country	Year Introduced
Delalutin	Squibb	U.S.	1956
Hyproval	Tutag	U.S.	1976
Corluton Depot	I.E. Kimya Evi	Turkey	
Caprogen Depot	Kanto	Japan	_
Depolut	Taro	Israel	_
Depot-Progen	Hokoriku	Japan	-
Hormofort	Kobanyai	Hungary	_
Idrogestene	Farmila	Italy	_
Kaprogest	Polfa	Poland	_
Lutopron	Cipla	India	_
Pergestron	Dexter	Spain	_
Primolut-Depot	Schering	U.K.	_
Prodox	Legere	U.S.	
Proge	Mochida	Japan	-
Progestron-Depo	Galenika	Yugoslavia	_

Raw Materials

17α-Oxypregnene-(5)-oI-(3)-one-(20)-acetate-(3)

Caproic acid anhydride Hydrogen chloride Cyclohexanone

Manufacturing Process

40 grams of 17α-oxypregnene-(5)-ol-(3)-one-(20)-acetate-(3) is brought to reaction with 22 grams of p-toluol sulfonic acid and 850 cc of caproic acid anhydride under a nitrogen atmosphere for 5 days at room temperature or 2½ days at 37°C. The excess anhydride is blown off with steam in the presence of 200 cc of pyridine and the distillation residue is extracted with ether and worked up as usual. The remaining oil is brought to crystallization with pentane and the raw 17α -oxypregnenolone-3-acetate-17-caproate is recrystallized from methanol. The crystals are needle-like and have a MP of 104° to 105°C. This substance is partially saponified by refluxing for 1 hour in 1,800 cc of methanol in the presence of 13 cc of concentrated hydrochloric acid. After evaporation of the methanol under vacuum, the dry residue is recrystallized from isopropyl ether or methanol (dense needles). The thus obtained 17α -oxypregnenolone-17-caproate melts at 145° to 146.5° C.

By oxidation in 100 cc of absolute toluol with 425 cc of cyclohexanone and 155 cc of a 20% aluminum isopropylate solution in absolute toluol and after repeated crystallizations from isopropyl ether or methanol, 24 grams of pure 17α-oxyprogesterone-17-caproate is obtained, MP 119° to 121°C (dense needles).

References

Merck Index 4761 Kleeman & Engel 479 PDR p. 1033 OCDS Vol. 1 pp. 176, 190 (1977) DOT 19 (2) 112 (1983) I.N. p. 505

REM p. 991

Kaspar, E., Pawlowski, K.H., Junkmann, K. and Schenck, M.; U.S. Patent 2,753,360; July 3, 1956; assigned to Firma Schering AG, Germany

HYDROXYPROPYL CELLULOSE

Therapeutic Function: Topical protectant; ophthalmic vehicle

Chemical Name: Cellulose 2-hydroxypropyl ether

Common Name: Hyprolose

Structural Formula:

R: —H or —CH₂—CHOH-

Chemical Abstracts Registry No.: 9004-64-2

Trade Name	Manufacturer	Country	Year Introduced
Lacrisert	MSD	U.S.	1981

Cotton linters	Propylene oxide
Sodium hydroxide	Acetic acid

Manufacturing Process

Charge:

	Parts
Purified cotton linters	1
Tertiary butanol	10
Water	1.4
Sodium hydroxide	0.1
Hexane	9.5
Propylene oxide	2.85

Procedure:

The tertiary butanol, water and sodium hydroxide were mixed and the mixture cooled to 20°C. The purified cotton linters were added to the mixture and aged at 20°C for one hour while stirring. Excess liquid was filtered off the resulting alkali cellulose so that the resulting alkali cellulose filter cake weighed 3.08 parts. This filter cake was broken up and slurried in the hexane, placed in a pressure vessel the pressure of which was increased to 100 psig with nitrogen, and then the pressure was vented to 5 psig. The propylene oxide was added to the pressure vessel and then the pressure was increased to 25 psig with nitrogen. The resulting charge was heated to 85°C in 30 minutes and then reacted at this temperature and 25 psig pressure for six hours. The charge was cooled to 30°C, the pressure vessel vented and 0.14 part of glacial acetic acid added. The excess hexane was filtered off from the resulting hydroxypropyl cellulose product, the product was purified by washing with hot water (85°C to 95°C) and then dried at 130°C using a two-roll drum drier.

References

Merck Index 4763 PDR p. 1191 DOT 18 (7) 338 (1982) I.N. p. 509 REM p. 1298

Klug, E.D.; U.S. Patent 3,278,521; October 11, 1966; assigned to Hercules, Inc.

HYDROXYSTILBAMIDINE ISETHIONATE

Therapeutic Function: Systemic fungicide

Chemical Name: 2-hydroxy-4,4'-stilbenedicarboxamidine di(β -hydroxyethanesulfonate)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 533-22-2; 495-99-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Hydroxystilbamidin Isethionate	Merrell-National	U.S.	1954
Hydroxystilbamide	May & Baker	U.K.	_

4-Cvanobenzaldehyde 2-Nitro-p-tolunitrile Sodium nitrate Stannous chloride Sulfuric acid Hydrogen chloride Isethionic acid Ammonia

Manufacturing Process

Preparation of 2-Nitro-4,4'-Dicyanostilbene: 10 grams of 2-nitro-p-tolunitrile and 8.1 grams of 4-cvano-benzaldehyde were heated to 170° to 180°C, 1.2 and 0.6 cc of piperidine were added at quarter-hour intervals, heating was continued for a further one and a quarter hours, the product cooled, triturated with glacial acetic acid and filtered. The residue was crystallized from glacial acetic acid as yellow needles, MP 290°C.

Preparation of 2-Amino-4.4'-Dicyanostilbene: 10.0 grams of 2-nitro-4.4'-dicyanostilbene thus prepared were suspended in 200 cc of glacial acetic acid and a hot solution of 50 grams of stannous chloride (SnCl₂·2H₂O) in 50 cc of concentrated hydrochloric acid was quickly added. Rapid reaction occurred and the boiling was continued for a further 4 minutes, the reaction mixture was cooled, filtered, and the stannous chloride residue decomposed with 25% aqueous caustic soda solution. The liberated amine crystallized from glacial acetic acid as yellow needles, MP 232°C.

Preparation of 2-Hydroxy-4,4'-Dicyanostilbene: 10 grams of 2-amino-4,4'-dicyanostilbene thus prepared were dissolved in 400 cc of boiling glacial acetic acid and 200 cc of dilute sulfuric acid added; the solution was suddenly chilled and diazotized over one and a half hours at 5° to 10°C with sodium nitrate (3.0 grams/15 cc H₂O). The diazonium salt solution was decomposed by boiling for 15 minutes with 600 cc of 55% aqueous sulfuric acid solution; the solution was diluted, cooled and filtered. The residue crystallized from ethyl alcohol as lemon yellow prismatic needles. MP 296°C.

Preparation of 2-Hydroxy-4,4'-Diamidinostilbene Dihydrochloride: 10 grams of 2-hydroxy-4,4'-dicyanostilbene were suspended in 250 cc of absolute ethyl alcohol and the mixture saturated with dry hydrogen chloride at 0°C. The whole was left for eight days at room temperature. The imino-ether hydrochloride formed was filtered off, washed with dry ether and dried in the air for a short time. It was then added to 250 cc of 10% ethyl alcoholic ammonia and the whole heated for 5 hours at 45°C. The 2-hydroxy-4,4'-diamidinostilbene dihydrochloride which separated was crystallized from 10% hydrochloric acid. It forms pale yellow needles, MP 357°C (decomposition).

Preparation of the Final Isethionate Product: The diisethionate may be produced by treating a solution of the dihydrochloride with alkali carbonate, separating and dissolving the resultant base in aqueous isethionic acid and precipitating the disethionate with acetone. The product may be purified by dissolving in hot methyl alcohol containing a trace of water followed by precipitation by the cautious addition of acetone. The disethionate has a MP of 286°C.

References

Merck Index 4768 Kleeman & Engel p. 480 I.N. p. 506 REM p. 1230

Ewins, A.J.; U.S. Patent 2,510,047; May 30, 1950; assigned to May & Baker Ltd., England

HYDROXYTRYPTOPHAN

Therapeutic Function: CNS stimulant

Chemical Name: 5-hydroxytryptophan

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56-69-9

Trade Name	Manufacturer	Country	Year Introduced
Quietim	Nativelle	France	1973
Tript-Oh	Sigma Tau	Italy	1980
Levothym	Karlspharma	W. Germany	1980

Raw Materials

4-Benzyloxyaniline HCl Sodium nitrite
Hydrochloric acid Stannous chloride
Sodium hydroxide Acrolein
Diethylacetylamino malonate Hydrogen

Manufacturing Process

Preparation of 4-Benzyloxyphenylhydrazine: 200 grams 4-benzyloxyaniline hydrochloride was suspended in a mixture of 264 ml concentrated hydrochloric acid, 528 ml water and 732 grams crushed ice. A solution of 62.4 grams sodium nitrite in 136 ml water was added below the surface of the stirred suspension at $-10\pm2^{\circ}\text{C}$ during 10 minutes. After stirring for 1 hour at 0°C, the suspension was treated with acid-washed charcoal and filtered.

The filtrate was cooled and maintained at -8°C while a solution of 500 grams of stannous chloride in 760 ml concentrated hydrochloric acid was added with stirring. The mixture was stirred for 2 hours at -8°C and the 4-benzyloxyphenylhydrazine hydrochloride which separated was filtered off and washed with water. The product was crystallized by adding 800 ml hot water to a 3 liter solution in ethanol and had a MP of 185° to 189°C (yield 168.5 grams, 79%).

Preparation of Ethyl α -Acetylamino- α -Carbethoxy- β -(5-Benzyloxy-Indolyl-3)-Propionate: 4-benzyloxyphenylhydrazine hydrochloride was converted to the corresponding base 2 to 3 hours before use: 28 grams of the hydrochloride was suspended in 500 ml chloroform and shaken with 55 ml 2 N sodium hydroxide in 100 ml water. The chloroform was separated and the aqueous phase reextracted with chloroform (2 x 100 ml). After washing with 100 ml water, the chloroform solution was dried over sodium sulfate, filtered and evaporated at 30° to 35°C, leaving 4-benzyloxyphenylhydrazine as a friable buff-colored solid (23 grams, 97% from hydrochloride).

6.1 grams freshly distilled acrylic aldehyde (acrolein) in 9.7 ml chlorobenzene was added at 30°C over 30 minutes to a stirred suspension of 24.2 grams diethyl acetylaminomalonate in 37.5 ml chlorobenzene containing a catalytic amount (0.25 ml) of 50% w/v aqueous sodium hydroxide. After a further 30 minutes the resultant solution was warmed and 23 grams 4-benzyloxyphenylhydrazine was added at 45°C. The mixture was stirred and heated at 65° to 70°C for 1 hour to complete condensation, when a red solution was formed.

The resultant chlorobenzene solution was added to 440 ml N sulfuric acid and the suspension was refluxed with stirring for 6 hours. The product was extracted with chloroform (250 + 100 ml), and the chloroform solution washed with water (3 x 100 ml), separated and dried over sodium sulfate. After filtration and concentration at 40°C to 100 ml. 300 ml light petroleum (BP 40° to 60°C) was added to the warm chloroform-chlorobenzene solution. 33.1 grams ethyl α -acetylamino- α -carbethoxy- β -(5-benzyloxyindolyl-3)-propionate crystallized on cooling from the mixture. It was recrystallized by dissolving in 200 ml benzene and adding 100 ml light petroleum (BP 60° to 80°C) at the boiling point. After cooling, the buff crystals were collected, washed with cold benzene/light petroleum (1:1) mixture (50 ml), and dried at 55°C (yield 26.0 grams, 54%, MP 164° to 165°C).

Preparation of α -Acetylamino- α -Carboxy- β -(5-Benzyloxy-Indolyl-3)-Propionic Acid: 18 grams ethyl α-acetylamino-α-carbethoxy-β-(5-benzyloxy-indolyl-3)-propionate was suspended in 85 ml water containing 8.5 grams sodium charcoal. The suspension was refluxed for 4 hours, decolorizing charcoal added, and the solution filtered hot through Hyflo Super-

After cooling in ice to 10°C, the solution was acidified with 24 ml concentrated hydrochloric acid. The solid which separated was filtered off, washed with water (3 x 30 ml) and dried in vacuo over silica gel, to give α -acetylamino- α -carboxy- β -(5-benzyloxy-indolyl-3)-propionic acid, MP 144° to 146°C (15.0 grams, 95%) sufficiently pure for use in the next stage.

Preparation of α -Acetylamino- β -(5-Benzyloxy-Indolyl-3)-Propionic Acid: 15 grams α -acetylamino- α -carboxy- β -(5-benzyloxy-indolyl-3)-propionic acid was suspended in 225 ml water and the suspension refluxed and stirred in a stream of nitrogen until evolution of carbon dioxide ceased (about 2 hours). After cooling somewhat, 120 ml ethyl alcohol was added and the suspension refluxed until the product dissolved. Charcoal was added to the solution the mixture filtered hot, and the filter-cake washed with 50 ml hot 50% agueous ethanol. α-Acetylamino-β-(5-benzyloxy-indolyl-3)-propionic acid, MP 164° to 166°C, which crystallized from the filtrate on cooling, was collected, washed with an ice-cold mixture of 15 ml ethanol and 45 ml water, and dried in vacuo over silica gel (yield 11.1 grams, 83%).

Preparation of 5-Benzyloxytryptophan: 11 grams α -acetylamino- β -(5-benzyloxy-indolyl-3)propionic acid was suspended in a solution of 12 grams sodium hydroxide in 90 ml water and refluxed for 24 hours. Charcoal was added to the resultant solution and the mixture filtered hot. 150 ml 2 N hydrochloric acid was added to the filtrate at 70°C and 5-benzyloxytryptophan crystallized on cooling. After washing with water and drying in vacuo over silica gel, the amino acid (6.9 grams, 71%) had MP (sealed evacuated tube) 232°C, with softening, finally melting at 237° to 238°C (decomposition). Charcoal was added to the filtrate, which was filtered hot and adjusted to pH 2. On cooling a second crop of 5-benzyloxytryptophan was obtained (2.2 grams, 23%), MP (sealed evacuated tube) 230°C, with softening, finally melting at 233° to 237°C (decomposition). The overall yield of 5-benzyloxytryptophan was 9.1 grams (94%).

Preparation of 5-Hydroxytryptophan: 0.4 gram palladium chloride and 1.7 grams acidwashed charcoal were suspended in 157 ml water and hydrogenated at room temperature and atmospheric pressure until no further hydrogen uptake occurred. A suspension of 14.2 grams 5-benzyloxytryptophan in 175 ml ethyl alcohol was added and the mixture hydrogenated under similar conditions. A hydrogen uptake slightly in excess of theory was obtained. The suspension was warmed for a few minutes on the steam bath and filtered hot. The filter-cake was washed with hot water (3 x 20 ml) and the filtrate evaporated to 20 ml under reduced pressure in a nitrogen atmosphere.

The resultant mass of colorless crystals was triturated with 250 ml ice-cold ethyl alcohol under hydrogen, filtered, and washed with cold ethyl alcohol (2 x 15 ml). The 5-hydroxytryptophan (6.9 grams, 69%) had MP (sealed evacuated tube) 288°C, with softening, finally melting at 249° to 247°C (decomposition). Concentration of the liquors under reduced pressure in a nitrogen atmosphere, and trituration as before, gave a second crop (0.9 gram, 9%). The combined crops (7.8 grams) were dissolved in 120 ml hot water, charcoal added, and the mixture filtered hot. The filtrate was concentrated in a nitrogen atmosphere under reduced pressure and ethyl alcohol added. The 5-hydroxytryptophan then crystallized as colorless microneedles (6.5 grams, 65%), had MP (sealed evacuated tube) 290°C, with slight softening, finally melting at 295° to 297°C (decomposition).

References

Merck Index 4771 DOT 9 (6) 224 (1973), 10 (9) 323 & 10, 262 (1974)

REM p. 1083

Ash, A.S.F.; British Patent 845,034; August 17, 1960; assigned to May & Baker Ltd., U.K.

HYDROXYUREA

Therapeutic Function: Cancer chemotherapy

Chemical Name: Hydroxycarbamide

Common Name: -

Structural Formula: H2NCONHOH

Chemical Abstracts Registry No.: 127-07-1

Trade Name	Manufacturer	Country	Year Introduced
Hydrea	Squibb	U.K.	1967
Hydrea	Squibb	∪.S.	1968
Litalir	Heyden	W. Germany	1968
Hydrea	Squibb	France	1969
Biosuppressin	Biogal	Hungary	_
Hidroks	Yurtoglu	Turkey	_
Onco-Carbide	Simes	italy	_

Raw Materials

Hydroxylamine hydrochloride Sodium cyanate

Manufacturing Process

The procedure may be illustrated by the following equations relating to the preparation of hydroxyurea from hydroxylamine hydrochloride:

(1)
$$R_4 N^*Cl^- + NaNCO \rightarrow R_4 N^*NCO^- + NaCl$$

(2)
$$R_4N^*NCO^* + H_2NOH\cdot HCI \rightarrow R_4N^*CI^* + HON-CO-NH_2$$

Equation (1) shows the simple conversion of a quaternary ammonium anion exchange resin from the chloride form to the cyanate form. Equation (2) shows the reaction of the resin in the cyanate form with hydroxylamine hydrochloride whereby hydroxyurea is formed and the anion Cl is retained by the quaternary resin.

A 90 x 6 cm column was packed with 2 kg of granular Amberlite IRA-410 resin in the chloride form (a vinylpyridine/divinylbenzene copolymer quaternized with dimethyl sulfate and converted to chloride) and washed with 3 kg of a 10% aqueous solution of sodium

cyanate. This changed the resin from the chloride to the cyanate form. Sodium chloride and excess sodium cyanate were then washed from the column with distilled water until the effluent failed to give a white precipitate with silver nitrate. The reaction of equation (2) was conducted by elutriating the column with a solution of 105 grams (1.5 mols) of hydroxylamine hydrochloride in 400 ml water at about 15°C.

A hot (50° to 70°C) reaction zone developed near the top of the column and about 30 minutes was required for this hot zone to descend the full length of the column. The reaction solution was followed in the column by 2.5 liters of distilled water. Collection of the product was begun when hydroxyurea could be detected in the effluent, as indicated by a black precipitate on warming a sample with a silver nitrate test solution. All the effluents were combined and vacuum evaporated at 35°C to give 90 grams of tan residue corresponding to 79% yield of crude product. After recrystallization from 100 ml of water heated to 75°C, the colorless product was dried in a vacuum desiccator over phosphorus pentoxide to give 60.6 grams (53% yield) of hydroxyurea, MP 133° to 136°C.

References

Merck Index 4772 Kleeman & Engel. p. 476 PDR p. 1746 I.N. p. 501 REM p. 1155

Graham, P.J.; U.S. Patent 2,705,727; April 5, 1955; assigned to E.I. du Pont de Nemours and Company

HYDROXYZINE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: 2-[2-[4-[(4-chlorophenyl)phenylmethyl]-1-piperazinyl] ethoxy] ethanol

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2192-20-3; 68-88-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Atarax	UCB	France	1956
Atarax	Roerig	U.S.	1956
Vistaril	Pfizer	U.S.	1958
Quiess	O'Neal Jones	U.S.	1958
Hyzine	Hyrex	U.S.	1980
Orgatrax	Organon	U.S.	1980
Durrax	Dermik	U.S.	1983
Alamon	Grelan	Japan	_
Arcanax	Arcana	Austria	_
Atazina	Panthox & Burck	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Disron	Teikoku	Japan	_
Masmoran	Pfizer	W. Germany	_
Marax	Roerig	U.S.	_
Neucalm	Legere	U.S.	-
Neurozina	Farge	Italy	_
Theozine	Schein	U.S.	-

N-Mono-1-p-chlorobenzohydrylpiperazine 1-Chloro-2-(2-hydroxyethoxy)ethane Sodium hydroxide Hydrogen chloride

Manufacturing Process

A mixture of 0.1 mol of N-mono-1-p-chlorobenzohydrylpiperazine and 0.1 mol of 1-chloro-2-(2-hydroxy-ethoxy)-ethane is heated for 3 hours to 150°C. The mass is then taken up in 100 ml of benzene and 100 ml of a 10% aqueous solution of NaOH; decanting takes place, and the benzene solution is washed with water and the solvent is evaporated. Vacuum distilling of the residue yields 1-p-chlorobenzohydryl-4-[2-(2-hydroxy-ethoxy)-ethyl] piperazine, BP 220°C/0.5 mm Hg.

The corresponding dihydrochloride is prepared by dissolving this base in about twice its weight of alcohol, by treating it with excess of gaseous HCl and by precipitating it with ether. The solvent is decanted and the residue, dissolved in a minimum of alcohol, crystallizes on the addition of ether, MP 193°C.

References

Merck Index 4773 Kleeman & Engel p. 480 PDR pp. 832, 872, 993, 1033, 1288, 1416, 1520, 1528, 1606, 1989, 1999 OCDS Vol. 1 p. 59 (1977) I.N. p. 506 REM p. 1071

Morren, H.; U.S. Patent 2,899,436; August 11, 1959; assigned to Union Chimique Belge Societe Anonyme, Belgium

IBUPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: \(\alpha\)-methyl-4-(2-methylpropyl)benzene acetic acid

Common Name: 2-(4-isobutylphenyl)propionic acid

Structural Formula:

$$(\operatorname{CH}_3)_2 \operatorname{CHCE}_2 - \underbrace{- \operatorname{CHCOOH}}_{\operatorname{CH}_3}$$

Chemical Abstracts Registry No.: 15687-27-1

Trade Name	Manufacturer	Country	Year Introduced
Brufen	Boots	U.K.	1969
Brufen	Kakenyaku Kako	Japan	1971
Brufen	Labaz	W. Germany	1971
Brufen	Formenti	Italy	1972
Brufen	Dacour	France	1972
Motrin	Upjohn	U.S.	1974
Rufen	Boots	U.S.	1981
Advil	Whitehall	U.S.	_
Algofen	lbirn	Italy ·	_
Andran	Takata	Japan	_
Anflagen	Ohta	Japan	_
Artofen	lkapharm	Israel	_
Artril	Eczacibasi	Turkey	_
Artril 300	Farmasa	Brazil	-
Bluton	Morishita	Japan	_
Brufamic	T eigo	Japan	-
Buburone	Towa Yakuhin	Japan	_
Butylenin	S anken	Japan	-
Daiprophen	Daito	Japan	-
Donjust-B	Horita	Japan	-
Ebufac	D.D.S.A.	U.K.	_
Epinal	Mitsubishi Yuka	Japan	-
Epobron	Ono	Japan	-
Eputes	Kobayashi Kako	Japan	_
Focus	Angelini	Italy	-
IB-100	Hishiyama	Japan	_
lborufen	Kyoritsu Yamagata	Japan	_
lbucasen	Casen	Spain	_
Ibulav	A.L.	Norway	_
Ibumetin	Benzon	Denmark	_
Ibuprocin	Nisshin	Japan	_
Ibo-Slo	Lipha	U.K.	-

Trade Name	Manufacturer	Country	Year Introduced
Inflam	Protea	Australia	_
Lamidon	Kowa	Ja pan	_
Landelun	Tsuruhara	Japan	
Liptan	Kowa	Japan	_
Manypren	Zensei	Japan	_
Mono-Attritin	Atmos	W. Germany	
Mynosedin	Toho Yakuhin	Japan	
Napacetin	Toyama	Japan	-
Neobru fen	Liade	Spain	-
Nobfelon	Toho	Japan	_
Nobfen	Toho	Japan	-
Nobgen	Kanebo	Japan	-
Nurofen	Crookes	U.K.	-
Opturem	Kade	W. Germany	_
Paduden	Terapia	Rumania	_
Pantrop	Nippon Zoki	Japan	_
Rebugen	Dessy	Italy	-
Roidenin	Showa	Japan	-
Saren	Bracco	Italy	_
Sednafen	Taisho	Japan	_

Isobutylbenzene	
Sulfur	
Sodium	
Ethyl iodide	

Acetyl chloride Ethanol Ethyl carbonate Sodium hydroxide

Manufacturing Process

Isobutylbenzene is first acetylated to give isobutylacetophenone. 4-i-butylacetophenone (40 g), sulfur (11 g) and morpholine (30 ml) were refluxed for 16 hours, cooled, acetic acid (170 ml) and concentrated hydrochloric acid (280 ml) were added and the mixture was refluxed for a further 7 hours. The mixture was concentrated in vacuo to remove acetic acid and the concentrate was diluted with water.

The oil which separated was isolated with ether, the ethereal solution was extracted with aqueous sodium carbonate and this extract was acidified with hydrochloric acid. The oil was isolated with ether, evaporated to dryness and the residue was esterified by refluxing with ethanol (100 ml) and concentrated sulfuric acid (3 ml) for 5 hours. The excess alcohol was distilled off, the residue was diluted with water, and the oil which separated was isolated with ether. The ethereal solution was washed with sodium carbonate solution; then with water and was dried. The ether was evaporated off and the oil was distilled to give ethyl 4-i-butylphenylacetate.

Sodium ethoxide from sodium (3.67 g) in absolute alcohol (64 ml) was added over 20 minutes with stirring to a mixture of ethyl 4-i-butylphenylacetate (28,14 g) and ethyl carbonate (102 ml) at 100°C. The reaction flask was fitted with a Fenske column through which alcohol and then ethyl carbonate distilled. After 1 hour when the still head reached 124°C heating was discontinued. Glacial acetic acid (12 ml) and water (50 ml) was added to the stirred ice-cooled mixture and the ester isolated in ether, washed with sodium carbonate solution, water and distilled to give ethyl 4-i-butylphenylmalonate.

Ethyl 4-i-butylphenylmalonate (27.53 g) in absolute alcohol (25 ml) was added with stirring to a solution of sodium ethoxide from sodium (2.17 g) in absolute alcohol (75 ml). Ethyl iodide (15 ml) was added and the mixture refluxed for 21/2 hours, the alcohol distilled and the residue diluted with water, extracted with ether, washed with sodium bisulfite, water, and evaporated to dryness.

The residual oil was stirred and refluxed with sodium hydroxide (75 ml of 5 N), water (45 ml) and 95% ethanol (120 ml). Within a few minutes a sodium salt separated and after 1 hour the solid was collected, washed with ethanol, dissolved in hot water and acidified with dilute hydrochloric acid to give the methyl malonic acid which was collected and dried in vacuo MP 177° to 180°C (dec.).

The malonic acid (9 g) was heated to 210° to 220°C in an oil bath for 20 minutes until decarboxylation had ceased. The propionic acid was cooled and recrystallized from light petroleum (BP 60° to 80°C). Two further recrystallizations from the same solvent gave colorless prisms of 2-(4-isobutylphenyl)propionic acid MP 75° to 77.5°C. (The procedure was reported in U.S. Patent 3,228,831.)

References

Merck Index 4797 Kleeman & Engel p. 482 PDR pp. 687, 728, 830, 1854, 1897 OCDS Vol. 1 p. 86 (1977) & 2,218,356 (1980) DOT 5 (3) 101 (1969) I.N. p. 510 REM p. 1117

Nicholson, J.S. and Adams, S.S.; U.S. Patent 3,228,831; January 11, 1966; assigned to Boots Pure Drug Company Limited, England

Nicholson, J.S. and Adams, S.S.; U.S. Patent 3,385,886; May 28, 1968; assigned to Boots Pure Drug Company Limited, England

IBUPROXAM

Therapeutic Function: Antiinflammatory

Chemical Name: N-Hydroxy-\alpha-methyl-4-(2-methylpropyl)benzene-acetamide

Common Name: -

Structural Formula: нсоннон (CH3)2CHCH2

Chemical Abstracts Registry No.: 53648-05-8

Trade Name Manufacturer Year Introduced Country Ibudros Manetti-Roberts Italy 1978 Ibudros Ferrer Spain

Raw Materials

2(4-Isobutylphenyl)propionic acid Ethanol Hydroxylamine hydrochloride Potassium hydroxide

Manufacturing Process

In a 1,000 ml three-necked flask equipped with a stirrer, a dropping funnel and a silica gel guard pipe, 46.7 g hydroxylamine hydrochloride are dissolved cold in 480 ml methanol. Separately a solution of 56.1 g KOH in 280 ml methanol is prepared, heated to 30°C and admixed, dropwise under stirring to the hydroxylamine solution. All successive temperature increases during this admixture are prevented by cooling in an ice bath. After the whole KOH solution has been admixed, the mixture is left standing for 5 minutes so as to attain the complete precipitation of the KCI.

Separately, 72.02 g ethyl 2-(4-isobutylphenyl)-propionate, obtained by the esterification of 2-(4-isobutylphenyl)-propionic acid with ethanol and concentrated H₂SO₄, are solved with 100 ml methanol, this solution is introduced drop by drop into the reaction flask, and stirred and cooled for 5 hours on an ice bath. Thereafter it is suction filtered, the residue is washed with all together 50 ml methanol, the wash is added to the filtrate, thereafter the whole is evaporated in a water bath with a rotating evaporator at a reduced pressure, until 100-200 ml of a concentrated solution are obtained. This solution is poured into a 200 ml beaker into which are stirred approximately 1,000 ml 1,25 N acetic acid. This mixture is left standing for 24 hours, thereafter suction filtered. The resulting filtrate is taken up with 100 ml petroleum ether at 40°C to 60°C, in order to solve any possible residue of unreacted starting ester, and refiltered. Approximately 50 g of 2-(4-isobutylphenyl)-propiohydroxamic acid are obtained, having a melting point of 119°C to 121°C on Kofler's hot stage.

References

Merck Index 4798 DFU 2 (12) 808 (1977)

I.N. p. 511

Orzalesi, G. and Selleri, R.; U.S. Patent 4,082,707; April 4, 1978; assigned to Societa Italo-Britannica L. Manetti-H. Roberts & Co. (Italy)

IDOXURIDINE

Therapeutic Function: Antiviral (ophthalmic)

Chemical Name: 2'-deoxy-5-iodouridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54-42-2

Trade Name	Manufacturer	Country	Year Introduced
Dendrid	Alcon	U.S.	1963
Stoxil	SKF	U.S.	1963
Herplex	Allergan	U.S.	1963
Idoxene	Spodefeil	U.K.	1963
Idoviran	Chauvin Blache	France	1963
Herpetil	Farmila	Italy	1963
Spectanefran	Pharm-Allergan	W. Germany	1964
Cheratil	Francia	Italy	_
Colircusi Virucida	Cusi	Spain	_

Trade Name	Manufacturer	Country	Year Introduced
Dendrit	Smith & Nephew	U.K.	_
Gel "V"	P.O. S.	France	_
Herpid	W.B. Pharm,	U.K.	_
Herpidu	Dispersa	Switz.	_
IDU	Pliva	Yugoslavia	_
IDU Ophthalmic	Sumitomo	Japan	_
Iducher	Farmigea	Italy	_
lduridin	Ferring	Sweden	_
ldustatin	Isnardi	Italy	
Kerecid	SKF	U.K.	
Oftan-idurin	Star	Finland	
Ophthalmadine	S.A.S.Sci.	U.K.	_
Synmiol	Winzer	W. Germany	_
Virexin	Vinas	Spain	_
Virunguent	Hermal	W. Germany	-
Virusan	Ikapharm	Israel	_
Vistaspectran	Allergan	W. Germany	_
Zostrum	W.B. Pharm,	U.K.	_

5-lodouracil Acetic anhydride 3,5-Di-p-toluyl-desoxy-D-ribofuranosyl chloride Sodium hydroxide Acetic acid

Manufacturing Process

5 g of 5-iodo-uracil (obtained according to T.B. Johnson et al., J. Biol. Chem. 1905/6, 1, 310) in 15 cc of acetic anhydride are heated under reflux for 4½ hours. The acetylated derivative crystallizes on cooling. The crystallized product is chilled for ½ hour then filtered with suction, washed with acetic anhydride and then with ether and dried. 4.5 g of 1-acetyl-5-iodo-uracil, MP 167°C, are thus obtained.

- 1.51 g of mercuric acetate are dissolved in 50 cc of methanol under reflux and 1.35 g of 1-acetyl-5-iodo-uracil are added. A white precipitate is soon formed. The reaction mixture is kept under reflux for ½ hour and then allowed to cool to room temperature. The precipitate is then filtered with suction, washed with methanol and dried.
- 2.1 g of monomercuric 5-iodo-uracil, MP 280°C, are thus obtained as a colorless powder, insoluble in water and the majority of the usual organic solvents, such as benzene, chloroform, alcohol, ether and acetone.
- 1.46 g of 5-iodo-uracil monomercuric derivative are introduced into 50 cc of chloroform and 20 to 30 cc of the solvent are distilled off under normal pressure to ensure good dehydration of the reaction medium. The mixture is cooled to room temperature and 2.59 g of 3,5-di-p-toluyl-desoxy-D-ribofuranosyl chloride added. The mixture is agitated for 6 hours with glass balls, filtered, rinsed with chloroform and the filtrate is successively washed with an aqueous sodium iodide solution, with water, with a saturated solution of sodium bicarbonate and again with water. The product is dried over sodium sulfate, filtered and evaporated to dryness.

The residue crystallizes in ether and yields about 600 mg of β -3',5'-di-p-toluyl-2'-desoxy-5-iodo-uridine which is recrystallized from toluene. The product is obtained as colorless crystals, soluble in chloroform and pyridine, sparingly soluble in acetone, benzene ether and alcohol, insoluble in water, MP 193°C.

206 mg of 3'.5'-di-p-toluyl-2'-desoxy-5-iodo-uridine are heated at 80°C with 2.5 cc of caustic soda solution (0.4 N) for ½ hour. The solution obtained is cooled, filtered and then acidified with acetic acid. The desoxy-iodo-uridine and the p-toluic acid crystallize. Ether is added to dissolve the p-toluic acid, the mixture is chilled, filtered with suction, washed with water and ether, and dried. The residue is recrystallized from water and 100 mg of 5-iodo-2'-desoxy-uridine, are obtained.

References

Merck Index 4804 Kleeman & Engel p. 483 DOT 7 (5) 191 (1971) & 10 (10) 268 (1974) I.N. p. 512 REM p. 1232 Roussel-Uclaf; British Patent 1,024,156; March 30, 1966

IFENPRODIL TARTRATE

Therapeutic Function: Vasodilator

Chemical Name: α -(4-hydroxyphenyl)- β -methyl-4-(phenylmethyl)-1-piperidineethanol tar-

trate

Common Name: -

Structural Formula:

$$\begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$$

Chemical Abstracts Registry No.: 23210-58-4; 23210-56-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Vadilex	Carriere	France	1972
Cerocral	Funai	Japan	1979
Angiotrofin	Montpellier	Argentina .	-
Dilvax	Promeco	Argentina	
Validex	Robert & Carriere	France	

Raw Materials

Benzyl chloride	4-Hydroxypropiophenone
4-Benzylpiperidine	Bromine
Hydrogen	Tartaric acid

Manufacturing Process

The initial steps involve reacting benzyl chloride with 4-hydroxypropiophenone. The benzyloxypropiophene thus obtained is first brominated and then reacted with 4-benzylpiperidine to give 1-(p-benzyloxyphenyl)-2-(4-benzyl-piperidino)propan-1-one.

The neutral tartrate may be prepared directly by reduction of 1-(p-benzyloxyphenyl)-2-(4-benzyl-piperidino)propan-1-one. For the reduction, a mixture of 175 g of ketone (0.425 mol) and 32 g of tartaric acid (0.213 mol) is hydrogenated at 50°C under pressure of 50 kg/cm² in 440 ml of methanol in the presence of 12 g of palladium on charcoal.

The catalyst is filtered off at elevated temperature, and the filtrate is concentrated by evaporation under reduced pressure to a volume of 300 ml and added in a thin stream to 2.5 liters of diethyl ether with mechanical agitation. The precipitate is separated, washed with diethyl ether and dried in vacuo at 80° to 85°C for several hours. 325 g (96% yield) of the neutral tartrate of 1-(p-hydroxyphenyl)-2-(4-benzyl-piperidino)propan-1-ol are obtained.

References

Merck Index 4806 Kleeman & Engel p. 484 OCDS Vol. 2 p. 39 (1980) I.N. p. 513

Carron, M.C.E., Carron, C.L.C. and Bucher, B.P.; U.S. Patent 3,509,164; April 28, 1970; assigned to Societe Anonyme des Laboratoires Robert et Carriere, France

IFOSFAMIDE

Therapeutic Function: Antineoplastic

Chemical Name: N,3-Bis (2-chloroethyl) tetrahydro-2H-1,3,2-oxazaphosphorin-2-amine-2-

oxide

Common Name: Isoendoxan

Structural Formula:

Chemical Abstracts Registry No.: 3778-73-2

Trade Name	Manufacturer	Country	Year Introduced
Holoxan	Lucien	France	1976
Holoxan	Asta	W. Germany	1977
Mitoxana	W.B. Pharm	U.K.	1979
Holoxan	Asta-Werke	Switz.	1979
Holoxan	S chering	Italy	1981
Cyfos	Mead-Johnson	_	_
Naxamide	Mead-Johnson	_	_

Raw Materials

N-(2-Chloroethyl)amine HCl

N-(2-Chloroethyl)-N,O-propylene phosphoric acid ester amide HCl

Triethylamine

Manufacturing Process

127.6 g (1.1 mols) of N-(2-chloroethyl)-amine hydrochloride are suspended in a solution of 218 g (1 mol) of N-(2-chloroethyl)-N,O-propylene phosphoric acid ester amide monochloride in 600 cc of methylene dichloride, and 212 g of triethylamine are added thereto dropwise with stirring. The reaction mixture is heated to boiling by the reaction heat. After termination of the addition, the reaction mixture is heated to boiling for another 2 hours. Thereafter, it is cooled to room temperature and the precipitated triethylamine hydrochloride is separated

by filtration with suction. The filtrate is extracted with about 60 cc of dilute hydrochloric acid (pH 3), then twice with about 60 cc of water, thereafter with about 60 cc of dilute soda lye and finally twice with about 60 cc of water. After drying over anhydrous sodium sulfate, methylene dichloride is distilled off under normal pressure. The oily residue is dried in a vacuum and thereafter extracted in a perforator with 500 cc of anhydrous ether. The oily extract crystallizes upon inoculation and standing in an ice box. After standing for several hours, the precipitate is filtered off, washed with a small amount of cold ether and dried in a vacuum at room temperature. Yield: 185 g (71% of the theoretical). This material is also identified as 3-(2-chloroethyl)-2-(2-chloroethylamino)-tetrahydro-2H-1,3,2-oxazaphosphorin-2-oxide; generic name: ifosfamide. F.P.: 39°C to 41°C.

References

Merck Index 4807 Kleeman & Engel p. 485 OCDS Vol. 3 p. 151 (1984) DOT 12 (11) 450 (1976) & 16 (5) 171 (1980) I.N. p. 513

1.N. p. 513 REM p. 1155

Arnold, H., Brock, N., Bourseaux, F. and Bekel, H.; U.S. Patent 3,732,340; May 8, 1973; assigned to Asta-Werke A.G. Chemische Fabrik (W. Germany)

IMIPRAMINE HYDROCHLORIDE

Therapeutic Function: Antidepressant

Chemical Name: 10,11-dihydro-N,N-dimethyl-5H-dibenz[b,f] azepine-5-propanamine HCI

Common Name: Imizin

Structural Formula:

Chemical Abstracts Registry No.: 113-52-0; 50-49-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tofranil	Ciba-Geigy	France	1959
Tofranii	Ciba-Geigy	U.S.	1959
Presamine	USV Pharm	U.S.	1971
SK-Pramine	SKF	U.S.	1974
Janimine	Abbott	U.S.	1975
WDD Tab	Tutag	U.S.	1979
Berkomine	Berk	U.K.	_
Censtim	Ohio Medical	U.S.	
Chemipramine	Chemo-Drug	Canada	
Chemoreptin	Toho Iyaku	Japan	_
Chrytemin	Fujinaga	Japan	_
Depress	Toho	Japan	_
Deprinol	Dumex	Denmark	_
Dimipressin	Drugs	U.K.	_
Dynaprin	Monico	Italy	_
Eupramin	Pliva	Yugoslavia	_
Feinalmin	Sanko	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
I.APram	Inter-Alia Pharm	U.K.	_
Imavate	Robins	U.\$.	_
imidol	Yoshitomi	Japan	
lmilanyle	Takata	Japan	_
Imipramine	Lederle	U.\$.	_
Imipranil	Medica	Finland	_
Imiprin	Protea	Australia	_
Impranil	Barlow Cote	Canada	_
Impri!	I.C.N.	_	_
Intalpran	Inter-Alia Pharm.	U.K.	_
Iprogen	Genethic	U.K.	_
tramil	Knoll	W. Germany	
Melipramin	Egyt	Hungary	_
Meripramin	Kanebo	Japan	_
Norpramine Norpramine	Norton	U.K.	
Novopramine	Novopharm	Canada	
Primonii	Ikapharm	Israel	_
Prodepress	Medac	Australia	_
Pryleugan	Arzneimittelwerk Dresden	E. Germany	_
Psychoforin	Pharmachim	Bulgaria	_
Servipramine	Servipharm	Switz.	_
Surplix	Vis	Italy	-

Iminodibenzyl Sodium amide 3-Dimethylamino n-propyl chloride Hydrogen chloride

Manufacturing Process

20 parts of imino dibenzyl are dissolved in 100 parts by volume of absolutely dry benzene. A suspension of 4 parts NaNH2 in 50 parts by volume of absolute benzene are then added dropwise at 50° to 60°C after which the mixture is boiled for an hour under reflux. 13 parts of 3-dimethylamino n-propyl chloride are then added dropwise at 40° to 50°C and the mixture is boiled for 10 hours under reflux. After cooling, the benzene solution is thoroughly washed with water, whereupon the basic constituents are extracted with dilute hydrochloric acid.

The hydrochloric extract is then made alkaline and the separated base is extracted with ether. After drying, the solvent is evaporated and the residue is distilled in the high vacuum, whereby the N-(3-dimethylamino propyl)-imino dibenzyl passes over at a temperature of 160°C under 0.1 mm pressure. The chlorohydrate with a melting point of 174° to 175°C is obtained therefrom with alcoholic hydrochloric acid.

References

Merck Index 4817 Kleeman & Engel p. 485 PDR pp. 527, 673, 901, 993, 1569, 1606, 1723 OCDS Vol. 1 p. 401 (1977); 2, 420 (1980) & 3, 32 (1984) I.N. p. 514 REM p. 1095 Haefliger, F. and Schindler, W.; U.S. Patent 2,554,736; May 29, 1951; assigned to J.R. Geigy AG, Switzerland

IMPROSULFAN TOSYLATE

Therapeutic Function: Antitumor

Chemical Name: Bis-(3-methanesulfonyloxypropyl)amine

Common Name: -

Structural Formula:

CH3SO2O(CH2)3

CH, SO, O(CH,), /

(base)

Chemical Abstracts Registry No.: 13425-98-4 (Base)

Trade Name Manufacturer Country Year Introduced Protecton Yoshitomi Japan 1980

Raw Materials

Bis-(3-Methylsulfonyloxypropyl)amine hydrochloride Sodium carbonate p-Toluenesulfonic acid

Manufacturing Process

A solution of 5 g of bis (3-methylsulfonyloxypropyl)amine hydrochloride in 20 ml of ice water is neutralized with 1N sodium carbonate solution. The resulting amine base is extracted with five 20 mł portions of chloroform. The combined extract is dried over anhydrous sodium sulfate, the solvent is distilled off under reduced pressure, and the residue is dissolved in 20 mi of ethanol. To the ethanol solution is added slowly with stirring under ice cooling a solution of 2.6 g of p-toluenesulfonic acid in 30 ml of ethanol. The white precipitate formed is collected by filtration and recrystallized from ethanol to give 5.0 g of white crystalline bis-(3-methylsulfonyloxypropyl)amine p-toluenesulfonate melting at 115°C to 116°C.

References

Merck Index 4823 DFU 4 (2) 106 (1979) DOT 16 (12) 422 (1980) I.N. p. 515

Yoshitomi Pharmaceutical Industries, Ltd.; British Patent 1,272,497; April 26, 1972

INDALPINE

Therapeutic Function: Antidepressant

Chemical Name: 4-[2-(3-Indolyl)ethyl] piperidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Upstene	Fournier	France	1983

Bis (Methoxy-2-ethoxy) sodium aluminum hydride (Indolyl-3) (piperidinyl-4-methyl) ketone

Manufacturing Process

0.5 g of bis(methoxy-2-ethoxy)sodium aluminum hydride in a 70% solution in toluene is added to a solution of 0.29 g of (indolyl-3)(piperidyl-4-methyl)ketone in 10 ml of toluene. The mixture is heated under refluxing conditions for 15 hours, then cooled to 0°C. 10 ml of an aqueous solution of 5N sodium hydroxide is added dropwise thereto, followed by stirring for 1 hour. The organic phase is decanted, washed with water, dried using potassium carbonate and evaporated under partial vacuum. 0.26 g of oil is obtained, which is purified by chromatography and hydrochloride formation. The product obtained is 0.1 g of [(indolyl-3)-2-ethyl-4-piperidine] hydrochloride which has a melting point of 167°C.

References

DFU 4 (12) 873 (1979) DOT 19 (10) 584 (1983)

Champseix, A.A., Gueremy, C.G.A. and LeFur, G.R.; U.S. Patent 4,064,255; December 20, 1977; assigned to Mar-Pha Societe D'Etudes et D'Exploitation De Marques

INDANAZOLINE

Therapeutic Function: Vasoconstrictive agent (nasal spray)

Chemical Name: 2-(4-Indanylamino)-2-imidazoline

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 40507-78-6

Trade Name	Manufacturer	Country	Year Introduced
Farial	Nordmark-Werke	W. Germany	1980
Farial	Knoll	Switz.	1983

Raw Materials

N-4-Indanyl thiourea Methyl iodide Ethylene diamine

Manufacturing Process

38.5 g (0.1 mol) of N-4-indanyl thiourea are dissolved in 250 cc of methanol. 42.6 g (0.3 mol)

of methyl iodide are added thereto and the mixture is refluxed for 2½ hours. The mixture thereafter is cooled and the solvent is removed in a rotation evaporator in a vacuum. Thus, 57.5 g of N-4-indanyl-S-methylisothiuronium hydroiodide (86% of theoretical) are obtained. Melting point 144°C to 146°C.

33.4 g (0.1 mol) of N-4-indanyl-S-methylisothiuronium hydroiodide are mixed with $9.0\,\mathrm{g}$ (0.15 mol) of anhydrous ethylenediamine. The mixture is slowly heated to $80^{\circ}\mathrm{C}$ and heating is continued until the termination of the formation of methylmercaptan (about 4 hours). After cooling the residue is dissolved in 2N hydrochloric acid and the solution is extracted with chloroform. The extract is discarded and the aqueous phase is rendered alkaline by the addition of 10% soda lye. The resulting solution is extracted with chloroform and the extract is washed with water, dried over anhydrous sodium sulfate and the solvent is removed. An oily residue is obtained which upon standing soon crystallizes.

The product is recrystallized from petroleum ether having a boiling range of 100°C to 140°C in the presence of activated carbon. Thus, 11.1 g of 2-(4-indanylamino)-2-imidazoline (55% of theoretical) are obtained as the free base. Melting point 109°C to 113°C.

References

Merck Index 4826 DFU 6 (7) 417 (1981) DOT 17 (10) 413 (1981) I.N. p. 516

May, H.J. and Berg, A.; U.S. Patent 3,882,229; May 6, 1975; assigned to Nordmark-Werke GmbH

INDAPAMIDE

Therapeutic Function: Diuretic

Chemical Name: 3-(aminosulfonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-1-yl)-

benzamide

Common Name: Metindamide

Structural Formula:

Chemical Abstracts Registry No.: 26807-65-8

Trade Name	Manufacturer	Country	Year Introduced
Natrilix	Pharmacodex	W. Germany	1976
Fludex	Eutherapie	France	1977
Natrilix	Servier	U.K.	1978
Natrilix	Servier	Australia	1983
Lozol	Revion	U.S.	1983
Arifon	Servier	France	_
Bajaten	Volpino	Argentina	_
Idamix	Gentili	Italy	_
Lozide	Servier	France	

Trade Name	Manufacturer	Country	Year Introduced
Nap-Sival	Promeco	Argentina	_
Noranat	Labinca	Argentina	_
Pressural	Polifarma	Italy	_
Tertensil	Servier	France	_

3-Sulfamyl-4-chloro-benzovi chloride N-Amino-2-methyl indoline

Manufacturing Process

A total of 8.9 parts of 3-sulfamyl-4-chloro-benzoyl chloride in a solution of 50 parts of anhydrous tetrahydrofuran are added portionwise in the course of 60 minutes, while stirring, to a solution of 5.2 parts of N-amino-2-methyl indoline and 3.5 parts of triethylamine in 150 parts of anhydrous tetrahydrofuran. The reaction mixture is left to stand 3 hours at room temperature, then the precipitated chlorhydrate of triethylamine is filtered off. The filtrate is evaporated under vacuum and the residue is crystallized from a solution of 60 parts of isopropanol in 75 parts of water. There are obtained 9 parts of N-(3-sulfamyl-4-chlorobenzamido)-2-methyl indoline, MP (K) 184° to 186°C, MP (MK) 160° to 162°C (isopropanol/water). [The melting points being determined on a Kofler heater plate under the microscope (MK) or on a Koffer Bank (K)].

References

Merck Index 4828 Kleeman & Engel p. 487 PDR p. 1816 OCDS Vol. 2 p. 349 (1980) DOT 12 (8) 313 (1976) & 13 (1) 41 (1977) I.N. p. 516 REM p. 944

Beregl, L., Hugon, P., Laubie, M.; U.S. Patent 3,565,911; February 23, 1971; assigned to Science Union et Cie, Societe Française de Recherche Medicale, Françe

INDENOLOL

Therapeutic Function: Beta-adrenergic blocker

Chemical Name: 1-[1H-Inden-4(or 7)yloxy]-3-[(1-methylethyl)amino]-2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 60607-68-3

Trade Name	Manufacturer	Country	Year Introduced
Pulsan	Yamanouchi	Japan	1979

Trade Name	Manufacturer	Country	Year Introduced
lambeta	Yamanouchi	Japan	-
lambeta	Poli	Italy	_

4-Hydroxyindene Epichlorohydrin Isopropylamine Hydrogen chloride

Manufacturing Process

- (a) A mixture of 0.9 g of 4-hydroxyindene, 2.0 g of 1,2-epoxy-3-chloropropane (epichlorohydrin), 2.7 g of potassium carbonate and 15 ml of acetone was refluxed at about 57°C for 24 hours. Acetone was removed by vacuum distillation, the residue was washed with 10 ml of water and then extracted with 20 ml of ether three times. The ether extract was dried with magnesium sulfate, filtered and subjected to column chromatography using a column (having an inside diameter of about 3 cm and a height of about 50 cm) packed with silica gel. The 5th to 7th fractions (volume of one fraction is 50 ml) recovered from the chromatographic column using chloroform as the effluent were combined together and concentrated to provide 0.6 g of 4-(2.3-epoxypropoxy) indene.
- (b) A mixture of 0.42 g of 4-(2,3-epoxypropoxy) indene, 1.20 g of isopropylamine and 20 ml of methanol was stirred in a flask at room temperature for 2 hours. Methanol and unchanged isopropylamine were removed by vacuum distillation and the residue was recrystalized from a mixture of n-hexane and ether to yield 0.41 g of 4-(3-isopropylamino-2-hydroxypropoxy) indene having a melting point of 88°C to 89°C.
- (c) To a solution of 0.41 g of 4-(3-isopropylamino-2-hydroxypropoxy)indene in 80 ml of absolute ether there was added dropwise a hydrochloric acid-ether mixture at 0°C with stirring. The precipitates thus formed were recovered by filtration and recrystallized from a mixture of ethanol and ether to provide 0.44 g of the hydrochloride of 4-(3-isopropylamino-2-hydroxypropoxy)indene. Melting point 147°C to 148°C.

References

Merck Index 4831 DFU 2 (11) 730 (1977) Kleeman & Engel p. 487 DOT 16 (1) 24 (1980) I.N. p. 516

Murakami, M., Murase, K., Niigata, K., Tachikawa, S. and Takenaka, T.; U.S. Patent 4,045,482; August 30, 1977; assigned to Yamanouchi Pharmaceutical Co., Ltd. (Japan)

INDOMETHACIN

Therapeutic Function: Antiinflammatory

Chemical Name: 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53-86-1

Trade Name	Manufacturer	Country	Year Introduced
Indocin	MSD	U.S.	1965
Amuno	MSD	W. Germany	1965
Indocid	MSD-Chibret	France	1966
Indocid	MSD	U.K.	1966
Mefacen	Chiesi	Italy	1967
Algometacin	Biagini	Italy	_
Argun	Merckle	W. Germany	
Arthrexin	Lennon	S. Africa	
Artracin	D.D.S.A.	U.K.	
Artrinova	Llorens	Spain	_
Artrivia	Lifasa	Spain	****
Artrobase	Libra	Italy	
Artrocid	Schoum	Italy	_
Bonidon	Mepha	Switz.	
Boutycin	Bouty	Italy	-
Calmocin	Mulda	Turkey	-
Cidalgon	Ecobi	Italy	_
Confortid	Dumex	Denmark	
Durametacin	Durachemie	W. Germany	_
Endol	Deva	Turkey	-
Endomet	Dif-Dogu	Turkey	_
Endsetin	Nobel	Turkey	_
Imbrilon	Berk	U.K.	_
Imet	Firma	Italy	_
Indacin	Merck-Banyu	Japan	_
Inderapolion	Kaigai	Japan	_
indetrit	Medica	Finland	_
Indium	Pharma Williams	İtaly	
Indo	Arcana	Austria	_
Indodur	Medica	Finland	_
Indolag	Lagap	Switz.	_
Indolene	Italprofar	Italy	_
Indone RC	Sawai	Japan	-
Indomed	Teva	Israel	-
Indomet	Ratiopharm	W. Germany	_
Indomethine	Kowa	Japan	
Indometin	Orion	Finland	_
indorektai	Sanorania	W. Germany	_
Indoremed	Remed Econerica	W. Germany	
Indo-Tablinen	Sanorania	W. Germany	_
Indotard	Benzon	Denmark	_
Indren	Spofa	Czechoslovakia	_
Inflazon	Taisho	Japan	_
Inmecin	Nippon Chemiphar	Japan	_
Inmetocin	Tobishi	Japan	_
Inmetsin	Farmos	Finland	_
Inteban	Sumitomo	Japan	_
Lausit	Showa	Japan	
Metacen	Chiesi	Italy	_
Metartrii	Ifisa	Italy	
Methabid	Pharmador	S. Africa	_
Methazine	Sankyo	Japan	
Metindol	Polfa	Poland	_
Mezolin	Meiji	Japan	_
Mobilan	Galen	U.S.	_
Novomethacin	Novopharm	Canada	_

Trade Name	Manufacturer	Country	Year Introduced
Osmogit	Merck-Frosst	Canada	_
Peralgon	S.A.R.M.	Italy	_
Ralicid	Waldheim	Austria	
Rheumacin	Protea	Australia	
Romacid	I.E. Kimya Evi	Turkey	_
Sadoreum	Mediolanum	Italy	_
Salinac	Nippon Kayaru	Japan	_
Takosashin S	Taiho	Japan	_
Tannex	Duncan-Flockhart	U.K.	_
Zalbico	Toyo	Japan	_

Dicyclohexylcarbodiimide t-Butyl alcohol 2-Methyl-5-methoxy-3-indolyl acetic acid Sodium hydride p-Chlorobenzovi chloride

Manufacturing Process

- (A) 2-Methyl-5-Methoxy-3-Indolylacetic Anhydride: Dicyclohexylcarbodiimide (10 g, 0.049 mol) is dissolved in a solution of 2-methyl-5-methoxy-3-indolylacetic acid (22 g, 0.10 mol) in 200 ml of THF, and the solution is allowed to stand at room temperature for 2 hours. The precipitated urea is removed by filtration, and the filtrate is evaporated in vacuo to a residue and flushed with Skellysolve B. The residual oily anhydride is used without purification in the next step.
- (B) t-Butyl 2-Methyl-5-Methoxy-3-Indolylacetate: t-Butyl alcohol (25 ml) and fused zinc chloride (0.3 g) are added to the anhydride from Part A. The solution is refluxed for 16 hours and excess alcohol is removed in vacuo. The residue is dissolved in ether, washed several times with saturated bicarbonate, water, and saturated salt solution. After drying over magnesium sulfate, the solution is treated with charcoal, evaporated, and flushed several times with Skellysolve B for complete removal of alcohol. The residual oily ester (18 g, 93%) is used without purification.
- (C) t-Butyl 1-p-Chlorobenzoyl-2-Methyl-5-Methoxy-3-Indolylacetate: A stirred solution of ester (18 g. 0.065 mol) in dry DMF (450 ml) is cooled to 4°C in an ice bath, and sodium hydride (4.9 g, 0.098 mol, 50% susp.) is added in portions. After 15 minutes, p-chlorobenzoyl chloride (15 g, 0.085 mol) is added dropwise during 10 minutes, and the mixture is stirred for 9 hours without replenishing the ice bath. The mixture is then poured into one liter of 5% acetic acid, extracted with a mixture of ether and benzene, washed thoroughly with water, bicarbonate, saturated salt, dried over magnesium sulfate, treated with charcoal, and evaporated to a residue which partly crystallizes. This is shaken with ether, filtered and the filtrate is evaporated to a residue (17 g) which solidifies after being refrigerated overnight.

The crude product is boiled with 300 ml of Skellysolve B, cooled to room temperature. decanted from some gummy material, treated with charcoal, concentrated to 100 ml, and allowed to crystallize. The product thus obtained (10 g) is recrystallized from 50 ml of methanol and gives 4.5 g of analytically pure material, MP 103° to 104°C.

(D) 1-p-Chlorobenzoyl-2-Methyl-5-Methoxy-3-Indolylacetic Acid: A mixture of 1 g ester and 0.1 g powdered porous plate is heated in an oil bath at 210°C with magnetic stirring under a blanket of nitrogen for about 2 hours. No intensification of color (pale yellow) occurs during this period. After cooling under nitrogen, the product is dissolved in benzene and ether, filtered, and extracted with bicarbonate. The aqueous solution is filtered with suction to remove ether, neutralized with acetic acid, and then acidified weakly with dilute hydrochloric acid. The crude product (0.4 g, 47%) is recrystallized from aqueous ethanol and dried in vacuo at 65°C: MP 151°C.

References

Merck Index 4852

Kleeman & Engel p. 488

PDR pp. 993, 1034, 1187, 1354, 1606, 1999

OCDS Vol. 1 p. 318 (1977); 2, 345 (1980) & 3, 165 (1984) DOT 1 (4) 125 (1965); 18 (8) 373 (1982) & 19 (5) 286 (1983)

I.N. p. 517

REM p. 1118

Shen, T.-Y.; U.S. Patent 3,161,654; December 15, 1964; assigned to Merck & Co., Inc.

INDOPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: 4-(1,3-dihydro-1-oxo-2H-isoindol-2-yl)-\alpha-methylbenzeneacetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 31842-01-0

Trade Name	Manufacturer	Country	Year Introduced
Flosint	Carlo Erba	Italy	1976
Flosin	Carlo Erba	W. Germany	1982
Flosin	Carlo Erba	Switz.	1982
Flosint	Carlo Erba	U.K.	1982
Fenint	Montedison	W. Germany	
Praxis	Lisapharma	ltalv	

Raw Materials

Ethyl-Q-(4-aminophenyl)propionate Ethyl 2-chloromethyl benzoate Potassium hydroxide

Manufacturing Process

The mixture of 7.9 g of ethyl α -(4-aminophenyl)propionate and 8.3 g of ethyl 2-chloromethylbenzoate is refluxed under nitrogen for one hour. The residue is recrystallized from hexane, to yield the ethyl α -[4-(1-oxo-isoindolino)-phenyl]-propionate of the formula

melting at 104° to 106°C. The mixture of 4.5 g thereof, 1.6 g of potassium hydroxide, 2 ml of water and 250 ml of ethanol is refluxed under nitrogen for 2 hours and evapo-

rated under reduced pressure. The residue is taken up in water, the solution washed with chloroform, acidified with hydrochloric acid and extracted with ethyl acetate. The extract is dried, evaporated and the residue recrystallized from ethyl acetate, to yield the corresponding free acid melting at 208° to 210°C. (Procedure reported in U.S. Patent 3,767,805.)

References

Merck Index 4853 DFU 1 (5) 242 (1976) Kleeman & Engel p. 489 OCDS Vol. 3 p. 171 (1984) DOT 13 (5) 200 (1977) I.N. p. 517

Carney, R.W.J. and de Stevens, G.; U.S. Patent 3,767,805; October 23, 1973; assigned to Ciba-Geigy Corporation

Carlo Erba, S.p.A., Italy: British Patent 1,344,663; January 23, 1974

INDORAMIN

Therapeutic Function: Antihypertensive

Chemical Name: N-[1-[2-(1H-Indol-3-yl)ethyl] 4-piperidinyl] benzamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 26844-12-2

Trade Name	Manufacturer	Country	Year Introduced
Baratol	Wyeth	U.K.	1981
Wydora	Wyeth	W. Germany	1983

Raw Materials

4-Benzamido-1-[2-(3-indoly!)ethyl] pyridinium bromide Hydrogen

Manufacturing Process

4-Benzamido-1-[2-(3-indolyl)ethyl] pyridinium bromide (3.0 g) was dissolved in 91% ethanol (300 ml) containing triethylamine (0.08 g) and freshly prepared W7 Raney nickel catalyst (ca 3 g) was added. The mixture was hydrogenated in an autoclave at 400 psi hydrogen pressure and 50°C for 4 hours. After filtering off the catalyst the filtrate was evaporated in vacuo and the residue was shaken with a mixture of chloroform and 2 N sodium hydroxide solution. The resulting insoluble material was filtered off and dried to give 1.61 g of product, MP 203°C to 206°C. Recrystallization from ethanol gave the title compound as colorless needles (1.34 g), MP 208°C to 210°C.

References

Merck Index 4854

DFU 1 (10) 476 (1976) OCDS Vol. 2 p. 344 (1980) DOT 17 (10) 420 (1981)

I.N. p. 518

Archibald, J.L. and Jackson, J.L.; U.S. Patent 3,527,761; September 8, 1970; assigned to John Wyeth & Brother, Ltd. (U.K.)

INOSINE

Therapeutic Function: Cardiotonic

Chemical Name: 9-\(\beta\)-D-ribofuranosylhypoxanthine

Common Name: Hypoxanthine riboside

Structural Formula:

Chemical Abstracts Registry No.: 58-63-9

Trade Name	Manufacturer	Country	Year introduced
Foreart	Guarnieri	Italy	1970
Oxiamin	Made	Spain	_
Ribon os ine	Toyo Jozo	Japan	
Salinite	Shinshin	Japan	_
Tebertin	Berenguer-Beneyto	Spain	_
Trophicardyl	Innothera	France	_
Virusina	Dukron	Italy	-

Raw Materials

Adenosine Barium nitrite Sulfuric acid

Manufecturing Process

As described in U.S. Patent 3,049,536, inosine may be prepared starting with adenosine.

The Deamination of Adenosine: 20 g of adenosine are dissolved in one liter of water by warming, and after cooling to room temperature 120 g of barium nitrite (monohydrate) are added to the solution. Under stirring there is added in time intervals of one hour 160 cc of 2 N sulfuric acid after each time interval. After the third addition, the reaction mass is allowed to stand for 3 hours at room temperature. The solution is then tested for barium, and if some barium is still present a slight excess of sulfuric acid is added. 300 cc of methanol is then added. In order to drive off the excess of nitrous acid, CO2 is conducted

through the solution until the solution is free of nitrous acid as determined by testing with potassium iodide-starch paper. The precipitated barium sulfate is separated by centrifugation. The residue is washed one time with about 500 cc of water. The total volume of the centrifugate is about 2.3 liters.

Isolation of Inosine by Ion Exchange Method: Half of the above clear centrifugate (1.15 liters) is treated with 250 cc of anion exchange (bicarbonate form) and stirred together therewith for 16 hours at room temperature. The pH value is increased thereby to about 4 to 5. The ion exchanger is filtered off under suction and washed 3 times, each time with 150 cc of water. The solution is brought to a pH value of 7 by means of normal sodium hydroxide (total volume of the solution about 1.55 liters), and concentrated to a volume of about 100 cc under vacuum.

The inosine is crystallized overnight in an ice box and the inosine is then filtered off by suction, washed with a small amount of ice water and dried at a temperature of 105°C. A first fraction of crude inosine consisting of 5.4 g having a purity of 99% is obtained. Further fractions of crude inosine are obtained from the mother liquid by concentration, the total amount constituting 3.2 g having a purity of 96 to 98%. The yield of crude inosine is 8.6 g which is equal to 86%.

Recrystallization of the Crude Inosine: 17.0 g of crude inosine are dissolved in 400 cc of 80% ethanol in a water bath, filtered while hot and brought to crystallization in an ice box. After standing overnight the crystalline material is filtered off under suction and washed with ice water. The pure inosine is dried in a drying chamber at a temperature of 105°C. The yield of pure inosine is 15.0 g which is equal to 75%. The yield can be further increased by working up the mother liquor of the crystallization as set forth above.

Alternatively, inosine may be made by fermentation as described in U.S. Patent 3,111,459. 3 ml portions of a culture medium consisting of glucose (5 g/dl), ammonium chloride (0.4 g/dl), urea (0.4 g/dl), KH₂PO₄ (0.1 g/dl), MgSO₄·7H₂O (0.02 g/dl), Mn^{**} (2 ppm), Fe^{**} (2 ppm), casein hydrolyzate (0.2 g/dl), yeast extract (0.2 g/dl), corn steep liquor (0.2 ml/dl), polypeptone (0.1 g/dl), meat extract (0.1 g/dl) and sodium ribonucleate (10 mg/dl) were poured into respective test tubes and each tube was sterilized at 115°C for 10 minutes. Thereafter separately sterilized calcium carbonate was added in the amount of 2 g/dl and then cells of *Bacillus subtilis* S26910 were inoculated into the above media and cultured with shaking at 30°C for 20 hours.

The resulting culture liquids were utilized for seeding. 20 ml of the medium having the composition described above were poured into a 500 ml shaking flask and sterilized at 115°C for 10 minutes and five drops of the above seed were added, and then cultured with shaking at 30°C for 65 hours. Thereafter 0.15 g/dl of inosine were accumulated.

The inosine-containing solution, which was obtained by separating the cells from the resulting fermentation liquid, was treated with both decolorizing resins and anion exchange resins by means of a conventional method and then acetone was added to crystallize the inosine. 1.47 g of the crude crystals of inosine were obtained from 3.5 liters of the culture liquid containing 1 g of inosine per liter.

References

Merck Index 4858 I.N. p. 519

Reiff, F., Huber, G. and Holle, K.; U.S. Patent 3,049,536; August 14, 1962; assigned to Zellstoff Fabrik Waldhof, Germany

Motozaki, S., Tsunoda, T., Aoki, R., Okumura, S., Kondo, Y., Muramatsu, N., Momose, H. and Tamagawa, Y.; U.S. Patent 3,111,459; November 19,1963; assigned to Ajinomoto KK, Japan

INOSITOL

Therapeutic Function: Vitamin B complex; lipotropic

Chemical Name: Myo-Inositol

Common Name: Hexahydroxycyclohexane; cyclohexitol

Structural Formula:

Chemical Abstracts Registry No.: 87-89-8

Trade Name	Manufacturer	Country	Year Introduced
Inositol	Comm. Solvents	U.S.	1949
Amino-Ceru	Milex	U.S.	_
Inosital	Biomedica Foscama	Italy	_
Inositine	Vis	İtaly	_
Lipo-BC	Legere	U.S.	_
Mega-B	Arco	U.S.	-
Megadose	Arco	U.S.	_

Raw Materials

Starch factory steep water Calcium hydroxide

Manufacturing Process

Inactive inositol may be prepared from starch factory steep water which is the liquid in which corn is steeped to soften the covering of the corn kernel and to thoroughly soften the entire kernel. It contains approximately 1% sulfurous acid (H₂SO₃) in solution. A typical example of such treatment consists in adding to the acid steep water, lime Ca(OH)2 or CaO to approximate neutrality, or to a pH of 6.0 to 8.0, at which range the insoluble "phytin" is precipitated. This precipitate of impure "phytin" or calcium phytate is removed by suitable means, as stated before, and may be mixed with (1) 1 to 10% acid solution; or (2) diluted with water; or (3) the solution may be made alkaline. This alkaline or neutral or acid mixture is placed in a suitable container in an autoclave or steam digester, and the steam turned on whereupon the reaction is allowed to proceed as long as desired. The autoclave in which the mixture has been placed may be heated by generating steam therein, by means of an electric heater, or by suitable heat from outside. A pressure of from 1 to 200 pounds steam for 1 to 18 hours may be used, the time required being correspondingly less for higher pressures. A suitable pressure is 80 pounds. The time expected for 80 pounds is three hours.

After hydrolysis or decomposition is complete, pressure is released, the autoclave cooled, the mixture removed, diluted, and made alkaline with Ca(OH)2, Ba(OH)2, etc., brought to boiling, thoroughly agitated with steam, the insoluble sludge allowed to settle, and the supernatant liquid removed by decantation, siphoning or filtration. The supernatant liquid is concentrated in an open vessel, or in vacuum, to remove the precipitating inorganic impurities as calcium carbonate (CaCO₃), magnesium carbonate (MgCO₃), etc. The liquid is concentrated until it becomes thick and syrupy. The concentrated solution is filtered, cooled, and agitated by a suitable mechanical means to precipitate i-inositol. The i-inositol is removed by filtration, the mother liquor concentrated, and the process repeated until the solution becomes too thick to filter advantageously. A filter press may be employed to remove further quantities of i-inositol,

or the thick residue may be diluted with a reagent in which i-inositol is insoluble; as, for example, acetic acid (CH₃COOH) and alcohol-acetic acid (C₂H₅OH, CH₃COOH, etc.). On cooling and stirring the solution, additional i-inositol, etc., results and can be removed by filtration or other mechanical means. The i-inositol may be recrystallized by dissolving the crude product in boiling water, and reprecipitated by cooling and stirring. The final crystallization from a hot water solution to which an equal volume of alcohol is added with cooling and stirring, gives a purer product.

References

Merck Index 4861 PDR pp. 581, 1033, 1263, 1734 I.N. p. 519 REM p. 1015

Bartow, E. and Walker, W.W.; U.S. Patent 2,112,553; March 29, 1938

Elkin, M. and Meadows, C.M.; U.S. Patent 2,414,365; January 14, 1947; assigned to American Cyanamid Co.

INOSITOL NIACINATE

Therapeutic Function: Vasodilator (peripheral)

Chemical Name: Myo-Inositol hexa-3-pyridine carboxylate

Common Name: Inositol hexanicotinate

Structural Formula:

Chemical Abstracts Registry No.: 6556-11-2

Trade Name	Manufacturer	Country	Year Introduced
Hexanicotol	Philadelphia	U.S.	1962
Dilexpal	Winthrop	France	1 96 8
Bendigon	Bayer	W. Germany	_
Clevamin	Kowa	Japan	
Cycnate	Toyo	Japan	_
Ebelin	Samva	Japan	_
Hammovenad	Bastian Werk	W. Germany	-
Hexalmin	Maruishi	Japan	
Hexainosineat	Hishiyama	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Hexanate	Nippon Chemiphar	Japan	_
Hexanicit	Yoshitomi	Japan	_
Hexate	Mohan	Japan	_
Hexatin	Kobayashi	Japan	_
Hexit	Toho	Japan	
Inochinate	Nichiiko	Japan	_
Inosinit	Kanto	Japan	_
Kotanicit	Kotani	Japan	_
Mesonex	Tokyo Tanabe	Japan	_
Mesosit	Toyo Jozo	Japan	_
Nasky	Nikken	Japan	_
Neonitin	Chugai	Japan	-
Nicosamin	Toyama	Japan	
Nicosinate	Toyo Ono	Japan	_
Nicosinit	Hokuriku	Japan	_
Nicotol	Maruko	Japan	_
Nicoxatin	Fuso	Japan	-
Romanit	Kowa	Japan	-
Salex	lwaki	Japan	
Sannecit	Sanko	Japan	_
Secotinen	Seiko	Japan	_
Shikioit	Shiri	Japan	_
Xatolone	Showa	Japan	_
Yonomol	Sawai	Japan	_

Nicotinic acid Phosphorus oxychloride meso-Inositol

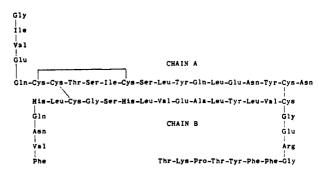
Manufacturing Process

100 g of nicotinic acid were suspended in 265 ml of distilled and dried pyridine without stirring. 68 g of phosphorus oxychloride were added dropwise to this mixture under continual stirring. The temperature of the reactants, initially at 20°C, was allowed to rise to about 60°C, and this temperature was maintained for a further 60 minutes. Thereafter 24.5 g of mesoinositol were added gradually, the temperature being controlled so that it did not exceed about 80°C. The reactants were maintained at this temperature for from 2 to 3 hours, and thereafter the reaction mixture was poured into 500 ml of water. The pyridine salts formed during the reaction readily dissolved, and the meso-inositol hexanicotinate which had formed crystallized out. The ester was filtered off and washed with water and acetone or alcohol. Finally, the meso-inositol hexanicotinate was dried at 100°C.

The yield was 90%, the melting point of the product was 258°C to 260°C, and the chlorine content <0.01%.

References

Merck Index 4863 Kleeman & Engel p. 490 I.N. p. 519 A.B. Bofors; British Patent 1,053,689; January 4, 1967


INSULIN

Therapeutic Function: Antidiabetic

Chemical Name: Complex polypeptide hormone with molecular weight over 6,000; see Structural Formula

Common Name: -

Structural Formula:

HUMAN INSULIN

Chemical Abstracts Registry No.: 9004-10-8

Trade Name	Manufacturer	Country	Year Introduced
Humulin	Lilly	U.S.	1982
Humulin	Lilly	U,K.	1982
Humulin	Lilly	Switz.	1983
Huminsulin	Lilly	W. Germany	1983
Velosulin	Leo	Switz.	1983
Monotard	Squibb	U.S.	1983
Monotard	Nova	W. Germany	1983
Actrapid	Squibb	U.S.	1983
Actrapid	Novo	W. Germany	1983
Basal-H	Hoechst	W. Germany	1983
lletin	Lilly	U.S.	_
Insulatard	Nordisk	U.S.	_
Mixtard	Nordisk	U.S.	_
Novolin	Squibb-Novo	U.S.	_
Velosulin	Nordisk	U.S.	_

Raw Materials

Beef pancreas glands Ethanol

Manufacturing Process

40 pounds of frozen beef pancreas glands were hashed and extracted by stirring with 45,500 cc of 85% alcohol containing 925 cc of phosphoric acid. The acidity of the extraction mixture was pH 3.0 and the alcohol concentration approximately 65% after equilibrium was attained. The pancreatic meat solids removed were then reextracted by stirring in 45,000 cc of 65% alcohol. The pH of the combined filtrates was raised to pH 8.0 by addition of ammonium hydroxide to precipitate inert proteins and phsophoric acid salts. The solids were removed by filtration and sulfuric acid was then added to the filtrate to bring the pH to 3.5. The acidified extracts were then concentrated under reduced pressure to an alcohol concentration of 20%. Lipoidal material was removed by filtration and the filtrate concentrated under reduced pressure to the aqueous phase. Lipoidal material was then removed by filtration and the insulin-containing filtrate biologically assayed for insulin activity. The biological assay showed the insulin recovered to be equivalent to 1425 I.U. for each pound of pancreas glands processed.

References

Merck Index 4866

PDR pp. 1054, 1270, 1777

DOT 19 (2) 111 & (5) 262 (1983)

REM p. 973

Maxwell, L.C. and Hinkel, W.P.; U.S. Patent 2,695,861; November 30, 1954; assigned to Armour & Co.

INSULIN ISOPHANE

Therapeutic Function: Hypoglycemic

Chemical Name: Isophane insulin

Common Name: Isophane insulin injection

Structural Formula: Gly

(base)

110 va1 ດ່ານ CHAIN A Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys Ġln Gly CHAIN B

Ásn Ġlu va 1 Arg Phe Thr-Lys-Pro-Thr-Tyr-Phe-Phe-Gly

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
NPH-lietin	Lilly	U.S.	1950
Protaphane	Novo	∪.S.	1981
Humulin-I	Lilly	U.K.	1982
insulatard	Leo	Switz.	1983
Novolin N	Squibb-Novo	U.S.	_

Raw Materials

Zinc insulin Salmiridine sulfate

Manufacturing Process

This is a crystalline product of insulin and an alkaline protein where the protein/insulin ratio is called the isophane ratio. This product gives a delayed and uniform insulin action with a reduction in the number of insulin doses necessary per day. Such a preparation may be made as follows: 1.6 g of zinc-insulin crystals containing 0.4% of zinc are dissolved in 400 ml of water, with the aid of 25 ml of 0.1 N hydrochloric acid. To this are added aqueous solutions of 3 ml of tricresol, 7.6 g of sodium chloride, and sufficient sodium phosphate buffer that the final concentration is ½ molar and the pH is 6.9.

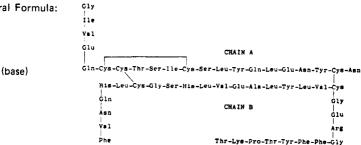
Then 0.14 g of salmiridine sulfate dissolved in water is added, while shaking. Salmiridine is a protamine derived from the sperm of Salmo irideus Gibbons, or rainbow trout. Salmiridine-insulin (a protamine-insulin) containing zinc is promptly precipitated. Enough water is now added to make a total of one liter, and the whole is shaken again. After standing for about an hour, the precipitated salmiridine-insulin is found to have become crystalline.

This crystalline salmiridine-insulin can be removed if desired, as by filtration; but it is not necessary to do that, as the suspension of crystalline salmiridine-insulin may be preserved as thus prepared, and dispensed and used (in the same manner as known preparations of protamine insulin and protamine-zinc-insulin are used) in the original suspending medium in which it is formed.

References

PDR p. 1778 REM p. 974

Krayenbuhl, C.H. and Rosenberg, T.; U.S. Patent 2,538,018; January 16, 1951; assigned to Nordisk Insulinlaboratorium, Denmark


INSULIN ZINC SUSPENSION

Therapeutic Function: Hypoglycemic

Chemical Name: Insulin zinc suspension

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 8049-62-5

Trade Name	Manufacturer	Country	Year Introduced
Lente Insulin	Squibb	U.S.	1971
lletin I	Lilly	U.S.	_
Protamine	Lilly	U.S.	_
Semilente	Squibb-Novo	U.S.	
Ultralente	Squibb-Novo	U.S.	_

Raw Materials

Insulin Zinc chloride

Manufacturing Process

First, a series of stock solutions are made.

Stock Solution 1: 2.18 g of recrystallized insulin are dissolved in 25 ml of 0.1 N hydrochloric acid, and distilled water to a volume of 125 ml is added.

Stock Solution 2: To 20 ml of an aqueous zinc chloride solution containing 1% zinc is added distilled water to a volume of 125 ml.

Stock Solution 3: 1.36 g of sodium acetate with 3 mols crystal water are dissolved in distilled water to a volume of 100 ml.

Then, 1.3 ml of glycerine are mixed with 0.5 ml of a 25% solution of methyl p-hydroxybenzoate in ethanol, and 50 ml of distilled water are added. To the produced mixture are, after sterile filtration, added 10 ml of the stock solution 1, 2,5 ml of the stock solution 2 and 10 ml of the stock solution 3, after which 3.0 ml of sterile 0.1 N sodium hydroxide are added, and the mixture is filled up with sterile distilled water to a volume of 100 ml. The insulin will be precipitated amorphously by the admixture of the sodium hydroxide, and the produced suspension acquires the pH value of 7. It will contain approximately 1 gamma zinc per insulin unit.

References

Merck Index 4869 PDR pp. 1055, 1777 **REM p. 975**

Petersen, K., Schlichtkrull, J. and Hallas-Moller, K.; U.S. Patent 2,882,203; April 14, 1959 assigned to Novo Terapeutisk Laboratorium A/S, Denmark

INTERFERON

Therapeutic Function: Antineopiastic; antiviral

Chemical Name: See Structural Formula

Common Name: --

Structural Formula: Complex protein; structure not precisely defined

Chemical Abstracts Registry No.: 9008-11-1

Trade Name	Manufacturer	Country	Year Introduced
Fiblaferon	Bioferon	W. Germany	1983
Wellferon	Burroughs-Wellcome		_

Raw Materials

Semliki Forest arborvirus Animal kidneys Trypsin

Manufacturing Process

Semliki Forest arborvirus was grown in chick embryo tissue culture. The infectious tissue culture liquid was decanted and diluted with medium 199 to give a preparation containing between 10⁶ and 10^{6.5} mouse ID₅₀ of virus/ml.

Calf kidneys, dog kidneys and rhesus monkey kidneys were treated with trypsin to give suspensions of cells. The suspensions were centrifuged and the packed cells diluted with 400 volumes (calf cells) or 200 volumes (dog cells and rhesus monkey cells) of a growth medium consisting of 5% horse serum and 0.5% lactalbumen hydrolysate in Earle's saline, with 100 units/ml each of penicillin and streptomycin. These media were used separately to produce Semliki Forest/calf interferon, Semliki Forest/dog interferon and Semliki Forest/rhesus monkey interferon. The cell-containing growth medium was dispensed into 500 ml medical flat bottles (70 ml in each). The cultures were incubated at 36°C. Confluent sheets of cells (monolayers) were formed in 5 to 6 days. The growth medium was then removed and the monolayers were washed with isotonic phosphate-buffered saline, pH 7.5.

Each bottle for interferon production received the arborvirus preparation in medium 199 (0.5 ml) and further medium 199 (50 ml); some bottles received only medium 199 (50 ml) and no virus and served as controls. The bottles were incubated for 3 to 5 days at 36°C.

The supernatants containing the interferons were decanted from monolayers, pooled, and tested for freedom from bacteria. Residual arborvirus was inactivated by acid and heat as follows. The liquid was brought to pH 2 by the addition of 0.3 N hydrochloric acid in Earle's saline (minus sodium chloride and sodium bicarbonate), kept at 4°C for 24 hours, and then brought back to pH 7 by the addition of 0.3 N sodium hydroxide in distilled water. The liquid was then heated at 56°C for 30 minutes.

At this stage the interferon preparations were assayed and submitted to safety tests for the absence of contaminating viruses.

Rhesus monkey kidney infected with Semliki Forest arborvirus gave interferon of titre 1.5 log interferon units/2 ml. (The interferon unit, determined in a volume of 2 ml, is the dilution of interferon which produced a half-maximal score for degree of cytopathic effect in virus-infected tissue culture tubes at the time when the control without interferon first showed the maximal score.)

Each interferon preparation was ultracentrifuged at 20,000 revolutions per minute for one hour to remove tissue debris and inactivated virus. The supernatant was dialyzed against distilled water (1:400) for 24 hours at 4°C. The material was then freeze-dried. The dried product was reconstituted in one-tenth of the original volume in distilled water and dispensed into ampoules. Reconstituted solutions were assayed for interferon activity, examined for toxicity, and tested for sterility.

References

Merck Index 4870 DOT 18 (8) 393 (1982) I.N. p. 520 REM p. 1233 Seller R E : British Pat

Sellers, R.F.; British Patent 960,769; June 17, 1964; assigned to The Wellcome Foundation Ltd. (U.K.)

IODAMIDE

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3-(Acetylamino)-5-[(acetylamino)methyl]-2,4,6-triiodobenzoic acid

Common Name: Ametriodinic acid

Structural Formula:

Chemical Abstracts Registry No.: 440-58-4

Trade Name	Manufacturer	Country	Year Introduced
Uromiro	Heyden	W. Germany	1965
Uromiro	Bracco	Itaiy	1970
Angiomiron	Schering	W. Germany	_
Contraxin	Takeda	Japan	
Isteropac	Bracco	Italy	_
Opacist	Bracco	Italy	_

Raw Materials

3-Acetylaminomethyl-4-chloro-5-nitrobenzoic acid Hydrogen Potassium iodide dichloride Acetic anhydride

Manufacturing Process

65.4 g (0.24 mol) 3-acetylaminomethyl-4-chloro-5-nitrobenzoic acid were dissolved in a mixture of 48 ml 10N sodium hydroxide and 1,800 ml water. 12 g of a 10% palladium catalyst on a carbon carrier were added, and the nitrobenzoic acid derivative was hydrogenated at slightly elevated temperature and at atmospheric pressure. The hydrogen was avidly absorbed. The nitro group was fully reduced to the corresponding amino radical within about 20 to 40 minutes, and 99 to 100% of the amount of chlorine ions to be theoretically expected was formed. Hydrogen absorption then stopped.

The catalyst was removed by filtration. The filtrate was diluted to about 18 liters, and was acidified with 15 ml concentrated hydrochloric acid. With vigorous stirring, 1,152 ml N K ICl2 solution were run into the diluted filtrate over a period of about 20 to 30 minutes. A solid precipitate was formed, and was filtered off after about six hours. The solid material was washed with water, with sodium bisulfite solution, and again with water. It was dissolved in aqueous ammonium hydroxide solution, the solution was filtered, and the filtrate was acidified with concentrated hydrochloric acid containing a small amount of sodium bisulfite. After a short time, the precipitate formed was filtered with suction, washed with water, and dried.

There were obtained 109 g 3-acetylaminomethyl-5-amino-2,4,6-triiodobenzoic acid which decomposes and melts at approximately 230°C. The equivalent weight was determined experimentally as being 591, as compared to a theoretical value of 586.

A suspension of 40 g 3-acetylaminomethyl-5-amino-2.4.6-triodobenzoic acid in 180 ml acetic anhydride were mixed with 0.4 ml concentrated sulfuric acid. An exothermic reaction was thereby initiated. Acetylation was completed by heating to 80°C for three hours. The reaction mixture was then evaporated to dryness in a vacuum at a temperature not exceeding 50°C. The residue was treated with a mixture of 30 ml concentrated aqueous ammonium hydroxide and 40 ml water, whereby the solid material dissolved with spontaneous heating. Within a few minutes, the ammonium salt of the acetylated product started precipitating. The precipitate and residual liquid were cooled externally with ice after about 15 minutes. The salt was separated from the liquid by filtration with suction, and was washed with ice cold saturated ammonium chloride solution.

The salt was dissolved in 300 ml water, and insoluble matter was removed from the solution

by filtration. The free acid was precipitated from the filtrate at 50°C to 60°C by the addition of 40 ml 1:1 hydrochloric acid. The precipitate was filtered off after a few hours, washed with water, and dried. There were obtained 34 g 3-acetylaminomethyl-5-acetylamino-2.4.6triiodobenzoic acid (79% of theoretical yield) having a melting point of 246°C to 248°C. The equivalent weight of this practically pure acid was found to be 631 as compared to the calculated value of 627.96.

When recrystallized from glacial acetic acid, the pure acid melts at 255°C to 257°C.

References

Merck Index 4878 Kleeman & Engel p. 493 I.N. p. 521 REM p. 1269

Felder, E. and Pitre, D.; U.S. Patent 3,360,436; December 26, 1967; assigned to Eprova Ltd. (Switz.)

IODIPAMIDE

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3,3'-[(1,6-Dioxo-1,6-hexanediyl)diimino] bis[2,4,6-triodobenzoic acid]

Common Name: Adipodione

Structural Formula:

Chemical Abstracts Registry No.: 606-17-7 (2618-26-0 = No Salt; 3521-84-4 = Meglumate)

Trade Name	Manufacturer	Country	Year Introduced
Cholografin	Squibb	U.S.	1954
Intralibix	Guerbet	France	1955
Biligrafin	Schering	W. Germany	-
Endocistobil	Bracco	Italy	_
Endografin	Schering	W. Germany	_
Radio-Selectan Biliare	S.E.P.P.S.	France	_
Transbilix	Guerbet	France	
Ultrabil	Spofa	Czechoslovakia	

Raw Materials

2.4.6-Triodo-3-amino benzoic acid Adipic acid dichloride

Manufacturing Process

125 g of 2,4,6-triiodo-3-amino benzoic acid are dissolved in 250 cc of chlorobenzene and 15 g of adipic acid dichloride are added at a temperature between 110° and 130°C drop by drop to the solution. After evolution of hydrochloric acid (about 2 to 3 hours) has ceased, the precipitated crude adipic acid di-(3-carboxy-2,4,6-triiodo anilide) of the above formula is filtered hot with suction, washed with chlorobenzene, extracted by boiling with methanol and, for purification, dissolved in an amount of methanolic caustic soda solution required for neutralization, filtered with charcoal, and precipitated with dilute hydrochloric acid. Yield: 82.3 g, MP 306° to 308°C (with decomposition).

References

Merck Index 4890 Kleeman & Engel p. 16 I.N. p. 46 REM p. 1265

Priewe, H. and Rutkowski, R.; U.S. Patent 2,776,241; January 1, 1957; assigned to Schering AG, Germany

IODOALPHIONIC ACID

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 4-hydroxy-3,5-diiodo-α-phenylbenzenepropanoic acid

Common Name: Pheniodol

Structural Formula:

Chemical Abstracts Registry No.: 577-91-3

Trade Name	Manufacturer	Country	Year Introduced
Priodax	Schering	U.S.	1943
Perfectochol	Lafayette	u <i>.</i> s.	1952
Bilopsyl	Labaz	_	_
Choletrast	Burroughs-Wellcome	_	_

Raw Materials

Dextro β -(4-hydroxyphenyl)- α -phenylpropionic acid Iodine Dimethylaminoethanol Acetic acid

Manufacturing Process

Dextro- β -(4-hydroxyphenyl)- α -phenylpropionic acid (24 g) was dissolved in 630 ml of water containing 8.0 g of sodium hydroxide, and, with good stirring at 25°C, 51 g of iodine and 51 g of potassium iodide dissolved in 240 ml of water was added dropwise over a period of 30 minutes. During this period another 8 g of sodium hydroxide dissolved in 60 ml of water was added in order to keep the reaction mixture alkaline to phenolphthalein. Stirring was continued for 15 minutes longer. The resulting solution was made acid to Congo red with concentrated hydrochloric acid, and about 5 g of sodium bisulfite was

added to partially decolorize the resulting slurry. The solid was collected by filtration and washed well with water.

The crude iodinated acid was then dissolved in 500 ml of 95% alcohol, 10 g of dimethylaminoethanol was added, the solution was decolorized with activated charcoal and filtered at 70°C. After keeping the filtrate for several hours at 5°C, the heavy crystalline precipitate which formed was collected by filtration and washed with acetone. The mother liquors were concentrated to 150 ml and cooled to give a second crop which was further purified by recrystallization from 50 ml of 95% alcohol. In this way a total of 36.0 g of dimethylaminoethanol salt of dextro- β -(3,5-diiodo-4-hydroxy)- α -phenylpropionic acid, MP 151° to 153°C, was obtained. The melting point of the dimethylaminoethanol salt of unresolved β -(3,5-diiodo-4-hydroxy)- α -phenylpropionic acid was 142° to 144°C.

The pure dimethylaminoethanol salt was dissolved in 400 ml of 50% acetic acid at 90°C and then cooled to 5°C. The solid which precipitated was collected by filtration, washed with water, cold 50% acetic acid and finally with low-boiling petroleum ether. After drying in vacuo there was obtained 24 g of hydrated dextro- β -(3,5-diiodo-4-hydroxy)- α -phenyl-propionic acid, MP 80° to 85°C.

References

Merck Index 4893

I.N. p. 756

Tullar, B.F. and Hoppe, J.O.; U.S. Patent 2,552,696; May 15, 1951; assigned to Sterling Drug Inc.

IOGLYCAMIC ACID

Therapeutic Function: Diagnostic air (radiopaque medium)

Chemical Name: 3.3'-[Oxybis [(1-oxo-2,1-ethanediyl)imino]] bis [2,3,6-triiodobenzoic acid]

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2618-25-9

Trade Name	Manufacturer	Country	Year Introduced
Meglumine Salt:			
Biligram	Schering	W. Germany	1971
Biligram	Schering	U.K.	1972
Biligram	S.E.P.P.S.	France	1974
Bilivistan	Schering	Italy	_
Rayvist	Schering	W. Germany	_

Raw Materials

2,4,6-Triiodo-aminobenzoic acid Diglycolic acid dichloride

Manufacturing Process

910 g of dry 2,4,6-trilodo amino benzoic acid are dissolved with stirring in 4,800 cc of dry, boiling chlorobenzene. A solution of 151.7 g diglycolic acid dichloride in 100 cc of dry chlorobenzene is slowly added to this solution and the mixture is further heated for 4 to 5 hours under reflux until development of hydrogen chloride has ceased. The resulting precipitate is filtered from the warm solution with suction and washed with chlorobenzene and then with ether. The microcrystalline, almost colorless crude product, 942 g, consists of the α -modification of diglycolic acid di-(3-carboxy-2,4,6-trilodo anilide).

The crude product is suspended, while stirring, in 2.5 liters of pure methanol and a solution of 73 g of pure sodium hydroxide in the same weight of water, diluted with 675 cc methanol, is slowly added to this suspension until the acid is dissolved and the pH of this solution reaches 9.0. The solution is allowed to stand at this pH for 15 minutes. The pH is then brought to 4.0 by addition of 10% acetic acid and 17 g of charcoal are stirred in. After 15 minutes the coal is filtered off and the clear filtrate is slowly added to a stirred solution of 415 cc of pure, concentrated hydrochloric acid in 4.15 liters of 50% methanol. After ½ hour of stirring and decanting after 1 hour, the precipitate is easily filtered off with suction, washed with little methanol and thoroughly with water, until the thixotropic residue is free of hydrochloric acid. In order to obtain a product of highest purity, this treatment is repeated two times. The resulting pure product, after drying in vacuo at 50°C still containing one molecule of methanol per two molecules of the acid (plus 4 molecules of water), must be suspended in boiling water and steamed out. The hot suspension is filtered with suction, the white microcrystalline residue is dried in vacuo at 50°C to give 860 g (83.5% of the theoretical yield) of the pure dihydrate of the diglycolic acid di-(3-carboxy-2,4,6-trilodo anilide), β-modification,

References

Merck index 4912 Kleeman & Engel p. 494 I.N. p. 28

Priewe, H. and Rutkowski, R.; U.S. Patent 2,853,424; September 23, 1958; assigned to Schering A.G. (W. Germany)

IOPAMIDOL

Therapeutic Function: Radiopaque contrast medium

Chemical Name: 5-(\alpha-Hydroxypropionylamino)-2,4,6-triiodoisophthalic acid di-(1,3-dihydroxyisopropylamide)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 60166-93-0

Trade Name	Manufacturer	Country	Year Introduced
lopamiro	Bracco	Italy	1981
Solutrast	Byk Gulden	W. Germany	1981

Trade Name	Manufacturer	Country	Year Introduced
Niopam	Merck	U.K.	1982
lopamiro	Astra	Sweden	1983
Isovue	S quibb	_	-

5-Amino-2,4,6-trilodo-isophthalic acid Thionyl chloride DL-2-Acetoxypropionyl chloride 2-Amino-1,3-propanediol

Manufacturing Process

400 g (0.72 mol) 5-amino-2,4,6-triiodo-isophthalic acid was added to 200 ml thionyl chloride. the mixture was stirred at a boil for 6 hours, and the resulting solution was evaporated. The residue was dissolved in anhydrous ethyl acetate, and the solution was again evaporated to dryness. The solid material was dissolved in 4,000 ml ethyl acetate, and the solution was stirred into an ice-cold solution of 500 q sodium chloride and 200 g sodium bicarbonate in 2.5 liters water. The organic phase was separated from the aqueous solution, washed with aqueous sodium solution, dried by contact with anhydrous calcium chloride, and evaporated to dryness.

The residue of 420 g 5-emino-2,4,6-triiodo-isophthalyl chloride (97.5% yield) had a melting point above 300°C when recrystallized from toluene.

300 g (0.503 mol) 5-amino-2,4,6-triiodo-isophthalyl chloride was dissolved in 1,200 ml dimethylacetamide, and 187 g (1,26 mol) DL-2-acetoxypropionyl chloride was added dropwise to the solution with agitation. The mixture was permitted to stand overnight at ambient temperature and was then evaporated in a vacuum to approximately 400 ml. The oily residue was stirred into ice water to precipitate 353 g crystalline DL-5-(α-acetoxypropionylamino)-2,4,6-triiodo-isophthalyl chloride (98% yield) which was purified by suspension in warm chloroform free alcohol.

The purified intermediate meited at 210°C. 70.9 g (0.10 mol) of the intermediate was dissolved in 150 ml dimethylacetamide, and 15 g (0.08 mol) tributylamine was added. The mixture was heated to 50°C, and 56.6 g (0.62 mol) 1,3-dihydroxyisopropylamine (2-amino-1,3-propanediol) dissolved in 80 ml dimethylacetamide was added drop by drop. The reaction went to completion within a few hours, and the reaction mixture was evaporated to dryness in a vacuum. The oily residue was added to 350 ml methylene chloride with vigorous agitation, and the resulting precipitate was filtered off and purified by repeated suspension of warm methylene chloride.

Work-up of the reaction mixture yielded 56.5 g (73,5%) DL-5- α -hydroxypropionylamino-2.4.6-trijodo-isophthalic acid di-(1.3-dihydroxyisopropylamide) which was recrystallized from agueous ethanol and melted with decomposition above 300°C.

References

Merck Index 4915 DFU 4 (12) 876 (1979) I.N. p. 524

Felder, E., Vitale, R.S. and Pitre, D.E.; U.S. Patent 4,001,323; January 4, 1977; assigned to Savac AG

IOPANOIC ACID

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3-amino-α-ethyl-2,4,6-triiodobenzenepropanoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 96-83-3

Trade Name	Manufacturer	Country	Year Introduced
Telepaque	Winthrop	U.S.	1952
Telepaque	Winthrop	France	1955
Ace-Line	Maruishi	Japan	
Biliopaco	Rovi	Spain	_
Chole-Contrast	Orion	Finland	_
Cistobil	Bracco	Italy	_
Colegraf	Estedi	Spain	_
Holevid	Krka	Yugoslavia	_
Leabar	Tovo	Japan	_
Molpaque	Tokyo Tanabe	Japan	_
Neocontrast	Bama-Geve	Spain	_
Polognost	Polfa	Poland	_
Teletrast	Astra	_	_

Raw Materials

m-Nitrobenzaldehyde Butyric anhydride

Hydrogen lodine monochloride

Manufacturing Process

- (A) Preparation of α -Ethyl-m-Nitrocinnamic Acid: This acid is prepared from 100 g of m-nitrobenzaldehyde, 210 g of butyric anhydride and 73 g of sodium butyrate. The crude α-ethyl-m-nitrocinnamic acid is crystallized from ethanol giving about 105 g, MP 140° to 142°C. From the filtrates there may be isolated a small amount of a stereoisomer, which when pure melts at 105° to 106°C.
- (B) Preparation of m-Amino-α-Ethylhydrocinnamic Acid: A mixture of 50 g of α-ethyl-mnitrocinnamic acid, 9.1 g of sodium hydroxide, 600 cc of water and 5 teaspoons of Raney nickel catalyst is shaken at 32°C in an atmosphere of hydrogen at an initial pressure of 450 psi until the calculated amount of hydrogen is absorbed. The filtered solution is acidified with hydrochloric acid, made basic with ammonium hydroxide and again acidified with acetic acid. Upon concentration of this solution, an oil separates which crystallizes upon standing, giving about 20 g, MP 60° to 68°C. Complete evaporation of the filtrate and extraction of the residue of inorganic salts with ether gives about 20 g of additional material, MP 54° to 59°C. Recrystallization of the combined product from benzenepetroleum ether gives about 35 g of m-amino-α-ethylhydrocinnamic acid. MP 67° to 70°C.
- (C) Preparation of β-(3-Amino-2,4,6-Triiodophenyl)-α-Ethylpropionic Acid: A solution of 5.0 g of m-amino-α-ethylhydrocinnamic acid in 100 cc of water containing 5 cc of concentrated hydrochloric acid is added over a period of 1/2 hour to a stirred solution of 3.2 cc of iodine monochloride in 25 cc of water and 25 cc of concentrated hydrochloric acid

heated to 60°C. After addition is complete, the heating is continued for one hour longer at 60° to 70°C. A black oil separates which gradually solidifies.

The mixture is then cooled and sodium bisulfite added to decolorize. Recrystallization of the product from methanol gives about 8 g, MP 147° to 150°C. The β-(3-amino-2,4,6triiodophenyl)-a-ethylpropionic acid may be purified further by precipitation of the morpholine salt from ether solution and regeneration of the free amino acid by treatment of a methanol solution of the morpholine salt with sulfur dioxide. The pure amino acid has the MP 155° to 156.5°C.

References

Merck Index 4916 Kleeman & Engel p. 495 DOT 15 (7) 310 (1979) I.N. p. 28 REM p. 1266

Archer, S.: U.S. Patent 2,705,726; April 5, 1955; assigned to Sterling Drug Inc.

IOPHENDYLATE

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: Ethyl 10-(p-iodophenyl)undecylate

Common Name: -

Structural Formula: CH3CHCH2 (CH2) 6 CH2 COOC2H5

Chemical Abstracts Registry No.: 99-79-6

Trade Name	Manufacturer	Country	Year Introduced
Pantopaque	Lafayette	u.s.	1944
Ethiodan	Allen & Hanburys	U.K.	_

Raw Materials

Ethyl undecylenate lodobenzene

Manufacturing Process

60 volumes of ethyl undecylenate is introduced gradually at 7° to 8°C during 35 minutes to a well-cooled mixture of 52.5 parts of aluminum chloride and 150 volumes of iodobenzene. The mixture is decomposed with cracked ice and dilute hydrochloric acid. The iodobenzene layer is washed with sodium bisulfite solution and with water, and then distilled. The composition of matter having the probable formula, ethyl 4-iodophenyl-undecylate, is a colorless liquid boiling at 196° to 198°C/1 mm, and of specific gravity of 1,26/20°C.

References

Merck Index 4917 Kleeman & Engel p. 494

REM p. 1267

Strain, W.H., Plati, J.T. and Warren, S.L.; U.S. Patent 2,348,231; May 9, 1944; assigned to Noned Corporation and Eastman Kodak Company

IOPRONIC ACID

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 2-[[2-[3-(Acetylamino)-2,4,6-triiodophenoxy]ethoxy]methyl]-bu-

tanoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 37723-78-7

Trade Name	Manufacturer	Country	Year Introduced
Bilimiru	Bracco	Italy	1974
Bilimiro	Byk Gulden	W. Germany	1980

Raw Materials

3-Acetylamino-2.4.6-triiodophenol Sodium 3-(2-lodoethoxy)-2-ethylpropionic acid ethyl ester Sodium hydroxide Hydrogen chioride

Manufacturing Process

A solution of 192 g 3-acetylamino-2,4,6-triiodophenol, sodium (0.35 mol) in 350 ml dimethylacetamide, was mixed with 107,5 g 3-(2-iodoethoxy)-2-ethylpropionic acid ethyl ester (0.35 mol) at 90°C with stirring over a period of about 20 to 30 minutes. Stirring was continued while the mixture was held at 95°C to 100°C for 16 hours. The solvent was then removed by distillation in a vacuum, and the residue was poured into 4,000 ml water. The solid precipitate formed was recovered and washed with water, dilute sodium carbonate solution, dilute sodium bisulfite solution, and again with much water. The ethyl ester was obtained in a yield of 220 g (90%). When recrystallized from 75% aqueous ethanol, it melted at 80°C to 86°C.

The ester (70 g, 0.1 mol) was saponified in a boiling mixture of 250 ml methanol and 250 ml water to which 100 ml N sodium hydroxide solution was added in small batches with stirring. The methanol was distilled from the saponification mixture, the residue was mixed with water and extracted with ethyl acetate. The aqueous phase was acidified with hydrochloric acid in the presence of sodium bisulfite.

The free acid gradually crystallized from the acidified solution in the amount of 42.4 g (63% yield). When recrystallized from 50% ethanol and from ethyl acetate, it melted at 130°C.

References

Merck Index 4919

I.N. p. 29

Felder, E. and Pitre, D.; U.S. Patent 3,842,124; October 15, 1974; assigned to Bracco Industria Chimica, Societa per Azioni (Italy)

IOTHALMATE MEGLUMINE

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3-(Acetylamino)-2,4,6-triiodo-5-[(methylamino)carbonyl] -benzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13087-53-1; 2276-90-6 (Acid)

Trade Name	Manufacturer	Country	Year Introduced
Conray	Mallinckrodt	U.S.	1962
Conray	Byk Gulden	W. Germany	1964
Contrix	Guerbet	France	1965
Angio-Conray	Daiichi	Japan	_
Cysto-Conray	Mallinckrodt	U.S.	_
Gastro-Conray	May & Baker	U.K.	
Sombril	Rovi	Spain	
Vascoray	Mallinckrodt	U.S.	_
Vascoray	Astra	Sweden	_

Raw Meterials

5-Amino-2,4,6-triiodo-N-methylisophthalamic acid Acetic anhydride N-methyl glucamine

Manufacturing Process

Crude 5-amino-2,4,6-triiodo-N-methylisophthalamic acid (21.0 g) was dissolved in warm dimethylacetamide (40 ml) and acetic anhydride (30 ml) and concentrated sulfuric acid (2 drops) were added. This solution was heated on the steam bath for 2 hours, then heated at 110°C for 5 minutes, then cooled. Water and ammonium hydroxide were added to destroy the excess acetic anhydride, after which the mixture was evaporated to a volume of 50 ml. The cooled solution was acidified with concentrated hydrochloric acid and a tan solid was collected. The crude product was dissolved in 100 ml of water containing a slight excess of sodium hydroxide. The pH was adjusted to 4.5 with acetic acid, and the solution was treated with charcoal. The colorless solution was acidified with concentrated hydrochloric acid and

cooled, and the precipitate was filtered off and dried under reduced pressure. The resulting 5-acetamido-2,4,6-triiodo-N-methylisophthalamic acid decomposes about 285°C and does not melt below 300°C.

5-acetamido -2.4.6-triiodo -N-methylisophthalamic acid was slurried in water and dissolved by the addition of an equivalent quantity of N-methylglucamine. The solution was evaporated to dryness to yield the meglumate salt of 5-acetamido-2,4,6-triiodo-N-methylisophthalamic acid,

References

Merck Index 4922 Kleeman & Engel p. 496 I.N. p. 29 **REM p. 1269** Hoey, G.B.; U.S. Patent 3,145,197; August 18, 1964; assigned to Mallinckrodt Chemical Works

IOTHIOURACIL

Therapeutic Function: Thyroid inhibitor

Chemical Name: 2,3-Dihydro-5-iodo-2-thioxo-4(1H)-pyrimidinone

Common Name: Iodothiouracil

Structural Formula:

Chemical Abstracts Registry No.: 5984-97-4

Trade Name	Manufacturer	Country	Year Introduced
Itrumil	Ciba	u.s.	1951

Raw Materials

5-lodo-2-benzyl thiouracil Acetic anhydride

Manufacturing Process

As an illustrative example 64.4 g of 5-jodo-2-benzyl thiouracil were deposited in the reaction vessel and dissolved by adding 400 cc of glacial acetic acid containing 10 cc of acetic anhydride and the reaction vessel was connected tightly with the reflux condenser. The second vessel or generator was charged with 95 cc of acetic anhydride and the vessel connected to a vessel such as a dropping funnel or equivalent containing 75 cc of a 50% solution of hydriodic acid which was added slowly, as by dropwise addition, to the acetic anhydride in the generator. The mixture in the generator soon became hot and the hydrogen iodide which evolved passed continuously through the connecting conduit into the reaction flask just above the level of liquid therein. As the hydrogen iodide contacted the solution of the 2 benzyl derivative, a ring of the debenzylated product formed under the inlet conduct. This operation was continued until all of the hydriodic acid was added to the generator vessel. The hydrogen iodide remaining in the generator was driven over into the reaction vessel by heating the generator. It was ascertained that the reaction is complete when no more precipitate forms

in the main reaction vessel. During the reaction vapors evolved were condensed in the condenser and returned to the reaction vessel as reflux. The upper end of the reflux is preferably connected with a vent leading to a drying chamber.

The reaction vessel was cooled and the precipitate separated by pouring or decanting off the supernatant liquor. The precipitate of the 5-iodo-2-thiouracil was then thoroughly washed, as, for example, on a Buchner funnel. The precipitate was then extracted twice with hot glacial acetic acid to remove unreacted material and then washed thoroughly by alternate washes with alcohol and water. The product was then further purified by dissolving it in warm dilute sodium hydroxide and after cooling was reprecipitated by careful acidulation with acetic acid. Utilizing this procedure 37 g of purified 5-jodo-2-thiouracil were obtained.

The supernatant liquid separated from the precipitate was concentrated in vacuo and 7.4 g of the unreacted 5-iodo-2-benzyl thiouracil were recovered. This obviously may be utilized for further debenzylation.

As pointed out previously, the 5-iodo-2-thiouracil is carefully dried, preferably in a vacuum over P2O5.

References

Merck Index 4924 OCDS Vol. 1 p. 265 (1977)

I.N. p. 573

Barrett, H.W.; U.S. Patent 2,585,615; February 12, 1952; assigned to The Chemical Foundation

IOTROXIC ACID

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3,3'-[Oxybis(ethyleneoxymethylenecarbonylimino)] bis-[2,4,6-triiodobenzoic acid]

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51022-74-3

Trade Name	Manufacturer	Country	Year Introduced
Biliscopin	Schering	W. Germany	1978
Biliscopin	Schering	Switz.	1981
Biliscopin	Nippon Schering	Japan	1982
Chologram	Schering	Italy	1982

Raw Materials

- 3-Amino-2.4.6-triiodobenzoic acid
- 3,6,9-Trioxaundecane diacid dichloride

Manufacturing Process

- (a) Condensation in dimethylacetamide: To a suspension of 51,5 g of anhydrous 3-amino-2.4.6-triiodo-benzoic acid (0.1 mol) in 100 ml of dimethylacetamide were slowly added dropwise, while stirring, 15.5 g of 3,6.9-trioxaundecane diacid dichloride (0.06 mol), during which the temperature gradually rose to about 50°C and the whole passed into solution. After being stirred overnight, the solution was added dropwise to 1 liter of a 0.28 N solution of sodium hydroxide, and then 200 ml of 2 N hydrochloric acid were cautiously added. The precipitate was filtered off with suction, washed with water and dried. The yield was practically quantitative.
- (b) Condensation in dioxan: 15.5 g of 3.6.9-trioxaundecane diacid dichloride were added dropwise at about 95°C to a solution of 51.5 g of anhydrous 3-amino-2,4,6-triiodo-benzoic acid in 52 ml of anhydrous dioxan. After further stirring and heating for 3 hours, the solution was cooled, stirred dropwise into 500 ml of a 0.4 N solution of sodium hydroxide, and further worked up as described in paragraph (a). The yield was practically quantitative.
- (c) Purification: To the crude product obtained as described under paragraph (a) or (b) in 300 ml of methanol was slowly added a quantity (about 15 ml) of a 12 N solution of sodium hydroxide such that a test portion diluted with water had a pH-value of 8 to 9. After stirring the mixture overnight, the sodium salt of 3,6,9-trioxaundecane-1,11-dioyl-bis-(3-carboxy-2.4.6-triodo-anilide) which crystallized out was filtered off with suction, washed with methanol and dried. Yield: 92 g (90% of the theoretical yield).

A solution of the salt in 900 ml of water was treated with active carbon, and concentrated hydrochloric acid was added until the pH-value was 1. The precipitate was filtered off with suction, washed with water, and dried at 50°C.

The yield of pure 3.6.9-trioxaundecane-1,11-dioyl-bis-(3-carboxy-2,4,6-triiodo-anilide) was 80 g (80% of the theoretical yield). The substance melted at 175°C with sintering.

References

Kleeman & Engel p. 497 DOT 15 (1) 48 (1979) I.N. p. 30

Schering, A.G.; British Patent 1,501,507; February 15, 1978

IPRATROPIUM BROMIDE

Therapeutic Function: Bronchodilator

Chemical Name: 3-(3-Hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-8-

azoniabicyclo [3,2,1] octane bromide

Common Name; -

Structural Formula:

Chemical Abstracts Registry No.: 22254-24-6

Trade Name	Manufacturer	Country	Year Introduced
Atrovent	Boehr, Ingel.	W. Germany	1975
Atrovent	Boehr, Ingel.	U.K.	1977
Atrovent	De Angeli	Italy	1980
Breva	Valeas	Italy	1980
Atrovent	Teijin	Japan	1981
Atrovent	Boehr, Ingel.	Canada	1982
Atem	Chiesi	Italy	_
Itrop	Boehr, Ingel.		_
Vagos	Valeas	italy	

Raw Materials

N-Isopropyl-noratropine Methyl bromide

Manufacturing Process

211.5 g (0.667 mol) of N-isopropyl-noratropine were dissolved at 60°C in 2.11 liters of absolute toluene in a 3-liter glass pressure tube. While the solution was still warm, 95 g (1 mol) of ice-cold methylbromide were added, and the pressure tube was sealed immediately thereafter. The reaction mixture was kept at 60°C for four days. After one hour of standing, the formation of crystals began. At the end of four days the crystals were separated by vacuum filtration at 60°C, washed with 600 cc of toluene at 60°C, and dried in vacuo in a drying cabinet at 100°C. Raw yield: 263.7 g (95.8% of theory). MP: 224°C to 225°C (decomp.). The raw product was refluxed with 2.5 liters of chloroform for 30 minutes, vacuum filtered while hot, washed with 200 cc of chloroform, and dried in a vacuum drying cabinet at 100°C. Yield: 249 g (90.6% of theory). MP: 226°C to 228°C (decomp.). The purified product was recrystallized from 1.2 liters of n-propanol, washed with 200 cc of n-propanol and dried in a vacuum drying cabinet at 100°C. Yield: 237 g (86.15% of theory). MP: 230°C to 232°C (decomp.). By evaporation of the mother liquor to 100 cc another 6.0 g of the pure product, MP 230°C to 231.5°C (decomp.), were obtained,

References

Merck Index 4929 Kleeman & Engel p. 498 OCDS Voi. 3 p. 160 (1984) DOT 11 (12) 461 (1975) & 17 (7) 299 (1981) I.N. p. 525 REM p. 916

Zeile, K., Schulz, W., Banholzer, R. and Wick, H.; U.S. Patent 3,505,337; April 7, 1970; assigned to Boehringer Ingelheim G.m.b.H. (W. Germany)

IPRONIAZID

Therapeutic Function: Antidepressant; monoamine oxidase inhibitor

Chemical Name: 4-Pyridinecarboxylic acid 2-(1-methylethyl)hydrazide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54-92-2

Trade Name	Manufacturer	Country	Year Introduced
Marsilid	Roche	U.S.	1952
Marsilid	Roche	France	1960
Ellepibina	L.P.B.	Italy	_
Ipronid	A.F.I.	Norway	_
Rivivol	Zambeletti	Italy	_

Raw Materials

Isonicotinyl hydrazide Acetone Hydrogen

Manufacturing Process

A mixture of 40 g of isonicotinyl hydrazine and 600 cc of acetone was heated on a steam bath until solution was complete. Upon cooling the reaction mixture, 1-isonicotinyl-2-isopropylidene hydrazine precipitated in the form of white needles; MP 161°C to 161.5°C.

A solution of 20 g of 1-isonicotinyl-2-isopropylidene hydrazine in 150 cc of methanol was reduced with hydrogen at room temperature and 50 psi using 300 mg of platinum black as a catalyst.

References

Merck Index 4934 Kleeman & Engel p. 499 OCDS Vol. 1 p. 254 (1977) I.N. p. 525

Fox, H.H.; U.S. Patent 2,685,585; August 3, 1954; assigned to Hoffmann-La Roche, Inc.

IPRONIDAZOLE

Therapeutic Function: Antiprotozoal

Chemical Name: 1-Methyl-2-(1-methylethyl)-5-nitro-1H-imidazole

Common Name: 2-Isopropyl-1-methyl-5-nitroimidazole

Structural Formula:

Chemical Abstracts Registry No.: 14885-29-1

Trade Name Manufacturer Year Introduced Country Roche W. Germany 1981 Ipropran

Raw Materials

2-Isopropyl 4-nitroimidazole Dimethyl sulfate

Manufacturing Process

2-isopropyl-4(or 5-nitroimidazole) (31 g = 0.2 mol), dioxane (70 g) and dimethylsulfate (28 g = 0.22 mol) were heated on a steam bath under reflux for 45 minutes. The solvent was removed in vacuo on a steam bath, the residue dissolved in 20 ml of water and the product precipitated by the gradual addition of 80 g of 25% sodium hydroxide solution at 0°C. A small additional amount was obtained by extraction of the mother liquor with methylene chloride. The product melted at 60°C.

The product was purified as follows. 60 g of product was dissolved in 3 N aqueous hydrochloric acid, the solution was treated with charcoal and filtered. The filtrate was neutralized by the gradual addition of aqueous concentrated ammonia at 0°C to 5°C under stirring whereupon the product precipitated in white plates as the neutralization proceeded. The precipitate was filtered by suction, washed on the filter with 50 ml of ice cold water and dried at room temperature, MP 60°C.

The hydrochloride salt was formed by reacting the product, dissolved in isopropanol, with 25% ethanolic hydrochloric acid, whereupon the salt precipitated and was isolated. It has a melting point of 177°C to 182°C (dec). Similarly, the bisulfate salt was formed using 96% sulfuric acid. It has a MP of 151.5°C to 152.5°C.

References

Merck Index 4934 OCDS Vol. 2 p. 244 (1980) I.N. p. 525

Hoffer, M. and Mitrovic, M.; U.S. Patent 3,502,776; March 24, 1970; assigned to Hoffmann-La Roche Inc.

ISAXONINE PHOSPHATE

Therapeutic Function: Peripheral neuropathy treatment

Chemical Name: N-(1-Methylethyl)-2-pyrimidinamine

Common Name: -

Structural Formula:

NHCH (CH₃)₂

(base)

Chemical Abstracts Registry No.: 4214-72-6 (Base)

Year Introduced Trade Name Manufacturer Country 1981 France Nerfactor Ipsen

2-Isopropylamino pyrimidine Phosphoric acid

Manufacturing Process

6 liters of ethanol and 685 g (5 mols) of 2-isopropylamino pyrimidine were added to a 10 liter reactor and stirred. To the solution were added 600 g (5.2 mols) of phosphoric acid and the mixture was boiled under reflux for one hour. There was obtained a dark green solution which was treated with 30 g of carbon black. After separation and crystallization while stirring overnight, the crystallized product was separated, washed with ethanol and dried at 50°C. There was obtained 1,027 g (87% yield) of a white powder melting at 125°C. The analysis of the compound showed a good correspondence with the formula C₇H₁₄O₄N₂P.

References

Merck Index 4953 DFU 1 (5) 315 (1982)

Esanu, A.; U.S. Patent 4,073,895; February 14, 1978; assigned to Societe D'Etudes de Produits Chimiques (France)

ISOAMINILE

Therapeutic Function: Antitussive

Chemical Name: α-[2-(dimethylamino)propyl] -α-(1-methylethyl)benzeneacetonitrile

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 77-51-0

Trade Name	Manufacturer	Country	Year Introduced
Peracon	Toyo Jozo	Japan	1969
Dimyril	Fisons	U.K.	_
Mucalan	Delagrange	France	=
Sedotosse	Panthox & Burck	Italy	-

Raw Materials

α-Isopropyl phenyl acetonitrile Sodium amide 2-Dimethylamino-1-chloropropane

Manufacturing Process

140 cc of benzene and 24 g of α-isopropyl phenyl acetonitrile are added to 7.5 g of sodium amide. The mixture is stirred and refluxed for one hour. After cooling, 25 g of 2dimethylamino-1-chloropropane, dissolved in 20 cc of benzene, are added and stirring and refluxing of the mixture is continued for 4 hours. After the reaction is completed, water is added to the reaction mixture. The benzene layer is separated from the aqueous layer and is extracted by means of 4 N hydrochloric acid. The acid solution is rendered alkaline. The separated oil is taken up in ether. After drying the ethereal solution over sodium sulfate and distilling off the ether, the resulting crude α -isopropyl- α -(β '-dimethylamino propyl) phenyl acetonitrile is purified by distillation in a vacuum. The compound boils at 138° to 146°C/3 mm, according to U.S. Patent 2,934,557.

References

Merck Index 4956 Kleeman & Engel p. 499 OCDS Vol. 1 p. 82 (1977) I.N. p. 527

Stuhmer, W. and Funke, S.; U.S. Patent 2,934,557; April 26, 1960; assigned to Kali-Chemie AG. Germany

Dickinson, H.M.N.; U.S. Patent 3,074,996; January 22, 1963; assigned to Abbott Labs.

ISOBORNYL THIOCYANOACETATE

Therapeutic Function: Pediculicide

Chemical Name: Thiocyanatoacetic acid 1,7,7-trimethylbicyclo[2,2,1] -hept-2-yl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 115-31-1

Trade Name Manufacturer Country Year Introduced U.S. 1946 Bornate Wyeth

Raw Meterials

Camphene Chloroacetic acid Potassium thiocyanate

Manufacturing Process

200 g of camphene and 150 g of chloroacetic acid were heated 16 hours at 125°C, cooled to room temperature and the resulting product washed with water. In this way, 177 g of isobornyl monochloroacetate, analyzing 12.8%, by weight, chlorine was recovered. 174 g of the isobornyl monochloroacetate was dissolved in 300 cc of ethyl alcohol, 100 g of potassium thiocyanate added to this solution and the mixture refluxed for a period of 8 hours. 276 g of a product was recovered, which analyzed as follows: chlorine, 0.2% by wt. and sulfur, 10.9% by wt. This analysis shows the product to be principally isobornyl thiocyanoacetate.

References

Merck Index 4976 I.N. p. 527 Borglin, J.N.; U.S. Patent 2,217,611; October 8, 1940; assigned to Hercules Powder Co.

ISOCARBOXAZID

Therapeutic Function: Antidepressant

Chemical Name: 5-Methyl 3-isoxazolecarboxylic acid 2-benzylhydrazide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59-63-2

Trade Name	Manufacturer	Country	Year Introduced
Marplan	Roche	U.S.	1959
Marplan	Roche	France	1961
Enerzer	Takeda	Japan	_

Raw Materials

5-Methyl-3-isoxazole carboxylic acid hydrazide Benzaldehyde Lithium aluminum hydride

Manufacturing Process

800 g of benzaldehyde was added to a hot solution (75°C) of 7 liters of ethanol containing 720 g of 5-methyl-2-isoxazole carboxylic acid hydrazide. The solution was stirred for ten minutes at which time the product began to crystallize. On cooling at 4°C for 14 hours, the solid was filtered off under vacuum and the solid filter cake was washed twice using 250 ml of ice cold ethanol for each washing. The 1-benzylidene-2-(5-methyl-3-isoxazolylcarbonyl)hydrazine was recrystallized from ethanol, MP 199°C to 200°C.

115 g of 1-benzylidene-2-(5-methyl-3-isoxazolylcarbonyl)hydrazine was added portionwise over the period of an hour to 5 liters of anhydrous ether containing 18.5 g of lithium aluminum hydride. The reaction mixture was stirred for four hours and permitted to stand overnight. The excess lithium aluminum hydride was decomposed with 250 ml of ethyl acetate and 150 ml of water was added to decompose the complex. The solid was separated by filtration and the ether layer was concentrated to about 500 ml. 200 ml of benzene was added to dehydrate the solution. Concentration was continued until a solid remained. The 1-benzyl-2-(5-methyl-3-isoxazolylcarbonyl)hydrazine was recrystallized from methanol, MP 105°C to 106℃.

References

Merck Index 5003 Kleeman & Engel p. 500 PDR p. 1490 OCDS Vol. 1 p. 233 (1977) & 2, 266 (1980) I.N. p. 527 REM p. 1095

Gardner, T.S., Lee, J. and Wenis, E.; U.S. Patent 2,908,688; October 13, 1959; assigned to Hoffmann-La Roche, Inc.

ISOCONAZOLE NITRATE

Therapeutic Function: Antibacterial, antifungal

Chemical Name: 1-[2,4-Dichloro- β -[(2,6-dichlorobenzyl)oxy] phenylethyl] imidazole nitrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24168-96-5; 27523-40-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Fazol	Fournier	France	1979
Travogen	Schering	W. Germany	1979
Travogen	Schering	Switz.	1980
Travogyn	Keymer	U.K.	1981
Adestan	Nihon Schering	Japan	1982
Travogen	Schering	Australia	-
Icaden	Schering	W. Germany	
Gyno-Travogen	Schering	W. Germany	_

Raw Materials

α-(2.4-Dichlorophenyl)imidazole-1-ethanol Sodium hydride 2.6-Dichlorobenzyl chloride

Manufacturing Process

To a stirred and refluxing solution of 40 parts of benzene and 35 parts of dimethylformamide (both solvents previously dried azeotropically) are added successively 1.6 parts of sodium hydride and 7.7 parts of α -(2,4-dichlorophenyl)imidazole-1-ethanol, (cooling on ice is necessary). After the addition is complete, stirring and refluxing is continued for 30 minutes. Then there are added 7.8 parts of 2,6-dichlorobenzyl chloride and the whole is stirred at reflux for another 3 hours. The reaction mixture is poured onto water and the product 1-[2,4-dichloro- β -(2,6dichlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed twice with water, dried, filtered and evaporated in vacuo. The base residue is dissolved in a mixture of acetone and disopropyl ether and to this solution is added an excess of concentrated nitric acid solution. The precipitated nitrate salt is filtered off and recrystallized from a mixture of methanol and diisopropyl ether, yielding 1-[2,4-dichloro-β-(2,6-dichlorobenzyloxy)phenethyl] imidazole nitrate; melting point 179°C.

References

Merck Index 5007 DFU 4 (11) 814 (1979) Kleeman & Engel p. 500 DOT 15 (12) 542 (1979) & 17 (9) 388 (1981) I.N. p. 528

Godefroi, E.F. and Heeres, J.; U.S. Patents 3,717,655; February 20, 1973 and 3,839,574; October 1, 1974; both assigned to Janssen Pharmaceutica NV

ISOFLURANE

Therapeutic Function: Inhalation anesthetic

Chemical Name: 1-Chloro-2,2,2-trifluoroethyl difluoromethyl ether

Common Name: -

Structural Formula:

нс-о-сн-ст

Chemical Abstracts Registry No.: 26675-46-7

Trade Name	Manufacturer	Country	Year Introduced
Forane	Ohio Medical	U.S.	1980
Aerrane	Ohio Medical	Switz.	1983
Aerrane	Ohio Medical	U.K.	1983

Raw Materials

1-Chloro-2,2,2-trifluoroethyl dichloromethyl ether Hydrogen fluoride

Manufacturing Process

A 1-liter 3-necked stainless steel flask was fitted with a copper "Dry Ice" cold finger condenser, a stainless steel stirring shaft and gland and a copper gas inlet tube. To the flask there was then added 50 g (0.23 mol) of CF₃CHClOCHCl₂ and 1.5 g of SbCl₅·HF gas was then slowly bubbled through the stirred mixture which was maintained at 0°C. The reaction was run until 0.35 mol of HCl was collected, as indicated by the titration of the effluent gas which was dissolved in water. Following the fluorination 26 g of material were recovered and determined to be 90% pure by vapor phase chromatography. Fractional distillation using a 30 x 0.5 cm column packed with glass helices gave the pure product, BP 48°C to 48.5°C.

References

Merck Index 5021 DOT 16 (11) 374 (1980) I.N. p. 528

REM p. 1042

Terrell, R.C.; U.S. Patent 3,535,388; October 20, 1970; assigned to Air Reduction Co., Inc.

ISOFLUROPHATE

Therapeutic Function: Cholinergic (ophthalmic)

Chemical Name: Phosphorofluoridic acid bis(1-methylethyl)ester

Common Name: Fluostigmine

Structural Formula:

Chemical Abstracts Registry No.: 55-91-4

Trade Name	Manufacturer	Country	Year Introduced
Floropryl	MSD	U.S.	1949
D.F.P.	Sumitomo	Japan	
D.F.P.	Boots	U.K.	_
D.F.P.	Winzer	W. Germany	
Diflupyl	Labaz	-	-
Fluopryi	MSD	_	_

Raw Materials

Isopropanol	Phosphorus trichloride
Chlorine	Sodium fluoride

Manufacturing Process

212 lb (3.54 lb-mols) of isopropanol containing less than 0.2 wt % of water was cooled with brine to -5°C in a jacketed reactor. 160 lb (1.16 lb-mols) of phosphorus trichloride was gradually added to the isopropanol with cooling and stirring during a period of 4 hours. The temperature of the reaction was not allowed to exceed 12°C and the system was maintained under slight negative pressure (about 700 mm) to remove undesirable vapors.

After completion of the addition, the mixture was stirred for ½ hour and then subjected to a pressure of 12 to 100 mm of mercury. Chlorine was then passed into the crude reaction product at a rate of 12 lb/hr, the temperature of the reaction being kept below 12°C by brine cooling. The end of the reaction was indicated by a temperature drop which occurred after a total of 122 lb of chlorine (1.72 lb-mols, 48% excess) was used.

To remove excess chlorine, hydrogen chloride and isopropyl chloride, the well-stirred mixture was subjected to a pressure of 12 to 100 mm of mercury for 2 hours. The temperature was gradually raised to 20°C during this time by passing steam into the jacket of the reactor, 10 gallons of benzene was then added and distilled off under reduced pressure, gradually raising the temperature of the reaction mixture to 30°C. The last traces of hydrogen chloride were removed by adding an additional 10 gallons of benzene which was distilled off under reduced pressure at reactor temperatures not exceeding 50°C. The total time required for the removal of the volatile acid components of the reaction mixture was 4 hours.

The mixture was then cooled to 20°C and 19 gallons of benzene was added. This was followed by the introduction of 123.5 lb (2.80 lb-mols) of dry powdered sodium fluoride (95% pure). The mixture was stirred and heated to the refluxing temperature in a period of 1 hour and held at this temperature (95° to 98°C) for 4 hours. The product obtained was cooled and filtered to yield a filter cake which was washed with three 5-gallon portions of benzene. The filtrate and washing were then combined and distilled under reduced pressure. There was obtained 158 lb (74% yield of theory based on PCl₃) of disopropyl fluorophosphate, BP 62°C at 9 mm and 46°C at 5 mm.

References

Merck Index 5022 Kleeman & Engel p. 501 PDR p. 1179 I.N. p. 437 REM p. 899

Hardy, E.E. and Kosolapoff, G.M.; U.S. Patent 2,409,039; October 8, 1946; assigned to Monsanto Chemical Company

ISOMETHEPTENE

Therapeutic Function: Muscle relaxant

Chemical Name: N,1,5-trimethyl-4-hexenylamine

Common Name: Methyl isooctenylamine

Structural Formula: NHCH₃

(CH₃)₂C=CHCH₃CH₂CHCH₃

Chemical Abstracts Registry No.: 503-01-5

Trade Name	Manufacturer	Country	Year Introduced
Octinum	Knoll	U.S.	1948
Cesal	Dainippon	Japan	_
Midrin	Carnrick	U.S.	_
Migralam	Bart	Ŭ.S.	_

Raw Materials

Methyl heptenone Methylamine

Manufacturing Process

Methyl heptenone dissolved in 75% alcohol is reduced with activated aluminum in the presence of methylamine to give isometheptene.

References

Merck Index 5031 Kleeman & Engel p. 502 PDR pp. 654, 781 I.N. p. 529 REM p. 891

Klavehn, W. and Wolf, A.; U.S. Patent 2,230,753; February 4, 1941; assigned to E. Bilhuber

Corporation, Germany

Klavehn, W. and Wolf, A.; U.S. Patent 2,230,754; February 4, 1941; assigned to E. Bilhuber Corporation, Germany

ISONIAZID

Therapeutic Function: Antitubercular

Chemical Name: 4-pyridinecarboxylic acid hydrazide

Common Name: Isonicotinic acid hydrazide

Structural Formula:

Chemical Abstracts Registry No.: 54-85-3

Trade Name	Manufacturer	Country	Year Introduced
Nyrazid	Squibb	U.S.	1952
Niconyl	Parke Davis	U.S.	1952
INH	Lilly	U.S.	1952
Tisin	USV Pharm	U.S.	1952
Pyrizidin	Warner Lambert	U.S.	1952
Cotinazin	Pfizer	U.S.	1952
Tyvid	Merrell National	U.S.	1952
Ditubin	Schering	U.S.	1952
Rimafon	Roche	U.S.	1952
Armazide	Armour	U.S.	1952
Anteben	Dainippon	Japan	_
Cedin	Lyssia	W. Germany	_
Cemidon	Gayoso Wellcome	Spain	-
Cin Vis	Vis	italy	-
Dardex	Liorente	Spain	-
Diazid	Nippon Shinyaku	Japan	-
Dinacrin	Winthrop-Stearns	Phillipines	-
Dow-Isoniazid	Dow	U.S.	-
Eutizon	Pliva	Yugoslavia	
Fimazid	Wassermann	Spain	-
Hidrafasa	Lifasa	Spain	
Hidranic	Efeyn	Spain	_
Hidrazinda	Jorba	Spain	-
Hiperazida	Martin Santos	Spain	***
Hycozid	Takeda	Japan	-
Hydra	Otsura	Japan	-
Hyzyd	Mallinckrodt	U.S.	_
Idrazil	Bracco	Italy	-
INH-Burgthal	Conzen	W. Germany	-
Iscotin	Dailichi	Japan	_
Isobicini	Maggioni	Italy	-
Iso-Dexter	Dexter	Spain	
Isotamine	I.C.N.	Canada	-
Isozide	I.C.N.	Canada	-
Kridan	Cidan	Spain	-
Lefos	Bicsa	Spain	-
Lubacida	Alfar	Spain	-
Neoteben	Bayer	W. Germany	-
Neo-Tizide	Aesca	Austria	-
Niadrin	Enzo	Ų.S.	_
Niazid	Sankyo	Japan	-
Nicazide	Wassermann	Italy	-
Niconyl	Parke Davis	U.S.	-
Nicotibina	Zambeletti	Italy	_
Nicotbine	Abic	Israel	_
Nicotubin	Leiras	Finland	-
Nicozid	Pìam	Italy	-
Nicozide	Premo	U.S.	_
Niplen	Tanabe	Japan	-
Panazid	Panray	U.S.	-
Pycazide	Smith & Nephew	U.K.	_
Pyrizidin	Nepera	U.S.	_
Rifamate	Merrell Dow	u.s.	-
Rimifon	Roche	France	-
Sumifon	Sumitomo	Japan	-
TB-Phlogin	Heyl	W. Germany	-

Trade Name	Manufacturer	Country	Year Introduced
Tebesium	Hefa-Frenon	W. Germany	_
Tebilon	Kwizda	Austria	_
Tibinide	Ferrosan	Denmark	_
Tibizina	Farm och im ica	Italy	_
Tubanox	Morgens	Spain	_
Tuberon	Shionogi	Japan	-
Tubilysin	Orion	Finland	-
Zidafimia	Santos	Spain	_
Zideluy	Miluy	Spain	-

4-Cyanopyridine Hydrazine hydrate

Manufacturing Process

4 parts of 4-cyanopyridine in 12 parts of water were reacted with 4 parts of hydrazine hydrate in the presence of 0.08 part of sodium hydroxide at 100°C under reflux for 7 hours. The product, after filtration and evaporation to dryness, was crystallized from ethanoi. The yield of isonicotinyl hydrazide amounted to 3.27 parts which is 62% of the theoretical.

References

Merck Index 5032 Kleeman & Engel p. 503 PDR pp. 798, 830, 1237

OCDS Vol. 1 p. 254 (1977) & 2, 266 (1980)

I.N. p. 529

REM p. 1214

Gasson, E.J.; U.S. Patent 2,830,994; April 15, 1958; assigned to The Distillers Company

Limited, Scotland

Fox, H.H.; U.S. Patent 2,596,069; May 6, 1952; assigned to Hoffmann-La Roche Inc.

ISOPROPAMIDE IODIDE

Therapeutic Function: Antispasmodic

Chemical Name: γ-(aminocarbonyl)-N-methyl-N,N-bis(1-methylethyl)-γ-phenylbenzene-

propanaminium iodide

Common Name: Diisopropylamino diphenyl butyramide methiodide

Structural Formula:

Chemical Abstracts Registry No.: 71-81-8

Trade Name	Manufacturer	Country	Year introduced
Darbid Priamide	SKF Delalande	U.S. France	1957 1959
Combid	SKF	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Dipramid	Valeas	Italy	
Marygin M	Sumitomo	Ja pan	_
Ornade	SKF	U.S.	_
Prochlor-Iso	Schein	U.S.	
Pro-Iso	Zenith	U.S.	_
Tyrimide	SKF	U.K.	

 γ -Diisopropylamino- α , α -diphenylbutyronitrile Sulfuric acid Methyl iodide

Manufacturing Process

 γ -Diisopropylamino- α,α -diphenylbutyronitrile (60 g) was added in several portions to a mixture of sulfuric acid (150 ml) and water (15 ml) and the solution was heated 31/2 hours on the steam bath and then poured on ice and made basic with NH₄OH. The γ-diisopropylamino- α,α -dipinenylbutyramide precipitated as a solid, which was taken up in methylene chloride from an aqueous slurry. The methylene chloride was separated and dried by filtering through anhydrous K2CO3. The solvent was removed by distillation, leaving the amide which was crystallized from Skellysolve B five times and found then to have MP 87.0° to 88.5°C.

 γ -Diisopropylamino- α , α -diphenylbutyramide in propanol was refluxed 4 hours in the presence of excess methyl iodide. Upon dilution of the solution with ethyl acetate (100 ml per 50 ml isopropyl alcohol) and cooling γ -diisopropylamino- α , α -diphenylbutyramide methiodide precipitated, was collected by filtration and recrystallized (9.0 g) by dissolving in a hot mixture of 100 ml isopropyl alcohol and 10 ml methanol and then diluting with 90 ml Skellysolve B, to give 8.3 g recrystallized product, MP 182° to 184°C.

References

Merck Index 5051 Kleeman & Engel p. 504 PDR pp. 1606, 1706, 1711, 1999 I.N. p. 531 REM p. 916

Speeter, M.E.; U.S. Patent 2,823,233; February 11, 1958; assigned to Bristol Laboratories Inc.

ISOPROTERENOL SULFATE

Therapeutic Function: Bronchodilator

Chemical Name: 4-[1-hydroxy-2-[(1-methylethyl)amino]ethyl]-1,2-benzenediol sulfate

Common Name: Isoprenaline sulfate; isopropylarterenol sulfate

Structural Formula:

(base)

Chemical Abstracts Registry No.: 299-95-6; 7683-59-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Isonorin	Smith Miller & Patch	U.S.	1949
Norisodrine	Abbott	U.S.	1950
Medihaler-Iso	Riker	U.S.	1956
Luf-Iso	Mallinckrodt	U.S.	1974
Aleudrin	Lewis	U.K.	_
Aludrin	Boehr, Ingel.	W. Germany	_
Asmadren	A.F.I.	Norway	_
Asthpul	Nippon Shoji	Japan	_
Bellasthman Medihaler	Kettelhack Riker	W. Germany	_
Dysphoesan	Nourypharma	Neth,	_
Ingelan	Boehr, Ingel.	W. Germany	_
Isomenyl	Kaken	Japan	-
Meterdos-Iso	West-Silten	U.K.	_
Nebair	Warner-Chilcott	U.S.	_
Novodrin	VEB Berlin-Chemie	E. Germany	_
Prenomiser	Fisons	U.K.	_
Propynalin	Ferrosan	Denmark	_
Proternol	Nikken	Japan	_
Sedansol "Iso"	Nippon Zoki	Japan	_
Vapo-N-lso	Fisons	U.S.	_

3,4-Dihydroxy-ω-chloroacetophenone Isopropylamine Hydrogen Sulfuric acid

Manufacturing Process

As described in U.S. Patent 2,308,232, 100 g 3,4-dihydroxy-ω-chloroacetophenone, 200 cc ethyl alcohol and 200 cc of about 50% aqueous isopropylamine solution are boiled during 3 hours on the water bath with the use of a reflux condenser, whereupon neutralizing with diluted sulfuric acid is carried out and the sulfate, obtained upon cooling, from alcohol of 50% is recrystallized; its MP is 245°C.

21 g 3,4-dihydroxy-ω-isopropylaminoacetophenone sulfate are hydrogenated with 50 cc methyl alcohol and 50 cc water, 0.5 g carbon and 3 cc palladium chloride solution of 2%. After 2 hours the hydrogen absorption comes to a standstill, after the theoretical quantity of hydrogen has been absorbed. After concentrating, the isopropylaminomethyl-(3,4-dihydroxyphenyl)carbinolsulfate crystallizes out. It has a MP of 180°C after refining.

References

Merck Index 5065 Kleeman & Engel p. 503 OCDS Vol. 1 p. 63 (1977); 2, 37, 107 (1980) & 3, 20 (1984) I.N. p. 531 REM p. 886 Scheuing, G. and Thoma, O.; U.S. Patent 2,308,232; January 12, 1943

Delmar, G.S. and Macallum, E.N.; U.S. Patent 2,715,141; August 9, 1955; assigned to Delmar Chemicals Limited, Canada

ISOSORBIDE DINITRATE

Therapeutic Function: Vasodilator (coronary)

Chemical Name: 1,4:3,6-Dianhydro-D-glucidol dinitrate

Common Name: Dinitrosorbide

Structural Formula:

Chemical Abstracts Registry No.: 87-33-2

Trade Name	Manufacturer	Country	Year Introduced
Isordil	Ives	U.S.	1959
Sorbitrate	Stuart	U.S.	1968
Isordil	Ayerst	U.K.	1971
Sorquad	Tutag	U . S.	1972
ISDN	Cooper	U.S.	1975
Iso-Bid	Geriatric Pharm.	U.S.	1975
Isomotic	Alcon	U. S .	1980
Dilatrate	Reed Carnrick	U.S.	1981
Cardio-10	Nicholas	W. Germany	
Cardis	lwaki	Japan	_
Carvanil	Banyu	Japan	
Cardopax	Erco	Denmark	_
Carvasin	Ayerst	Italy	
Cedocard	Tillotts	U.K.	_
Cordil	Disco	Israel	_
Cornilat	Galenika	Yugoslavia	
Coroviss	Boehr, Mann.	W. Germany	_
Difutrat	Srbolek	Yugoslavia	_
Dilatrate	Reed & Carnrick	U.S.	_
Dìretan	Ono	Japan	_
Duranitrate	Durachemie	W. Germany	_
Isobid	Geriatric	U.S.	
Isocardide	Sam-On	Israel	_
Iso-D	Dunhall	U.S.	
isoket	Gebro	Austria	-
Isomack	Mack	W. Germany	-
Isopuren	Klinge	W. Germany	-
Isordii	Wyeth	U.S.	-
isotrate	Hauck	U.S.	-
Laserdil	Laser	U.S.	-
Marrolingual	Pohl-Boskamp	W. Germany	_
Maycor	Parke-Davis	W. Germany	
Metonitron	Petazon	Switz,	_
Nitorol R	Eisai	Japan	
Nitroret	Hishiyama	Japan	
Nitrosit	Pharmacal	Finland	-
Nitrosorbide	Lusofarmaco	Italy	_
Nitro-Tablinen	Sanorania	W. Germany	
Nosim	Richet	Argentina	-
Risordan	Theraplix	France	_
Soni-Slo	Lipha	U.K.	_
Sorbangil	Kabi-Vitrum	Sweden	_
Sorbid	I.E. Kimya Evi	Turkey	-

Trade Name	Manufacturer	Country	Year Introduced
Tinidil	Pliva	Yugoslavia	_
Vascardin	Nicholas	U.K.	_

1.4:3.6-Dianhydro-D-glucitol Nitric acid

Manufacturing Process

An aqueous syrup of 1,4:3,6-dianhydro-D-glucitol is slowly added to a cooled mixture of HNO₃ and H₂SO₄. After standing a few minutes the mixture is poured into cold water and the precipitated product is collected and recrystallized from ethanol.

References

Merck Index 5074 Kleeman & Engel p. 505

PDR pp. 830, 905, 928, 993, 1442, 1606, 1784, 1951, 1999

I.N. p. 533

REM p. 853

Cordes, G., Munch, U. and Giesselmann, E.; U.S. Patent 4,156,736; May 29, 1979; assigned to Sanol Schwarz-Monheim G.m.b.H. (W. Germany)

ISOTHIPENDYL HCI

Therapeutic Function: Antihistaminic

Chemical Name: 10-(2-Dimethylamino-2-methylethyl)-10H-pyrido[3,2-b] [1,4] benzothiazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1225-60-1; 482-15-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Theruhistin	Ayerst	U.S.	1957
Andantol	Gerda	France	1957
Aczen NS	Kanebo	Japan	
Adantol	Imidas	Brazil	_
Andanton	Lacer	Spain	_
Nilergex	I.C.I.	U.K.	-
Thiodantol	Teva	Israel	_

Raw Materials

Phenylpyridylamine Sodium amide Dimethylaminoisopropyl chloride Sulfur Hydrogen chloride

Manufacturing Process

85 parts of phenylpyridyl amine, 21 parts of powdered sulfur and 1.7 parts of iodine were heated to 275°C for two hours. Evolution of hydrogen sulfide began when the mixture reached a temperature of 250°C and became vigorous when it reached 275°C. Such evolution of hydrogen sulfide diminished after about one hour at 275°C. A light oil was distilled from the reaction mixture under vacuum (pressure = 2–3 mm Hg). This oil which contained phenyl-pyridyl amine in addition to the thiophenylpyridyl amine was then treated at boiling temperature with approximately the theoretical amount of 2–3 normal HCl until complete solution resulted with formation of the HCl salts of the amines. The solution was then treated with 1 to 2% (based upon the substance mixture) of active carbon and then filtered hot. The nitrate was then cooled to 0°C whereupon the thiophenylpyridyl amine hydrochloride crystallized out while the phenylpyridyl amine hydrochloride was filtered off and suspended in water and the pH adjusted with half concentrated ammonia to 8. The thiophenylpyridyl amine set free was filtered off and dried. It was in the form of gold yellow needles and had a melting point of 114°C to 115°C.

40 parts of thiophenylpyridyl amine were dissolved in 200 parts of water free toluene. After the addition of 16 parts of soda amide, the mixture was refluxed for 1½ hours. Thereafter, 28 parts of dimethylaminoisopropyl chloride in 30 parts of water free toluene were dropped in and the temperature maintained at 20°C to 25°C for 30 minutes. Thereafter, the mixture was heated at 60°C for 30 minutes and subsequently refluxed for 20 minutes. Water and hydrochloride acid were then added to the reaction mixture and this mixture rendered alkaline with NaOH and then the alkalized mixture shaken out with ether. The dimethylaminoisopropyl-N9-thiophenylpyridyl amine base thus obtained was vacuum distilled. It was then converted to hydrochloride salt. The monohydrochloride salt is almost white in color and melts at 213°C to 216°C. The yield was almost 100% of the theoretical.

References

Merck Index 5077 Kleeman & Engel p. 505 OCDS Vol. 1 p. 430 (1977) I.N. p. 534

Schuler, W.A. and Klebe, H.; U.S. Patent 2,974,139; March 7, 1961; assigned to Degussa (W. Germany)

ISOXICAM

Therapeutic Function: Antiinflammatory

Chemical Name: 4-Hydroxy-3-(5-methyl-3-isoxazolocarbamyl)-2-methyl-2H-1,2-benzo-

thiazine 1,1-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34552-84-6

Trade Name	Manufacturer	Country	Year Introduced
Pacyl	Warner-Lambert	Switz.	1983
Pacyl	Adenylchemie	W. Germany	1983
Maxicam	Parke Davis	-	_

- 3-Carbethoxy-4-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide
- 3-Amino-5-methyl-isoxazole

Manufacturing Process

A mixture of 40.5 g (0.15 mol) of 3-carbethoxy-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide, 20.6 g (0.21 mol) of 3-amino-5-methylisoxazole, and 2,500 ml of xylene was refluxed for 24 hours in a Soxhlet apparatus, the thimble of which contained 60 g of Linde type 4A molecular sieve. The mixture was cooled to 25°C and the resulting crystalline precipitate was collected and washed with ether to give 44 g of crude product. Recrystallization from 1,600 ml of 1,4-dioxan gave 34.7 g of material, MP 265°C to 271°C dec.

References

I.N. p. 534

Merck Index 5085 DFU 1 (3) 123 (1976) OCDS Vol. 2 p. 394 (1980) DOT 19 (2) 119 (1983) & 19 (7) 414 (1983)

Zinnes, H., Schwartz, M.L. and Shavel, J. Jr.; U.S. Patent 3,787,324; January 22, 1974; assigned to Warner-Lambert Co.

ISOXSUPRINE HYDROCHLORIDE

Therapeutic Function: Vasodilator

Chemical Name: 4-hydroxy-α-[1-[(1-methyl-2-phenoxyethyl)amino] ethyl] benzenemethanol

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 579-56-6; 395-28-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Duvadilan	Duphar	France	1958
Vasodilan	Mead Johnson	U.S.	1959
Cardilan	Ferrosan	Denmark	-
Defencin	Bristol	U.K.	
Isokulin	Toho Iyaku	Japan	_
Isolait	Elder	U.S.	
Largiven	Bristol	Italy	_
Suprilent	Duphar	Belgium	_
Synzedrin	Teisan	Japan	·

Trade Name	Manufacturer	Country	Year Introduced
Trophodilan	Duphar	France	-
Vahodilan	Morita	Japan	_
Vascoprin	Guidotti	italy	_
Vasodilene	Chiesi	Italy	-
Vasolan	Disco	Israel	-
Vasoplex	Frika	Austria	-
Vasosuprina	Lusofarmaco	Italy	-
Xuprin	Duphar	Belgium	_

1-Phenoxy-2-aminopropane 1-(4'-Benzyloxyphenyl)-2-bromopropanone-1 Hydrogen

Manufacturing Process

To a solution of 30.7 g (0.203 mol) of 1-phenoxy-2-aminopropane in 150 ml of ethanol there was added 31.9 g (0.100 mol) of 1-(4'-benzyloxyphenyl)-2-bromopropanone-1. The mixture was heated to boiling temperature and the solution was then refluxed in a reflux condenser for 3 hours. Most of the ethanol was then distilled off in vacuo. Then to the residue there was added about 150 ml of diethyl ether. The hydrogen bromide salt of 1-phenoxy-2-aminopropane was filtered off and washed with diethyl ether.

The collected ethereal filtrates were acidified with 50 ml of 4 N hydrochloric acid and this solution was stirred vigorously. The hydrochloride of 1-(4'-benzyloxyphenyl)-2-(1'-methyl-2-phenoxy-ethylamino)propanone-1 precipitated out, was filtered off, washed with water and then with diethyl ether. Then this substance was dried in vacuo. The yield was 37.7 g, i.e., 89% of the theoretically possible yield, calculated on 1-(4'-benzyloxyphenyl)-2-bromine propanone-1. This substance had a light yellow color and melted at 197° to 198°C, while decomposing.

Then 21.89 g of the hydrochloride salt was dissolved in 600 ml of 80% aqueous ethanol. With the addition of a palladium carbon catalyst, this solution was hydrogenated at room temperature under a hydrogen pressure of about 1.1 atmospheres. After 2 mols hydrogen had been absorbed, the catalyst was filtered off and the filtrate was evaporated in vacuo until crystallization occurred. Then the crystalls were dissolved by heating in the smallest possible quantity of water and after cooling, the crystallized substance was filtered off, washed with water and dried in vacuo. The yield was 6.80 g, i.e., 39% of the theoretically possible yield. The resultant product recrystallized from water melted at 203° to 204°C.

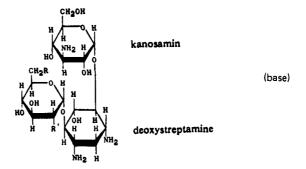
References

Merck Index 5086 Kleeman & Engel p. 506 PDR pp. 830, 993, 1129, 1569, 1606, 1999 OCDS Vol. 1 p. 69 (1977) I.N. p. 534 REM p. 892

Moed, H.D.; U.S. Patent 3,056,836; October 2, 1962; assigned to North American Philips Company

K

KANAMYCIN SULFATE


Therapeutic Function: Antibacterial

Chemical Name: 0-3-amino-3-deoxy- α -D-glucopyranosyl- $(1\rightarrow 6)$ -0-[6-amino-6-deoxy- α -D-glucopyranosyl- $(1\rightarrow 6)$ -0- $(1\rightarrow 6)$

glucopyranosyl-(1→4)-2-deoxy-D-streptamine sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 25389-94-0; 8063-07-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Kantrex	Bristol	U.S.	1958
Kanamycine	Bristol	France	1959
Kanabristol	Bristol	W. Germany	1969
Klebcil	Beecham	U.S.	1979
Enterokanacin	Labif	Italy	_
Kamycine	Bristol	France	_
Kanabiol	Osfa	Italy	_
Kanabiot	Galepharma Iberica	Spain	
Kanacet	Boniscontro-Gazzone	Italy	_
Kanacillin	Banyu	Japan	-
Kanacyclin	Banyu	Japan	_
Kanacyn	Continental Pharma.	Belgium	_
Kanafil	Farmila	Italy	_
Kanafuracin	Fujita	Japan	_
Kanahidro	Medical	Spain	_
Kanamicina Normon	Normon	Spain	_
Kanamycin	Ferosan	Denmark	•••
Kanamytrex	Basotherm	W. Germany	_
Kanapiam	Piam	Italy	_
Kanaqua	Andromaco	Spain	_
Kanasig	Sigma	Australia	_

Trade Name	Manufacturer	Country	Year Introduced
Kanatrol	Lusofarmaco	Italy	_
Kanescin	Torlan	Spain	
Kano	Pierrel	Italy	_
Keimicina	Robin	Italy	_
Koptin	Chinoin	Mexico	_
Ophtalmokalixan	Bristol	France	_
Orakanamicil	Merifarma	Italy	
Otokalixan	Bristol	France	_
Visiokan	S.I.F.I.	Italy	

Bacterium Streptomyces kanamyceticus Soybean meal Dextrin

Manufacturing Process

As described in U.S. Patent 2,931,798, Streptomyces kanamyceticus (K2-J) was first cultured in shake flasks in the following media: (a) 0.75% meat extract, 0.75% peptone, 0.3% NaCl, with 1.0% of starch, dextrin, maltose, glucose, lactose, sucrose or glycerol; or (b) 2.0% soybean meal, 0.05% KCI, 0.05% MgSO₄·7H₂O, 0.5% NaCI, 0.2% NaNO₃, with 1.0% of starch, dextrin, maltose, glucose, lactose, sucrose or glycerol. The initial pH of all media was adjusted to 7.0. After 24 to 48 hours shaking in some cases the pH decreased to about 6.0 to 6.8, but from 72 to 120 hours the pH rose and became 7.5 to 8.6. The production of kanamycin was apparent after 48 hours and, depending on the media; the maximum production was found after 72 to 120 hours.

The yield was highest with starch or dextrin, intermediate and about the same with sucrose, glucose, maltose and lactose and poorest with glycerol. Kanamycin was produced by media containing soybean meal, peanut meal, cottonseed meal, corn steep liquor, peptone, yeast extract or meat extract, with or without sodium nitrate. Commercially available soybean meal was recognized to be one of the best nitrogen sources. The addition of corn steep liquor, peptone, yeast extract or nitrate to the soybean meal promoted the production of kanamycin.

The brownish white kanamycin (5 g) was dissolved in 50 ml of 60% aqueous methanol, insoluble material was removed and to the filtrate 40 ml of 60% agueous methanol containing 2,000 mg of ammonium sulfate was added, and the precipitated kanamycin sulfate was collected, washed with 50 ml of 80% aqueous methanol, and dried. Thus, 4.5 g of kanamycin sulfate was obtained as a light brownish powder.

References

Merck Index 5118 Kleeman & Engel p. 508 PDR p. 698 I.N. p. 539 REM p. 1181

Umezawa, H., Maeda, K. and Ueda, M.; U.S. Patent 2,931,798; April 5, 1960

Johnson, D.A., Hardcastle, G.A., Jr. and Perron, Y.G.; U.S. Patent 2,936,307; May 10, 1960; assigned to Bristol-Myers Company

Purification:

Johnson, D.A. and Harcastle, G.A., Jr.; U.S. Patent 2,967,177; January 3, 1961; assigned to Bristol-Myers Company

Separation Process:

Rothrock, J.W. and Putter, I.; U.S. Patent 3,032,547; May 1, 1962; assigned to Merck & Co., Inc.

KEBUZONE

Therapeutic Function: Antirheumatic

Chemical Name: 4-(3-Oxobutyl)-1,2-diphenyl-3,5-pyrazolidinedione

Common Name: Ketophenylbutazone

Structural Formule:

Chemical Abstracts Registry No.: 853-34-9

Trade Neme	Manufacturer	Country	Year Introduced
Chebutan	Bioindustria	Italy	1961
Phloguron	Steiner	W. Germany	1976
Chetazolidine	Zeria	Japan	_
Chetopir	Sidus	Italy	
Chetosol	Aristochimica	Italy	_
Copirene	Marxer	Italy	_
Ejor	Elea	Argentina	_
Hichillos	Kotani	Japan	
Kebuzon	Steiner	W. Germany	_
Kentan-S	Sawai	Japan	
Ketazon	Kyowa	Japan	_
Ketazone	Spofa	Czechoslovakia	_
Ketobutan	Santen	Japan	_
Ketobutane	Yamaga ta	Japan	
Ketobutazone	Toho	Japan	_
Ketofen	Francia	Italy	
Ketophezon	Kissei	Japan	_
Neo-Panalgy l	Italsuisse	Italy	_
Neuphenyl	Ohta	Japan	_
Pecnon	Sanken	Japan	_
Reumo Campil	Lopez-Brea	Spain	_
Vintop	Maruro	Japan	-

Raw Meterials

Diethyl malonate Methyl vinyl ketone Ethylene glycol Sodium ethoxide Hydrazobenzene Acetone

Manufacturing Process

(a) 3,3-ethylene dioxybutyl malonic acid diethyl ester: Diethylmalonate is reacted with methyl vinyl ketone and the resulting oxobutyl diethylmalonate is reacted with ethylene glycol.

(b) 1,2-diphenyl-4-(3',3'-ethylene dioxybutyl)3,5-dioxopyrazolidine: 274 parts of (3,3ethylene dioxybutyl)-malonic acid diethyl ester are dissolved in 100 parts by volume of abs. benzene and 57 parts of sodium ethylate and 184 parts of hydrazobenzene are added. Heat is generated. The reaction mass is boiled for 15 hours under reflux. After cooling, it is poured into water, separated and the aqueous part is washed twice with benzene. The benzene solutions are washed three times with 2N sodium carbonate solution and the unified aqueous solutions are acidified with 2N hydrochloric acid. The 1,2-phenyl-4-(3',3'-ethylene dioxybutyl)-3,5-dioxopyrazolidine which precipitates can be recrystallized from alcohol. Melting point 165°C to 167°C.

(c) 1,2-diphenyl-4-(3'-oxobutyl)-3,5-dioxopyrazolidine: 36.6 parts of 1,2-diphenyl-4-(3',3'ethylene dioxybutyl)-3.5-dioxopyrazolidine in 750 parts by volume of acetone are boiled under reflux for 18 hours with 0.35 part of p-toluene sulfonic acid. The solution is then filtered, 1,500 parts of water are added and the whole is allowed to stand for 24 hours at 5°C. The 1,2-diphenyl-4-(3'-oxobutyl)-3,5-dioxopyrazolidine which precipitates is filtered off under suction and washed with 50% acetone. Melting point from alcohol/water mixture: 115,5°C to 116.5°C. Sometimes a crystal form is obtained which melts at 127.5°C to 128.5°C.

References

Merck Index 5125 Kleeman & Engel p. 509

I.N. p. 540

Denss, R., Pfister, R. and Hafliger, F.; U.S. Patent 2,910,481; October 27, 1959; assiged to Geigy Chemical Corp.

KETAMINE HYDROCHLORIDE

Therapeutic Function: Anesthetic

Chemical Name: 2-(o-chlorophenyl)-2-(methylamino)-cyclohexanone hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1867-66-9; 6740-88-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ketanest	Parke Davis	W. Germany	1969
Ketanest	Parke Davis	U.K.	1970
Ketalar	Parke Davis	U.S.	1970
Ketalar	Sankyo	Japan	1970
Ketalar	Parke Davis	France	1970
Ketaject	Bristol	U.S.	1970
Ketalar	Parke Davis	Italy	1972

Raw Materials

Magnesium Cyclopentyl bromide Bromine o-Chlorobenzonitrile Methylamine

Manufacturing Process

The 1-hydroxycyclopentyl-(o-chlorophenyl)-ketone N-methylimine used as an intermediate is prepared as follows. To the Grignard reagent prepared from 119.0 g of cyclopentyl

bromide and 19.4 g of magnesium is added 55.2 g of o-chlorobenzonitrile. The reaction mixture is stirred for 3 days and thereafter hydrolyzed in the usual manner. From the hydrolysis there is obtained o-chlorophenylcyclopentylketone, BP 96° to 97°C (0.3 mm), n_D^{25} 1.5452. To 21.0 g of the ketone is added 10.0 g of bromine in 80 ml of carbon tetrachloride.

1-Bromocyclopentyl-(o-chlorophenyl)-ketone, BP 111° to 114°C (0.1 mm) is isolated in the usual manner. Since it is unstable, it must be used immediately. The bromoketone (29.0 g) is dissolved in 50 ml of liquid methylamine. After one hour, the excess liquid methylamine is allowed to evaporate. The organic residue is dissolved in pentane, and upon evaporation of the solvent, 1-hydroxycyclopentyl-(o-chlorophenyl)-ketone N-methylimine, MP 62°C, is isolated.

1-Hydroxycyclopentyl-(o-chlorophenyl)-ketone N-methylimine (2.0 g) is dissolved in 15 ml of Decalin and refluxed for 2½ hours. After evaporation of the Decalin under reduced pressure, the residue is extracted with dilute hydrochloric acid, the solution treated with decolorizing charcoal, and the resulting acidic solution is made basic. The liberated product, 2-methylamino-2-(o-chlorophenyl)-cyclohexanone, after crystallization from pentaneether, has MP 92° to 93°C. The hydrochloride of this compound has MP 262° to 263°C.

References

Merck Index 5133 Kleeman & Engel p. 510 PDR p. 1356 OCDS Vol. 1 p. 57 (1977) & 2, 16 (1980) DOT 2 (4) 152 (1966): 6 (2) 42 (1970) & 2, 16 (1980)

I.N. p. 542 REM p. 1045

Stevens, C.L.; U.S. Patent 3,254,124; May 31, 1966; assigned to Parke, Davis and Company

KETAZOLAM

Therapeutic Function: Antianxiety

Chemical Name: 11-Chloro-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]-oxazino-[3,2-d] [1,4] benzodiazepine-4,7 (6H)-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27223-35-4

Trade Name	Manufacturer	Country	Year Introduced
Anxon	Beecham	U.K.	1980
Solatran	Beecham	Switz.	1980
Solatran	Beecham	W. Germany	1980

Trade Name	Manufacturer	Country	Year Introduced
Unakalm	Upjohn	France	1981
Ansietin	Exa	Argentina	_
Contamex	Beecham-Wulfing	W. Germany	
Loftran	Beecham	_	-

2-(2-Amino-N-methylacetamido)-5-chlorobenzophenone Diketene

Manufacturing Process

A solution of 0.7 g of 2-(2-amino-N-methylacetamido)-5-chlorobenzophenone in 10 ml of a 50% solution (by weight) of diketene in acetone is refluxed for 3 hours and then evaporated to give a brown oil. The oil is chromatographed on 200 g of silica gel using a 1:1 (by volume) mixture of ethyl acetate cyclohexane; 25 ml fractions are collected. Fractions 11-14 are combined, mixed with chloroform, evaporated and triturated with ether to give 0.337 g of 11chloro-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3] oxazino[3,2-d] [1,4] benzodiazepine-4,7(6H)-dione as a pale yellow solid, MP 174°C to 176°C.

References

Merck Index 5134 DFU 1 (6) 293 (1976) OCDS Vol. 1 p. 369 (1977) DOT 16 (9) 293 (1980) I.N. p. 542

Szmuszkoviez, J.; U.S. Patent 3,575,965; April 20, 1971; assigned to The Upjohn Co.

KETOCONAZOLE

Therapeutic Function: Antifungal

Chemical Name: 1-Acetyl-4-[4-[[2-(2,4-dichlorophenyl)-2(1H-imidazol-1-ylmethyl)-1,3-di-

oxolan-4-vi] methoxy] phenyl] piperazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 65277-42-1

Trade Name	Manufacturer	Country	Year Introduced
Nizoral	Janssen	U.\$.	1981
Nizoral	Janssen	W. Germany	1981
Nizoral	Janssen	Switz.	1981

Trade Name	Manufacturer	Country	Year Introduced
Nizoral	Janssen	U.K.	1981
Nizoral	Janssen-Le Brun	France	1983
Nizoral	Janssen	Italy	1983
Ketazol	Exa	Argentina	_

4-(1-Piperazinyl)phenol dihydrobromide Acetic anhydride cis-2-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl methyl methane sulfonate

Manufacturing Process

- (A) A mixture of 33.8 parts of 4-(1-piperazinyl)phenol dihydrobromide, 11,2 parts of acetic acid anhydride, 42 parts of potassium carbonate and 300 parts of 1,4-dioxane is stirred and refluxed for 3 days. The reaction mixture is filtered and the filtrate is evaporated. The solid residue is stirred in water and sodium hydrogen carbonate is added. The whole is stirred for 30 minutes. The precipitated product is filtered off and dissolved in a diluted hydrochloric acid solution. The solution is extracted with trichloromethane. The acid aqueous phase is separated and neutralized with ammonium hydroxide. The product is filtered off and crystallized from ethanol, yielding 5.7 parts of 1-acetyl 4-(4-hydroxyphenyl)piperazine; MP 181.3°C.
- (B) A mixture of 2.4 parts of 1-acetyl 4-(4-hydroxyphenyl)piperazine, 0.4 part of sodium hydride dispersion 78%; 75 parts of dimethylsulfoxide and 22.5 parts of benzene is stirred for one hour at 40°C. Then there are added 4.2 parts of cis-2-(2,4-dichlorophenyl)-2-(1Himidazol-1-ylmethyl)-1,3-dioxolan-4-ylmethyl methane sulfonate and stirring is continued overnight at 100°C. The reaction mixture is cooled and diluted with water. The product is extracted with 1,1'-oxybisethane. The extract is dried, filtered and evaporated. The residue is crystallized from 4-methyl-2-pentanone. The product is filtered off and dried, yielding 3.2 parts (59%) of cis-1-acetyl-4-[2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-ylmethoxy] phenyl] piperazine; MP 146°C.

References

Merck Index 5139 DFU 4 (7) 496 (1979) PDR p. 956 OCDS Vol. 3 p. 132 (1984) DOT 17 (9) 377 (1981) I.N. p. 542 REM p. 1229

Heeres, J., Backx, L.J.J. and Mostmans, J.H.; U.S. Patent 4,144,346; March 13, 1979; assigned to Janssen Pharmaceutica N.V. (Belgium)

KETOPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: m-benzoylhydratropic acid

Common Name: 2-(3-benzoviphenyl) propionic acid

Structural Formula:

Chemical Abstracts Registry No.: 22071-15-4

Trade Name	Manufacturer	Country	Year Introduced
Profenid	Specia	France	1973
Orudis	May & Baker	U.K.	1973
Alrheumin	Bayropharm	W. Germany	1975
Orudis	Farmitalia	Italy	1975
Keto	Sigurta	Italy	1976
Orudis	Hokuriku	Japan	1978
Capisten	Kissei	Japan	1978
Inflen	Ohta	Japan	1983
Zaditen	Sandoz	Japan	1983
Orudis	Leo Rhodia	Sweden	1983
Airheumat	Bayer	U.K.	_
Arcentai	Janovich	Spain	_
Dexal	Pulitzer	italy	_
Fastum	Manetti-Roberts	Italy	_
Flexen	Italfarmaco	Italy	_
Helenil	Roux-Ocefa	Argentina	
Iso-K	San Carlo	Italy	_
Kefenid	S.I.T.	Italy	_
Ketalgin	I.B.P.	Italy	
Ketofen	Nobel	Turkey	_
Keton	lisan	Turkey	***
Ketonal	Lek	Yugoslavia	_
Ketopron	Biosintetica	Brazil	-
Ketoprosil	Liberman	Spain	-
Ketoval	Valles Mestre	S pain	
Kevadon	Lemonier	Argentina	_
Knavon	Belupo	Yugoslavia	
Lertus	Exa	Argentina	_
Meprofen	A.G.I.P.S.	Italy	_
Niflam	Alkaloid	Yugosiavia	_
Profenid	Specia	France	-
Remauric	Lifepharma	Spain	_
Romin	Fako	Turkey	_
Salient	Biomedia Foscama	Italy	-
Sinketol	Italchemie	italy	-
Wasserprofen	Wassermann	Spain	_

Raw Materials

(3-Benzoylphenyl)acetonitrile	Sodium
Ethanol	Methyl
Sulfuric acid	•

Manufacturing Process

In an initial step, the sodium derivative of ethyl (3-benzoylphenyl)cyanoacetate is prepared as follows: (3-benzoylphenyl)acetonitrile (170 g) is dissolved in ethyl carbonate (900 g). There is added, over a period of 2 hours, a sodium ethoxide solution [prepared from sodium (17.7 g) and anhydrous ethanol (400 cc)], the reaction mixture being heated at

iodide

about 105° to 115°C and ethanol being continuously distilled. A product precipitates. Toluene (500 cc) is added, and then, after distillation of 50 cc of toluene, the product is allowed to cool. Diethyl ether (600 cc) is added and the mixture is stirred for 1 hour. The crystals which form are filtered off and washed with diethyl ether (600 cc) to give the sodium derivative of ethyl (3-benzoylphenyl)cyanoacetate (131 g).

Then, ethyl methyl(3-benzoylphenyl)cyanoacetate employed as an intermediate material is prepared as follows: The sodium derivative of ethyl (3-benzoylphenyl)cyanoacetate (131 g) is dissolved in anhydrous ethanol (2 liters). Methyl iodide (236 g) is added and the mixture is heated under reflux for 22 hours, and then concentrated to dryness under reduced pressure (10 mm Hg). The residue is taken up in methylene chloride (900 cc) and water (500 cc) and acidified with 4 N hydrochloric acid (10 cc). The methylene chloride solution is decanted, washed with water (400 cc) and dried over anhydrous sodium sulfate. The methylene chloride solution is filtered through a column containing alumina (1,500 g). Elution is effected with methylene chloride (6 liters), and the solvent is evaporated under reduced pressure (10 mm Hg) to give ethyl methyl(3-benzoylphenyl)cyanoacetate (48 g) in the form of an oil.

In the final production preparation, a mixture of ethyl methyl(3-benzoylphenyl)cyanoacetate (48 g), concentrated sulfuric acid (125 cc) and water (125 cc) is heated under reflux under nitrogen for 4 hours, and water (180 cc) is then added. The reaction mixture is extracted with diethyl ether (300 cc) and the ethereal solution is extracted with N sodium hydroxide (300 cc). The alkaline solution is treated with decolorizing charcoal (2 g) and then acidified with concentrated hydrochloric acid (40 cc). An oil separates out, which is extracted with methylene chloride (450 cc), washed with water (100 cc) and dried over anhydrous sodium sulfate. The product is concentrated to dryness under reduced pressure (20 mm Hg) to give a brown oil (33.8 g).

This oil is dissolved in benzene (100 cc) and chromatographed through silica (430 g). After elution with ethyl acetate, there is collected a fraction of 21 liters, which is concentrated to dryness under reduced pressure (20 mm Hg). The crystalline residue (32.5 g) is recrystallized from acetonitrile (100 cc) and a product (16.4 g), MP 94°C, is obtained. On recrystallization from a mixture of benzene (60 cc) and petroleum ether (200 cc), there is finally obtained 2-(3-benzovlphenyl)propionic acid (13.5 q), MP 94°C.

References

Merck Index 5142 Kleeman & Engel p. 511 OCDS Vol. 2 p. 64 (1980) DOT 9 (11) 469 (1973) & 19 (3) 160 (1983) I.N. p. 543 Farge, D., Messer, M.N. and Moutonnier, C.; U.S. Patent 3,641,127; February 8, 1972; assigned to Rhone-Poulenc S.A., France

KETOTIFEN

Therapeutic Function: Antiasthmatic, antihistaminic

Chemical Name: 4-(1-Methyl-4-piperidylidene)-4H-benzo[4,5] cyclohepta[1,2-b]-thiophen-

10(9H)-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34580-13-7

Trade Name	Manufacturer	Country	Year Introduced
Zaditen	Wander	Switz.	1978
Zaditen	Sandoz	W. Germany	1979
Zaditen	Sandoz	U.K.	1979
Zaditen	Sandoz	France	1980
Zaditen	Sandoz	Italy	1982
Zaditen	Sandoz	Japan	1983
Totifen	Chiesi	Italy	1983
Zasten	Sandoz	_	-

Raw Materials

4-Chloro-1-methylpiperidine
Magnesium
10-Methoxy-4H-benzo [4,5] cyclohepta [1,2-b] thiophen-4-one
Hydrogen chloride

Manufacturing Process

3.07 g of iodine-activated magnesium shavings are covered with a layer of 25 cc of tetrahydrofuran, and approximately 1/10 of a solution of 17.7 g of 4-chloro-1-methylpiperidine base in 70 cc of absolute tetrahydrofuran is added. The Grignard reaction is initiated by the addition of a few drops of 1,2-dibromoethane. The remaining 4-chloro-1-methylpiperidine solution is then added dropwise to the magnesium at such a rate that the reaction mixture boils continuously at reflux without external heating. Boiling at reflux is then continued for 1 hour. 15.3 g of 10-methoxy-4H-benzo[4,5] cyclohepta[1,2-+,] thiophen-4-one are subsequently added portionwise at 20°C, within 40 minutes, with slight cooling. After stirring at 20°C for 1½ hours, the reaction solution is poured on a mixture of 180 g of ice and 20 g of ammonium chloride. The free base is extracted with chloroform.

The chloroform solution is concentrated and the residue recrystallized from 270 cc of absolute ethanol. The pure 10-methoxy-4-(1-methyl-4-piperidyl)-4H-benzo[4,5] cyclohepta[1,2-b]-thiophen-4-ol base, having a melting point of 194°C to 196°C, is obtained in this manner. Microanalysis corresponds with the formula $C_{20}H_{23}NO_2S$.

A mixture of 3.4 g of 10-methoxy 4-(1-methyl-4-piperidyl) 4H-benzo [4,5] cyclohepta [1,2-b]-thiophen 4-ol base and 40 cc of 3 N hydrochloric acid is kept in a boiling water bath at 95°C to 100°C for 1 hour. The mixture is subsequently made alkaline with concentrated caustic soda solution at 20°C while cooling, and the free base is extracted with chloroform. The chloroform solution is concentrated, and the residue is recrystallized from ethanol/water 1:1. The pure 4-(1-methyl-4-piperidylidene) 4H-benzo [4,5] cyclohepta [1,2-b] thiophen-10(9H)-one base, having a melting point of 152°C to 153°C, is obtained in this manner.

References

Merck Index 5144 DFU 2 (2) 108 (1977) Kleeman & Engel p. 512 OCDS Vol. 3 p. 239 (1984) DOT 14 (8) 370 (1978) I.N. p. 543

Bourquin, J.P., Schwarb, G. and Waldvogel, E.; U.S. Patents 3,682,930; Aug. 8, 1972; 3,770,728; Nov. 6, 1973 and 3,960,894; June 1, 1976; all assigned to Sandoz, Ltd.

LABETALOL HYDROCHLORIDE

Therapeutic Function: α and β -Adrenergic blocker

Chemical Name: 2-Hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyi)amino] ethyl] benz-

amide hydrochloride

Common Name: Ibidomide

Structural Formula:

Chemical Abstracts Registry No.: 36894-69-6; 32780-64-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Trandate	Allen & Hanburys	U.K.	1977
Trandate	Glaxo	W. Germany	1977
Labetaloi	Duncan	Italy	1978
Trandate	Glaxo	Switz.	1979
Trandate	Glaxo	France	1980
Trandate	Glaxo	Japan	1983
Abetol	C.T.	Italy	_
Labelol	Elea	Argentina	
Lamitol	Pliva	Yugoslavia	-
Lolum	Farmochimica	Italy	_
Mitalolo	Ellem	Italy	_
Normodyne	Schering	U.S.	_
Presdate	Alfa Farm.	Italy	_

Raw Materials

5-Bromoacetylsalicylamide N-Benzyl-N-(1-methyl-3-phenylpropyl)amine Hydrogen

Manufacturing Process

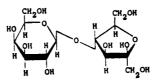
(a) 5-BromoacetyIsalicylamide (2.6 g), N-benzyI-N-(1-methyI-3-phenyIpropyI)amine (4.8 g) and methyl ethyl ketone (50 ml) were heated at reflux for 40 minutes. The solvent was removed and the residue was treated with benzene. The secondary amine hydrobromide was filtered off and discarded, and the filtrate was evaporated to dryness. The residue was treated with an excess of ethanolic hydrogen chloride when 5-[N-benzyI-N-(1-methyI-3-phenyIpropyI)-glycyI]-salicylamide hydrochloride (1.15 g) crystallized out, MP 139°C to 141°C.

(b) 5-[N-benzyl-N-(1-methyl-3-phenylpropyl)glycyl] -salicylamide hydrochloride (0.75 g), 10% mixture of PdO and PtO on carbon catalyst (0.1 g) and ethanol (20 ml) were shaken at room temperature and pressure with hydrogen until uptake ceased. The catalyst was filtered off and the filtrate evaporated to dryness. The residue was crystallized from ethanol to give 5-[1-hydroxy-2-(1-methyl-3-phenylpropyl)aminoethyl] salicylamide hydrochloride as a white solid (0.40 g), MP 188°C.

References

Merck Index 5166 DFU 1 (3) 125 (1976) Kleeman & Engel p. 513 PDR pp. 913, 1638 OCDS Vol. 3 p. 24 (1984) & 18 (8) 378 (1982) DOT 13 (11) 493 (1977) 1.N. p. 547 REM p. 904

Lunts, L.H.C. and Collin, D.T.; U.S. Patent 4,012,444; March 15, 1977; assigned to Allen & Hanburys Ltd. (U.K.)


LACTULOSE

Therapeutic Function: Laxative

Chemical Name: 4-O-β-D-galactopyranosyl-D-fructose

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4618-18-2

Trade Name	Manufacturer	Country	Year Introduced
Duphalac	Philips-Duphar	U.K.	1969
Bifiteral	Philips-Duphar	W. Germany	1971
Duphalac	Duphar	France	1972
Duphalac	Duphar	Italy	1973
Gatinar	Duphar	U.K.	1973
Lactulose	Nikken	Japan	1973
Cephulac	Merrell Dow	U.S.	1976
Duphalac	Philips-Roxane	U. S .	1977
Chronulac	Merrell Dow	U.S.	1979
Dia-Colon	Piam	Italy	_
Epalfen	Zambon	Italy	_
Laevilac	Wander	W. Germany	_
Laevolac	Laevosan	Austria	_
Monilac	Chugai	Japan	_

Raw Materials

Lactose Sodium aluminate

Manufacturing Process

105 g of lactose monohydrate were dissolved in 500 ml of water. 48 g of NaAlO₂ was dissolved in 100 ml of water and was then added to the lactose solution. The mixture was then diluted to one liter to provide a pH of 11.5. The reactant concentrations of 48 g of sodium aluminate and 105 g of lactose are equivalent to a mol ratio of two mols of aluminate to one mol of lactose. The mixture was then heated to 50°C and 100 ml aliquots were removed at periodic intervals to determine the level of conversion. The reaction was terminated after three hours by adding sufficient 30% HCl to lower the pH to 4.2. The pH was then raised to neutrality, i.e., 6.5 to 7.0, with ammonium hydroxideso as to completely precipitate insoluble aluminum hydroxide. The precipitate was then removed by vacuum filtration and the filtrate was analyzed for the presence of ketose sugar by chromatographic analysis. The chromatographic analysis of the filtrate confirmed that the main component of the filtrate was lactulose and not the monosaccharide ketose sugar, fructose.

References

Merck Index 5184 Kleeman & Engel p. 513 PDR p. 1224 I.N. p. 548 REM p. 814

Guth, J.H. and Tumerman, L.; U.S. Patent 3,546,206; December 8, 1970; assigned to Kraftco Corp.

LETOSTEINE

Therapeutic Function: Mycolytic

Chemical Name: 4-Carboxy thiazolidinyl-2-ethylmercapto-acetic acid ethyl ester

Common Name: -

Structural Formula: HOOC NH

Chemical Abstracts Registry No.: 53943-88-7

Trade Name	Menufacturer	Country	Year Introduced
Viscotiol	Carlo Erba	France	1979
Viscotiol	Carlo Erba	Switz.	1980
Viscotio	I.S.F.	Italy	1981

Raw Materials

Acrolein Thioglyolic acid Cysteine hydrochloride

Manufacturing Process

In an Erlenmeyer flask placed in an ice bath, and under a well-ventilated hood, a solution of 0.1 mol of acrolein in 100 ml of ether was introduced. With the aid of a bromine ampoule,

0.1 mol (≈11 ml) of the ethyl ester of thioglycolic acid containing 0.5 ml of triethylamine was added drop by drop.

One hour after completion of the addition, there was added 0.1 mol (15.6 g) of chlorhydrate of cysteine in alcoholic solution. The chlorhydrate of the expected derivative, which appeared in the form of a thick oil, was precipitated by addition of 0.1 mol (10 g) of potassium acetate in aqueous solution. The abundant precipitate obtained was filtered and washed in water and ether. The product was recrystallized in a minimum of absolute alcohol.

References

DFU 4 (10) 729 (1979) Kleeman & Engel p. 516 DOT 16 (4) 109 (1980) I.N. p. 553

Chodkiewicz, M.X.; U.S. Patent 4,032,534; June 28, 1977; assigned to Ferlus-Chimie SA

LEVAMISOLE HYDROCHLORIDE

Therapeutic Function: Antiinflammatory

Chemical Name: L-2,3,5,6-Tetrahydro-6-phenylimidazo [2,1-b] thiazole hydrochloride

Common Name: L-Tetramisole hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 16695-80-5; 14769-73-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Solaskil	Specia	France	1971
Ergamisol	Janssen	Italy	1978
Ascaryl	Abic	Israel	_
Meglum	Bago	Argentina	_
Niratic-Pur-On	Vet. Med. Handel	W. Germany	_
Tramisol	Lederle	U.S.	_
Vermisol	Andreu	Spain	_

Raw Materials

DL-2-Thio-1-phenyl-imidazolidine	Potassium hydroxide
1,2-Dibromoethane	Hydrogen chloride
d-10-Camphorsulfonic acid	Sodium hydroxide

Manufacturing Process

To a stirred and refluxed suspension of 17 parts of 1.2-dibromoethane, 7.8 parts of sodium hydrogen carbonate and 50 parts of 2-propanol is added a mixture of 3.4 parts of di-2-thio-1phenyl-imidazolidine, 9 parts of a 20% potassium hydroxide solution in 40 parts of 2-propanol over a period of about 1 hour. After the addition is complete, the whole is stirred and refluxed for an additional 3 hours. The reaction mixture is evaporated. To the residue are added 18 parts of a 15% potassium hydroxide solution. The whole is extracted with toluene. The extract is dried and evaporated. The oily residue is dissolved in acetone and gaseous hydrogen chloride is introduced into the solution. The precipitated solid salt is filtered off and recrystallized from 2-propanol, yielding dl-2,3,5,6-tetrahydro-6-phenyl-imidazo [2,1-b] thiazole hydrochloride; melting point 264°C to 266°C.

dl-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole hydrochloride, 188 g (0.785 mol), is suspended in a mixture of 500 ml of water and 500 ml of methylene chloride. The suspension is stirred mechanically while 20% sodium hydroxide solution is added until the solution is basic. Ice is added from time to time to keep the temperature below the boiling point of the methylene chloride. The methylene chloride layer is separated, washed with water, dried over potassium carbonate and evaporated. The oily residue crystallizes with the evolution of the heat when poured into a beaker containing 100 ml of ether. The free base is washed with ether. The yield of dl-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole is 151.4 g (0.746 mol), 94%. The product has a melting point of 90°C.

A solution of 204.3 g (1 mol) of dl-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole and 232.3 g (1 mol) of d-10-camphorsulfonic acid in 1,750 ml of chloroform is allowed to crystallize overnight at -28°C. The solvate is recovered by filtration and washed with ice cold chloroform (400 ml). The solvate is dried (decomposed) under nitrogen 7 hours and then in air overnight. The yield of d(+)6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole d-10-camphorsulfonate is 202.5 g (0.464 mol) 92.8%, melting point 139°C to 140°C [α]_D²⁵ + 82.6 (C = 16, H₂O).

A solution of 150 g (0.344 mol) of d(+)6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole, d-10-camphorsulfonate in water is treated with 15.5 g (0.378 mol) of 98% sodium hydroxide and the liberated base extracted with chloroform. The chloroform solution is washed with water followed by sodium chloride solution and dried over magnesium sulfate. Evaporation of the solvent left 72.1 g of residue which crystallized shortly. The free base hereby obtained has a melting point of 60°C to 61.5°C and an optical rotation $[\alpha]_D^{25} + 85.1$ (C = 10, CHCl₃).

The free base d(+)6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b] thiazole is dissolved in 112 ml of acetone and 178 ml of isopropanolic hydrogen chloride is added all at once. The hydrochloride crystallizes at once. After cooling to below 0°C, the salt is recovered by filtration and washed with acetone. The product weighs 75.2 g (0.312 mol), 91%, from the camphorsulfonate, melting point 227°C to 227.5°C [α]_D²⁵ + 123.1°C (C = 15, H₂O).

References

Merck Index 9055 DFU 4 (6) 420 (1979) Kleeman & Engel p. 517 DOT 8 (6) 225 (1972) & 16 (10) 327, 359 (1980) I.N. p. 554 REM p. 1156

Raeymaekers, A.H.M., Thienpont, D.C.I.C. and Demoen, P.J.A.W.; U.S. Patents 3,274,209; September 20, 1966 and 3,364,112; January 16, 1968; both assigned to Janssen Pharmaceutica NV

Bullock, M.W.; U.S. Patent 3,463,786; August 26, 1969; assigned to American Cyanamid Co. Dewar, R.A., Maier, V.E. and Ingram, M.A.; U.S. Patent 3,579,530; May 18, 1971; assigned to Imperial Chemical Industries of Australia and New Zealand Ltd.

Dewilde, F. and Frot, G.G.; U.S. Patent 3,646,051; February 29, 1972; assigned to Rhone-Poulenc SA

LEVODOPA

Therapeutic Function: Antiparkinsonism

Chemical Name: 3-hydroxy-L-tyrosine

Common Name: β-(3,4-dihydroxyphenyl)-α-alanine; 2-amino-3-(3,4-dihydroxyphenyl)pro-

panoic acid

Structural Formula:

Chemical Abstracts Registry No.: 59-92-7

Trade Name	Manufacturer	Country	Year Introduced
Larodopa	Roche	U.\$.	1970
Dopar	Norwich Eaton	U.S.	1970
Dopaidan	De Angeli	Italy	1970
Larodopa	Roche	W. Germany	1970
Larodopa	Roche	U.K.	1970
Larodopa	Roche	France	1970
Larodopa	Roche	Italy	1970
Brocadopa	Brocades	U.K.	1970
Levodopa	SKF	U.S.	1971
Bendopa	1.C.N.	U.S.	1971
Larodopa	Roche	Japan	1972
Biodopa	DDR Pharm	U.S.	-
Ceredopa	Merckie	W. Germany	
Cidandopa	Cidan	Spain	
Dehdopa	De Angeli	Brazil	_
Dopacin	I.C.N.	Brazil	_
Dopaflex	Egyt	Hungary	_
Dopaidan	De Angeli	Italy	
Dopalfher	Fher	Spain	_
Doparkin	Farmos	Finland	_
Doparkine	Armstrong	Argentina	_
Dopari	Kyowa	Japan	_
Dopasol	Daiichi	Japan	_
Dopason	Yurtoglu	Turkey	_
Dopaston	Sankyo	Japan	
Eldopar	Weifa	Norway	
Eldopatec	Labatec	Switz.	_
Eurodopa	Castejon	Spain	_
Levopa	Arco	Switz,	_
Maipedopa	Maipe	Spain	
Medidopa	Medica	Finland	_
Novedopa	Torlan	Spain	_
Parkidopa	Farmos	Finland	
Parmedin	Kwizda	Austria	_
Prodopa	Faulding	Australia	_
Syndopa	Sankyo	Japan	_
Weldopa	Smith & Nephew	U.K.	_

Raw Materials

Velvet beans Acetic acid

Manufacturing Process

A charge of 1,000 g of ground velvet beans was extracted with 9 liters of 1% aqueous

acetic acid at room temperature over a 20-hour period with occasional stirring during the first 4 hours. The liquor was decanted and the bean pulp slurry was vacuum filtered through a cake of acid-washed diatomaceous earth in a Buechner funnel. The decanted liquor was combined with the filtrate and concentrated under vacuum and a nitrogen atmosphere to a volume of 900 ml. After treating with acid-washed activated carbon, the concentrate was then filtered through acid-washed diatomaceous earth.

After concentrating the filtrate to approximately 400 ml, solids started crystallizing out at which time the filtrate was cooled by refrigerating at 5°C for several hours. Filtration gave 18.7 g of L-Dopa, MP 284° to 286°C (dec.); $[\alpha]_D$ 8.81° (1% solution in aqueous 4% HCI). The infrared spectrum and paper chromatography indicated very good L-Dopa according to U.S. Patent 3,253,023.

Various synthetic routes are also described by Kleeman & Engel.

References

Merck Index 5298 Kleeman & Engel p. 520 PDR pp. 1210, 1489 DOT 9 (6) 247 (1973) & 10 (9) 317, 332 (1974) I.N. p. 555 REM p. 930

Wysong, D.V.; U.S. Patent 3,253,023; May 24, 1966; assigned to The Dow Chemical Com-

Krieger, K.H., Lago, J. and Wantuck, J.A.; U.S. Patent 3,405,159; October 8, 1968; assigned to Merck & Co., Inc.

LEVOTHYROXINE SODIUM

Therapeutic Function: Thyroid hormone

Chemical Name: L-3,3',5,5'-Tetraiodothyronine sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55-03-8; 51-48-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Synthroid	Flint	U.S.	1953
Letter	Armour	U.S.	1965
Eltroxin	Glaxo	U.K.	***
Euthyrox	Merck	W. Germany	
Eutirox	Bracco	Italy	
Levaxin	Nyegaard	Norway	_
Levothyrox	Merck-Clevenot	France	***
Levotiron	Abdi Ibrahim	Turkey	_
Ro-Thyroxine	Robinson	U.S.	****

8	7	4

Trade Name	Manufacturer	Country	Year Introduced
Syntaroid	Travenol	U.S.	
Thevier	Glaxo	W. Germany	_
Thyradin-S	Teikoku Zoki	Japan	_
Thyraplex	Erco	Denmark	_
Thyrex	Sanabo	Austria	_

Raw Materials

N-Acetyl-L-diiodotyrosinamide	Acetic acid
Manganese sulfate	Hydrochloric acid
Sodium hydroxide	

Manufacturing Process

A 9.30 g portion of N-acetyl-L-diiodotyrosinamide was suspended in 100 ml of 0.05 M boric acid (H₃BO₃) and 100 ml of 95% ethanol, and the solid was dissolved by adjusting the pH to 10.5 with 2 N sodium hydroxide (NaOH). A 15% (by weight) portion of manganese sulfate monohydrate was added and the solution heated at 44°C under conditions of oxygenation while being agitated mechanically. After approximately 24 hours of incubation, the precipitated product was collected and separated from the catalyst, providing the amide of N-acetyl-L-thyroxine in 30.6% yield. On hydrolysis (removal of both amide functions), achieved by refluxing in glacial acetic acid-hydrochloric acid (approximately 2:1), L-thyroxine is obtained. It was isolated as the sodium salt, containing approximately 5 molecules of water of hydration.

References

Merck Index 5303 Kleeman & Engel p. 525 PDR p. 993 OCDS Vol. 1 p. 97 (1977) I.N. p. 558 REM p. 980

Anthony, P.Z. and Ginger, L.G.; U.S. Patent 2,889,364; June 2, 1959; assigned to Baxter Laboratories, Inc.

LIDOCAINE

Therapeutic Function: Local anesthetic, antiarrhythmic

Chemical Name: 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide

Common Name: Lignocaine

Structural Formula:

Chemical Abstracts Registry No.: 137-58-6; 73-78-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Xylocaine	Astra	U.S.	1949
Anestacon	Contai	U.S.	1967

Trade Name	Manufacturer	Country	Year Introduced
Octocaine	Novocol	U .S .	1980
Clinicaine	Johnson & Johnson	U.S.	1982
Anestacain	Farmos	Finland	_
Anestecidan	Cidan	Spain	_
Baylocaine	Bay	U.S.	
Cidancaina	Cidan	Spain	_
Cito-Optadren	Fischer	Switz.	
Dolicaine	Reid-Provident	U.S.	-
Dulicaine	Dulcis	Monte Carlo	
Duncaine	Duncan-Flockhart	U.K.	
Esracain	Hillel	Israel	-
Leotesin-N	Showa	Japan	-
Lida-Mental	Dome	U.S.	_
Lidocain	Bristoi	U.S.	_
Lidocard	Orion	Finland	-
Lidocaton	Pharmaton	Switz.	_
Lidocor	Gebro	Austria	_
Lido Pen	Survival Tech.	U.S.	
Lignane	Propan-Lipworth	S. Africa	_
Neo-Novutox	Braun	W. Germany	_
Ortodermina	Tiber	Italy	_
Qualigens	Qualipharma	Switz.	_
Rapidocaine	Sintetica	Switz.	_
Sedodent	Belupo	Yugoslavia	-
Xylanaest	Gebro	Austria	_
Xylesin	Amino	Switz.	_
Xylestesin	Espe	W. Germany	
Xylocard	Hassle	Sweden	_
Xylocitin	J enapharm	E. Germany	_
Xyloneural	Gebro	Austria	_
Xylonor	Septodont	France	
Xylotox	Willows-Francis	U.K.	-

Raw Materials

2.6-Xvlidine Chloroacetyl chloride Diethylamine

Manufacturing Process

One mol of 2,6-xylidine is dissolved in 800 ml glacial acetic acid. The mixture is cooled to 10°C, after which 1.1 mol chloracetyl chloride is added at one time. The mixture is stirred vigorously during a few moments after which 1,000 ml half-saturated sodium acetate solution, or other buffering or alkalizing substance, is added at one time. The reaction mixture is shaken during half an hour. The precipitate formed which consists of ω -chloro-2,6-dimethyl-acetanilide is filtered off, washed with water and dried. The product is sufficiently pure for further treatment. The yield amounts to 70 to 80% of the theoretical amount.

One mole of the chloracetyl xylidide thus prepared and 2.5 to 3 mols diethyl amine are dissolved in 1,000 ml dry benzene. The mixture is refluxed for 4 to 5 hours. The separated diethyl amine hydrochloride is filtered off. The benzene solution is shaken out two times with 3 N hydrochloric acid, the first time with 800 ml and the second time with 400 ml acid. To the combined acid extracts is added an approximately 30% solution of sodium hydroxide until the precipitate does not increase.

The precipitate, which sometimes is an oil, is taken up in ether. The ether solution is dried with anhydrous potassium carbonate after which the ether is driven off. The remain-

ing crude substance is purified by vacuum distillation. During the distillation practically the entire quantity of the substance is carried over within a temperature interval of 1° to 2°C. The yield approaches the theoretical amount, MP 68° to 69°C. BP 180° to 182°C at 4 mm Hg; 159° to 160°C at 2 mm Hg. (Procedure is from U.S. Patent 2,441,498.)

References

Merck Index 5310 DFU 8 (12) 1021 (1983) Kleeman & Engel p. 526 PDR pp. 607, 888, 1569

OCDS Vol. 1 p. 16 (1977); 2, 95, 449 (1980) & 3, 40 (1984)

I.N. p. 559 REM p. 1051

Löfgren, N.M. and Lundqvist, B.J.; U.S. Patent 2,441,498; May 11, 1948; assigned to AB Astra, Sweden

Brown, C.L.M. and Poole, A.; U.S. Patent 2,797,241; June 25, 1957

LIDOFLAZINE

Therapeutic Function: Vasodilator (coronary)

Chemical Name: 4-[4,4-Bis(4-fluorophenyl)butyl] -N-(2,6-dimethylphenyl)-1-piperazine-

acetamide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 3416-26-0

Trade Name	Manufacturer	Country	Year Introduced
Clinium	Janssen	W. Germany	1969
Corflazine	Cassenne	France	1972
Clinium	Janssen	Italy	1974
Clinium	Janssen	U.K.	1980
Anginin	Yurtoglu	Turkey	_
Clavidene	Corvi	Italy	_
Clinium	McNeil	U.S.	-
Klinium	Esteve	Spain	_
Klintab	Eczacibasi	Turkey	_

Raw Materials

1-[4,4-Di-4-fluorophenyl)butyl] piperazine N-(2-Chloroacetyl)-2.6-dimethylaniline

Manufacturing Process

A mixture of 6.6 parts 1-[4.4-di-(4-fluoro-phenyl)butyl] -piperazine, 4.33 parts N-(2-chloroacetyl)-2,6-dimethyl-eniline, 3.2 parts sodium carbonate, a few crystals of potassium iodide in 200 parts 4-methyl-2-pentanone is stirred and refluxed for 70 hours. After cooling there are added 70 parts water. The organic layer is separated, dried over potassium carbonate, filtered and evaporated. The oily residue is dissolved in 80 parts disopropyl ether and the solution is filtered hot. After cooling the filtrate at 0°C, the formed solid is filtered off and recystallized from 80 parts ether, yielding 1-[4,4-di-(4-fluoro-phenyl)butyl] -4-[(2,6-dimethylanilino-carbonyl)-methyl]-piperazine; MP 159°C to 161°C.

References

Merck Index 5311 Kleeman & Engel p. 526 OCDS Vol. 1 p. 279 (1977)

DOT 2 (4) 118 (1966) & 6 (1) 21 (1970)

I.N. p. 560

Hermans, H.K.F. and Schaper, W.K.A.; U.S. Patent 3 267,164; August 16, 1966; assigned to Janssen Pharmaceutica N.V. (Belgium)

LINCOMYCIN

Therapeutic Function: Antibacterial

Chemical Name: Methyl 6,8-dideoxy-6-(1-methyl-4-propyl-2-pyrrolidinecarboxamido)-

1-thio-D-erythro-D-galacto-octopyranoside

Common Name: Lincolnensin

Structural Formula:

Chemical Abstracts Registry No.: 154-21-2; 859-18-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Lincocin	Up john	U.K.	1964
Lincocin	Upjohn	U.S.	1965
Lincocine	Upjohn	France	1966
Albiotic	Upjohn	W. Germany	1966
Lincocin	Upjohn	Italy	1966
Cillimicina	Albert Farma	Spain	-
Cillimycin	Hoechst	W. Germany	-
Lincolcina	Atral	Portugal	_
Mycivin	Boots	U.K.	_

Raw Materials

Bacterium Streptomyces lincolnensis Nutrient medium

Manufacturing Process

As described in U.S. Patent 3,086,912, the process comprises cultivating Streptomyces lincolnensis var. lincolnensis in an aqueous nutrient medium containing a source of assimilable carbohydrate and assimilable nitrogen under aerobic conditions until substantial activity is imparted to the medium by production of lincolnensin and isolating the lincolnensin so produced.

References

Merck Index 5328 Kleeman & Engel p. 527 PDR p. 1847 DOT 2 (2) 62 (1966) I.N. p. 561 **REM p. 1212**

Bergy, M.E., Herr, R.R. and Mason, D.J.; U.S. Patent 3,086,912; April 23, 1963; assigned to The Upjohn Company

Bergy, M.E., Herr, R.R. and Mason, D.J.; U.S. Patent 3,155,580; November 3, 1964; assigned to The Upjohn Company

Argoudelis, A.D., Bannister, B., Hoeksema, H., Kagan, F. and Magerlein, B.J.; U.S. Patent 3,380,992; April 30, 1968; assigned to The Upjohn Company

Jariwala, S.L.; U.S. Patent 4,091,204; May 23, 1978; assigned to The Upjohn Company

LINDANE

Therapeutic Function: Pediculicide; scabicide

Chemical Name: 1α,2α,3β,4α,5α,6β-hexachlorocyclohexane

Common Name: gamma-BHC

Structural Formula:

Chemical Abstracts Registry No.: 58-89-9

Trade Name	Manufacturer	Country	Year Introduced
Kwell	Reed Carnrick	U.S.	1952
Gamene	Barnes Hind	U.S.	1975
Escabiol	Stiefel	U.S.	1979
Scabene	Stiefel	U.S.	1981
Bicide	Fischer	Israel	
Gambex	Continental Ethicals	S. Africa	-
HCH-Salbe	VEB Leipziger Arz,	E. Germany	-
Jacutin	Hermal	W. Germany	_
Malice Shampoo	Restan	S. Africa	_
Quellada	Stafford-Miller	U.K.	_

Raw Materials

Benzene Chlorine

Manufacturing Process

Chlorine gas was gradually passed into 660 parts of benzene contained in a lead-lined reaction vessel until 890 parts of the gas had been absorbed. The mixture was stirred continuously and the temperature maintained at 15°C to 20°C.

The supply of chlorine was then interrupted and the precipitated solid filtered off and dried. In weight, it was found to be equivalent to 900 parts. The mother liquid was then mixed with 330 parts of benzene and the mixture again treated with 890 parts of chlorine in the manner described.

After filtering the reaction mixture resulting from the second chlorination, the filtrate was again mixed with a smaller quantity of benzene and again chlorinated in a similar manner. In this way, a continuous process for the preparation of benzene hexachloride resulted.

That benzene hexachloride isomer mixture is then the raw material for lindane production. The production of lindane per se is not a chemical synthesis operation but a physical separation process. It is possible to influence the gamma isomer content of benzene hexachloride to an extent during the synthesis process. Basically, however, one is faced with the problem of separating a 99%-plus purity gamma isomer from a crude product containing perhaps 12 to 15% of the gamma isomer. The separation and concentration process is done by a carefully controlled solvent extraction and crystallization process. One such process is described by R.D. Donaldson et al. Another description of hexachlorocyclohexane isomer separation is given by R.H. Kimball.

References

Merck Index 5329 PDR pp. 1444, 1606, 1779 I.N. p. 561 REM pp. 1239, 1253

Donaldson, R.D. et al; U.S. Patent 2,767,223; October 16, 1956; assigned to Allied Chemical and Dye Corp.

Kimball, R.H.; U.S. Patent 2,767,224; October 16, 1956; assigned to Hooker Electrochemi-

Hay, J.K. and Webster, K.C.; U.S. Patent 2,502,258; March 28, 1950; assigned to Imperial Chemical Industries, Ltd.

Hardie, T.; U.S. Patent 2,218,148; October 15, 1940; assigned to Imperial Chemical Industries, Ltd.

LIOTHYRONINE

Therapeutic Function: Thyroid replacement therapy

Chemical Name: O-(4-hydroxy-3-iodophenyl)-3,5-diiodo-L-tyrosine

Common Name: 3,5,3'-triiodothyronine; L-3-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]alanine

Structural Formula:

Chemical Abstracts Registry No.: 6893-02-3; 55-06-1 (Sodium Salt)

Trade Name	Manufacturer	Country	Year Introduced
Cytomel	SKF	U.S.	1956
Cynomel	Merrell	France	1961
Cytobin	Norden	U.S.	_
Cytomine	Darby	U.S.	_
Ro-Thyronine	Robinson	U.S.	_
Tertroxin	Glaxo	U.K.	_
Thybon	Hoechst	W. Germany	_
Thyronamin	Takeda	Japan	
Thyronine	Taisho	Japan	_
Tiromel	Abdi Ibrahim	Turkey	_
Ti-Tre	Glaxo	Italy	_
Trijodthyronin	Nyegaard	Norway	
Trithyron	Millot	France	_

Raw Materials

L-Dijodothyronine lodine

Manufacturing Process

The 3,5-diiodo compound used as a starting material is a known material and may be prepared by the method in British Patents 643,089 and 671,070 and in the Journal of the Chemical Society, London, 1949, page 3424.

Synthesis: L-diiodo thyronine (1.05 g) is dissolved in ammonia (specific gravity 0.880) (40 ml) and methanol (40 ml) and iodinated slowly with shaking with N-jodine in KI solution at room temperature. After iodination, most of the ammonia and methanol are removed by evaporation under diminished pressure, water is added to the original volume, the solution is heated to 60°C and brought to pH 4 with hydrochloric acid. A crystalline precipitate is obtained which after cooling to room temperature is collected and washed with water. At this stage, the crude triiodo thyronine is contaminated with thyroxine and a little unchanged diiodo thyronine.

Purification: The crude precipitate is dissolved in boiling 2 N HCl (300 ml) and filtered from the relatively insoluble thyroxine hydrochloride. The hot filtrate is brought to pH 4 with 5 N NaOH and triiodo thyronine again separates; after chilling at 0° to 4°C it is collected, washed with water and dried. The yield of triiodo thyronine is 70 to 75% of the theoretical. This triiodo thyronine still contains some thyroxine (about 10%).

The final purification consists of chromatographic separation of thyroxine and triiodo thyronine on a kieselguhr column using 20% chloroform in n-butanol equilibrated with 0.5 N NaOH as the developing solvent. 80 to 100 mg trilodo thyronine is purified during each run on a 50 g kieselguhr column. Pure L-triiodo thyronine has MP 236° to 237°C (dec.) and $[\alpha]_D^{29.5^\circ}$ = +21.5 in a 4.75% solution in a mixture of 1 part of N HCl and 2 parts of ethanol. Liothyronine is commonly used as the sodium salt.

References

Merck Index 5337 Kieeman & Engel p. 527 PDR pp. 1606, 1709 OCDS Vol. 1 p. 97 (1977) I.N. p. 562 REM p. 980

Pitt-Rivers, R. and Gross, J.; U.S. Patent 2,823,164; February 11, 1958; assigned to National Research Development Corporation, England

Platt, J.T. and Wenner, W.; U.S. Patent 2,784,222; March 5, 1957; assigned to Hoffmann-

Razdan, R.K. and Wetherill, L.A.; U.S. Patent 2,993,928; July 25, 1961; assigned to Glaxo Laboratories, Ltd.

LOFEXIDINE HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: 2-[1-(2,6-Dichlorophenoxy)ethyl] -2-imidazoline

Common Name: -

Structural Formula:

$$\bigcirc \begin{matrix} c_1 & c_{H_3} \\ -c_1 & c_{N_3} \\ c_1 & c_{N_3} \end{matrix}$$
 (base)

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Lofetensin	Nattermann	W. Germany	1981

Raw Materials

Ethanol α -2.6-Dichlorophenoxypropionitrile

Hydrogen chloride Ethylenediamine

Manufacturing Process

10.4 ml of absolute ethanol are added to 57.5 g of α -2,6-dichlorophenoxypropionitrile, followed by the introduction of 100 ml of chloroform dried over phosphorus pentoxide; 10.4 g of carefully dried hydrogen chloride being slowly introduced with stirring and cooling with ice/common salt. Most of the chloroform and excess hydrogen chloride is then removed by filtration in vacuo at room temperature, and dry ether added to the residue until the imido acid ester hydrochloride is quantitatively precipitated. The α -dichlorophenoxypropionimido acid ethyl ester hydrochloride can be obtained analytically pure in the form of white, strongly hygroscopic crystals by repeated dissolution in a little absolute ethanol in the absence of heat, and precipitation with ether.

The crude α -(2,6-dichlorophenoxy)propionamido acid ethyl ester hydrochloride is added in portions to a stirred, ice-cooled solution of 29.5 g of anhydrous ethylenediamine in 200 ml of absolute ethanol in such a way that the temperature does not exceed 0°C to 5°C. The cooling bath is then removed and the reaction mixture heated for 1 hour on a water bath to approximately 70°C.

After cooling, unreacted ethylenediamine is neutralized in a cooling mixture with the absolute ethanolic hydrochloric acid, filtered off from any components that are insoluble in ethanol and approximately two-thirds of the solvent filtered off under suction in a water jet pump vacuum. Residual quantities of ethylenediamine dihydrochloride are precipitated in fractions by the careful addition of ethyl methyl ketone, after which the imidazoline hydrochloride is separated off by the addition of dry ether. Following repeated recrystallization from ethanol ether, 2-[α -(2,6-dichlorophenoxy)ethyl] - Δ^2 -imidazoline hydrochloride is obtained in the form of small white crystals melting at 221°C to 223°C.

References

Merck Index 5388 DFU 3 (8) 592 (1978) DOT 19 (9) 496 (1983)

I.N. p. 566

Baganz, H. and May, H.J.; U.S. Patent 3,966,757; June 29, 1976; assigned to A. Natterman and Cie GmbH

LOFLAZEPATE ETHYL

Therapeutic Function: Minor tranquilizer

Chemical Name: 7-Chloro-5-(2-fluorophenyl)-2,3-dihydro-2-oxo-1H-1,4-benzodiazepine-3-

carboxylic acid ethyl ester

Common Name: -

Structural Formula:

$$\operatorname{cooc}_{2^{H_{5}}}$$

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Victan	Clin Midy	France	1982

Raw Materials

2-Methylimidazole HCl 2-Amino-5-chloro-2'-fluoro-benzophenone Ethyl aminomalonate hydrochloride

Manufacturing Process

(A) 1-(2-Amino-5-chlorophenyl)-1-(2-fluorophenyl)-2-aza-but-1-en-4-ol: A mixture of 40 g of 2-methylimidazole hydrochloride and of 90 g of 2-amino-5-chloro-2'-fluoro-benzophenone in 240 ml of ethanolamine is heated at 135°C for 2 hours. After cooling, the reaction mixture is poured into an aqueous sodium bicarbonate solution. The mixture is extracted with ether, the organic phase is washed repeatedly with water and is dried over sodium sulfate, and the solvent is evaporated to dryness. The residual oil is chromatographed on a silica column, elution being carried out with a 50/50 mixture of cyclohexane and ethyl acetate.

88 g of the expected amine are thus isolated. Melting point: 105°C to 110°C.

(B) 1-(2-Amino-5-chlorophenyl)-1-(2-fluorophenyl)-3,3-bis-(ethoxycarbonyl)-2-aza-prop-1ene: A mixture of 88 g of the product obtained above, 300 g of ethyl aminomalonate hydrochloride and 60 ml of acetic acid in 2.3 liters of absolute ethanol is heated to the reflux temperature for 6 hours. The alcohol and the acetic acid are evaporated in vacuo and the residue is taken up in ether. The solution is washed with a dilute sodium bicarbonate solution and

then with water and is dried over sodium sulfate. The solvent is evaporated and the residue is then chromatographed on a silica column, using a 90/10 mixture of chloroform and ethyl acetate for the elution. An oil $(64\,\mathrm{g})$ is thus obtained, and is used, without further treatment, for the cyclization.

A sample recrystallized from isopropyl ether has a melting point of 119°C.

(C) Compound of Code No. CM 6912: 25 g of the imine obtained under (B), dissolved in 400 ml of acetic acid, are heated at the reflux temperature for 1 hour. After evaporating the solvent in vacuo, the residue is taken up in methylene chloride. The solution is washed with a dilute sodium bicarbonate solution and then with water. After evaporating the solvent, the residue is chromatographed on silica, elution being carried out with an 80/20 mixture of ether and ethyl acetate. 9 g of benzodiazepine are thus obtained. Melting point: 196°C.

References

Merck Index 3766 DFU 6 (12) 772 (1981) DOT 19 (1) 24 (1983) I.N. p. 566

Demarne, H. and Hallot, A.; British Patent 1,538,165; January 17, 1979; assigned to C.M. Industries (France)

LONAZOLAC

Therapeutic Function: Antiinflammatory

Chemical Name: 3-(4-Chlorophenyl)-1-phenyl-1H-pyrazole-4-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53808-88-1

Trade Name	Manufacturer	Country	Year introduced
Irriten	Tosse	W. Germany	1981
Irritren	Byk Gulden	Switz.	1982

Raw Materials

1-Phenyl-3-(p-chlorophenyl)-pyrazol-4-acetonitrile Hydrogen chloride

Manufacturing Process

17.6 g 1-phenyl-3-(p-chlorophenyl)-pyrazol-4-acetonitrile and 180 ml 25% aqueous hydrochloric acid were mixed and heated to the boiling temperature under reflux for 6 hours. To the mixture was then added dropwise concentrated aqueous sodium hydroxide until the pH of the mixture reached a value in the range from 3 to 5. The free pyrazol-4-acetic acid pre-

cipitated thereby was filtered off, redissolved in dilute aqueous sodium hydroxide, the solution cleared by treatment with activated carbon, and the pyrazol 4-acetic acid precipitated by acidifying the solution by the addition of dilute mineral acid, sulfuric acid. The filtered acid was crystallized from a mixture of ethanol and water. 17.1 g 1-phenyl-3-(p-chlorophenyl)pyrazol 4-acetic acid, melting at 148°C to 150°C, were obtained, representing a yield of 91%.

References

Merck Index 5392 DFU 7 (2) 110 (1982) DOT 18 (4) 184 (1982) I.N. p. 567

Rainer, G.; U.S. Patent 4,146,721; March 27, 1979; assgned to Byk Gulden Lomberg Chemische Fabrik G.m.b.H. (W. Germany)

LOPERAMIDE HYDROCHLORIDE

Therapeutic Function: Antidiarrheal

Chemical Name: 4-(4-chlorophenyl)-4-hydroxy-N,N-dimethyl- α , α -diphenyl-1-piperidine-

butanamide hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34552-83-5; 53179-11-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Imodium	Janssen	U.K.	1975
lmodium	Janssen-Le Brun	France	1976
Imodium	Janssen	W. Germany	1976
Imodium	Ortho	U.S.	1977
Dissenten	S.P.A.	Italy	1978
Imodium	Janssen	Italy	1979
Lopemid	Gentili	Italy	1979
Imodium	Janssen	Switz.	1981
Imodium	Dainippon	Japan	-
Blox	Biomedica Foscama	Italy	_
Brek	Irbi	Italy	_
Fortasec	Esteve	Spain	-
Lopermid	Drifen	Turkey	_
Loperyl	Zambeletti	Italy	_
Regulane	Finadiet	Argentina	-
Seldiar	Krka	Yugoslavia	_
Tebloc	Dukron	Italy	_

Raw Materials

2-Oxo-3.3-diphenyl-tetrahydrofuran

Hydrogen bromide

Thionyl chloride 4-(p-Chlorophenyl)-4-piperidinol Dimethyl amine Hydrogen chloride

Manufacturing Process

23.6 parts of 2-oxo-3.3-diphenyl-tetrahydrofuran are melted at 100°C in an oil-bath and gaseous hydrogen bromide is introduced into it during 3 hours. The reaction mixture is cooled and triturated in benzene. The product is filtered off, washed with petroleum ether and dried in an exsiccator, yielding 4-bromo-2,2-diphenylbutyric acid; MP 127.5°C.

To a stirred suspension of 16 parts of 4-bromo-2,2-diphenylbutyric acid in 150 parts of chloroform are added dropwise 16 parts of thionyl chloride and the whole is stirred and refluxed for 2 hours. The reaction mixture is evaporated, yielding 4-bromo-2,2-diphenylbutyrylchloride as a residue.

60 parts of 4-bromo-2.2-diphenylbutyrylchloride are dissolved in 400 parts of toluene and gaseous dimethylamine is introduced slowly into the solution while cooling (temperature is kept at about 0°C). The introduction is ceased when dimethylamine escapes from the cooler, and stirring is continued for 2 hours at ordinary temperature. The precipitated product is filtered off and dissolved in a minimum quantity of water. The product is extracted with chloroform. The extract is dried and evaporated. The residue solidifies on triturating in 4-methyl-2-pentanone. The solid is filtered off and dried, yielding dimethyl (tetrahydro-3,3-diphenyl-2-furylidene)ammonium bromide; MP 169° to 171.5°C.

A mixture of 6.33 parts of 4-(p-chlorophenyl)-4-piperidinol, 8 parts of sodium carbonate, 0.2 part of potassium iodide and 240 parts of 4-methyl-2-pentanone is distilled azeotropically. Then there are added 12.12 parts of dimethyl-(tetrahydro-3,3-diphenyl-2-furylidene)ammonium bromide (from the preceding step) and the whole is stirred and refluxed for about 15 hours. The reaction mixture is filtered hot and the filtrate is evaporated.

The oily residue is dissolved in 2-propanol and to this solution is added an excess of 2propanol previously saturated with gaseous hydrogen chloride. The whole is evaporated and the oily residue is warmed in diluted hydrochloric acid solution. Upon the addition of toluene, the salt is precipitated. It is filtered off, boiled in acetone, and filtered off again after cooling, yielding 4-(p-chlorophenyl)-4-hydroxy-N,N-dimethyl- α , α -diphenylpiperidine-1-butyramide hydrochloride; MP 222.1°C.

References

Merck Index 5396 Kleeman & Engel p. 530 PDR p. 953 OCDS Vol. 2 p. 334 (1980) DOT 10 (6) 220 (1974) I.N. p. 567 REM p. 814

Janssen, P.A.J., Niemegeers, C.J.E.J., Stokbroekx, R.A. and Vandenberk, J.; U.S. Patent 3.714.159; January 30, 1973; and U.S. Patent 3.884.916; May 20, 1975; both assigned to Janssen Pharmaceutica, NV, Belgium

LOPRAZOLAM

Therapeutic Function: Tranquilizer

Chemical Name: 8-Nitro-1,2-dihydro-2-(N-methyl-piperazin-1-yl)methylene-6-(o-chlorophenyl)-1H,4H-imidazo-[1,2-a] [1,4]-benzodiazepin-1-one methanesulfonate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 61197-93-1

Trade Name	Manufacturer	Country	Year Introduced
Avlane	J.A.S.M.	France	1981
Dormonoct	Roussel	U.K.	1983

Raw Materials

8-Nitro-1, 2-dihydro-2-(N-methylpiperazin-1-yl)methylene-6-(o-chlorophenyl)-1H,4Himidazo[1,2-a] [1,4] benzodiazepin-1-one Methane sulfonic acid

Manufacturing Process

1.1 g of methanesulfonic acid were added dropwise to a mixture of 4.6 g of 8-nitro-1,2-dihydro-2-(N-methylpiperazin-1-yl)methylene-6-(o-chlorophenyl)-1H,4H-imidazo-[1,2-a] [1,4] benzodiazepin-1-one in 100 ml of anhydrous methylene chloride and 5 ml of methanol. Dry ether was slowly added until crystals formed on scratching and the solution was allowed to crystallize with further ether being added to complete the crystallization. The pale yellow solid was filtered off, washed with ether and crystallized from methylene chloride-methanol to obtain 5.4 g of 8-nitro-1,2-dihydro-2-(N-methylpiperazin-1-yl)methylene-6-(o-chlorophenyl)-1H,4H-imidazo-[1,2-a] [1,4] -benzodiazepin-1-one methanesulfonate melting at 205°C to 210°C.

References

Merck Index 5399

DFU 5 (3) 144 (1980) (As Ru-31,158) & 5 (12) 635 (1980)

Taylor, F.B. and Harrison, D.R.: U.S. Patent 4,044,142; August 23, 1977; assigned to Roussel Uclaf.

LORAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-5-(o-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1,4-benzodiazepin-

2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 846-49-1

Trade Name	Manufacturer	Country	Year Introduced
Tavor	Wyeth	Italy	1972
Tavor	Wyeth	W. Germany	1972
Ativan	Wyeth	U.K.	1973
Temesta	Wyeth-Byla	France	1973
Ativan	Wyeth	U.S.	1977
Wypax	Wellcome	Japan	1978
Bonton	Unipharm	Israel	-
Control	Sigurta	Italy	_
Emotion	Alpes	Argentina	_
Emotival	Armstrong	Argentina	_
Idalprem	Prem	Spain	_
Lorans	Schiapparelli	Italy	_
Lorivan	Disco	Israel	_
Lorsilan	Belupo	Yugoslavia	_
Orfidal	Orfi	Spain	_
Piralone	Ferrer	Spain	_
Placidia	Fedal	Spain	
Pro Dorm	Schurholz	W. Germany	_
Quait	Jamco	Italy	
Securit	Marxer	Italy	-
Sedarkey	Cuatrecasas-Darkey	Spain	_
Sedatival	Raffo	Argentina	_
Sedicepan	Septa	Spain	-
Sidenar	Syncro	Argentina	-

Raw Materials

2-Amino-2',5-dichlorobenzophenone Chloroacetylchloride Acetic anhydride

Hydroxylamine Methyl amine Sodium hydroxide

Manufacturing Process

The starting material was 2-amino-2',5-dichlorobenzophenone which was reacted with hydroxylamine and then with chloroacetylchloride. The intermediate thus obtained is reacted with methylamine and then with acetic anhydride.

To a slightly warm suspension of 3-acetoxy-7-chloro-5-(o-chlorophenyl)-1,3-dihydro-2H-1,4benzodiazepin-2-one thus obtained was added 4N sodium hydroxide solution with stirring. All the solid dissolved and soon a thick white solid precipitated out. The solid was filtered, washed well with water and recrystallized from ethanol. The product was isolated as a solvate with 1 mol of ethanol. When heated it loses the ethanol of solvation and melts at 166°C to 168°C.

References

Merck Index 5400

Kleeman & Engel p. 530

PDR p. 1938

OCDS Vol. 1 p. 368 (1977)

DOT 7 (6) 210 (1971) & 9 (6) 238 (1973)

I.N. p. 568

REM p. 1063

Bell, S.C. British Patent 1,057,492; February 1, 1967; assigned to American Home Products Corporation

Bell, S.C. U.S. Patent 3,176,009; March 30, 1965; assigned to American Home Products

Bell, S.C.; U.S. Patent 3,296,249; January 3, 1967; assigned to American Home Products Corp.

LORCAINIDE HYDROCHLORIDE

Therapeutic Function: Antiarrhythmic

Chemical Name: N-(p-Chlorophenyl)-N-(1-isopropylpiperidin-4-yl)phenylacetamide hydro-

chloride

Common Name: Isocainide hydrochloride; socainide hydrochloride

Structural Formula:

Chemical Abstracts Registry no.: 59729-31-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Remivox	Janssen	W. Germany	1980

Raw Materials

N-(4-Chlorophenyl)-N-(piperidinyl)benzeneacetamide 2-Bromopropane Hydrogen chloride

Manufacturing Process

To a stirred suspension of 5 parts of N-(4-chlorophenyl)-N-(4-piperidinyl)benzeneacetamide, 5 parts of sodium carbonate, a few crystals of potassium iodide in 200 parts of butanol is added dropwise 4 parts of 2-bromopropane at room temperature. After the addition is complete, the whole is stirred and refluxed for 20 hours. Then the second portion of 4 parts of 2-bromopropane is added and stirring and refluxing is continued for another 19 hours. The reaction mixture is cooled, filtered and the filtrate is evaporated. From the oily free bese, the hydrochloride salt is prepared in the conventional manner in 1,1'-oxybisethane and 2propanone. The precipitated solid salt is filtered off and crystallized from a mixture of 2propanone and 2-propanol, yielding 2 parts of N-(4-chlorophenyl)-N-[1-(1-methylethyl)-4piperidinyl] benzeneacetamide hydrochloride; melting point 263°C.

References

Merck Index 5401

DFU 3 (7) 518 (1978) OCDS Vol. 3 p. 40 (1984) DOT 18 (1) 17 & (10) 548 (1982) I.N. p. 568

Sanczuk, S. and Hermans, H.K.F.; U.S. Patent 4,196,210; April 1, 1980; assigned to Janssen Pharmaceutica NV

LORMETAZEPAM

Therapeutic Function: Hypnotic

Chemical Name: 7-Chloro-5-(o-chlorophenyl)-1,3-dihydro-3-hydroxy-1-methyl-2H-1,4benzodiazepin-2-one

Common Name: N-Methyllorazepam

Structural Formula:

Chemical Abstracts Registry No.: 848-75-9

Trade Name	Manufacturer	Country	Year Introduced
Loramet	Wyeth	W. Germany	1980
Noctamid	Schering	W. Germany	1980
Loramet	Wyeth	Switz.	1981
Noctamid	Schering	U.K.	1981
Noctamid	Schering	France	1981
Loramet	Wyeth	U.K.	1983
Loramid	Wyeth	W. Germany	· _
Minias	Farmades	Italy	_
Pronoctan	Schering		-

Raw Materials

3-Acetoxy-7-chloro-1,3-dihydro-5-(o-chlorophenyl)-2H-1,4-benzodiazepin-2-one Sodium hydroxide

Manufacturing Process

To a suspension of 3.4 g of 3-acetoxy-7-chloro-1,3-dihydro-5-(o-chlorophenyl)-2H-1,4benzodiazepin-2-one in 80 ml of alcohol was added 6 ml of 4N sodium hydroxide. After complete solution had taken place a solid precipitated that redissolved upon the addition of 80 ml of water. The solution was acidified with acetic acid to give white crystals. After recrystallization from alcohol the compound melted at 192°C to 194°C.

References

Merck Index 5403 DFU 5 (10) 495 (1980)

Kleeman & Engel p. 531 OCDS Vol. 3 p. 196 (1984) DOT 17 (4) 137 (1981) I.N. p. 569

American Home Products Co.; British Patent 1,022,642; March 16, 1966

LOXAPINE

Therapeutic Function: Tranquilizer

Chemical Name: 2-chloro-11-(4-methyl-1-piperazinyl)-dibenz[b,f] [1,4] oxazepine

Common Name: Oxilapine

Structural Formula:

Chemical Abstracts Registry No.: 1977-10-2

Trade Name	Manufacturer	Country	Year Introduced
Loxitane	Lederie	U.S.	1976
Loxapac	Lede rle	France	1980
Loxapac	Cyanamid	Italy	1981
Daxolin	Dome	U.S.	_

Raw Materials

o-(p-Chlorophenoxy)aniline Ethyl chloroformate Phosphorus oxychloride 1-Methylpiperazine

Manufacturing Process

One route is described in U.S. Patent 3,412,193 as follows. To a mixture of o-(p-chlorophenoxy)aniline hydrochloride (prepared from 32 g of the base) in 50 ml of pyridine is added gradually while heating under reflux, 25 ml of ethyl chloroformate. After the addition is completed, the mixture is heated under reflux for one hour longer, and then evaporated under reduced pressue to an oily residue. The residue is taken up in 300 ml of water, and extracted with ether (approximately 200 ml).

The ether extract is separated, dried over sodium sulfate, and evaporated to an oily residue (40 g) which contains ethyl o-(p-chlorophenoxy) carbanilate and is used without further purification. The crude ethyl o-(p-chlorophenoxy)carbanilate is dissolved in 20 ml of benzene, and 20 ml of 1-methylpiperazine and a small amount of sodium methylate (approximately 25 to 50 mg) are added. Benzene is then removed by slow distillation; and the mixture is heated overnight under reflux (approximately 16 hours).

Evaporation under reduced pressure then gives a solid residue which is dissolved in 400 ml of ether with heating. Concentration to half-volume under reduced pressure produces a precipitate which is collected, washed with petroleum ether and dried (36 g). A second crop

of product is isolated from the filtrate. This product is dissolved in 200 ml of chloroform and treated with an excess of anhydrous hydrogen chloride. The resulting precipitate is collected and dried at 50°C (in vacuo), and 4-methyl-2'-(p-chlorophenoxy)-1-piperazinecarboxanilide hydrochloride, MP 210° to 213°C, is thereby obtained.

A mixture of 4-methyl-2'-(p-chlorophenoxy)-1-piperazinecarboxanilide hydrochloride (6 g), 50 ml of phosphorus oxychloride and 10 g of phosphorus pentoxide is heated under reflux for about 24 hours, and then concentrated to a gummy residue by evaporation under reduced pressure. This residue is taken up in 150 ml of ether, 200 g of ice is added, and the mixture is made basic with concentrated aqueous ammonium hydroxide. The ether layer is separated, dried over potassium hydroxide pellets and evaporated to a solid residue (approximately 4 g).

This crude product is dissolved in 100 ml of dilute hydrochloric acid, the acid solution is extracted with ether, and the aqueous layer is made basic with sodium hydroxide solution (3 N) in the presence of ether (approximately 250 ml). The ether layer is separated, dried over potassium hydroxide and evaporated to a white solid. Additional purification by repeating the formation of the hydrochloric acid salt and reprecipitation of the base is carried out. When purified in this manner, followed by drying at 80°C in vacuo over phosphorus pentoxide, 2-chloro-11-(4-methyl-1-piperazinyl)dibenz[b,f] [1,4] oxazepine, MP 109° to 111°C, is obtained.

References

Merck Index 5404 Kleeman & Engel p. 532 PDR p. 1012 OCDS Vol. 2 p. 427 (1980) DOT 14 (6) 248 (1978) I.N. p. 569 REM p. 1089

Coppola, J.A.; U.S. Patent 3,412,193; November 19, 1968; assigned to American Cyanamid Company

Schmutz, J., Hunziker, F. and Künzle, F.M.; U.S. Patent 3,546,226; December 8, 1970

M

MAFENIDE ACETATE

Therapeutic Function: Antibacterial

Chemical Name: \alpha-Acetylamino-p-toluenesulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13009-99-9; 138-39-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sulfamylon	Winthrop	U.S.	1949
Napaltan	Winthrop	W. Germany	1969
Sulfamylon	Winthrop	U.K.	1970
Mafatate	Torii	Japan	1980
Mafylon	Winthrop	` _	-

Raw Materials

Acetylbenzylamine Chlorosulfonic acid Ammonia

Manufacturing Process

For the preparation of mafenide 50 g of acetylbenzylamine are introduced while stirring into 150 cc of chlorosulfonic acid, whereby the temperature is kept below 40°C by external cooling. After several hours' storing at ordinary temperature the mixture is heated for 1 hour in the boiling water-bath and after cooling, poured on to ice. Thereupon the 4-acetylaminoethyl-benzenesulfonic acid chloride precipitates at first in an oily form, but solidifies after short stirring to crystals. The product sucked off and washed with cold water is introduced into a 10% aqueous ammonia solution. Thereby dissolution takes place while heating and after a short time the 4-acetylaminomethyl-benzenesulfonic acid amide precipitates in a crystalline form. After heating to 70°C for 30 minutes the solution is cooled, filtered with suction and washed out. The product is obtained when recrystallized from water or dilute alcohol in colorless crystals melting at 177°C. It is readily soluble in warm water, extremely readily soluble in dilute sodium hydroxide solution.

References

Merck Index 5466 Kleeman & Engel p. 534 PDR p. 1929 OCDS Vol. 2 p. 114 (1980) DOT 5 (4) 132 (1969) I.N. p. 574

REM p. 1162

Klarer, J.; U.S. Patent 2,288,531; June 30, 1942; assigned to Winthrop Chemical Co., Inc.

MAGAL DRATE

Therapeutic Function: Antacid

Chemical Name: Tetrakis(hydroxymagnesium)decahydroxydialuminate dihydrate

Common Name: Magnesium aluminate hydrate; monalium hydrate

Structural Formula: [Mg(OH)]₄[(HO)₄Al(OH)(HO)Al(OH)₄]·2H₂O

Chemical Abstracts Registry No.: 1317-26-6

Trade Name	Manufacturer	Country	Year Introduced
Riopan	Ayerst	U.S.	1960
Riopan	Byk Gulden	W. Germany	1981
Dynese	Galen	U.K.	1983
Bismag-Lac	Much	W. Germany	_

Raw Materials

Aluminum chloride Sodium hydroxide Magnesium sulfate

Manufacturing Process

1 kg aluminum chloride hydrate was dissolved in 2 kg water and reacted with a solution of 1.2 kg sodium hydroxide in 2.5 kg water, under constant stirring. The resultant sodium aluminate solution was cooled to about 20°C and, with thorough stirring, it was reacted with 3.5 kg of a magnesium sulfate solution produced by dissolving 1 kg of magnesium sulfate anhydride in 2.5 kg water. The magnesium sulfate solution was introduced in a plurality of thin jets through several shower heads to avoid localized differences of concentration as much as possible. After all the magnesium sulfate was added, stirring was continued for about 1/2 hour.

A colorless, colloidal precipitate was formed and stirred thoroughly for about 15 minutes, whereupon it was filtered by suction. The raw product thus obtained was washed with water until it contained only about 1/2% water-soluble salts. After drying for 12 hours in a vacuum apparatus at 60°C and under a pressure of 12 mm Hg, the product had the form of hard pieces. The pieces were comminuted to powder in a ball mill and the powder was passed through a sieve (3,600 meshes per cm²). The small residue on the sieve was again pulverized and passed through the same sieve. The yield was 870 g, or 99% of theoretical, calculated on the assumed formula

 $[Mg(OH)]_4[(HO)_4AI(OH)(HO)AI(OH)_4].2H_2O$

with a molecular weight of 425.

References

Marck Index 5467

PDR p. 650 I.N. p. 574 REM p. 795

Hallmann, G.: U.S. Patent 2,923,660; February 2, 1960; assigned to Byk-Gulden Lomberg Chemische Fabrik GmbH, Germany

MALATHION

Therapeutic Function: Pediculicide

Chemical Name: Diethyl (dimethoxyphosphinothioyl) thiobutanedioate

Common Name: Mercaptothion (South Africa), maldison (Australia and New Zealand),

carbofos (U.S.S.R.)

Structural Formula:

Chemical Abstracts Registry No.: 121-75-5

Trade Name	Manufacturer	Country	Year Introduced
Prioderm	Purdue Fredrick	U.S.	1982
Organoderm	Mundipharma	W. Germany	1982
Derbac	Benque	U.K.	_
Lusap	Interdelta	Switz.	
Taskil	Tasman Vaccine	U.K.	

Raw Materials

O,O-Dimethyl phosphorodithioic acid Diethyl maleate

Manufacturing Process

The feed materials for malathion manufacture are O.O-dimethyl phosphorodithioic acid and diethyl maleate or fumarate which react according to the equation:

An antipolymerization agent such as hydroquinone may be added to the reaction mixture to inhibit the polymerization of the maleate or fumarate compound under the reaction conditions. This reaction is preferably carried out at a temperature within the range of 20°C to 150°C. This reaction is preferably carried out at atmospheric pressure. Reaction time of 16 to 24 hours have been specified for this reaction by J.T. Cassaday. The reaction is preferably carried out in a solvent such as the low molecular weight aliphatic monohydric alcohols, ketones, aliphatic esters, aromatic hydrocarbons or trialkyl phosphates.

The reaction may be accelerated by using an aliphatic tertiary amine catalyst, usually within the range of 0.2 to 2.0% based on the total weight of the reactants. A stirred, jacketed reactor of conventional design may be used. After cooling, the reaction mixture may be taken up in benzene. It is then washed with 10% Na₂CO₃ and with water. The organic layer is dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give the final product as residue.

References

Merck Index 5522 I.N. p. 575 REM p. 1240

Cassaday, J.T.; U.S. Patent 2,578,652; December 18, 1951; assigned to American Cyanamid Co.

Backlund, G.R., Martino, J.F. and Divine, R.D.; U.S. Patent 3,463,841; August 26, 1969; assigned to American Cyanamid Co.

Usui, M.; U.S. Patent 2,962,521; November 29, 1960; assigned to Sumitomo Chemical Co.

MALTOSE

Therapeutic Function: Sugar supplement for diabetics

Chemical Name: 4-O-Q-Glucopyranosyl-D-glucose

Common Name: -

Structural Formula:

Chamical Abstracts Registry No.: 69-79-4

Trade Nama	Manufacturer	Country	Year Introduced
Maitos-10	Otsuka	Japan	1974

Raw Materials

Starch Water

Manufacturing Process

The process of manufacturing a maltose product from a suitably purified starch source includes preparing an aqueous starchy suspension, adjusting the acidity thereof to from 4.6 to 6.0 pH, liquefying the suspension by heating in the presence of a diastatic agent, diastatically saccharifying the liquefied mixture, filtering, and concentrating the liquid to a syrup.

References

Merck Index 5536 DOT 10 (11) 308 (1974) REM p. 1029

Gore, H.C.; U.S. Patent 1,657,079; January 24, 1928; assigned to The Fleischmann Co.

MANNITOL

Therapeutic Function: Diuretic; diagnostic aid (kidney function)

Chemical Name: D-mannitol

Common Name: -

Structural Formula:

носн носн нсон нсон си₂он

CH20H

Chemical Abstracts Registry No.: 69-65-8

Trade Name	Manufacturer	Country	Year Introduced
Mannitol	MSD	U.S.	1946
Osmitrol	Travenoi	U.S.	1964
Mannitol I.V.	Abbott	U.S.	1968
Eufusol	Knoll	W. Germany	_
Isotol	Baxter	Italy	_
Manit	Pliva	Yugoslavia	
Mannidex	Pharmacia	Sweden	***
Osmofundin	Braun	W. Germany	_
Osmosol	Farmer Hill	Australia	-
Rectisol	McGaw	U.S.	-

Raw Materials

Glucose Hydrogen

Manufacturing Process

250 g of glucose is dissolved in distilled water to give a solution of 48% concentration. This solution is heated to 65°C and barium hydroxide added in quantity sufficient to make the concentration of the barium hydroxide 0.2 mol/liter. The solution is agitated and maintained at 65°C for 6 hours after the addition of the barium hydroxide. It is then cooled and neutralized to a pH of 6.8 with sulfuric acid. The precipitated barium sulfate is filtered out. A quantity of activated supported nickel catalyst containing 5 g of nickel is added.

The slurry is introduced into a 3-liter rocking autoclave, and hydrogen admitted to a pressure of 1,500 psi. The autoclave is heated to a temperature of 150°C in one hour and held at this temperature for 21/2 hours more. Pressure rises to about 1,800 psi and then declines to about 1,600 during the hydrogenation. The autoclave is then cooled, emptied, and the catalyst filtered from the product. The filtrate is then concentrated under vacuum on a hot water bath to remove a part of the water.

The concentrate is taken up in warm aqueous methanol so adjusted that the composition of the solvent is 90% methanol/10% water, and the weight of the solvent is 3 times the weight of the solids in the concentrate. This solution is cooled to 20°C and held overnight. The mannitol which crystallizes is filtered out. The filtrate is concentrated on a water bath under vacuum to remove methanol and adjusted to a water percentage of 16%. The resulting syrup is viscous, noncrystallizing and nongelling, and analysis shows a PN (Pyridine Number) of 32 and essentially no reducing sugar, according to U.S. Patent 2,749.371.

References

Merck Index 5569 I.N. p. 576 REM p. 935

Kasehagen, L.; U.S. Patent 2,642,462; June 16, 1953; assigned to Atlas Powder Company Kasehagen, L.; U.S. Patent 2,749,371; June 5, 1956; assigned to Atlas Powder Company Kasehagen, L. and Luskin, M.M.; U.S. Patent 2,759,024; August 14, 1956; assigned to Atlas Powder Company

MAZATICOL HYDROCHLORIDE

Therapeutic Function: Antiparkinsonian

Chemical Name: 6.6.9-Trimethyl-9-azabicyclo (3.3.1) non-3 β -yl di-2-thienylglycolate hydro-

chloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 38738-59-9; 42024-98-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pentona	Tanabe	Japan	1978

Raw Materials

6.6.9-Trimethyl-9-azabicyclo [3.3.1] nonan-3α-ol Methyl α,α -di(2-thienyl)glycollate

Manufacturing Process

A mixture of 1.0 g of 6.6.9-trimethyl-9-azabicyclo[3,3,1] nonan-3 β -ol, methyl α , α -di-(2thienyl)-glycollate and 30 mg of metallic sodium is heated at 80°C to 90°C for about 2 hours under reduced pressure. After cooling, ether is added to the reaction mixture. The mixture is extracted with 10% hydrochloric acid. The aqueous layer is alkalified with sodium carbonate and reextracted with ethyl acetate. The extract is washed with water, dried and concentrated to dryness. The residue thus obtained is treated with hydrogen chloride by conventional manner. 2.0 g of the α,α-di-(2-thienyl)glycollate of 6,6,9-trimethyl-9-azabicyclo-[3.3.1] nonan-3 β -ol hydrochloride are obtained. Yield 83%.

References

Kleeman & Engel p. 535 DOT 13 (2) 72 (1977)

I.N. p. 579

Yoneda, N., Ishihara, T., Kobayashi, T., Kondo, Y., Okumura, K., Kojima, M. and Nose, T.; U.S. Patent 3,673,195; June 27, 1972; assigned to Tanabe Swiyaku Co.

MAZINDOL

Therapeutic Function: Antiobesity

Chemical Name: 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazo[2,1-a] isoindol-5-ol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22232-71-9

Trade Name	Manufacturer	Country	Year Introduced
Sanorex	Sandoz	U.S.	1973
Teronac	Wander	U.K.	1974
Teronac	Wander	W. Germany	1976
Mazildene	Farmochimica	Italy	1979
Mazanor	Wyeth	U.S.	1980
Degonan	Spofa	Czechosłovakia	_
Magrilan	Sintyal	Argentina	_

Raw Materials

3-(p-Chlorophenyl)phthalimidine Epichlorohydrin Ethylene imine

Manufacturing Process

Step 1: 1-(p-Chlorophenyl)-3-Ethoxy-1H-Isoindole — Crystalline triethyloxonium borontetrafluoride (21 g) (prepared from 23 g of borontrifluoride etherate and 11 g of epichlorohydrin) is dissolved in 100 ml of absolute methylenechloride. 3-(p-Chlorophenyl) phthalimidine (21 g) is added and the reaction mixture is stirred overnight at room temperature. The resulting solution is poured onto 50 ml of saturated sodium carbonate, extracted with 500 ml of ether and dried. Upon evaporation of the solvent there is obtained crude material which is recrystallized from methylene chloride/hexane (1:1) to yield 1-(p-chlorophenyl)-3-ethoxy-1H-isoindole; MP 102° to 103°C.

Step 2: 5-(p-Chlorophenyl)-5-Hydroxy-2,3-Dihydro-5H-Imidazo[2,1-a] Isoindole — 1-(p-Chlorophenyl)-3-ethoxy-1H-isoindole (1 g), 2 g of ethyleneimine hydrotetrafluoroborate moistened with methylene chloride (containing approximately 0.66 g of dry salt) is refluxed in 25 ml of absolute toluene for 2 hours in an atmosphere of nitrogen. The result-

ing mixture is poured into 2 N sodium carbonate solution (25 ml) and extracted with ether. The ether solution is contacted with air for 6 days at room temperature to give the desired product. The crude material is recrystallized from acetone/hexane (1:1) to give 5-(p-chlorophenyl)-5-hydroxy-2,3-dihydro-5H-imidazo[2,1-a] isoindole; MP 198° to 199°C.

References

Merck Index 5585 Kleeman & Engel p. 535 PDR pp. 1595, 1958 OCDS Vol. 2 p. 462 (1980) DOT 10 (1) 24 (1974) I.N. p. 579 REM p. 892

Houlihan, W.J. and Eberle, M.K.; U.S. Patent 3,597,445; August 3, 1971; assigned to Sandoz-Wander, Inc.

Sulkowski, T.S.; U.S. Patent 3,763,178; October 2, 1973; assigned to American Home Products Corp.

MEBENDAZOLE

Therapeutic Function: Anthelmintic

Chemical Name: (5-benzoyl-1H-benzimidazol-2-yl)carbamic acid methyl ester

Common Name: Methyl-5-benzoyl-2-benzimidazole carbamate

Structural Formula:

Chemical Abstracts Registry No.: 31431-39-7

Trade Name	Manufacturer	Country	Year Introduced
Vermox	Ortho	U.S.	1975
Vermox	Janssen	U.K.	1976
Vermox	Janssen	W. Germany	1976
Vermox	Janssen	Italy	1978
Vermox	Janssen	Sweden	1983
Lomper	Esteve	Spain	_
Mebutar	Andromaco	Argentina	-
Panfugan	Byk Procienx	Brazil	
S irben	Andromaco	Brazil	_
Sufil	Cusi	Spain	-
Vermirax	Biosintetica	Brazil	-
Verpanil	Krka	Yugoslavia	_

Raw Materials

4-Chloro-3-nitrobenzophenone S-Methylisothiourea sulfate Methyl chloroformate Ammonia Hydrogen

Manufacturing Process

A mixture of 5.2 parts of 4-chloro-3-nitrobenzophenone, 5 parts of ammonia, 72 parts of methanol and 13 parts of sulfolane is heated overnight at 125°C in a sealed tube. The reaction mixture is evaporated in vacuo. The semisolid residue is boiled in 100 parts of a diluted hydrochloric acid solution. After cooling, the precipitated product is filtered off and dissolved in chloroform. The chloroform phase is dried and evaporated. The residue is crystallized from toluene, yielding 4-amino-3-nitrobenzophenone; MP 141°C.

A mixture of 9.6 parts of 4-amino-3-nitrobenzophenone, 160 parts of methanol, 8 parts of concentrated hydrochloric acid and 1 part of palladium-on-charcoal catalyst 10% is hydrogenated at normal pressure and at room temperature. After the calculated amount of hydrogen is taken up, hydrogenation is stopped. The catalyst is filtered off and the solvent is evaporated. The solid residue is triturated in 2-propanol. The latter is partly evaporated and the solid product is filtered off, washed with 2-propanol and dried, yielding 3,4diaminobenzophenone hydrochloride: MP 207°C.

7.8 parts of S-methylisothiourea sulfate are stirred in 10 parts of water in an ice bath and there are added 4.5 parts of methyl chloroformate. While keeping the temperature below 20°C, there are added dropwise, in the course of 10 minutes, 17 parts of sodium hydroxide solution 25% (pH 8±), followed by the addition of 5.6 parts of acetic acid (pH 5±). To this mixture is added at 20°C a suspension of 7 parts of 3.4-diaminobenzophenone hydrochloride in 100 parts of water, followed by the addition of 2.3 parts of sodium acetate,

The whole is slowly heated to 85°C and stirred at this temperature for 45 minutes. The reaction mixture is cooled and the precipitated product is filtered off. It is washed successively with water and ethanol, dried and crystallized from a mixture of acetic acid and methanol, yielding methyl N-[5(6)-benzoyl-2-benzimidazolyl] carbamate; MP 288.5°C.

References

Merck Index 5589 Kleeman & Engel p 536 PDR p. 960 OCDS Vol. 2 p. 353 (1980) DOT 7 (5) 195 (1971): 9 (7) 299 (1973): 16 (10) 350 (1980) & 17 (6) 262 (1981) I.N. p. 580 REM p. 1235

Van Gelder, J.L.H., Roevens, L.F.C. and Raeymaekers, A.H.M.; U.S. Patent 3,657,267; April 18, 1972; assigned to Janssen Pharmaceutica, NV, Belgium

MEBEVERINE HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: 3,4-dimethoxybenzoic acid 4-[ethyl-[2-(4-methoxyphenyl)-1-methylethyl] -

amino] butyl ester hydrochloride

Common Name: -

Structural Formula: COO(CHa) OCH, ·HC1

Chemical Abstracts Registry No.: 2753-45-9; 3625-06-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Duspatalin	Duphar	France	1965
Colofac	Duphar	U.K.	1967
Duspatal	I.S.M.	Italy	1970
Duspatal	Thomae	W. Germany	1977
Duspatalin	Duphar	Switz.	1981

Raw Materials

3,4-Dimethoxybenzoic acid	Soaium
Tetramethylene dichloride	Ethanol
p-Methoxyphenyl acetone	Sodium iodide
Ethylamine	Hydrogen

Manufacturing Process

- (A) Sodium-3,4-Dimethoxybenzoate: A solution of 91 g of 3,4-dimethoxybenzoic acid in 500 ml of boiling, absolute alcohol was added quickly to a solution of 11.5 g of sodium in 300 ml of absolute alcohol; after cooling to room temperature the resulting precipitate was filtered off and washed with 2×50 ml of absolute alcohol and 4×200 ml of ether and dried in air to constant weight; yield 92.5 g, MP about 265°C. The filtrate was bulked with the alcohol and ether washings, left to stand overnight, and a further precipitate then filtered off, washed with 3×100 ml of ether, and dried in air to constant weight. Yield 22.5 g, MP about 265°C. Total yield therefore 115 g (=113%).
- (B) 4'-Chlorobutyl-3,4-Dimethoxybenzoate: 92 g of the sodium salt described under (A) (it contains at the most 81.5 g of sodium 3,4-dimethoxybenzoate) was boiled in 900 ml of tetramethylene dichloride for 90 hours; after cooling the mixture was filtered and the residue washed with 3 x 50 ml of ether. The filtrate was evaporated to dryness in vacuo and the residue (102 g) was distilled in vacuo. Fraction 1: 50° to 55°C/0.5 mm; 19 g (probably tetramethylene dichloride). Fraction 2: 175° to 184°C/0.5 mm; 77.5 g (=71%); CI= 12.6% (calculated 13.0%). Remark: The second fraction partially solidified or became more viscous on standing, and even during the distillation.
- (C) 4'-lodobutyl-3,4-Dimethoxybenzoate: 32.5 g of 4'-chlorobutyl-3,4-dimethoxybenzoate and 19.5 g of sodium iodide (10% excess) were boiled in 150 ml of methyl ethyl ketone for 2.5 hours; after cooling and filtering off the sodium chloride produced, the reaction was found not to be entirely completed; boiling was then continued for another two hours; the reaction mixture was cooled, and the solid filtered off and washed with 2 x 100 ml of ether.

The filtrate was evaporated to dryness in vacuo and the residue was dissolved in 300 ml of ether and 100 ml of water; the layers were separated and the water layer was once again extracted with 100 ml of ether; then the ether layers were boiled and washed again with a solution of 3.5 g of sodium thiosulfate in 100 ml of water. The ether layer was dried over sodium sulfate. Finally the solution was filtered and the ether was evaporated; the residue was an almost colorless oil, which partially solidified or became more viscous after being left to stand for some time. Yield: 40 g (=92%), I=34.2% (calculated 34.9%).

(D) 4'-[N-Ethyl-1"-Methyl-2"-(4"'-Methoxyphenyl)Ethylamino] Butyl-3,4-Dimethoxyben-zoate Hydrochloride: 10.3 g of 4'-iodobutyl-3,4-dimethoxybenzoate and 11.0 g of N-ethylp-methoxyphenylisopropylamine (obtained by catalytic reduction of an alcoholic solution of an excess quantity (60%) of p-methoxy-phenyl-acetone, to which was added a 33% (weight-for-weight) aqueous solution of ethylamine, with Pt as a catalyst), were boiled in 200 ml of methyl ethyl ketone for 20 hours, cooled and the iodine ion was determined; the reaction was found to be complete. Then the methyl ethyl ketone was evaporated in vacuo and the residue was dissolved in 300 ml of water and 30 ml of ether; the layers were separated and the water layer was extracted twice more with 20 ml portions of ether.

References

Merck Index 5590 Kleeman & Engel p. 537 OCDS Vol. 2 p. 54 (1980) DOT 3 (4) 143 (1967)

I.N. p. 580

Phillips' Gloeilampenfabrieken; British Patent 1,009,082; November 3, 1965

MEBUTAMATE

Therapeutic Function: Antihypertensive

Chemical Name: 2-Methyl-2-(1-methylpropyl)-1,3-propandiol dicarbamate

Common Name: Dicamovimethane

Structural Formula:

Сизсиси сиз

Chemical Abstracts Registry No.: 64-55-1

Trade Name	Manufacturer	Country	Year Introduced
Capla	Wallace	U. S .	1961
Axiten	Zambon	Italy	_
Butatensin	Benvegna	Italy	_
Carbuten	Kalopharma	Italy	_
Dormate	Wallace	U.S.	_
Ipotensivo	Vita	Italy	_
Mebutina	Formenti	Italy	_
No-Press	Janus	Italy	-
Prean	Chemil	Italy	_
Preminex	Dumex	Denmark	_
Sigmafon	Lafare	Italy	_
Vallene	Simes	Italy	_

Raw Materials

Diethyl-sec-butyl methyl malonate Lithium aluminum hydride Ethyl urethane

Manufacturing Process

The following example illustrates the preparation of 2-methyl-2-sec-butyl-1,3-propanediol:

92 g of diethyl-sec-butyl methyl malonate were reduced in the usual manner using 22.8 g of lithium aluminum hydride in a suitable volume of anhydrous ethyl ether. The mixture was treated with 10% sulfuric acid and the ether soluble components extracted. The ether solution was dried, using a suitable drying agent, and the residue obtained by the removal of the ether was purified by distilling under reduced pressure. This material was further purified by redistillation. Approximately 46 g of 2-methyl-2-sec-butyl-1,3-propanediol were obtained as a clear colorless liquid, boiling point 92°C to 97°C (0.1 mm pressure).

The following example describes the preparation of 2-methyl-2-sec-butyl-1,3-propanediol dicarbamate using the urethane exchange method:

14.6 g of 2-methyl-2-sec-butyl-1,3-propanediol and 18.7 g ethyl urethane are dissolved in about 100 ml anhydrous toluene. 3 g of aluminum isopropylate are added and the mixture distilled to remove the ethyl alcohol formed in the condensation of ethyl urethane and the diol. The alcohol distills in the form of an azeotrope with toluene. Distillation is continued until the theoretical quantity of ethanol has been removed. The toluene is distilled from the mixture under reduced pressure and the residue dissolved in hot aqueous isopropanol solution. The hot solution is filtered and allowed to cool, whereupon approximately 14 g of product separates. The purified product represents a yield of about 60% of theoretical and melts at 77°C to 79°C.

References

Merck Index 5594 Kleeman & Engel p. 538 OCDS Vol. 1 p. 218 (1977) I.N. p. 581

Berger, F.M. and Ludwig, B.J.; U.S. Patent 2,878,280; March 17, 1959; assigned to Carter Products, Inc.

MECAMYLAMINE HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: N,2,3,3-Tetramethylbicyclo [2.2.1] heptan-2-amine hydrochloride

Common Name: Dimecamin hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 826-39-1: 60-40-2 (Base)

Trade Name	Manufacturer	Country	Year introduced
Inversine	MSD	U.S.	1956
Mevasine	MSD	W. Germany	-
Prexion	I.T.I.	Italy	-

Raw Materials

dI-Camphene Sodium cyanide Lithium aluminum hydride Sulfuric acid

Manufacturing Process

Preparation of 2-(N-Formylamino)/socamphane: Into a 5-liter 3-necked round bottom flask equipped with stirrer, dropping funnel and thermometer, was added 325 ml of glacial acetic acid. Then, portionwise, a total of 133 g of sodium cyanide (granular, 2.6 mols) was added with stirring while holding the temperature at 15°C. To the thick white slurry was added dropwise a previously prepared cold mixture of 325 ml glacial acetic acid and 360 ml concentrated sulfuric acid.

After addition of a few milliliters at 15°C, the thick slurry thins slowly and the remainder of the sulfuric-glacial acetic acid mixture was added at 0° to 2°C. A total of about 2 hours was required for the addition. After addition, stirring was continued for 15 minutes. Then dropwise, over an hour, a solution of 178 g (1.3 mols) of di-camphene in 50 ml of glacial acetic acid was added while keeping the temperature at about 0°C (±3°C).

Stirring was continued for two hours at 0°C during which time a slight pinkish-yellow color developed in the reaction mixture. The cooling bath was removed and the temperature allowed to rise to 15° to 20°C in about 2 to 3 hours. The ice bath was then replaced and while holding the temperature at about 20°C, the mixture was gradually diluted with 3 liters of water while stirring vigorously. After an hour or two of good agitation at room temperature, the oily product was extracted with 2 x 500 ml and 1 x 200 ml of chloroform and the combined extracts washed with 2 x 500 ml of water. The chloroform extract was then rendered neutral by stirring with 500 ml water and gradually adding solid sodium bicarbonate to the mixture until the aqueous phase had a pH of about 7; required. approximately 88 g of NaHCO₃.

After separation the chloroform layer was washed with 2 x 500 ml water, dried over calcium chloride, and after filtration the solvent was removed in vacuo on the steam bath. A solid somewhat sticky residue of 231.2 g was obtained. After removal of last traces of chloroform by repeated swishing with petroleum ether, the cake was finally refluxed with about 500 ml petroleum ether (BP 30° to 60°C) until a thick crystalline slurry was obtained. After refrigeration for a day, the white crystalline mass was filtered by suction, washed with petroleum ether (2 x 125 ml), then n-heptane (2 x 125 ml) and again with petroleum ether (2 x 125 ml). After air drying at room temperature to constant weight, 180.6 q of the dl-2-(N-formylamino)isocamphane melting at 160° to 165°C was obtained.

The combined petroleum ether and n-heptane washes were concentrated under diminished pressure and the residual oil dissolved in a minimum amount of hot petroleum ether (about 75 ml). The resulting solution was placed in the refrigerator for two days. The precipitated dl-2-(N-formylamino)isocamphane was then recovered by filtration and washed with petroleum ether and n-heptane as described above. Obtained, 12.6 g of product having a MP of 158° to 164°C.

The dl-2-(N-formylamino)isocamphane (193 g) was dissolved in 1.9 liters n-heptane by heating on a steam bath. After clarifying the solution by filtration, the clear filtrate was allowed to stand at room temperature until crystallization was complete. The crystalline product is filtered by suction, washed with a little cold n-heptane and air dried. The dl-2-(N-formylamino)isocamphane melted at 169° to 174°C.

Preparation of 2-(N-Methylamino)Isocamphane: To 4.23 liters of anhydrous ether in a 12liter 3-necked flask fitted with a stirrer, reflux condenser and dropping funnel was quickly added 78 g (2.05 mols) of lithium aluminum hydride. The mixture was gently refluxed with stirring until all hydride had dissolved which required several hours.

A solution of 168 g (0.92 mol) of di-2-(N-formylamino)isocamphane, prepared as described above, in 1.81 liters of anhydrous ether was then added during a period of about one hour with stirring. After addition, the mixture was refluxed for about 6 hours after which it was cooled slightly and 347 ml of water added with stirring, hydrogen gas being evolved during the addition. Stirring was continued until the precipitate changed to a powder, which was filtered by suction and washed with ether (a total of about 2 liters).

The combined filtrate and washes were concentrated to 1.6 liters and the concentrate containing the dI-2-(N-methylamino)isocamphane washed once with about 350 cc water, and then dried over anhydrous sodium sulfate. The dried ether concentrate was then cooled in an ice bath and with stirring a cold saturated ethereal-hydrogen chloride solution was added slowly until acid to Congo red; required, about 440 ml anhydrous ether saturated (at 0°C) with HCl gas. After precipitation was complete, the white crystalline dl-2-(Nmethylamino)isocamphane hydrochloride was filtered, and washed with anhydrous ether

(about 1 liter) until the washes were neutral. The dl-2-(N-methylamino)isocamphane hydrochloride was air dried at room temperature. Obtained, 156.5 g of product melting with decomposition at 249°C.

References

Merck Index 5595 Kleeman & Engel p. 538 I.N. p. 581 REM p. 849

Pfister, K., III and Stein, G.A.; U.S. Patent 2,831,027; April 15, 1958; assigned to Merck & Co., Inc.

MECILLINAM

Therapeutic Function: Antibacterial

Chemical Name: 6-[[(Hexahydro-1H-azepin-1-yl)methylene]amino]-3,3-dimethyl-7-oxo-4thia-1-azabicyclo [3,2.0] heptane-2-carboxylic acid

Common Name: Amdinocillin

Structural Formula:

Chemical Abstracts Registry No.: 32887-01-7

Trade Name	Manufacturer	Country	Year Introduced
Selexidin	Leo	U.K.	1979
Celfuron	Roche	_	-

Raw Materials

Hexamethylene imine Chloral Trimethylsilyl 6-amino penicillinate Oxalyl chloride

Manufacturing Process

The starting material N-formylhexamethyleneimine was prepared from hexamethyleneimine and chloral.

12.7 g of N-formylhexamethyleneimine were dissolved in 250 ml of dry ether. While stirring and cooling, 8.5 ml of exally chloride in 50 ml of dry ether were added dropwise, whereafter the mixture was stirred overnight at room temperature. The precipitated amide chloride was filtered off and washed with dry ether, and was placed in an exsiccator.

A solution of the amide chloride (4.6 g) in dry, alcohol-free chloroform (20 ml) was added slowly to a solution of trimethylsilyl 6-amino-penicillanate (7.2 g) and triethylamine (3.5 ml) in dry, alcohol-free chloroform (50 ml) with stirring and cooling to -70°C. The temperature was raised to 0°C during 1½ hours. The solution was evaporated to dryness in vacuo and the residue was triturated with dry ether (200 ml). The precipitate was filtered off and washed with dry ether. The filtrate was diluted with ether (200 ml). 2-Butanol (2.8 ml) was added dropwise with stirring and cooling to 0°C. The stirring was continued for ¼ hour at 0°C, whereupon the precipitate was filtered off, washed with ether and dried. It was a white, amorphous powder, soluble in water.

References

Merck Index 390 Kleeman & Engel p. 539 OCDS Vol. 3 p. 208 (1984) DOT 11 (11), 489 (1975) and 16 (6) 193 (1980)

I.N. p. 582 REM p. 1201

Lund, F.J.; British Patent 1,293,590; October 18, 1972; and U.S. Patent 3,957,764; May 18, 1976; both assigned to Lovens Kemiske Fabrik Produktionsakties Lab (Denmark)

MECLIZINE HYDROCHLORIDE

Therapeutic Function: Antinauseant

Chemical Name: 1-[(4-Chlorophenyl)phenylmethyl]-4-[(3-methylphenyl)methyl]piperazine

hydrochloride

Common Name: Meclozin; histamethizine

Structural Formula:

Chemical Abstracts Registry No.: 1104-22-9; 569-65-3

Trade Name	Manufacturer	Country	Year Introduced
Antivert	Roerig	U.S.	1957
Ru-Vert M	Reid Provident	U <i>.</i> S.	1983
Ancolan	Duncan Flockhart	U.K.	-
Bonamine	Pfizer	W. Germany	_
Calmonal	Heyden	W. Germany	_
Chiclida	Torpens	Spain	
Diadrii	Pliva	Yugoslavia	_
Duremesan	Streuli	Switz.	_
Itinerol	Galenica	Switz.	_
Mecazine	Barlow Cote	Canada	
Navicalur	Delagrange	France	_
Peremesin	Heyden	W. Germany	
Postafen	U.C.B.	W. Germany	_
Supermesin	M.P.Q.	Spain	_
Suprimal	A.C.F.	Neth.	_
Taizer	Pfizer Taito	Japan	_
V-Cline	Vangard	U.S.	_
Veritab	Vista	U.S.	_
Vertizine	Merchant	U.S.	

Raw Materials

1-p-Chlorobenzhydryl-4-benzyl-piperazine Hydrogen Sodium amide m-Methyl benzyl chloride

Manufacturing Process

32.3 g of 1-p-chlorobenzhydryl-4-benzyl-piperazine, dissolved in 300 cm³ of alcohol are heated in an autoclave vessel, in the presence of Raney nickel, under a pressure of 100 kg H₂ at about 150°C for 6 hours. The catalyst is filtered, the solvent is evaporated and the residue is fractionated under a high vacuum. p-Chlorobenzylhydryl-piperazine (BP 180° to 185°C/1 mm Hg) is isolated with a yield of 75%. Then finely ground NaNH₂ is added. The mixture is heated under reflux for 1 hour, the mass is cooled and a molar equivalent of m-methyl benzyl chloride is added.

The solvent is evaporated and the residue is dissolved in chloroform. This solution is washed with a saturated solution of K2CO3 and dried on K2CO3. The solvent is evaporated and the residue is distilled under high vacuum. The product of the condensation distills near 230°C at 2 mm Hg pressure and the corresponding dihydrochloride melts at 217° to 224°C.

References

Merck Index 5598 Kleeman & Engel p. 540 PDR pp. 993, 1403, 1449, 1520, 1606, 1999 OCDS Vol. 1 p. 59 (1977) I.N. p. 583

REM p. 808

Morren, H.; U.S. Patent 2,709,169; May 24, 1955; assigned to Union Chimique Belge Société Anonyme, Belgium

MECLOFENAMIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: N-(2,6-Dichloro-3-methylphenyl)anthranilic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 644-62-2; 6385-02-0 (Sodium Salt)

Trade Name	Manufacturer	Country	Year Introduced
Meclomen	Warner Lambert	U.S.	1980
Meclomen	Parke Davis	Switz.	1982
Arquel	Parke Davis	-	

Raw Materials

Potassium o-bromobenzoate 2.6-Dichloro-3-methylaniline N-ethylmorpholine

Manufacturing Process

A mixture consisting of 22.7 g potassium o-bromobenzoate, 16.6 g 2,6-dichloro-3-methylaniline, 12 ml N-ethylmorpholine, 60 ml diethylene glycol dimethyl ether, and 1.0 g anhydrous cupric bromide is heated in a nitrogen atmosphere at 145°C to 155°C for 2 hours. The reaction mixture is diluted with 60 ml diethylene glycol dimethyl ether and acidified with 25 ml concentrated hydrochloric acid. The acidic mixture is diluted with 100 ml of water and the liquid phase decanted from the insoluble oil. The insoluble oil is stirred with methanol and the crystalline N-(2,6-dichloro-3-methylphenyl)anthranilic acid which separates is collected and washed with methanol. The product, after recrystallization from acetone-water mixture, melts at 248°C to 250°C.

References

Merck Index 5600 DFU 3 (4) 307 (1978) Kleeman & Engel p. 539 PDR p. 1366 OCDS Vol. 1 p. 110 (1977) & 2,88 (1980) DOT 17 (6) 250 (1981) I.N. p. 31 REM p. 1118

Scherrer, R.A. and Short, F.W.; U.S. Patent 3,313,848; April 11, 1967; assigned to Parke-Davis & Co.

MEDAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2898-12-6

Trade Name	Manufacturer	Country	Year Introduced
Nobrium	Roche	Italy	1969
Nobrium	Roche	W. Germany	1969
Nobrium	Roche	France	1970
Lesmit	Shionogi	Japan	1971
Nobrium	Roche	Japan	1971
Nobrium	Roche	U.K.	1971
Azepamid	Taiyo	Japan	_
Becamedic	Nemi	Argentina	-
Benson	Farber-R.E.F.	Italy	-
Cerase	Torii	Japan	-
Diepin	Biosintetica	Brazil	-
Enobrin	I.E. Kimya Evi	Turkey	-

Trade Name	Manufacturer	Country	Year Introduced
Esmail	Richter	Mexico	_
Glorium	Teva	Israel	_
Kobazepam	Nihon Yakuhin	Japan	-
Lerisum	Poli	İtaly	_
Medaurin	Isis	Yugoslavia	_
Megasedan	Andrew	Spain	_
Metonas	Kanto	Japa n	_
Mezepan	Hosbon	Brazil	_
Narsis	Sumitomo	Japan	-
Nivelton	Lemonier -	Argentina	_
Nobraskin	Fako	Turkey	_
Nobral	Nobel	Turkey	
Pazital	Andromaco	Spain	-
Psiquium	Sintofarma	Brazil	_
Rudotel	Arzneimittelwerk Dresden	E. Germany	-
Sedepam	Sawai	Japan	_
Serenium	Richter	Brazil	-
Tranqulax	Hokuriku	Japan	
Vegatar	Orion	Finland	_

5-Chloro-N-methylanthranilic acid Bromoethylamine hydrobromide Calcium carbonate Sodium hydroxide Phosphorus oxychloride

Oxalic acid Acetic anhydride Bromobenzene Magnesium

Manufacturing Process

(A) Preparation of 4-Acetyl-7-Chloro-1,2,3,4-Tetrahydro-1-Methyl-5H-1,4-Benzodiazepin-5one: A mixture of 68.5 g (0.37 mol) of 5-chloro-N-methylanthranilic acid, 51 g (0.51 mol) of calcium carbonate, 76 g (0.37 mol) of bromoethylamine hydrobromide and 2.5 liters of water was stirred and heated under reflux for 3 hours. A solution of 23.4 g (0.26 mol) of anhydrous oxalic acid in 250 ml of water was slowly added to the refluxing mixture. The precipitated calcium oxalate was filtered off, and the filtrate adjusted to pH 7 with concentrated ammonium hydroxide. The filtrate was then concentrated to dryness in vacuo and the residue heated on the steam bath with 400 ml of 6 N ethanolic hydrogen chloride until the residue was crystalline. Filtration gave 122 g of N-(aminoethyl)-5-chloro-N-methylanthranilic acid hydrochloride as a solid.

A mixture of 100 g of this solid and 1 liter of acetic anhydride was stirred and heated under reflux for 1.5 hours and then allowed to stand for 18 hours at room temperature. The excess acetic anhydride was removed in vacuo, and the residue was treated with one liter of water and ice and sufficient sodium bicarbonate to make neutral. The solid was collected, sucked dry on the filter, and triturated with hot ethanol. The ethanol solution on cooling gave 30.8 g of 4-acetyl-7-chloro-1,2,3,4-tetrahydro-1-methyl-5H-1,4-benzodiazepin-5-one.

- (B) Preparation of 7-Chloro-1,2,3,4-Tetrahydro-1-Methyl-5H-1,4-Benzodiazepin-5-one: A mixture of 25.25 q (0.1 mol) of 4-acetyl-7-chloro-1,2,3,4-tetrahydro-1-methyl-5H-1,4-benzodiazepin-5-one, 33.3 ml (0.1 mol) of 3 N sodium hydroxide and 350 ml of ethanol was heated under reflux for 15 minutes and then concentrated to dryness in vacuo. The residue was treated with 500 ml of water, collected and washed with ethanol to give 20.2 g of 7-chloro-1,2,3,4-tetrahydro-1-methyl-5H-1,4-benzodiazepin-5-one.
- (C) Preparation of 7-Chloro-2,3-Dihydro-1-Methyl-5-Phenyl-1H-1,4-Benzodiazepine: A mixture of 4.7 g (22.6 mol) of 7-chloro-1,2,3,4-tetrahydro-1-methyl-5H-1,4-benzodiazepin-5one and 100 ml of phosphorus oxychloride was heated in an oil bath at 100°C for 15 minutes. The solution was concentrated to dryness in vacuo. The residue was partitioned

methyl-1H-1,4-benzodiazepine.

The residue was dissolved in 75 ml of tetrahydrofuran, treated with charcoal, and sodium sulfate and filtered. This solution was added to a solution in 250 ml of tetrahydrofuran of phenyl magnesium bromide prepared from 17.7 ml (0.17 mol) of bromobenzene. This mixture was stirred and heated under reflux for 1 hour. It was then cooled and diluted with 400 ml of ether and sufficient 3 N hydrochloric acid to make it acidic. The aqueous phase was separated, adjusted to pH 8 with 3 N sodium hydroxide and extracted 3 times with 200 ml of ether. The ether extracts were combined, washed with water and dried over sodium sulfate. The residue left on removal of the ether in vacuo was crystallized from petroleum ether to give 3.3 g of 7-chloro-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepine, according to U.S. Patent 3,624,703.

A variety of alternative routes are outlined by Kleeman & Engel.

References

Merck Index 5609 Kleeman & Engel p. 542 OCDS Vol. 1 p. 368 (1977) DOT 5 (4) 150 (1969) & 9 (6) 238 (1973)

I.N. p. 584

Reeder, E. and Sternbach, L.H.; U.S. Patent 3,109,843; November 5,1963; assigned to Hoffmann-LaRoche Inc.

Archer, G.A. and Sternbach, L.H.; U.S. Patent 3,131,178; April 28, 1964; assigned to Hoffmann-LaRoche Inc.

Reeder, E. and Sternbach, L.H.; U.S. Patent 3,141,890; July 21, 1964; assigned to Hoffmann-LaRoche Inc.

Reeder, E. and Sternbach, L.H.; U.S. Patent 3,144,439; August 11, 1964; assigned to Hoffmann-LaRoche Inc.

Field, G.F., Sternbach, L.H. and Zally, W.J.; U.S. Patent 3,624,073; November 30, 1971; assigned to Hoffmann-LaRoche Inc.

MEDIGOXIN

Therapeutic Function: Cardiotonic

Chemical Name: 3β ,12 β ,14 β -Trihydroxy-5 β -card-20(22)-enolide-3-(4'''-o-methyltridigitoxo-

side)

Common Name: \(\beta\)-Methyldigoxin

Chemical Abstracts Registry No.: 30685-43-9

Trade Name	Manufacturer	Country	Year Introduced
Lanitop	Boehr-Mann.	W. Germany	1972
Lanitop	Boehr-Mann.	Italy	1973
Lanitop	Roussel	U.K.	1976
Lanirapid	Yamanouchi	Japan	1979
Cardiolan	Tosi-Novara	Italy	_
Digicor	Lek	Yugoslavia	_
Intensain-Lanitop	Boehr-Mann.	W. Germany	-

Raw Materials

Digoxin

Methyl mesylate

Manufacturing Process

Digoxin (10 g) is dissolved in a mixture of dimethylformamide (80 ml) and dioxane (80 ml) and then strontium hydroxide (3.5 g) and aluminum oxide (10 g, activity 1–2 according to Brockmann) are added. To this suspension methyl mesylate (9.3 g), dissolved in dioxane (80 ml) is added dropwise within one hour in the presence of an inert gas and under stirring. After the addition of the methylating agent is completed, the reaction mixture is stirred for further 5 hours, then chloroform (160 ml) is added, the precipitate is filtered off, washed with chloroform (100 ml), pyridine (40 ml) is added to the filtrate, which is then concentrated in vacuo to an oily residue. The latter is diluted with chloroform (300 ml) and extracted four times with distilled water (40 ml portions). The combined chloroform extracts are dried with anhydrous sodium sulfate and then concentrated in vacuo to a dry residue. Therefrom β -methyldigoxin is eluted on a SiO₂ column with a chloroform/ethanol mixture (93:7). After recrystallization from ethyl acetate, saturated with water, the yield of β -methyldigoxin is 6.7 g; MP 225°C to 229°C. IR spectrum is identical with the spectrum of standard methyldigoxin.

References

Merck Index 3148 Kleeman & Engel p. 544 DOT 12 (8) 319, 323 (1976)

I.N. p. 627

Pelan, B., Milohnoja, M. and Pezdirc, M.; U.S. Patent 4,145,528; March 20, 1979; assigned to L.E.K. Tovarna Farmacevtskih in Kemicnih Izdelkov (Yugoslavia)

MEDROGESTONE

Therapeutic Function: Progestin

Chemical Name: 6,17-dimethylpregna-4,6-diene-3,20-dione

Common Name: 6,17α-dimethyl-6-dehydroprogesterone

Structural Formula:

Chemical Abstracts Registry No.: 977-79-7

Trade Name	Manufacturer	Country	Year Introduced
Colpro	Ayerst	Italy	1970
Colprone	Auclair	France	1972
Prothil	Kali-Chemie	W. Germany	1975
Colpron	Arcana	Austria	_

Raw Materials

 17α -Methyl- 17β -carbomethoxyandrost-5-ene- 3β -ol Hydrogen peroxide N-Bromosuccimide Acetic anhydride Methyl magnesium bromide Chromic acid

Manufacturing Process

The manufacturing process as described in U.S. Patent 3,170,936 uses the readily available methyl 3β -hydroxy- 17α -methyl- Δ^5 -etienate (I), described by Plattner in Helv. Chim. Acta, vol. 31, p 603 (1948), as the starting material. The etienic acid ester (I) may also be called 17α -methyl- 17β -carbomethoxyandrost-5-ene- 3β -ol.

 3β , 5α , 6β . Trihydroxy-17 α -Methyl-17 β -Carbomethoxyandrostane (II): 5 g of 17 α -Methyl-17 β carbomethoxyandrost-5-ene-3β-ol (I) is dissolved in formic acid (50 ml) and heated on the steam bath for 10 minutes. The solution is cooled to room temperature and a crystalline solid precipitates. This is stirred, 30% hydrogen peroxide (5 ml) is added, and the reaction mixture is left at room temperature for 2 hours. The clear solution is poured into water (300 ml) and the solid which precipitates is filtered.

It is dissolved in hot methanol and heated on the steam bath with 10% methanolic potassium hydroxide solution (15.8 ml) for 10 minutes. Then more potassium hydroxide solution (2 ml) is added, the solution is cooled and on dilution with water a solid (II), MP 245° to 255°C, is obtained. A second crop is obtained from the mother liquors. Several recrystallizations from acetone yield an analytical sample, MP 262° to 265°C, $[\alpha]_D^{24}$ is -2.1°.

3β-Acetoxy-5α-Hydroxy-17α-Methyl-17β-Carbomethoxyandrostane-6-one (IIIb): 3β,5α,6β-Trihydroxy- 17α -methyl- 17β -carbomethoxyandrostane (11, 5.2 g) is dissolved in methanol (105 ml) to which ether (105 ml) and water (84 ml) are added. Then N-bromosuccinimide (5.2 g) is added with stirring and the clear solution is left in the refrigerator for 3 hours. The ether is removed under reduced pressure at room temperature and a crystalline solid (IIIa) separates, MP 268° to 272°C.

The above substance is dissolved in pyridine (15 ml) and acetic anhydride (7.5 ml), and heated on the steam bath for ½ hour. The product (IIIb) crystallizes from aqueous ethanol in leaflets, MP 237° to 239°C. An analytical sample has MP 241° to 243°C.

3β.5α.6β-Trihydroxy-6α.17α-Dimethyl-17β-Carbomethoxyandrostane (IV): 3β-Acetoxy-5αhydroxy- 17α -methyl- 17β -carbomethoxyandrostan-6-one (III, 1.004 g) is dissolved in dry benzene (25 ml) and methyl magnesium bromide solution in ether (3 M, 10 ml) is added. The reaction mixture is diluted with dry tetrahydrofuran (25 ml) and allowed to stand at room temperature for 20 hours. Excess Grignard reagent is quenched by adding a saturated solution of ammonium chloride. The organic layer is separated and the aqueous layer is extracted with ethyl acetate.

After washing the combined extracts with ammonium chloride solution and water and working up in the usual way a white solid (IV) is obtained which after one recrystallization from aqueous methanol has MP 242° to 243°C. The infrared spectrum of this compound indi-

cates the presence of a carbomethoxy group (1,730 cm⁻¹) and disappearance of the 6-keto group together with the presence of an ester group (1,727 cm⁻¹). This substance is used without further purification for the next step.

 3β , 5α , 6β -Trihydroxy- 6α , 17α -Dimethylpregnan-20-one (V): Crude 3β , 5α , 6β -trihydroxy- 6α ,- 17α -dimethyl- 17β -carbomethoxyandrostane (IV, 773 mg) is dissolved in dry benzene (25 ml) and tetrahydrofuran (freshly distilled over lithium aluminum hydride, 25 ml). To the stirred solution under dry N₂ there is added methyl magnesium bromide solution in ether (3 M, 10 ml) over a period of 10 minutes. Then the ether and tetrahydrofuran are almost all distilled and the resulting solution is refluxed for 3 hours (solid precipitates during the reaction). The reaction mixture is cooled and worked up in the same way as in the previous experiment leaving a white solid (V) with an infrared spectrum which indicates the presence of a 20-ketone group (1,690 cm⁻¹), a sample of which is recrystallized to MP 238° to 240°C.

Analysis confirmed the empirical formula C₂₃H₃₈O₄·H₂O: Required: C, 69.60%; H, 10.17%. Found: C, 69.90%; H, 10.15%.

Alternatively, 25.0 g of either 3β ,5 α -dihydroxy-17 α -methyl-17 β -carbomethoxyandrostan-6one (IIIa) or 25.0 g of its 3\beta-acetate (IIIb), are dissolved in dry tetrahydrofuran (1,250 ml, freshly distilled over lithium aluminum hydride) and dry benzene (2,000 ml) is added. Methyl magnesium bromide in ether solution (3 M, 750 ml) is added to the stirred solution and the resulting mixture is stirred at room temperature for 16 hours. An additional quantity of methyl magnesium bromide solution in ether (2 M, 375 ml) is added, and 1,250 ml of the solvent mixture are distilled off. The resulting mixture is refluxed for 5 hours and worked up as described above, yielding compound (V) as a colorless oil.

 5α , 6β -Dihydroxy- 6α , 17α -Dimethylpregnane-3,20-dione (VI): Crude 3β , 5α , 6β -trihydroxy-6a.17a-dimethylpregnan-20-one (V, 650 mg) is dissolved in acetone (freshly distilled over potassium permanganate, 150 ml) and cooled in an ice-water bath with stirring. Then excess chromic acid solution (8 N) is added and stirring is continued at room temperature for 4 minutes. The reaction mixture is poured into water and extracted with ethyl acetate. The combined extracts are washed with dilute sodium bicarbonate solution and water and then dried over magnesium sulfate. Removal of the solvent leaves a white solid (VI). This crude product is used for the next step. Its IR spectrum shows a strong band at 1,705 cm⁻¹. A sample is recrystallized to MP 243° to 245°C (dec.).

6,17 α -Dimethyl-4,6-Pregnadiene-3,20-dione (VII): 5α ,6 β -Dihydroxy- 6α ,17 α -dimethylpregnane-3,20-dione (VI, 553 mg) is dissolved in absolute ethanol (60 ml) and two drops of concentrated hydrochloric acid are added. This solution is heated on a steam bath for 45 minutes, cooled, diluted with water and extracted with ether. The combined extracts are washed with dilute sodium bicarbonate solution and water and subsequently dried over magnesium sulfate. After the solvent has been removed a syrup remains and the UV spectrum of this substance indicates the presence of a $\Delta^{4,6}$ -ketone. Elution of this material over alumina (Woelm, Grade III, 25 g) with 1:1 hexane-benzene gives a crystalline substance. MP 138° to 141°C which, after one recrystallization from ether, has an infrared spectrum identical to that of an authentic sample of 6,17α-dimethyl-4,6-pregnadiene-3,20dione (VII).

References

Merck Index 5613 Kleeman & Engel p. 545 OCDS Vol. 1 p. 182 (1977)

I.N. p. 586

Deghenghi, R.; U.S. Patent 3,133,913; May 19, 1964; assigned to American Home Products Corporation

Morand, P.F. and Deghenghi, R.; U.S. Patent 3,170,936; February 23, 1965; assigned to American Home Products Corporation

Deghenghi, R.; U.S. Patent 3,210,387; October 5, 1965; assigned to American Home Products Corporation

MEDROXYPROGESTERONE ACETATE

Therapeutic Function: Progestin

Chemical Name: 17-acetoxy-6α-methyl-pregn-4-ene-3,20-dione

Common Name: 6α-methyl-17α-acetoxyprogesterone

Structural Formula:

Chemical Abstracts Registry No.: 71-58-9; 520-85-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Provera	Upjohn	U. S .	1959
Farlutal	Carlo Erba	France	1962
Provest	Upjohn	U. S .	1964
Amen	Carnrick	U.S.	1975
Unison	Reid-Provident	U.S.	1978
Mepred	Savage	U.S.	1978
Curretab	Reid-Provident	U.S.	1979
Farlutal	Carlo Erba	U.K.	1982
Depcorlutin	O'Neal, Jones & Feldman	U.S.	_
Depo-Clinovir	Upjohn	W. Germany	_
Depo-Progevera	Alter	Spain	_
Depo-Provera	Upjohn	U.S.	_
Gestapuran	Lovens	Denmark	_
Hysron	Kyowa	Japan	
Luteocrin	Richter	Italy	_
Luteodione	Panther-Osfa	Italy	_
Luteos	Ion	Italy	_
Lutopolar	Farmos	Finland	_
Lutoral	Midy	Italy	_
Metilgestene	Farmila	Italy	_
Nadigest	Streuli	Switz.	-
Oragest	lkapharm	Israel	_
Petogen	Petersen	S. Africa	_
P-Medrate	Tutag	U.S.	-
Progevera	Alter	Spain	_
Sodelut G	Sodex	Switz.	_

Raw Materials

17α-Hydroxyprogesterone	Ethylene glycol
Methyl magnesium bromide	Peracetic acid
Sulfuric acid	Acetic anhydride

Manufacturing Process

Preparation of 17α-Hydroxyprogesterone 3,20-Bis-(Ethylene Ketal): A solution was prepared containing 50.0 g of 17α -hydroxyprogesterone in 1,000 ml of benzene, 100 ml of ethylene glycol and 2.5 g of p-toluenesulfonic acid monohydrate. This mixture was refluxed for a period of 17 hours using a calcium carbide water-trap to remove the water formed in the reaction. After this period of reflux 6.5 ml of pyridine was added to the solution, and the mixture cooled to room temperature.

The lower glycol layer was separated and washed with benzene. The benzene layer and the benzene washings were combined and the combined solution was divided into two equal portions, one of which was used for the isolation of 17α -hydroxyprogesterone 3,20bis-(ethylene ketal) as follows. The benzene solution was washed with 5% sodium carbonate solution, water and saturated sodium chloride solution. After being dried over anhydrous magnesium sulfate the solution was concentrated to dryness at reduced pressure, The residue was recrystallized by taking up in hot methylene chloride, adding acetone and boiling to remove the methylene chloride until a final volume of about 200 ml was reached.

The solution was then refrigerated overnight and 17.8 g of crystals were removed by filtration. A second crop was obtained yielding 3.7 g of compound. The total yield of 17α hydroxyprogesterone 3,20-bis-(ethylene ketal) was 20.3 g (64.3% of theory). Recrystallization of the crude 17α -hydroxyprogesterone 3,20-bis-(ethylene ketal) from methanol gave the pure bisketal of MP 209° to 211°C.

Preparation of $5\alpha,6\alpha$ -Oxido-17 α -Hydroxyallopregnane-3,20-dione 3,20-Bis-(Ethylene Ketal): A solution was prepared by heating 19.96 g (0.0477 mol) of 17α -hydroxyprogesterone 3,20-bis-(ethylene ketal) and 500 ml of benzene. After the solution was effected the flask was cooled to 5°C and a mixture of 3.68 g (0.0449 mol) of sodium acetate and 174 ml of 40% peracetic acid was added with stirring. The reaction mixture was stirred in the ice bath for 3 hours. The lower peracid layer was separated, diluted with water and extracted twice with benzene.

The upper layer was neutralized by the addition of cold 10% sodium hydroxide solution while stirring in an ice bath. The rate of addition of the sodium hydroxide was regulated to keep the temperature below 10°C. The benzene extracts from the peracid layer were combined and washed with cold 10% sodium hydroxide solution and with saturated sodium chloride solution. All the aqueous layers were washed again with the same portion of benzene. The combined benzene layers were dried over anhydrous magnesium sulfate and concentrated to dryness at reduced pressure.

The residue was recrystallized from acetone using methylene chloride to aid in solution. The crystalline material was removed by filtration and was recrystallized from methylene chloride-acetone to yield a total of 8 g of 5α.6α-oxido-17α-hydroxyallopregnane-3,20dione 3,20-bis-(ethylene ketal) of MP 211° to 215°C. For analytical purposes, another recrystallization from methylene chloride-acetone gave pure 5α,6α-oxido-17α-hydroxyallopregnane-3,20-dione 3,20-bis-(ethylene ketal) of MP 216° to 218.5°C.

Preparation of 5α , 17α -Dihydroxy- 6β -Methylallopregnane-3, 20-dione 3, 20-Bis-(Ethylene Ketal): To a solution of 91.6 g of 5α,6α-oxido-17α-hydroxyallopregnane-3,20-dione 3,20bis-(ethylene ketal) in 3,500 ml of freshly distilled tetrahydrofuran was added 1,170 ml of commercial 3 molar methyl magnesium bromide in ether solution. The reaction mixture was boiled to remove 1,800 ml of solvent by distillation and thereafter 1,000 ml of freshly distilled tetrahydrofuran was added.

Boiling was continued under reflux for a period of 16 hours. The solution was then concentrated to about one-half its original volume by distillation and was poured slowly with vigorous stirring into a large volume of ice water containing 340 g of ammonium chloride. The aqueous solution was saturated with sodium chloride and extracted with benzene. The benzene extract was washed with saturated brine, and both aqueous layers were washed again with the same portions of benzene.

The combined benzene layers were dried over anhydrous sodium carbonate and the solvent was removed at reduced pressure to give 90.5 g of crude crystalline 5α,17α-dihydroxy-6βmethylallopregnane-3,20-dione 3,20-bis-(ethylene ketal). Half of the residue, 45.2 g, was

recrystallized from acetone and some methylene chloride to give 34.4 g of 5α ,17 α -dihydroxy-6β-methylallopregnane-3,20-dione 3,20-bis-(ethylene ketal). A sample recrystallized from acetone and methylene chloride for analysis melted at 160° to 163°C.

Preparation of 5α,17α-Dihydroxy-6β-Methylallopregnane-3,20-dione: A solution was prepared containing 38.9 g of 5α , 17α -dihydroxy- 6β -methylallopregnane-3,20-dione 3,20-bis-(ethylene ketal) in 389 ml of boiling acetone. Thereto was added 39 ml of 1 N sulfuric acid in portions under swirling and seeding with product. Boiling was continued for a period of 2 minutes and the mixture was allowed to stand at room temperature. Thereafter the mixture was diluted with 1,500 ml of water, chilled and filtered.

The precipitate was washed with water, dilute ammonium hydroxide and water, and dried in a vacuum oven overnight. The yield was 31.2 g which was recrystallized by dissolving in 1,200 ml of dimethylformamide, heating to 150°C, cooling slightly, and adding 12 ml of hot water. The recrystallized 5α , 17α -dihydroxy- 6β -methylallopregnane-3, 20-dione thus obtained was 28.75 g of MP 270° to 275.5°C. After an additional recrystallization from aqueous dimethylformamide, the MP was 274° to 279°C.

Preparation of 6a-Methyl-17a-Hydroxyprogesterone: A suspension was made by introducing 2 g of 5α , 17α -dihydroxy- 6β -methylallopregnane-3, 20-dione into 200 ml of chloroform. The suspension was chilled in an ice bath with stirring, and thereupon hydrogen chloride was bubbled through the reaction mixture for 80 minutes with continuous cooling and stirring. After bubbling in nitrogen for a period of 15 minutes the solution was washed with water, 1 N sodium bicarbonate solution and again with water.

The aqueous layers were rewashed with one portion of chloroform, and the washings combined with the remainder of the chloroform solution. After drying over anhydrous magnesium sulfate, the chloroform solution was concentrated to dryness, then taken up in a small volume of methylene chloride, treated with Magnesol anhydrous magnesium silicate and filtered. Acetone was added to the solution and the solution was boiled to remove the methylene chloride. After the solution was concentrated to a volume of about 15 ml it was chilled and the crystals were collected through filtration. The 1.37 g of crystals so obtained were recrystallized from acetone to give pure 6α-methyl-17α-hydroxyprogesterone of MP 220° to 223.5°C.

Preparation of 6α-Methyl-17-Hydroxyprogesterone 17-Acetate: 1 g of 6α-methyl-17α-hydroxyprogesterone was dissolved in a mixture of 10 ml of acetic acid and 2 ml of acetic anhydride by heating. After solution was effected the mixture was cooled to 15°C, and 0.3 g of p-toluenesulfonic acid was added. After allowing the mixture to stand for a period of 21/2 hours at room temperature, the pink solution was poured into ice water to give an amorphous solid which was recovered by filtration.

The precipitate was washed carefully with water and was then dissolved in 10 ml of methanol and 1.5 ml of methylene chloride. The solution was concentrated to 10 ml, diluted with 0.5 ml of 10% sodium hydroxide, boiled for one minute and cooled. The product, which crystallized on cooling, was recrystallized to give flakes of 6α-methyl-17α-hydroxyprogesterone 17-acetate, having a MP 205° to 209°C, according to U.S. Patent 3,147,290.

References

Merck Index 5614 Kleemen & Engel p. 546 PDR pp. 777, 1447, 1839, 1858 OCDS Vol. 1 pp. 180, 186 (1977) & 2, 165 (1980) DOT 4 (1) 14 (1968) I.N. p. 586 REM p. 992

Miremontes, L.E., Romero, M.A. and Farjat, F.A.; U.S. Patent 3,000,914; September 19, 1961; assigned to G.D. Searle & Co.

de Ruggieri, P. and Ferrari, C.; U.S. Patent 3,043,832; July 10, 1962; assigned to Ormonoterapia Richter S.p.A., Italy

Camerino, B., Modelli, R., Patelli, B., Sala, G. and Baldratti, G.; U.S. Patent 3,061,616; October 30, 1962; assigned to Societa Farmaceutici Italia, Italy

Patchett, A.A. and Hoffman, F.G.; U.S. Patent 3,084,174; April 2, 1963; assigned to Merck & Co., Inc.

Beyler, R.E.; U.S. Patent 3,105,840; October 1, 1963; assigned to Merck & Co.

Spero, G.B.; U.S. Patent 3,147,290; Saptember 1, 1964; assigned to The Upjohn Company

MEDRYSONE

Therapeutic Function: Glucocorticoid

Chemical Name: 11β -hydroxy- 6α -methylpregn-4-ene-3,20-dione

Common Name: Hydroxymesterone; 6α -methyl- 11β -hydroxyprogesterone

Structural Formula:

Chemical Abstracts Registry No.: 2668-66-8

Trade Name	Manufacturer	Country	Year Introduced
нмѕ	Allergan	U.S.	1970
Visudrisone	Italseber	Italy	1970
Spectamedryn	Pharm-Allergan	W. Germany	1975
Medrysone Faure	Faure	France	1976
Ipoflogin	Tubi Lux	Italy	-
Medrifar	Farmila	Italy	-
Medritonic	Liorens	Spain	_
Medroptil	Farmigea	Italy	_
Ophthocortin	Winzer	W. Germany	
Sedestroi	Poen	Argentina	-

Raw Materials

11-Keto-6β-methylprogesterone Ethylene glycol Lithium aluminum hydride

Manufacturing Process

Preparation of 11-Keto-66-Methylprogesterone 3,20-Bis-(Ethylene Ketal): A mixture of 5 g of 11-keto-6β-methylprogesterone [Spero et al, J. Am. Chem. Soc., 78, 6213 (1956)], 503 ml of benzene, 26 ml of ethylene glycol, and 0.152 g of p-toluenesulfonic acid monohydrate was stirred and heated under reflux for 22 hours while water was removed by means of a water trap. The reaction mixture was then cooled to 30°C, 0.4 ml of pyridine was added, and stirring was continued for 10 minutes.

The reaction mixture was then shaken with 110 ml-of water and the organic and aqueous layers separated. The organic layer was dried over sodium sulfate and evaporated under diminished pressure giving a residue. The thus obtained residue was recrystallized from methanol giving 2.68 g of 11-keto-6β-methylprogesterone 3,20-bis-(ethylene ketal) having a MP of 168° to 175°C.

Preparation of 11β-Hydroxy-6α-Methylprogesterone: A mixture of 2.68 g of 11-keto-6βmethylprogesterone 3,20-bis-(ethylene ketal), 161 ml of tetrahydrofuran (previously distilled from lithium aluminum hydride), 1.34 g of lithium aluminum hydride and 14.5 ml of absolute ether was stirred and refluxed under nitrogen for 1.5 hours, then 27 ml of water was added cautiously, to decompose excess hydride. The resulting mixture was filtered and the filter cake was washed with 135 ml of ether. The combined filtrate and wash was shaken with 135 ml of water and separated. The aqueous layer was washed with four 55-ml portions of ether, then the organic layer and the washes were combined, washed once with water, and evaporated to dryness under diminished pressure leaving a tan residue.

The thus-obtained residue was dissolved in a mixture of 268 ml of methanol and 26.8 ml of 3 N aqueous sulfuric acid and heated under reflux for 40 minutes, with a color change from yellow to green. The reaction mixture was then cooled, neutralized by addition of 127 ml of 5% sodium bicarbonate solution, and concentrated under reduced pressure until almost all the methanol was removed. The resulting solid was removed by filtration, washed with water, dried, and twice crystallized from ethyl acetate to give 1.1 g of 11βhydroxy-6α-methylprogesterone having a MP of 155° to 158°C, according to U.S. Patent 2,864,837.

References

Merck Index 5616 Kleeman & Engel p. 548 OCDS Vol. 2 p. 200 (1980) DOT 6 (5) 184 (1970) I.N. p. 587 REM p. 972

Sebek, O.K., Spero, G.B. and Thompson, J.L.; U.S. Patent 2,864,837; assigned to The Upiohn Company

Spero, G.B. and Thompson, J.L.; U.S. Patent 2,968,655; January 17, 1961; assigned to The Upjohn Company

MEFENAMIC ACID

Therapeutic Function: Analgesic

Chemical Name: 2-[2,3-dimethylphenyl)amino] benzoic acid

Common Name: N-(2,3-xylyl)anthranilic acid

Structural Formula:

Chemical Abstracts Registry No.: 61-68-7

Trade Name	Manufacturer	Country	Year Introduced
Ponstan	Parke Davis	U.K.	1963
Ponalar	Parke Davis	W. Germany	1964

Trade Name	Manufacturer	Country	Year Introduced
Ponstyl	Parke Davis	France	1967
Ponstel	Parke Davis	U.S.	1967
Bafameritin	Hishiyama	Japan	_
Bonabol	Sawai	Japan	-
Fenamin	Yurtogłu	Turkey	_
Lysaigo	Schiapparelli	Italy	_
Mefacit	Polfa	Poland	
Mefedolo	lon	Italy	-
Parkemed	Parke Davis	W. Germany	-
Rolan	Nobel	Turkey	
Spantac	UJI	Japan	
Vialidin	Italfarmaco	Italy	_

Potassium o-bromobenzoate 2,3-Dimethylaniline

Manufacturing Process

A mixture of 800 g of potassium o-bromo-benzoate, 1,500 ml of bis-(2-methoxyethyl)ether, 355 g of N-ethyl-morpholine, 375 g of 2,3-dimethylaniline, and 30 g of cupric acetate is heated gradually with stirring to 140°C over a period of 90 minutes. The hot reaction mixture is then acidified with 260 ml of concentrated hydrochloric acid and the acidified mixture divided into 2 equal portions. One liter of water is added to each portion and the mixtures allowed to cool. The N-(2,3-dimethylphenyl)anthranilic acid which separates upon cooling is collected by filtration and recrystallized from bis(2-methoxyethyl)ether; MP 229° to 230°C (corr.).

References

Merck Index 5617 Kleeman & Engel p. 548

PDR p. 1383

OCDS Vol. 1 p. 110 (1977) & 2, 280 (1980)

DOT 1 (2) 59 (1965)

I.N. p. 31

REM p. 1118

Scherrer, R.A.; U.S. Patent 3,138,636; June 23, 1964; assigned to Parke, Davis & Company

MEFENOREX HYDROCHLORIDE

Therapeutic Function: Anorexic

Chemical Name: N-(3-Chloropropyl)-\alpha-methylphenylethylamine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5586-87-8; 17243-57-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pondinil	Roche	France	1970
Rondimen	Homburg	W. Germany	1976
Anexate	Roche	U.S.	_
Doracil	Gador	Argentina	_

B-Chloropropional dehyde 1-Phenyl-2-aminopropane Hydrogen

Manufacturing Process

9.5 parts of β -chloropropional dehyde were added slowly, at a temperature of 0°C, to a solution of 31.5 parts of 1-phenyl-2-aminopropane in 150 parts of methanol. Thereafter, 0.2 part of platinum oxide was added to the reaction mixture following which the mixture was reacted with hydrogen, in a shaking vessel, until the theoretical quantity of hydrogen had been taken up. When the hydrogenation reaction was completed, the catalyst was removed by filtration and the filtrate neutralized with hydrochloric acid. Subsequently, the filtrate was evaporated to dryness and recrystallized from isopropyl alcohol. The thus-obtained N-(3-chloropropyl)-α-methylphenethylamine hydrochloride melted at 128°C to 130°C.

References

Merck Index 5618 Kleeman & Engel p. 549 OCDS Vol. 2 p. 47 (1980) DOT 6 (4) 133 (1970) I.N. p. 587

Schuler, W.A., Schlichtegroll, A.V., Beschke, H. and Klingler, K.H.; U.S. Patent 3,485,926; December 23, 1969; assigned to Hoffmann-LaRoche, Inc.

MEFRUSIDE

Therapeutic Function: Diuretic

Chemical Name: 4-chloro-N'-methyl-N'[tetrahydro-2-methyl-2-furanyl)methyl]-1,3-benzene-

disulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7195-27-9

Trade Name	Manufacturer	Country	Year Introduced
Baycaron	Bayer	W. Germany	1967
Mefrusal	Bayropharm	Italy	1969
Baycaron	Bayer	U.K.	1971
Baycaron	Yoshitomi	Japan	1975
Bendigon	Bayer	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Caprinol	Bayer	W. Germany	_
Sali-Presinol	Bayer	W. Germany	_

α-methyl-α-cyanotetrahydrofuran Hydrogen Dimethyl sulfate 4-Chloro-3-sulfamyl benzene sulfochloride

Manufacturing Process

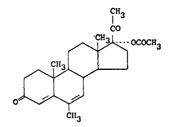
By hydrogenation of α -methyl- α -cyanotetrahydrofuran with Raney nickel as catalyst, α -methyl- α -tetrahydrofurfuryl amine is obtained (BP 48°C/12 mm Hg) which is alkylated by dimethyl sulfate to give α -methyl- α -tetrahydrofurfurylmethylamine (BP 70°C/40 mm Hg). The amine is then reacted with 4-chloro-3-sulfamyl benzene sulfochloride in the presence of an acid acceptor. The mixture is stirred overnight, the solvent (acetone or pyridine) is driven off under vacuum and the residue is recrystallized from alcohol.

References

Merck Index 5621 Kleeman & Engel p. 550 OCDS Vol. 1 p. 134 (1977) I.N. p. 588

Horstmann, H., Wollweber, H. and Meng, K.; British Patent 1,031,916; June 2, 1966; assigned to Farbenfabriken Bayer AG, Germany

Horstmann, H., Wollweber, H. and Meng, K.; U.S. Patent 3,356,692; December 5, 1967; assigned to Farbenfabriken Bayer AG


MEGESTROL ACETATE

Therapeutic Function: Cancer chemotherapy

Chemical Name: 17α -hydroxy-6-methylpregna-4,6-diene-3,20-dione acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 595-33-5

Trade Name	Manufacturer	Country	Year Introduced
Megestat	Bristol	W. Germany	1964
Megace	Bristol	U.K.	1967

Trade Name	Manufacturer	Country	Year Introduced
Megace	Mead Johnson	U.S.	1982
Pallace	Bristol	U.S.	1982
Megestat	Bristol	Switz.	1983
Megeron	Neofarma	Finland	_
Minigest	Novo	_	_
Niagestin	Novo	_	_
Ovarid	Glaxo	_	_
Volplan	B.D.H.	U.K.	

 17α -Acetoxy-3 β -hydroxy-6-methylpregn-5-ene-20-one Aluminum-t-butoxide p-Benzoquinone

Manufacturing Process

The following preparation is given in U.S. Patent 3,356,573. 17α -Acetoxy-3 β -hydroxy-6methylpregn-5-en-20-one (1 g), aluminum tert-butoxide (1 g) and p-benzoquinone (6 g) were dissolved in dry benzene (100 ml) and the mixture was heated under reflux for 30 minutes. The reaction mixture was cooled and washed with potassium hydroxide solution until the benzene layer was colorless. The benzene was washed with water, dried and evaporated to dryness under reduced pressure. The residue crystallized from aqueous methanol to give 17α-acetoxy-6-methylpregna-4,6-diene-3,20-dione, needles, MP 214° to 216°C.

References

Merck Index 5623 Kleeman & Engel p. 550 PDR p. 721 OCDS Vol. 1 p. 180 (1977) DOT 4 (1) 17 (1968) I.N. p. 588 REM p. 993

Dodson, R.M. and Sollman, P.B.; U.S. Patent 2,891,079; June 16, 1959; assigned to G.D. Searle & Co.

Kirk, D.N., Petrow, V. and Williamson, D.M.; U.S. Patent 3,356,573; December 5, 1967; assigned to The British Drug Houses Limited, England

Cross, A.D.; U.S. Patent 3,400,137; September 3, 1968; assigned to Syntex Corporation, Panama

MELITRACEN

Therapeutic Function: Antidepressant

Chemical Name: 3-(10,10-Dimethyl-9(10H)-anthracenylidene)-N,N-dimethyl-1-propanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5118-29-6; 10563-70-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Trausabun	Lusofarma	W. Germany	1965
Meixeran	Lusofarma	Italy	1975
Dixeran	Lundbeck	_	
Thymeol	Takeda	Japan	_

Raw Materials

2-o-Benzoylphenylpropanol-2 Magnesium Dimethylaminopropyl chloride Sulfuric acid Hydrogen chloride

Manufacturing Process

24 g of 2-o-benzovlphenylpropanol-2 (MP 116°C) were dissolved in 250 ml of anhydrous ether and the resulting solution was added dropwise while stirring to a suspension of 0.22 mol of dimethylaminopropylmagnesium chloride in 100 ml of ether. The reaction mixture was refluxed for one hour on a steam bath, and water and dilute hydrochloric acid were added until the reaction was pH 4-5. The aqueous phase was separated and 60 ml of concentrated aqueous ammonia were added. The mixture was extracted with ether, and the ether phase was separated, dried and evaporated in a steam bath. The residue was dissolved in hot petroleum ether and the solution left standing to cool for some time, whereupon 4-dimethylamino-1-phenyi-1-[2-(2-hydroxy-2-propyi)phenyi]-butanoi-1 crystallized out as white crystals which were sucked off. After drying they melted at 88°C to 90°C.

10 g of this compound were cautiously dissolved in 50 ml of concentrated sulfuric acid under cooling and the mixture was kept at room temperature for 24 hours, whereupon the reaction mixture was poured into 200 g of finely crushed ice, and concentrated aqueous ammonia was added to about pH 9, whereupon the oil which separated out was extracted with ether. The ether phase was separated, dried and the ether evaporated on a steam bath. The residue was dissolved in 20 ml of acetone and the solution neutralized with a solution of dry hydrogen chloride in ether. The white crystals of 9-γ-dimethylaminopropylidene-10,10-dimethyl-9,10dihydroanthracene hydrochloride which separated out was filtered off and dried. Yield 9 g. MP 245°C to 247°C.

References

Merck Index 5642 Kleeman & Engel p. 552 OCDS Vol. 2 p. 220 (1980)

Holm, T.O.; U.S. Patent 3,190,893; June 22, 1965; assigned to Kefalas A/S (Denmark)

MELPERONE

Therapeutic Function: Neuroleptic

Chemical Name: 1-(4-Fluorophenyl)-4-(4-methyl-1-piperidinyl)-1-butanone

Common Name: Flubuperone; methylperone

Structural Formula:

Chemical Abstracts Registry No.: 3575-80-2; 1622-79-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Eunerpan	Nordmark	W. Germany	1965
Buronil	Ferrosan	Sweden	_

Raw Materials

Y-Chloro-p-fluorobuty rophenone 4-Methylpiperidine

Manufacturing Process

A solution or dispersion consisting of 20.1 g (0.1 mol) of γ -chloro-p-fluorobutyrophenone, 19.8 g (0.2 mol) of 4-methylpiperidine and 0.1 g of potassium iodide in 150 ml toluene is heated in a sealed glass tube for 15 hours at 100°C to 110°C. The potassium iodide and the 4-methylpiperidine hydrochloride formed in the reaction are separated by filtration and the solvent removed from the filtrate by evaporation in vacuum on a steam bath. The residue is distilled and the fraction obtained at 120°C to 125°C and at a pressure lower than 0.1 mm Hg is collected. The base is dissolved in ether and the 4-fluoro-γ-(4-methylpiperidino)-butyrophenone precipitated as the hydrochloride. The reaction product is purified by recrystallization in ethanol/ether.

Yield 22.0 g (73% of theory). MP 209°C to 211°C.

References

Merck Index 5645 Kleeman & Engel p. 552 I.N. p. 590

Hernestam, S.E.H., Sterner, N.O.B. and Lassen, J.; U.S. Patent 3,816,433; June 11, 1974; assigned to A.B. Ferrosan (Sweden)

MELPHALAN

Therapeutic Function: Cancer chemotherapy

Chemical Name: 4-[bis(2-chloroethyl)amino]-L-phenylalanine

Common Name: Alanine nitrogen mustard; L-sarcolysine

Structural Formula

Chemical Abstracts Registry No.: 148-82-3

Trade Name	Manufecturer	Country	Year Introduced
Alkeran	Burroughs-Wellcome	U.S.	1964
Alkeran	Wellcome	U.K.	1964
Alkeran	Wellcome	W. Germany	1965
Alkeran	Wellcome	France	1966
Alkeran	Wellcome	Italy	1968
Alkeran	Wellcome	Japan	1979

Diethyl sodium phthalidomalonate p-NitrobenzovI chloride Cinchonidine Hydrogen Phosphorus oxychloride

Sodium carbonate Acetic anhydride Hydrogen chloride Ethylene oxide

Manufacturing Process

Diethyl sodium phthalimidomalonate (Barger and Weichselbaum, Organic Syntheses, 1943, Coll. Vol. II. 384) (6.52 g) was dissolved in boiling methyl ethyl ketone (80 ml) and a solution of p-nitrobenzyl chloride (3.44 g; 1.0 mol) in the same solvent (20 ml) was added. Sodium iodide (ca 0.5 g) dissolved in hot methyl ethyl ketone (10 ml) was introduced, and produced an immediate precipitation. The mixture was refluxed for 1.5 hours, cooled, filtered, evaporated under vacuum and the residual gum crystallized from ethanol. The diethyl-p-nitrobenzyl-phthalimidomalonate formed colorless prisms (88%), MP 103° to 105°C, sharpening to 104° to 105°C on recrystallizing from ethanol.

Diethyl-p-nitrobenzyl-phthalimidomalonate (70 g) and sodium carbonate (70 g) in water (700 ml) were refluxed overnight with mechanical stirring (to avoid bumping). The clear brown solution was acidified with hydrochloric acid and refluxing and stirring were continued for a further 40 minutes. The mixture was cooled and the colorless precipitate (31 g) collected. A second crop (18.5 g) was obtained on evaporation of the mother liquors. Crystallization from aqueous ethanol gave the compound N-carboxybenzovl-pnitro-DL-phenylalanine as small needles, MP 198° to 200°C.

The N-carboxybenzoyl compound (2.7 g) was refluxed for 30 minutes with acetic anhydride (10 ml), the mixture taken to dryness (vacuum) and the residue heated with water. The cooled gummy product became granular on rubbing and crystallized from methyl ethyl ketone-petrol or aqueous ethanol in almost colorless needles, MP 184° to 186°C, of p-nitro-N-phthaloyl-D L-phenylalanine.

A solution of p-nitro-N-phthaloyl-DL-phenylalanine (1.0 g) in methanol (25 ml) and a solution of cinchonidine (0,865 g) in methanol (30 ml) were mixed. Crystallization soon set in. The mixture was left overnight, and the colorless needles (0.97 g), MP 209° to 210°C, collected. After two recrystallizations from methanol the cinchonidine salt of the D-acid had MP 211°C.

Evaporation of the mother liquors from the original cinchonidine experiment gave a gum which crystallized readily from aqueous ethanol in almost colorless needles (0.73 g), MP 191° to 192.5°C. Two recrystallizations from aqueous ethanol gave the cinchonidine salt of the L-acid, MP 192,5° to 194°C. To the salt (2.9 g) in warm ethanol (50 ml) was added water (50 ml) and a slight excess (ca 10 ml) of N aqueous sodium hydroxide. The mixture was diluted with water, cooled, filtered from the precipitated base and the filtrate acidified with hydrochloric acid. Refluxing with 2 N ethanolic hydrogen chloride yielded p-nitro-N-phthaloyl-L-phenylalanine ethyl ester, according to U.S. Patent 3,032,585.

Then, as described in U.S. Patent 3,032,584, ethyl N-phthaloyl p-nitrophenylalaninate (9.0 g) was hydrogenated in a mixture of ethyl acetate (120 g) and methanol (80 g) with a palladium-calcium carbonate (1% Pd) catalyst (1.4 g). When gas uptake was complete, the filtrate from the hydrogenation mixture was evaporated under reduced pressure. The residual gum was taken up in ether, the solution filtered, and a slight excess of a dry ethereal hydrogen chloride solution added slowly with stirring. The gummy precipitate became granular on rubbing and the ether-washed product was crystallized from ethyl acetate-acetone [1st crop, 2.8 g, MP 188° to 192°C (decomp.); 2nd crop, 3.9 g. MP 189° to 192°C (decomp.)]. Part of the first batch was recrystallized from ethyl acetate and gave very slightly tinted needles. MP 188° to 190°C (decomp.) of ethyl N-phthaloyl p-aminophenylalaninate hydrochloride.

The free base was obtained from the hydrochloride by adding a slight excess of dilute ammonium hydroxide to the aqueous solution, and crystallizing the product from aqueous methanol. A further recrystallization with charcoal treatment gave almost colorless needles, MP 110° to 112°C of ethyl N-phthaloyl p-aminophenylalaninate.

Ethyl N-phthaloyl p-aminophenylalaninate (3.15 g) (unrecrystallized) was suspended in water (50 g) and glacial acetic acid (30 g) added. To the clear solution, ethylene oxide (8.0 g) was added, the mixture allowed to stand for 17 hours, and then poured into water (350 g). The solution was neutralized with sodium hydrogen carbonate and the liberated gum extracted with ether. The ethereal solution was dried (magnesium sulfate) and evaporated. The residual gum (3.95 g) was dissolved in benzene (50 g) and the solution dried azeotropically by distilling off some of the solvent. Freshly distilled phosphorus oxychloride (8 g) was added and the mixture heated under reflux for 30 minutes.

The solvent was evaporated off under reduced pressure, and the residual gum refluxed with concentrated hydrochloric acid (50 g) for 6 hours. The solution was allowed to cool overnight. It was filtered from the phthalic acid crystals, and freeze-dried, and to the pink residue was added acetone (160 g) and ethyl acetate (50 g). The mixture was left in the cold room overnight and the clear pink supernatant liquid poured off. The pink gummy hydrochloride remaining in the flask was dissolved in water (20 g), saturated sodium acetate solution added until precipitation was complete, and the product collected and dried in a desiccator. The crude p-bis-(2-chloroethyl)-aminophenylalanine (3.6 g) was crystallized from methanol giving colorless needles, MP 172° to 174°C (decomp.) of p-bis-(2-chloroethyl)-aminophenylalanine.

References

Merck Index 5646 Kleeman & Engel p. 552 PDR p. 733 OCDS Vol. 2 p. 120 (1980) I.N. p. 590 REM p. 1151

Bergel, F. and Stock, J.A.; U.S. Patent 3,032,584; May 1, 1962; assigned to National Research Development Corporation, England

Bergel, F. and Stock, J.A.; U.S. Patent 3,032,585; May 1, 1962; assigned to National Research Development Corporation, England

MEMANTINE

Therapeutic Function: Spasmolytic

Chemical Name: 3,5-Dimethyltricyclo[3.3.1.1^{3,7}] decanol-1-amine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name Manufacturer Country Year Introduced

Akatinol Merz W. Germany 1983

Raw Materials

1,3-DimethyladamantaneBromineAcetonitrileSulfuric acidSodium hydroxideHydrogen chloride

Manufacturing Process

A mixture of 24 g of 1,3-dimethyladamantane and 80 ml of bromine was refluxed for 6 hours. The reaction product mixture was cooled, taken up in about 200 ml of chloroform, and poured onto ice. The excess bromine was removed by adding sodium hydrosulfite. The chloroform layer was separated from the aqueous layer, dried, concentrated in vacuo, and distilled at reduced pressure to yield 30.5 g of product having a boiling point of about 118°C at 5-6 mm; $n_D^{25} = 1.5169-1.5182$. The product was identified by nuclear magnetic resonance (NMR) and elemental analyses as 1-bromo-3,5-dimethyladamantane.

A mixture of 20 g of 1-bromo-3,5-dimethyladamantane, 75 ml of acetonitrile, and 150 ml of concentrated sulfuric acid was allowed to react overnight at ambient room temperature. The red reaction product mixture was poured over crushed ice, and the white solid which precipitated was taken up in benzene and the benzene solution dried over sodium hydroxide pellets. The benzene solution was filtered from the drying agent and evaporated to dryness in vacuo to yield 18.2 g of product having a melting point of about 97°C and identified by infrared spectrum as 1-acetamido-3.5-dimethyladamantane.

A mixture of 18 g of 1-acetamido-3,5-dimethyladamantane, 38 g of sodium hydroxide, and 300 ml of diethylene glycol was refluxed for a period of 6 hours. The reaction product mixture was cooled and poured onto about 2,000 ml of crushed ice. The basic solution thus obtained was extracted five times with 250-ml portions of benzene and the aqueous layer was discarded. The combined benzene extracts were dried over sodium hydroxide and the dried benzene solution concentrated in vacuo to give a crude oil weighing 14 g and having $n_D^{25} = 1.4941$. A 4 g sample of the crude oil was dissolved in ether and the solution saturated with anhydrous hydrogen chloride. The solid which precipitated was filtered off and recrystallized from a mixture of alcohol and ether to yield product weighing 3.5 g and melting at 258°C. It was identified by analysis as 1-amino-3,5-dimethyladamantane hydrochloride.

References

Merck Index A-7 DFU 1 (9) 427 (1976) DOT 19 (6) 303 (1983) I.N. p. 590

Mills, J. and Krumkalns, E.; U.S. Patent 3,391,142; July 2, 1968; assigned to Eli Lilly & Co.

MENADIOL SODIUM DIPHOSPHATE

Therapeutic Function: Prothrombogenic vitamin

Chemical Name: 2-Methyl-1,4-naphthalenediol diphosphoric acid ester tetrasodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 131-13-5; 84-98-0 (Phosphate)

Trade Name	Manufacturer	Country	Year Introduced
Synkayvite	Roche	U.S.	1941
Analogue	Upjohn	U.S.	1951
Kappadione	Lilly	U.S.	1956
Carbocaina	Pierrel	Italy	-
Katij	Takeda	Japan	_
Thylokay	Squibb	-	_

Raw Materials

2-Methyl-1,4-naphthohydroquinone Phosphorus oxychloride Sodium hydroxide

Manufacturing Process

2,000 g 2-methyl-1,4-naphthohydroquinone diphosphoryl chloride (from the quinone and POCI₃) are dissolved in 2 liters ether and decomposed with 2 liters distilled water. The mixture is transferred to a separatory funnel and the aqueous layer separated from the ether layer, the latter being discarded. The aqueous layer is extracted with a further 2 liters of ether and again separated and discarded. The aqueous solution of the 2-methyl-1,4-naphthohydroquinone diphosphoric acid is extracted with successive portions of isobutyl carbinol in 500 cc quantities until the aqueous layer becomes almost colorless, after which this latter is discarded. The isobutyl carbinol solution is then concentrated to remove water and hydrochloric acid, and the crystalline residue neutralized with sodium hydroxide solution. The resulting solution of the sodium salt of 2-methyl-1,4-naphthohydroquinone diphosphoric ester is extracted with two successive portions of 1 liter acetone each and the latter discarded. Methanol and acetone are then added, filtered, and the product brought to crystallization by heating. Crys tals of the sodium salt of 2-methyl-1,4-naphthohydroquinone diphosphoric acid ester are sucked off. The substance contains much moisture of crystallization and is dried in vacuum until it contains 21-22% moisture of crystallization as determined by drying at 145°C at 2 mm vacuum.

References

Merck Index 5649 Kleeman & Engel p. 553 PDR p. 1502 I.N. p. 591 REM p. 1010

Solmssen, U.V.; U.S. Patent 2,345,690; April 4, 1944; assigned to Hoffmann-LaRoche, Inc.

MENBUTONE

Therapeutic Function: Choleretic

Chemical Name: 4-Methoxy-6-oxo-1-naphthalene butanoic acid

Common Name: Methonaphthone

Structural Formula:

Chemical Abstracts Registry No.: 3562-99-0

Trade Name	Manufacturer	Country	Year Introduced
Hepalande	Delalande	W. Germany	1977
Sintobilina	A.F.I.	Italy	_

Raw Materials

α-Methoxynaphthalene Succinic anhydride Aluminum chloride Hydrogen chloride Sodium carbonate

Manufacturing Process

395 parts of α -methoxynaphthalene and 265 parts of succinic anhydride are dissolved in 8,000 parts of dry benzene at room temperature. The resulting solution is stirred and 710 parts of anhydrous aluminum chloride are added over a period of twenty minutes. During the addition the temperature of the reaction mixture rises to about 60°C to 70°C . After the addition the reaction mixture is stirred for fifteen or twenty minutes at 60°C to 70°C and then refluxed for one hour. The hot reaction mixture is then poured onto a mixture of 5,000 parts of ice and 900 parts of concentrated hydrochloric acid. The benzene is removed by steam distillation and the hot aqueous residue is filtered to remove the insoluble β -(1-methoxy-4-naphthoyl)-propionic acid. The residue of the latter is dried and then dissolved in 16,000 parts of hot water containing 300 parts of sodium carbonate. The hot solution is treated with activated charcoal, filtered while hot, chilled and acidified. The residue of purified acid is collected on a filter, washed with water, and dried at 65°C . A yield of 552 parts of purified β -(1-methoxy)-4-naphthoyl)-propionic acid, melting at 172°C to 173°C is obtained.

References

Merck Index 5656 I.N. p. 592

Burtner, R.R.; U.S. Patent 2,623,065; December 23, 1952; assigned to G.D. Searle & Co.

MEPAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[(1-Methyl-3-piperidinyl)methyl]-10H-phenothiazine

Common Name: Mepasin, pecazine

Structural Formula:

Chemical Abstracts Registry No.: 60-89-9; 2975-36-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Pacatal	Warner Lambert	U.S.	1957
Pacatal	Promonta	W. Germany	_
Lacumin	Lundbeck	_	_
Ravenil	Caber	Italy	-

Raw Materials

Phenothiazine 1-Methyl-3-bromomethylpiperidine Sodium amide Acetic acid

Manufacturing Process

A 500 cc flask equipped with a mechanical stirrer, reflux condenser and a soda-lime tube was filled with 230 cc of absolute xylene, 27.5 g of 1-methyl-3-bromomethylpiperidine, 53.3 g of phenothiazine and 14.2 g of finely powdered sodium amide, and the solution was heated under reflux for 6 hours. After cooling water was added and the batch was extracted with ether. As the hydrochloric acid salt of the obtained phenothiazine derivative is difficultly soluble in water, the further processing was carried out by way of the acetate. The etheric solution was extracted several times in a separating funnel with dilute acetic acid. The combined aqueous extracts were basified, extracted with ether, dried with potassium carbonate and, after removal of the ether, distilled in vacuo.

Yield = 64%; boiling point 230°C to 235°C at 4 mm; melting point of hydrochloride is 180°C to 181℃.

References

Merck Index 5672 Kleeman & Engel p. 689 I.N. p. 735

Schuler, W.A.; U.S. Patent 2,784,185; March 5, 1957; assigned to Chemische Fabrik Promonta GmbH

MEPENZOLATE BROMIDE

Therapeutic Function: Antispasmodic

Chemical Name: 3-[(hydroxydiphenylacetyl)oxy]-1,1-dimethylpiperidinium bromide

Common Name: N-methyl-3-piperidyl benzilate methobromide

Structural Formula:

Chemical Abstracts Registry No.: 76-90-4

Trade Name	Manufacturer	Country	Year Introduced
Cantil	Merrell National	U.S.	195 6
Cantilon	Draco	Sweden	_
Colibantil	Tosi-Novara	Italy	_
Colum	Jamco	Italy	_
Eftoron	Maruko	Japan	_
Gastropodil	Fabo	Italy	_
Sachicoron	Z en s ei	Japan	_
Tendalin	Nihon Yakuhin	Japan	- ·
Tralanta	Sawai	Japan	_
Trancolon	Fuiisawa	Japan	_

Raw Materials

N-Methyl-3-chloropiperidine Benzilic acid Methyl bromide

Manufacturing Process

A mixture containing 8 g (0.06 mol) of N-methyl-3-chloro-piperidine and 13.6 g (0.06 mol) of benzilic acid in 50 cc of anhydrous isopropyl alcohol was refluxed for 3 days; the isopropyl alcohol was removed by distillation in vacuo, the residue treated with dilute aqueous hydrochloric acid and the aqueous acid mixture extracted repeatedly with ether. The aqueous phase was separated, made strongly alkaline with 20% aqueous sodium hydroxide and extracted with ether. The ether extracts were dried with potassium carbonate and distilled; the product was collected at 175° to 176°C (0.03 mm), yield 11.5 g (59%). The ester base thus prepared was then dissolved in 75 cc of isopropyl alcohol and 3.4 g (0.037 mol) methyl bromide added. The reaction mixture was allowed to stand at 30°C for 2 days and the product isolated by filtration, yield, 13 g (87%), MP 228° to 229°C dec.

References

Merck Index 5673 Kleeman & Engel p. 555 PDR p. 1223 I.N. p. 593 REM p. 916 Riel I H. I.I.S. Patent 2.6

Biel, J.H.; U.S. Patent 2,918,408; December 22, 1959; assigned to Lakeside Laboratories, Inc.

MEPERIDINE HYDROCHLORIDE

Therapeutic Function: Narcotic analgesic

Chemical Name: 1-methyl-4-phenyl-4-piperidinecarboxylic acid ethyl ester hydrochloride

Common Name: Isonipecaine hydrochloride; pethidine hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 50-13-5; 57-42-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dolosal	Specia	France	1943
Dolantin	Hoechst	W. Germany	1943
Demerol	Winthrop	U.S.	1944
Algil	Maggioni	Italy	-
Alodan	Gerot	Austria	-
Centralgin	Amino	Switz.	-
Demer-Idine	Sabex	Canada	_
Dolanguifa	Uquifa	Spain	_
Dolcontral	Arzneimittelwerk Dresden	E. Germany	-
Dolestine	Teva	İsrael	_
Doloneurin	O.P.G.	Neth.	-
Dolopethin	Gattiker	Switz.	_
Medfina	Carlo Erba	-	_
Pethidine Roche	Roche	U.K.	_
Supplosal	Specia	France	-

Raw Materials

Diethanol methylamine Sodium amide Sulfuric acid Hydrogen chloride

Thionyl chloride Benzyl cyanide Ethanol

Manufacturing Process

80 parts of finely pulverized sodium amide are added in portions each of about 1/5 of the entire quantity, while stirring and cooling in a suitable manner, to a mixture of 156 parts of methyl-di(β -chloroethyl)-amine (prepared from di-ethanol-methylamine by means of thionyl chloride), 117 parts of benzyl cyanide and 600 parts of toluene. The reaction sets in at once at room temperature. The temperature is maintained between 30° and 40°C; when self-heating no longer occurs a further portion of the sodium amide is introduced. During the reaction heat is liberated and gaseous ammonia escapes.

The mixture is then slowly heated to the boiling point of toluene and kept boiling for one hour under reflux. After the mixture has been allowed to cool the sodium chloride which precipitates is separated by extraction with water. The solution of toluene is then extracted with dilute hydrochloric acid. From the hydrochloric acid extract the basic substance is separated in the form of an oil by means of caustic soda solution and is introduced into ether. The ethereal solution is dried with the aid of potassium carbonate and then distilled.

Under a pressure of 4.5 ml the 1-methyl-4-phenyl-piperidine-4-carboxylic acid nitrile passes over at a temperature of about 148°C in the form of a colorless oil; under a pressure of 6 ml it passes over at about 158°C. After having been allowed to cool the distillate solidifies completely to form a crystalline mass. Its solidification point is at 53°C; the yield amounts to about 135 parts, that is, about ²/₃ of the theoretical yield. When recrystallized from isopropyl alcohol the hydrochloride of the nitrile forms colorless crystals, readily soluble in water and melting at 221° to 222°C.

The nitrile may best be saponified with methyl alcoholic potash while heating to 190° to 200°C with application of pressure. After the methyl alcohol has evaporated the salt is introduced into water and by the addition of dilute mineral acid until the alkaline reaction to phenolphthalein has just disappeared, the amphoteric 1-methyl-4-phenyl-piperidine-4-carboxylic acid is precipitated while hot in the form of a colorless, coarsely crystalline powder. When dried on the water bath the acid still contains 1 mol of crystal water which is lost only at a raised temperature. The acid melts at 299°C. Reaction with ethanol yields the ester melting at 30°C and subsequent reaction with HCl gives the hydrochloride melting at 187° to 188°C.

References

Merck Index 5674 Kleeman & Engel p. 707 PDR pp. 872, 1908, 1959, 1989 OCDS Vol. 1 p. 300 (1977); 2,328 (1980) & 3,116 (1984)

I.N. p. 750 REM p. 1108

Eisleb, O.; U.S. Patent 2,167,351; July 25, 1939; assigned to Winthrop Chemical Company,

MEPHENESIN

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 3-(2-Methylphenoxy)-1,2-propanediol

Common Name: o-Cresyl glycerol ether, glyceryl o-tolyl ether, cresoxypropanediol, cres-

oxydiol

Structural Formula:

Chemical Abstracts Registry No.: 59-47-2

Trade Name	Manufacturer	Country	Year Introduced
Tolserol	Squibb	U.S.	1948
Oranixon	Organon	U.S.	1949
Avosyl	Schenley	U.S.	_
Curaresin	Kyoto	Japan	_
Decontractyl	Robert & Carriere	France	_
Glyotol	U.S. Standard	U.S.	_
Myanesin	B.D.H.	U.K.	_
Myanol	Chugai	Japan	-
Myocuran	Deutsch, Hydrierwerk	E. Germany	-
Myoserol	Sankyo	Japan	_
Myoxane	Ascher	U.S.	
Noctynoi	Moore	U.K.	_
Prolax	Cole	U.S.	-
Relaxar	Bouty	Italy	_
Rhex	Hobein	W. Germany	_
Spasmolyn	Heun	U.S.	_
Tolosate	Brewer	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Tolulox	Miller	U.S.	-
Tolyspaz	Chicago Pharmacal	U.S.	_

meta-Cresol Glycerol

Manufacturing Process

Into an iron or copper reaction vessel having an efficient stirring device and furnished with a refluxing column and condenser, were charged 330 lb of high quality meta-cresol and 150 lb of glycerol, together with 25 lb of sodium acetate to serve as the catalyst in the reaction. The reaction mixture, of this composition, was then heated to 250°C. The water of the reaction distilled off during the heating as the ether formation proceeded, this removal of water from the reaction chamber being promoted by the presence of the excess of phenol, some of which also continued to distill over. Towards the end of the reaction, after about 12 hours, when about 60% of the glycerol had been converted, at which point the reaction slowed down and the distillate was mainly cresol, the batch was cooled and 50 gallons of water were added to it along with 150 lb of xylene. As the result of these additions and the cooling down of the material the batch stratified into an aqueous layer containing unreacted glycerol, polyglycerols and sodium acetate, and a nonaqueous layer containing the ethers that had been formed in the reaction, together with unreacted cresol which remained in the reaction chamber, dissolved in the xylene that had been added to the batch. The aqueous layer was then separated and the water content removed therefrom by evaporation to a degree suitable for the recovery of the glycerol and sodium acetate contents of the layer, for their reuse in the process in a succeeding batch therein. The separated nonaqueous layer containing the ethers was distilled to recover the xylene and cresol contents respectively as the early fractions of the layer thus subjected to distillation. The cresol thus recovered, together with the cresol recovered from the distillate obtained during the heating of the reaction mixture, was returned to the process for reuse in a succeeding batch. Redistillation of the ether mixture recovered is usually necessary and desirable, particularly from the point of view of removing last traces of cresol therefrom. The yield of mixed ethers in this example was about 200 lb. in the relative proportions stated of about 70 parts of monoether to 30 of diether.

References

Merck Index 5675 Kleeman & Engel p. 556 OCDS Vol. 1 p. 118 (1977) 1.N. p. 593

Carroll, M.F. and A. Boake Roberts & Co., Ltd.; British Patent 589,821; July 1, 1947

MEPHENESIN CARBAMATE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 3-(2-Methylphenoxy)-1,2-propanediol 1-carbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 533-06-2; 59-47-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tolseram	Squibb	U.S.	1954
Kinavosyl	Schenley	U.S.	

Raw Materials

3-o-Toloxy-1,2-propanediol Phosgene Ammonia

Manufacturing Process

A solution of 32 g (0.30 mol) phosgene in 200 ml benzene is added dropwise at 30°C to a stirred solution of 53.5 g (0.32 mol) 3-o-toloxy-1,2-propanediol in 400 ml benzene. The mixture is stirred for an hour after the addition is completed, and a solution of 39 g of dimethylaniline in 100 ml benzene is then added, and stirring continued for a half-hour. Ice water (about one-third volume) is then added, and the benzene layer formed is separated and stirred with 500 ml concentrated ammonia at 5°C for six hours. The precipitated solid (weighing about 55 g) is recovered and recrystallized from water. The product thus obtained in a yield of about 53 g is 3-(o-toloxy)-2-hydroxypropyl carbamate; it is a crystalline solid melting at about 93°C, and having a lower water-solubility and higher oil-solubility than 3-o-toloxy-1,2-propanediol.

References

Merck Index 5676 Kleeman & Engel p. 556 OCDS Vol. 1 p. 118 (1977) I.N. p. 593

Lott, W.A. and Pribyl, E.; U.S. Patent 2,609,386; September 2, 1952; assigned to E.R. Squibb & Sons

MEPHENOXALONE

Therapeutic Function: Tranquilizer

Chemical Name: 5-[(o-Methoxyphenoxy)methyl] -2-oxazolidinone

Common Name: Methoxadone

Structural Formula:

Chemical Abstracts Registry No.: 70-07-5

Trade Name	Manufacturer	Country	Year Introduced
Trepidone	Lederle	U.S.	1961
Tranpoise	Robins	U.S.	1962
Lenetran	Lakeside	U.S.	1962
Xerene	Martinet	France	1964

Trade Name	Manufacturer	Country	Year Introduced
Control-Om	O.M.	Switz.	_
Dorsiflex	Syntex-Medial	Switz.	_
Placidex	Toraude		_
Riself	Gibipharma	italy	_

3-o-Methoxyphenoxy-2-hydroxy-1-propyl-carbamate Urea

Manufacturing Process

A mixture of 24.1 g (0.10 mol) of 3-o-methoxyphenoxy-2-hydroxy-1-propyl carbamate and 6.0 g (0.10 mol) of urea was heated rapidly to the temperature range of 180°C to 200°C, and maintained there for five hours. The reaction melt was poured into 50% ethyl alcohol, from which the product crystallized as a white solid. The crude yield was 18.3 g (82%); melting point 131.5°C to 137°C. Crystallization from water and 95% alcohol gave 9.0 g (40.3%) of pure 5-o-methoxyphenoxymethyl-2-oxazolidone; melting point 141°C to 143°C. This melting point was not depressed when the material was mixed with an authentic sample. In additional runs acetone was used instead of ethyl alcohol with equivalent results.

It was found that when the heating time was reduced to three hours and a reaction temperature of 190°C to 200°C was maintained, equivalent yields (40 to 50%) were obtained, but that the yields were appreciably lowered when the heating time was further reduced to two hours. It was also found that when the temperature was lowered to the range of 170°C to 180°C the yield was significantly lowered.

When the material was isolated by extraction with chloroform and distillation, the yield of pure material was 58.5%.

References

Merck Index 5679 OCDS Vol. 1 p. 119 (1977)

I.N. p. 593

Lunsford, C.D.; U.S. Patent 2,895,960; July 21, 1959; assigned to A.H. Robins Co., Inc.

MEPHENTERMINE

Therapeutic Function: Adrenergic (vasopressor)

Chemical Name: N, \alpha, \alpha - Trimethylbenzene ethanamine

Common Name: -

Structural Formula:

$$c_{6}^{\text{CH}_{3}}$$
 $c_{6}^{\text{CH}_{5}}$
 $c_{1}^{\text{CNHCH}_{3}}$
 $c_{1}^{\text{CH}_{2}}$

Chemical Abstracts Registry No.: 100-92-5

Trade Name	Manufacturer	Country	Year Introduced
Wyamine	Wyeth	U.S.	1947

2-(N-Methylamino)-2-methyl-1-phenyl-1-propanol Thionyl chloride Hydrogen

Manufacturing Process

0.5 g of 2-(N-methylamino)-2-methyl-1-phenyl-1-propanol was treated with 1 cc of thionyl chloride at room temperature. A vigorous reaction set in. The gummy material was stirred with a small amount of petroleum ether and allowed to stand overnight. The brown crystalline solid after washing with petroleum ether was recrystallized from a small amount of absolute alcohol with addition of charcoal followed by filtration. On dilution with several volumes of ether and refrigeration white granular crystals of 1-chloro-2-(N-methamino)-2-methyl-1phenyl propane hydrochloride were deposited.

250 mg of 1-chloro-2-(N-methylamino)-2-methyl-1-phenyl propane hydrochloride was dissolved in 2 cc of warm methanol and hydrogenated in the presence of 250 mg of palladium barium carbonate catalyst with provision for the absorption of the carbon-dioxide formed. When the theoretical amount of hydrogen had been taken up the mixture was filtered to remove the catalyst, concentrated to small volume and extracted with ether. After separating the ether the residue was further concentrated yielding a white crystalline solid. This solid on solution in water, strongly alkalizing, extraction with ether and removal of the ether yielded 2-(N-methylamino)-2-methyl-1-phenyl propane identified as the picrate by melting point 155°C to 156°C and mixed melting point 154.0°C to 154.5°C, with an authentic sample melting at 150°C to 153°C.

References

Merck Index 5680 OCDS Vol. 1 p. 72 (1977) I.N. p. 593 REM p. 887

Bruce, W.F., Szabo, J.L. and Tubis, S.; U.S. Patent 2,597,445; May 28, 1952; assigned to Wyeth, Inc.

MEPICYCLINE

Therapeutic Function: Antimicrobial

Chemical Name: 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-N-[[4-(2-hydroxyethyl)-1-piperazinyl] methyl] -6-methyl-1,11-dioxo-2-naphthacenecarboxamide

Common Name: N-[[4-(2-Hydroxyethyl)-1-piperazinyl] methyl] tetracycline; pipacycline

Structural Formula:

Chemical Abstracts Registry No.: 1110-80-1

Trade Name	Manufacturer	Country	Year introduced
Sieromicin	Sierch imica	Italy	1962
Ambra-Vena	Lepetit	_	_
Boniciclina	Boniscontro-Gazzone	Italy	_
Tetrasolvina	N.C.S.N.	Italy	_
Valtomicina	Midy	<u> </u>	-

N- $(\beta$ -Hydroxyethyl)diethylene diamine p-Formaldehyde Tetracycline

Manufacturing Process

1.55 g p-formaldehyde were added to a solution of 7 g N- $(\beta$ -hydroxyethyl)-diethylenediamine in 150 cc isopropanol and the whole was heated to 60°C for 30 minutes, to obtain complete dissolution; after cooling the solution to 40°C, 22.2 g of anhydrous tetracycline base were added as a fine powder and the reaction was allowed to proceed for 3 hours with agitation and while passing through a current of dry nitrogen; the solution was then filtered on a Buchner funnel and the filter cake was washed twice with 20 cc isopropanol; the crystalline cake was resuspended in 100 cc anhydrous ether, again filtered and washed 3 times with 50 cc anhydrous ether; finally, it was dried in vacuo and 28.6 g of product were obtained, namely a yield of 98%.

The characteristics of this product are as follows. It is a pale yellow, nonodorous, slightly bitter, crystalline powder, very soluble in water (>1.5 g/cc), soluble in methanol and formamide, slightly soluble in ethanol and isopropanol, insoluble in ether, benzene and chloroform; MP 162° to 163°C with decomposition (uncorrected).

References

Merck Index 7325 I.N. p. 775

Gradnik, B., Pedrazzoli, A. and Cipelletti, G.; U.S. Patent 3,149,114; September 15, 1964; assigned to Societe d'Etudes de Recherches et d'Applications Scientifiques et Medicales, France

MEPINDOLOL

Therapeutic Function: β-Receptor blocker

Chemical Name: 4-(2-Hydroxy-3-isopropylaminopropoxyl)-2-methylindole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56396-94-2 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Corindolan	Schering	W. Germany	1980

4-Benzyloxy-2-dimethylamino-methylindole Hydrogen Epichlorohydrin Isopropylamine

Manufacturing Process

The 4-hydroxy-2-methylindole (MP 112°C to 115°C from benzene/ethyl acetate), used as starting material, may be obtained by hydrogenation of 4-banzyloxy-2-dimethylaminomethylindole (MP 117°C to 120°C from benzene) in the presence of a palladium catalyst (5% on aluminum oxide).

11.6 g of 4-hydroxy-2-methylindole are added to a solution of 3.1 g of sodium hydroxide in 150 cc of water, and then 12.4 cc of epichlorhydrin are added while stirring and in an atmosphere of nitrogen. The reaction mixture is further stirred at room temperature for 24 hours, is extracted 4 times with methylene chloride, and the combined organic layers which have been dried over magnesium sulfate are concentrated by evaporation at reduced pressure. The resulting residue is taken up in 150 cc of dioxane and 50 cc of isopropyl amine, and the mixture is heated to the boil for 6 hours. The reaction mixture is evaporated to dryness at reduced pressure, the residue is shaken 4 times between ethyl acetate and a 1 N aqueous tartaric acid solution, and a 5 N caustic soda solution is then added to the combined tartaric acid phases until an alkaline reaction is obtained. The alkaline solution is then shaken out 6 times with methylene chloride, the combined extracts are dried over magnesium sulfate, and the solvent is evaporated in a vacuum. The oily viscous residue may be crystallized from ethyl acetate. The title compound has a MP of 95°C to 97°C.

References

Merck Index 5684 DFU 3 (5) 381 (1978) DOT 17 (10) 426 (1981) & 18 (10) 551 (1982) I.N. p. 594

Troxler, F. and Hofmann, A.; British Patent 1,260,907; January 19, 1972; assigned to Sandoz, Ltd.

MEPITIOSTANE

Therapeutic Function: Antiestrogenic

Chemical Name: 17β -(1-Ethoxycyclopentyl)oxy-2 α ,3 α -epithio-5 α -androstane

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21362-69-6

Trade Neme	Manufacturer	Country	Year Introduced
Thioderon	S hionogi	Japan	1979

Raw Materials

 $2\alpha,3\alpha$ -Epithio- 5α -androstan- 17β -ol Methoxycyclopentene

Manufacturing Process

A mixture of 1.759 g of $2\alpha.3\alpha$ -epithio- 5α -endrostan- 17β -ol. 2.3 ml of 1-methoxycyclopentene, 20 mg of pyridine salt of p-toluenesulfonic acid and 20 ml of t-butanol is stirred for 4 hours at room temperature. The reaction mixture is poured into an aqueous solution of sodium carbonate and the whole extracted with dichloromethane. The extract is dried over anhydrous sodium sulfate and evaporated to remove solvent. Purification of the residue by chromatography over alumina gives 1.487 g of 17β -(1-methoxycyclopentyl)oxy- 2α , 3α -epithio-5α-androstane. Yield 68.2%. MP98°C to 101°C.

References

Merck Index 5687 DFU 3 (4) 311 (1978) Kleeman & Engel p. 557 I.N. p. 594

Komeno, T.; U.S. Patent 3,567,713; March 2, 1971; assigned to Shionogi & Co.

MEPIVACAINE

Therapeutic Function: Local anesthetic

Chemical Name: N-(2,6-dimethylphenyl)-1-methyl-2-piperidinecarboxamide

Common Name: N-methylpipecolic acid 2,6-dimethylanilide

Structural Formula:

Chemical Abstracts Registry No.: 96-88-8; 16452-56-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Carboraine	Winthrop	U.S.	1960
Chlorocain	Pharmac, Mfg.	U.K.	_
Isocaine	Novocol	U.S.	-
Meaverin	Woelm Pharma.	W. Germany	-
Mepivastesin	Espe	W. Germany	_
Scandicain	Astra	Sweden	-
Tevacaine	Teva	Israel	-

Raw Materials

Ethyl bromide Magnesium N-Methylpipecolic acid ethyl ester 2,6-Dimethylaniline

Manufacturing Process

Ethyl magnesium bromide is prepared in the usual way by reacting 185 parts by weight of ethyl bromide in 800 parts of anhydrous ether with 37 parts by weight of magnesium turnings. Under vigorous stirring 121 parts of 2,6-dimethyl aniline are added at a rate depending on the vigor of the gas evaporation. When the evolution of gas has ceased, 85 parts by weight of N-methylpipecolic acid ethyl ester are added to the 2,6-dimethyl aniline magnesium bromide slurry. The mixture is refluxed for ½ hour with continued stirring, after which it is cooled down. Dilute hydrochloric acid is added carefully in order to dissolve and hydrolyze the magnesium compound formed.

The pH is adjusted to 5.5 and the water phase separated and extracted with additional ether in order to remove the surplus dimethyl aniline. After addition of an excess of ammonia to the solution, the reaction product, N-methylpipecolic acid 2,6-dimethyl anilide, is recovered by extraction with isoamyl alcohol. The isoamyl alcohol solution is evaporated to dryness, the product dissolved in dilute hydrochloric acid, treated with charcoal and reprecipitated with NaOH. N-methylpipecolic acid 2,6-dimethyl anilide is obtained in crystalline form.

References

Merck Index 5688 Kleeman & Engel p. 558 PDR pp. 824, 1906 OCDS Vol. 1 p. 17 (1977)

I.N. p. 594 REM p. 1052

af Ekenstam, B.T. and Egner, B.P.H.; U.S. Patent 2,799,679; July 16, 1957; assigned to AB Bofors, Sweden

Pettersson, B.G.: U.S. Patent 4,110,331; August 29, 1978; assigned to AB Bofors

MEPREDNISONE

Therapeutic Function: Glucocorticoid

Chemical Name: 17,21-dihydroxy-16β-methylpregna-1,4-diene-3,11,20-trione

Common Name: 16β-methylprednisone

Structural Formula:

Chemical Abstracts Registry No.: 1247-42-3

Trade Name	Manufacturer	Country	Year Introduced
Betapar	Parke Davis	U.S.	1970
Betalone	Lepetit	France	
Betapred	S chering	U.S.	_
Corti-Bi	Sidus	Italy	_

16β-Methylprednisone-21-acetate Potassium bicarbonate Bacterium Bacillus sphaericus var. fusifermis Nutrient broth

Manufacturing Process

 16β -Methylprednisone 21-acetate (0.5 g), when hydrolyzed by means of aqueous alcoholic potassium bicarbonate yields 16β -methylprednisone. An alternative method of the preparation of the compound of this example is as follows. Bacillus sphaericus var. fusifermis (A.T.C.C. 7055) is incubated on a nutrient agar (composed of Bacto-beef extract, 3 g; Bacto-peptone, 5 g: sodium chloride, 8 g: agar, 15 g: and tap water, 1 liter) for 24 hours at 28°C.

To 100 ml of a sterile nutrient broth (composed of Bacto-beef extract, 3 g; Bacto-peptone, 5 g; per liter of tap water) in a 300 ml flask is added one loopful of the incubated culture and the broth mixture is further incubated for 24 hours at 28°C on a shaking machine. The broth culture so obtained is employed as an inoculum (1%). Into each of ten flasks containing 100 ml of sterile nutrient broth is added 1 ml of the inoculum. The flasks are agitated on a rotary shaker for 8 hours at 28°C at 240 strokes per minute. After this growth period, a solution of 25 mg of 16β-methylcortisone in 0.5 ml of methanol is aseptically added to each flask which in turn is reshaken and incubated for an additional 24 hours. The final pH is 7.8.

The contents of the flasks are then combined and extracted 3 times with two liters of chloroform per extraction. The combined chloroform extracts are evaporated to dryness yielding 310 mg of crude product. The crude steroid is purified by chromatography on a chromatographic system described by G.M. Shull, Abstracts of Papers of the 126th Meeting of the American Chemical Society, December 12-17, 1954, page 9a, paper No. 24. Chromatographic evaluation shows a quantitative conversion of the starting material to the diene when an authentic sample of the 16β -methylprednisone is used as a control. Alternatively, the crude product is recrystallized from acetone affording 225 mg of 16β -methylprednisone.

References

Merck Index 5689 Kleeman & Engel p. 558 I.N. p. 595 Rausser, R. and Oliveto, E.P.; U.S. Patent 3,164,618; January 5, 1965; assigned to Schering Corporation

MEPROBAMATE

Therapeutic Function: Tranquilizer

Structural Formula:

Chemical Name: 2-methyl-2-propyl-1,3-propanediol dicarbamate

Common Name: Procalmadiol; procalmidol

Chemical Abstracts Registry No.: 57-53-4

Trade Name	Manufacturer	Country	Year Introduced
Equanil	Wyeth	U،S.	1955
Miltown	Wallace	U.S.	1955
Meprotabs	Wallace	U.S.	1957
Meprospan	Wallace	U.S.	1958
Viobamate	Rowell	U.S.	1963
Meprocon	Consol. Midl. Co.	U.S.	1964
Canquii	Canfield	U.S.	1964
Klort	Lemmon	U.S.	1964
Equanil	Clin Midy	France	1967
SK-Bamate	SKF	U.S.	1971
Amepromamat	Arcana	Austria	-
Amosene	Ferndale	U.S.	-
Aneural	Wyeth	W. Germany	_
Ansietan	Italfarmaco	Italy	
Ansiowas	Wassermann	Spain	_
Artolon	Roter	Neth.	_
Atraxin	Dailchí	Japan	_
Carb-A-Med	Chemieprodukte	Austria	_
Coprobate	Coastal	U.S.	_
Cyrpon	Tropon	W. Germany	_
Dabrobamat	Dabrowski	W. Germany	_
Dapaz	Alter	Spain	_
Deprol	Wallace	U.S.	_
Dormabrol	Kwizda	Austria	_
Dystoid	Makara	W. Germany	_
Ecuanil	Orfi	Spain	
Edenal	Wassermann	Italy	
Epikur	Agepha	Austria	_
Equagesic	Wyeth	U.S.	_
Erina	Sumitomo	Japan	_
Gene-Bamate	Franca	Canada	_
Harmonin	Yoshitomi	Japan	_
Kesso-Bamate	McKesson	U.S.	_
Lan-Dol	Bìo-Chimique	Canada	_
Marbate	Mardale	U.S.	-
Meditran	Medic	Canada	_
Mepavlon	I.C.I.	U.K.	_
Meprate	DDSA	U.K.	_
Mepriam	Lennon	U.S.	-
Mepro	Rekah	israel	_
Meproban	Draco	Sweden	
Meprocon CMC	Consol, Midl. Co.	U.S.	_
Meprodil	Streuli	Switz.	. -
Meprodiol	Pirri	Italy	-
Meprol	Lokman	Turkey	_
Mepron	Choseido	Japan	_
Mepron	Hamilton	Australia	_
Mepronel	Heather Drug	U.S.	_
Meprosa	Chemipharm	W. Germany	_
Meprosa	Brunner-Tillman	U.S.	_
Meriprobate	Meriot	Canada	
Microbamat	Werfft	Austria	_
Midixin	Reid-Provident	U.S.	_
Miltaun	Mack	W. Germany	_
Misedant	Lemmon	U.S.	_
M.P. Trantabs	Martin-Phillips	U.S.	
W.F. (Idilidios	war are anaps	0.0.	

Trade Name	Manufacturer	Country	Year Introduced
My-Trans	Heather Drug	U.S.	_
Neo-Tran	Neo	Canada	_
Nervonus	Orion	Finland	_
Neuramate	Halsey	U.S.	_
Novamato	Torlan	Spain	_
Novomepro	Novopharm	Canada	_
Oasil	Simes	Italy	_
Paxin	Pierrel	Italy	-
Pensive	Norbrook	U.K.	_
Perequil	Lepetit	Italy	_
PMB Ayerst	Ayerst	U.S.	_
Probasan	I.C.N.	Canada	_
Quietidon	Pharma, Farm, Spec.	Italy	
Relaksin	Deva	Turkey	-
Restanil	Kabi	W. Germany	_
Sedanyl	Washington	Italy	_
Selene	Biomedica Foscama	Italy	-
Sopanil	Sopar	Belgium	_
Sowell	Cophar	Switz.	-
Stensolo	Salfa	Italy	
TCM	Zenith	U.S.	_
Trankilin	Biofarma	Turkey	_
Tranlisant	Vita	Canada	
Trelmar	Elliott-Marion	Canada	_
Urbilat	Hor-Fer-Vit	W. Germany	
Wescomep	Saunders	Canada	_
Xalogen	Ono	Japan	_

Raw Materiels

2-Methyl-2-n-propyl-1,3-propanediol Phosaene Ammonia

Manufacturing Process

A solution containing 52.8 parts of 2-methyl-2-n-propyl-1,3-propanediol and 128 parts of acetone is added with stirring to 112 parts of liquid phosgene at such a rate that the temperature of the reaction is maintained at -5° to 0°C. The reaction is stirred one hour at about 0°C then cooled to -15°C. A cooled 30% solution of 32 parts of sodium hydroxide is added with stirring to the reaction at such a rate that the temperature is maintained at -15° to -5°C. The mixture is stirred for an additional ½ hour at about 0°C then cooled to -20°C. 180 parts of cooled ammonium hydroxide solution (28.6% NH₃) are added while cooling and with stirring at such a rate that the temperature rises slowly to 20°C and stirring is continued for an additional 1/2 hour. The mixture is poured with agitation into 1,700 parts of ice water. The solid which separates is removed by filtration and dried. Recrystallization from water gives 55 parts (63% of theoretical yield) of 2-methyl-2-n-propyl-1,3-propanediol dicarbamate, MP 104° to 105°C.

References

Merck Index 5690 Kleeman & Engel p. 559 PDR pp. 634, 830, 1024, 1606, 1723, 1874, 1880, 1947, 1949 OCDS Vol. 1 p. 218 (1977) & 2, 21 (1980) 1.N. p. 595 REM p. 1072

Berger, F.M. and Ludwig, B.J.; U.S. Patent 2,724,720; November 22, 1955; assigned to Carter Products, Inc.

MEPTAZINOL

Therapeutic Function: Analgesic

Chemical Name: 3-Ethyl-3-(m-hydroxyphenyl)-1-methylhexahydro-1H-azepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Meptid	Wyeth	U.K.	1983

Raw Materials

2-(m-Methoxyphenyl)butyronitrile Sodium amide
Ethyl-4-iodobutyrate Hydrogen
Lithium aluminum hydride Hydrogen bromide
Formaldehyde

Manufacturing Process

2-(m-Methoxyphenyl)butyronitrile in dry ether was added to a stirred suspension of sodium amide in liquid ammonia. The mixture was stirred for 30 minutes then ethyl-4-iodobutyrate (99.25 g, 0.4 mol) in dry ether (200 ml) was added dropwise. The mixture was stirred at the temperature of refluxing liquid ammonia for 5 hours. Ammonium chloride (10 g) was added and the mixture allowed to warm to room temperature. Water (300 ml) was added, the organic layer separated, washed with water, 2N sulfuric acid and water. After drying over magnesium sulfate and removing the ether, the product was distilled yielding ethyl 5-cyano-5-(mmethoxyphenyl)heptanoate.

That material was hydrogenated in cyclohexane using a Raney nickel catalyst. The product after distillation was recrystallized from ethyl acetate affording 10.0 g of 6-ethyl-6-(m-methoxyphenyl)hexahydro-2H-azepin-2-one, MP 87°C to 88°C.

The azepinone (9.1 g) in dry tetrahydrofuran (50 ml) and ether (50 ml) was added dropwise to a stirred suspension of aluminum lithium hydride (7.5 g) in dry ether (50 ml). After heating under reflux for 3 hours the reaction mixture was worked up and distilled yielding 7.66 g of a compound which was a colorless oil, BP 108°C to 110°C/0.01 mm.

That product was then heated under reflux with 50% hydrobromic acid for 1.5 hours. The reaction mixture was evaporated to dryness and reevaporated with three portions of propan-2-ol. The oil obtained was dissolved in propan-2-ol and diluted with ether. 3-Ethyl-3-(m-hydroxyphenyl)hexahydro-1H-azepine was obtained. That material in turn was reductively methylated by hydrogenation in the presence of formaldehyde in absolute ethanol solution to give 3-ethyl-3-(m-methoxyphenyl)-1-methylhexahydro-1H-azepine.

The methoxy group was converted to a hydroxy group by refluxing with 80% HBr giving meptazinol hydrobromide.

References

Merck Index A-8 DFU 1 (2) 68 (1976) DOT 19 (7) 415 (1983) I.N. p. 597

Cavalla, J.F. and White, A.C.; British Patent 1,285,025; August 9, 1972; assigned to John Wyeth & Brother Ltd.

Cavalla, J.F. and White, A.C.; U.S. Patent 3,729,465; April 24, 1973; assigned to John Wyeth & Brother Ltd.

Cavalla, J.F. and White, A.C.; U.S. Patent 4,197,241; April 8, 1980; assigned to John Wyeth & Brother Ltd.

MEQUITAZINE

Therapeutic Function: Antihistaminic

Chemical Name: 10-(1-Azabicyclo [2.2.2] oct-3-yl-methyl)-10H-phenothiazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 29216-28-2

Trade Name	Manufacturer	Country	Year Introduced
Primalan	Berk	U.K.	1976
Primalan	Spret Mauchant	France	1976
Metaplexan	Bad, Arzneimittel	W. Germany	1977
Nipolazin	Nippon Shoji	Japan	1983
Zesulan	Tovo Jozo	Japan	1983
Instotal	Ima	Argentina	_
Mircol	Pharmuka	Belgium	-
Vigigan	Spret-Mauchant	France	_

Raw Materials

Phenothiazine Sodium amide

3-Chloromethyl quinuclidine HCl

Manufacturing Process

30 g of phenothiazine were added, all at once, to a suspension of 6 g of sodium amide in 240 mi of anhydrous xylene. The mixture was agitated and heated to reflux. When evolution of ammonia ceased (5 hours), 15 g of 3-chloromethyl-quinuclidine hydrochloride were added portionwise over a period of 50 minutes and reflux was then maintained for 22 hours. After cooling to room temperature, 250 ml of distilled water and 250 ml of ethyl acetate were added to the reaction mixture. The aqueous phase was decanted and extracted twice with a total of 250 ml of methyl acetate. The combined organic extracts were extracted three

times with a total of 750 ml of a 10% aqueous solution of tartaric acid. The combined acid solutions were treated with 5 g of animal charcoal, filtered and rendered alkaline on an ice bath with 96 ml of 10 N aqueous caustic soda. The oil which separated was extracted three times with a total of 1,500 ml of ethyl acetate. The combined organic extracts were washed to neutrality by washing twice with a total of 1 liter of distilled water, dried over anhydrous magnesium sulfate and evaporated under reduced pressure on a water bath at 45°C. 17 g of oil were obtained which was purified by chromatography on an inert alumina column. 13.3 g of crystallized product were obtained. 10-(3-Quinuclidinyl-methyl)-phenothiazine having a MP of 130°C to 131°C was obtained by recrystallization in boiling acetonitrile.

The 3-chloromethyl-quinuclidine hydrochloride used as starting material in this process can be obtained as described by Grob and coll., Helv. Chim. Acta, 37 (1954), 1689.

References

Merck Index 5694 Kleeman & Engel p. 562 DOT 15 (4) 199 (1979) I.N. p. 597

Gueremy, C., Labey, R., Wirth, D. and Auclair, M.; U.S. Patent 3,987,042; October 19, 1976

MERALLURIDE

Therapeutic Function: Diuretic

Chemical Name: [3-[[(3-carboxy-1-oxopropyl)amino] carbonyl] amino] -2-methoxypropyl] -

hydroxymercury mixture with 3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione

Common Name: [3-[3-(3-carboxypropionyl)ureido] -2-methoxypropyl] hydroxymercury

mixture with theophylline

Structural Formula:

Chemical Abstracts Registry No.: 8069-64-5

Trade Name	Manufacturer	Country	Year Introduced
Mercuhydrin	Merrell National	U.S.	1943
Mercardac	Parke Davis	U.S.	-
Mercadon	Parke Davis	U.S.	-

Raw Materials

Succinic anhydride Allyl carbamide Mercury acetate Theophylline

Manufacturing Process

First, to produce the mercury component, a pulverized mixture of 50 g of allylcarbamide and 50 g of succinic anhydride is heated for 30 minutes at 110°C. After cooling the fused

mass is ground with 50 cc of cold water and the crystalline mass after quick filtering from the liquid is recrystallized from hot water. The white crystalline needles having a MP of 142° to 144°C are allyl-succinyl-carbamide. In order to produce a mercury compound thereof a mixture of 20 g of the allyl-succinyl-carbamide and 30 g of mercury acetate is shaken for 3 hours with methanol. The scarcely soluble precipitate of the mercury compound after filtration is washed with methanol and with water and dried in vacuum. The white powder melts at 185° to 186°C under decomposition. Then, condensation with an equimolar proportion of theophylline yields meralluride.

References

Merck Index 5696 OCDS Vol. 1 p. 224 (1977)

I.N. p. 598

Geiger, E., Vargha, L. and Richter, L.; U.S. Patent 2,208,941; July 23, 1940; assigned to Chemical Works of Gedeon Richter Ltd., Hungary

MERCAPTOMERIN SODIUM

Therapeutic Function: Diuretic

Chemical Name: [3-[[(3-carboxy-2,2,3-trimethylcyclopentyl)carbonyl] amino] -2-methoxy-

propyl] (mercaptoacetato-S)mercury disodium salt

Common Nanie: -

Structural Formula:

Chemical Abstracts Registry No.: 21259-76-7

Trade Name	Manufacturer	Country	Year Introduced
Thiomerin	Wyeth	U.S.	1949
Diucardyn	Ayerst	_	_
Thio-Novurit	Chinoin	Hungary	_

Raw Materials

di-N-Allyl-camphoramic acid Mercuric acetate Sodium methylate Thioglycolic acid

Manufacturing Process

(A) Preparation of dl-N-(γ-Chloromercuri-β-Methoxy)-Propylcamphoramic Acid: A suspension of 31.9 g (= 0.10 M) of mercuric acetate in 25 ml of methanol is stirred for 30 minutes at room temperature in a 4-necked flask equipped with stirrer, dropping funnel, drying tube and thermometer. To this suspension is added dropwise and with stirring, a solution of 23.9 g (= 0.10 M) of dl-N-allyl-camphoramic acid

in 65 ml of methanol over a period of 30 minutes. The temperature of the reaction mixture should not rise over 30°C. The stirring is continued for one hour. The reaction mixture is allowed to stand at room temperature overnight in the dark to complete the reaction. A solution of 5.9 g (= 0.10 M) of sodium chloride in 25 ml of water is added and the stirring is continued for four hours. The small amount of gray precipitate produced is removed by centrifuging. The colorless, clear supernatant is concentrated to about half of its original volume and then dropped into 300 ml of water with stirring.

The white precipitate which forms is filtered and dried at 80°C, yielding 45 g of chloromercuri acid (= 89% of the theory), MP 106° to 109°C (decomp.). This compound is finally obtained in analytically pure form and with a constant melting point by two recrystallizations from acetone-water giving a MP of 131° to 132°C with decomposition.

- (B) Preparation of the Chloromercuri Acid Sodium Salt Solution: 50.6 g (= 0.100 M) of the chloromercuri acid (dried over CaCl₂ at 0.1 mm and room temperature overnight) is dissolved in 100 ml of warm methanol. To this solution 6.0 g (= 0.111 M) of sodium methylate is added in small portions with constant stirring, so that the temperature of the solution does not rise over 30°C. The solution is centrifuged, and the glass is rinsed with 10 ml of methanol. The final pH of the combined solutions is 8.5.
- (C) Preparation of the Disodium Thioglycolate Solution: The following steps are carried out under nitrogen. To 9.2 g (= 0.100 M) of freshly distilled thioglycolic acid (BP at 2 mm, 84° to 85°C) in 100 ml of methanol in a flask is added 12.0 g (= 0.222 M) of sodium methylate in small portions with stirring. The turbid solution is poured into a dropping funnel and the flask is rinsed with 20 ml of methanol. The final pH of the combined methanolic solutions is 11, according to U.S. Patent 2,834,795.

To 50 cc of a carefully purified aqueous solution of the sodium salt of $N(\gamma\text{-chloromercuri}\beta\text{-methoxy-propyl})$ -d- $\alpha\text{-camphoramic}$ acid containing 40 mg of mercury per cc is added 10 cc of a solution containing 1.14 g (1 mol equivalent) of sodium thioglycollate and the mixture is then evaporated to dryness at room temperature and reduced pressure in the presence of a desiccant. The product is an amorphous white powder which decomposes at 156° to 158°C (uncorr.), and which was found on analysis to have a mercury content of 33.0%, according to U.S. Patent 2,576,349.

References

Merck Index 5701 OCDS Vol. 1 p. 224 (1977)

I.N. p. 599

Lehman, R.A.; U.S. Patent 2,576,349; November 27, 1951; assigned to Wyeth Incorporated Wendt, G.R.; U.S. Patent 2,834,795; May 13, 1958; assigned to American Home Products Corporation

MERCAPTOPURINE

Therapeutic Function: Cancer chemotherapy

Chemical Name: 6-purinethiol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-44-2

Trade Name	Manufacturer	Country	Year Introduced
Purinethol	Sendoz	France	1950
Purinethol Purinethol	Burroughs-Wellcome	U.S.	1953
Classen	Nippon Shoji	Japan	_
Ismipur	1.S.M.	Italy	_
Leukerin	Takeda	Japan	_
Mercaleukin	Arzneimittelwerk Dresden	E. Germany	_
Mern	Tanabe	Japan	-
6-MP	Dojin	Japan	_
Oncomercaptopurina	Simes	Belgium	-
Puri-Nethol	Burroughs Wellcome	U.K.	
Thioinosie	Morishita	Japan	

Raw Materials

4-Amino-6-chloro-5-nitropyrimidine	Formic acid
Hydrogen sulfide	Sodium hydroxide

Manufacturing Process

7.5 g of 4-amino-6-chloro-5-nitropyrimidine was suspended in 200 ml of 1 N potassium hydrosulfide and heated on the steam bath for 2 hours while passing hydrogen sulfide through the reaction mixture. The reaction mixture was allowed to cool slowly, acidified with 10 N sulfuric acid and chilled. The precipitate consisted of 4,5-diamino-6-mercapto-pyrimidine and sulfur. It was boiled with 300 ml of water, filtered hot and then chilled. The product precipitated as pale yellow needles (4.2 g); an additional 0.95 g was obtained by concentration of the mother liquors to 100 ml.

A mixture of 2 g of 4,5-diamino-6-mercaptopyrimidine and 10 ml of 98% formic acid was heated at 70°C for two hours and then evaporated to dryness on the steam bath to give as a residue, 7-amino-thiazolo (5,4-d) pyrimidine.

To 820 mg of 7-amino-thiazolo (5,4-d) pyrimidine was added 2.5 cc of 2 N sodium hydroxide. The water was removed under reduced pressure. The sodium salt was then heated at 240°C for one hour, during which time it melted, gave off water and resolidified. The sodium salt of 6-mercaptopurine was dissolved in 15 ml of water and acidified to pH 5 with acetic acid. Yellow crystals of 6-mercaptopurine hydrate precipitated, according to U.S. Patent 2,933,498.

References

Merck Index 5702 Kleeman & Engel p. 563 PDR p. 759 I.N. p. 599 REM p. 1151

Hitchings, G.H. and Elion, G.B.; U.S. Patent 2,721,866; October 25, 1955; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings G.H. and Elion, G.B.; U.S. Patent 2,724,711; November 22, 1955; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings, G.H. and Elion, G.B.; U.S. Patent 2,933,498; April 19, 1960; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

MESNA

Therapeutic Function: Mucolytic

Chemical Name: 2-Mercaptoethane sulfonic acid sodium salt

Common Name: -

Structural Formula: [HSCH2CH2SO3] Na+

Chemical Abstracts Registry No.: 19767-45-4; 3375-50-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mistabronco	UCB	W. Germany	1973
Mistabron	Diethelm	Switz.	1978
Mucofluid	UCB Fraysse	France	1978
Mucofluid	UCB	Italy	1981
Uromitexan	W.B. Pharm	U.K.	1983
Uromitexan	Asta	W. Germany	_

Raw Materials

β-S-Thiuronium ethanesulfonate Ammonia

Manufacturing Process

2,100 g of β -S-thiuronium ethanesulfonate were placed in a solution of 2,100 cc of concentrated aqueous ammonia and 400 cc of water. The mixture was carefully warmed on a steam bath and an exothermic reaction ensured, at which point the β -S-thiuronium ethanesulfonate passed into solution. After standing for two hours at room temperature, the solution was concentrated until all of the excess ammonia had been removed.

The resultant clear solution from the ammonolysis reaction was processed through "Amberlite IR-120" ion exchange resin and converted into β -S-mercaptoethanesulfonic acid in 93.7% yield (based on β -S-thiuronium ethanesulfonate).

It is expedient not to heat the reaction mixture rapidly since this increases the loss of ammonia and effects an incomplete reaction. Heating the mixture too rapidly may retard the ammonolysis reaction entirely. The amount of ammonia used is considered to be a satisfactory minimum and larger quantities of ammonia are not found to have any beneficial effect on the reaction. It is also expedient to remove the excess ammonia before processing the guanidinium β -mercaptoethanesulfonate solution through the ion exchange resin since the resin will also remove the ammonia with the result that the capacity of the resin for the exchange of guanidinium ions will be reduced.

Although the preparation of β -mercaptoethanesulfonic acid through the ammonolysis reaction is the preferred method, it is also possible to prepare the sulfonic acid by the sodium hydroxide hydrolysis of β -S-thiuronium ethanesulfonate followed by the ion exchange treatment. The resulting acid, however, is generally not as satisfactory as that prepared by the ammonolysis reaction.

References

Merck Index 5754 Kleeman & Engel p. 563

DOT 8 (5) 180 (1972); 19 (10) 585 & (11) 608 (1983)

I.N. p. 601

Schramm, C.H. and Karlson, R.H.; U.S. Patent 2,695,310; November 23, 1954; assigned to Lever Brothers Co.

MESORIDAZINE BESYLATE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[2-(1-methyl-2-piperidinyl)ethyl] -2-methylsulfinyl-10H-phenothiazine

benzene sulfonate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32672-69-8; 5588-33-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Se rentil	Sandoz	U.S.	1970
Calodal	Heyden	Switz.	1980
Lidanil	SalvoxyI-Wander	France	_

Raw Materials

3-Methylmercaptophenothiazine Acetic anhydride Hydrogen peroxide Potassium carbonate 2-(N-Methyl-piperidyl-2')-1-chloroethane Sodium hydroxide

Manufacturing Process

10.0 g of 3-methylmercapto phenothiazine and 17.5 cc of acetic acid anhydride are refluxed for 8 hours from an oil bath maintained at a temperature of 180°C. After concentration of the solution the residue is crystallized from ethanol. The pure 3-methylmercapto-10-acetyl phenothiazine melts at 89° to 91°C. For the purpose of oxidation 5.0 g of 3methylmercapto-10-acetyl phenothiazine are dissolved in 50 cc of ethanol, refluxed from an oil bath maintained at 120°C and 1.6 cc of a 40% hydrogen peroxide solution are then added dropwise in the course of 30 minutes.

Heating is continued for another 5 hours and the reaction mixture is concentrated after 50 cc of water have been added. The residue is taken up in 40 cc of benzene and the benzene layer washed with 10 cc of water. After having been concentrated, the residue, crude 3-methylsulfinyl-10-acetyl phenothiazine, is dissolved in 55 cc of a 90% methanol solution for splitting off the acetyl group and, after 2.9 g of potassium carbonate have been added, it is boiled for 2 hours under reflux on an oil bath kept at a temperature of 120°C. After concentration, the residue is taken up in 50 cc of chloroform, the chloroform layer is washed with a total of 25 cc of water, dried over potassium carbonate, filtered and concentrated. After twice crystallizing the residue, each time from 50 cc of ethanol, analytically pure 3-methylsulfinyl phenothiazine (MP 193° to 195°C) is obtained.

A mixture of 10.0 g of 3-methylsulfinyl phenothiazine (MP 193° to 195°C), 6.1 g of finely powdered sodium hydroxide and 125 cc of toluene is boiled for 1 hour under reflux with a water separator on an oil bath kept at a temperature of 150°C, while the mixture is stirred. Without interrupting the boil a solution of 7.0 g of 2-(N-methyl-piperidyl-2')-1chloroethane (BP 84°C/10 mm Hg) in 10 cc of toluene is added dropwise in the course of 1 hour, after which boiling is continued for another 3 hours. When the reaction mixture has cooled it is first washed with 25 cc of water three times and then extracted with 75 cc of a 15% aqueous tartaric acid solution. The tartaric acid extract is shaken out with 25 cc of benzene, 20 cc of concentrated caustic soda are added until the phenolphthalein reaction is alkaline, and the separated oily base is taken up in a total of 150 cc of benzene.

After having been washed with 50 cc of water the benzene layer is dried over potassium carbonate, filtered, allowed to stand over 10 g of alumina for about 1½ hours for partial decolorization, filtered again and concentrated under reduced pressure. The oily base which remains as a residue is directly converted into the tartrate. A solution cooled to 0°C, of 6.50 g of the free base in 100 cc of acetic acid ethyl ester is thoroughly shaken and poured into an ice cold solution of 2.66 g of tartaric acid in 410 cc of acetic acid ethyl ester. The precipitated, analytically pure, tartrate of 3-methylsulfinyl-10-[2'-N-methyl-piperidyl-2'')-ethyl-1']-phenothiazine melts at 115° to 120°C (foam formation) and sinters above 80°C. The base is reacted with benzene sulfonic acid in a suitable solvent to give the besylate.

References

Merck Index 5755 Kleeman & Engel p. 564 PDR p. 681 OCDS Vol. 1 p. 389 (1977) DOT 6 (6) 211 (1970) & 9 (6) 227 (1973) I.N. p. 601

REM p. 1089

Renz, J., Bourquin, J.-P. and Schwarb, G.; U.S. Patent 3,084,161; April 2, 1963; assigned to Sandoz Ltd., Switzerland

MESTEROLONE

Therapeutic Function: Androgen

Chemical Name: 17β -hydroxy- 1α -methyl- 5α -androstan-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1424-00-6

Trade Name	Manufacturer	Country	Year Introduced
Proviron	S chering	W. Germany	1967
Proviron	Sc hering	Italy	1971
Pro-Viron	Schering	U.K.	1971
Proviron	S.E.P.P.S.	France	1975
Mestoran	Schering	W. Germany	_
Vistimon	Jenapharm	E. Germany	_

Raw Materials

 1α -Methyl-androstan- 17β -ol-3-one-17-acetate Sodium hydroxide

Manufacturing Process

500 mg of 1α -methyl-androstan-17 β -ol-3-one-17-acetate are heated under reflux for 90 minutes in a nitrogen atmosphere in 5 ml of 4% methanolic sodium hydroxide solution. The reaction mixture is then stirred into ice water, the precipitated product filtered with suction and recrystallized from isopropyl ether. 1α -Methyl-androstan- 17β -ol-3-one melts at 203.5° to 205°C.

References

Merck Index 5760 Kleeman & Engel p. 565 OCDS Vol. 1 p. 174 (1977)

I.N. p. 602

Schering AG, Germany; British Patent 977,082; December 2, 1964 Schering AG, Germany; British Patent 977,083; December 2, 1964

Wiechert, R.; U.S. Patent 3,361,773; January 2, 1968; assigned to Schering A.G.

MESTRANOL

Therapeutic Function: Estrogen

Chemical Name: 3-methoxy-19-nor-17α-pregna-1,3,5(10)-trien-20-yn-17-ol

Common Name: 17\alpha-ethynylestradiol 3-methyl ether

Structural Formula:

Chemical Abstracts Registry No.: 72-33-3

Trade Name	Manufacturer	Country	Year Introduced
Enovid	Searle	U.S.	1957
Ortho-Novum	Ortho	U.S.	1963
Enovid-E	Searte	U.S.	1964
Norinyl	Syntex	U.S.	1964
C-Quens	Lilly	U.S.	1965
Ovulen	Searle	U.S.	1966
Conceplan	Gruenenthal	W. Germany	_
Conovid	Searle	U.K.	_
Enavid	Dainippon	Japan	_
Estalor	Lilly	U.S.	
Gestamestrol	Hermal	W. Germany	_
Lutedione	Teikoku Zoki	Japan	_
Lyndiol	Organon-Sankyo	Ja pan	_
Metrulen	Searle	U.K.	-
Noracycline	Ciba Geigy	France	_
Noriday	Syntex	U.S.	_
Norinyl	Syntex	U.S.	-
Norluten	Shionogi	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Norquen	Syntex	U.S.	_
Nuriphasic	Noury Pharma	W. Germany	_
Orgaluton	Organon	U.K.	_
O.V. 28	Biosedra	France	_
Ovanon	Organon	U.K.	_
Ovastol	Rendell	U.K.	_

Raw Materials

3-Methoxy- $\Delta^{1,3,5}$ -estratrien-17-one Acetylene

Manufacturing Process

A stirred solution of 120 parts of 3-methoxy- $\Delta^{1,3,5}$ -estratrien-17-one in 2,600 parts of anhydrous toluene and 4,300 parts of anhydrous ether is saturated with a slow stream of acetylene. In the course of 30 minutes there is added a solution of 120 parts of potassium tert-amylate in 2,800 parts of anhydrous tert-pentanol. The passage of acetylene and stirring are continued for an additional 5 hours after which the reaction mixture is washed 5 times with 3,000-part portions of saturated ammonium chloride solution and then with water. It is then dried over anhydrous sodium sulfate and concentrated to dryness under vacuum. The residue is recrystallized from methanol. The 3-methoxy-17-ethynyl- $\Delta^{1,3,5}$ -estratrien-17-ol thus obtained melts at about 143° to 146°C. A further recrystallization from acetone yields crystals melting at about 150° to 151°C.

References

Merck Index 5762 Kleeman & Engel p. 566 PDR pp. 1297, 1680, 1793 OCDS Vol. 1 p. 162 (1977) I.N. p. 602

REM p. 989

Colton, F.B.; U.S. Patent 2,666,769; January 19, 1954; assigned to G.D. Searle & Co.

METAMPICILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 3,3-Dimethyl-6[[(methyleneamino)phenylacetyl]amino] -7-oxo-4-thia-1-

azabicyclo[3.2.0] -heptane-2-carboxylic acid sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6489-61-8; 6489-97-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Magnipen	Clin-Comar-Byla	Italy	1969
Magnipen	Clin Midy	France	1970

Trade Name	Manufacturer	Country	Year Introduced
Actuapen	Larma	Spain	_
Ampilprats	Prats	Spain	_
Apliopenil	Miluy	Spain	_
Co-Metampicil	Sanchez-Covisa	Spain	_
Daniven	Aldon	Spain	
Doctamicina	Aristegui	Spain	
Dompil	Spyfarma	Spain	_
Durmetan	Durban	Spain	_
Fedacilina	Fedal	Spain	_
Janopen	Janovich	Spain	_
Madecilina	Made	Spain	_
Maipen	Maipe	Spain	
Mempil	Kairon	Spain	
Metabacter	Rubio	Spain	_
Metacidan	Cidan	Spain	_
Meta-Ferran	Ferran	Spain	_
Metakes	Kessler	Spain	_
Metambac	Wolner	Spain	_
Metampicef	Cecef	Spain	_
Metamplimedix	Medix	Spain	_
Metiskia	Iskia	Spain	_
Ocelina	Roux-Ocefa	Argentina	
Pluriespec	Vir	Spain	_
Ruticina	Bernabo	Argentina	
Tisquibron	Bryan	Spain	_
Venzoquimpe	Quimpe	Spain	_
Vigocina	Europa	Spain	_

Raw Materials

6-[D(-)-alpha(aminophenylacetamido)) penicillanic acid (ampicillin) Sodium bicarbonate Formaldehyde

Manufacturing Process

0.01 mol of 6-[D(-)-alpha-(aminophenylacetamido)] -penicillanic acid was suspended in 150 cc of water cooled to +5°C and treated with 0.01 mol of sodium bicarbonate.

The solution was treated with 0.01 mol of formaldehyde in aqueous solution, with agitation. The solution was then filtered to eliminate traces of insoluble product and the filtrate was lyophilized. Sodium 6-[D(-)-alpha-(methylene-amino-phenylacetamido)] -penicillanate was obtained.

References

Merck Index 5775 Kleeman & Engel p. 569 OCDS Vol. 1 p. 414 (1977) DOT 6 (3) 85 (1970) I.N. p. 604

Gradnick, B.; British Patent 1,081,093; August 31, 1967; assigned to Societe d'Etudes de Recherches et d'Applications Scientifiques et Medicales (E.R.A.S.M.E.) (France)

METAPRAMINE

Therapeutic Function: Antidepressant

Chemical Name: 10,11-Dihydro-5-methyl-10(methylamino)-5H-dibenz[b,f] azepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21730-16-5; 21737-55-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Timaxel	Specia	France	1983
Rodostene	Rhone-Poulenc	France	-

Raw Materials

5-Methyl-dibenzo[b.f] azepine Methylamine Sodium hypochlorite

Manufacturing Process

5-Methyl-dibenzo[b,f] azepine (4.1 g), N-diethylaminoborane (1.7 g) and freshly distilled toluene (150 cc) are introduced into a 500 cc three-neck flask equipped with a dropping funnel and a condenser, and protected against moisture by a calcium chloride guard tube. The solution is heated under reflux (110°C) for 22 hours under a nitrogen atmosphere and then cooled. A 2N aqueous sodium hydroxide solution (33 cc) is then run in followed by an 0.316 N agueous methylchloramine solution (190 cc), the addition of which takes 9 minutes. The mixture is stirred for 1 hour and then decanted. The organic layer is washed with water until it has a pH of 6 and is then extracted with 2N hydrochloric acid (5 times 50 cc), dried over sodium sulfate, filtered and evaporated. Recrystallization of the residue from petroleum ether yields some unconverted 5-methyl-dibenzo[b,f] azepine (2.17 g).

The aqueous acid solution is rendered alkaline by adding 2 N sodium hydroxide solution. After extracting with diethyl ether (3 times 100 cc), drying the extracts over potassium carbonate, treating them with decolorizing charcoal, filtering and evaporating the ether, a yellowish oil (0,9 g), identified as 5-methyl-10-methylamino-10,11-dihydro-dibenzo[b,f] azepine, is obtained in a vield of 37.5%.

Methylchloramine can be prepared by adding an aqueous solution of sodium hypochlorite to an aqueous solution of methylamine in accordance with the process described by W.S. Metcalf, J. Chem. Soc. 1942, 148.

References

Merck Index 5781 DFU 6 (8) 479 (1981) Kleeman & Engel p. 569 I.N. p. 605

Linares, H.; British Patent 1,323,219; July 11, 1973; assigned to Rhone-Poulenc SA Fouche, J.C.L. and Gueremy, C.G.A.; U.S. Patent 3,622,565; November 23, 1971; assigned to Rhone-Poulenc S.A.

METAPROTERENOL SULFATE

Therapeutic Function: Bronchodilator

Chemical Name: 5-[1-Hydroxy-2-[(1-methylethyl)amino]ethyl]-1,3-benzenediol sulfate

Common Name: Orciprenaline sulfate

Structural Formula:

Chemical Abstracts Registry No.: 5874-97-5; 586-06-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Alupent	Boehr, Ingel,	W. Germany	1961
Dosalupent	Boehr, Ingel.	Italy	1963
Alupent	Badrial	France	1966
Alupent	Boehr, Ingel.	U.S.	1973
Metaprel	Dorsey	U.S.	1973
Alotec	Tanabe	Japan	_
Astmopent	Polfa	Poland	_
Astop	Rafa	Israel	_
Lenasma	Ravasini	Italy	_
Novasmasol	Zambeletti	Italy	_

Raw Materials

3,5-Diacetoxyacetophenone	Bromine
Isopropylamine	Hydrogen

Manufacturing Process

In an initial operation, 3,5-diacetoxyacetophenone was reacted first with bromine and then with isopropylamine to give 1-(3,5-dihydroxyphenyl)-2-isopropylaminoethanone.

59 g of 1-(3,5-dihydroxy-phenyl)-2-isopropylaminoethanone (free base) were dissolved in 590 cc of methanol, and the solution was hydrogenated in the presence of about 80 g Raney nickel at room temperature and under a pressure of 5 atm. Hydrogen absorption was terminated after a few minutes. The catalyst was separated by vacuum filtration, and the filtrate, an ethanolic solution of 1-(3,5-dihydroxyphenyl)-1-hydroxy-2-isopropylaminoethane, was admixed with the calculated amount of an alcoholic 20% sulfuric acid solution. A crystalline precipitate formed which was filtered off and washed with alcohol. For purification, the product was dissolved in water and the solution was filtered through iron-free charcoal.

Thereafter, the filtrate was evaporated to dryness in vacuo and the residue was taken up in alcohol. The crystalline precipitate which separated out after some standing was separated by vacuum filtration and washed with alcohol. After recrystallization from 90% alcohol, 61 g (83.2% of theory) of 1-(3,5-dihydroxyphenyl)-1-hydroxy-2-isopropylamino-ethane sulfate, MP 202° to 203°C, was obtained.

References

Merck Index 5782 Kleeman & Engel p. 658 PDR pp. 674, 848 OCDS Vol. 1 p. 64 (1977) I.N. p. 705 REM p. 887

Thoma, O. and Zeile, K.; U.S. Patent 3,341,594; September 12, 1967; assigned to Boehringer Ingelheim G.m.b.H., Germany

METARAMINOL

Therapeutic Function: Hypertensive

Chemical Name: α -(1-aminoethyl)-3-hydroxybenzenemethanol

Common Name: m-hydroxynorephedrine; m-hydroxypropadrine; metaradrine

Structural Formula:

HOCHCHNH.

Chemical Abstracts Registry No.: 54-49-9

Trade Name	Manufacturer	Country	Year Introduced
Aramine	MSD	U.S.	1952
Pressoral	Travenol	U.S.	1963
Pressonex	Winthrop	U.S.	1963
Aramine	MSD-Chibret	France	1963
Araminium	Sharp & Dohme	W. Germany	
Araminon	Merck-Banyu	Japan	_
Icopal B	Bayer	·	-
Levicor	Bioindustria	Italy	_
Metaraminol	Bristol	U.S ['] .	

Raw Materials

m-Hydroxyphenylethyl ketone Butyl nitrite Hydrogen

Manufacturing Process

The hydrochloride of the m-hydroxyphenylpropanolamine may be prepared by dissolving or suspending 90 parts of m-hydroxyphenylethyl ketone, $O=C(C_6H_4-OH)-C_2H_5$, in about 400 parts of ether. Hydrogen chloride is slowly bubbled through the solution or suspension while agitating it and 61.8 g of butyl nitrite is added during the course of 60 to 90 minutes. During the addition of the butyl nitrite the suspended m-hydroxyphenylethyl ketone gradually dissolves. The mixture or solution is allowed to stand for at least an hour, but preferably overnight. It is then repeatedly extracted with dilute alkali until all alkali-soluble material is removed. The alkaline extract is slowly acidified and the precipitate which forms is crude m-hydroxyphenyl-\(\alpha\)-oximinoethyl ketone. After recrystallization from water this melts at 138°C.

10.8 parts of the meta ketone is dissolved in about 125 parts of absolute alcohol containing 5.6 parts of hydrogen chloride. The solution is agitated with a catalyst such as the palladium catalyst above described in an atmsophere of hydrogen until no more hydrogen is absorbed. This requires from 60 to 90 minutes or more. When reduction is complete the catalyst is filtered off and the filtrate evaporated to dryness by being placed in a desiccator at ordinary temperature.

The residue is the hydrochloride of m-hydroxyphenyl- α -aminoethyl ketone. This is purified by recrystallization from absolute alcohol. It is then dissolved in 200 parts of water and agitated with a further quantity of the palladium catalyst in an atmosphere of hydrogen until saturated. The product thus recovered from the solution is the hydrochloride

of m-hydroxyphenylpropanol amine. After recrystallization from absolute alcohol this melts at 177°C. The corresponding free base can be prepared from the hydrochloride by treatment with ammonia, according to U.S. Patent 1,995,709.

Metaraminol is often used in the form of the bitartrate.

References

Marck Index 5783 Kleeman & Engel p. 570 PDR pp. 695, 1140 I.N. p. 605 REM p. 888

Bockmühl, M., Ehrhart, G. and Stein, L.; U.S. Patent 1,948,162; February 20, 1934; assigned to Winthrop Chemical Company, Inc.

Bockmühl, M., Ehrhart, G. and Stein, L.; U.S. Patent 1,951,302; March 13, 1934; assigned to Winthrop Chemical Company, Inc.

Hartung, W.H.; U.S. Patent 1,995,709; March 26, 1935; assigned to Sharp & Dohme, Inc.

METAXALONE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 5-(3,5-dimethylphenoxymethyl)-2-oxazolidinone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1665-48-1

Trade Name	Manufacturer	Country	Year Introduced
Skelaxin	Robins	U.S.	1962

Raw Materials

Urea

3-(3',5'-Dimethylphenoxy)-1,2-propanediol

Manufacturing Process

Urea (118 g, 1.96 mols) was added to 192 g (0.98 mol) of 3-(3',5'-dimethylphenoxy)-1,2-propane-diol which had previously been heated to 150°C. The reaction mixture was then heated rapidly to 195° to 200°C and maintained at this temperature for 5 hours with constant stirring. The resulting mixture was partitioned between water and ethyl acetate and the ethyl acetate layer was dried over sodium sulfate and concentrated. The residue was distilled in vacuo and the fraction boiling at 220° to 225°C/1.5 mm was collected. Yield, 172 g (79%). The distillate was crystallized from dry ethyl acetate; MP, 121.5° to 123°C.

References

Merck Index 5785 Kleeman & Engel, p.571 PDR p. 783 OCDS Vol. 1 p. 119 (1977) I.N. p. 606 REM p. 927

Lunsford, C.D.; U.S. Patent 3,062,827; November 6, 1962; assigned to A.H. Robins Company, Inc.

METERGOLINE

Therapeutic Function: Analgesic

Chemical Name: [[(8\beta)-1,6-dimethylergolin-8-yl] methyl] carbamic acid phenylmethyl ester

Common Name: Methyl-N-carbobenzoxy-dihydro-lysergamine

Structural Formula:

Chemical Abstracts Registry No.: 17692-51-2

Trade Name	Manufacturer	Country	Year Introduced
Liserdol	Farmitalia	Italy	1970

Raw Materials

1-Methyl-dihydro-lysergamine Carbobenzoxy chloride

Manufacturing Process

16 g of 1-methyl-dihydro-lysergamine (the 10-position hydrogen has the α -configuration) are dissolved in 80 cc of anhydrous pyridine by mildly heating. To the solution, cooled to $-10^{\circ}\mathrm{C}$ and stirred, 18 cc of 85% carbobenzoxy-chloride (in toluene) diluted in 36 cc of chloroform are added dropwise, rather rapidly. The mixture is kept at $-10^{\circ}\mathrm{C}$ during the addition, and for 10 minutes afterwards. The cooling means is removed and the temperature is allowed to rise to room level in 10 minutes. The reaction mixture is diluted with 240 cc of chloroform and rapidly washed with 80 cc of 5% aqueous sodium hydroxide solution, with saturated aqueous sodium bicarbonate solution, and finally with water.

The chloroform solution is briefly dried over anhydrous sodium sulfate and evaporated to dryness in vacuo at 40°C. The oily residue is taken up in 160 cc of benzene and passed through a column containing 48 g of alumina. The column is then eluted with further 160 cc of benzene. The collected eluates are evaporated in vacuo at 40°C. The thick oily residue is mixed with a small amount of anhydrous diethyl ether. After some time a crystalline mass is obtained, which is collected and washed with a small amount of benzene and diethyl ether. 12 g of white crystals are obtained, melting at 146° to 148°C.

References

Merck Index 5790 I.N. p. 606 Camerino, B., Patelli, B. and Glaesser, A.; U.S. Patent 3,238,211; March 1, 1966; assigned to Societa Farmaceutici Italia, Italy

METHACYCLINE

Therapeutic Function: Antibiotic

Chemical Name: 4-dimethylamino-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahy-

droxy-6-methylene-1,11-dioxo-2-naphthacenecarboxamide

Common Name: 6-methylene-5-hydroxytetracycline

Structural Formula:

Chemical Abstracts Registry No.: 914-00-1; 3963-95-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Rondomycin	Pfizer	U.K.	1963
Megamycine	Creat	France	1966
Rondomycin	Wallace	U.S.	1966
Adramycin	Janko	Japan	
Apriclina	Lancet	Italy	_
Benciclina	Benvegna	Italy	_
Boscillina	Molteni	Italy	_
Brevicillina	Neopharmed	Italy	_
Ciclobiotic	Beta	Italy	_
Ciclum	Italsuisse	Italy	_
Duecap	Sam	Italy	_
Duplaciclina	Locatelli	Italy	_
Duramicina	Bergamon	Italy	-
Dynamicin	Medal	Italy	_
Esarondil	Terapeutico	Italy	_
Esquilin	Saito	Italy	_
Fitociclina	lfisa	italy	_
Franciclina	Francia	Italy	
Francomicina	N.C.S.N.	Italy	-
Gammaciclina	S thol	Italy	_
Globociclina	Importex	Italy	_
Idrossimicina	San Carlo	Italy	_
Isometa	Isom	italy	_
Largomicina	Jamco	Italy	_
Medomycin	Medosan	Italy	_
Megamycine	C.R.E.A.T.	Italy	_
Metabiotic	Panther-Osfa	Italy	_
Metabioticon BG	Boniscontro-Gazzone	Italy	
Metac	Dima	Italy	_
Metacil	lbirn	Italy	_
Metaclin	Medici	Italy	_
Metaclor	Esset	Italy	_
Metadomus	Medici Domus	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Metagram	Zanardi	Italy	_
Metilenbiotic	Coli	Italy	-
Microcilina	Biotrading	Italy	-
Mit-Ciclina	Von Boch	Italy	-
Molciclina	Molteni	Italy	-
Optimicine	Biochemie	Austria	_
Ossirondil	Gazzini	Italy	_
Paveciclina	I.B.P.	Italy	_
Physiomycine	Roland-Marie	France	_
Piziacina	Farmochimica	Italy	-
Plurigram	Lafare	Italy	_
Prontomicina	Tosi-Novara	Italy	_
Quickmicina	Panthox & Burck	Italy	
Radiomicina	Radiopharma	Italy	_
Rindex	Sidus	Italy	_
Rotilen	Amelix	Italy	-
Sernamicina	Pharma Williams	Italy	_
Stafilon	A.G.I.P.S.	Italy	_
Tachiciclina	C.T.	Italy	-
Tetrabios	Ausonia	Italy	_
Tetranovo	Totalpharm	Italy	
Tiberciclina	Tiber	Italy	_
Ticom icina	Benedetti	Italy	-
Treis-Ciclina	Ecobi	Italy	_
Valcin	Chemil	Italy	_
Vitabiotic	Pharmex	Italy	_
Wassermicina	Wassermann	italy	_
Yatrociclina	Italfarmaco	Italy	-
Zermicina	Pulitzer	italy	_

Raw Materials

Oxytetracycline Sulfur trioxide Hydrogen fluoride

Manufacturing Process

To a stirred solution of 4.6 g (0.01 mol) of anhydrous oxytetracycline in 40 ml of dry tetrahydrofuran is added 3.5 g (0.021 mol) of pyridine-sulfur trioxide complex. After 16 hours of stirring at room temperature, the resulting suspension is filtered, and the solid is slurried with 25 ml of 2% hydrochloric acid for 10 minutes, filtered and thoroughly washed with methanol followed by ether. The pale yellow crystalline 5-oxytetracycline-6, 12-hemiketal-12-sulfuric acid ester melts at 210°C.

500 mg 5-oxytetracycline-6,12-hemiketal-12-sulfuric acid ester, prepared as described, is added to 4 ml dry liquid hydrogen fluoride, and the mixture is stirred for 1.5 hours at ice bath temperature. The hydrogen fluoride is then evaporated in a stream of nitrogen and the resulting gummy solids are triturated with about 15 ml ether and filtered. The resulting solid hydrofluoride salt is further purified by suspending in water, adjusting the pH to about 4, and extracting the 6-methylene-5-oxytetracycline free base from the aqueous phase with ethyl acetate. The extract is separated and evaporated to dryness under reduced pressure. The resulting residue is triturated with ether and filtered, and the solid is recrystallized from methanol-acetone-ether-concentrated hydrochloric acid to obtain the product as a purified hydrochloride, according to U.S. Patent 3,026,354.

References

Merck Index 5798

Kleeman & Engel p. 567

PDR p. 1881

OCDS Vol. 2 p. 227 (1980)

DOT 1 (1) 10 (1965)

I.N. p. 603 REM p. 1205

Blackwood, R.K., Rennhard, H.H., Beereboom, J.J. and Stephens, C.R., Jr.; U.S. Patent

2,984,686; May 16, 1961; assigned to Chas. Pfizer & Co., Inc.

Blackwood, R.K.; U.S. Patent 3,026,354; March 20, 1962; assigned to Chas. Pfizer & Co., Inc.

METHADONE HYDROCHLORIDE

Therapeutic Function: Narcotic analgesic

Chemical Name: 6-dimethylamino-4,4-diphenyl-3-heptanone hydrochloride

Common Name: Amidone hydrochloride

Structural Formula:

$$\begin{array}{c} {}^{\rm C}_{|6}{}^{\rm H}_{5} - {\scriptstyle \frac{N}{1}}^{\rm CCH}_{3})_{\,2} \\ {}^{\rm CH}_{3}{}^{\rm CH}_{2}{}^{\rm COC} - {\rm CH}_{2}{}^{\rm CHCH}_{3} + {\rm HC1} \\ {}^{\rm C}_{6}{}^{\rm H}_{5} \end{array}$$

Chemical Abstracts Registry No.: 1095-90-5: 76-99-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dolophine	Lilly	U.S.	1947
Adanon	Winthrop	U.S.	1947
Westadone	Vitarine	U.S.	1973
Adolan	Abic	Israel	_
Eptadone	Tosi	Italy	_
Heptadon	E.B.E.W.E.	Austria	_
Heptanal	Treupha	Switz,	_
Heptanon	Pliva	Yugoslavia	_
Ketalgin	Amino	Switz.	_
Mephenon	Spemsa	Italy	_
Optalgin	Dr. Wust	Switz.	
Physeptone	Burroughs-Wellcome	U.K.	

Raw Materials

Diphenylacetonitrile Ethyl bromide 2-Chloro-1-dimethylaminopropane Magnesium

Hydrogen chloride

Manufacturing Process

Diphenylacetonitrile is condensed with 2-chloro-1-dimethylaminopropane to give 4-(dimethylamino)-2,2-diphenyl valeronitrile. It is then reacted with ethyl magnesium bromide and then hydrolyzed using HCI to give methadone hydrochloride.

References

Merck Index 5799 Kleeman & Engel p. 573 PDR pp. 1048, 1061, 1571 OCDS Vol. 1 pp. 79, 289, 298 (1977) a 2, 328 (1980)

I.N. p. 607 REM p. 1109

Resolution of Optical Isomers:

Howe, E.E. and Tishler, M.; U.S. Patent 2,644,010; June 30, 1953; assigned to Merck &

Co., Inc.

Zaugg, H.E.; U.S. Patent 2,983,757; May 9, 1961; assigned to Abbott Laboratories

METHALLENESTRIL

Therapeutic Function: Estrogen

Chemical Name: β -ethyl-6-methoxy- α , α -dimethyl-2-naphthalenepropionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 517-18-0

Trade Name	Manufacturer	Country	Year Introduced
Vallestril	Searle	U. \$.	1952
Cur-Men	Novapharma	Italy	_
Ercostrol	Erco	Denmark	_
Ercostrol	Green Cross	Japan	_

Raw Materials

2-Bromo-6-methoxynaphthalene Cuprous cyanide
Ethyl bromoisobutyrate Ethyl bromide
Magnesium Potassium bisulfate
Hydrogen Sodium hydroxide

Manufacturing Process

A first step involves the preparation of 2-cyano-6-methoxynaphthalene (cyanonerolin). 90 g of 2-bromo-6-methoxynaphthalene are heated with 60 g of cuprous cyanide in a metal bath at 240° to 250°C stirring for one hour. At the instant when the cuprous cyanide begins to react and dissolves, the mass turns brown, liquefies and heats up strongly. The molten mass is poured onto a cold surface, is pulverized and sifted. This powder is treated with dilute ammonia (1 liter of water to 300 cc of commercial ammonia solution). The solution is filtered on a Büchner filter and the precipitate that remains on the filter is washed with dilute ammonia and then with water.

After drying, the residue is treated in a Kumagawa extracting apparatus with boiling benzene. The benzene is evaporated and the residue is distilled in vacuo. About 50 g of cyanonerolin (BP = 205° to 208°C/14 mm) are obtained with a yield of about 70%. By recrystallization in 200 cc of methyl alcohol, 40 g of the product are obtained in absolutely pure state, in the shape of beautiful colorless needles (MP = 103°C with the Maquene block). By concentrating the mother liquor to half its original volume, a further 3.6 g of pure product are obtained.

The 2-cyano-6-methoxy-naphthalene is in turn converted by successive reactions into: (a) β -ketonic ester. (b) ester-alcohol. (c) β -ethylene ester by dehydration. (d) saturated ester, and (e) [3-(6-methoxy-2-naphthyl)] 2,2-dimethyl pentanoic acid which is the reouired product.

- (A) Obtaining a β-Ketonic Ester by Reacting Ethyl Bromoisobutyrate with Cyanonerolin: 9 g of cyanonerolin are heated in a reflux apparatus for 40 minutes with 7 g of zinc and 19 g of ethyl bromoisobutyrate in the presence of 150 cc of anhydrous benzene. After cooling, the mixture is filtered to eliminate unreacted zinc and is hydrolyzed by stirring for one hour with dilute sulfuric acid (10 cc of sulfuric acid to 200 cc of water). The benzene layer is washed, dried and the solvent is eliminated. It is purified by recrystallization in methyl alcohol. 12.5 g of ketonic ester (MP = 72.5° to 73.5°C) are thus obtained in the form of large prismatic crystals.
- (B) Obtaining an Ester-Alcohol by Reacting Magnesium Ethyl Bromide with the Previous Ketonic Ester: 10 g of the previous ester dissolved in 40 cc of anhydrous benzene are gradually poured while stirring into an iced solution of magnesium ethyl bromide prepared from 1.035 g of magnesium, 4.15 cc of ethyl bromide and 40 cc of anhydrous ether. After heating in a reflux apparatus for one-half hour, the mixture is poured into ice in the presence of ammonium chloride.

After washing the ether-benzene layer, the solvents are eliminated in vacuo and an esteralcohol is thus obtained with a yield of 98%, in the form of a transparent resin. This resin, if treated with petroleum ether, yields 6.35 g of ester-alcohol in the form of fine needles (MP = 66.68°C) which are very soluble in the chief organic solvents and in petroleum ether.

- (C) Conversion into Ethyl [3-(6-Methoxy-2-Naphthyl)] 2,2-Dimethyl-3-Pentanoate by Dehydrating the Previous Ester-Alcohol: The semi-oily raw product of the previous reaction is dehydrated by heating with its own weight of potassium bisulfate to 180°C until boiling stops. After cooling, the magma is removed from the anhydrous ether in small portions. The ether is then evaporated and an ethylene ester is obtained in the form of an oil which slowly solidifies, with a yield of 98%. The product, after being purified by chromatography, melts at 48° to 51°C.
- (D) Obtaining Ethyl [3-(6-Methoxy-2-Naphthyl)] 2,2-Dimethyl Pentanoate by Hydrogenation of the Previous Ethylene Ester: 3.5 g of the previous ethylene ester, purified by chromatography, are hydrogenated in the presence of 3.6 g of platinum in 30 cc of ether. The quantity of hydrogen fixed corresponds to the theoretical quantity calculated. After filtering, the ether is evaporated, 3.45 g of ester are thus obtained in the form of an oil which quickly solidifies. Purification is effected by chromatography,
- (E) Obtaining [3-(6-Methoxy-2-Naphthyl)] 2,2-Dimethyl Pentanoic Acid: 2.5 g of the previous ester are saponified by means of 15 cc of soda lye and 25 cc of methyl glycol. The mixture is boiled for one hour, diluted with water and, after cooling, is treated twice with ether in order to eliminate the remaining neutral fractions. The aqueous layer is precipitated by means of 15 cc of acetic acid. 2.1 g of raw acid are obtained. After effecting two crystallizations in 10 parts of acetic acid mixed with 3 parts of water, fine needles are obtained which are grouped in rosettes and melt at 131.5° to 132.5°C.

References

Merck Index 5803 Kleeman & Engel p. 574 OCDS Vol. 1 p. 87 (1977) I.N. p. 608 Horeau, A. and Jacques, J.; U.S. Patent 2,547,123; April 3, 1951

METHANDROSTENOLONE

Therapeutic Function: Androgen; anabolic

Chemical Name: 17β-Hydroxy-17-methylandrosta-1,4-dien-3-one

Common Name: Methandienone

Structural Formula:

Chemical Abstracts Registry No.: 72-63-9

Trade Name	Manufacturer	Country	Year Introduced
Dianabol	Ciba	U.S.	1960
Abirol	Takeda	Japan	_
Anabolin	Medica	Finland	
Anoredan	Kodama	Ja pan	_
Encephan	Sato/Shinshin	_	
Lanabolin	Labatec	Switz.	_
Metabolina	Guidi	Italy	_
Metanabol	Polfa	Poland	
Metastenol	Farber-R.E.F.	Italy	-
Naposim	Terapia	Rumania	_
Nerobol	Galenika	Yugoslavia	_
Perbolin	lon	Italy	_
Vanabol	Vitrum	Sweden	_

Raw Materials

Bacterium *Didymella lycopersici* 17β -Methyl testosterone Selenium dioxide

Manufacturing Process

As described in U.S. Patent 2,929,763, methandrostenolone may be made by a fermentation route. 2 g of sodium nitrate, 1 g of primary potassium orthophosphate, 0.5 g of magnesium sulfate heptahydrate, 0.5 g of potassium chloride, 50 g of glucose and 1 g of Difco yeast extract are dissolved in one liter of tap water, brought to pH 5 by addition of a sodium hydroxide solution and sterilized. The resulting nutrient solution is inoculated with 50 cc of a 4-day-old shaking culture of *Didymella lycopersici* and shaken for 48 hours at 27°C, whereby the culture becomes well developed.

To two liters of a culture so prepared there is added under sterile conditions a solution of 500 mg of 17α -methyl-testosterone in 15 cc of acetone. Shaking is carried out for 3 days at 27° C, the mycellium then filtered off with suction, washed with water and ethyl acetate and the combined filtrates extracted with ethyl acetate. The extraction residue obtained after evaporation of the solvent is dissolved in a little acetone. On addition of ether, the 1-dehydro- 17α -methyl-testosterone is obtained in compact crystals. MP 163° to 164°C.

An alternative synthetic route is described in U.S. Patent 2,900,398 as follows. A suspension of 30 g of 17α -methyl-testosterone and 10 g of selenium dioxide in 600 cc of tertiary amyl alcohol is treated with 60 g of magnesium powder and 6 cc of glacial acetic acid.

The mixture is refluxed for 24 hours with good stirring in an atmosphere of nitrogen, another 10 g of selenium dioxide being added after 10 hours. After some cooling, the suspension is filtered through some Hyflo and washed thoroughly with ethyl acetate. The resulting brown solution is evaporated in vacuo and the residue dissolved in ethyl acetate.

The ethyl acetate solution is then washed with water, dried and evaporated. To remove any selenium still present, the residue is dissolved in 200 cc of methanol and mixed with 100 g of iron powder and 2 g of active carbon. The mixture is heated for 30 minutes with stirring under reflux, then filtered with suction, washed with methanol and the solution evaporated in vacuo. The residue is then chromatographed on 900 g of aluminum oxide. The residues of the evaporated benzene and ether fractions are treated with active carbon in methanol or acetone, evaporated again, and the residue recrystallized from a mixture of acetone and ether. There are obtained 17.5 g of pure 1-dehydro- 17α -methyltestosterone which melts at 163° to 164°C.

References

Merck Index 5810 Kieeman & Engel p. 570 OCDS Vol. 1 p. 173 (1977) I.N. p. 605 REM p. 998

Wettstein, A., Hunger, A., Meystre, C. and Ehmann, L.; U.S. Patent 2,900,398; August 18, 1959; assigned to Ciba Pharmaceutical Products, Inc.

Wettstein, A., Vischer, E. and Meystre, C.; U.S. Patent 2,929,763; March 22, 1960; assigned to Ciba Pharmaceutical Products, Inc.

METHAPYRILENE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: N,N-dimethyl-N'-2-pyridinyl-N'-(2-thienylmethyl)-1,2-ethanediamine hy-

drochloride

Common Name: Thenylpyramine hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 135-23-9; 91-80-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Thenylene	Abbott	U.S.	1947
Pyrathyn	Davis Sly	U.S.	1947
Histadyl	Lilly	U. S .	1948
Semikon	Beecham	U.S.	1949
Lullamin	Reed Carnrick	U.S.	1954
Dozar	Tutag	U.S.	1956
Allergin	Myers-Carter	U.S.	_
Allerest	Pharmacraft	U. S .	_
Brexin	Savage	U.S.	-
Citra	Boyle	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Ephed-Organidin	Wallace	U.S.	
Excedrin P.M.	Bristol-Myers	U.S.	-
Histadyl	Lilly	U.S.	_
M.P.	Dymond	Canada	
Sedanoct	Woelm-Pharma	W. Germany	_
Contac	Vonora	W. Germany	_
Co-Pyronil	Lilly	Italy	

Raw Materials

Sodium amide 2-Aminopyridine N.N-Dimethyl-\$-chloroethylamine Hydrogen chloride 2-Thenvl chloride

Manufacturing Process

To a slurry of sodamide in 200 cc of toluene representing 6.7 g of sodium was added at 30° to 40°C, 32.3 g (0.31 mol) of 2-aminopyridine. The mixture was heated to reflux temperature and was refluxed for 11/2 hours. To the resulting mixture was added over a period of approximately one hour a solution of 32 g of freshly distilled N,N-dimethyl-βchloroethylamine in 40 to 50 cc of dry toluene. The reaction mixture was then haated for 2 hours at reflux temperature. Thereafter, 200 cc of water was added and the toluene layer was separated and washed with water. The toluene was stripped from the mixture by distillation and the residue was distilled under reduced pressure. The distillate was refractionated and the portion distilled at 93° to 103°C/1 mm was recovered. Yield of N-(2-pyridyl)-N',N'-dimethyl-ethylenediamine, 60%,

A solution of 20 g (0,121 mol) of N-(2-pyridyl)-N'.N'-dimethyl-ethylenediamine in 25 cc of toluene was added to a slurry of sodamide in 100 cc of toluene representing 2.8 g of sodium. The mixture was refluxed for one hour. To this mixture was added over a period of ½ hour a solution of 16 g (0.121 mol) of 2-thenyl chloride in 25 cc of toluene. The resulting reaction mixture was refluxed for 3 hours. Thereafter, water was added and the toluene layer was separated and washed with water.

The toluene was then stripped off by distillation and the residue was distilled under reduced pressure. The main fraction was redistilled. Yield of N-(2-pyridyl)-N-(2-thenyl)-N',-N'-dimethyl-ethylenediamine was 69%; BP 130° to 140°C/0.4 mm. A portion of the product was dissolved in ether and an ether solution of hydrogen chloride was added. The monohydrochloride of N-(2-pyridyl)-N-(2-thenyl)-N',N'-dimethyl-ethylenediamine which separated was washed with ether and dried.

References

Merck Index 5819 Kleeman & Engel p. 575 OCDS Vol. 1 p. 54 (1977) I.N. p. 609

Kyrides, L.P.; U.S. Patent 2,581,868; January 8, 1952; assigned to Monsanto Chemical Company

METHAQUALONE

Therapeutic Function: Hypnotic

Chemical Name: 2-methyl-3-o-tolyl-4(3H)-quinazolinone

Common Name: Metolquizolone; ortonal

Structural Formula:

Chemical Abstracts Registry No.: 72-44-6; 340-56-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Quaalude	Lemmon	U.S.	1965
Sopor	Amer, Crit. Care	U.S.	1967
Somnafac	Cooper	U.S.	1968
Parest	Lemmon	U.S.	1969
Quaalude	Rorer	Italy	1969
Optimil	Wallace	U.S.	1972
Aqualon	Arcana	Austria	-
Cateudyl	Cavor	Belgium	_
Citexal	Draco	Sweden	_
Divinoctal	1.S.H.	France	-
Dormigoa	Scheurich	W. Germany	_
Dormir	Langley	Australia	_
Dormutil	Isis-Chemie	E. Germany	
Hyptor	Bio-Chimique	Canada	
Hyminal	Eisai	Japan	_
Mandrax	1.S.H.	France	_
Mequelon	Merck-Frosst	Canada	-
Meroctan	Sanwa	Japan	_
Methadorm	Eri	Canada	
Metasedil	Cooper	Switz.	
Mollinox	Asperal	Belgium	
Motolon	Chinoin	Hungary	_
Nene	S ankyo	Japan	_
Nobadorm	Streuli	Switz.	-
Normi-Nox	Herbrand	W. Germany	
Normorest	Doitsu-Aoi	Japan	_
Noxybel	Probel	Belgium	_
Oblioser	Gamaprod.	Australia	_
Optinoxan	Robisch	W. Germany	
Parmilene	Chiesi	Italy	-
Paxidorm	Wallace	U.S.	
Pexaqualone	Therapex	Canada	_
Pro-Dorm	Schurholz	W. Germany	_
Revonal	Merck	U.K.	_
Rouqualone	Rougier	Canada	_
Sedalone	Pharbec	Canada	_
Sleepinal	Medichem	Australia	_
Somnium	Fargal	Italy	_
Sovelin	Weifa	Norway	
Sovinal	N.D. & K.	Denmark	
Spasmipront	Mack	W. Germany	_
Tiqualone	Barlow Cote	Canada	_
Tualone	I.C.N.	Canada	_

Raw Materials

Anthranilic acid o-Toluidine

Acetic anhydride Hydrogen chloride

Manufacturing Process

Anthranilic acid (1 part) is dissolved in acetic anhydride (2 parts) and the temperature raised progressively to 190° to 200°C while distillation takes place. The last traces of acetic acid are removed under vacuum and, after cooling to about 50° to 60°C, o-toluidine (1 part) is added in portions.

The temperature is then raised to 170° to 200°C when the excess water and o-toluidine is gradually distilled off, finally maintaining the temperature at 180° to 200°C for 2 hours. After cooling to about 100°C dilute hydrochloric acid (3 parts) is added and the mixture boiled and stirred. The solution is then neutralized with NaOH with stirring and the product which separates is recrystallized twice from alcohol after decolorizing with carbon. Yield: 70% of theoretical, MP 114° to 115°C.

References

Merck Index 5820 Kleeman & Engel p. 576 OCDS Vol. 1 p. 353 (1977) DOT 9 (6) 245 (1973) I.N. p. 610 REM p. 1072

Laboratoires Toraude, France; British Patent 843,073; August 4, 1960

METHAZOLAMIDE

Therapeutic Function: Carbonic anhydrase inhibitor

Chemical Name: N-[5-(aminosulfonyl)-3-methyl-1,3,4-thiadiazol-2(3H)-ylidene] acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 554-57-4

Trade Name	Manufacturer	Country	Year Introduced
Neptazane	Lederle	U.S.	1959
Neptazane	Theraplix	France	1961

Raw Materials

5-Acety limino 4-methyl-2-benzy Imercap to Δ^2 -1,3,4-thiadiazoline Chlorine Ammonia

Manufacturing Process

A suspension of 6 parts by weight of 5-acetylimino-4-methyl-2-benzylmercapto-Δ2-1,3,4thiadiazoline in 180 parts by volume of 33% aqueous acetic acid was chlorinated at 5°C for 30 minutes. The solid was filtered off, dried, and added portion-wise to 100 parts by volume of liquid ammonia. The ammonia was removed under a stream of dry nitrogen.

The residual solid was partially dissolved in 10 parts by volume of water, filtered, and acidified to give 5-acetylimino-4-methyl- Δ^2 -1,3,4-thiadiazoline-2-sulfonamide. The product was purified by two recrystallizations from hot water.

References

Merck Index 5824 Kleeman & Engel p. 576 PDR p. 1021 OCDS Vol. 1 p. 250 (1977) I.N. p. 610 REM p. 936

Young, R.W., Wood, K.H. and Vaughan, J.R., Jr.; U.S. Patent 2,783,241; February 26, 1957; assigned to American Cyanamid Company

METHDILAZINE HYDROCHLORIDE

Therapeutic Function: Antipruritic

Chemical Name: 10-[(1-methyl-3-pyrrolidinyl)methyl] phenothiazine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1229-35-2; 1982-37-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tacaryl	Westwood	U.S.	1960
Dilosyn	Duncan Flockhart	U.K.	_
Disyncran	Allard	France	_
Tacryl	Pharmacia	Sweden	

Raw Materials

1-Methyl-3-pyrrolidylmethyl chloride Phenothiazine Hydrogen chloride

Manufacturing Process

10.8 parts of 10-(1-methyl-3-pyrrolidylmethyl) phenothiazine (prepared from 1-methyl-3-pyrrolidylmethyl chloride by reaction with phenothiazine) in 80 parts of 99% isopropyl alcohol were treated with a solution of 1.33 parts of hydrogen chloride in 30 parts of the same solvent. The clear light yellow solution soon deposited white crystals of the acid addition salt. After cooling overnight at 0°C, the crystalline product was collected on a filter, washed with 99% isopropyl alcohol and anhydrous ether and then dried in a vacuum oven at 95°C. Yield 10.4 parts, MP 187.5° to 189°C.

References

Merck Index 5826 Kleeman & Engel p. 577 PDR p. 1895 OCDS Vol. 1 p. 387 (1977) I.N. p. 611 REM p. 1129

Feldkamp, R.F. and Wu, Y.H.; U.S. Patent 2,945,855; July 19, 1960; assigned to Mead Johnson & Company

METHENAMINE HIPPURATE

Therapeutic Function: Antibacterial (urinary)

Chemical Name: Hexamethylenetetramine hippurate

Common Name: -

Structural Formula: C₆H₅CONHCH₂COOH·(CH₂)₆N₄

Chemical Abstracts Registry No.: 5714-73-8

Trade Name	Manufacturer	Country	Year Introduced
Hiprex	Merrell National	U.S.	1967
Hiprex	Riker	U.K.	1971
Hiprex	Kettelhack	W. Germany	1975
Hipeksal	Leiras	Finland	_
Hippuran	Orion	Finland	***
Lisogerm	Labofarma	Brazil	-
Urotractan	Klinge	W. Germany	_

Raw Materials

Hexamethylenetetramine Hippuric acid

Manufacturing Process

179 g (1 mol) hippuric acid (benzoyl glycine) and 140 g (1 mol) hexamethylenetetramine were heated under reflux in 500 ml methanol. The small amount of water necessary to give a clear, homogeneous solution was added to the resulting reaction mixture which was then evaporated to dryness. The residue soon crystallized, a procedure that could be greatly accelerated by seeding with crystals of hexamethylenetetramine hippurate from a previous preparation. The resulting solid product was broken up and pulverized. Hexamethylenetetramine hippurate is stable on exposure to air and is soluble in water and alcohol. It melts at 105° to 110°C.

References

Merck Index 5832 PDR pp. 1227, 1453 DOT 4 (3) 108 (1968) I.N. p. 611 REM p. 1167

Galat, A.; U.S. Patent 3,004,026; October 10, 1961

METHENOLONE ACETATE

Therapeutic Function: Anabolic

Chemical Name: 17β -Hydroxy- 1β -methyl- 5α -androst-1-ene-3-one acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 434-05-9; 153-00-4 (Base)

Trade Name	Manufa <i>c</i> turer	Country	Year Introduced
Primobolan	Schering	W. Germany	1961
Dacomid	Sch ering	W. Germany	
Fortabol	Sc hering	W. Germany	_
Neuro-Fortabol	Schering	W. Germany	_

Raw Materials

Methyl iodide Magnesium

 $\Delta^{1.4.6}$ -Androstatrien-17 β -ol-3-one-17-acetate

Hydrogen

Manufacturing Process

8,42 ml of methyl iodide are slowly added dropwise at room temperature with stirring in a nitrogen atmosphere to 3.067 g of magnesium turnings and 107 ml of absolute ether. After about 30 minutes, 185 ml of absolute tetrahydrofuran are slowly introduced and then liquid is distilled off until a boiling point of 62°C is reached. After cooling to room temperature, 613 mg of cuprous chloride are added and then 10 g of $\Delta^{1.46}$ and costatrien 17 β -ol-3-one-17acetate in 110 ml of tetrahydrofuran slowly introduced. After 30 minutes reaction time, the whole is cooled to 0°C, the excess of Grignard reagent decomposed with saturated ammonium chloride solution, the product diluted with ether and the aqueous phase separeted. The ethereal phase is washed consecutively with aqueous sodium thiosulfate solution, saturated ammonium chloride solution and water. It is dried over sodium sulfate and evaporated to dryness under vacuum. The residue is dissolved in 40 ml of pyridine and 20 ml of acetic anhydride and the solution kept for 16 hours at room temperature. It is then stirred into ice water and the precipitate filtered with suction, dried and recrystallized from isopropyl ether. 1α -Methyl- Δ^{4} ,6-androstadien-17 β -ol-3-one-17-acetate is obtained. MP 156°C to 157°C; $[\alpha]_D^{25} = -33.8^{\circ}$ (in CHCl₃: c = 0.9). Yield 65-70% of the theoretical.

4.67 g of 1α -methyl- $\Delta^{4\beta}$ -androstadien-17 β -ol-3-one-17-acetate are dissolved in 273 ml of methanol and, after the addition of 350 mg of 10% palladium on calcium carbonate catalyst, hydrogenated until 1 mol equivalent of hydrogen has been taken up. After filtering off the catalyst, the solution is treated with 150 ml of 2N-hydrochloric acid and evaporated under vacuum to about I/3 of the volume. The whole is then diluted with water and extracted with ether. The ethereal solution is washed with water until neutral, dried over sodium sulfate and evaporated. The crude product is heated on a steam bath for 90 minutes in 10 ml of pyridine and 10 ml of acetic anhydride. Extraction with ether is then carried out and the ethereal phase washed until neutral with water. The crude crystalline 1α -methyl- Δ^4 -androsten-17 β - ol-3-one-17-acetate obtained after drying and evaporation of the solution, melts at 122°C to 129°C. Yield 98% of the theoretical.

 1α -Methyl- Δ^4 -androsten-17 β -ol-3-one-17-acetate when purified by recrystallization from isopropyl ether melts at 138°C to 139°C.

References

Merck Index 5839 Kleeman & Engel p. 571 OCDS Vol. 1 p. 175 (1977) I.N. p. 606

Schering A.G.; British Patent 977,082; December 2, 1944

METHICILLIN SODIUM

Therapeutic Function: Antimicrobial

Chemical Name: 6-(2,6-dimethoxybenzamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3,2,0] -

heptane-2-carboxylic acid sodium salt

Common Name: 2,6-dimethoxyphenylpenicillin sodium salt

Structural Formula:

Chemical Abstracts Registry No.: 7246-14-2

Trade Name	Manufacturer	Country	Yeer Introduced
Celbenin	Beecham	U.K.	1960
Staphcillin	Bristol	U.S.	1960
Dimocillin	Squibb	U.S.	1961
Flabelline	Delagrange	France	1961
Celbenin	Beecham	U.S.	1973
Azapen	Pfizer	U.S.	1975
Baclyn	Sifrochimica	Italy	***
Celpillina	Farmitalia	Italy	_
Ellecillina	Ellea	Italy	_
Esapenil B.G.	Boniscontro-Gazzone	Italy	_
Metin	C.S.L.	Australia	_
Methocillin	Meiji	Japan	
Penysol	Saita	Italy	_
Sintespen	Coli	Italy	-
Staficyn	Firma	Italy	_

Raw Materials

6-Aminopenicillanic acid

2,6-Dimethoxybenzoyl chloride

Manufacturing Process

To a stirred suspension of 6-aminopenicillanic acid (540 g) in dry alcohol-free chloroform (3.75 liters) was added dry triethylamine (697 ml), and the mixture stirred for 10 minutes at room temperature. It was then cooled in a bath of crushed ice while a solution of 2.6dimethoxybenzoyl chloride (500 g) in dry alcohol-free chloroform (3.75 liters) was added in a steady stream over 20 minutes. When all the acid chloride had been added the cooling bath was removed and the mixture stirred for 1 hour at room temperature. The mixture was stirred vigorously and sufficient dilute hydrochloride acid (2.3 liters of 0.87 N) was added to give an aqueous layer of pH 2.5. The mixture was filtered, the layers separated, and only the chloroform layer was retained.

This was stirred vigorously while further dilute hydrochloric acid (0.69 liter of 0.87 N) was added to give an aqueous layer of pH 1. The layers were separated and again only the chloroform layer was retained. Then the chloroform layer was stirred vigorously while sufficient sodium bicarbonate solution (3.2 liters of 0.97 N) was added to give an aqueous layer of pH 6.7 to 7.0. The layers were separated and both were retained. The chloroform layer was stirred vigorously while sufficient sodium bicarbonate solution (50 ml of 0.97 N) was added to give an aqueous layer of pH 7.7, and again the layers were separated. The two bicarbonate extracts were combined, washed with ether (1 liter), and then concentrated at low temperature and pressure until the concentrate weighed 1,415 g.

The concentrate was treated with dry acetone (22 liters), the mixture well mixed, and then filtered to remove precipitated solid impurities. Further dry acetone (4 liters) was added to the filtrate, then the product started to crystallize slowly. Crystallization was allowed to proceed at a temperature between 0° and 3°C for 16 hours and then the product (563 g) was collected by filtration. Dry ether (7.5 liters) was added to the filtrate, and after several hours a second crop (203 g) of solid was collected. The two crops were combined to give sodium 2,6-dimethoxyphenylpenicillin monohydrate (766 g, 73%) as a white crystalline solid.

References

Merck Index 5842 Kleeman & Engel p. 591 PDR p. 713 OCDS Vol. 1 p. 412 (1977) I.N. p. 626 REM p. 1200

Doyle, F.P., Nayler, J.H.C. and Rolinson, G.N.; U.S. Patent 2,951,839; September 6, 1960

METHIONINE

Therapeutic Function: Lipotropic

Chemical Name: 2-amino-4-(methylthio)butyric acid

Common Name: -

Structural Formula: CH₃SCH₂CH₂CH(NH₂)COOH

Chemical Abstracts Registry No.: 63-68-3

Trade	Name	Manufacturer	Country	Year Introduced
Meonin	ie	Ives	U.S.	1944
Lobam	ine	Opodex	France	1948

Trade Name	Manufacturer	Country	Year Introduced
Oradash	Lambda	U <i>.</i> S.	1955
Ammonil	Philips Roxane	U.S.	1957
Dyprin	Lincoln	U.S.	1958
Acimetion	Continental Pharm.	Belgium	
Amino-Serv	Milex	U.S.	_
Amino-Plex	Tyson	U.S.	_
Antamon P.E.D.	Protea	S. Africa	_
Methnine	Medical Research	Australia	_
Monile	Cortunon	Canada	_
Ninol	Horner	Canada	_
Uracid	Wesley	U.S.	_
Unanap	N. Amer. Pharm.	U.S.	
Urimeth	N. Amer. Pharm.	U.S.	_

Raw Materials

Methyl mercaptan Sodium cyanide Sodium hydroxide Acrolein Ammonium chloride

Manufacturing Process

A 3-necked flask fitted with a stirrer, thermometer, gas inlet, dropping funnel, and brine-cooled reflux condenser was charged with 53 g (1.1 mol) methyl mercaptan and 0.35 g mercuric methyl mercaptide. After admitting 56 g (1.0 mol) of acrolein during the course of 15 minutes with an inside temperature of about 10°C, the temperature was allowed to rise spontaneously to 75°C, at which point an ice bath was applied. There was no indication of further reaction one hour after the addition of the acrolein. Distillation of the product gave 71 g (yield 68%) of β -methylmercaptopropionaldehyde, as described in U.S. Patent 2,584,496.

Then as described in U.S. Patent 2,732,400, β -methylmercaptopropionaldehyde (0.60 M) (56.5 g) is added to a stirred solution of sodium cyanide (0.66 M) (32.4 g) and ammonium chloride (0.63 M) (33.7 g) in water (140 ml). The temperature of the mixture rises to 49°C and is maintained at this point by heat evolution for about 5 minutes when it slowly begins to fall. Methanol (50 ml) is added and the mixture is stirred for 4 hours as the temperature falls to 28°C (room temperature).

After chilling to $+12^{\circ}\text{C}$, additional methanol (35 ml) and a concentrated aqueous ammonium hydroxide solution (1.4 M) (100 ml) are added and stirring is continued for 2 hours at a temperature maintained at from $+5^{\circ}$ to $+15^{\circ}\text{C}$. The organic layer is separated and solvent is stripped from the aqueous layer at water aspirator pressure at a temperature below 40°C . The residue is extracted several times with chloroform and the chloroform extracts are combined with the separated oil. Chloroform is removed at water aspirator pressure at a temperature below 35°C to leave crude α -amino- γ -methylmercaptobutyronitrile (methionine nitrile) in 88% yield (68 g) as a clear, somewhat viscous oil.

The methionine nitrile (20 g) is dissolved in a solution prepared from 50 ml of aqueous 5 N sodium hydroxide solution and 65 ml of ethanol. The solution is then refluxed for 24 hours; ammonia is evolved. The solution is treated with activated carbon, filtered, acidified with glacial acetic acid (17 ml), chilled to -10° C and filtered to give crude product. This crude product is then slurried with a solution made up of 20 ml of water and 20 ml of methanol, filtered at -5° to $+10^{\circ}$ C and dried to give dl-methionine as white platelets.

References

Merck Index 5849 PDR pp. 1263; 1807 I.N. p. 612

Pierson, E. and Tishler, M; U.S. Patent 2,584,496; February 5, 1952; assigned to Merck & Co., Inc.

Weiss, M.J.; U.S. Patent 2,732,400; January 24, 1956; assigned to American Cyanamid Company

METHITURAL

Therapeutic Function: Hypnotic; sedative

Chemical Name: Dihydro-5-(1-methylbutyl)-5-[2-(methylthio)ethyl]-2-thioxo-4,6(1H,5H)-

pyrimidinedione monosodium salt

Common Name: Methioturiate

Structural Formula:

Chemical Abstracts Registry No.: 730-68-7

Trade Name	Manufacturer	Country	Year Introduced
Neraval	Schering	U.S.	1956
Diogenal	Merck	_	_
Thiogenal	Merck	_	_

Raw Materials

B-Methyl-thioethyl-(1-methyl)-n-butyl-cyanoacetic acid ethyl ester

Thiourea

Ethanol

Sodium Sulfuric acid

Sodium hydroxide

Manufacturing Process

A solution of 69 g of sodium in 1,380 cc of absolute alcohol is mixed with 257.4 g of β -methyl-thioethyl-(1-methyl)-n-butyl-cyano-acetic acid ethyl ester and 114 g of thiourea and the whole mass boiled under reflux with stirring for six hours. After concentration under vacuum the residue is taken up in 1.5 liters of water and shaken up thrice, each time with 300 cc of ether. The aqueous alcoholic layer is stripped, under vacuum, of the dissolved ether and mixed with 300 cc of 30% acetic acid under stirring and ice cooling. The precipitated material is sucked off, washed with water, dried and recrystallized from isopropyl alcohol. The thus obtained β -methyl-thioethyl-(1-methyl)-n-butyl-cyano-acetyl thiourea forms yellowish green crystals having a melting point of 229°C to 230°C.

100 g of this product are boiled under reflux for three hours with 1 liter of 20% sulfuric acid. After cooling the mixture is taken up in ether, the ether solution washed with water, dried, filtered, concentrated and drawn off under vacuum. The residue is caused to crystallize by treatment with a mixture of 60 volume parts of methanol and 40 volume parts of petroleum benzene. The isolated crystals are recrystallized from the mentioned solvent mixture

and yield thereby 5-β-methyl-thioethyl-5-(1-methyl)-n-butyl-2-thiobarbituric acid having a melting point of 79°C to 81°C.

20 g of the free acid are shaken up (in a machine) for one hour with 69.5 cc n/l (normal) caustic soda. The filtered solution is concentrated under vacuum, the residue is taken up in absolute alcohol and again withdrawn under vacuum. After two recrystallizations of the residue from isopropyl alcohol one obtains the readily water-soluble, analytically pure, sodium salt of the 5-\(\mathscr{G}\)-methyl-thioethyl-5-(1-methyl)-n-butyl-2-thiobarbituric acid.

References

Merck Index 5854 OCDS Vol. 1 p. 275 (1977)

I.N. p. 612

Zima, O, and Von Werder, F.; U.S. Patent 2,802,827; August 13, 1957; assigned to Emanuel Merck (Germany)

METHIXENE HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: 1-methyl-3-(9H-thioxanthen-9-yl-methyl)piperidine hydrochloride

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 1553-34-0; 4969-02-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tremarit	Wander	W. Germany	1960
Tremaril	Wander	Italy	1962
Tremonil	Wander	U.K.	1963
Trest	Dorsey	U.S.	1965
Atosil	Teikoku	Japan	
Cholinfall	Tokyo Tanabe	Japan	_
Dalpan	Grelan	Japan	_
Inoball	Sawai	Japan	_
Methixart	Fuso	Japan	_
Methyloxan	Nippon Shoji	Japan	_
Raunans	Kowa	Japan	_
Spasmenzyme	Salvoxyl-Wander	France	_
Thioperkin	Hokuriku	Japan	-

Raw Materials

Thioxanthene N-Methyl-3-chloromethyl-piperidine Hydrogen chloride

Chlorobenzene Sodium

Manufacturing Process

To 4.9 g of finely pulverized sodium in 50 ml of absolute benzene add dropwise with stirring 12 g of chlorobenzene in 50 ml of absolute benzene. As soon as the exothermic reaction begins, maintain the temperature by cooling between 30° and 35°C, and continue stirring for 2 to 3 hours. To the resulting phenyl sodium add dropwise 19.8 g of thioxanthene in 120 ml of absolute benzene. The slightly exothermic reaction ceases after about 1 to 1½ hours.

To this newly formed 9-thioxanthyl sodium add dropwise, with stirring and cooling, 13.1 g of N-methyl-3-chloromethyl-piperidine in 30 to 40 ml of absolute benzene, then continue stirring at about 25°C for 1½ hours, and heat subsequently to 40°C for 1 hour. Decompose the resulting mixture by adding carefully a small amount of water, and then extract the newly formed base from the benzene solution by means of dilute hydrochloric acid. The aqueous hydrochloric solution is made alkaline by adding dilute sodium hydroxide, and the thioxanthene base is isolated by extraction with ether. This results in 22 g of a slightly yellow, viscous base of BP 171° to 175°C/0.07 mm.

The base is acidified with alcoholic hydrochloric acid. Alcohol-ether (1:2) is then added and the hydrochloride salt is crystallized as colorless flakes melting at 211° to 213°C.

References

Merck Index 5855 Kleeman & Engel p. 592 OCDS Vol. 1 p. 400 (1977) & 2,413 (1980) I.N. p. 628 REM p. 919

Schmutz, J.; U.S. Patent 2,905,590; September 22, 1959; assigned to The Wander Company

METHOCARBAMOL

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 3-(o-methoxyphenoxy)-1,2-propanediol 1-carbamate

Common Name: Guaiacol glyceryl ether carbamate

Structural Formula:

Chemical Abstracts Registry No.: 532-03-6

Trade Name	Manufacturer	Country	Year Introduced
Robaxin	Robins	U.S.	1957
Lumirelax	Sarbach	France	1968
Robaxin	Brenner	W. Germany	1976
Carbametin	Uji	Japan	
Carxin	Kento	Japan	
Delexin	Ferndale	U.S.	_
Methocabal	Zeria	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Methocal	Daiko	Japan	_
Miowas	Wassermann	Italy	_
Myomethol	Abic	Israel	_
Parabaxin	Parmed	U.S.	_
Relax	lon	Italy	_
Robamol	Cenci	Italy	
Robaxisal	Robins	U.S.	_
Romethocarb	Robinson	U.S.	_
Traumacut	Brenner	W. Germany	_
Tresortil	Gea	Denmark	_

Guaiacol glyceryl ether Phosaene Ammonia

Manufacturing Process

The starting material for methocarbamol is 3-o-methoxyphenoxy-1,2-propanediol (guaiacol glyceryl ether) (see entry under Guaifenesin for its preparation). To a stirred suspension of 198.2 g (1.0 mol) of 3-o-methoxyphenoxy-1,2-propanediol in 1,000 ml of dry benzene contained in a 5-liter, 3-neck, round bottom flask equipped with a thermometer, dropping funnel and blade stirrer, was added dropwise (in 30 minutes) a solution of 98.9 g (1.0 mol) of phosgene in 400 ml of cold dry benzene. The mixture was stirred at 30°C until all solid material dissolved (about 3 hours was required) and stirring was continued for 30 minutes longer. To this mixture was added dropwise 79.1 g (1.0 mol) of dry pyridine, the temperature being held below 30°C by cooling. After addition of the pyridine, stirring at 30°C was continued for 30 minutes.

The mixture was cooled to 7°C, extracted with two 500-cc portions of ice water to remove pyridine hydrochloride, and the benzene solution of 3-o-methoxyphenoxy-2-hydroxypropyl chlorocarbonate was added to 500 ml of cold concentrated ammonium hydroxide. The mixture was vigorously stirred at 5°C for 6 hours, then the crude white precipitate of 3-o-methoxyphenoxy-2-hydroxypropyl carbamate was filtered off, dissolved in 1,500 ml of hot benzene and completely dried by codistillation of last traces of water with benzene, treated with decolorizing carbon and filtered while hot. On cooling 160 g of product crystallized as white needles melting at 88° to 90°C.

References

Merck Index 5856 Kleeman & Engel p. 578 PDR pp. 830, 993, 1466, 1569, 1606, 1999 OCDS Vol. 1 p. 118 (1977) I.N. p. 613 **REM p. 927**

Murphey, R.S.; U.S. Patent 2,770,649; November 13, 1956; assigned to A.H. Robins Company, inc.

METHOHEXITAL SODIUM

Therapeutic Function: Anesthetic (intravenous)

Chemical Name: (±)-1-methyl-5-(1-methyl-2-pentynyl)-5-(2-propenyl)-2,4,6(1H,3H,5H)-

pyrimidinetrione sodium salt

Common Name: Methohexitone

Structural Formula:

Chemical Abstracts Registry No.: 309-36-4

Trade Name	Manufacturer	Country	Year Introduced
Brevital	Lilly	U.S.	1960
Brietal	Lilly	U.K.	1961
Brevimytal	Lilly	W. Germany	1963
Brietal	Lilly	Italy	1963

Raw Materials

Ethyl acetylene (1-butyne)	Ethyl bromide
Magnesium	Acetaldehyde
Phosphorus tribromide	Diethyl malonate
Sodium	Ethanol
Allyl bromide	Methyl urea

Manufacturing Process

Preparation of 3-Hexyne-2-ol: A solution of ethyl magnesium bromide was prepared by the reaction of 229 g of ethyl bromide and 48.6 g of magnesium in 750 ml of anhydrous ether. To the ether solution was then added with stirring a solution of 108 g of ethyl acetylene in 250 ml of cold anhydrous ether. The addition required approximately 3 hours, and the mixture was stirred and refluxed for a further period of 31/2 hours. Thereafter there was added to the reaction mixture a solution of 88 g of freshly distilled acetaldehyde in 170 ml of anhydrous ether, over a period of about 45 minutes and at a temperature in the range of about -10° to 0°C.

The resulting reaction mixture was poured over about 1 kg of crushed ice, and neutralized with 10% aqueous hydrochloric acid. The organic phase of the resulting mixture was separated, and the aqueous phase was extracted 3 times with 250 ml portions of ether. The combined organic phase and ether washings were washed twice with water and dried over anhydrous potassium carbonate. The dried ether solution was fractionally distilled, and the 3-hexyne-2-of formed in the reaction was collected as a fraction boiling at about 79° to 80°C at the pressure of 60 mm of mercury.

Preparation of 2-Bromo-3-Hexyne: A solution of 138 g of 3-hexyne-2-ol and 9 g of pyridine in 138 ml of anhydrous ether was treated with 175 g of phosphorus tribromide, added dropwise over a period of about 20 minutes at a temperature of about -10°C. The reaction mixture was permitted to come to room temperature while stirring for about 3 hours, and was then heated to refluxing for about 1 hour. After cooling, the reaction mixture was poured over about 50 g of crushed ice. A two-phase system formed, and the ether layer was separated, washed with dilute sodium bicarbonate solution, dried over anhydrous potassium carbonate and fractionally distilled. The 2-bromo-3-hexyne formed in the reaction was collected at 75°C at the pressure of 50 mm of mercury.

Preparation of Diethyl (1-Methyl-2-Pentynyl) Malonate: To a solution of 28.6 g of sodium in 430 ml of absolute ethanol were added 200 g of diethyl malonate. About half of the alcohol was removed by distillation in vacuo, and thereafter a solution of 200 g of 2bromo-3-hexyne in 100 ml of anhydrous ether was added slowly to the reaction mixture.

The heat of reaction brought about refluxing during the addition of the 2-bromo-3-hexyne, and when the addition was complete the reaction mixture was heated to refluxing for a further period of 30 minutes. A sufficient amount of water was then added to the reaction mixture to dissolve the sodium bromide which had formed, and the only organic layer was separated, washed with water and dried over anhydrous magnesium sulfate. The dried organic layer was then fractionally distilled under reduced pressure, and the diethyl (1-methyl-2-pentynyl) malonate formed in the reaction was collected at about 117° to 120°C at the pressure of 2 mm of mercury.

Preparation of Diethyl Allyl (1-Methyl-2-Pentynyl) Malonate: A solution of 12.1 g of sodium in 182 ml of absolute ethanol was prepared, and thereto were added 126.6 g of diethyl (1-methyl-2-pentynyl) malonate. Most of the ethanol was then distilled off under reduced pressure, and the residue was cooled and 63.5 g of allyl bromide were slowly added thereto. After completion of the addition, the mixture was refluxed for about 1 hour. The reaction mixture was cooled, treated with about 100 ml of water, and the oily organic layer which formed was removed, washed with water and dried over anhydrous magnesium sulfate. The dried oily organic material was fractionally distilled in vacuo, and diethyl allyl (1-methyl-2-pentynyl) malonate boiling at 105° to 107°C at the pressure of 1 mm of mercury was recovered.

Preparation of 1-Methyl-5-Allyl-5-(1-Methyl-2-Pentynyl) Barbituric Acid: A solution of 23.8 g of sodium in 360 ml of absolute alcohol was prepared and thereto were added 38.3 g of methyl urea and 96.8 g of diethyl allyl (1-methyl-2-pentynyl) malonate. The mixture was refluxed for about 20 hours, cooled, and the ethanol was removed by distillation in vacuo. The residue was dissolved in about 300 ml of water and the aqueous solution was washed with ether, and the washings were discarded. The aqueous solution was then acidified with acetic acid, and extracted with three 150 ml of portions of ether.

The combined ether extracts were washed with 5% aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and fractionally distilled in vacuo. The fraction boiling at about 145° to 150°C at the pressure of 0.5 mm of mercury, weighing 61 g and consisting of 1-methyl-5-allyl-5-(1-methyl-2-pentynyl) barbituric acid, was collected. The only distillate was substantially pure, and could be used as such in pharmaceutical preparation or a salt could be prepared therefrom according to the procedures disclosed hereinafter. On standing, the oil crystallized. The crystalline 1-methyl-5-allyl-5-(1-methyl-2-pentynyl) barbituric acid melted at about 60° to 64°C after recrystallization from dilute ethanol.

Preparation of Sodium 1-Methyl-5-Allyl-5-(1-Methyl-2-Pentynyl) Barbiturate: A solution of 61 g of 1-methyl-5-allyl-5-(1-methyl-2-pentynyl) barbituric acid in 100 ml of ether was extracted with 465 ml of 2% aqueous sodium hydroxide solution. The aqueous extract was washed with successive 75 ml and 50 ml portions of ether. The pH of the aqueous solution was adjusted to 11.7, using 5% aqueous sodium hydroxide solution. 5 g of decolorizing carbon were added to the solution with stirring; the mixture was permitted to stand for 20 minutes at room temperature, and the carbon was removed by filtration. A solution containing 4 g of sodium carbonate in 25 ml of water was added to the aqueous solution, and the mixture was filtered sterile through a porcelain filter candle of 02 porosity into sterile bottles. The aqueous solution was then dried from the frozen state, whereupon a sterile residue of sodium 1-methyl-5-allyl-5-(1-methyl-2-pentynyl) barbiturate, weighing about 62 g was obtained.

References

Merck Index 5857 Kleeman & Engel p. 578 PDR p. 1038 OCDS Vol. 1 p. 269 (1977) I.N. p. 613 REM p. 1046

Doran, W.J.; U.S. Patent 2,872,448; February 3, 1959; assigned to Eli Lilly and Company

METHOTREXATE

Therapeutic Function: Antineoplastic

Chemical Name: N-[4-[[(2,4-Diamino-6-pteridinyl)methyl]methylamino]-benzoyl]-L-

glutamic acid

Common Name: Amethopterin

Structural Formula:

Chemical Abstracts Registry No.: 59-05-2

Trade Name	Manufacturer	Country	Year Introduced
Methotrexate	Lederle	U.S.	1955
Mexate	Bristol	U.S.	1979
Emtexate	Nordic	U.K.	1981
Folex	Adria	U. S .	1983
Abitrexate	Abic	Israel	_
Emthexate	Pharmach emie Pharmach emie	Neth.	_
Ledertrexate	Lederle	France	-

Raw Materials

Diethyl-p-methylaminobenzoyl-L-glutamate Aminomalononitrile tosylate β-Bromopyruvaldoxime Guanidine acetate

Manufacturing Process

 $5\,g$ (15 mmol) of diethyl-p-methylaminobenzoyl-L-glutamate and 8.0 g of aminomalononitrile tosylate (65% by NMR assay, 20 mmol) were dissolved in warm ethanol (65 ml, with 15% water by volume). To this solution, cooled to 0°C, was added all at once and with vigorous stirring, 3.6 g of β -bromopyruvaldoxime (89% by NMR assay, 19 mmol). After 30 minutes the stirred mixture, which was allowed to warm slowly to room temperature, was neutralized with powdered NaHCO3 to pH 6, stirring continued for four additional hours, and the resulting mixture filtered through Celite. The filtrate was evaporated under reduced pressure to a glasslike substance, which was taken up in 500 ml of chloroform. The resulting suspension was then filtered using Celite, and the filtrate was washed with water, dried with anhydrous MgSO4, and evaporated to give an orange glasslike substance which was used directly in the next step.

To a 20% solution of titanium trichloride in water (39 mmol), stirred under nitrogen, was added a solution of 18 g (230 mmol) of ammonium acetate in 55 ml of water. Then, to this mixture, cooled to 10°C and stirred with an air-driven stirrer, was added over a period of 5 minutes a solution of the orange glassy substance above distilled in 60 ml of tetrahydrofuran. The mixture was vigorously stirred for 15 minutes while a rapid stream of nitrogen was passed through. After this time, 15 g of powdered sodium sulfite (120 mmol) was added to the mixture, which after several minutes turned from green to yellowish white. This mixture was stirred into 1 liter of chloroform, and the heavy yellow layer separated by use of a separatory funnel. This chloroform layer was washed with water, dried using anhydrous MgSO₄, and evaporated under reduced pressure to give a light orange glass, which was then chromatographed rapidly on a column made from 80 g of Baker silica gel, using 5% ethyl acetate in chloroform as the eluent.

The product obtained by evaporation of the eluate was recrystallized from ethanol-ether (1:10) to give a light yellow powder, MP 85°C to 88°C. The yield was 4.4 g (63%).

A solution containing 4.8 g (10.2 mmol) of diethyl-N-[p[[(2-amino-3-cyano-5-pyrazinyl)-methyl] methylamino] benzoyl] glutamate and 5 g (42 mmol) of guanidine acetate in 40 ml of dimethylformamide was stirred under nitrogen at 120°C for six hours. The resulting solution was cooled to room temperature, filtered and evaporated to a glassy product using a rotary evaporator and a mechanical vacuum pump to insure a better vacuum. The residual glass was taken up in 500 ml of chloroform, the resulting suspension filtered using Celite, and the filtrate washed with water, dried using anhydrous MgSO₄, and evaporated to dryness. (The residual material was chromatographed rapidly on a column prepared from 250 g of Baker silica gel using, initially, 2% ethanol in chloroform, and then 5% ethanol in chloroform as eluents.) The material obtained by evaporation of the eluates was crystallized from ethanol-chloroform (4:1) to give small, pale yellow lustrous platelets, MP 142°C to 154°C; yield, 3.8 g (73%). Further crystallization of this material from ethanol-chloroform (4:1) raised the MP to 153°C. The compound is completely racemic.

A sample of this product was hydrolyzed in a mixture of water and methanol in the presence of potassium hydroxide. Essentially pure methotrexate was thus obtained.

References

Merck Index 5861 Kleeman & Engel p. 579 PDR p. 1016 DOT 8 (11) 426 (1972) & 16 (5) 170 (1980) I.N. p. 614 REM p. 1152

Wiecko, J.; U.S. Patent 4,057,548; November 8, 1977

Ellard, J.A.; U.S. Patent 4,080,325; March 21, 1978; assigned to U.S. Dept. of Health, Education and Welfare

METHOTRIMEPRAZINE

Therapeutic Function: Analgesic

Chemical Name: 2-methoxy-N,N,β-trimethyl-10H-phenothiazine-10-propanamine

Common Name: Levomepromazine

Structural Formula:

Chemical Abstracts Registry No.: 60-99-1; 1236-99-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Levoprome	Lederle	U.S.	1966
Hirnamin	Shionogi	Japan	-
Levaru	Mohan	Japan	_
Levomezine	Toho	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Levotomin	Shionogi	Japan	
Nozinan	Farmalabor	Italy	_
Ronexine	Ikapharm	Israel	_
Sinogan	Rhodia Iberica	Spain	_
Sofmin	Dainippon	Japan	
Veractil	May & Baker	U.S.	_

3-Methoxyphenthiazine Sodium amide 1-Dimethylamino-2-methyl-3-chloropropane

Manufacturing Process

95% sodamide (2.33 g) is added to a boiling solution of 3-methoxyphenthiazine (12 g) in anhydrous xylene (150 cc) and the mixture is heated with agitation under reflux for 11/2 hours. A solution of 1-dimethylamino-2-methyl-3-chloropropane (8.2 g) in anhydrous xylene (90 cc) is then run in over a period of 45 minutes while the reaction temperature is maintained and heating under reflux is continued for 18 hours.

After cooling, the reaction mixture is agitated with a mixture of water (40 cc) and a normal solution of methanesulfonic acid (70 cc), the xylene layer is removed and the acid liquors are washed with ether (200 cc). The aqueous phase is then made alkaline with sodium hydroxide (d = 1.33; 10 cc) and the liberated base is extracted with ether. The ethereal solution is dried over anhydrous potassium carbonate and concentrated at normal pressure. On distillation of the residue under reduced pressure 3-(3-methoxy-10-phenthiazinyl)-2-methyl-1-dimethylaminopropane (11,3 g) is obtained, MP 103°C, BP 182° to 191°C/0.15 mm Hg. The hydrochloride prepared in isopropanol melts at about 90°C.

References

Merck Index 5862 Kleeman & Engel p. 522 DOT 3 (2) 62 (1967) & 9 (7) 227 (1971) I.N. p. 556 **REM p. 1113**

Jacob, R.M. and Robert, J.G.; U.S. Patent 2,837,518; June 3, 1958; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

METHOXAMINE HYDROCHLORIDE

Therapeutic Function: Hypertensive

Chemical Name: \alpha-(1-aminoethyl)-2,5-dimethoxybenzenemethanol hydrochloride

Common Name: --

Structural Formula: носиснин2 исл

987

Trade Name	Manufacturer	Country	Year Introduced
Vasoxyl	Burroughs Wellcome	U.S.	1949
Idasal	Gayoso Wellcome	Spain	_
Mexan	Nippon Shinyaku	Japan	_
Vasylox	Burroughs Wellcome	_	_

Raw Materials

2,5-Dimethoxypropiophenone Methyl nitrite Hydrogen

Manufacturing Process

2,5-Dimethoxypropiophenone is treated in absolute ether with methyl nitrite and hydrogen chloride. The hydrochloride of 2,5-dimethoxy- α -isonitrosopropiophenone crystallizes out of the solution. It is removed, the base is liberated and crystallized from benzene-heptane forming yellow leaflets that melt at about 97° to 98°C. This isonitrosoketone is dissolved in absolute alcohol containing an excess of hydrogen chloride and is hydrogenated with palladized charcoal, yielding β -(2,5-dimethoxyphenyl)- β -ketoisopropylamine hydrochloride, a salt that melts at about 176°C with decomposition.

12.3 g ($^{1}/_{20}$ mol) of β -(2,5-dimethoxyphenyl)- β -ketoisopropylamine hydrochloride (MP 176°C) is dissolved in 50 cc of water and hydrogenated with platinum oxide platinum black in the customary Adams-Burgess Parr apparatus. About $^{1}/_{20}$ mol of hydrogen is absorbed, after which the solution is filtered off from the catalyst, evaporated to dryness in vacuo and recrystallized from absolute alcohol, absolute ether being added to decrease solubility. The hydrochloride is thus obtained in substantially theoretical yield. It crystallizes in plates and melts at 215°C.

References

Merck Index 5863 Kleeman & Engel p. 580 PDR p. 768 I.N. p. 614 REM p. 888

Baltzly, R., de Beer, E.J. and Buck, J.S.; U.S. Patent 2,359,707; October 3, 1944; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

METHOXSALEN

Therapeutic Function: Dermal pigmentation enhancer

Chemical Name: 9-methoxy-7H-furo[3,2-g] [1] benzopyran-7-one

Common Name: 8-Methoxypsoralen; ammoidin; xanthotoxin

Structural Formula:

Chemical Abstracts Registry No.: 298-81-7

Trade Name	Manufacturer	Country	Year Introduced
Oxsoracen	Elder	U.S.	1955
Meloxine	Upjohn	U.S.	1958
Meladinine	Basoterm	W. Germany	_
Oxoralen	Farmochimica	Italy	
Psoritin	Yurtoglu	Turkey	_
Puvalen	Star	Finland	_
Soloxsalen	I.C.N.	Canada	_

8-Geranoxy psoralen Sulfuric acid Diazomethane

Manufacturing Process

It has been found that the compound 8-geranoxy psoralen is present in citrus oils, particularly lemon and lime oils. This compound can be isolated from the oil by a process which involves primarily absorption on an adsorbent material followed by elution with a suitable solvent.

(A) Cleavage of 8-Geranoxypsoralen: 275 mg of 8-geranoxypsoralen was dissolved with mechanical stirring in 4 ml glacial acetic acid. After 10 minutes, one drop of concentrated sulfuric acid was added to the solution. In 4 minutes thereafter a light tan precipitate began to form. Stirring was continued for 35 minutes and the reaction mixture was refrigerated for one hour and 20 minutes. The precipitate was then removed by suction filtration and washed on the filter with glacial acetic acid followed by ice-cold ethyl ether. The product, 8-hydroxypsoralen, weighed 115 mg, that is, 74% of theory.

(B) Methylation of 8-Hydroxypsoralen: 115 mg of 8-hydroxypsoralen was dissolved in 10 ml absolute methanol, an excess of diazomethane dissolved in ether was added and the mixture allowed to stand at room temperature with occasional stirring for 3 hours. The next day the reaction mixture was reduced in volume to 3 ml by evaporation on the steam bath and the concentrate was held in a refrigerator overnight. The next day, fine needles (80 mg) of 8-methoxypsoralen were filtered from the solution. The compound had a MP of 145° to 146°C and was obtained in a yield of 65% of theory.

There is also a wholly synthetic route to Methoxsalen as outlined by Kleeman & Engel.

References

Merck Index 5864 Kleeman & Engel p. 580 PDR p. 867 OCDS Vol. 1 p. 333 (1977) LN. p. 614

REM p. 788

Stanley, W.L. and Vannier, S.H.; U.S. Patent 2,889,337; June 2, 1959; assigned to the U.S. Secretary of Agriculture

Glunz, L.J. and Dickson, D.E.; U.S. Patent 4,129,575; December 12, 1978; assigned to Thomas C. Elder, Inc.

Liebman, A.A. and Liu, Y.-Y.; U.S. Patent 4,147,703; April 3, 1979; assigned to Hoffmann-LaRoche, Inc.

METHOXYFLURANE

Therapeutic Function: Anesthetic (inhalation)

Chemical Name: 2,2-dichloro-1,1-difluoro-1-methoxyethane

Common Name: 1,1-difluoro-2,2-dichloroethyl methyl ether

Structural Formula: CH₃OCF₂CHCl₂

Chemical Abstracts Registry No.: 76-38-0

Trade Name	Manufacturer	Country	Year Introduced
Penthrane	Abbott	U.S.	1962
Penthrane	Abbott	W. Germany	1962
Penthrane	Abbott	U.K.	1963
Anecotan	Spofa	Czechoslovakia	-
Methofane	Pitman-Moore	U.S.	_

Raw Materials

1,1-Dichloro-2,2-difluoroethylene Methanol

Manufacturing Process

Into a reactor equipped with agitator and temperature control jacket is charged approximately 100 lb (about 3 lb mols) of methanol, technical. This methanol is used in excess. and so it is both a reactant and a solvent in the synthesis.

Approximately 1 U.S. gallon of ion exchange resin beads wet with methanol is then added to the methanol. This is in the hydroxide form with at least 0.7 milliequivalent OH per milliliter of wet beads. Approximately 190 lb of 1,1-dichloro-2,2-difluoroethylene (about 1.44 lb mols) is then added to the reactor and, within it, to the 100 lb of methanol through a sparge pipe while the beads are kept in suspension by agitation. Coolant is run through the jacket of the reactor during this addition because the reaction is exothermic. The temperature in the reaction medium is kept at 10° to 20°C, to prevent side reactions and to minimize losses of the dichlorodifluoroethylene, which boils at 17°C. Reaction time is affected by the rate of heat removal and the reaction normally takes from 4 to 8 hours. using the stated quantities and conditions. After the dichlorodifluoroethylene is added, the resin is checked for residual alkalinity. If the resin is alkaline to phenolphthalein, it is assumed to have been of sufficient capacity and is removed from the CH₃OCF₂CHCl₂methanol mixture. If it is not alkaline to phenolphthalein, additional resin is added to insure complete reaction.

Essentially the same procedure can be carried out, employing as alkali any strongly alkaline substance, such as caustic soda in methanol solution. Control of the reaction rate may be accomplished by the rate of the addition of reactants and the amount of cooling applied to the reaction mixture. Agitation is employed to insure efficient contact of the reactants.

After removal of the resin catalyst, the excess methanol is extracted out of the mixture using three separate water washes, suitably of 25 gallons each. The water layer is decanted off, leaving product as an immiscible organic layer, after each wash. The 2,2-dichloro-1,1difluoroethyl methyl ether containing intolerable unsaturated impurities may be purified and stabilized by a treatment with oxidizing agents such as air, oxygen, ozone, peroxy compounds, or other similar oxidizing agents, with subsequent removal of the decomposition or oxidation products and distilling if desired.

References

Merck Index 5869 Kleeman & Engel p. 581 PDR p. 547

I.N. p. 615

REM p. 1043

Larsen, E.R.; U.S. Patent 3,264,356; August 2, 1966; assigned to The Dow Chemical Company

METHSCOPOLAMINE BROMIDE

Therapeutic Function: Antispasmodic

Chemical Name: 7-(3-hydroxy-1-oxo-2-phenylpropoxy)-9,9-dimethyl-3-oxa-9-azoniatricyclo-

[3.3.1.0^{2,4}] nonane bromide

Common Name: Hyoscine methyl bromide

Structural Formula:

Chemical Abstracts Registry No.: 155-41-9

Trade Name	Manufacturer	Country	Year Introduced
Pamine	Upjohn	U.S.	1953
Daipin	Daiichi Seiyaku	Japan	1972
Ace	Ono	Japan	_
Blocan	Estedi	Spain	-
Lescopine	Lincoln	U.\$.	_
Meporamin	Taiyo	Japan	
Neo Avagal	Andrews	Australia	_
Parantin	Teva	Israel	
Proscomide	Miller	U.S.	
Scopolate	Strasenburgh	U.S.	_
Scordin	Ono	Japan	-
Skopyl	Farillon	U.K.	

Raw Materials

Scopolamine hydrobromide trihydrate Methyl bromide

Manufacturing Process

In a one-liter separatory funnel, 94 g (0.215 mol) of scopolamine hydrobromide trihydrate was dissolved in 250 ml of water, made alkaline by shaking with 40 g (1 mol) of sodium hydroxide in 150 ml of water, and the free base immediately extracted with ether. As scopolamine is somewhat soluble in water, the aqueous layer was saturated with potassium carbonate and again extracted with ether. The combined ether extracts were dried over anhydrous magnesium sulfate and the ether removed by distillation, leaving 65 g (0.214 mol; 100% yield) of nearly colorless oil. Then 100 g (1.05 mols) of cold methyl bromide was added to a chilled, 500-ml pressure flask containing the 65 g of scopolamine, the flask stoppered tightly with a clamp, and allowed to stand at room temperature for 96 hours.

The flask was cooled before opening, excess methyl bromide removed by filtration, and the white solid washed thoroughly with dry ether. The yield of crude scopolamine methyl bromide was 80 g (94% yield; 93.5% over-all yield).

The salt was recrystallized from 550 ml of alcohol; first crop, 70 g, MP 212° to 214°C; second crop, 6 g, MP 195° to 200°C. The combined crops were again recrystallized from 500 ml of 3-A alcohol; MP 210° to 212°C. The third recrystallization from 600 ml of alcohol yielded 64 g, MP 214° to 216°C, a 75% yield based on scopolamine hydrobromide trihydrate starting material.

References

Merck Index 5881 Kleeman & Engel p. 582 PDR p. 1857 I.N. p. 508 REM p. 917 Visscher, F.E.; U.S. Patent 2,753,288; July 3, 1956; assigned to The Upiohn Company

METHSUXIMIDE

Therapeutic Function: Anticonvulsant

Chemical Name: 1,3-Dimethyl-3-phenyl-2,5-pyrrolidinedione

Common Name: Mesuximid

Structural Formula:

Chemical Abstracts Registry No.: 77-41-8

Trade Name	Manufacturer	Country	Year Introduced
Celontin	Parke Davis	U.S.	1957
Petinutin	Parke Davis	W. Germany	-

Raw Materials

 α -Phenyl- α -methylsuccinic acid Methylamine

Manufacturing Process

100 g of α-phenyl-α-methylsuccinic acid and 110 g of 40% aqueous methyl amine are heated together at 200° to 250°C until no more distillate is obtained. Upon vacuum distillation of the residue, the N-methyl-\alpha-phenyl-\alpha-methylsuccinimide, of BP 121° to 122°C at 0.1 mm is obtained. After recrystallization from aqueous ethanol, this compound melts at 52° to 53°C.

References

Merck Index 5882

Kleeman & Engel p. 567

PDR p. 1320

OCDS Vol. 1 p. 228 (1977)

I.N. p. 602 REM p. 1079

Miller, C.A. and Long, L.M.; U.S. Patent 2,643,257; June 23, 1953; assigned to Parke,

Davis & Company

METHYLDOPA

Therapeutic Function: Antihypertensive

Chemical Name: 3-hydroxy-α-methyl-L-tyrosine

Common Name: L-\alpha-methyl-3,4-dihydroxyphenylalanine

Structural Formula:

Chemical Abstracts Registry No.: 555-30-6

Trade Name	Manufacturer	Country	Year Introduced
Aldometil	MSD	W. Germany	1962
Aldomet	MSD	U.K.	1962
Aldomet	MSD	Italy	1962
Aldomet	MSD	U.S.	1963
Aldomet	MSD-Chibret	France	1964
Adopal	Pharmacal	Finland	_
Aldomin	Teva	Israel	_
Aldorii	MSD	U.S.	_
Alphamex	Protea	S. Africa	_
Becanta	Kissei	Japan	_
Caprinol	Bayer	W. Germany	_
Dansul	Nippon Yakko	Japan	_
Desens	Nissin	Japan	_
Dimal	Protea	Australia	-
Domecin	Sankyo	Japan	_
Dopamet	Berk	U.S.	_
Dopamin	Hokuriku	Japan	_
Dopatec	Labatec	Switz.	_
Dopegyt	Gideon Richter	Hungary	_
Equibar	Genekod	France	
Grospisk	Toho Iyaku	Japan	_
Hydromet	MSD	France	_
Hyperten	Toho	Japan	_
Hypolag	Lagap	Switz.	
Hy-Po-Tone	Lennon	S. Africa	_
Medimet	Medic	Canada	_
Medomet	D.D.S.A.	U.K.	_
Medopa	Kaigai	Japan	_
Medopal	A.L.	Norway	_

Trade Name	Manufacturer	Country	Year Introduced
Medopren	Dietopharma	Italy	_
Metholes	Taisho	Japan	-
Methoplain	Kowa	Japan	-
Nichidopa	Nichiiko	Japan	-
Novomedopa	Novopharm	Canada .	_
Polinal	Boehr-Yamanouchi	Japan	_
Sembrina	Boehr. Mann.	Italy	-

3-Hydroxy-4-methoxyphenylalanine Hydrogen chloride

Manufacturing Process

The dl- α -methyl-3,4-dihydroxyphenylalanine may be made as described in U.S. Patent 2,868,818. Five-tenths of a gram of 3-hydroxy-4-methoxyphenylalanine was dissolved in 20 ml of concentrated hydrochloric acid, the solution saturated with hydrogen chloride and heated in a sealed tube at 150°C for 2 hours. The dark reaction mixture was concentrated to dryness in vacuo, excess acid removed by flushing several times with ethanol. On dissolving the dark residue in a minimum amount of water and adjusting the clarified solution to pH 6.5 with ammonium hydroxide the compound separated in fine crystals which were filtered, washed with alcohol and ether. The crystalline product had a MP of 299.5° to 300°C with decomposition.

Then, as described in U.S. Patent 3,158,648, the optical isomers may be resolved as follows. 37 g of racemic α-methyl-3,4-dihydroxyphenylalanine are slurried at 35°C in 100 cc of 1.0 N hydrochloric acid. The excess solids are filtered leaving a saturated solution containing 34.6 g of racemic amino acid of which about 61% is present as the hydrochloride. The solution is then seeded at 35°C with 7 g of hydrated L- α -methyl-3,4-dihydroxyphenylalanine (6.2 g of anhydrous material). The mixture is then cooled to 20°C in 30 minutes and aged one hour at 20°C. The separated material is isolated by filtration, washed twice with 10 cc of cold water and dried in vacuo. The yield of product is 14.1 g of L- α -methyl-3,4-dihydroxyphenylalanine in the form of a sesquihydrate of 100% purity as determined by the rotation of the copper complex.

References

Merck Index 5928 Kleeman & Engel p. 583 PDR pp. 993, 1133 OCDS Vol. 1 p. 95 (1977) DOT 10 (9) 323 (1974) & 19 (3) 170 (1983) I.N. p. 618 REM p. 846

Pfister, K., III and Stein, G.A.; U.S. Patent 2,868,818; January 13, 1959; assigned to Merck

Jones, R.T., Krieger, K.H. and Lago, J.; U.S. Patent 3,158,648; November 24, 1964; assigned to Merck & Co., Inc.

METHYLERGONOVINE MALEATE

Therapeutic Function: Oxytocic

Chemical Name: 9,10-didehydro-N-[1-(hydroxymethyl)propyl]-6-methylergoline-8-car-

boxamide

Common Name: d-Lysergic acid dl-hydroxybutylamide-2; methylergometrin maleate

Structural Formula:

Chemical Abstracts Registry No.: 7054-07-1; 113-42-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Methergine	Sandoz	U.S.	1948
Methergin	Sandoz	France	1953
Ergo trate	Lilly	∪. S .	_
Levospan	Isei	Japan	-
Metenarin	Teikoku Zoki	Japan	_
Methylergobrevin	Arzneim, Dresden	E. Germany	-
Metiler	Adika	Turkey	_
Myomergin	Leiras	Finland	_
Ryegonovin	Morishita	Japan	_
Spametrin M	Sanzen	Japan	_
Takimetrin M	Nakataki	Japan	
Uterin	Biofarma	Turkey	_

Raw Materials

d-Isolysergic acid azide d-2-Aminobutanol-1

Manufacturing Process

To a freshly prepared solution of 2 parts of d-isolysergic acid azide in 300 parts of ether is added an ethereal solution of 2 parts of d-2-aminobutanol-1 and the mixture is left to stand at room temperature during 12 hours. The yellowish clear solution is then washed several times with some water, dried over sodium sulfate and the ether evaporated in vacuo. The crystallized residue is treated with a small quantity of acetone and filtered. Yield: 2.2 parts of d-isolysergic acid-d-1-hydroxybutylamide-2. On recrystallization from some hot methanol the new compound is obtained in form of beautiful polygonal crystals that melt with some decomposition at 192° to 194°C (corr.).

1 part of the iso-compound is then dissolved in 10 parts of absolute ethanol and an alcoholic potassium hydroxide solution is added thereto. The mixture is left to stand at room temperature during 45 minutes. After this time equilibrium is reached between lysergic acid and the isolysergic acid forms, which can be checked by determination of the constancy of the optical rotation of the solution. When this point is reached, potassium hydroxide is transformed into potassium carbonate by bubbling through the solution a stream of carbon dioxide; the thick crystal paste of potassium carbonate is then diluted with 50 parts of ether, filtered and washed again with 50 parts of ether.

The alcoholic ethereal filtrate is then dried over calcined potassium carbonate and the solution evaporated, whereby 0.9 to 1 part of a mixture of d-lysergic acid-d-1-hydroxybutylamide-2 and of d-isolysergic acid-d-1-hydroxybutylamide-2 is obtained. In order to separate the isomers, the residue is dissolved in 15 parts of hot chloroform and filtered from the small quantity of inorganic salt, whereby on cooling down, the difficultly soluble chloroform compound of d-lysergic acid-d-hydroxybutylamide-2 crystallizes out. Yield: 0.4 part. This compound can be recrystallized from hot benzene, whereby crystals melting

with some decomposition at 172°C (corr.) are obtained. It may then be reacted with maleic acid to give the maleate.

References

Merck Index 5943 Kleeman & Engel p. 584 PDR p. 1587 I.N. p. 619 REM p. 948

Stoll, A. and Hofmann, A.; U.S. Patent 2,265,207; December 9, 1941; assigned to Sandoz AG. Switzerland

METHYLHEXANEAMINE CARBONATE

Therapeutic Function: Nasal decongestant

Chemical Name: 4-methyl-2-hexylamine carbonate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 105-41-9 (Base)

Country Year Introduced Trade Name Manufacturer U.S. 1948 Forthane Lilly

Raw Materials

Hydroxylamine 4-Methylhexanone-2 Carbon dioxide Hydrogen

Manufacturing Process

One molecular equivalent of 4-methylhexanone-2 is reacted with slightly more than one molecular equivalent of hydroxylamine. Desirably, the hydroxylamine is prepared in the presence of the 4-methylhexanone-2 by reacting the hydrochloride or sulfate or other salt of the hydroxylamine with a suitable base, such as sodium carbonate or sodium hydroxide. Desirably, the reaction mixture is agitated for a few hours to insure the conversion of the 4-methylhexanone-2 to 4-methylhexanone-2 oxime.

The resulting 4-methylhexanone-2 oxime separates and is dried by any suitable means, such as with a dehydrating agent, for example, sodium sulfate or magnesium sulfate. After drying, 4-methylhexanone-2 oxime is reduced with hydrogen by means of a catalyst, such as Raney nickel, or by reaction of sodium and a primary alcohol, such as ethanol. The resulting 2-amino-4-methylhexane may be purified by distillation, as described in U.S. Patent 2,350,318.

115 g (1 mol) of 2-amino-4-methylhexane and 9 g (0.5 mol) of water are placed in a tared 500 cc 3-necked flask which is equipped with a mechanical stirrer, a thermometer, and a gas delivery tube. The flask is surrounded by a cooling bath of ice and water. Dry carbon dioxide gas is introduced into the solution through the gas delivery tube, with constant stirring, until the increase in weight is approximately 22 g (0.5 mol). The temperature during this addition is maintained between 20° and 30°C. A viscous liquid results, and consists essentially of 2-amino-4-methylhexane carbonate. This also dissociates very slowly at room temperature to the free amine, carbon dioxide, and water; and is effective as an inhalant, according to U.S. Patent 2,386,273.

References

Merck Index 5955

I.N. p. 620

Shonle, H.A. and Rohrmann, E.; U.S. Patent 2,350,318; May 30, 1944; assigned to Eli Lilly and Company

Shonle, H.A. and Rohrmann, E.; U.S. Patent 2,386,273; October 9, 1945; assigned to Eli Lilly and Company

METHYLOL RIBOFLAVIN

Therapeutic Function: Enzyme Cofactor vitamin source

Chemical Name: See Structural Formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Hyflavin	Endo	U.S.	1948

Raw Materials

Riboflavin Formaldehyde

Manufacturing Process

100 g of riboflavin and 4 g of potassium carbonate are suspended in 500 cc of the aqueous formaldehyde solution and the mixture is stirred at 30°C for 8 hours. At the end of this period, 5 cc of glacial acetic acid and 1 liter of methanol are added, with stirring. The solution is freed from undissolved material by filtration and the clear solution is poured slowly at about 20°C to 22°C with vigorous stirring into 8 liters of anhydrous acetone. The resultant precipitate is filtered off, washed repeatedly with anhydrous acetone and with ether, and then dried at room temperature and with vacuum. The resultant dried powder is dissolved

in hot water at 95°C to give an aqueous solution of 20% by weight. This solution is kept in the dark at room temperature for 3 to 4 weeks, after which time a large amount of material crystallizes out of the solution. This crystallized material is removed by filtration and recrystallized from hot water. A small amount of dark red insoluble material is filtered from the hot solution. This recrystallization step is repeated four times. The resultant end product is monomethylol riboflavin, which crystallized in small orange clusters. It has a melting point of 232°C to 234°C with decomposition, and it becomes dark when heated above 225°C.

References

Merck Index 5974 I.N. p. 621

Schoen, K. and Gordon, S.M.; U.S. Patent 2,587,533; February 26, 1952; assigned to Endo Products, Inc.

METHYLPHENIDATE HYDROCHLORIDE

Therapeutic Function: Psychostimulant

Chemical Name: \(\alpha\)-phenyl-2-piperidineacetic acid methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 298-59-9; 113-45-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ritalin	Ciba	U.S.	1958
Rubifen	Rubio	Spain	

Raw Materials

Phenyl acetonitrile 2-Chloropyridine Methanol Hydrogen Sodium amide Sulfuric acid Hydrogen chloride

Manufacturing Process

As described in U.S. Patent 2,507,631, 80 g of pulverized sodium amide are gradually added, while stirring and cooling, to a solution of 117 g of phenyl-acetonitrile and 113 g of 2-chloropyridine in 400 cc of absolute toluene. The mixture is then slowly heated to 110° to 120°C and maintained at this temperature for 1 hour. Water is added thereto after cooling, the toluene solution is shaken with dilute hydrochloric acid and the hydrochloric acid extracts are made alkaline with concentrated caustic soda solution. A solid mass is separated thereby which is taken up in acetic ester and distilled, α -phenyl- α -pyridyl-(2)-acetonitrile passing over at 150° to 155°C under 0.5 mm pressure. When recrystallized from ethyl acetate it melts at 88° to 89°C, the yield amounting to 135 g.

100 g of α -phenyl- α -pyridyl-(2)-acetonitrile are introduced into 400 cc of concentrated sulfuric acid, allowed to stand overnight at room temperature, poured into ice and ren-

dered alkaline with sodium carbonate. α-Phenyl-α-pyridyl-(2)-acetamide is precipitated thereby which melts at 134°C after recrystallization from ethyl acetate.

100 g of the resulting α -phenyl- α -pyridyl-(2)-acetamide, when dissolved in one liter of methyl alcohol and treated for 6 hours at water-bath temperature with hydrogen chloride. and after concentrating, diluting with water and rendering alkaline with sodium carbonate, yield 90 g of the α-phenyl-α-pyridyl-(2)-acetic acid methylester of MP 74° to 75°C (from alcohol of 50% strength).

The α-phenyl-α-piperidyl-(2)-acetic acid methylester of BP 135° to 137°C under 0.6 mm pressure is obtained in theoretical yield by hydrogenation of 50 g of \(\alpha \)-phenyl-\(\alpha \)-pyridyl-(2)-acetic acid methylester in glacial acetic acid in the presence of 1 g of platinum catalyst at room temperature, while taking up 6 hydrogen atoms. Reaction with HCl gives the hydrochloride. Resolution of stereoisomers is described in U.S. Patent 2,957,880.

References

Merck Index 5981 Kleeman & Engel p. 586 PDR p. 811 OCDS Vol. 1 p. 88 (1977) I.N. p. 622 REM p. 1136

Hartmann, M. and Panizzon, L.; U.S. Patent 2,507,631; May 16, 1950; assigned to Ciba Pharmaceutical Products Inc.

Rometsch, R.: U.S. Patent 2 957 880: October 25, 1960; assigned to Ciba Pharmaceutical Products Inc.

METHYLPREDNISOLONE

Therapeutic Function: Glucocorticoid

Chemical Name: 11β,17α,21-trihydroxy-6α-methyl-1,4-pregnadiene-3,20-dione

Common Name: 1-dehydro-6α-methylhydrocortisone

Structural Formula:

Chemical Abstracts Registry No.: 83-43-2

Trade Name	Manufacturer	Country	Year Introduced
Medrol	Upjohn	U.S.	1957
Medrol	Upjohn	France	1959
A-Methapred	Abbott	U.S.	1978
Solu-Medrol	Upjohn	Japan	1980
Caber del ta	Caber	Italy	_
Cortalfa	S.A.M.	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Depo-Medrate	Upjohn	W. Germany	_
Emmetip	Magis	Italy	_
Esametone	Lisapharma	Italy	
Eutisone	Eufarma	Italy	_
Firmacort	Firma	Italy	_
Horusona	Horus	Spain	
Medesone	Fargal	Italy	
Mega-Star	Ausonia	Italy	_
Metilbetasone	Coli	Italy	
Metilcort	Gazeini	Italy	
Metilprednilone	Guidi	Italy	_
Metilstendiolo	Panther-Osfa	Italy	_
Moderin	Alter	Spain	_
Nirypan	Jugoremedija	Yugoslavia	_
Nixolan	S.I.T.	Italy	_
Prednilen	Lenza	Italy	_
Prednol	Mustafa Nevzat	Turkey	_
Radiosone	Radiumpharma	Italy	_
Reactenol	Lafare	Italy	_
Sieropresol	Sierochimica	Italy	_
Summicort	Benvegna	Italy	-
Suprametil	Geistlich	Switz.	_
Urbason	Hoehst	italy	_

Bacterium *Septomyxa affinis*Corn steep liquor

Glucose 6-α-Methylhydrocortisone

Manufacturing Process

The following process description is taken from U.S. Patent 2,897,218. Six 100-ml portions of a medium in 250-ml Erlenmeyer flasks containing 1% glucose, 2% corn steep liquor (60% solids) and tap water was adjusted to a pH of 4.9. This medium was sterilized for 45 minutes at 15 psi pressure and inoculated with a one to two day growth of Septomyxa affinis ATCC 6737. The Erlenmeyer flasks were shaken at room temperature at about 24°C for a period of 3 days.

At the end of this period, this 600-ml volume was used as an inoculum for ten liters of the same glucose-corn steep liquor medium which in addition contained 10 ml of an antifoam (a mixture of lard oil and octadecanol). The fermentor was placed into the water bath, adjusted to 28°C, and the contents stirred (300 rpm) and aerated (0.5 liter air/10 liters beer). After 17 hours of incubation, when a good growth developed and the acidity rose to pH 6.7, 2 g of 6α -methylhydrocortisone plus 1 g of 3-ketobisnor-4-cholen-22-al, dissolved in 115 ml of dimethylformamide, was added and the incubation (conversion) carried out at the same temperature and aeration for 24 hours (final pH 7.9).

The mycelium (56 g dry weight) was filtered off and the steroidal material was extracted with methylene chloride, the methylene extracts evaporated to dryness, and the resulting residue chromatographed over a Florisil column. The column was packed with 200 g of Florisil and was developed with five 400-ml fractions each of methylene chloride, Skellysolve B-acetone mixtures of 9:1, 8:2, 7:3, 1:1, and methanol. The fraction eluted with Skellysolve B-acetone (7:3) weighed 1.545 g and on recrystallization from acetone gave, in three crops, 928 mg of product of MP 210° to 235°C. The sample prepared for analysis melted at 245° to 247°C.

References

Merck Index 5984

Kleeman & Engel p. 587 PDR pp. 1286, 1606, 1850 OCDS Vol. 1 p. 196 (1977)

I.N. p. 623 REM p. 968

Sebek, O.K. and Spero, G.B.; U.S. Patent 2,897,218; July 28, 1959; assigned to The Upjohn Company

Gould, D.H.; U.S. Patent 3,053,832; September 11, 1962; assigned to Schering Corporation

METHYLTESTOSTERONE

Therapeutic Function: Androgen

Chemical Name: 17β-hydroxy-17-methyl-androst-4-ene-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-18-4

Trade Name	Manufacturer	Country	Year Introduced
Metandren	Ciba	U.S.	1941
Oreton-M	Schering	U.S.	1941
Neo-Hombreol	Organon	U.S.	1941
Hormale	Key	U.S.	1958
Android-S	Brown	U.S.	_
Arcosterone	Arcum	U.S.	
Climaterine	Lucien	France	-
Climatone	Paines & Byrne	U.K.	-
Dumone	Squibb	U.S.	_
Estan	Schering	U.S.	_
Gynosterone	Sam-On	Israel	-
Hormobin	Munir Sahin	Turkey	_
Malogen	Fellows-Testagar	U.S.	_
Orchisterone	Negroni	Italy	_
Seksfort	Uranium	Turkey	
Steronyl	Kay	U.S.	-
Synandrets	Pfizer	U.S.	_
Testipron	Kwizda	Austria	
Testomet	Protea	Australia	_
Testora	Alcon	U.S.	_
Testostelets	Barlow Cote	Canada	_
Testonic B	Sam-On	Israel	-
Testovis	Vister	Italy	_
Testred	1.C.N.	U.S.	-
Virilon	Star	U.S.	- '

17-Methyl- $\Delta^{5,6}$ -androstenediol-(3,17) Magnesium

Acetone Methyl chloride

Manufacturing Process

0.6 g of 17-methyl-Δ^{5,6}-androstenediol-(3,17) is heated under reflux cooling during 20 hours in 50 cm³ of benzene and 12 cm³ of acetone with 3 g of tertiary chloromagnesium butylate, which may be prepared by conversion of acetone with methyl magnesium chloride. The magnesium is then removed by shaking out with dilute H2SO4; the benzene layer is washed with water, dried with sodium sulfate and then evaporated to dryness. Methyltestosterone (MP 160° to 162°C) is obtained in a yield of more than 75% of the theory, according to U.S. Patent 2,384,335.

References

Merck Index 6000 Kieeman & Engel p. 588 PDR pp. 645, 729, 802, 949, 1447, 1643, 1778 OCDS Vol. 1 p. 172 (1977) I.N. p. 625 REM p. 998

Miescher, K. and Wettstein, A.; U.S. Patent 2,374,369; April 24, 1945; assigned to Ciba Pharmaceutical Products, Incorporated

Miescher, K. and Wettstein, A.; U.S. Patent 2,374,370; April 24, 1945; assigned to Ciba Pharmaceutical Products, Incorporated

Oppenauer, R.; U.S. Patent 2,384,335; September 4, 1945

Miescher, K.; U.S. Patent 2,386,331; October 9, 1945; assigned to Ciba Pharmaceutical Products, Incorporated

Miescher, K.; U.S. Patent 2,435,013; January 27, 1948; assigned to Ciba Pharmaceutical Products, Incorporated

METHYPRYLON

Therapeutic Function: Sedative, hypnotic

Chemical Name: 3,3-diethyl-5-methyl-2,4-piperidinedione

Common Name: 2,4-dioxo-3,3-diethyl-5-methylpiperidine

Structural Formula:

Chemical Abstracts Registry No.: 125-64-4

Trade Name	Manufacturer	Country	Year Introduced
Noludar	Roche	U. S .	1955
Noctan	Yamanouchi	Japan	_
Nolurate	Roche	_	_

2.4-Dioxo-3.3-diethyl-piperidine Hydrogen

Sodium Methyl formate

Manufacturing Process

24 parts by weight of powdered sodium are suspended in 100 parts by volume of absolute benzene and to this suspension is added a freshly prepared solution of 150 parts by weight of methyl formate and 165 parts by weight of 2,4-dioxo-3,3-diethyl-piperidine in 900 parts by volume of absolute benzene. By cooling with cold water, the temperature is maintained at 25° to 28°C. After being stirred for 12 hours 200 parts by volume of 0.6 N sodium hydroxide are added while cooling. The aqueous layer is separated and acidified to Congo red by means of 35% hydrochloric acid. The 2,4-dioxo-3,3-diethyl-5-oxymethylenepiperidine is precipitated in good yield as a solid. After having been recrystallized in chloroform/petroleum ether it melts at 140° to 141°C.

5 parts by weight of 2.4-dioxo-3.3-diethyl-5-oxymethylene-piperidine are hydrogenated in 25 parts by volume of methanol in the presence of about 2 parts by weight of Raney nickel at 120°C and under an elevated pressure of 100 atm. Once 2 mols of hydrogen are absorbed, the hydrogenation is interrupted, the solution is separated from the catalyst and concentrated and the residue is distilled in vacuo. The distillate, boiling between 178° and 185°C under a pressure of 16 mm, consists of 2,4-dioxo-3,3-diethyl-5-methyl-piperidine, which melts at 74° to 75°C.

The same compound is obtained when proceeding according to the following alternative procedure. A mixture of 39.4 parts by weight of 2,4-dioxo-3,3-diethyl-5-oxymethylenepiperidine and 27 parts by weight of dibutylamine are heated to 150°C in a closed vessel. The 2,4-dioxo-3,3-diethyl-5-dibutylamino-methylene-piperidine formed melts at 77°C after having been recrystallized in petroleum ether.

31 parts by weight of the latter compound are hydrogenated in 150 parts by volume of alcohol, containing 6 parts by weight of acetic acid, in the presence of 10 parts by weight of Raney nickel, at 120°C and under an elevated pressure of 100 atm. The catalyst is separated and the solution is distilled in vacuo. The 2,4-dioxo-3,3-diethyl-5-methyl-piperidine boils between 178° and 185°C under a pressure of 16 mm and melts at 74° to 75°C.

References

Merck Index 6010 Kleeman & Engel p. 590 PDR p. 1495 DOT 9 (6) 245 (1973) I.N. p. 626 **REM p. 1072**

Frick, H. and Lutz, A.H.; U.S. Patent 2,680,116; June 1, 1954; assigned to Hoffmann-LaRoche Inc.

METHYSERGIDE MALEATE

Therapeutic Function: Migraine therapy

Chemical Name: 9,10-didehydro-N-[1-(hydroxymethyl)propyl] -1,6-dimethylergoline-8-

carboxamide maleate

Common Name: 1-methyl-d-lysergic acid butanolamide maleate

Structural Formula:

Chemical Abstracts Registry No.: 129-49-7; 361-37-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sansert	Sandoz	U.S.	1962
Desernil	Sandoz	France	1962
Deseril	Sandoz	U.K.	1963

Raw Materials

Lysergic acid-1'-hydroxy-butylamide-2' Potassium Ammonia Methyl iodide Maleic acid

Manufacturing Process

As described in U.S. Patent 3,218,324, 0.9 part of potassium are dissolved in 500 parts by volume of liquid ammonia, then oxidized with ferric nitrate to potassium amide, after which 4.85 parts of lysergic acid-1'-hydroxy-butylamide-2' are dissolved in the obtained mixture. After 15 minutes there are added to the obtained yellow solution 4.1 parts of methyl iodide in 5 parts by volume of ether, the mixture being allowed to stand for 30 more minutes at -60°C. The liquid ammonia is thereupon evaporated and the dry residue is shaken out between water and chloroform. The mixture of bases which remains after the evaporation of the chloroform is chromatographed on a column of 250 parts of aluminum oxide, the desired 1-methyl-lysergic acid-1'-hydroxy-butylamide-2' being washed into the filtrate with chloroform and chloroform-0.2% ethanol. The 1-methyl-lysergic acid-1'-hydroxy-butylamide-2' crystallizes from chloroform in the form of plates which melt at 194° to 196°C. Reaction with maleic acid gives the dimaleate, melting at 187° to 188°C.

References

Merck Index 6011 Kleeman & Engel p. 590 PDR p. 1596 OCDS Vol. 2 p. 477 (1980) I.N. p. 626 REM pp. 949, 1113

Hofmann, A. and Troxler, F.; U.S. Patent 3,113,133; December 3, 1963; assigned to Sandoz Ltd., Switzerland

Hofmann, A. and Troxler, F.; U.S. Patent 3,218,324; November 16, 1965; assigned to Sandoz Ltd., Switzerland

METIAZINIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: 10-methylphenothiazine-2-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13993-65-2

Trade Name	Manufacturer	Country	Year Introduced
Soripan	Specia	France	1970
Soripal	Torii	Japan	1977
Soripal	Farmalabor	Italy	1978
Ambrunate	Rhodia	Argentina	
Metian	Horus	Spain	_
Novartril	Andromaco	Spain	_
Roimal	Nippon Rhodia	Japan	_
Soridermal	Specia	France	_

Raw Materials

10-Methyl-3-acetylphenthiazine Sulfur

Morpholine Potassium hydroxide

Manufacturing Process

10-Methyl-3-acetylphenthiazine is prepared in accordance with G. Cauquil and A. Casadevall, *Bull. Soc. Chim.*, p 768 (1955). (10-Methyl-3-phenthiazinyl)acetic acid (MP 146°C; 21.4 g) is prepared by Willgerodt's reaction (action of sulfur and norpholine, followed by hydrolysis) employing 10-methyl-3-acetylphenthiazine as starting material.

References

Merck Index 6013 Kleeman & Engel p. 591

I.N. p. 32

Farge, D., Jeanmart, C. and Messer, M.N.; U.S. Patent 3,424,748; January 28, 1969; assigned to Rhone-Poulenc S.A., France

METOCLOPRAMIDE HCI

Therapeutic Function: Antiemetic

Chemical Name: 4-Amino-5-chloro-N-[(2-diethylamino)ethyl] -2-methoxybenzamide

Common Name: -

Structural Formula:

$$\begin{array}{c} \operatorname{conich_2ch_2N(c_2h_3)_2} \\ \operatorname{och_3} \\ \operatorname{cl} \\ \operatorname{NH_2} \end{array} \tag{base}$$

Chemical Abstracts Registry No.: 7232-21-5; 364-62-5 (Base)

Primperan Delagrange France 1964 Paspertrin Kali-Chemie W. Germany 1965 Maxolon Beecham U.K. 1967 Plasil Richter Italy 1967 Reglan Robins U.S. 1979 Metox Steinhard U.K. 1983 Ananda Bonomelli-Hommel Italy — Cerucal Arzneimittelwerk Dresden E. Germany — Clodii-lon Ion Italy — Clodii-lon Ion Italy — Clopan Firma Italy — Clopan Firma Italy — Contromet Script Intal S. Africa — Clopan Firma Italy — Contromet Script Intal S. Africa — Digeres Scalari Italy — Digeres Scalari Italy — Elletin Nippon Kayaku Japan <th>Trade Name</th> <th>Manufacturer</th> <th>Country</th> <th>Year Introduced</th>	Trade Name	Manufacturer	Country	Year Introduced
Maxolon Beecham U.K. 1967 Plasil Richter Italy 1967 Reglan Robins U.S. 1979 Metox Steinhard U.K. 1983 Ananda Bonomelli-Hommel Italy — Cerucal Arzneimittelwerk Dresden E. Germany — Clodil-Ion Ion Italy — Clopamon Petersen S. Africa — Clopam Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sana Japan — Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Emperal Neofarma Finland	Primperan	Delagrange	France	1964
Plasii	Paspertin	Kali-Chemie	W. Germany	1965
Regian	Maxolon	Beecham	U.K.	1967
Metox Steinhard U.K. 1983 Ananda Bonomelli-Hommel Italy — Cerucal Arzneimittelwerk Dresden Italy — Clodil-Ion Ion Italy — Clopamon Petersen S. Africe — Clopam Firma Italy — Contromet Script Intel S. Africe — Clopan Firma Italy — Contromet Script Intel S. Africe — Clopan Firma Italy — Contromet Script Intel S. Africe — Digetres Scalari Italy — Donopon-GP Sana Japan — Elletin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Rafio Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramiel Sawai Japan — Prometin Yamanouchi Japan — Prometin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin Finadlet — Primetin	Plasil	Richter	Italy	1967
Ananda Bonomelli-Hommel Italy — Cerucal Arzneimittelwerk Dresden Clodil-Ion Ion Italy — Clopamon Petersen S. Africa — Clopam Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sena Japan — Elietin Nippon Kayaku Japan — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram A.G.I.P.S. Italy — Metamide Protea Australia — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Morishita Japan — Metopram Morishita Japan — Metaf Sintyal Argentina — Peraprin Taiyo Japan — Peraprin Taiyo Japan — Placitril Sigurta Italy — Peraprin Taiyo Japan — Peramin Rafa Israel — Primperil Lacefa Argentina — Peramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperin Yamanouchi Japan — Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Prometin Promet	Regian	Robins	U.S.	1979
Cerucal Arzneimittelwerk Dresden E. Germany — Clodil-lon Ion Italy — Clopamon Petersen S. Africa — Clopan Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sana Japan — Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Emperal Neofarma Finland — Imperan Render Austria — Kilozim A.G.I.P.S. Italy — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Mexeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany —	Metox	Steinhard	U.K.	1983
Clodii-lon lon ltaly — Clopamon Petersen S. Africa — Clopamon Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sena Japan — Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobii Beta Italy — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Lagas Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metopram Leiras Finland — Metoprieran Morishita Japan — Noriperan Morishita Japan — Peraprin Talyo Japan — Peraprin Talyo Japan — Peraprin Talyo Japan — Peramiel Nagase Japan — Peramiel Nagase Japan — Peramin Rafa Israel — Pramiel Nagase Japan — Pramiel Sawai Japan — Prometin Yamanouchi Japan — Prometin Prometin — Prometin Prometin — Prometin Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometi	Ananda	Bonomelli-Hommel	Italy	_
Clopamon Petersen S. Africa — Clopan Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sana Japan — Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Morishita Japan — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Sawai Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Cerucal	Arzneimittelwerk Dresden	•	_
Clopan Firma Italy — Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sana Japan — Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metocobil Beta Italy — Metopram Leiras Finland — Metopram Leiras Finland — Moriperan Morishita Japan — Nadir Oti Italy — Nadir Oti Italy — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Sawai Japan — Prometin Yamanouchi Japan — Prometin Prometin — Prometin Prometin — Prometin Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin — Prometin	Clodil-lon	lon		_
Contromet Script Intal S. Africa — Digetres Scalari Italy — Donopon-GP Sana Japan — Elletin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Mexeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Lairas Finland — Metopram Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramin Rafa Israel — Pramin Rafa Israel — Pramin Rafa Israel — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Regastrol Farakhim Bulgaria — Finediet Argentina — Finediet Finediet Argentina — Finediet Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Finediet Argentina — Finediet Argentina — Finediet Finediet Argentina — Finediet Finediet Argentina — Finediet Finediet Argentina — Finediet Finediet Argentina — Finediet Argentina — Finediet Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argentina — Finediet Argenti	Clopamon			_
Digetres Scalari Italy — Donopon-GP Sana Japan — Elletin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Metlopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Regestrol Sarm Italy — Regestrol Sarm Italy — Remitin Farmakhim Bulgaria — Terperan Telkoru Zoki Japan —	Clopan			-
Donopon-GP Sana Japan — Elletin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Regiveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki Japan —	Contromet			
Elietin Nippon Kayaku Japan — Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz, — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metopram Leiras Finland — Moriperan Morishita Japan — Nadir Oti Italy — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prindarl Sawai Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Regiveran Finadiet Argentina — Reliveran Finadiet Argentina — Regiveran Finadiet Argentina — Regiveran Finadiet Argentina — Regiveran Finadiet Argentina — Regiveran Finadiet Argentina — Regiveran Finadiet Argentina — Reliveran Fin		Scalari	italy	_
Emesa Mulda Turkey — Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —				
Emetisan Phoenix Argentina — Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metopram Leiras Finland — Metopram Loiras Finland — Metopram Loiras Finland — Maxeran Morishita Japan — Moriperan Morishita Japan — Nadir Oti Italy — Magase Japan — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Ragastrol Sarm Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Regentina — Rafa Argentina — Rafa Argentina — Ragastrol Sarm Italy — Regestrol Sarm Italy — Regestrol Sarm Italy — Regestrol Finadiet Argentina — Rafinetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Regastrol Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki		• •		-
Emperal Neofarma Finland — Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metopram Leiras Finland — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Regastrol Sarm Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —				
Gastronertron Dolorgiet W. Germany — Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocoli Toyama Japan — Metopram Leiras Finland — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Moriperan Morishita Japan — Nadir Oti Italy — Madir Oti Italy — Pramiel Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Prometin Yamanouchi Japan — Pramiculario Medicianum Italy — Rafadum Scharper Italy — Regastrol Sarm Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Premetin Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Premetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Premetin Farmakhim Bulgaria — Terperan Teikoru Zoki		• •		_
Imperan Bender Austria — Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperin Yamanouchi Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan — Terperan Teikoru Zoki Japan —	Emperal			_
Kilozim A.G.I.P.S. Italy — Maxeran Nordic Canada — MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metocobil Beta Italy — Metopram Leiras Finland — Metopramid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —		•	•	_
MaxeranNordicCanada—MCP-RatiopharmRatiopharmW. Germany—MeclopranLagapSwitz.—MetamideProteaAustralia—MetocollToyamaJapan—MetopramLeirasFinland—MetopramLeirasFinland—MetpamidSifarTurkey—MoriperanMorishitaJapan—NadirOtiItaly—NetafSintyalArgentina—PeraprinTaiyoJapan—PlacitrilSigurtaItaly—PramielNagaseJapan—PraminRafaIsrael—PrimperilLacefaArgentina—PrindarlSawaiJapan—PrometinYamanouchiJapan—PutoprinMohanJapan—QuantoMediolanumItaly—RandumScharperItaly—RegastrolSarmItaly—ReliveranFinadietArgentina—RimetinFarmakhimBulgaria—TerperanTeikoru ZokiJapan—	Imperan			-
MCP-Ratiopharm Ratiopharm W. Germany — Meclopran Lagap Switz. — Metamide Protea Australia — Metoclol Toyama Japan — Metopram Leiras Finland — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Rafa Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Kilozim		•	_
MeclopranLagapSwitz.—MetamideProteaAustralia—MetoclolToyamaJapan—MetocobilBetaItaly—MetopramLeirasFinland—MetpamidSifarTurkey—MoriperanMorishitaJapan—NadirOtiItaly—NetafSintyalArgentina—PeraprinTaiyoJapan—PlacitrilSigurtaItaly—PramielNagaseJapan—PraminRafaIsrael—PrimperilLacefaArgentina—PrindarlSawaiJapan—PrometinYamanouchiJapan—PutoprinMohanJapan—PutoprinMohanJapan—PutoprinMohanJapan—RandumScharperItaly—RegastrolSarmItaly—ReliveranFinadletArgentina—ReimetinFarmakhimBulgaria—TerperanTeikoru ZokiJapan—				-
Metamide Protea Australia — Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm	•	Ratiopharm		-
Metoclol Toyama Japan — Metocobil Beta Italy — Metopram Leiras Finland — Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primotarl Sewai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Meclopran	Lagap	Switz.	_
MetocobilBetaItaly—MetopramLeirasFinland—MetpamidSifarTurkey—MoriperanMorishitaJapan—NadirOtiItaly—NetafSintyalArgentina—PeraprinTaiyoJapan—PlacitrilSigurtaItaly—PramielNagaseJapan—PraminRafaIsrael—PrimperilLacefaArgentina—PrindarlSewaiJapan—PrometinYamanouchiJapan—PutoprinMohanJapan—QuantoMediolanumItaly—RandumScharperItaly—RegastrolSarmItaly—ReliveranFinadietArgentina—RimetinFarmakhimBulgaria—TerperanTeikoru ZokiJapan—	Metamide	Protea	Australia	_
Metopram Leiras Finland — Metpamíd Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Metoclol	Toyama	Japan	_
Metpamid Sifar Turkey — Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Metocobil			
Moriperan Morishita Japan — Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Primperil Lacefa Argentina — Primperil Lacefa Argentina — Primperil Lacefa Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Metopram	Leiras	Finland	_
Nadir Oti Italy — Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Metpamid	Sifar	Turkey	_
Netaf Sintyal Argentina — Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Primdarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadlet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Moriperan	Morishita	Japan	-
Peraprin Taiyo Japan — Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Nadir	Oti	Italy	-
Placitril Sigurta Italy — Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Netaf	Sintyal	Argentina	
Pramiel Nagase Japan — Pramin Rafa Israel — Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadlet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Peraprin	Taiyo	Japan	_
Pramin Rafa Israel — Primperil Lacefa Argentina — Prindarl Sewai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Placitril		•	-
Primperil Lacefa Argentina — Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Pramiel	Nagase	Japan	_
Prindarl Sawai Japan — Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadlet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Pramin	Rafa	Israel	
Prometin Yamanouchi Japan — Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Primperil	Lacefa	Argentina	-
Putoprin Mohan Japan — Quanto Mediolanum Italy — Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Prindarl	Sawai	Japan	-
QuantoMediolanumItaly—RandumScharperItaly—RegastrolSarmItaly—ReliveranFinadietArgentina—RimetinFarmakhimBulgaria—TerperanTeikoru ZokiJapan—	Prometin	Yamanouchi	Japan	_
Randum Scharper Italy — Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Putoprin	Mohan	Japan	
Regastrol Sarm Italy — Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Quanto	Mediolanum	Italy	-
Reliveran Finadiet Argentina — Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Randum	Scharper		
Rimetin Farmakhim Bulgaria — Terperan Teikoru Zoki Japan —	Regastrol	Sarm	Italy	_
Terperan Teikoru Zoki Japan -	Reliveran		•	-
· · · · · · · · · · · · · · · · · · ·	Rimetin		Bulgaria	_
Viscal Zoia teal.			•	-
viscai Zoja italy —	Viscal	Zoja	Italy	-

Raw Materials

o-Toluidine Nitrous acid Potassium permanganate N,N-Diethylene diamine Acetic anhydride Hydrogen chloride

Nitric acid Dimethyl sulfate Thionyl chloride Hydrogen Chlorine

Manufacturing Process

The N-(diethylaminoethyl)-2-methoxy-4-aminobenzamide used as the starting material may be prepared from o-toluidine. The o-toluidine is initially nitrated with nitric acid to produce 4-nitro-o-toluidine. The 4-nitro-o-toluidine is then converted to 2-hydroxy-4-nitrotoluene by heating with nitrous acid. By reacting the resulting 2-hydroxy-4-nitrotoluene with dimethyl sulfate, 2-methoxy-4-nitrotoluene is formed. The 2-methoxy-4-nitrotoluene is oxidized with potassium permanganate to produce 2-methoxy-4-nitrobenzoic acid. The latter substituted benzoic acid is treated with thionyl chloride to form 2-methoxy-4-nitrobenzoyl chloride. A methyl ethyl ketone solution of the 2-methoxy-4-nitrobenzoyl chloride is added over a period of about 1½ hours to a methyl ethyl ketone solution containing an equal molecular quantity of N,N-diethylethylene diamine while stirring and maintaining the temperature between 0°C and 5°C. The N-(diethylaminoethyl)-2-methoxy-4-nitrobenzamide hydrochloride formed precipitates. It is filtered, washed twice with methyl ethyl ketone, dissolved in alcohol, and reduced catalytically in an absolute isopropyl alcohol solution to form N-(diethylaminoethyl)-2-methoxy-4-aminobenzamide. The base is obtained by precipitating with sodium hydroxide.

80 g (0.3 mol) of N-(2-diethylaminoethyl)-2-methoxy-4-aminobenzamide are dissolved in small portions in 150 cc of acetic acid. The mixture is cooled and 45 g (0.45 mol) of acetic anhydride are added, and the solution obtained is heated for two hours on a water bath. After cooling, the solution is decanted into a round-bottomed flask with a stirrer, a thermometer and a tube for introducing the chlorine. It is stirred and the current of chlorine is passed through, the temperature being maintained between 20°C and 25°C. The stirring is continued for one hour after the completion of the absorption of the chlorine.

The mixture obtained is poured into 2 liters of water and the base is precipitated with 30% soda. The precipitated base is extracted with 400 cc of methylene chloride. After evaporation of the solvent, the N-(2-diethylaminoethyl)-2-methoxy-4-acetamino-5-chlorobenzamide formed crystallizes. The melting point is 86°C to 87°C and the yield is 95%.

To obtain the corresponding amino derivative, 109 g of base are heated under agitation in a round-bottomed flask with 300 cc of 35-36% concentrated hydrochloric acid and 600 cc of water. It is heated on a water bath until dissolution is complete, then maintained at boiling point for 90 minutes, cooled, diluted with 1 liter of water, and neutralized with about 350 cc of 30% soda. The N-(2-diethylaminoethyl)-2-methoxy-4-amino-5-chlorobenzamide formed crystallizes, is centrifuged and washed in water. Its melting point is 122°C and the yield is 74%.

To obtain the corresponding dihydrochloride, the base is dissolved in absolute alcohol (3 volumes) and to that solution is added 5 N alcoholic hydrochloric acid. The dihydrochloride precipitates, is centrifuged and washed with alcohol. It is a solid white material, having a melting point of 134°C to 135°C.

References

Merck Index 6019 Kleeman & Engel p. 593 PDR p. 1463

DOT 1 (2) 66 (1965): 16 (5) 159 (1980) & 19 (8) 476 (1983)

I.N. p. 629 REM p. 809

Thominet, M.L.; U.S. Patent 3,177,252; April 6, 1965; assigned to Soc. d'Etudes Scientifiques et Industrielles de l'Ile de France (France)

METOLAZONE

Therapeutic Function: Digretic

Chemical Name: 7-chloro-1,2,3,4-tetrahydro-2-methyl-3-(2-methylphenyl)-4-oxo-6-quinolinesulfonamide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 17560-51-9

Trade Name	Manufacturer	Country	Year Introduced
Zaroxolyn	Pennwalt	U.K.	1973
Zaroxolyn	Pennwalt	U.S.	1974
Diulo	Sea rle	U.S.	1978
Zaroxolyn	Searle	W. Germany	1978
Zaroxolyn	Sandoz	Switz.	1978
Zaroxolyn	I.S.F.	Italy	1981
Normeran	Sankyo	Japan	1982
Metenix	Hoechst	U.K.	_
Oldren	Roemmers	Argentina	_

Raw Materials

5-Chloro-2-methylaniline Chlorosulfonic acid o-Toluidine

Sodium borohydride

Acetic anhydride Ammonia

Phosphorus trichloride

Manufacturing Process

Preparation of Intermediate Compound N-Acetyl-5-Chloro-2-Methylaniline: To a wellstirred mixture of 1,270 g (9 mols) of 5-chloro-2-methylaniline in 7.5 liters of water at 34°C was added all at once 1,710 ml (18 mols) of acetic anhydride. A solution was obtained and then almost immediately the product started to crystallize. The temperature rose to 60°C. The mixture was stirred until the temperature dropped to 30°C. The product was filtered and washed well with water. Yield 97% (1,640 g), MP 134° to 138°C. Product was air dried and then in vacuum over P2O5.

Preparation of Intermediate Compound 5-Chloro-2-Methyl-4-Sulfamylacetanilide: Into a 3-necked 3-liter flask fitted with stirrer and thermometer 540 ml of chlorosulfonic acid were placed and cooled in an ice bath to 20°C. 300 g of the acetanilide were added portionwise while stirring and maintaining temperature at 20°C. This addition takes approximately 20 minutes. Remove the ice bath and add 88 g of sodium chloride portionwise (approximately 1 tsp every 10 minutes). This addition takes approximately 1 hour. Some foaming takes place. Using heating mantle bring temperature up slowly (approximately ½ hour) to 75°C. Considerable foaming takes place and heating is continued another ½ hour until 92°C is reached. Foaming can be controlled by shutting off heat and with good stirring. Once the temperature of 92°C has been reached and foaming has subsided reaction can be left unattended. Keep reaction at 92°C for a total of 21/2 hours.

Pour the hot reaction mixture onto 4 liters of crushed ice. Pour slowly and stir the ice mixture. What remains in the flask can be worked up by adding ice to it and swirling the contents. After approximately % of an hour, the solid is filtered and washed with approximately 600 ml water.

Break up cake into small pieces and add to 2.5 liters concentrated NH₄OH in 4 liter beaker. Stir. Solid goes into solution and then the sulfonamide precipitates out. Heat to 50°C and then turn off heat. After ½ hour cool in ice bath and filter. Wash cake with 600 ml water. Add cake to 2 liters 5% NaOH (130 ml 50% NaOH to 2 liters water). Filter and discard insolubles. While cooling filtrate add concentrated HCl until mixture is acid. Filter and wash cake until filtrate is neutral. Suck cake as dry as possible then air dry. Yield approximately 200 g (45%), MP 255° to 260°C.

Preparation of Intermediate Compound 4-Chloro-5-Sulfamyl-N-Acetylanthranilic Acid: To a hot solution (80°C) of 366 g (1.482 mols) of magnesium sulfate (Epsom salts) in 2.8 liters of water was added 130 g (0.495 mol) of powdered 5-chloro-2-methyl-4-sulfamylacetanilide. With stirring and maintaining the temperature at 83°C, 234 g (1.482 mols) of potassium permanganate was added portionwise over a period of 2 hours. The mixture was then kept at 85°C with stirring for an additional 3 hours. By this time the pink color of the permanganate had been discharged.

The mixture was cooled to 65°C and 250 g (2.0 mols) of sodium carbonate monohydrate was added. The warm reaction mixture was filtered and the cake washed with water. The filtrate was then slowly treated with concentrated hydrochloric acid until mixture tested acid. Product was then filtered, washed with water and dried. Yield 103 g (71.0%), MP 245° to 249°C (dec.).

Preparation of Intermediate Compound 2-Methyl-3-o-Tolyl-6-Sulfamyl-7-Chloro-4(3H)-Quinazolinone: Set up a 5-liter 3-necked flask fitted with a stirrer, condenser and a drying tube. To a stirred mixture of 100 g (0.342 mol) of powdered 4-chloro-5-sulfamy!-Nacetylanthranilic acid, 40.2 g (0.376 mol) of o-toluidine and 2.0 liters of dry toluene was added dropwise, over a period of 15 minutes, 21.7 ml (34.1 g) (0.248 mol) of phosphorus trichloride. The mixture was then refluxed for 10 hours. The solid turned somewhat gummy towards the latter part of the first hour. The mixture then became more free flowing as heating was continued. Let stand overnight. The yellow solid was filtered, washed with toluene and dried. The toluene filtrate was discarded. The dried solid was triturated with 1.5 liters of 10% sodium bicarbonate, filtered and the cake washed with water. The filtrate on acidification yielded 11.5 g of the starting acid. The damp product was dissolved in 4.5 liters of 95% ethanol and the solution treated with charcoal and filtered. On cooling filtrate yielded 69.5 g (55.5%) of the title compound, MP 271.5° to 274°C.

Preparation of the Final Compound 2-Methyl-3-o-Tolyl-6-Sulfamyl-7-Chloro-1,2,3,4-Tetrahydro-4(3H)-Quinazolinone: To 4 liters of dry diglyme in a 12-liter 3-necked flask fitted with a stirrer, thermometer and drying tube was added 5.34 g (0.04 mol) of aluminum chloride, while stirring. To the resulting solution was added 43.6 g (0.12 mol) of 2-methyl-3-o-tolyl-6-sulfamyl-7-chloro-4(3H)-quinazoline. A solution of 4.56 g (0.12 mol) of sodium borohydride in 1 liter of dry diglyme was added portionwise over a period of 1 hour while stirring the mixture. The mixture was then heated at 85°C, with stirring, for 1 hour.

After cooling the reaction mixture to 25°C in an ice bath 600 ml of water was added and then enough dilute hydrochloric acid (approximately 100 ml) to make the solution acid. The solvent was then removed under reduced pressure at 60° to 70°C. The very viscid residue solidified when triturated with water. The solid was filtered and washed with water. The solid was dissolved in approximately 400 ml 95% ethanol and the solution filtered through Celite. On cooling the solution yielded 30 g of colorless solid, MP 253° to 259°C. The filtrate was concentrated to 200 mi to yield another 4.6 g, MP 253° to 259°C.

The above product was then recrystallized from 900 ml of 95% ethanol after filtering the hot solution through Celite. Crystallization was initiated and the mixture agitated occasionally while being cooled in the refrigerator. Yield of product 29 g, MP 253° to 259°C. Concentration of the filtrate to 125 ml yielded another 7.5 g of product, MP 253° to 259°C. The product was recrystallized another time in the manner described above. Total yield, first and second crops, 28.8 g (66%), MP 250° to 255°C. Product was dried at 80°C in a vacuum, according to U.S. Patent 3,360,518.

References

Merck Index 6024 Kleeman & Engel p. 594 PDR pp. 1401, 1668 OCDS Vol. 2 p. 384 (1980) DOT 9 (12) 498 (1973) I.N. p. 629

REM p. 940

Shetty, B.V.; U.S. Patent 3,360,518; December 26, 1967; assigned to Wallace & Tiernan Inc.

Shetty, B.V.; U.S. Patent 3,557,111; January 19, 1971

METOPROLOL TARTRATE

Therapeutic Function: Beta-adrenergic blocker

Chemical Name: 1-[4-(2-Methoxyethyl)phenoxy] -3-[(1-methylethyl)amino] -2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56392-17-7; 37350-58-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Betaloc	Astra	U.K.	1975
Lopressor	Geigy	U.K.	1975
Beloc	Astra	W. Germany	1976
Lopressor	Ciba-Geigy	W. Germany	1976
Lopressor	Ciba-Geigy	Italy	1978
Selomen	Bracco	Italy	1978
Lopressor	Ciba Geigy	U.S.	1978
Seloken	Searle	France	1980
Seloken	Fujisawa	Japan	1983
Lopresol	Takeda	Japan	1983
Lati 2	Unifa	Argentina	_
Neobloc	Unipharm	Israel	
Prelis	Brunnengraber	W. Germany	_

Raw Materials

Isopropylamine Sodium bicarbonate Tartaric acid

p-(β-Methoxyethyl)phenol Epichlorohydrin

Manufacturing Process

The starting material 1,2-epoxy-3-[p- $(\beta$ -methoxyethyl)-phenoxy]-propane was obtained from $p-(\beta-methoxyethyl)$ -phenol which was reacted with epichlorohydrin whereafter the reaction product was distilled at 118°C to 128°C at a pressure of 0.35 mm Hg.

1,2-Epoxy-3-[p- $(\beta$ -methoxyethyl)-phenoxy]-propane (16.7 g) was dissolved in 50 ml isopropanol and mixed with 20 ml isopropylamine. The mixture was heated in an autoclave on boiling water-bath overnight, whereafter it was evaporated and the remainder dissolved in 2N HCl. The solution was extracted first with ether and thereafter with methylene chloride. After evaporating the methylene chloride phase, the hydrochloride of 1-isopropylamino-3-[p- $(\beta$ -methoxyethyl)-phenoxy]-propanol-2 was obtained which, after recrystallization from ethyl acetate, weighed 10.4 g. Melting point 83°C. Equivalent weight: found 304.0, calculated 303.8.

The hydrochloride is then converted to the tartrate.

References

Merck Index 6027 Kleeman & Engel p. 595 PDR p. 894 OCDS Vol. 2 p. 109 (1980) DOT 11 (9) 360 (1975) & 17 (2) 65 (1981)

I.N. p. 630 REM p. 905

Brandstrom, A.E., Carlsson, P.A.E., Carlsson, S.A.I., Corrodi, H.R., Ek, L. and Ablad, B.A.H.; U.S. Patent 3,873,600; March 25, 1975

METRIZOIC ACID

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: 3-(Acetylamino)-5-(acetylmethylamino)-2,4,6-triiodobenzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1949-45-7

Trade Name	Manufacturer	Country	Year Introduced
Isopaque	Winthrop	France	1973
Isopaque	Sterling Winthrop	U.S.	1975
Isopaque	Winthrop	Italy	1978
Ronpacon	Cilag-Chemie	W. Germany	-

Raw Materials

Diatrizoic acid (diatrizoate) Dimethyl sulfate

Manufacturing Process

3,5-Diacetamido-2,4,6-triiodobenzoic acid (diatrizoic acid) (see Diatrizoate entry for synthesis) (10 g) is suspended in water (10 ml), 5 N potassium hydroxide (4.3 equivalent) is added and the mixture cooled to about 15°C. Dimethyl sulfate (0.5 equivalent) dissolved in an equal volume of acetone is added drop by drop while stirring. After the reaction mixture has

been stirred for about 1 hour hydrochloric acid (1:1) is added, with stirring to pH about 0.5. The precipitate is filtered, washed and suspended moist in 4 parts of water, concentrated ammonia is added to pH about 7 and the ammonium salt solution is isomerized at 90°C to 100°C for about one-half hour whereafter additional ammonia is added to pH about 9 followed by solid ammonium chloride (about 10% weight/volume) and the solution stirred overnight and the excess of 3,5-diacetamide-2,4,6-triiodobenzoic acid recovered as ammonium salt on the filter. The filtrate is precipitated by means of hydrochloric acid (1:1) at pH about 0.5 and the N-methyl-3,5-diacetamido-2,4,6-triiodobenzoic acid collected on a filter, washed and dried.

References

Merck Index 6032 Kleeman & Engel p. 597 I.N. p. 631 REM p. 1270 Holtermann, H., Haugen, L.G., Nordal, V. and Haavaldsen, J.L.; U.S. Patent 3,178,473; April 13, 1965; assigned to Nyegaard & Co. A/S (Norway)

METRONIDAZOLE

Therapeutic Function: Antiprotozoal

Chemical Name: 2-methyl-5-nitroimidazole-1-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 443-48-1

Trade Name	Manufacturer	Country	Year Introduced
Flagyl	Specia	France	1960
Flagyl	May & Baker	U.K.	1960
Flagyl	Rhone-Poulenc	W. Germany	1961
Flagyl	Farmitalia	Italy	1962
Flagyl	S earle	U.S.	1963
Satric	Savage	U.S.	1982
Metryl	Lemmon	U.S.	1982
Metro IV	McGaw	U.S.	1982
Protostat	Ortho	U.S.	1983
Anaerobex	Gerot	Austria	_
Arilin	Wolff	W. Germany	_
Asuzol	Fuji ,	Japan	-
Clont	Bayer	W. Germany	
Deflamon	Spa	Italy	_
Efloran	Krka	Yugoslavia	-
Elyzol	Dumex	Denmark	_
Entizol	Polfa	Poland	_
Flagemona	Phoenix	Argentina	-
Fossyol	Merckle	W. Germany	_
Gineflavir	Crosara	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Klion	Kobanyai	Hungary	_
Kreucosan	Kreussier	W. Germany	_
Medazoí	Belupo	Yugoslavia	
Meronidal	Kissei	Japan	
Metrajil	Mulda	Turkey	_
Metrogil	lkapherm	Israel	_
Metrolag	Lagap	Switz.	_
Monasin	Helvepharm	Switz.	_
Naiox	Omega	Argentina	_
Neo-Tric	Neo	Canada	_
Nida	Toyo Pharm.	Japan	••••
Novonidazol	Novopharm	Canada	_
Orvagil	Galenika	Yugoslavia	
Rathimed N	Pfleger	W. Germany	_
Rivozol	Rivopharm	Switz.	
Rodogyl	Specia	France	_
Salandol	Sato	Japan	_
Sanatrich om	Godecke	W. Germany	_
Sawagy!	Sawai	Japan	-
Servizol	Servipharm	Switz.	***
Surimol	Labatec	Switz.	-
Takimetol	Nakataki	Japan	-
Tarozole	Taro	Israel	-
Tranoxa	Exa	Argentina	~
Trichazol	Will	Canada	~
Trichex	Gerot	Austria	-
Trichocide	Green Cross	Japan	
Tricho Cordes	Icthyol	W. Germany	
Tricho-Gynaedron	Artesan	W. Germany	· -
Trichomol	Gea	Denmark	_
Trichostop	Sigmapharm	Austria	
Trichozole	Protea	Austral ia	_
Tricowas B	Wassermann	Spain	-
Trikamon	Elliott-Marion	Canada	-
Trikozol	Farmos	Finland	-
Trivazol	Vister	Italy	-
Vagilen	Farmigea	italy	-
Vagimid	Apogepha	E. Germany	
Vaginyl	D.D.S.A.	U.K.	
Wagitran	Ono	Japan	-

2-Methyl-5-nitroimidazole Ethylene chlorohydrin

Manufacturing Process

2-Methyl-4(or 5)-nitroimidazole (127 g) is heated with ethylene chlorohydrin (795 g) for 18 hours at 128° to 130°C and the chlorohydrin (660 g) is then distilled under reduced pressure (30 mm Hg). The residue is treated with water (300 cc) and filtered, and the filtrate is made alkaline by the addition of sodium hydroxide solution (d = 1.33, 100 cc). It is then extracted with chloroform (1,000 cc) and, after evaporation of the chloroform in vacuo, there is obtained a pasty mass (77 g) which is recrystallized from ethyl acetate (450 cc) in the presence of animal charcoal. There is thus obtained 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (24 g) as a creamy white crystalline powder melting at 158° to 160°C.

References

Merck Index 6033

Kleeman & Engel p. 597

PDR pp. 830, 872, 876, 993, 1034, 1305, 1605, 1670, 1723, 1999

OCDS Vol. 1 p. 240 (1977)

DOT 13 (4) 147 (1977) & 17 (1) 34 (1981)

I.N. p. 632

REM p. 1222

Jacob, R.M., Regnier, G.L. and Crisan, C.; U.S. Patent 2,944,061; July 5, 1960; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

METYRAPONE

Therapeutic Function: Diagnostic aid (pituitary function)

Chemical Name: 2-methyl-1,2-di-3-pyridyl-1-propanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54-36-4

Trade Name	Manufacturer	Country	Year Introduced
Metopirone	Ciba	U.S.	1961
Metopirone	Ciba	U.K.	1961
Metyrapone	Ciba	Switz.	1964
Metopiron	Ciba	W. Germany	1966

Raw Materials

3-Acetylpyridine Hydrogen

Sulfuric acid Hydroxylamine sulfate

Manufacturing Process

According to U.S. Patent 2,966,493, the 2,3-bis-(3-pyridyl)-2,3-butanediol used as the starting material may be prepared as follows. A solution of 1,430 g of 3-acetyl-pyridine in 7,042 ml of a 1 N aqueous solution of potassium hydroxide is placed into a cathode chamber containing a mercury cathode with a surface of 353 cm² and is separated from an anode chamber by an Alundum membrane. As anode a platinum wire is used and the anolyte consists of a 1 N solution of aqueous potassium hydroxide which is replenished from time to time.

The electrolysis is carried out at a reference potential of -2.4 volts vs a standard calomel electrode. An initial current density of 0.0403 amp/cm² is obtained which drops to 0.0195 amp/cm² at the end of the reduction, which is carried on over a period of 1,682 minutes at 15° to 20°C. The catholyte is filtered, the solid material is washed with water and dried. 430 g of the 2,3-bis-(3-pyridyl)-butane-2,3-diol is recrystallized from water, MP 244° to 245°C.

References

Merck Index 6033

Kleeman & Engel p. 597

PDR pp. 830, 872, 876, 993, 1034, 1305, 1605, 1670, 1723, 1999

OCDS Vol. 1 p. 240 (1977)

DOT 13 (4) 147 (1977) & 17 (1) 34 (1981)

I.N. p. 632

REM p. 1222

Jacob, R.M., Regnier, G.L. and Crisan, C.; U.S. Patent 2,944,061; July 5, 1960; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

METYRAPONE

Therapeutic Function: Diagnostic aid (pituitary function)

Chemical Name: 2-methyl-1,2-di-3-pyridyl-1-propanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54-36-4

Trade Name	Manufacturer	Country	Year Introduced
Metopirone	Ciba	U.S.	1961
Metopirone	Ciba	U.K.	1961
Metyrapone	Ciba	Switz.	1964
Metopiron	Ciba	W. Germany	1966

Raw Materials

3-Acetylpyridine Hydrogen

Sulfuric acid Hydroxylamine sulfate

Manufacturing Process

According to U.S. Patent 2,966,493, the 2,3-bis-(3-pyridyl)-2,3-butanediol used as the starting material may be prepared as follows. A solution of 1,430 g of 3-acetyl-pyridine in 7,042 ml of a 1 N aqueous solution of potassium hydroxide is placed into a cathode chamber containing a mercury cathode with a surface of 353 cm² and is separated from an anode chamber by an Alundum membrane. As anode a platinum wire is used and the anolyte consists of a 1 N solution of aqueous potassium hydroxide which is replenished from time to time.

The electrolysis is carried out at a reference potential of -2.4 volts vs a standard calomel electrode. An initial current density of 0.0403 amp/cm² is obtained which drops to 0.0195 amp/cm² at the end of the reduction, which is carried on over a period of 1,682 minutes at 15° to 20°C. The catholyte is filtered, the solid material is washed with water and dried. 430 g of the 2,3-bis-(3-pyridyl)-butane-2,3-diol is recrystallized from water, MP 244° to 245°C.

The resulting mixture does not crystalize and is converted into a mixture of oximes by treatment of a solution of the mixture in 20 ml of ethanol with a solution of 1.8 g of hydroxylamine sulfate in 3 ml of water. 1.8 g of sodium acetate in 5 ml of water is added, and the mixture is refluxed for 5 hours, then extracted with ethyl acetate, and the ethyl acetate solution is washed with a saturated aqueous sodium chloride solution and dried over sodium sulfate. After evaporating the solvent, the residue is triturated with warm ether and 1.1 g of a crystalline oxime is obtained, MP 168° to 171°C.

0.1 g of the resulting oxime is dissolved in 5 ml of 2 N aqueous sulfuric acid and the mixture is refluxed for 3 hours and allowed to stand overnight. After being rendered basic by adding a concentrated aqueous solution of sodium hydroxide and adjusted to a pH of 8 with sodium carbonate, the mixture is extracted 3 times with ethyl acetate; the organic layer is washed with water, dried and evaporated. Upon distillation of the residue an oily product is obtained, BP 130° to 160°C/0.3 mm. Infrared analysis shows the presence of a uniform compound, containing a conjugated carbonyl group. The 2-methyl-1,2-bis-(3-pyridyl)-propane-1-one crystallizes upon standing at room temperature or by covering the oily distillate with pentane and cooling to -80°C and filtering the oily crystals. It melts after recrystallization from a mixture of ether, hexane and petroleum ether at 48° to 50°C.

References

Merck Index 6036 Kleeman & Engel p. 598 PDR p. 803 I.N. p. 633 REM p. 1276

Bencze, W.L. and Allen, M.J.; U.S. Patent 2,923,710; February 2, 1960; assigned to Ciba Pharmaceutical Products, Inc.

Allen, M.J. and Bencze, W.L.; U.S. Patent 2,966,493; December 27, 1960; assigned to Ciba Pharmaceutical Products, Inc.

METYROSINE

Therapeutic Function: Tyrosine hydroxylase inhibitor

Chemical Name: Q-Methyl-L-tyrosine

Common Name: Metirosine

Structural Formula:

Chemical Abstract Registry No.: 672-87-7

Trade Name	Manufacturer	Country	Year Introduced
Demser	MSD	U.S.	1979

Raw Materials

α-Methyl-N-dichloroacetyl-p-nitrophenylalanine Hydrogen Sodium nitrite Sulfuric acid Hydrogen chloride

Manufacturing Process

50 g of α -methyl-N-dichloroacetyl-p-nitrophenylalanine was dissolved in 500 ml methanol, 300 mg of platinum oxide were added and the mixture reduced at 41 pounds of pressure; within an hour 14.5 pounds were used up (theory 12.4 pounds). After filtration of the catalyst, the red clear filtrate was concentrated in vacuo and the residual syrup flushed several times with ether. The crystalline residue thus obtained, after air drying, weighed 45.3 g (99.5%), MP unsharp at about 104°C to 108°C with decomposition. After two precipitations with ether from an alcoholic solution, the somewhat hygroscopic amine was dried over sulfuric acid for analysis.

10 g of the amine prepared above was dissolved in 5 ml of 50% sulfuric acid at room temperature; the viscous solution was then cooled in ice and a solution of sodium nitrite (2.4 g) in 10 ml water gradually added with agitation. A flocculent precipitate formed. After all the nitrite had been added, the mixture was aged in ice for an hour, after which it was allowed to warm up to room temperature. Nitrogen came off and the precipitate changed to a sticky oil. After heating on the steam bath until evolution of nitrogen ceased, the oil was extracted with ethyl acetate. After removal of the solvent in vacuo, 9.4 g of colored solid residue was obtained, which was refluxed with 150 ml hydrochloric acid (1:1) for 17 hours. The resulting dark solution; after Norite treatment and extraction with ethyl acetate, was concentrated in vacuo to dryness and the tan colored residue (7.4 g) sweetened with ethanol. Dissolution of the residue in minimum amount of ethanol and neutralization with diethylamine of the clarified solution, precipitated the α -methyl tyrosine, which was filtered, washed with ethanol (until free of chlorides) and ether. The crude amino acid melted at 309°C with decomposition. For further purification, it was dissolved in 250 ml of a saturated sulfur dioxide-water solution, and the solution, after Noriting, concentrated to about 80 ml, the tan colored solid filtered washed with ethanol and ether. Obtained 1.5 g of α -methyl tyrosine, MP 320°C dec.

References

Merck Index 6038 PDR p. 1167 DOT 16 (10) 346 (1980) I.N. p. 628 REM p. 909

Pfister, K. III and Stein, G.A.; U.S. Patent 2,868,818; January 13, 1959; assigned to Merck & Co., Inc.

MEXENONE

Therapeutic Function: Sunscreen agent

Chemical Name: (2-hydroxy-4-methoxyphenyl)(4-methylphenyl)methanone

Common Name: 2-hydroxy-4-methoxy-4'-methylbenzophenone

Chemical Abstracts Registry No.: 1641-17-4

Trade Name Manufacturer Country Year Introduced
Uvistat-L Ward Blenkinsop U.K. 1960

Raw Materials

p-Toluyl chloride Hydrogen chloride 1,3-Dimethoxybenzene Sodium hydroxide

Manufacturing Process

p-Toluyl chloride is the starting material. To this is added chlorobenzene and 1,3-dimethoxybenzene. The reaction mixture is cooled to 12°C in an ice bath and aluminum chloride is added gradually, keeping the reaction below 30°C. The reaction is then gradually heated to 115°C with the evolution of hydrogen chloride gas. As the temperature increases, the reaction mixture becomes thicker. At 105°C, dimethyl formamide is added slowly. The reaction is heated at 115°C for a short time and is then poured into concentrated hydrochloric acid. The reaction mixture pours very easily and very cleanly. The acid mixture is heated with steam to dissolve all the material which had not hydrolyzed and the mixture is filtered. The red chlorobenzene layer is separated and washed twice with hot water.

To the chlorobenzene solution is then added sodium hydroxide dissolved in water and the chlorobenzene is removed by a steam distillation. After all of the chlorobenzene is removed, the precipitate which forms during the distillation is removed by filtration and discarded. The solution is cooled and acidified with hydrochloric acid, precipitating a tan solid. This is removed by filtration and washed acid-free. It is then treated with sodium bicarbonate solution to remove any acid present and is then washed with water to remove all traces of bicarbonate. After drying approximately a 75% yield of mexenone is obtained.

References

Merck Index 6045 Kleemen & Engel p. 598 OCDS Vol. 2 p. 175 (1980) I.N. p. 633 I.N. p. 633

Hardy, W.B. and Forster, W.S.; U.S. Patent 2,773,903; December 11, 1956; assigned to American Cyanamid Company

MEXILETINE HCI

Therapeutic Function: Antiarrhythmic

Chemical Name: 1-(2,6-Dimethylphenoxy)-2-propanamine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5370-01-4; 31828-71-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Mexitil	Boehr, Ingel.	U.S.	1976
Mexitil	Boehr, Ingel.	Switz.	1978
Mexitil	Boehr, Ingel.	W. Germany	1979
Mexitil	Boehr, Ingel.	France	1981
Mexitil	Boehr, Ingel.	Italy	1982

Raw Materials

Dimethyl phenol	Sodium hydroxide
Chloroacetone	Hydroxylamine
Hydrogen	

Manufacturing Process

The sodium salt of dimethyl phenol was reacted with chloroacetone and this product with hydroxylamine to give the starting material.

245 g of this 1-(2',6'-dimethyl-phenoxy)-propanone-(2)-oxime were dissolved in 1,300 cc of methanol, and the solution was hydrogenated at 5 atmospheres gauge and 60°C in the presence of Raney nickel. After the calculated amount of hydrogen had been absorbed, the catalyst was filtered off, the methanol was distilled out of the filtrate, and the residue, raw 1-(2',6'-dimethyl-phenoxy)-2-amino-propane, was dissolved in ethanol. The resulting solution was acidified with ethereal hydrochloric acid, the acidic solution was allowed to cool, and the precipitate formed thereby was collected by vacuum filtration. The filter cake was dissolved in ethanol and recystallized therefrom by addition of ether. 140.5 g (51.5% of theory) of a substance having a melting point of 203°C to 205°C were obtained, which was identified to be 1-(2',6'-dimethyl-phenoxy)-2-amino-propane hydrochloride.

References

Merck Index 6047 DFU 1 (4) 180 (1976) Kleeman & Engel p. 598 DOT 12 (9) 361 (1976) I.N. p. 633 REM p. 861

Koppe, H., Zeile, K., Kummer, W., Stahle, H. and Dannenberg, P.; U.S. Patent 3,659,019; April 25, 1972; assigned to Boehringer Ingelheim G.m.b.H. (W. Germany)

MEZLOCILLIN

Therapeutic Function: Antibiotic

Chemical Name: Sodium D(-)- α -[(3-methylsulfonyl-imidazolidin-2-on-1-yl)-carbonyl-amino] benzylpenicillin

Common Name: -

Chemical Abstracts Registry No.: 51481-65-3

Trade Name	Manufacturer	Country	Year Introduced
Baypen	Bayer	W. Germany	1977
Baypen	Bayer	U.K.	1980
Baypen	Bayer	Switz.	1980
Baypen	Bayer	Italy	1981
Mezlin	Miles	U.S.	1981
Baypen	Bayer Yakuhin	Japan	1982
Baypen	Bayer	France	1983
Baypen	Bayer	Sweden	1983
Baycipen	Bayer	_	-
Optocillin	Bayer	W. Germany	-

Raw Materials

Ampicillin 2-Imidazolidone Methane sulfonyi chloride Phosgene

Manufacturing Process

9.3 parts by weight of ampicillin were suspended in 80% strength aqueous tetrahydrofuran (140 parts by volume) and sufficient triethylamine (approximately 6.3 parts by volume) was added dropwise while stirring at 20°C, just to produce a clear solution and to give a pH value of between 7.5 and 8.2 (glass electrode). The mixture was cooled to 0°C and 5.1 parts by weight of 3-methyl-sulfonyl-imidazoldin-2-one-1-carbonyl chloride were added gradually in portions over the course of 30 minutes, while the mixture was stirred and kept at a pH value of between 7 and 8 by simultaneous addition of triethylamine.

The carbonyl chloride reactant was prepared by reacting 2-imidazolidone with methane sulfonyl chloride then that product with phosgene. The mixture was stirred for 10 minutes at 0°C and subsequently further stirred at room temperature until no further addition of triethylamine was necessary to maintain a pH value of 7 to 8. 150 parts by volume of water were added and the tetrahydrofuran was largely removed in a rotary evaporator at room temperature.

The residual aqueous solution was extracted once by shaking with ethyl acetate, covered with 250 parts by volume of fresh ethyl acetate and acidified to pH 1.5 to 2.0 with dilute hydrochloric acid while being cooled with ice. The organic phase was separated off, washed twice with 50 parts by volume of water at a time and dried for 1 hour over anhydrous MgSO₄ in a refrigerator. After filtration, about 45 parts by volume of a 1 molar solution of sodium 2-ethyl hexanoate in ether containing methanol were added to the solution of the penicillin. The mixture was concentrated on a rotary evaporator until it had an oily consistency and was dissolved in a sufficient amount of methanol by vigorous shaking, and the solution was rapidly added dropwise, with vigorous stirring, to 500 parts by volume of ether which contained 10% of methanol.

The precipitate was allowed to settle for 30 minutes, the solution was decanted from the pre-

cipitate, and the latter was again suspended in ether, filtered off and washed with anhydrous ether. After drying over P2O5 in a vacuum desiccator, the sodium salt of the mezlocillin was obtained in the form of a white solid substance.

References

Merck Index 6049 DFU 2 (9) 200 (1977) Kleeman & Engel p. 599 PDR p. 1254

OCDS Vol. 3 p. 206 (1984)

DOT 11 (11) 444 (1975) & 15 (2) 54 (1979)

I.N. p. 633

REM p. 1196

Konig, H.B., Schrock, W. and Metzger, K.G.; U.S. Patents 3,972,869; August 3, 1976; 3,972,870; August 3, 1976; 3,974,141; August 10, 1976; 3,974,142; August 10, 1976; 3,975,375; August 17, 1976; 3,978,056; August 31, 1976; 3,983,105; September 28, 1976; and 4,009,272; February 22, 1977; all assigned to Bayer AG

MIANSERIN

Therapeutic Function: Serotonin inhibitor; antihistaminic

Chemical Name: 1,2,3,4,10,14b-hexahydro-2-methyldibenzo[c] pyrazino[1,2-a] azepine

Common Name: 2-methyl-1,2,3,4,10,14b-hexahydro-2H-pyrazino-[1,2-f] morphanthridine

Structural Formula:

Chemical Abstracts Registry No.: 24219-97-4; 21535-47-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Tolvin	Organon	W. Germany	1975
Bolvidon	Organon	U.K.	1976
Norval	Bencard	U.K.	1976
Lantanon	Ravasini	Italy	1976
Athymil	Organon	France	1979
Athmyl	Organon	Switz.	1980
Tetramide	Sankyo	Japan	1983

Raw Materials

Chloroacetyl chloride 2-Benzylaniline Polyphosphoric acid Methylamine

Lithium aluminum hydride Diethyloxalate

Diborane

Manufacturing Process

(A) 25 g of 2-benzylaniline dissolved in 150 ml of benzene are cooled down in an ice bath to 8°C. To this solution are added 15 ml of pyridine and after that a solution of 15 ml of chloroacetyl chloride in 25 ml of benzene, maintaining the temperature of the reaction mixture at 10° to 15°C. After stirring for 1 hour at room temperature 25 ml of water are added and the mixture is shaken for 30 minutes. Next the mixture is sucked off and the benzene layer separated. Then the benzene layer is washed successively with 2 N HCl, a sodium carbonate solution and water. The extract dried on sodium sulfate is evaporated and the residue crystallized together with the crystals obtained already from benzene. Yield 18 g; MP 130° to 133°C.

- (B) 40 g of N-chloroacetyl-2-benzylaniline are heated for 2 hours at 120°C together with 50 ml of phosphorus oxychloride and 320 g of polyphosphoric acid. Next the reaction mixture is poured on ice and extracted with benzene. The extract is washed and dried on sodium sulfate and the benzene distilled off. The product obtained (31 g) yields after recrystallization 24 g of 6-chloromethyl-morphanthridine of MP 136° to 137°C.
- (C) 10 g of 6-chloromethyl-morphanthridine are passed into 150 ml of a solution of methylamine in benzene (10%). After storage of the solution for 20 hours at 0° to 5°C the methylamine hydrochloride formed is sucked off and the filtrate evaporated to dryness. There remains as residue 11 g of crude 6-methylaminomethyl-morphanthridine.
- (D) 11 g of crude 6-methylaminomethyl-morphanthridine are dissolved in 50 ml of absolute ether. While cooling in ice 2.7 g of lithium aluminumhydride, dissolved in 100 ml of absolute ether, are added. After boiling for 1 hour and cooling down in ice 11 ml of water are added slowly dropwise while stirring. After stirring for another 30 minutes at room temperature the mixture is sucked off and the filtrate evaporated to obtain 11 g of crude 5,6-dihydro-6-methylaminomethyl-morphanthridine in the form of a light yellow oil.
- (E) 10 g of 5,6-dihydro-6-methylaminomethyl-morphanthridine are heated slowly, in 30 minutes, from 100° to 160°C with 7 g of pure diethyloxalate and after that from 160° to 180°C in 45 minutes. After cooling down the reaction mixture is stirred with benzene. The crystals are sucked off and yield after crystallization from dimethylformamide 9 g of 1,2-diketo-3(N)-methyl-2,3,4,4a-tetrahydro-1H-pyrazino-[1,2-f]-morphanthridine of MP 245° to 247°C.
- (F) 9 g of the diketo-pyrazino-morphanthridine compound obtained above are reduced with diborane to give mianserin.

References

Merck Index 6050 Kleeman & Engel p. 599 OCDS Vol. 2 p. 451 (1980) DOT 12 (1) 31 (1976) I.N. p. 634

van der Burg, W.J. and Delobelle, J.; U.S. Patent 3,534,041; October 13, 1970; assigned to Organon Inc.

MICONAZOLE NITRATE

Therapeutic Function: Antifungal

Chemical Name: 1- $\{2.4\text{-Dichloro}\beta-\{(2.4\text{-dichlorobenzy}\}\}$ phenethyl] imidazole mono-

nitrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22832-87-7; 22916-47-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Daktarin	Janssen	Italy	1974
Daktarin	Janssen	U.K.	1974
Daktar	Janssen	W. Germany	1974
Dermonistat	Ortho	U.K.	1974
Monistat	Ortho	U.S.	1974
Daktarin	Le Brun	France	1975
Micatin	Johnson & Johnson	U.S.	1976
Minostate	Janssen	U.S.	1978
Andergin	Isom	Italy	1980
Frolid P	Mochida	Japan	1981
Aflorix	Gerardo Ramon	Argentina	_
Conofite	Pitman-Moore	U.S.	
Dektarin	Janssen	Italy	
Deralbine	Andromaco	Argentina	_
Epi-Monistat	Cilag	W. Germany	
Florid	Mochida	Japan	_
Fungisdin	Esteve	Spain	_
Gyno-Daktarin	Le Brun	France	
Gyno-Monistat	Cilag	W. Germany	-
Micatin	McNeil	U.S.	_
Miconal	Ecobi	Italy	
Micotef	Italfarmaco	Italy	
Vodol	Andromaco	Brazil	_

Raw Materials

 $\begin{array}{ll} \text{Imidazole} & \text{Sodium borohydride} \\ \omega\text{-Bromo-2,4-dichloroacetophenone} & \text{Sodium hydride} \\ \text{2,4-Dichlorobenzyl chloride} & \text{Nitric acid} \end{array}$

Manufacturing Process

Imidazole is reacted with ω -bromo-2,4-dichloroacetophenone and that product reduced with sodium borohydride.

A suspension of 10.3 parts of the α -(2,4-dichlorophenyl)imidazole-1-ethanol thus obtained and 2.1 parts of sodium hydride in 50 parts of dry tetrahydrofuran is stirred and refluxed for 2 hours. After this reaction time, the evolution of hydrogen is ceased. Then there are added successively 60 parts dimethylformamide and 8 parts of 2,4-dichlorobenzyl chloride and stirring and refluxing are continued for another 2 hours. The tetrahydrofuran is removed at atmospheric pressure. The dimethylformamide solution is poured onto water.

The product, 1-[2,4-dichloro β -(2,4-dichlorobenzyloxy)phenethyl] imidazole, is extracted with benzene. The extract is washed with water, dried, filtered and evaporated in vacuo. From the residual oily free base, the nitrate salt is prepared in the usual manner in 2-propanol by treatment with concentrated nitric acid, yielding, after recrystallization of the crude solid salt from a mixture of 2-propanol, methanol and disopropyl ether, 1-[2,4-dichloro- β -dichlorobenzyloxy)phenethyl] imidazole nitrate; melting point 170.5°C.

References

Merck Index 6053 Kleeman & Engel p. 601 PDR pp. 956, 1293 OCDS Vol. 2 p. 249 (1980)

DOT 7 () 192 (1971) & 8 (6) 229 (1972)

I.N. p. 634 REM p. 1229

Godefroi, E.F. and Heeres, J.; U.S. Patent 3,717,655; February 20, 1973; assigned to Janssen Pharmaceutica NV

Godefroi, E.F. and Heeres, J.; U.S. Patent 3,839,574; October 1, 1974; assigned to Janssen Pharmaceutica NV

MICRONOMICIN

Therapeutic Function: Antibiotic

Chemical Name: O-2-amino-2,3,4,6-tetradeoxy-6-(methylamino)- α -D-erythrohexopyranosyl-(1 \rightarrow 4)-O-[3-deoxy-4-C-methyl-3-(methylamino)- β -L-arabinopyranosyl-(1 \rightarrow 6)-2-deoxy-D-

streptamine

Common Name: 6'-N-Methylgentamicin; sagamicin

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Sagamicin	Kyowa Hakko	Japan	1982

Raw Materials

Bacterium *Micromonospora sagamiensis* Dextrin Soybean meal

Manufacturing Process

A. Culturing of MK-65: In this example, Micromonospora segamiensis MK-65 ATCC 21826 (FERM-P No. 1530) is used as the seed strain. One loopful of the seed strain is inoculated into 30 ml of a first seed medium in a 250 ml-Erlenmeyer flask. The first seed medium has the following composition:

	Percent
Dextrin	1
Glucose	1
Peptone	0.5
Yeast xtract	0.5
CaCO ₃	0.1
(pH: 7.2 before sterilization)	

Culturing is carried out with shaking at 30°C for 5 days. 30 ml of the seed culture is then inoculated into 300 ml of a second seed medium, of the same composition as the first seed medjum, in a 2 liter-Erlenmeyer flask provided with baffles. The second seed culturing is carried out with shaking at 30°C for 2 days. Then 1.5 liters of the second seed culture (corresponding to the content of 5 flasks) is inoculated into 15 liters of a third seed medium of the same composition as set forth above, in a 30 liter-glass jar fermenter. Culturing in the jar fermenter is carried out with aeration (15 liters/minute) and stirring (350 rpm) at 30°C for 2 days. Then, 15 liters of the third seed culture is inoculated into 60 liters of a fourth seed medium of the same composition as set forth above, in a 300 liter-fermenter. Culturing in the fermenter is carried out with aeration (60 liters/minute) and stirring (150 rpm) at 30°C for 2 days. Finally, 60 liters of the fourth seed culture is inoculated into 600 liters of a fermentation medium having the following composition in a 1,000 liter-fermenter.

	Percent
Dextrin	5
Soybean meal	4
CaCO ₃	0.7
(pH: 7.2 before sterilization)	

Culturing in the fermenter is carried out with aeration (600 liters/minute) and stirring 150 rpm) at 35°C for 5 days.

B. Isolation of crude antibiotic: After the completion of fermentation, the culture liquor is adjusted to a pH of 2.0 with 12 N sulfuric acid and stirred for 30 minutes. Then, about 10 kg of a filter aid, Radiolite No. 600 (product of Showa Kagaku Kogyo Co., Ltd., Japan) is added thereto and the microbial cells are removed by filtration. The filtrate is adjusted to a pH of 8.0 with 6N sodium hydroxide and passed through a column packed with about 50 liters of a cation exchange resin, Amberlite IRC-50 (ammonia form). The active substance is adsorbed on the resin and the eluate is discarded. After washing the resin with water, the active substance is eluted out with 1 N aqueous ammonia. The eluate is obtained in fractions and the activity of each of the fractions is determined against Bacillus subtilis No. 10707 by a paper disk method using an agar plate.

Active fractions are combined and concentrated in vacuo to about 5 liters. The concentrate is then adjusted to a pH of 8.0 with 6N sulfuric acid and passed through a column packed with 1 liter of an anion exchange resin, Dowex 1X2 (OH form). The column is washed with about 5 liters of water and the effluent and the washings containing active substance are combined and are concentrated to 1/15 by volume. The concentrate is adjusted to a pH of 10.5 with 6N sodium hydroxide and 5 volumes of acetone is added thereto. The resultant precipitate is removed by filtration and the filtrate is concentrated to 500 ml. The concentrate is adjusted to a pH of 4.5 with 6N sulfuric acid and 2.5 liters of methanol is added thereto. After cooling, a white precipitate is obtained. The precipitate is separated by filtration and washed with methanol. After drying in vacuo, about 300 g of white powder is obtained.

The white powder is a mixture of the sulfate of gentamic C_{1a} and the sulfate of XK-62-2, and exhibits an activity of 620 units/mg (the activity of 1 mg of pure product corresponds to 1,000 units).

C. Isolation and purification of XK-62-2: 100 g of the white powder obtained in the above step B are placed to form a thin, uniform layer on the upper part of a 5 cm ϕ X 150 cm column packed with about 3 kg of silica gel advancely suspended in a solvent of chloroform, isopropanol and 17% aqueous ammonia (2:1:1 by volume). Thereafter, elution is carried out with the same solvent at a flow rate of about 250 ml/hour. The eluate is separated in 100 ml portions. The active fraction is subjected to paper chromatography to examine the components eluted. XK-62-2 is eluted in fraction Nos. 53-75 and gentamicin C1a is eluted in fraction Nos. 85-120. The fraction Nos. 53-75 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate is then dissolved in a small amount of water. After freeze-drying the solution, about 38 g of a purified preparate of XK-62-2 (free base) is obtained. The preparate has an activity of 950 units/mg. Likewise, fraction Nos. 85-120 are combined and concentrated under reduced pressure to sufficiently remove the solvent. The concentrate is then dissolved in a small amount of water. After freeze-drying the solution, about 50 g of a purified preparate of gentamicin C_{la} (free base) is obtained. The activity of the preparate is about 980 units/mg.

References

Merck Index A-9 DFU 4 (5) 360 (1979) (as sagamicin) & 6 (5) 332 (1980) DOT 19 (4) 211 (1983) I.N. p. 635

Nara, T., Takasawa, S., Okachi, R., Kawamoto, I., Yamamoto, M., Sato, S., Sato, T. and Morikawa, A.; U.S. Patent 4,045,298; August 30, 1977; assigned to Abbott Laboratories

MIDAZOLAM MALEATE

Therapeutic Function: Anaesthetic

Chemical Name: 8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo-[1,5-a] [1,4] -benzo-

diazepine maleate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59467-70-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dormicum	Roche	Switz.	1982
Dormonid	Roche		

Trade Name	Manufacturer	Country	Year Introduced
Hypnovel	Roche	U.K.	
Sorenor	Roche	_	_

Raw Materials

2-Aminomethyl-7-chloro-2,3-dihydro-5-(2-fluorophenyl)-1H-1,4-benzodiazepine Acetic anhydride Polyphosphoric acid Manganese dioxide Maleic acid

Manufacturing Process

Acetic anhydride (7 ml) was added to a solution of 6.16 g of crude 2-aminomethyl-7-chloro-2.3-dihydro-5-(2-fluorophenyl)-1H-1,4-benzodiazepine in 200 ml of methylene chloride. The solution was added to 200 ml of saturated aqueous sodium bicarbonate and the mixture was stirred for 20 minutes. The organic layer was separated, washed with sodium bicarbonate, dried over sodium sulfate and evaporated to leave resinous 2-acetylaminomethyl-7-chloro-2,3-dihydro-5-(2-fluorophenyl)-1 H-1,4-benzodiazepine. This material was heated with 40 g of polyphosphoric acid at 150°C for 10 minutes. The cooled reaction mixture was dissolved in water, made alkaline with ammonia and ice and extracted with methylene chloride. The extracts were dried and evaporated and the residue was chromatographed over 120 g of silica gel using 20% methanol in methylene chloride. The clean fractions were combined and evaporated to yield resinous 8-chloro-3a,4-dihydro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a] [1.4] benzodiazepine.

A mixture of this material with 500 ml of toluene and 30 g of manganese dioxide was heated to reflux for 1½ hours. The manganese dioxide was separated by filtration over Celite. The filtrate was evaporated and the residue was crystallized from ether to yield 8-chloro-6-(2fluorophenyl)-1-methyl-4H-imidazo[1,5-a] [1,4]-benzodiazepine, melting point 152°C to 154°C. The analytical sample was recrystallized from methylene chloride/hexane.

A warm solution of 6.5 g (0.02 mol) of 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo-[1,5-a] [1,4] -benzodiazepine in 30 ml of ethanol was combined with a warm solution of 2.6 g (0.022 mol) of maleic acid in 20 ml of ethanol. The mixture was diluted with 150 ml of ether and heated on the steam bath for 3 minutes. After cooling, the crystals were collected, washed with ether and dried in vacuo to yield 8-chloro-6-(2-fluorophenyl)-1-methyl-4Himidazo[1,5-a] [1,4] -benzodiazepine maleate, melting point 148°C to 151°C.

References

Merck Index 6056 DFU 3 (11) 822 (1978) OCDS Vol. 3 p. 197 (1984) DOT 19 (2) 113; (4) 221 & (7) 378 (1983)

I.N. p. 635

F. Hoffmann-La Roche & Co.; British Patent 1,527,131; October 4, 1978

MIDECAMYCIN

Therapeutic Function: Antibacterial

Chemical Name: Kleeman, p. 601

Common Name: Espinomycin

Structural Formula:

Chemical Abstracts Registry No.: 35457-80-8

Trade Name	Menufacturer	Country	Year Introduced
Medemycin	Meiji Seika	Japan	1974
Midecacine	Clin Midy	France	1978
Midecacine	Clin Midy	Switz.	1980
Midicacin	Midy	Italy	1981
Aboren	Promeco	Argentina	_
Macro-Dil	Roussel	_	

Raw Materials

Bacterium *Streptomyces mycarofaciens*Starch
Vegetable protein

Manufacturing Process

The SF-837 strain, namely *Streptomyces mycarofaciens* identified as ATCC No. 21454 was inoculated to 60 liters of a liquid culture medium containing 2.5% saccharified starch, 4% soluble vegetable protein, 0.3% potassium chloride and 0.3% calcium carbonate at pH 7.0, and then stir-cultured in a jar-fermenter at 28°C for 35 hours under aeration. The resulting culture was filtered directly and the filter cake comprising the mycelium cake was washed with dilute hydrochloric acid.

The culture filtrate combined with the washing liquid was obtained at a total volume of 50 liters (potency 150 mcg/ml). The filtrate (pH 8) was then extracted with 25 liters of ethyl acetate and 22 liters of the ethyl acetate phase was concentrated to approximately 3 liters under reduced pressure. The concentrate was diluted with 1.5 liters of water, adjusted to pH 2.0 by addition of 5N hydrochloric acid and then shaken thoroughly. The aqueous phase was separated from the organic phase and this aqueous solution was adjusted to pH 8 by addition of 3N sodium hydroxide and then extracted with 800 ml of ethyl acetate. The resulting ethyl acetate extract was then shaken similarly together with 500 ml of aqueous hydrochloric acid to transfer the active substances into the latter which was again extracted with 400 ml of ethyl ether at pH 8. The ether extract was dried with anhydrous sodium sulfate and concentrated under reduced pressure to give 16.5 g of light yellow colored powder.

12 g of this crude powder were dissolved in 200 ml of ethyl acetate and the solution was passed through a column of 600 ml of pulverized carbon which had been impregnated with ethyl acetate. The development was carried out using ethyl acetate as the solvent and the active fractions of eluate were collected to a total volume of 2,500 ml, which was then evaporated to dryness under reduced pressure to yield 5 g of a white colored powder. This powder was dissolved in 10 ml of benzene and the insoluble matters were filtered out. The filtered solution in benzene was then subjected to chromatographic isolation by passing through a column of 700 ml of silica gel which had been impregnated with benzene. The development of the active substances adsorbed on the silica gel was effected using a solvent system consisting of benzene-acetone (4:1), and the eluate was collected in fractions of each 20 ml. The active fractions No. 90-380 which gave a single spot in alumina thin layer chromatography and which could be recognized as containing the SF-837 substance purely in view of

the Rf-value of the single spot were combined together to a total volume of 4,000 ml, and then concentrated under reduced pressure to yield 1.5 g of white colored powder of a melting point of 122°C to 124°C which was found by analysis to be the pure SF-837 substance free base.

References

Merck Index 6057 Kleeman & Engel p. 601 DOT 10 (2) 62 (1974) I.N. p. 635

Tsuruoka, T., Shomura, T., Ezaki, N., Akita, E., Inoue, S., Fukatsu, S., Amano, S., Watanabe, H. and Niida, T.; U.S. Patent 3,761,588; September 25, 1973; assigned to Meiji Seika Kaisha, Ltd. (Japan)

MIDODRINE

Therapeutic Function: Peripheral vasotonic; antihypotensive

Chemical Name: 2-Amino-N-[2-(2,5-dimethoxyphenyl)-2-hydroxyethyl] -acetamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 42794-76-3; 3092-17-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Gutron	Hormon-Chemie	W. Germany	1977
Gutron	Chemie Linz	Italy	1981
Alphamine	Centerchem	U.S.	-

Raw Materials

Carbobenzoxyglycine Isovaleric acid chloride 1-(2',5'-Dimethoxyphenyl)-2-aminoethanol-(1) Hydrogen

Manufacturing Process

19.5 parts of carbobenzoxyglycine, 7.1 parts of triethylamine and 162 parts of dry toluene are mixed with 11.2 parts of isovaleric acid chloride at 0°C to form the mixed anhydride and the mixture is agitated for two hours at 0°C. 32.4 parts of 1-(2',5'-dimethoxyphenyl)-2aminoethanol-(1) are then added, the mixture is agitated for four hours at a temperature between 0°C and +10°C and then left to stand overnight at that temperature. A thick crystal paste forms. The reaction product is dissolved in 450 parts of ethyl acetate and 200 parts of water. The ethyl acetate solution is separated, washed with hydrochloric acid, sodium bicarbonate solution and water, dried over sodium sulfate and inspissated. The inspissation residue is digested with 342 parts of xylene, the required product crystallizing out. 34.9 parts of 1-(2',5'-dimethoxyphenyl)-2-(N-carbobenzoxyglycineamido)-ethanol -(1) are obtained.

66.2 parts of 1-(2',5'-dimethoxyphenyl)-2-(N-carbobenzoxyglycineamido)-ethanol-(1) are hydrogenated in the presence of 6.6 parts of palladium carbon (10%) in 2.000 parts of glacial acetic acid. When no more hydrogen is absorbed (3 mols of hydrogen are used), hydrogenation stops. The catalyst is removed by suction and the equivalent quantity of hydrochloric acid in ethanol is added to the filtrate with agitation. During further agitation at room temperature 28.6 parts of crude 1-(2',5'-dimethoxyphenyl)-2-glycineamidoethanol-(1)-hydrochloride crystallize, and are isolated and recrystallized from water-methanol for purification. 22.1 parts of pure product are obtained with a melting point of 192°C to 193°C.

An alternative synthesis route is described by Kleeman & Engel.

References

Merck Index 6058 Kleeman & Engel p. 602 DOT 18 (10 530 (1982) I.N. p. 636

Wismayr, K., Schmid, O., Kilches, R. and Zolss, G.; U.S. Patent 3,340,298; September 5, 1967; assigned to Oesterreichische Stickstoffwerke A.G. (Austria)

MINAPRINE

Therapeutic Function: Antidepressant

Chemical Name: 3-(2-Morpholinoethylamino)-4-methyl-6-phenylpyridazine dihydro-

chloride

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 25905-77-5; 25953-17-7 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Cantor	Clin Midy	France	1979
Kantor	Gador	Argentina	1983

Raw Materials

3-Chloro-4-methyl-6-phenylpyridazine N-(2-Aminoethyl)morpholine Hydrogen chloride

Manufacturing Process

(a) Preparation of the free base: A mixture comprising 0.1 mol (20.4 g) of 3-chloro-4-methyl-6-phenylpyridazine and 0.2 mol (26.2 g) of N-(2-aminoethyl)-morpholine in 100 ml of nbutanol, with a pinch of copper powder, was heated under reflux for 12 hours. At the end of this time, the hot solution was poured into 200 ml of cold water. The resulting mixture was filtered through a sintered glass filter and the precipitate washed with ether. The filtrate and the ether washings were placed in a separating funnel and extracted with two 150 ml portions of ether. The ethereal layer was then extracted with about 250 ml of N sulfuric acid.

The acid solution was made alkaline with a 10% aqueous solution of sodium carbonate, and left to crystallize overnight.

The solution was filtered, yielding the colorless needles which were recrystallized from isopropanol. The yield was 15 g (53%).

(b) Preparation of the hydrochloride: The base was dissolved in the smallest amount possible of anhydrous acetone. Double that volume of anhydrous ether was added, and a stream of hydrogen chloride gas was passed through the solution. The hydrochloride salt obtained was recrystallized from absolute alcohol. The yield after recrystallization was 17 g (90%).

References

Merck Index 6066 DFU 2 (12) 811 (1977) Kleeman & Engel p. 602 I.N. p. 637

Laborit, H.; British Patent 1,345,880; Feb. 6, 1974; and U.S. Patent 4,169,158; Sept. 25, 1979; both assigned to Centre D'Etudes Experimentales et Cliniques de Physiobiologie de Pharmacologie et D'Eutonologie (C.E.P.B.E.P.E.)

MINOCYCLINE

Therapeutic Function: Antibiotic

Chemical Name: 4,7-bis(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-

tetrahydroxy-1,11-dioxo-2-naphthacenecarboxamide

Common Name: 7-dimethylamino-6-demethyl-6-deoxytetracycline

Structural Formula:

Chemical Abstracts Registry No.: 10118-90-8; 13614-98-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Minocin	Lederle	U.S.	1971
Minomycin	Lederle	Japan	1971
Klinomycin	Lederle	W. Germany	1972
Minocin	Lederle	Italy	1972
Minomycin	Takeda	Japan	1972
Vectrin	Parke Davis	u.s.	1973
Minocin	Lederle	U.K.	1973
Mynocine	Lederle	France	1973
Ultramycin	Parke Davis	-	_

Raw Materials

6-Demethyltetracycline Dibenzyl azodicarboxylate Hydrogen

Manufacturing Process

Preparation of 7-(N,N'-Dicarbobenzyloxyhydrazino)-6-Demethyltetracycline: A 1.0 g portion of 6-demethyltetracycline was dissolved in a mixture of 9.6 ml of tetrahydrofuran and 10.4 ml of methanesulfonic acid at -10°C. The mixture was allowed to warm to 0°C, A solution of 0.86 g of dibenzyl azodicarboxylate in 0.5 ml of tetrahydrofuran was added dropwise and the mixture was stirred for 2 hours while the temperature was maintained at 0°C. The reaction mixture was added to ether. The product was filtered off, washed with ether and then dried. The 7-(N,N'-dicarbobenzyloxyhydrazino)-6-demethyltetracycline was identified by paper chromatography.

Reductive Methylation of 7-(N,N'-Dicarbobenzyloxyhydrazino)-6-Demethyl-6-Deoxytetracycline to 7-Dimethylamino-6-Demethyl-6-Deoxytetracycline: A solution of 100 mg of 7-(N,N'-dicarbobenzyloxyhydrazino)-6-demethyl-6-deoxytetracycline in 2.6 ml of methanol, 0.4 ml of 40% agueous formaldehyde solution and 50 mg of 5% palladium on carbon catalyst was hydrogenated at room temperature and two atmospheres pressure. Uptake of the hydrogen was complete in 3 hours. The catalyst was filtered off and the solution was taken to dryness under reduced pressure. The residue was triturated with ether and then identified as 7-dimethylamino-6-demethyl-6-deoxytetracycline by comparison with an authentic sample, according to U.S. Patent 3,483,251.

References

Merck Index 6068 Kleeman & Engel p. 603 PDR p. 1018 OCDS Vol. 1 p. 214 (1977) & 2, 288 (1980) DOT 5 (2) 75 (1969); 7 (5) 188 (1971) & 8 (3) 93 (1972) I.N. p. 637 REM p. 1206

Boothe, J.H. and Petisi, J.; U.S. Patent 3,148,212; September 8, 1964; assigned to American Cyanamid Company

Petisi, J. and Boothe, J.H.; U.S. Patent 3,226,436; December 28, 1965; assigned to American Cyanamid Company

Winterbottom, R., Bitha, P. and Kissman, H.M.; U.S. Patent 3,345,410; October 3, 1967; assigned to American Cyanamid Company

Zambrano, R.T.; U.S. Patent 3,403,179; September 24, 1968; assigned to American Cyanamid Company

Zambrano, R.T.; U.S. Patent 3,483,251; December 9, 1969; assigned to American Cyanamid Company

MINOXIDIL

Therapeutic Function: Antihypertensive

Chemical Name: 6-Amino-1,2-dihydro-1-hydroxy-2-imino-4-piperidinopyrimidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 38304-91-5

Trade Name	Manufacturer	Country	Year Introduced
Loniten	Upjohn	U.S.	1979
Loniten	Upjohn	U.K.	1980
Loniten	Upjohn	Switz.	1981
Lonolox	Upjohn	W. Germany	1982
Loniten	Upjohn	Italy	1983
Prexidil	Bioindustria	Italy	1983

Raw Materials

Barbituric acid	Phosphorus oxychloride
2,4,6-Trichloropyrimidine	Ammonia
m-Chloroperbenzoic acid	Piperidine

Manufacturing Process

Barbituric acid is reacted with phosphorus oxychloride then with 2,4,6-trichloropyrimidine and that product with ammonia to give 4-chloro-2,6-diaminopyrimidine

A 30 g (0.15 mol) quantity of 4-chloro-2,6-diaminopyrimidine is dissolved in 600 ml of hot 3A alcohol, the solution cooled to 0°C to 10°C and 41.8 g (0.24 mol) of m-chloroperbenzoic acid is added. The mixture is held at 0°C to 10°C for 4 hours and filtered. The solid is shaken for 2 hours in 0.24 mol of 10% sodium hydroxide and filtered. The solid is washed with water and dried to yield 19.3 g of crude product. This product is extracted for 1 hour with 900 ml of boiling acetonitrile to yield 14.8 g (44.7% yield) of 6-amino-4-chloro-1,2-dihydro-1-hydroxy-2-iminopyrimidine, melting point 193°C.

A mixture of 3.0 g (0.019 mol) of 6-amino-4-chloro-1,2-dihydro-1-hydroxy-2-iminopyrimidine and 35 ml of piperidine is refluxed for 1.5 hours, cooled and filtered. The solid is shaken for 20 minutes in a solution of 0.8 g of sodium hydroxide in 30 ml of water and filtered. The solid is washed with water and extracted with 800 ml of boiling acetonitrile and filtered to yield 3.5 g (89%) yield of 6-amino-1,2-dihydro-1-hydroxy-2-imino-4-piperidinopyrimidine, melting point 248°C, decomposition at 259°C to 261°C.

References

Merck Index 6069 DFU 2 (6) 383 (1977) Kleeman & Engel p. 604 PDR p. 1848 OCDS Vol. 1 p. 262 (1977) DOT 8 (7) 277 (1972) & 16 (9) 298 (1980) 1.N. p. 638 REM p. 848

Anthony, W.C. and Ursprung, J.J.; U.S. Patents 3,382,247; May 7, 1968 and 3,382,248; May 7, 1968; both assigned to The Upjohn Co.

Anthony, W.C.; U.S. Patent 3,644,364; February 22, 1972; assigned to The Upjohn Co.

MITOBRONITOL

Therapeutic Function: Cancer chemotherapy

Chemical Name: 1,6-dibromo-1,6-dideoxy-D-mannitol

Common Name: -

CH₂Br HOCH HOCH HCOH HCOH CH₂Br

Chemical Abstracts Registry No.: 488-41-5

Trade Name	Manufacturer	Country	Year introduced
Myelobromol	Hormon Chemie	W. Germany	1967
Myelobromol	Berk	U.K.	1970
Myebrol	Kyorin	Japan	1978

Raw Materials

D-Mannitol Hydrogen bromide

Manufacturing Process

750 g D-mannitol are dissolved in 4,000 ml of a 48% aqueous hydrogen bromide solution, whereupon the solution thus obtained is saturated at 0°C with gaseous hydrogen bromide until a HBr content of 69 to 70% is achieved. The reaction mixture is heated for 6 hours at 60°C in an autoclave, is then decolorized with charcoal, extracted with 1 liter chloroform twice and diluted with 7 liters of water. The ph value of the solution is adjusted by means of sodium bicarbonate to 1 to 2. The crystals precipitated after cooling for a day are filtered and washed with water until free from acid. 250 g crude 1,6-dibromo-1,6-didesoxy-D-mannitol are obtained. MP 176° to 178°C. Analysis: Br % = 52 (calc.: 51.9).

250 g of the crude DBM are dissolved in 2.5 liters of hot methanol and on decolorizing and filtration 2.5 liters of dichloroethane are added. 220 g of crystalline DBM are obtained. MP 178°C. Br % = 51.9.

References

Merck Index 6076 Kleeman & Engel p. 604 I.N. p. 639 REM p. 1156

Chinoin Gyogyszer es Vegyeszeti Termekek Gyarart; British Patent 959,407; June 3, 1964

MITOMYCIN

Therapeutic Function: Cancer chemotherapy

Chemical Name: See structural formula

Common Name: -

Structural Formula:

$$\begin{array}{c|c} \mathbf{R}_3 & \mathbf{CH_2OCONH_2} \\ \mathbf{H}_3\mathbf{C} & \mathbf{NN} & \mathbf{NR}_1 \\ \mathbf{N} & \mathbf{NR}_2 \end{array}$$

Chemical Abstracts Registry No.: 50-07-7

Trade Name	Manufacturer	Country	Year Introduced
Mitomycin	Medac	W. Germany	1960
Mitomycin C	Kyowa	Italy	1961
Ametycine	Choay	France	1970
Mutamycin	Bristol	U.S.	1974
Mytomycin C	Kyowa	Japan	1980
Mutamycin	Bristol	Sweden	1983
Mitomycin C	Syntex	Switz.	1983

Raw Materials

Bacterium Streptomyces caespitosus Nutrient broth

Manufacturing Process

The commercial production of mitomycin involves the preparation of mitomycin-containing broths by culturing a mitomycin-producing organism, e.g. Streptomyces caespitosus, in suitable media as described at length in the literature. At the end of the fermentation cycle the whole broth is usually centrifuged, filtered or otherwise treated to separate the solids (mycelia) from the supernatant which contains substantially all of the antibiotic activity.

In commercial processes there is usually a period of time intervening between the end of the fermentation cycle and the time at which the mycelia is actually removed from the broth; such a period may range from several minutes to several hours in length and may be due to a number of factors, e.g., the time necessary to conduct the actual centrifugation or filtration of large quantities of broth, or the time involved in waiting for equipment to become available for use. In the commercial preparation of mitomycin, the mitomycin-containing whole broths decrease rapidly in potency during the time following the completion of the fermentation cycle and prior to the removal of the mycelia. It has been observed that a whole broth will lose substantially all of its mitomycin activity within about 6 hours at room temperature and within about 24 hours at 10°C. It has, however, been discovered, as described in U.S. Patent 3.042,582, that in the process for the recovery of mitomycin C from mitomycin C-containing whole broth, the step of adding about 0.1 wt % with whole broth of sodium lauryl sulfate to the whole broth at the completion of the fermentation cycle substantially eliminates such destruction of mitomycin C by mitase.

References

Merck Index 6079 Kleeman & Engel p. 604 PDR p. 724 I.N. p. 640 REM p. 1156

Gourevitch, A., Chertow, B. and Lein, J.; U.S. Patent 3,042,582; July 3, 1962; assigned to **Bristol-Myers Company**

MITOPODOZIDE

Therapeutic Function: Antineoplastic

Chemical Name: 5.6.7.8-Tetrahydro-8-hydroxy-7-(hydroxymethyl)-5-(3.4.5-trimethoxyphenyl)naphtho[2,3,d]-1,3-dioxole-6-carboxylic acid-2-ethylhydrazide

Common Name: Podophyllinic acid 2-ethylhydrazide

Structural Formula:

Chemical Abstracts Registry No.: 1508-45-8

Trade Name	Manufacturer	Country	Year Introduced
Proresid	Sandoz	W. Germany	1966
Proresid	Sankyo	Japan	1969

Raw Materials

Podophyllinic acid hydrazide Acetaldehyde Hydrogen

Manufacturing Process

500 g of podophyllinic acid hydrazide are heated together with 150 cc of acetaldehyde with 2,200 cc of methanol to 40°C. The solution obtained is filtered and then cooled. The product which crystallizes out is filtered off with suction and washed with methanol. Together with a second fraction obtained after concentration of the mother liquors there are produced 450 g of podophyllinic acid ethylidene hydrazide, having a melting point of 222°C to 224°C and a specific rotation of $[\alpha]_D = -285^\circ$ (c. = 0.5 in ethanol).

The product is hydrogenated in 4,000 cc of ethanol at room temperature and under normal atmospheric pressure with a catalyst prepared in the usual manner from 400 g of Raney nickel alloy. The calculated amount of hydrogen is taken up in approximately 75 hours. After filtration and evaporation to a small volume, the residue is distributed between 1,000 cc of chloroform and water each. The chloroform solution is then dried over sodium sulfate and evaporated to a small volume. Precipitation of the hydrogenation product with petroleum ether yields an amorphous white powder which is filtered by suction, washed with petroleum ether and dried at 50°C in a high vacuum. 1-ethyl-2-podophyllinic acid hydrazide is obtained in a practically quantitative yield.

References

Merck Index 7414 Kleeman & Engel p. 605 I.N. p. 640 Rutschmann, J.; U.S. Patent 3,054,802; September 18, 1962; assigned to Sandoz Ltd. (Switzerland)

MOLINDONE

Therapeutic Function: Antipsychotic

Chemical Name: 3-Ethyl-1,5,6,7-tetrahydro-2-methyl-5-(4-morpholinylmethyl)-4H-indol-4-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 7416-34-4: 15622-65-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Moban	Endo	U.S.	1974
Lidone	Abbott	U.S.	1977

Raw Materials

Diethyl ketone Methyl nitrite Morpholine hydrochloride Cyclohexan-1,3-dione Paraformaldehyde

Manufacturing Process

Diethyl ketone may be reacted with methyl nitrite and that product in turn reacted with cyclohexan-1.3-dione to give 3-ethyl-4.5.6.7-tetrahydro-2-methyl-4-oxoindole.

3-ethyl-4.5.6.7-tetrahydro-2-methyl-4-oxoindole 14.1 g (0.08 mol), 14.8 g morpholine hydrochloride (0.12 mol), and 3.6 g paraformaldehyde (0.12 mol) were refluxed in 200 ml ethanol for 40 hours. The solution was evaporated to dryness in vacuo on a steam bath and the residue digested with a mixture of 150 ml water and 10 ml 2N HCl. An insoluble residue of unreacted starting material was filtered off. To the acid solution, ammonia water was added dropwise with stirring and the amine crystallized out. It was purified by dissolving in 1 N HCl and addition of ammonia, then by 2 crystallizations from benzene followed by 2 crystallizations from isopropanol, to yield 3-ethyl-4,5,6,7-tetrahydro-2-methyl-5-morpholino-methyl-4-oxoindole, melting point 180°C to 181°C.

References

Merck Index 6086 Kleeman & Engel p. 606

PDR p. 856

OCDS Vol. 2 p. 455 (1980)

DOT 5 (1) 34 (1969): 9 (6) 233 (1973) & 11 (2) 60 (1975)

I.N. p. 642 REM p. 1092

Pachter, I.J. and Schoen, K.; U.S. Patent 3,491,093; January 20, 1970; assigned to Endo Laboratories, Inc.

MOPIDAMOL

Therapeutic Function: Blood platelet aggregation inhibitor

Chemical Name: 2,6-Bis (diethanolamino)-8-(N-piperidino)pyrimido[5,4-d] pyrimidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13665-88-8

Trade Name	Manufacturer	Country	Year Introduced
Rapenton	Thomae	W. Germany	1980
Raw Materials			
Dipyridamole		Zinc	

Iodine Manufacturing Process

3.9 g (0.06 mol) of zinc powder were introduced into a solution of 5.0 g (0.01 mol) of 2,6-bis-(diethanolamino)-4,8-dipiperidino-pyrimido-[5,4-d] -pyrimidine (dipyridamole; see entry under that name for its synthesis) in 120 cc of aqueous 10% formic acid. The resulting mixture was heated on a water bath, while occasionally stirring, until the intense yellow color of the starting compound disappeared, which occurred after about 30 to 40 minutes. Thereafter, the unconsumed zinc powder was separated by vacuum filtration, the virtually colorless filtrate was essentially an aqueous solution of 2,6-bis-(diethanolamino)-8-piperidino-1,2,3,4-tetrahydropyrimido-[5,4-d] pyrimidine.

Formic acid

The filtrate was adjusted to a pH of 9 by adding concentrated ammonia, and then a 1 N aqueous iodine-potassium iodide solution was added dropwise, whereby the tetrahydro-pyrimido-[5,4-d] pyrimidine obtained by hydrogenation with zinc in formic acid was converted by oxidation into 2,6-bis-(diethanolamino)-8-piperidino-pyrimido-[5,4-d] -pyrimidine. The completion of the oxidation was checked by means of a starch solution. The major amount of the oxidation product already separated out as a deep yellow crystalline precipitate during the addition of the iodine solution. After the oxidation reaction was complete, the reaction mixture was allowed to stand for a short period of time, and then the precipitate was separated by vacuum filtration, washed with water and dried. It had a melting point of 157°C to 158°C. The yield was 8.0 g, which corresponds to 95% theory.

References

Merck Index 6115 DFU 5 (11) 550 (1980) Kleeman & Engel p. 608 DOT 17 (3) 89 (1981) I.N. p. 644

Roch, J. and Scheffler, H.; U.S. Patent 3,322,755; May 30, 1967; assigned to Boehringer Ingelheim GmbH

MORCLOFONE

Therapeutic Function: Antitussive

Chemical Name: (4-Chlorophenyl)[3,6-dimethoxy-4-[2-(4-morpholinyl)-ethoxy] phenyl]-

methanone

Common Name: Dimeclophenone

Structural Formula:

Chemical Abstracts Registry No.: 31848-01-8; 31848-02-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Plausitin	Carlo Erba	Italy	1975
Nitux	Inpharzam	Switz.	1981
Medicil	Medici	Italy	_
Novotussil	Inpharzam	Belgium	_

Raw Materials

3.5-Dimethoxy-4'-chloro-4-hydroxybenzophenone Sodium methoxide β-Morpholinoethyl chloride

Manufacturing Process

Sodium methoxide (1.2 g) in dimethylformamide (150 ml) was stirred with 3,5-dimethoxy-4'-chloro-4-hydroxybenzophenone (6 g) in dimethylformamide (50 ml), for 2 hours at 120°C. The reaction mixture was then treated with β -morpholinoethyl chloride (3.4 g) and heated for 1 hour at 140°C, then evaporated to dryness, and treated with water to give a solid material. The mixture was filtered, washed and crystallized from cyclohexane to give 3,5-dimethoxy 4'-chloro 4-(β-morpholinoethoxy)-benzophenone (6.5 g), MP 91°C to 92°C. The product was then reacted at about 0°C with gaseous hydrogen chloride in ether to give, after crystallization from isopropanol, the corresponding hydrochloride which had a MP of 187.9°C.

References

Merck Index 6120 Kleeman & Engel p. 609 DOT 12 (7) 269 (1976)

I.N. p. 645

Lauria, F., Vecchietti, V. and Logemann, W.; U.S. Patent 3,708,482; January 2, 1973; assigned to Carlo Erba SpA (Italy)

MOTRETINIDE

Therapeutic Function: Antipsoriasis

Chemical Name: N-Ethyl-9-(4-methoxy-2,3,6-trimethylphenyl-3,7-dimethyl-2,4,6,8-

nonatetraenamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56281-36-8

Trade Name	Manufacturer	Country	Year Introduced
Tasmaderm	Roche	Switz.	1981

Raw Materials

5-(4-Methoxy-2,3,6-trimethylphenyl)-3-methylpenta-2,4-diene-1-triphenylphosphonium bromide
Sodium hydride
3-Formylcrotonic acid butyl ester
Sodium hydroxide
Phosphorus trichloride
Ethylamine

Manufacturing Process

228 g of 5-(4-methoxy-2,3,6-trimethyl-phenyl)-3-methyl-penta-2,4-diene-1-triphenylphosphonium bromide are introduced under nitrogen gassing into 910 ml of dimethylformamide and treated with cooling at 5°C to 10°C within 20 minutes with 17.5 g of a suspension of sodium hydride (about 50% by weight) in mineral oil. The mixture is stirred for 1 hour at about 10°C, then treated at 5°C to 8°C dropwise with 61.8 g of 3-formylcrotonic acid butyl ester, heated for 2 hours at 65°C, subsequently introduced into 8 liters of ice-water and, after the addition of 300 g of sodium chloride, thoroughly extracted with a total of 18 liters of hexane. The extract is washed 5 times with 1 liter of methanol/water (6:4 parts by volume) each time and 2 times with 1.5 liters of water each time, dried over sodium sulfate and evaporated under reduced pressure to leave 9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid butyl ester, MP 80°C to 81°C as the residue.

125.8 g of 9-(4-methoxy-2,3,6-trimethyl-phenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid butyl ester are introduced into 2,000 ml of absolute ethanol and treated with a solution of 125.8 g of potassium hydroxide in 195 ml of water. The mixture is heated to boiling under nitrogen gassing for 30 minutes, then cooled, introduced into 10 liters of ice-water and, after the addition of about 240 ml of concentrated hydrochloric acid (pH 2-4), thoroughly extracted with a total of 9 liters of methylene chloride. The extract is washed with about 6 liters of water to neutrality, dried over calcium chloride and evaporated under reduced pressure. The residue is taken up in 700 ml of hexane. The precipitated 9-(4-methoxy-2,3,6-trimethyl-phenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid melts at 228°C to 230°C.

28.6 g of 9-(4-methoxy-2,3,6-trimethyl-phenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid are introduced into 300 ml of benzene and treated under nitrogen gassing with 12 g of phosphorus trichloride. The benzene is subsequently distilled off under reduced pressure. The remaining 9-(4-methoxy-2,4,6-trimethyl-phenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid chloride is dissolved in 1,200 ml of diethyl ether. The solution is added dropwise at -33°C into 500 ml of ethylamine and stirred for 3 hours. The reaction mixture is then diluted with 500 ml of diethyl ether and stirred without cooling for a further 12 hours, the ammonia evaporating. The residue is dissolved in 10 liters of methylene chloride. The solution is washed 2 times with 3 liters of water, dried over sodium sulfate and evaporated under reduced pressure. The remaining N-ethyl-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6,8-tetraen-1-oic acid amide melts, after recrystallization from ethanol, at 179°C to 180°C.

References

Merck Index 6142 DFU 3 (2) 126 (1978) OCDS Vol. 3 p. 12 (1984) DOT 18 (12) 653 (1982) I.N. p. 647

Bollag, W., Ruegg, R. and Ryser, G.; U.S. Patents 4,105,681; August 8, 1978; and 4,215,215; July 29, 1980; both assigned to Hoffmann-LaRoche, Inc.

MOXALACTAM DISODIUM

Therapeutic Function: Antiinfective

Chemical Name: 7-[[Carboxy(4-hydroxyphenyl)acetyl] amino] 7-methoxy-3-[[(1-methyl-1H-tetrazol-5-yl)thio] -methyl] -8-oxo-5-oxa-1-azabicyclo [4.2.0] oct-2-ene-2-carboxylic acid disodium salt

Common Name: Lamoxactam; latamoxef

Structural Formula:

Chemical Abstracts Registry No.: 64952-97-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Moxam	Lilly	U.S.	1981
Moxalactam	Lilly	W. Germany	1981
Festamoxin	Shionogi	W. Germany	1981
Moxalactam	Lilly	France	1981
Moxalactam	Lilly	U.K.	1982
Shiomalin	Shionogi	Japan	1982

Raw Materials

p-(p-Methoxybenzyloxy)-phenylmalonic acid

Diphenylmethyl 7β-amino-7α-methoxy-3-(1-methyltetrazol-5-yl)-thiomethyl-1-oxa-

dethia-3-cephem-4-carboxylate

Aluminum chloride

Sodium-2-ethylhexanoate

Manufacturing Process

To a stirred suspension of p-(p-methoxybenzyloxy)-phenylmalonic acid (125 mg) in methylene chloride (3 ml) are added triethylamine (55 μ l) and oxalyl chloride (26 μ l) at -15°C, and the suspension is stirred for 40 minutes at 0°C. The mixture is added to a solution of diphenylmethyl 7 β -amino-7 α -methoxy-3-(1-methyltetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylate (100 mg) in methylene chloride (3 ml) and pyridine (63 μ l), and the mixture is stirred for 30 minutes at 0°C. The reaction mixture is diluted with ethyl acetate, washed with aqueous 2 N-hydrochloric acid and water, dried over sodium sulfate, and concentrated to give crude product (212 mg), which is chromatographed on silica gel (20 g) and

eluted with a mixture of ethyl acetate and acetic acid (99:1) to give diphenylmethyl- 7β -[α -p-(p-methoxybenzyloxy)phenyl- α -carboxyacetamido] - 7α -methoxy-3-(1-methyltetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylate as foam (71 mg). Yield: 45%.

To a solution of diphenylmethyl 7β -[α -p-(p-methoxybenzyl)-oxy-phenyl- α -p-methoxybenzyloxycarbonyl-acetamido] - 7α -methoxy-3-(1-methyltetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylate (1.20 g) in methylene chloride (24 ml) are added anisole (2.4 ml) and a solution of aluminum chloride (2.58 g) in nitromethane (12 ml) at 0°C under nitrogen. After stirring for 15 minutes at 0°C, the mixture is poured into cold 5% sodium hydrogen carbonate aqueous solution (100 ml) and filtered to remove the formed precipitate. The filtate is washed twice with methylene chloride (2 X 100 ml), acidified with 2N-hydrochloric acid to pH 2.60, and poured in a column of high porous polymer HP-20 (60 ml) sold by Mitsubishi Chemical Industries Ltd. The column is washed with water (300 ml) and eluted with methanol. The eluate is concentrated under reduced pressure at room temperature. The residue is dissolved in methanol, treated with active carbon, and concentrated under reduced pressure to give 7β - $(\alpha$ -p-hydroxyphenyl- α -carboxyacetamido)- 7β -methoxy-3-(1-methyl-tetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylic acid as powder (595 mg) decomposing at 125°C to 132°C. Yield: 88.5%.

To a solution of 7β -(α -p-hydroxyphenyl- α -carboxyacetamido- 7α -methoxy-3-(1-methyl-tetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylic acid (359 mg) in methanol (7 ml) is added a solution of sodium 2-ethylhexanoate in methanol (2 mols/liter; 1.73 ml) at room temperature. After stirring for 10 minutes, the reaction mixture is diluted with ethyl acetate, stirred for 5 minutes, and filtered to collect separated solid, which is washed with ethyl acetate, and dried to give disodium salt of 7β -(α -p-hydroxyphenyl- α -carboxyacetamido)- 7α -methoxy-3-(1-methyl-tetrazol-5-yl)thiomethyl-1-oxadethia-3-cephem-4-carboxylic acid (342 mg). Yield: 88.8%. Colorless powder. MP decomposition from 170°C.

References

Merck Index 6143 DFU 5 (9) 467 (1980) PDR p. 1064 OCDS Vol. 3 p. 218 (1984) DOT 18 (3) 132 (1982) I.N. p. 550

Narisada, M. and Nagata, W.; U.S. Patent 4,138,486; February 6, 1979; assigned to Shionogi & Co., Ltd. (Japan)

MOXESTROL

Therapeutic Function: Estrogen

Chemical Name: 11β -methoxy-19-nor-17 α -pregna-1,3,5(10)-trien-20-yne-3,17-diol

Common Name: 11β -methoxy- 17α -ethynylestradiol

Structural Formula:

Chemical Abstracts Registry No.: 34816-55-2

Trade Name Manufacturer Country Year Introduced
Surestryi Roussel France 1974

Raw Materials

 $\Delta^{4,9}$ -Estradiene-11 β -ol-3,17-dione Methanol Palladium hydroxide Potassium Acetylene

Manufacturing Process

- (A) Preparation of 11 β -Methoxy- $\Delta^{4,9}$ -Estradiene-3,17-Dione: 0.5 g of $\Delta^{4,9}$ -estradiene-11 β -ol-3,17-dione were dissolved at room temperature in 25 cc of methylene chloride containing 2% of methanol and after 5 mg of p-toluene-sulfonic acid were added, the reaction mixture was agitated for several minutes. Then the reaction mixture was poured into ice water, washed with water until the wash waters were neutral, and distilled to dryness under vacuum. The resulting residue was crystallized from ethyl ether to obtain 0.46 g of 11 β -methoxy- $\Delta^{4,9}$ -estradiene-3,17-dione having a MP of 140°C.
- (B) Preparation of 11β -Methoxy- $\Delta^{1,3,5\,(10)}$ -Estratriene-3-ol-17-one: 12.3 g of 11β -methoxy- $\Delta^{4,9}$ -estradiene-3,17-dione were dissolved in 1,230 cc of methanol and then, under an atmosphere of nitrogen, 7.38 g of palladium hydroxide were added and the mixture was held at reflux for one hour under agitation and a nitrogen atmosphere. Then the reaction mixture was cooled to 30°C, filtered, vacuum filtered and washed with methanol. The methanolic solutions were concentrated to about 50 cc, allowed to stand overnight at room temperature and filtered. The precipitate formed was triturated in methanol and dried at 80°C to obtain 10.74 g (yield = 87.5%) of 11β -methoxy- $\Delta^{1,3,5\,(10)}$ -estratriene-3-ol-17-one having a MP of 264°C.
- (C) Preparation of 11β -Methoxy- 17α -Ethynyl- $\Delta^{1,3,5}(10)$ -Estratriene- $3,17\beta$ -Diol: Under agitation and an atmosphere of nitrogen, 12 g of potassium were heated at 80° C in 180 cc of tertiary-amyl alcohol. The mixture was agitated for 30 minutes, cooled to 20° C and after 60 cc of dioxane were added thereto, a stream of acetylene was allowed to bubble through the mixture for one hour and fifteen minutes. Then a solution of 3 g of 11β -methoxy- $\Delta^{1,3,5(10)}$ -estratriene-3-ol-17-one in 50 cc of dioxane was added and the mixture was agitated for 4 hours while continuing the passage of acetylene at room temperature. Thereafter, 50 cc of a 50% aqueous acetic acid solution was added and the mixture was poured into water and extracted with ether. The organic phases were washed first with an aqueous solution containing 10% of neutral sodium carbonate, then with water until the wash waters were neutral, dried over sodium sulfate and concentrated under vacuum until crystallization started. The reaction mixture was iced for one hour, vacuum filtered and the precipitate dried under vacuum to obtain 3.8 g of the raw 17α -ethynyl derivative, which was purified by dissolution in ethyl acetate at reflux and by icing to obtain 2.33 g (yield = 77%) of 11β -methoxy- 17α -ethynyl- $\Delta^{1,3,5(10)}$ -estratriene- $3,17\beta$ -diol, having a MP of 280° C.

References

Merck Index 6145

Kleeman & Engel p. 611
DOT 11 (4) 149 (1975)
I.N. p. 647
Bertin, D. and Pierdet, A.; U.S. Patent 3,579,545; May 18, 1971; assigned to Roussel-UCLAF, France

MOXISYLYTE

Therapeutic Function: Peripheral vasodilator

Chemical Name: 4-[2-(Dimethylamino)ethoxy] 2-methyl-5-(1-methylethyl)-phenol acetate

(ester)

Common Name: Thymoxamine

Structural Formula:

Chemical Abstracts Registry No.: 54-32-0

Trade Name	Manufacturer	Country	Year Introduced
Carlytene	Dedieu	France	1962
Vasoklin	Godecke	W. Germany	1973
Opilon	Parke Davis	Italy	1975
Apifor	Substancia	Spain	_
Arlitene	Chinoin	Italy	_
Sympal	VEB Berlin-Chemie	E. Germany	
Valyten	Landerian	Spain	_

Raw Materials

Thymo!	Sodium nitrite
Hydrogen sulfide	Acetic anhydride
Sodium	Ethanol
Dimethylaminoethyl chloride	Hydrogen chloride
Sulfuric acid	

Manufacturing Process

A hydrochloric acid solution of 100 g of thymol in alcohol is reacted with 72 g of sodium nitrite, the nitrosothymol (Organic Syntheses 6, New York, 1926, p. 92) thus obtained is introduced into ammonia, and is reduced by the introduction of hydrogen sulfide to 4-aminothymol (Organic Syntheses Coll. Vol. 1, New York, 1932, p. 458). 133.3 g of this 4-aminothymol are mixed with 67 g of sodium acetate, 107 g of glacial acetic acid and 80 g of acetic acid anhydride to form 4-acetaminothymol (Plancher, Gazzetta Chimica Italiana 25, II, p. 388). 156 parts by weight of this last formed substance dissolved in 600 cc of alcohol are added to a solution of 17.6 parts by weight of sodium in 600 cc of alcohol, the mixture being boiled under reflux for some time with 82 g of dimethylaminoethyl chloride. The reaction product is treated with water, and neutralized with hydrochloric acid using acid Congo reagent indicator, and the alcohol is distilled off in vacuo. The base liberated by alkali is dissolved in ether. By evaporating the ether solution the dimethylaminoethyl ether of the 4-acetaminothymol is obtained as a brownish-yellow oil. After some time this oil solidifies in a crystalline state.

100 g of this base are dissolved in a mixture of 300 cc of concentrated hydrochloric acid (density 1.19) and 400 cc of water, and the solution is boiled for one hour under a reflux condenser. Thereupon it is made alkaline, extracted with ether, and the ether is distilled off. 23.6 g of the 4-aminothymoxyethyldimethylamine thus obtained are diazotized in the presence of sulfuric acid at a temperature not exceeding 0°C using a solution of 7.2 g of sodium nitrite in 70 cc of water, and the diazo compound is heated to boiling point after the addition of 1 g of copper sulfate, until no further gas is evolved. It is then made alkaline, and carbon dioxide is introduced. The base is precipitated first in an oily state, and soon becomes crystalline. The 4-oxythymoxyethyldimethylamine forms a neutral hydrochloride which is readily soluble in water, and has a melting point of 174°C to 175.5°C.

36.8 g of 4-oxythymoxyethyldimethylamine are boiled for one hour on a water bath with 160 cc of acetic anhydride and 17.5 cc of pyridine. After this period, the solution is diluted with water, made alkaline, and the base is extracted with ether and the ether distilled off. With acids, the base obtained forms crystalline salts which are readily soluble in water. The hydrochloride melts between 208°C and 210°C.

References

Merck Index 6146 Kleeman & Engel p. 612 OCDS Vol. 1 p. 116 (1977) I.N. p. 647

Veritas Drug Co., Ltd; British Patent 745,070; February 22, 1956

MUZOLIMINE

Therapeutic Function: Diuretic

Chemical Name: (3-Amino-1-(α-methyl-3 A-dichlorobenzyl)pyrazol-5-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55294-15-0

Trade Name	Manufacturer	Country	Year Introduced
Edrul	Bayer	Italy	1982

Raw Materials

 α -Methyl-3,4-dichlorobenzylhydrazine β -Amino- β -ethoxyacrylic acid ethyl ester

Manufacturing Process

41 g of α -methyl-3 β -dichlorobenzylhydrazine, dissolved in absolute ethanol, were added dropwise to a solution of 31.8 g of β -amino- β -ethoxyacrylic acid ethyl ester and 1.5 g of p-toluenesulfonic acid in 150 ml of ethanol at room temperature under nitrogen gas. After stirring for 2 hours and standing overnight, the reaction solution was concentrated as far as possible on a rotary evaporator. The residue which remained was dissolved in 2 N sodium hydroxide solution. Any unconverted starting products or by-products were extracted with ether. The aqueous phase was then brought to pH 5 with acetic acid. The oil thereby produced was taken up in methylene chloride and the organic phase was dried over Na₂SO₄. After evaporating off the solvent, the reaction product crystallized out. It was recrystallized from methanol; melting point 127°C to 129°C; yield 21 g (38.5% of theory).

References

Merck Index 6165 DFU 2 (6) 387 (1977) OCDS Vol. 3 p. 137 (1984)

DOT 18 (10) 555 (1982) & 19 (5) 267 (1983)

I.N. p. 649

Moller, E., Meng, K., Wehinger, E. and Horstmann, H.; British Patent 1,429,141; March 24, 1976; assigned to Bayer AG

Moller, E., Meng, K., Wehinger, E. and Horstmann, H.; U.S. Patent 4,018,890; April 19, 1977; assigned to Bayer AG

N

NABILONE

Therapeutic Function: Antianxiety

Chemical Name: 1-Hydroxy-3-(1',1'-dimethylheptyl)-6,6-dimethyl-6,6a,7,8,10,10a-hexehy-

dro-9H-dibenzo[b,d] pyran-9-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51022-71-0

Trade Name	Manufacturer	Country	Year Introduced
Cesamet	Lilly	Canada	1982
Cesametic	Lilly	W. Germany	1983
Cesamet	Lilly	U.K.	1983

Raw Materials

dl 3-(1',1'-Dimethylheptyl)-6,6a,7,8-tetrahydro-1-hydroxy-6,6-dimethyl-9H-dibenzo-[b,d] pyran-9-one

Lithium

Ammonia

Manufacturing Process

A solution of 1.5 g of dl-3-(1',1'-dimethylheptyl)-6,6a,7,8-tetrahydro-1-hydroxy-6,6-dimethyl-9H-dibenzo[b,d] pyran-9-one in 50 ml of anhydrous tetrahydrofuran (THF) was added dropwise to a solution of lithium metal in liquid ammonia at -80°C. Excess lithium metal was added in chunks to the solution as the blue color, indicating free dissolved lithium, disappeared. After the addition was complete, ammonium chloride was added to react with any excess lithium metal still present.

The mixture was then allowed to warm to room temperature in a nitrogen atmosphere during which process the ammonia evaporated. The reaction mixture was then acidified with 1 N aqueous hydrochloric acid, and the organic constituents extracted with ethyl acetate. The ethyl acetate extracts were combined, washed with water and dried. Evaporation of the ethyl acetate under reduced pressure yielded 1.4 g of crude di-trans-3-(1',1'-dimethylheptyl)-6,6a β ,7,8,10,10a β -hexahydro-1-hydroxy-6,6-dimethyl-9H-dibenzo[b,d] pyran-9-one. The

crude product was chromatographed over 50 g of silica gel from benzene solution and the desired product was eluted in 20 ml fractions with a benzene eluant containing 2% ethyl acetate. Fractions 200 to 240 contained 808 mg of a white crystalline solid comprising purified dl-trans-3-(1',1'-dimethylheptyl)-6,6a β ,7,8,10,10a β -hexahydro-1-hydroxy-6,6-dimethyl-9H-dibenzo[b,d] pyran-9-one. The purified compound melted at 159°C to 160°C after recrystallization from an ethyl acetate-hexane solvent mixture.

References

Merck Index 6193 DFU 3 (3) 207 (1978) OCDS Vol. 3, p 189 (1984) DOT 19 (7) 415 & (8) 436 (1983) I.N. p. 652

Archer, R.A.; U.S. Patents 3,928,598; December 23, 1975; 3,944,673; March 16, 1976; and 3,953,603; April 27, 1976; all assigned to Eli Lilly & Co.

NADOLOL

Therapeutic Function: Antiarrhythmic

Chemical Name: 2,3-Cis-1,2,3,4-tetrahydro-5-[2-hydroxy-3-(tert-butylamino)propoxy] -

2,3-naphthalenediol

Common Name: -

Structural Formula:

och, - ch - ch, nhc (ch,)

Chemical Abstracts Registry No.: 42200-33-9

Trade Name	Manufacturer	Country	Year Introduced
Solgol	Heyden	W. Germany	1978
Corgard	Squibb	Switz.	1978
Corgard	Squibb	U.K.	1979
Corgard	Squibb	U.S.	1979
Corgard	Squibb	Italy	1980
Corgard	Squibb	France	1982
Betadol	Fako	Turkey	_
Corzide	Squibb	U.S.	_

Raw Materials

Acetic anhydride 5.8-Dihydro-1-naphthol lodine Silver acetate Sodium methoxide Sodium hydroxide Epichlorohydrin tert-Butylamine

Manufacturing Process

(a) cis-5,6,7,8-Tetrahydro-1,6,7-naphthalenetriol: A solution of 29.2 g (0.2 mol) of 5,8-dihydro-1-naphthol and 40 ml of acetic anhydride in 100 ml of pyridine is prepared. After 16

hours the solvent is removed in vacuo and the residue dissolved in ether and washed with 200 ml of 5% hydrochloric acid, water, 200 ml of 10% sodium hydroxide, saturated salt solution and dried. Solvent removal gives 34.2 g (90.5%) of crude acetate which is dissolved in 900 ml of acetic acid and 36 ml of water. 53.3 g (0.32 mol) of silver acetate is added followed by 40.6 g (0.16 g-atom) of iodine. The slurry is heated with good stirring at 85°±10°C for 3 hours under nitrogen, cooled and filtered. The filtrate is evaporated in vacuo and the residue dissolved in 250 ml of methanol and cooled to 0°C.

A solution of 40 g of sodium hydroxide in 200 ml of water is added under nitrogen and the mixture stirred overnight. The bulk of the methanol is removed in vacuo whereupon a solid forms. The solid is separated by filtration, dissolved in 150 ml of water and acidified with 20 ml of concentrated hydrochloric acid. Cooling gives a solid which is filtered and dried to give 16.5 g cis-5,6,7,8-tetrahydro-1,6,7-naphthalenetriol, melting point 184.5°C to 187°C. Three recrystallizations from absolute ethanol give the analytical sample, melting point 188°C to 188.5°C.

- (b) 2,3-cis-1,2,3,4-Tetrahydro-5-[2,3-(epoxy)-propoxy]-2,3-naphthalenediol: A solution of 1.20 g (0.03 mol) of sodium methoxide and 5.4 g (0.03 mol) of cis-5,6,7,8-tetrahydro-1,6,7naphthalenetriol in 200 ml of methanol is prepared under nitrogen. The residue obtained upon solvent removal is stirred overnight with 200 ml of dimethylsulfoxide and 4.65 g (0.05 mol) of epichlorohydrin under nitrogen. The bulk of the solvent is removed at 50°C at 0.1 mm and the residue dissolved in 100 ml of water. Extraction with chloroform (10 x 200 ml) gives a solid which is recrystallized from 150 ml of hexane-ethyl acetate to give epoxy diol of the above title.
- (c) 2.3-cis-1.2.3,4-Tetrahydro-5-[2-hydroxy-3-(tert-butylamino)propoxy] -2,3-naphthalenediol: A mixture of 2.3-cis-1,2.3,4-tetrahydro-5-[2,3-(epoxy)propoxy]-2,3-naphthalenediol (melting point 104°C to 107°C, one spot on TLC-alumina, 5% methanol in chloroform, iodine visualization) and 22 ml of tert-butylamine is heated at 85°C to 95°C for 15 hours in a Parr bomb and the excess amine removed in vacuo. The solid obtained by trituration of the residue with ether is filtered and recrystallized from benzene to give 3.4 g, melting point 124°C to 136°C.

References

Merck Index 6195 DFU 1 (9) 434 (1976) Kleeman & Engel p. 614 PDR pp. 1739, 1741 OCDS Vol. 2 p. 110 (1980) DOT 15 (9) 411 (1979) I.N.p. 652 REM p. 905

Hauck, F.P., Cimarusti, C.M. and Narayanan, V.L.; U.S. Patent 3,935,267; January 27, 1976; assigned to E.R. Squibb & Sons, Inc.

NAFCILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 6-(2-ethoxy-1-naphthamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] -

heptane-2-carboxylic acid sodium salt

Common Name: 6-(2-ethoxy-1-naphthamido)penicillin sodium salt

Structural Formula:

Chemical Abstracts Registry No.: 985-16-0; 147-52-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Unipen	Wyeth	U.S.	1964
Nafcil	Bristol	U.S.	1976
Nalipen	Beecham	U.S.	1983
Naftopen	Gist-Brocades	_	-

Raw Materials

6-Aminopenicillanic acid 2-Ethoxy-1-naphthoyl chloride Sodium bicarbonate

Manufacturing Process

A stirred suspension of 12.6 grams 6-aminopenicillanic acid in 130 ml dry alcohol-free chloroform was treated with 16 ml triethylamine and then with 13,8 grams of a solution of 2-ethoxy-1-naphthoyl chloride in 95 ml chloroform. After being washed successively with 58 ml each of 1N and then 0.1 N hydrochloric acid the chloroform solution was extracted with N aqueous sodium bicarbonate (58 ml + 6 ml). The combined bicarbonate extracts were washed with 20 ml ether and then evaporated at low temperature and pressure to give the crude sodium salt of 2-ethoxy-1-naphthylpenicillin [also called sodium 6-(2-ethoxy-1-naphthamido)penicillinate] as a yellow powder (20,3 grams). This was dissolved in 20 ml water at 30°C and diluted with 180 ml n-butanol, also at 30°C, with stirring, Slow cooling to 0°C gave colorless needles of the product.

References

Merck Index 6199 Kleeman & Engel p. 615 PDR pp. 700, 1991 OCDS Vol. 1 p. 412 (1977) I.N. p. 653 REM p. 1196

Doyle, F.P. and Nayler, J.H.C.; U.S. Patent 3,157,639; November 17, 1964; assigned to Beecham Group Limited, England

NAFIVERINE

Therapeutic Function: Antispasmodic

Chemical Name: α-methyl-1-naphthaleneacetic acid 1,4-piperazinediyldi-2,1-ethanediyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5061-22-3

Trade Name	Manufacturer	Country	Year Introduced
Naftidan	De Angeli	Italy	1969

Raw Materials

 α -Methyl-1-naphthylacetic acid Thionyl chloride N,N'-Di-(β -hydroxyethyl)piperazine

Manufacturing Process

15 grams of α -methyl-1-naphthylacetic acid were refluxed with 50 ml of thionyl chloride during 3 hours. The excess thionyl chloride was removed under reduced pressure and the product was also isolated by distillation under reduced pressure. Yield: 15.6 grams (96%). The α -methyl-1-naphthyl acetyl chloride boils at 120° to 124°C. 1.76 grams of N,N'-di-(β -hydroxyethyl)-piperazine, 1.9 grams of sodium bicarbonate and 4.45 grams of α -methyl-1-naphthyl acetyl chloride in 30 ml of anhydrous acetonitrile were refluxed with stirring during 5 hours. After cooling the mixture was filtered and the acetonitrile evaporated off under reduced pressure. 5.2 grams of crude ester were obtained. The hydrochloride, melting at 220° to 221°C, may be prepared by dissolving the ester in absolute ethanol and treating the solution with anhydrous gaseous hydrogen chloride.

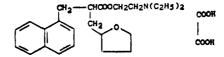
References

Merck Index 6200

I.N. p. 653

Pala, G.; British Patent 1,016,968; Jan. 12, 1966; assigned to Instituto de Angeli, SpA, Italy

NAFRONYL OXALATE


Therapeutic Function: Vasodilator

Chemical Name: Tetrahydro-α-(1-naphthalenylmethyl)-2-furanpropanoic acid 2-(diethyl-

amino)ethyl ester acid oxalate

Common Name: Naftidofuryl

Structural Formula:

Chemical Abstracts Registry No.: 3200-06-4; 31329-57-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dusodril	Roland	W. Germany	1968
Praxilene	Oberval	France	1968

Trade Name	Manufacturer	Country	Year Introduced
Prazilene	Lipha	U.K.	1972
Praxilene	Formenti	Italy	1973
Praxilene	Biochimica	Switz.	1980
Citoxid	Disprovent	Argentina	-

Raw Materials

 β -(1-Naphthyl)- β '-tetrahydrofurfuryl isobutyric acid B-Chloroethyl-N-diethylamine Oxalic acid

Manufacturing Process

30 grams (0.106 mol) of β -(1-naphthyl)- β -tetrahydrofuryl isobutyric acid are heated under reflux for 8% hours in 230 cc of isopropanol with 14 grams (0.103 mol) of β -chloroethyl-Ndiethylamine. After evaporation of the isopropanol in vacuo, the syrupy residue is treated with a solution of K2CO3. Extraction with ether is carried out after drying over Na2SO4.

Distillation of the extract yields 28.5 grams of a very viscous yellow liquid with a $BP_{0.95-1.09 \text{ millibar}} = 198^{\circ}$ to 202°C. The yield is 70.5% (theoretical quantity = 40.5 grams). 1.3 grams (0.0103 mol) of dihydrated oxalic acid are dissolved while being made tepid in 8 cc of acetone. The cooled solution has added thereto 4 grams (0.0104 mol) of N-diethylaminoethyl-β-(1-naphthyl)-β'-tetrahydrofuryl isobutyrate, obtained according to the process described above and dissolved in 10 cc of acetone. The solution is brought to boiling point for 15 minutes. After cooling to ambient temperature, it is placed in a refrigerator. Crystallization occurs after 2 hours, the crystals which have formed are separated by centrifuging, and after washing in hexane and drying in vacuo 3.5 grams of white crystals are obtained. After being recrystallized three times, in alcohol and then in a mixture of alcohol and ethyl acetate, the product is analytically pure and has a MP = 110° to 111°C (heating stage).

References

Merck Index 6201 Kleeman & Engel p. 615 OCDS Vol. 2 p. 213 (1980) DOT 5 (1) 19 (1969) I.N. p. 654

Szarvasi, E. and Bayssat, M.; U.S. Patent 3,334,096; August 1, 1967; assigned to Lipha. Lyonnaise Industrielle Pharmaceutique, France

NAL BUPHINE

Therapeutic Function: Analgesic

Chemical Name: N-cyclobutylmethyl-14-hydroxydihydronormorphinone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 20594-83-6; 23277-43-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Nubain	Du Pont	U.S.	1979
Nubain	Du Pont	U.K.	1983

Raw Materials

14-Hydroxydihydronormorphinone Cyclobutane carboxylic acid chloride Lithium aluminum hydride

Manufacturing Process

To a slurry of 110.5 g of 14-hydroxydihydronormorphinone in 2.5 liters of methylene chloride and 280 ml of triethylamine was added a solution of 106 g of cyclobutanecarboxylic acid chloride in 500 ml of methylene chloride. The temperature of the reaction mixture was maintained at 20°C to 25°C during the addition. After 5 minutes the reaction mixture was brought to reflux and heated for 5 hours.

It was then cooled, washed with water, dried over sodium sulfate and evaporated to dryness. The residue was crystallized from benzene and pentane to give 138.5 g of the dicyclobutane-carbonyl derivative, melting point about 112°C (dec.).

The dicyclobutanecarbonyl derivative (136.7 g) was dissolved in 200 ml of tetrahydrofuran and added dropwise to a suspension of 34.2 g of lithium aluminum hydride in 1 liters of tetrahydrofuran. The temperature of the mixture rose to reflux during the addition. Reflux was maintained for 2 hours after the addition was completed. After cooling, 110 ml of ethyl acetate was added dropwise, followed by 30 ml of water, followed by a solution of 53 g of ammonium chloride in 125 ml of water. The resulting mixture was filtered and the inorganic precipitate was washed with methanol. Evaporation of the combined filtrates gave 66 g of N-cyclobutylmethyl-14-hydroxydihydronormorphinone, melting point 229°C to 231°C.

References

Merck Index 6203 DFU 2 (9) 613 (1977) Kleeman & Engel p. 616 PDR p. 858 OCDS Vol. 2 p. 319 (1980) DOT 16 (2) 51 (1980) I.N. p. 654 REM p. 1109

Blumberg, H., Pachter, I.J. and Matossian, Z.; U.S. Patent 3,332,950; July 25, 1967; assigned to Endo Laboratories, Inc.

NALIDIXIC ACID

Therapeutic Function: Antibacterial

Chemical Name: 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3-carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 389-08-2

Trade Name	Manufacturer	Country	Year Introduced
Neggram	Winthrop	U.S.	1964
Nalidixique	Winthrop	France	1974
Jicsron	Towa Yakuhin	Japan	1981
Baktogram	Farmakos	Yugoslavia	_
Betaxina	Amelix	Italy	_
Chemiurin	Cifa	Italy	-
Cybis	Breon	U.S.	_
Dixiben	Benvegna	Italy	_
Dixurol	Ī.T.I.	Italy	_
Enexina	S.I.T.	Italy	_
Entoion	Sawai	Japan	
Eucistin	San Carlo	Italy	
Faril	Saita	Italy	_
Innoxalon	Sanko	Japan	_
Kusnarin	Kodama	Japan	
Nali	litas	Turkey	_
Nalcidin	Schoum	Italy	_
Nalidicron	San-A	Japan	_
		•	_
Nalidixico	Level	Spain	_
Nalidixin	Spofa	Czechoslovakia	_
Nalidixol	Hermes	Spain	_
Naligen	Sam	Italy	_
Naligram	lsis	Yugoslavia	-
Nalissina	Armour	Italy	_
Nalitucsan	Hishiyama	Japan	
Nalix	Sigurta	Italy	-
Nalixan	Neofarma	Finland	-
Nalurin	Von Boch	Italy	_
Narigix	Taiyo	Japan	_
Naxuril	Esterfarm	Italy	_
Negabatt	Dessy	Italy	
Nicelate	Toyo Jozo	Japan	_
Nogermin	Madaus	Spain	
Notricel	Hortel	Spain	-
Pielos	S.T.I.P.	Italy	
Poleon	Sumitomo	Japan	_
Renogram	Belupo	Yugoslavia	
Restelon	Maruishi	Japan	_
Sicmylon	Niichiko	Japan	-
Specifin	Bergamon	Italy	_
Unaserus	Isei	Japan	_
Uralgin	Ceccarelli	Italy	_
Uretrene	Mitim	italy	-
Uriben	R.P. Drugs	U.K.	· -
Uriclar	Crosara	Italy	_
Uri-Flor	A.G.I.P.S.	Italy	_
Urigram	Trima	Israel	_
Urisco	I.C.I.	İtaly	_
Uristeril	Ripari-Gero	Italy	
Urodixin	Italchimici	Italy	-
Urogram	Firma	Italy	_
Urolex	Sirt-B.B.P.	Italy	_
Urolgin N	Takata	Japan	_
Uromina	Ausonia	Italy	_
Uroneg	lbirn	Italy	
Valuren	Intersint	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Wintomylon	Daiichí	Japan	
Wintron	Tobishi	Japan	-

Raw Materials

2-Amino-6-methylpyridine Ethoxymethylenemalonic acid diethyl ester Sodium hydroxide Ethyl iodide

Manufacturing Process

A warm solution containing 41 grams of 4-hydroxy-7-methyl-1,8-naphthyridine-3-carboxylic acid and 39 grams of potassium hydroxide in 1 liter of ethanol and 200 cc of water was treated with 50 cc of ethyl iodide and the resulting mixture was refluxed gently overnight, acidified with hydrochloric acid and cooled. The resulting precipitate was collected and recrystallized twice from acetonitrile to yield 26 grams (56% yield) of 1-ethyl-7-methyl-4-oxo-1,8-naphthyridine-3-carboxylic acid, MP 229° to 230°C.

The starting material is prepared by reacting 2-amino-6-methylpyridine with ethoxymethylene-malonic acid diethyl ester and then reacting that product with sodium hydroxide.

References

REM p. 1216

Merck Index 6205 Kleeman & Engel p. 616 PDR p. 1922 OCDS Vol. 1 p. 429 (1977) & 2,370,469 (1980) DOT 1 (1) 16 (1965) I.N. p. 33

Lesher, G.Y. and Gruett, M.D.; U.S. Patent 3,149,104; September 15, 1964; assigned to Sterling Drug Inc.

NALORPHINE

Therapeutic Function: Narcotic antagonist

Chemical Name: 7,8-didehydro-4,5-epoxy-17-(2-propenyl)morphinan-3,6-diol

Common Name: N-allyInormorphine

Structural Formula:

Chemical Abstracts Registry No.: 62-67-9; 57-29-4 (Hydrochloride)

Raw Materials

Normorphine Allyl bromide Sodium bicarbonate

Manufacturing Process

6 grams of normorphine, 2.7 grams of allyl bromide, 2.65 grams of sodium bicarbonate, and 75 cc of methanol were mixed together, and the resulting mixture was heated under reflux with stirring for a period of about 5½ hours. The reaction mixture was evaporated to dryness in vacuo, the residual material was extracted with 60 cc of boiling chloroform, 0.5 gram of activated charcoal was added, and the resulting mixture was filtered through a layer of diatomaceous silica. The filter cake was washed with four 10 cc portions of boiling chloroform, and the chloroform filtrate and washings were combined and evaporated to dryness in vacuo. The residual material was triturated with 25 cc of anhydrous ether until crystalline, the ethereal mixture was cooled, maintained at a temperature of 3°C overnight, filtered, and the crystalline mixture was washed with three 10 cc portions of ice-cold ether. The resulting crystalline product was dried to give 6.0 grams of N-allyl-normorphine, yield approximately 87% of theory, according to U.S. Patent 2,891,954.

References

Merck Index 6206 Kleeman & Engel p. 617

OCDS Vol. 1 p. 288 (1977) & 2, 318 (1980)

I.N. p. 655 REM p. 1106

Weijlard, J. and Erickson, A.E.; U.S. Patent 2,364,833; December 12, 1944; assigned to

Merck & Co., Inc.

Weijlard, J.; U.S. Patent 2,891,954; June 23, 1959; assigned to Merck & Co., Inc.

NALOXONE

Therapeutic Function: Narcotic antagonist

Chemical Name: 17-allyl-4,5α-epoxy-3,14-dihydroxy-morphinan-6-one

Common Name: N-allylnoroxymorphone; N-allyl-1,4-hydroxydihydronormorphinone

Structural Formula:

Chemical Abstracts Registry No.: 465-65-6; 357-08-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Narcan	Du Pont	U.S.	1971
Narcan	Du Pont	U.K.	1975
Narcanti	Winthrop	 W. Germany 	1978
Narcan	Winthrop	France	1980
Narcan	Crinos	Italy	1980
Natone	End	U.S.	_
Talwin	Winthrop-Breon	U.S.	_

Raw Materials

Oxymorphone	Acetic anhydride
Cyanogen bromide	Hydrogen chloride
Allvi bromide	

Manufacturing Process

10 grams of 14-hydroxydihydromorphinone (oxymorphone) was converted into its diacetate by warming it on the steam bath with 80 cc of acetic anhydride for about 2 hours. The acetic anhydride was removed on the water bath under a vacuum of about 30 mm absolute pressure. The melting point of the residue was 220°C. The residue was taken up in 100 cc of chloroform. An equal amount by weight of cyanogen bromide was added and the mixture was refluxed at about 60°C for about 5 hours. After refluxing, the mixture was washed with 100 cc of a 5% aqueous hydrochloric acid solution, dried over sodium sulfate and the chloroform removed by evaporation under a vacuum of about 30 mm. The residue had a melting point of 240°C.

The residue was then heated at about 90°C for 16 hours on a steam bath with 300 cc of 20% aqueous hydrochloric acid solution, and treated with a small amount, e.g., 1 gram of charcoal. The hydrochloric acid was then removed under a vacuum of 15 mm, the residue dissolved in 30 cc of water and precipitated by the addition of 2.4 cc of concentrated aqueous ammonia. The precipitate was filtered off and dried. It consists of 14-hydroxydihydronormorphinone. It is soluble in ethanol.

The 14-hydroxydihydronormorphinone was suspended in 200 cc of pure ethyl alcohol, half its weight of sodium bicarbonate and half its weight of allyl bromide added and the resulting mixture was refluxed at about 75°C for 48 hours. The solution was cooled, e.g., to 10°C and filtered and the alcohol removed under a vacuum of 30 mm. The residue was dissolved in chloroform and filtered. The chloroform was removed under a vacuum of 30 mm and the residue was crystallized from ethylacetate. The crystallized product, N-allyl-1,4-hydroxydihydronormorphinone, has a melting point of 184°C, is soluble in chloroform and insoluble in petroleum ether. The yield amounts to 20% based on the weight of the reacted 14-hydroxydihydromorphinone.

References

Merck Index 6208 Kleeman & Engel p. 618 PDR pp. 858, 1932 OCDS Vol. 1 p. 289 (1977) & 2, 318, 323 (1980) DOT 8 (8) 295 (1972) I.N. p. 655 REM p. 1106 Lewenstein, M.J. and Fishman, J.; U.S. Patent 3,254,088; May 31, 1966

NANDROLONE DECANOATE

Therapeutic Function: Anabolic

Chemical Name: 17β -[(1-oxodecyl)oxy] estr-4-en-3-one

Common Name: 19-nortestosterone decanoate; norandrostenolone decanoate

Structural Formula:

Chemical Abstracts Registry No.: 360-70-3; 434-22-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Deca-Durabolin	Organon	U.S.	1962
Deca-Hybolin	Hyrex	U.S.	1979
Deca-Noralone	Taro	Israel	_
Fortabolin	Deva	Turkey	
lebol a n	I.E. Kimya Evi	Turkey	_
Kabolin	Legere	U.S.	_
Methybol	Mepha	Switz.	_
Nordecon	lbsa	Switz.	
Sterobolin	Neofarma	Finland	_
Turinabol-Depot	Jenapharm	E. Germany	_

Raw Materials

19-Nortestosterone Decanoic acid chloride

Manufacturing Process

1 gram of 19-nortestosterone is dissolved in 3 ml of dry pyridine, after which the resulting solution is cooled to -20°C. A solution of 1.0 gram of decanoic acid chloride in 3 ml of dry benzene is added to the cooled solution. The mixture is maintained at -15°C for 16 hours and then poured into ice water. The aqueous liquid is extracted with benzene, the benzene solution is washed with respectively 1 N sodium hydroxide solution, 2 N hydrochloric acid and with water until neutral reaction.

Then the solution is dried on sodium sulfate, filtered, and evaporated to dryness. The residue, 1.63 grams is dissolved in hexane, this solution is filtered over 30 grams of neutral aluminum oxide, and evaporated to dryness. On paper chromatographic investigation it turned out that the obtained 19-nortestosterone 17-decanoate which at room temperature is an oil consists of a single compound, according to U.S. Patent 2,998,423.

References

Merck Index 6212 Kleeman & Engel p. 620 PDR pp. 1033, 1286 OCDS Vol. 1 p. 171 (1977) I.N. p. 655 REM p. 999

Donia, R.A. and Ott, A.C.; U.S. Patent 2,798,879; July 9, 1957; assigned to The Upjohn Company

De Wit, E.D. and Overbeek, G.A.; U.S. Patent 2,998,423; August 29, 1961; assigned to Organon Inc.

NANDROLONE PHENPROPIONATE

Therapeutic Function: Anabolic

Chemical Name: 17\beta-hydroxyestr-4-en-3-one 3-phenylpropionate

Common Name: 19-nortestosterone β-phenylpropionate

Structural Formula: See Nandrolone Decanoate for the steroid structure

Chemical Abstracts Registry No.: 62-90-8; 434-22-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Durabolin	Organon	U.S.	1959
Nandrolin	Tutag	U.S.	1979
Activin	Aristegui	Spain	_
Anticatabolin	Falorni	Italy	
Hepa-Obaton	Nourypharma	W. Germany	_
Hybolin Improved	Hyrex	U.S.	_
Norabol	Pharmacia	Sweden	_
Noralone	Taro	Israel	_
Norandrol	Panther-Osfa	Italy	
Norandros	Castillon	Spain	_
Norbalin	Bieffe	Italy	_
Noromon	Ibsa	Switz.	
Norstenol	Ravizza	Italy	_
Sintabolin	A.F.I.	Italy	_
Strabolene	Isola-Ibi	Italy	-
Superanbolon	Spofa	Czechoslovakia	_
Superbolin	Labif	Italy	_
Turinabol	J enapharm	E. Germany	-

Raw Materials

19-Nortestosterone β -Phenylpropionyl chloride

Manufacturing Process

An ice-cold solution of 1.5 grams of 19-nortestosterone and 1.5 ml of dry pyridine in 10 ml of dry benzene is prepared and a solution of 1.5 ml of β -phenylpropionyl chloride in 5 ml of dry benzene is added dropwise over a period of about 2 minutes with stirring. The resulting mixture is allowed to stand overnight under an atmosphere of nitrogen and then washed successively with cold 5% aqueous hydrochloric acid solution, cold 2.5% aqueous sodium hydroxide solution, and water. After drying over anhydrous sodium sulfate, the solvent is evaporated to give an almost colorless oil. Recrystallization from methanol gives white crystals of 19-nortestosterone 17-β-phenylpropionate, MP 91° to 92.5°C.

References

Merck Index 6214

Kleeman & Engel p. 621
PDR p. 1286
OCDS Vol. 1 p. 171 (1977)
I.N. p. 656
REM p. 999
Donia B. A. and Ott. A.C. I.I.S. Patent 2.868 809

Donia, R.A. and Ott, A.C.; U.S. Patent 2,868,809; January 13, 1959; assigned to The Upjohn Company

NAPHAZOLINE

Therapeutic Function: Nasal decongestant

Chemical Name: 4,5-dihydro-2-(1-naphthalenylmethyl)-1H-imidazole

Common Name: 2-(1-naphthylmethyl)imidazoline

Structural Formula:

Chemical Abstracts Registry No.: 835-31-4; 550-99-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Privine	Ciba	U.S.	1942
Albalon	Allergan	U.S.	1970
Naphcon Forte	Alcon	U.S.	1975
Clera	Person Covey	U.S.	1978
Vasoclear	Smith Miller & Patch	U.S.	1979
Opcon	Muro	U .S.	1981
Nafazair	Pharmafair	U. S .	1983
Actinophtyl	Gregoire	France	_
Bactio-Rhin	Byk Liprandi	Argentina	_
Biogan	Recip	Sweden	_
Coldan	Sigmapharm	Austria	
Degest-2	Barnes-Hind	U. S .	_
Gotinal	Promeco	Argentina	_
lmidazyl	Tubi Lux Pharma	Italy	
lmidin	Ysat Wernigerode	E. Germany	_
lmizol	Farmige a	Italy	_
Murine	Abbott	U.K.	_
Naftazolina	Bruschettini	lta ly	_
Naline	lbsa	Switz.	_
Nasal Yer	Yer	Spain	_
Nomaze	Fisons	U.K.	_
Ocunasal	Sam-on	Israel	_
Pivanol	Tek	Turkey	-
Privin	Ciba	W. Germany	_
Proculin	Ankerwerk	E. Germany	_
Ran	Corvi	Italy	

Trade Name	Manufacturer	Country	Year Introduced
Rhinex S	Ysat Wernigerode	E. Germany	-
Rhinon	Petrasch	Austria	-
Rimidol	Leo	Sweden	-
Rinofug	Chimimport Export	Rumania	_
Vasoconstrictor	Pensa	Spain	_
Vistalbalon	Pharm-Allergan	W. Germany	_

Raw Materials

Naphthyl-(1)-acetonitrile Methanol Ethanol Ethylene diamine

Manufacturing Process

2.7 parts of naphthyl-(1)-acetiminoethylether hydrochloride of the formula

(produced from naphthyl-(1)-acetonitrile and methanol) are dissolved in 12 parts of absolute alcohol. 1 part of ethylenediamine is then added and the whole is heated to gentle boiling while passing nitrogen through it and simultaneously stirring until ammonia escapes no longer. The alcohol is then distilled and the residue mixed with 40 parts of benzene and 1.8 parts of caustic potash. Stirring is continued for some time whereby the imidazoline base is dissolved in benzene. The benzene residue is recrystallized several times from toluene. Reaction with HCI gives the hydrochloride.

References

Merck Index 6218 Kleeman & Engel p. 622 PDR pp. 728,809,1549 OCDS Vol. 1 p. 241 (1977) I.N. p. 657 REM p. 888

Sonn, A.; U.S. Patent 2,161,938; June 13,1939; assigned to the Society of Chemical Industry in Basle, Switzerland

NAPROXEN

Therapeutic Function: Antiinflainmatory

Chemical Name: (+)-6-methoxy- α -methyl-2-naphthaleneacetic acid

Common Name: d-2-(6-methoxy-2-naphthyl)propionic acid

Structural Formula:

Chemical Abstracts Registry No.: 22204-53-1

Trade Name	Manufacturer	Country	Year Introduced
Naprosyn	Syntex	U.K.	1973
Naprosyne	Cassenne	France	1975
Proxen	Gruenenthal	W. Germany	1975
Naprosyn	Recordati	Italy	1975
Naprosyn	Syntex	Switz.	1975
Naprosyn	Syntex	U.S.	1976
Naixan	Tanabe	Japan	1978
Congex	Nemi	Argentina	_
Floginax	Farmochimica	Italy	_
Gibixen	Gibipharm	Italy	_
Laser	Tosi-Novara	Italy	-
Madaprox	Madariaga	Spain	_
Naprium	Radiumfarma	Italy	_
Naprius	Magis	Italy	
Naprux	Andromaco	Argentina	_
Naxyn	Teva	Israel	_
Novonaprox	Novopharm	Canada	_
Numide	Hosbon	Spain	_
Prexan	Lafare	Italy	_
Veradol	Schering	W. Germany	_
Xenar	Alfar Farma Clutici	Italy	_

Raw Materials

2-Bromo-6-methoxynaphthalene Ethyl-2-bromopropionate Sodium hydroxide

Magnesium Cadmium chloride

Manufacturing Process

According to U.S. Patent 3,658,858, a solution of 24 grams of 2-bromo-6-methoxynaphthalene in 300 ml of tetrahydrofuran is slowly added to 2,5 grams of magnesium turnings and 100 ml of tetrahydrofuran at reflux temperature. After the addition is complete, 20 grams of cadium chloride is added, and the resultant mixture is refluxed for 10 minutes to yield a solution of di-(6-methoxy-2-naphthyl)cadmium (which can be separated by conventional chromatography, although separation is unnecessary).

A solution of 18 grams of ethyl 2-bromopropionate in 20 ml of tetrahydrofuran is then added to the cooled reaction mixture. After 24 hours at 20°C, the product is hydrolyzed by adding 200 ml of 5 weight percent methanolic sodium hydroxide followed by heating to reflux for 1 hour. The reaction mixture is then diluted with excess 1 N sulfuric acid and extracted with ether. The ether phase is separated, evaporated to dryness and the residue is recrystallized from acetone-hexane to yield 2-(6-methoxy-2-naphthyl)propionic acid.

References

Merck Index 6269 Kleeman & Engel p. 623 PDR p. 1801 OCDS Vol. 1 p. 86 (1977) DOT 9 (9) 384 (1973) & 10 (3) 95 (1974) I.N. p. 658 REM p. 1119

Alvarez, F.S.; U.S. Patent 3,637,767; January 25, 1972; assigned to Syntex Corp., Panama Harrison, I.T.; U.S. Patent 3,658,858; April 25, 1972; assigned to Syntex Corp., Panama Alvarez, F.S.; U.S. Patent 3,663,584; May 16, 1972; assigned to Syntex Corp., Panama

Alvarez, F.S.; U.S. Patent 3,694,476; September 26,1972; assigned to Syntex Corp., Panama Halpern, O.; U.S. Patent 3,720,708; March 13, 1973

NATAMYCIN

Therapeutic Function: Antibacterial (ophthalmic)

Chemical Name: See Structural Formula

Common Name: Pimaricin

Structural Formula:

Chemical Abstracts Registry No.: 7681-93-8

Trade Name	Manufa c tur er	Country	Year Introduced
Pimafucine	Beytout	France	1964
Pimafucin	Brocades	U.K.	1965
Pimafucort	Brocades	Italy	1966
Pimafucin	Basotherm	W. Germany	1967
Natacyn	Alcon	U.S.	1979
Myprozine	Lederle	U.S.	

Raw Materials

Bacterium Streptomyces gilvosporeus Starch

Corn steep liquor

Manufacturing Process

The Fermentation Process: The process by which this antifungal substance is produced is an aerobic fermentation of an aqueous nutrient medium inoculated with a pimaricin-producing strain of Streptomyces gilvosporeus. The nutrient medium contains an assimilable source of carbon such as starch, molasses, or glycerol, an assimilable source of nitrogen such as corn steep liquor and inorganic cations such as potassium, sodium or calcium, and anions such as sulfate, phosphate or chloride. Trace elements such as boron, molybdenum or copper are supplied as needed in the form of impurities by the other constituents of the medium.

In more detail the nutrient medium used may contain sources of carbon such as starch, hydrolyzed starch, sugars such as lactose, maltose, dextrose, sucrose, or sugar sources such as molasses; alcohols, such as glycerol and mannitol; organic acids, such as citric acid and acetic acid; and various natural products which may contain other nutrient materials in addition to carbonaceous substances.

Nitrogen sources include proteins, such as casein, zein, lactalbumin; protein hydrolyzates such proteoses, peptones, peptides, and commercially available materials, such as N-Z Amine which is understood to be a casein hydrolyzate; also corn steep liquor, soybean meal, gluten, cottonseed meal, fish meal, meat extracts, stick liquor, liver cake, yeast extracts and distillers' solubles; amino acids, urea, ammonium and nitrate salts. Such inorganic elements as sodium, potassium, calcium and magnesium; and chlorides, sulfates, phosphates and combinations of these anions and cations in the form of mineral salts may be advantageously used in the fermentation.

The so-called trace elements, such as boron, cobalt, iron, copper, zinc, manganese, chromium, molybdenum and still others may also be used to advantage. Generally, these trace elements occur in sufficient quantities in the carbonaceous and nitrogenous constituents of the medium, particularly if derived from natural sources, or in the tap water, and the addition of further quantities of these trace elements may consequently be unnecessary.

The fermentation liquor is aerated in the customary manner by forcing sterile air through the fermenting mixture usually at the rate of about 1 volume of air per volume of fermentation medium per minute. To minimize contamination with foreign microorganisms, the fermentation vessels should be closed and a pressure of 2 to 15 pounds above atmospheric pressure maintained in the vessel. In addition to the agitation provided by aeration, mechanical agitation is generally desirable. Antifoaming agents, such as 1% octadecanol in lard oil, may be added from time to time as required to prevent excessive foaming. Fermentation is conducted at a temperature preferably on the order of 26°C to 30°C but may be as low as 17°C or as high as 42°C.

The time required for maximum production of the antifungal substance will vary considerably depending upon other conditions of the fermentation. Generally, about 48 hours is required before appreciable quantities of the antifungal substance are detected in the medium. The production of the antifungal substance increases with time, and the fermentation may run as long as 120 hours. The hydrogen ion conditions normally vary from about pH 6 to pH 8.0, although deviations from these values are permissible, according to British Patent 846.933. The reader is referred to the patents cited for detais of pimaricin purification.

References

Merck Index 6278 Kleeman & Engel p. 624 DOT 14 (6) 255 (1978) I.N. p. 659 REM p. 1230

Koninkijke Nederlandsche Gist- & Spiritusfabriek N.V., Netherlands; British Patent 844,289; August 10, 1960

American Cyanamid Company; British Patent 846,933; September 7, 1960

NEFOPAM HYDROCHLORIDE

Therapeutic Function: Muscle relaxant; antidepressant

Chemical Name: 3.4,5,6-tetrahydro-5-methyl-1-phenyl-1H-2,5-benzoxazocine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13669-70-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ajan	Kettelnack	W. Germany	1976
Acupan	Carnegie	U.K.	1978
Acupan	Riker	France	1981
Lenipan	Chiesi	Italy	1981
Oxadol	I.S.I.	Italy	1982
Acupan	Boehr. Mann.	Italy	1983

Raw Materials

2-Benzoylbenzoic acid	Thionyl chloride
2-Methylaminoethanol	Lithium aluminum hydride
p-Toluenesulfonic acid	Hydrogen chloride

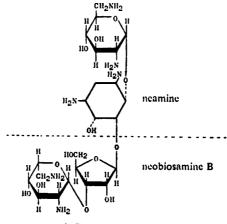
Manufacturing Process

The starting material is prepared by reacting 2-benzoylbenzoic acid with thionyl chloride and then with 2-methylaminoethanol. 20.0 grams (0.07 mol) of N-(2-hydroxyethyl)-N-methyl-obenzoylbenzamide is suspended in 100 ml tetrahydrofuran and then slowly added in small portions to a solution of 5.5 grams (0.14 mol) of lithium aluminum hydride in 150 ml tetrahydrofuran with cooling and stirring. The mixture is then refluxed for 18 hours, cooled and then to it is successively added 5.5 ml water, 5.5 ml of 3.75 N sodium hydroxide and 16 ml water. After removal of precipitated salts by filtration, the solution remaining is concentrated under reduced pressure and the residue dried to yield 19.5 grams of crude product. Yield after conversion to the hydrochloride salt and recrystallization is 17.0 grams (89%), MP 128° to 133°C.

5-methyl-1-phenyl-1,3,4,6-tetrahydro-5H-benz[f]-2,5-oxazocine is prepared as follows. 3.0 grams (0.011 mol) of 2-([N-(2-hydroxyethyl)-N-methyl] amino/methylbenzhydrol, prepared as described above, 3.0 grams p-toluenesulfonic acid and 15 ml benzene are heated together with stirring until all the benzene is distilled off. The residual oil is heated to 105°C and held at this temperature for 1 hour, then cooled and dissolved in 30 ml water. This aqueous solution is then basified to pH 10.0 with 12 N sodium hydroxide, extracted with ether, and the extracts washed with water, dried over anhydrous sodium sulfate and the solvent removed under reduced pressure. The 2.26 grams (81%) oil remaining is converted to the hydrochloride salt, MP 238° to 242°C.

References

Merck Index 6287 Kleeman & Engel p. 626 OCDS Vol. 2 p. 447 (1980) DOT 12 (7) 275 (1976) I.N. p. 661


Baltes, B.J.; U.S. Patent 3,487,153; December 30, 1969; assigned to Rexall Drug and Chemical Company

NEOMYCIN

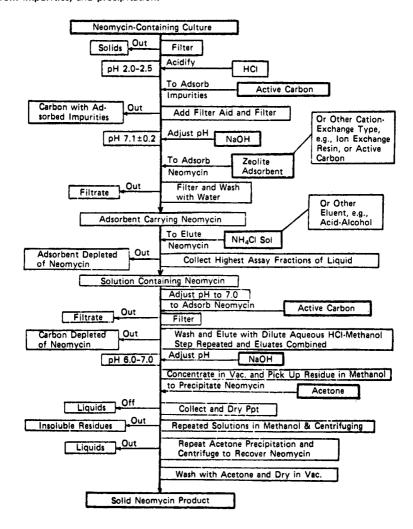
Therapeutic Function: Antibacterial

Chemical Name: O-2,6-diamino-2,6-dideoxy- α -D-glucopyranosyl- $(1\rightarrow 3)$ -O- β -D-ribofuranosyl- $(1\rightarrow 5)$ -O-[2,6-diamino-2,6-dideoxy- α -D-glucopyranosyl- $(1\rightarrow 4)]$ -2-deoxy-D-streptamine

Structural Formula:

neomycin B

Chemical Abstracts Registry No.: 1404-04-2; 4146-30-9 (Sulfate)


Trade Name	Manufacturer	Country	Year Introduced
Myciguent	Upjohn	U.S.	1951
Otobiotic	Schering	U.S.	1954
Mycifradin	Upjohn	U.S.	1957
Neobiotic	Pfizer	U.S.	1958
Apokalin	A.L.	Norway	_
Biofradin	Uriach	Spain	_
Bykomycin	Byk-Gulden	W. Germany	_
Cortisporin	Burroughs-Wellcome	U.S.	_
Dexmy	Takeda	Japan	_
Endomixin	Lusofarmaco	Italy	-
Fradio	Nippon Kayaku	Japan	-
Fradyl	Christiaens	Belgium	-
lvax	Boots	U.K.	_
Larmicin	Larma	Spain	_
Myacyne	Werner Schnur	W. Germany	
Mytrex	Savage	U.S.	_
Neobretin	Norbrook	U.K.	_
Neodecadron	MSD	U.S.	_
Neointestin	Hosbon	Spain	_
Neolate	Therafarm	U.K.	_
Neomicina Roger	Roger	Spain	_
Neomin	Glaxo	U.K.	_
Neo-Polycin	Merreli Dow	U.S.	_
Neopt	Sigma	Australia	_
Neosporin	Burroughs-Wellcome	U.S.	
Neosulf	Protea	Australia	_
Neo-Synalar	Syntex	U.S.	_
Octicair	Pharmafair	U.S.	_
Otocort	Lemmon	U.S.	_
Siquent	Sigma	Australia	-
Tampovagan	Norgine	U.K.	_
Topisporin	Pharmafair	U.S.	_
Tri-Thalmic	Schein	U.S.	_

Raw Materials

Bacterium *Streptomyces fradiae* Nutrient medium

Manufacturing Process

Neomycin has been produced by growing the organism, *Streptomyces* No. 3535, in a suitable nutrient medium under appropriate stationary or submerged aerobic (viz shaken) conditions, and then isolating and purifying the substance, e.g., by procedure of the sort described in the figure including various steps of adsorption, recovery by elution, separation from impurities, and precipitation.

Neomycin is usually used as the sulfate.

References

Merck Index 6300

Kleeman & Engel 626

PDR pp. 673, 738, 756, 888, 993, 1034, 1206, 1232, 1429, 1569, 1604, 1800

I.N. p. 663

REM p. 1181

Waksman, S.A. and Lechevalier, H.A.; U.S. Patent 2,799,620; July 16, 1957; assigned to

Rutgers Research and Educational Foundation

Jackson, W.G.; U.S. Patent 2,848,365; August 19, 1958; assigned to The Upjohn Company Miller, T.W.; U.S. Patent 3,005,815; October 24, 1961; assigned to Merck & Co., Inc. Moses, W.; U.S. Patent 3,022,228; February 20, 1962; assigned to S.B. Penick & Company Haak, W.J.; U.S. Patent 3,108,996; October 29, 1963; assigned to The Upjohn Company

NETILMICIN

Therapeutic Function: Antibiotic

Chemical Name: 1-N-Ethylisomicin

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 56391-56-1

Trade Name	Manufacturer	Country	Year Introduced
Netromycine	Schering	Switz.	1980
Certomycin	Byk-Essex	W. Germany	1980
Netillin	Kirby-Warrick	U.K.	1981
Netromicine	Unicet	France	1981
Nettacin	Essex	Italy	1982
Netromycin	Schering	U. S .	1983

Raw Materials

Sisomicin Sulfuric acid

Acetaldehyde Sodium cyanoborohydride

Manufacturing Process

To a solution of 5 g of sisomicin in 250 ml of water add 1 N sulfuric acid until the pH of the solution is adjusted to about 5. To the solution of sisomicin sulfuric acid addition salt thereby formed, add 2 ml of acetaldehyde, stir for 10 minutes, then add 0.85 g of sodium cyanoborohydride. Continue stirring at room temperature for 15 minutes, then concentrate solution in vacuo to a volume of about 100 ml, treat the solution with a basic ion exchange resin [e.g., Amberlite IRA 401S (OH^{*})], then lyophilize to a residue comprising 1-N-ethyl-sisomicin.

Purify by chromatographing on 200 g of silica gel, eluting with lower phase of a chloroform-methanol-7% aqueous ammonium hydroxide (2:1:1) system. Combine the eluates as deter-

mined by thin layer chromatography and concentrate the combined eluates of the major component in vacuo to a residue comprising 1-N-ethylsisomicin (yield 1,25 g). Further purify by again chromatographing on 100 g of silica gel eluting with a chloroform-methanol-3.5% ammonium hydroxide (1:2:1) system. Pass the combined, like eluates (as determined by thin layer chromatography) through a column of basic ion exchange resin and lyophilize the eluate to obtain 1-N-ethylsisomicin (yield 0.54 g).

There is also a fermentation route to netilmicin as noted by Kleeman & Engel.

References

Merck Index 6322 DFU 3 (7) 527 (1978) Kleeman & Engel p. 627 PDR p. 1635 DOT 17 (8) 324 (1981) I.N. p. 666 **REM p. 1183**

Wright, J.J., Daniels, P.J.L., Mallams, A.K. and Nagabhushan, T.L.; U.S. Patent 4,002,742; January 11, 1977; assigned to Schering Corp.

NIALAMIDE

Therapeutic Function: Antidepressant

Chemical Name: 4-Pyridinecarboxylic acid 2-[3-oxo-3-[(phenylmethyl)-amino] propyl] hy-

drazide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51-12-7

Trade Name	Manufacturer	Country	Year Introduced
Niamid	Pfizer	U.S.	1959
Niamide	Pfizer	France	1960
Niamid	Taito-Pfizer	Japan	
Nuredal	Egyt	Hungary	_
Surgex	Firma	Italy	_

Raw Materials

Isoniazid Methyl acrylate Benzylamine

Manufacturing Process

Methyl acrylate, 28.0 g (0.4 mol) was added dropwise during one hour to a solution containing 54.8 g (0.4 mol) of isonicotinic acid hydrazide (isoniazid) and 10 ml of glacial acetic acid in 400 ml of tertiary butyl alcohol. The resulting solution then was heated for 18 hours on a steam bath. Concentration of the reaction mixture to 100 ml yielded 13.0 g of unreacted isonicotinic acid hydrazide. The filtrate was concentrated to a thick syrup which was triturated with anhydrous ether and recrystallized from isopropyl alcohol; MP 87°C to 88.5°C. Elemental analysis of the product gave 1-isonicotinyl-2-(β -carbomethoxyethyl)hydrazine.

A slurry of 7.5 g (0.034 mol) of 1-isonicotinyl-2-(carbomethoxyethyl)-hydrazine and 5 ml of benzylamine is heated with stirring at 130°C for three hours. The cooled mass is then recrystallized from ethyl acetate to yield white needles melting at 151.1°C to 152.1°C.

References

Merck Index 6330 Kleeman & Engel p. 628 OCDS Vol. 1 p. 254 (1977)

I.N. p. 667

Bloom, B.M. and Carnahan, R.E.; U.S. Patent 2,894,972; July 14, 1959; assigned to Chas. Pfizer & Co., Inc.

NIAPRAZINE

Therapeutic Function: Antihistamine

Chemical Name: 1-(4-Fluorophenyl)-4-[3-(3-pyridoyl)amino] butyl-piperazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27367-90-4

Trade Name	Manufacturer	Country	Year Introduced
Nopron	Carrion	France	1976
Norpron	Riom	Italy	-

Raw Materials

1-(4-Fluorophenyl)piperazine dihydrochloride Trioxymethylene Acetone Hydroxylamine hydrochloride Lithium aluminum hydride Nicotinic acid chloride

Manufacturing Process

1st Stage: 10 ml of concentrated (10 N) hydrochloric acid and 240 ml of acetone were added to a solution of 217.5 g (1 mol) of 1-(4-fluorophenyl) piperazine dihydrochloride in 400 ml of 96% ethanol. 50 g of powdered trioxymethylene were then added and the mixture was then slowly heated to reflux, which was maintained for 1 hour. A further 60 g of trioxymethylene were then added and heating to reflux was continued for a further 6 hours.

The mixture was then cooled, the precipitate formed was filtered off, washed with acetone and recrystallized from 96% ethanol.

The base was liberated from its salt by taking up the product in an aqueous solution of

sodium bicarbonate. The precipitate of the base thus obtained was recrystallized from petroleum ether to give 160 g of the desired product; melting point 46°C; yield 64%.

2nd Stage: 45.5 g (0.65 mol) of hydroxylamine hydrochloride were added to a solution of 128 g (0.5 mol) of the amino-ketone obtained in the preceding stage in 100 ml of ethanol and 40 ml of water. The mixture was allowed to react for 15 minutes at room temperature and was then heated to reflux for ½ hour. A part of the solvent was then distilled off and the product was then allowed to crystallize on cooling. After recrystallization from 96% ethanol, 117 g of the desired product were obtained; melting point 170°C; yield 77%.

3rd Stage: 93 g (0.35 mol) of the oxime obtained in the preceding stage, in the form of the base, were added in portions to a suspension of 17 g (0.45 mol) of lithium aluminum hydride in 400 ml of anhydrous ether. The mixture was then heated to reflux for 15 hours.

10 ml of ethyl acetate and then 50 ml of dilute caustic soda were added slowly with the usual precautions to the mixture. The organic phase was separated, dried over anhydrous Na₂SO₄, the solvent was distilled off and the residue obtained was distilled under reduced pressure to give 51 g of a nick oil; boiling point (2 mm Hg), 142°C to 143°C; yield 58%.

4th Stage: 10 ml of triethylamine were added in a solution of 25.2 g (0.1 mol) of the amine obtained in the preceding stage in 100 ml of anhydrous chloroform and the mixture was cooled to 2°C to 3°C. While maintaining this temperature, 17 g (0.12 mol) of nicotinic acid chloride were added with vigorous agitation.

After evaporation of the solvent, the residue was washed with water, the product taking the form of a mass. After recrystallization from ethyl acetate, a constant melting point of 131°C was obtained.

References

Merck Index 6331 Kleeman & Engel p. 628 DOT 13 (1) 29 (1977) I.N. p. 667

Mauvernay, R.Y., Busch, N., Simond, J. and Moleyre, J.; U.S. Patent 3,712,893; January 23, 1973; assigned to SA Centre Europeen De Recherches Mauvernay, CERM

NICARDIPINE

Therapeutic Function: Cerebral vasodilator

Chemical Name: 2,6-Dimethyl-4-(3-nitrophenyl)-3-methoxycarbonyl-1,4-dihydropyridine-

5-carboxylic acid-2 (N-benzyl-N-methylamino) ethyl ester hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55985-32-5

Trade Name	Manufacturer	Country	Year Introduced
Nicodel	Mitsui	Japan	1981
Perdipin	Yamanouchi	Japan	1981

Raw Materials

Acetoacetic acid N-benzyl-N-methylaminoethyl ester β-Aminocrotonic acid methyl ester m-Nitrobenzaldehvde

Manufacturing Process

A mixture of 4.98 g of acetoacetic acid N-benzyl-N-methylaminoethyl ester, 2.3 g of β aminocrotonic acid methyl ester, and 3 g of m-nitrobenzaldehyde was stirred for 6 hours at 100°C in an oil bath. The reaction mixture was subjected to a silica gel column chromatography (diameter 4 cm and height 25 cm) and then eluted with a 20:1 mixture of chloroform and acetone. The effluent containing the subject product was concentrated and checked by thin layer chromatography. The powdery product thus obtained was dissolved in acetone and after adjusting the solution with an ethanol solution saturated with hydrogen chloride to pH 1-2, the solution was concentrated to provide 2 g of 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methylester-5- β -(N-benzyl-N-methylamino)ethyl ester hydrochloride. The product thus obtained was then crystallized from an acetone mixture, melting point 136°C to 140°C (decomposed).

References

Merck Index 6334 DFU 2 (6) 409 (1977) (as Yc-93) & 4 (12) 911 (1979) OCDS Vol. 3 p. 150 (1984) DOT 18 (7) 325 (1982) I.N. p. 668

Murakami, M., Takahashi, K., Iwanami, M., Fujimoto, M., Shibanuma, T., Kawai, R. and Takenaka, T.; U.S. Patent 3,985,758; October 12, 1976; assigned to Yamanouchi Pharmaceutical Co., Ltd.

NICERGOLINE

Therapeutic Function: Peripheral vasodilator

Chemical Name: 10-methoxy-1,6-dimethylergoline-8β-methanol 5-bromonicotinate (ester)

Common Name: Nicotergoline; 1-methyllumilysergol-8-(5-bromonicotinate) 10-methyl ether

Structural Formula:

Chemical Abstracts Registry No.: 27848-84-6

Trade Name	Manufacturer	Country	Year Introduced
Sermion	Farmitalia	Italy	1974
Sermion	Specia	France	1975
Nicergolyn	Farnex	Italy	-
Nicotergoline	Carlo Erba	Italy	_
Varson	Almirall	Spain	_
Vasospan	Exa	Argentina	_

Raw Materials

Methanol 1-Methyl-lumilysergic acid Lithium aluminum hydride Hydrogen chloride 5-Bromonicotinyl chloride

Manufacturing Process

Preparation of 1-Methyl Lumilyseraic Acid 8-Methyl Ester-10-Methyl Ether: Into a suspension of 10 grams of 1-methyl-lumilysergic acid in 600 cc of absolute methanol a stream of anhydrous hydrogen chloride is bubbled for 1.5 hours with strong cooling. The stream of hydrogen chloride is stopped and the mixture is allowed to stand for 30 minutes at 0°C, and is evaporated in vacuo to dryness. The residue is taken up with ice-cooled water made alkaline with concentrated ammonia and extracted with chloroform. The combined chloroform extracts are washed first with a 5% aqueous solution of sodium bicarbonate, then with water, and are thereafter dried over anhydrous sodium sulfate and finally evaporated in vacuo to dryness.

Preparation of 1-Methyl Lumilysergol-10-Methyl Ether: To a boiling suspension of 2 grams of lithium aluminum hydride in 50 cc of anhydrous tetrahydrofuran, a solution of 1 gram of 1-methyl lumilysergic acid-8-methyl ester-10-methyl ether in 20 cc of anhydrous tetrahydrofuran is added dropwise and the resulting solution is refluxed for a further 2 hours. After cooling the resulting solution, aqueous tetrahydrofuran is added to destroy the excess reducing agent and the solution is filtered. Tetrahydrofuran is distilled off and the residue is recrystallized from acetone petroleum ether.

Preparation of Nicergoline: To a solution of 1-methyl lumilysergol-10-methyl ether in pyridine, 5-bromonicotinyl chloride is used as an acylating agent at room temperature. The mixture is stirred for 1 hour. Water and methanol are added and the resulting mixture is stirred for 1 hour, extracted wtih chloroform, and washed in sequence with 1% aqueous caustic soda, 5% aqueous sodium bicarbonate solution, and water. The resulting solution is dried over anhydrous sodium sulfate and the solvent is distilled off. By recrystallization of the residue from acetone petroleum ether, nicergoline is obtained, melting at 136° to 138°C.

References

Merck Index 6335 Kleeman & Engel p. 629 OCDS Vol. 2 p. 478 (1980) DOT 10 (12) 342 (1974) I.N. p. 668

Bernardi, L., Bosisio, G. and Goffredo, O.; U.S. Patent 3,228,943; January 11, 1966; assigned to Societá Farmaceutici Italia, Italy

NICERITROL

Therapeutic Function: Cholesterol reducing agent

Chemical Name: 3-pyridinecarboxylic acid 2,2-bis[[(3-pyridinylcarbonyl)oxy] methyl]-1,3-

propanediyl ester

Common Name: Pentaerythritol tetranicotinate

Structural Formula:

Chemical Abstracts Registry No.: 5868-05-3

Trade Neme	Manufacturer	Country	Year Introduced
Cardiolipol	Gremy/Longuet	France	1972
Perycit	Sanwa	Japan	1979
Pervoit	Tosi	Italy	1980
Pervoit	Astra	Sweden	_

Raw Materials

Nicotinic acid chloride Pentaerythritol Pyridine

Manufacturing Process

160 grams of nicotinic acid chloride is charged into and made to react with 35 grams of pentaerythritol dissolved in 600 grams of dried, stabilized chloroform and 100 grams of carefully dried pyridine. Pyridinehydrochloride, pyridine and the excess of nicotinic acid chloride are removed through repeated extraction with water at a pH of approximately 3. Pentaerythritol nicotinate remains in the chloroform phase and is extracted by forming the hydrochloric acid salt of the ester using 1,000 ml of aqueous HCl at a pH of 1. The strongly acid extract is thereafter extracted several times with toluene. The acid extract is allowed to stand at room temperature for several hours in the presence of active carbon and the substance known as Versenate, i.e., the disodium salt of ethylene diamine tetraacetic acid; it is then filtered and pentaerythritol nicotinate is precipitated as a white, amorphous substance using 25% w/v aqueous ammonia, while stirring. Recrystallization of the product from ethyl alcohol gives flaky crystals, according to British Patent 1,022,880.

References

Merck Index 6336 Kleeman & Engel p. 630

I.N. p. 668

AB Bofors, Sweden; British Patent 1,022,880; March 16, 1966 AB Bofors, Sweden; British Patent 1,053,689; January 4, 1967

NICLOSAMIDE

Therapeutic Function: Antheimintic

Chemical Name: 2',5-Dichloro-4'-nitrosalicylanilide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-65-7

Trade Name	Manufacturer	Country	Year Introduced
Yomesan	Bayer	W. Germany	1960
Yomesan	Bayer	U.K.	1961
Yomesan	Bayer	Italy	1962
Tredemine	Roger Bellon	France	1964
Niclocide	Miles	U.S.	1982
Anti-Tenia	Uranium	Turkey	-
Atenase	I.C.NUsafarma	Brazil	_
Radeverm	Arzneimittelwerk Dresden	E, Germany	_
Teniarene	A.M.S.A.	Italy	_
Tenisid	Liba	Turkey	_

Raw Materials

5-Chlorosalicylic acid 2-Chloro-4-nitroaniline

Phosphorus trichloride

Manufacturing Process

17.2 g of 5-chlorosalicylic acid and 20.8 g of 2-chloro-4-nitroaniline are dissolved in 250 ml of xylene. While boiling, there are introduced slowly 5 g of PCl₃. Heating is continued for 3 further hours. The mixture is then allowed to cool down and the crystals which separate are filtered off with suction. The crude product may be recrystallized from ethanol, melting at 233°C.

References

Merck Index 6356 Kleeman & Engel p. 630 PDR p. 1260 OCDS Vol. 2 p. 94 (1980) I.N. p. 669

REM p. 1236

Schraufstatter, E. and Gonnert, R.; U.S. Patent 3,147,300; September 1, 1964; assigned to Farbenfabriken Bayer A.G.

NICOMOL

Therapeutic Function: Anticholesterol

Chemical Name: Cyclohexanol-2,2,6,6-tetrakis(hydroxymethyl)tetranicotinate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27959-26-8

Trade Name	Manufacturer	Country	Year Introduced
Cholexamine	Kyorin	Japan	1971
Acenol	Kissei	Japan	1981
Nicolanta	Sawai	Japan	-

Raw Materials

2,2,6,6-Tetramethylolcyclohexanol Nicotinic acid chloride

Manufacturing Process

To a mixture of 60 cc of benzene, 40 cc of pyridine and 17 g of hydrochloric acid salt of nicotinic acid chloride, was added 4.5 g of 2,2,6,6-tetramethylolcyclohexanol, and the whole mixture was refuxed at 75°C to 80°C for 2.5 hours. After the mixture was cooled water was added. Precipitate formed was separated by filtration, washed thoroughly with water and dried. Recrystallization from dilute acetic acid gave 14 g of the final compound, melting point 177°C to 180°C.

References

Merck Index 6360 DOT 7 (5) 173 (1971)

I.N. p. 670

Irikura, T., Sato, S., Abe, Y. and Kasuga, K.; U.S. Patent 3,299,077; January 17, 1967; assigned to Kyorin Seiyaku KK

NICOTINYL ALCOHOL

Therapeutic Function: Peripheral vasodilator

Chemical Name: 3-pyridinemethanol

Common Name: 3-pyridylcarbinol

Structural Formula:

Chemical Abstracts Registry No.: 100-55-0

Trade Name	Manufacturer	Country	Year Introduced
Roniacol	Roche	U.S.	1949
Danaden	Cascan	W. Germany	_
Peritard	Ikapharm	Israel	_
Ronicol	Roche	U.K.	_
Thilocombin	Thilo	W. Germany	_

Raw Materials

3-Cvanopyridine Hydrogen Ethyl alcohol Nitrosyl chloride

Manufacturing Process

The catalyst is prepared by suspending 5 kg of catalyst grade charcoal in 200 liters of water, in a pressure vessel, and adding thereto 25 liters of 4% (as Pd metal) aqueous palladous chloride. Air is displaced from the vessel and then hydrogen is passed into the aqueous mixture at a pressure of 3 to 5 psi, while stirring, until no further absorption is noted and the chloride is completely reduced to metal.

To the aqueous suspension of the palladized charcoal catalyst thus obtained are added 20.8 kg of 3-cyano-pyridine (96% purity); and then are added 70 liters of a hydrochloric acid solution prepared by diluting 30 liters of 36% HCl with 40 liters of water. This represents approximately 1.75 mols of HCl for each mol of 3-cyano-pyridine. The suspension is maintained at 10° to 15°C and stirred continuously while introducing a current of hydrogen at a pressure of 3 to 5 psi. When absorption of hydrogen ceases and the 3-cyanopyridine is completely reduced, the reaction mixture is filtered to remove the catalyst. The filter cake is washed with 40 liters of water in two equal portions, and the wash water is added to the filtrate.

The combined liquors, which comprise an aqueous hydrochloric acid solution of 3-aminomethyl-pyridine hydrochloride, are then heated to a temperature of 60° to 65°C, and ethyl nitrite gas is passed into the heated solution. The ethyl nitrite is generated by placing 20 liters of 90% ethyl alcohol in a suitable vessel, diluting with 200 liters of water, and, while stirring, adding to the dilute alcohol 18.3 kg of nitrosyl chloride at the rate of 2.25 kg per hour. (The process using methyl nitrite is carried out by substituting a stoichiometrically equivalent quantity of methyl alcohol for the ethyl alcohol.)

When all the ethyl nitrite has been added, the reaction mixture is refluxed for approximately one hour, then concentrated to dryness under reduced pressure (25 to 30 mm Hg) and at a maximum temperature of 70°C. The crystalline residue is dissolved in 35 liters of water and adjusted to a pH of 8 to 9 by addition (with cooling and stirring) of 11 to 12 kg of caustic soda. The sodium chloride formed is filtered off, and the filter cake is washed with 20 liters of normal butyl alcohol. This wash liquid is used for the first extraction of the product from the aqueous filtrate. The filtrate is then further extracted with four successive 20-liter portions of n-butyl alcohol.

All the extracts are combined and concentrated in vacuo (100°C/20 mm) to remove the n-butyl alcohol. The residue is submitted to fractionation under reduced pressure. The forerun (up to 112°C/2 to 3 mm) consists of a small amount of n-butyl alcohol and some 3-pyridylcarbinol. The main fraction, boiling at 112° to 114°C/2 to 3 mm, consists of 3-pyridylcarbinol.

References

Merck Index 6369 Kleeman & Engel p. 633 I.N. p. 672 REM p. 852

Ruzicka, L. and Prelog, V.; U.S. Patent 2,509,171; May 23, 1950; assigned to Ciba Limited, Switzerland

Cohen, A.; U.S. Patent 2,520,037; August 22, 1950; assigned to Hoffmann-La Roche Inc. Schläpfer, R.; U.S. Patent 2,547,048; April 3, 1951; assigned to Hoffmann-La Roche Inc. Chase, G.O.; U.S. Patent 2,615,896; October 28, 1952; assigned to Hoffmann-La Roche Inc.

NIFEDIPINE

Therapeutic Function: Coronary vasodilator

Chemical Name: 1,4-dihydro-2,6-dimethyl-4-(2'-nitrophenyl)-3,5-pyridinedicarboxylic acid

dimethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21829-25-4

Trade Name	Manufacturer	Country	Year Introduced
Adalat	Bayer	W. Germany	1975
Adalat	Bayer	Italy	1976
Adalat	Bayer	Japan	1976
Adalat	Bayer	U.K.	1977
Adalate	Bayer	France	1979
Procardia	Pfizer	U .S .	1982
Alfadat	Alfa	Italy	_
Anifed	Zoja	Italy	_
Atanal	Sawai	Japan	_
Citilat	C.T.	Italy	-
Coral	Tosi	italy	_
Corinfar	Arzneimittelwerk Dresden	E. Germany	-
Nifedicor	Schiapparelli	Italy	-
Nifedin	Gentili	Italy	-
Nifelat	Sidus	Argentina	_
Oxcord	Biosintetica	Brazil	-

Raw Materials

2-Nitrobenzaldehyde Acetoacetic acid methyl ester Ammonia

Manufacturing Process

45 grams 2-nitrobenzaldehyde, 80 cc acetoacetic acid methyl ester, 75 cc methanol and 32 cc ammonia are heated under reflux for several hours, filtered off, cooled and, after

suction-filtration, 75 grams of yellow crystals of MP 172° to 174°C are obtained, according to U.S. Patent 3,485,847.

References

Merck Index 6374 DFU 6 (7) 427 (1981) Kleeman & Engel p. 633

PDR p. 1423

OCDS Vol. 2 p. 283 (1980)

DOT 8 (11) 438 (1972); 11 (4) 154 (1975) & 19 (3) 171 (1983)

I.N. p. 673

REM p. 862

Bossert, F. and Vater, W.; U.S. Patent 3,485,847; December 23, 1969; assigned to

Farbenfabriken Bayer AG, Germany

Bossert, F. and Vater, W.; U.S. Patent 3,488,359; January 6, 1970; assigned to Farben-

fabriken Bayer AG, Germany

Bossert, F. and Vater, W.; U.S. Patent 3,511,837; May 12, 1970; assigned to Farbenfabriken Bayer AG, Germany

NIFLUMIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: 2-[[3-(trifluoromethyl)phenyl] amino] -3-pyridinecarboxylic acid

Common Name: 2-[3-(trifluoromethyl)anilino] nicotinic acid

Structural Formula:

Chemical Abstracts Registry No.: 4394-00-7

Trade Name	Manufacturer	Country	Year Introduced
Nifluril	U.P.S.A.	France	1968
Actol	Von Heyden	W. Germany	1971
Flaminon	Squibb	Italy	1979
Forenol	Roemmers	Argentina .	_
Landruma	Landerlan	Spain	
Nifluran	Eczacibasi	Turkey	_
Niflux	Labofarma	Brazil	-

Raw Materials

Nicotinic acid m-Trifluoromethylaniline Potassium iodide

Manufacturing Process

Niflumic acid is prepared as follows: Nicotinic acid, m-trifluoromethylaniline, and potassium iodide are intimately mixed and heated on an oil bath at 140°C. The mixture melts

to give a dark red liquid. The temperature of the oil bath is allowed to fall to 100°C and is maintained at this temperature for an hour and a half. The mixture puffs up and forms a vellow crystalline mass. After cooling to ordinary temperature, this mass is ground up in a mortar and extracted several times with small volumes of ether to remove excess m-trifluoromethylaniline. The residue is then washed twice with 10 ml of distilled water to remove m-trifluoromethylaniline hydrochloride and potassium iodide, and finally twice with 10 ml of 95% alcohol to remove colored resinous contaminants. After drying at 100°C, 2-(mtrifluoromethylanilino)nicotinic acid is obtained as pale yellow needles (from 70% ethanol) melting at 204°C (Kofler block).

References

Merck Index 6377 Kleeman & Engel p. 634 OCDS Vol. 1 p. 256 (1977) DOT 4 (2) 82 (1968) I.N. p. 34

Hoffmann, C. and Faure, A.; U.S. Patent 3,415,834; December 10, 1968; assigned to Societe

anonyme dite: Laboratoires UPSA, France

NIFURATEL

Therapeutic Function: Vaginal antiinfective

Chemical Name: 5-[(methylthio)methyl]-3-[[(5-nitro-2-furanyl)methylene] amino]-2-

oxazolidinone

Common Name: Methylmercadone

Structural Formula:

Chemical Abstracts Registry No.: 4936-47-4

Trade Name	Manufacturer	Country	Year Introduced
Macmiror	Poli	Italy	1965
Inimur	Woelm	W. Germany	1969
Omnes	Fumouze	France	1971
Magmilor	Calmic	U.K.	-
Polmiror	Poli	Italy	_
Tydantil	Poli	Italy	-

Raw Materials

Epichlorohydrin Methyl mercaptan Hydrazine hydrate Diethyl carbonate 5-Nitro-2-furaldehyde

Manufacturing Process

In an initial step of reactions, methyl mercaptan is reacted with epichlorohydrin to give 1chloro-3-methylthio-2-propanol. That is reacted with hydrazine hydrate to give 3-methylmercapto-2-hydroxypropyl hydrazine.

11,8 grams of diethyl carbonate (0.1 mols) and a solution of sodium methoxide prepared from 0.12 gram of sodium in 4 cc of anhydrous methanol, were added to 13.2 grams of 3-methylmercapto-2-hydroxypropyl hydrazine. After the reaction vessel had been fitted with a Liebig condenser, the reaction mixture was heated by means of an oil bath which was gradually heated up to 110°C, to remove first methyl alcohol and then ethyl alcohol formed during the reaction. After about two-thirds of the theoretical amount of ethyl alcohol had been distilled off, the heating was discontinued and the reaction mixture was diluted with 50 cc of ethyl alcohol and poured into a 5-nitro-2-furfuraldehyde solution prepared by boiling for 30 minutes 0.1 mol of nitrofurfuraldehyde diacetate in 100 ml of ethyl alcohol and 50 ml of 1:10 sulfuric acid.

A vellow crystalline precipitate was immediately formed, which, after crystallization from acetic acid, melted at 182°C and consisted of N-(5-nitro-2-furfurylidene)-3-amino-5-methylmercaptomethyl-2-oxazolidinone.

References

Merck Index 6380 Kleeman & Engel p. 635 I.N. p. 674 Polichimica Sap, SpA, Italy; British Patent 969,126; September 9, 1964

NIFURFOLINE

Therapeutic Function: Antibacterial

Chemical Name: 3-(4-Morpholinylmethyl)-1-[[(5-nitro-2-furanyl)-methylene] amino] -2,4-

imidazolidinedione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3363-58-4

Trade Name	Manufacturer	Country	Year Introduced
Furobactil	Carrion	France	1974
Urbac	Merck-Clevenot	France	_

Raw Materials

Nitrofurantoin Formaldehyde Morpholine

Manufacturing Process

20 g of nitrofurantoin are placed in 100 cc of dimethylformamide and the solution is heated to 75°C to 80°C. This temperature is maintained and 100 cc of 40% formaldehyde are added. followed by 10 g of freshly distilled morpholine. The heating is continued for one hour, the mixture cooled and filtered and the precipitate obtained is washed with 95% alcohol. 20 g of the desired product are obtained as yellow crystals which melt at 206°C.

References

Merck Index 6381 I.N. p. 674

Laboratorios del Dr. Esteve S.A.; British Patent 1,245,095; September 2, 1971

NIFUROXAZIDE

Therapeutic Function: Antiseptic (intestinal)

Chemical Name: 4-Hydroxybenzoic acid [(5-nitro-2-furanyl)methylene] -hydrazide

Common Name; -

Structural Formula:

Chemical Abstracts Registry No.: 965-52-6

Trade Name	Manufacturer	Country	Year Introduced
Ercefuryl	Carriere	France	1964
Pentofuryl	Karlspharma	W. Germany	1978
Antinal	Roques	France	
Dicoferin	Andrade	Portugal	-
Enterokod	Genekod	France	-
Mucifural	Robert et Carriere	France	_

Raw Materials

4-Hydroxybenzhydrazide

5-Nitrofurfural

Manufacturing Process

13 g (0.1 mol) of 4-hydroxybenzhydrazide were dissolved in a boiling mixture of 100 ml of water and an equal volume of dimethylformamide. 15.5 g (0.11 mol) of 5-nitrofurfural dissolved in 31 ml of dimethylformamide were added to this hot solution, and the mixture was stirred and brought to the boiling point.

The mixture was then allowed to stand for fifteen hours. The precipitate was separated, washed twice with 100 ml of water, and recrystallized by dissolving it in 250 ml of hot pyridine and pouring this solution into 250 ml of water.

The 5-nitrofurfurylidene hydrazide of 4-hydroxybenzoic acid obtained was washed with water and methanol and was dried at a moderate temperature. It weighed 23 g (83.7% yield), and melted at 298°C. The percentage nitrogen determined by the micro-Dumas method was 15.41% (theory 15.27%).

References

Merck Index 6383 Kleeman & Engel p. 636 I.N. p. 675

Carron, M.C.E.; U.S. Patent 3,290,213; December 6, 1966; assigned to S.A. des Laboratoires Robert et Carriere (France)

NIFURTOINOL

Therapeutic Function: Antibacterial

Chemical Name: 3-(Hydroxymethyl)-1-[[(5-nitro-2-furanyl)methylene]-amino]-2,4-

imidazolidinedione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1088-92-2

Trade Name	Manufacturer	Country	Year introduced
Urfadyne	Zambon	W. Germany	1969
Urfadyn	Arsac	France	1976
Urfadyne	inpharzam	Switz.	1981
Levantin	Lek	Yugoslavia	_
Urfurine	Zambon	Spain	_

Raw Materials

Nitrofurantoin Formaldehyde

Manufacturing Process

Three liters of 5% formaldehyde solution (2,625 cc water and 375 cc 40% formalin) containing 50 g of nitrofurantoin is refluxed for about 5 minutes, then filtered hot and cooled. The crystallized product is filtered and washed with 1% formaldehyde solution. It is air dried and then further dried at 65°C. There is obtained 33 g of 3-hydroxymethyl-1-(5-nitrofurfurylideneamino) hydantoin.

References

Merck Index 6388

I.N. p. 676

Michels, J.G.; U.S. Patent 3,446,802; May 27, 1969; assigned to The Norwich Pharmacal Co.

NIFURZIDE

Therapeutic Function: Antibacterial, antidiarrheal

Chemical Name: N¹-[5'-Nitro-2'-thenoyl] -N²-[5"-nitro-2"-furylacrylidene] hydrazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 39978-42-2

Trade Name	Manufacturer	Country	Year Introduced
Ricridene	Anphar	Switz.	1981
Ricridene	Lipha	France	—

Raw Materials

5-Nitrothiophene carboxylic acid Ethanol Hydrazine 5-Nitro-2-furylacrolein

Manufacturing Process

(a) Ethyl-5-nitro-2-thiophene carboxylate:

17.4 g (mol/10 = 17.31 g) of 5-nitrothiophene carboxylic acid are dissolved in 85 ml of absolute ethanol. A stream of gaseous hydrochloric acid is caused to enter the boiling solution to the point of saturation, and for 5 hours. Evaporation to dryness takes place and then the solid residue is washed with a sodium bicarbonate solution. It is suction-filtered and washed with water. After drying, there are obtained 17.7 g of a yellow product with a melting point of 63°C to 65°C and the yield is 88% (theoretical yield = 88%).

The N'-(5'-nitro-2'-thenoyl)hydrazide is prepared by reacting hydrazine with ethyl 5-nitro-2-thiophene carboxylate.

(b) 6.3 g (mol/30 = 6.5 g) of N^1 -[5'-nitro-2'-thenoyl] hydrazide are dissolved in 100 ml of dry tetrahydrofuran. 5.6 g (mol/30 = 5.55 g) of 5-nitro-2-furyl acrolein in 56 ml of tetrahydrofuran are added. Heating under reflux takes place for 1 hour and, 25 minutes after starting the heating, the crystallization commences; the crystals are suction-filtered, washed with ether and dried. There are obtained 7.9 g (yield 70%—theoretical yield = 11.2 g) of a yellow solid of melting point 235°C to 236°C.

Recrystallization (tepid dimethylformamide + ether) leaves the melting point unchanged.

References

Merck Index 6389 DFU 6 (6) 358 (1981) Kleeman & Engel p. 637 DOT 17 (7) 288 (1981)

Szarvasi, E. and Fontaine, L.; U.S. Patents 3,847,911; November 12, 1974; and 3,914,379; October 21, 1975; both assigned to Lipha, Lyonnaise Industrielle Pharmaceutique

NIMETAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 1,3-Dihydro-1-methyl-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2011-67-8

Trade Name Manufacturer Country Year Introduced
Erimin Sumitomo Japan 1977

Raw Materials

1-Methyl-5-nitro-3-phenylindole-2-carbonitrile Hydrogen chloride Boron trifluoride etherate Chromic anhydride

Manufacturing Process

To a suspension of 73.9 g of 1-methyl-5-nitro-3-phenylindole-2-carbonitrile in 1.5 liters of dry tetrahydrofuran is added dropwise a solution of 126 g of boron trifluoride etherate in 220 ml of dry tetrahydrofuran with stirring for 2 hours. After addition, stirring is continued for an additional 3 hours. To the reaction mixture is added dropwise 370 ml of water and then 370 ml of concentrated hydrochloric acid with stirring under ice-cooling.

The resulting precipitate is collected by filtration, washed with water followed by ethanol, and dried to give 56.3 g of crude 2-aminomethyl-1-methyl-5-nitro-3-phenylindole hydrochloride, melting point 263°C to 267°C.

To a suspension of 6.5 g of 2-aminomethyl-1-methyl-5-nitro-3-phenylindole in 6.5 ml of glacial acetic acid is added dropwise a solution of 6.5 g of chromic anhydride in 6.5 ml of water at 20°C with stirring. The mixture is stirred at room temperature overnight and thereto is added 195 ml of water. To the mixture is added dropwise 100 ml of 28% ammonia water with stirring under cooling. The resultant precipitate is collected by filtration, washed with water and dried to give 5.9 g of a crude product having molting point 135°C to 140°C. Fractional recrystallization from ethanol gives 3.8 g of 1-methyl-7-nitro-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepine-2-one as yellow plates, melting point 153°C to 156°C. Further recrystallization from the same solvent gives pale yellow plates having melting point 156°C to 156.5°C.

References

Merck Index 6395 Kleemen & Engel p. 637 DOT 8 (9) 350 (1972); 11 (5) 195 (1975) & 13 (1) 31 (1977) I.N. p. 676

Yamamoto, H., Inaba, S., Okamoto, T., Hironashi, T., Ishizumi, K., Yamamoto, M., Maruyama, I., Mori, K. and Kobayashi, T.; U.S. Patents 3,770,767; November 6, 1973; and 3,652,551; March 28, 1972; both assigned to Sumitomo Chemical Co.

NIMORAZOLE

Therapeutic Function: Trichomonacidal

Chemical Name: N-\(\beta\)-Ethylmorpholino-(5)-nitroimidazole

Common Name: Nitrimidazine

Structural Formula:

Chemical Abstracts Registry No.: 6506-37-2

Trade Name	Manufacturer	Country	Year Introduced
Naxogin	Carlo Erba	U.K.	1970
Naxogin	Carlo Erba	Italy	1972
Esclama	Farmitalia	W. Germany	1973
Aceterol Forte	Bristoi Myers	W. Germany	1973
Naxofem	Ikapharm	Israel	_
Nulogyi	Bristol	U.K.	_
Sirledi	Causyth	Italy	-

Raw Materials

4(5)-Nitroimidazole sodium salt	Ethylene oxide
β -Chioroethyl morpholine	Morpholine
p-Toluene sulfonyl chloride	

Manufacturing Process

6 g 4(5)-nitroimidazole sodium salt and 9 g β -chloroethylmorpholine are allowed to react in 200 ml dry toluene. The mixture is refluxed for 50 hours, then cooled and filtered from the solid residue. The solvent is evaporated under reduced pressure. The half-solid product thus obtained solidifies by addition of petroleum ether and ethyl ether.

Crystallization from water results in N- β -ethylmorpholino-(5)-nitroimidazole (melting point 110°C to 111°C); from mother liquors N- β -ethylmorpholino-(4)-nitroimidazole (melting point 104°C to 106°C) is obtained.

The following procedure is given in U.S. Patent 3,458,528: 78 grams (0.675 mol) of 5-nitroimidazole is dissolved in 1,500 ml of acetic acid upon the addition of 72 ml (0.57 mol) of boron trifluoride etherate. 175 ml (3.5 mols) of ethylene oxide in 175 ml of hexane, in a dropping funnel topped with a cold finger, is added slowly over 1 hour to the above solution maintained at 32° to 35°C with a water cooling bath. The mixture is concentrated under high vacuum to 100 to 150 ml volume. The residue is diluted with 500 ml of water, neutralized to pH 7 with aqueous sodium hydroxide, and extracted with 1.5 liters of ethyl acetate. The extract is dried and evaporated to yield 1-(2'-hydroxyethyl)-5-nitroimidazole.

20 grams (0.127 mols) of 1-(2'-hydroxyethyl)-5-nitroimidazole in 50 ml of dry pyridine is reacted with 75 grams of p-toluene sulfonyl chloride at 15°C for 4 hours. The reaction mixture is poured into ice and water and the crystalline precipitate is separated by filtration, washed with water and air dried to yield 1-(2'-p-toluenesulfonyloxyethyl)-5-nitroimidazole; MP 126° to 127°C.

16 grams, (0.057 mol) of 1-(2'-p-toluenesulfonyloxyethyl)-5-nitroimidazole and 9.3 ml of morpholine are heated at 95°C for 4 hours. The reaction mixture is taken up in water and extracted with ether. Evaporation of the ether yields 1-(2'-N-morpholinylethyl)-5-nitroimidazole; MP 109° to 110°C.

References

Merck Index 6398 Kleeman & Engel p. 638 OCDS Vol. 2 p. 244 (1980)

DOT 6 (5) 185 (1970) & 7 (5) 193 (1971)

I.N.p. 677

Giraldi, P.N. and Mariotti, V.; U.S. Patent 3,399,193; August 27, 1968; assigned to Carlo Erba SpA, Italy

Gal, G.; U.S. Patent 3,458,528; July 29, 1969; assigned to Merck & Co., Inc.

Carlson, J.A., Hoff, D.R. and Rooney, C.S.; U.S. Patent 3,646,027; February 29, 1972; assigned to Merck & Co., Inc.

NIMUSTINE

Therapeutic Function: Antitumor, antileukemic

Chemical Name: 1-(2-Chloroethyl)-1-nitroso-3-[(2-methyl-4-aminopyrimidin-5-yl)-methyl]-

urea

Common Name: ACNU

Structural Formula:

Chemical Abstracts Registry No.: 42471-28-3

Trade Name Manufacturer Country Year Introduced

Nidran Sankyo Japan 1979

Raw Materials

1-(2-Chloroethyl)-3-[(2-methyl-4-aminopyridin-5-yl)methyl] urea Sodium nitrite Hydrogen chloride

Manufacturing Process

0.4 g of sodium nitrite was added with stirring, at 0°C to 5°C, to a solution of 450 mg of 1-(2-chloroethyl)-3-[(2-methyl-4-aminopyridin-5-yl)methyl] urea in 8 ml of 5% hydrochloric acid, and the reaction mixture was then stirred at 0°C to 10°C for an additional 1.5 hours.

After completion of the reaction, the reaction mixture was made alkaline by the addition of sodium carbonate, whereupon crystals separated out in situ. The crystals were recovered by filtration, washed with water and then recrystallized from 6 ml of ethanol, to give 0.1 g of the pale yellow pure desired product having a decomposition point of 125°C.

References

Merck Index 6399 DFU 3 (1) 52 (1978) Kleeman & Engel p. 639 DOT 16 (12) 426 (1980) I.N. p. 677 Sankyo Co., Ltd.; British Patent 1,374,344; November 20, 1974
Nakao, H., Arakawa, M. and Fukushima, M.; U.S. Patent 4,003,901; January 18, 1977; assigned to Sankyo Co., Ltd.

NITRAZEPAM

Therapeutic Function: Anticonvulsant, hypnotic

Chemical Name: 1,3-Dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 146-22-5

Trade Name	Manufacturer	Country	Year Introduced
Mogadan	Roche	W. Germany	1965
Mogadon	Roche	France	1965
Mogadon	Roche	U.K.	1965
Mogadon	Roche	İtaly	1967
Apodorm	A.L.	Norway	-
Arem	Lennon	S. Africa	-
Atempol	Norgine	U.K.	_
Benzalin	Shionogi	Japan	_
Cerson	Belupo	Yugoslavia	_
Dormicum	Glebe	Australia	
Dormo-Puren	Klinge	W. Germany	
Dumolid	Dumex	Denmark	_
Eatan-N	Desitin	W. Germany	_
Hipsal	Salvat	Spain	_
Hypnotin	Protea	S. Africa	-
Imadorm	Scheurich	W. Germany	-
Imeson	Desitin	W. Germany	_
Insomin	Orion	Finland	
lpersed	Sidus	Italy	-
Ipnozem	Biofarma	Turkey	_
Lagazepam	Lagap	Switz.	_
Lyladorm	M.P.S. Labs	S. Africa	
Mitidin	Savoma	Italy	_
Nelbon	Sankyo	Japan	_
Nelmat	Sawai	Japan	_
Neuchlonic	Taiyo	Japan	_
Nitrados	Berk	U.K.	_
Nitrempax	Lafi	Brazil	
Noctem	Alfa Farm.	Italy	_
Noctene	Rio Ethicals	S. Africa	_
Numbon	Ikapharm	Israel	
Ormodon	Ormed	S. Africa	-

Trade Name	Manufacturer	Country	Year Introduced
Pacisyn	Medica	Finland	·
Paxisyn	Syntetic	Denmark	_
Pelson	Infale	Spain	_
Persopir	ion	Italy	_
Prosonno	Von Boch	Italy	_
Quill	Ellea	Italy	_
Relact	Lemonier	Argentina	_
Remnos	D.D.S.A.	U.Ř.	_
Rindepres	Disprovent	Argentina	_
Somitran	Farmos	Finland	_
Somnased	Duncan Flockhart	U.K.	_
Somnite	Norgine	U.K.	_
Sonnolin	Dima	Italy	_
Surem	Galen	U.K.	_
Tri	Vita	Italy	
Unisomnia	Unigreg	U.K.	_

Raw Materials

2-Aminobenzophenone Glycine ethyl ester hydrochloride Nitric acid

Manufacturing Process

A mixture of 16.8 g of 2-aminobenzophenone, 11.9 g of glycine ethyl ester hydrochloride and 200 cc of pyridine was heated to reflux. After one hour, 20 cc of pyridine was distilled off. The solution was refluxed for 15 hours, then 11.9 g of glycine ethyl ester hydrochloride was added and the refluxing was continued for an additional 4 hours. The reaction mixture was continued for an additional 4 hours. The reaction mixture was concentrated in vacuo, then diluted with ether and water. The reaction product, 5-phenyl-3H-1,4-benzodiazepin-2(1H)-one, crystallized out, was filtered off, and then recrystallized from acetone in the form of colorless rhombic prisms, MP 182°C to 183°C.

48 g (0.2 mol) of 5-phenyl-3H-1,4-benzodiazepin-2(1H)-one was dissolved in 250 cc of concentrated sulfuric acid by stirring at 15°C for ½ hour. The solution was then cooled to 0°C and a mixture of 9.1 cc of fuming nitric acid (90%, sp. gr. = 1.50) and 11.8 cc of concentrated sulfuric acid was added dropwise with stirring, keeping the temperature of the reaction mixture between -5°C and 0°C. After completion of the addition of the nitric acid-sulfuric acid mixture, stirring was continued for 1 hour and the reaction mixture was stored in the refrigerator overnight.

The mixture was then added dropwise to 2 kg of crushed ice with stirring and cooling, keeping the temperature at 0°C. After 1 hour of stirring in the cold, 640 cc of concentrated ammonium hydroxide was added dropwise at 0°C to pH 8. Stirring was continued for ½ hour and the crude product was filtered off, washed with a small amount of ice water and sucked dry overnight. The crude product was suspended in a mixture of 100 cc of methylene chloride and 1,700 cc of alcohol. 50 g of decolorizing charcoal was added and the mixture was refluxed with stirring for 2 hours. After standing overnight at room temperature 15 g of diatomaceous earth filter aid was added and the refluxing was resumed for 1½ hours. The mixture was filtered while hot. The clear, light yellow filtrate was concentrated in vacuo on the steem bath with stirring to about 600 cc. The concentrate was stirred and cooled in ice for about 2 hours; the precipitated crystalline product was filtered off, washed with some petroleum ether and sucked dry. The product, 7-nitro-5-phenyl-3H-1,4-benzodiazepin-2(1H)-one, was recrystallized from a mixture of 1,000 cc of alcohol and 50 cc of methylene chloride to obtain white prisms melting at 224°C to 225°C.

References

Kieeman & Engel p. 640 OCDS Vol. 1 p. 366 (1977)

DOT 1 (4) 132 (1965) & 9 (6) 237 (1973)

I.N. p. 678 REM p. 1064

Kariss, J. and Newmark, H.L.; U.S. Patent 3,116,203; December 31, 1963; assigned to Hoffmann-LaRoche, Inc.

NITROFURANTOIN

Therapeutic Function: Urinary antibacterial

Chemical Name: 1-[[(5-nitro-2-furanyl)methylene]amino]-2,4-imidazolidinedione

Common Name: N-(5-nitro-2-furfurylidene)-1-aminohydantoin

Structural Formula:

Chemical Abstracts Registry No.: 67-20-9

Trade Name	Manufacturer	Country	Year Introduced
Furadantin	Norwich Eaton	U.\$.	1953
Furadoine	Oberval	France	1954
Trantoin	McKesson	U.S.	1969
Cyantin	Lederle	U.\$.	1970
Furachel	Rachelle	U.S.	1970
N-Toin	Upjohn	U. S .	1971
Parfuran	Warner Lambert	U.S.	1974
Alfuran	Alkaloid	Yugoslavia	_
Berkfurin	Berk	U.K.	
Ceduran	Cedona	Neth.	_
Chemiofuran	Ital farmaco	Italy	_
Chemiofurin	Torian	Spain	
Cistofuran	Crosara	Italy	_
Cystit	Heyden	W. Germany	-
Dantafur	Norwich-Eaton	U.S.	_
Fua Med	Med	W. Germany	_
Furadoine	Oberval	France	_
Furalan	Lannett	U.S.	_
Furaloid	Edwards	U.S.	_
Furanex	Elliott-Marion	Canada	_
Furanite	Saunders	Canada	
Furantoin	Sp ofa	Czechoslovakia	_
Furatin	Hemofarm	Yugoslavia	_
Furedan	Scharper	Italy	_
Furil	Off	Italy	_
Furobactina	Esteve	Spain	_
Furophen	Pharbil	Neth.	_
Gerofuran	Gerot	Austria	
Ituran	Promonta	W. Germany	_
Macrodantin	Eaton	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Microdoine	Gomenol	France	_
Micturol	Liade	Spain	-
Nephronex	Cortunon	Canada	_
Nierofu	Hoyer	W. Germany	_
Nifuran	Paul Maney	Canada	_
Nifurantin	Apogepha	E. Germany	-
Nitrofur C	Leiras	Finland	-
Novofuran	Novopharm	Canada	_
Phenurin	Merckle	W. Germany	_
Profura	Rachelle	U.S.	-
Trantoin	McKesson	U.S.	-
Trocurine	Labatec	Switz.	-
Urantoin	D.D.S.A.	U.K.	_
Uretoin	Tokyo Tanabe	Japan	-
Urodil	Pharma-Selz	W. Germany	
Urodin	Streuli	Switz.	_
Urofuran	Farmos	Finland	-
Urolisa	Lisafarma	Italy	-
Urolong	Thiemann	W. Germany	-
Uro-Tablinen	Sanorania	W. Germany	-
Uvamin	Mepha	Switz.	-

Raw Materials

n-Heptaldehyde

1-Aminohydantoin

5-Nitro-2-furaldoxime

Manufacturing Process

To a solution of 18.9 grams (0.166 mol) n-heptaldehyde in 25 ml of isopropanol is added, with stirring, a solution of 19.1 grams (0.166 mol) of 1-aminohydantoin in 110 ml water acidified with concentrated HCI. The heavy white precipitate formed is filtered and washed, until acid free, with small amounts of water and ether. The yield of N-(n-heptylidene)-1aminohydantoin is 14 grams of MP 150°C (with decomposition). This may be recrystallized from dimethylformamide.

A mixture of 2.5 grams (0.016 mol) of 5-nitro-2-furaldoxime, 3.9 grams (0.018 mol) of N-(n-heptylidene)-1-aminohydantoin and 5 cc of sulfuric acid (density 1.84) is placed in a 250 cc beaker. It is heated with stirring at steam bath temperature for about 1.5 hours. Upon cooling, a solid precipitates which is collected by filtration, washed with water, isopropanol and ether in turn and dried at 110°C for 4 hours. There is obtained N-(5-nitro-2-furfurylidene)-1-aminohydantoin in 96 to 98% yield, according to U.S. Patent 2,927,110.

References

Merck Index 6445 Kleeman & Engel p. 641 PDR pp. 1278, 1606 OCDS Vol. 1 p. 230 (1977) I.N. p. 680 **REM p. 1215**

Hayes, K.J.; U.S. Patent 2,610,181; September 9, 1952; assigned to Eaton Laboratories,

Michels, J.G.; U.S. Patent 2,898,335; August 4, 1959; assigned to The Norwich Pharmacal

Gever, G. and O'Keefe, C.; U.S. Patent 2,927,110; March 1, 1960; assigned to The Norwich Pharmacal Company

NITROFURAZONE

Therapeutic Function: Topical antiinfective

Chemical Name: 2-[(5-nitro-2-furanyl)methylene] hydrazinecarboxamide

Common Name: Nitrofural

Structural Formula:

Chemical Abstracts Registry No.: 59-87-0

Trade Name	Manufacturer	Country	Year Introduced
Furacin	Norwich Eaton	U.S.	1946
Actin-N	Chesebrough-Pond	U.S.	1981
Amifur	Norwich-Eaton	U.S.	_
Escofuron	Streuli	Switz.	_
Furesol	A.F.I.	Norway	_
Germex	Lennon	S. Africa	_
Monofuracin	Dainippon	Japan	
Muldacin	Mulda	Turkey	_
Nifucin	Jenapharm	E. Germany	_
Nifuzon	Pharmacia	Sweden	
Nitrozone	Century	U. S .	_
Yatrocin	Italfarmaco	Italy	_

Raw Materials

Semicarbazide hydrochloride 2-Formvl-5-nitrofuran

Manufacturing Process

A mixture of 43 grams of semicarbazide hydrochloride and 31 grams of sodium acetate is dissolved in 150 cc of water. The pH of this solution is approximately 5. Ethyl alcohol (95% by volume) in the amount of 250 cc is added and the mixture is stirred mechanically. A solution of 53.5 grams of carefully purified 2-formyl-5-nitrofuran in 250 cc of the said alcohol is added dropwise to the semicarbazide solution at room temperature. After completing the addition of the aldehyde solution, the mixture is stirred for another hour. The precipitate is removed from the reaction mixture by filtration. It is washed well with ethyl alcohol and dried to constant weight at 70°C in an oven. The product weighs 73 grams, corresponding to a yield of 97%. It is obtained in the form of pale yellow needles, which are not subjected to further purification, according to U.S. Patent 2,416,234.

References

Merck Index 6446 Kleeman & Engel p. 641 PDR p. 1278 OCDS Vol. 1 p. 229 (1977) I.N. p. 680 REM p. 1163

Stillman, W.B. and Scott, A.B.; U.S. Patent 2,416,234; February 18, 1947; assigned to Eaton Laboratories, Inc.

Gever, G. and O'Keefe, C.; U.S. Patent 2,927,110; March 1, 1960; assigned to The Norwich Pharmacal Company

NOMIFENSINE MALEATE

Therapeutic Function: Psychostimulant

Chemical Name: 8-amino-1,2,3,4-tetrahydro-2-methyl-4-phenyl-isoquinoline

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32795-47-4; 24526-64-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Alival	Hoechst	W. Germany	1976
Merital	Hoechst	U.K.	1977
Alival	Hoechst	France	1977
Psicronizer	Albert Pharma	Italy	1977
Merital	Hoechst	Canada	1982
Neurolene	Magis	Italy	_
Nomival	Leiras	Finland	_

Raw Materials

α-Bromoacetophenone Hydrogen Sodium borohydride (2-Nitrobenzyl)methylamine Maleic acid Sulfuric acid

Manufacturing Process

A solution of N-(2-aminobenzyl)-1-phenyl-2-methylaminoethanol-1 was prepared by the reaction of α-bromo-acetophenone and (2-nitrobenzyl)methylamine, followed by hydrogenation of the nitro group by means of nickel on diatomaceous earth at room temperature and reduction of the CO group by means of sodium borohydride. The intermediate thus produced was dissolved in 100 ml of methylene chloride and introduced dropwise into 125 ml of sulfuric acid at 10° to 15°C. After a short standing, the reaction mixture was poured onto ice and rendered alkaline by means of a sodium hydroxide solution. By extraction with ether, there was obtained 1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-amino-isoquinoline. The base is reacted with maleic acid to give the maleate; melting point of the maleate 199° to 201°C (from ethanol).

References

Merck Index 6515 DFU 1 (2) 72 (1976) Kleeman & Engel p. 642 PDR p. 941 DOT 13 (2) 77 (1977) I.N. p. 685

Farbwerke Hoechst AG, Germany; British Patent 1,164,192; September 17, 1969 Ehrhart, G., Schmitt, K., Hoffmann, I. and Ott, H.; U.S. Patent 3,577,424; May 4, 1971; assigned to Farbwerke Hoechst AG.

NONOXYNOL

Therapeutic Function: Spermatocide (vaginal)

Chemical Name: α-(Nonylphenyl)-ω-hydroxypoly(oxy-1,2-ethanediyl)

Common Name: -

Structural Formula:

$$c_9$$
H $_{19}$ — (осн $_2$ сн $_2$) $_n$ Он

Chemical Abstracts Registry No.: 26027-38-3

Trade Name	Manufacturer	Country	Year Introduced
Ortho-Delfen	Cilag	France	1971
Semicid	Whitehall	U.S.	1978
Intercept	Ortho	U.S.	1980
Gynol	Ortho	U.S.	1982
Shur-Seal	Milex	U.S.	1983
C-Film	Hommel	Switz.	=
Emko	Emko-Schering	U.S.	_
Encare Oval	Patentex	W. Germany	_
Glovan	Teva	Israel	_
Igepai	G.A.F.	U.S.	_
Ortho-Creme	Cilag	U.S.	_

Raw Materials

isononylphenol Sodium hydroxide Ethylene oxide

Manufacturing Process

220 parts of isononylphenol prepared by condensation of phenol with an olefin mixture obtained by polymerization of propylene and containing essentially isononylenes are caused to react with 0.5 part of caustic alkali powder. The whole is heated to about 130°C to 135°C and the water formed is removed under reduced pressure, while stirring. Thereupon, ethylene oxide is introduced into the melt, while well stirring, during which operation care must be taken, that the temperature of the reaction mass is maintained between 180°C and 200°C. When about 300 parts of ethylene oxide are taken up, the reaction is interrupted. A watersoluble oil is obtained.

References

Merck Index 6518 PDR pp. 1661, 1900 I.N. p. 686 REM p. 1163

Steindorff, A., Balle, G., Horst, K. and Michel, R.; U.S. Patent 2,413,477; September 3, 1940; assigned to General Aniline & Film Corp.

NORDAZEPAM

Therapeutic Function: Minor tranquilizer

Chemical Name: 7-Chloro-1,3-dihydro-5-phenyl-1(2H)-1,4-benzodiazepin-2-one

Common Name: Nordiazepam; desmethyldiazepam

Structural Formula:

Chemical Abstracts Registry No.: 1088-11-5

Trade Name	Manu facturer	Country	Year Introduced
Madar	Ravizza	Italy	1973
Vegesan	Mack	Switz.	1981

Raw Materials

(2-Benzoyl-4-chlorophenyl-carbamoylmethyl)carbamic acid benzyl ester Hydrogen bromide Acetic acid

Manufacturing Process

A solution of 3.1 g of (2-benzoyl-4-chlorophenyl-carbamoylmethyl)carbamic acid benzyl ester in 30 cc of 20% hydrobromic acid in glacial acetic acid was stirred for 45 minutes at room temperature. On addition of 175 cc of anhydrous ether, a gummy solid precipitated. After several minutes the ether solution was decanted. The resultant 5-chloro-2-gly-cylaminobenzophenone was not isolated, but about 155 cc of ether was added to the residue and after chilling in an ice bath, 10% sodium hydroxide was added until the mixture was alkaline. The ether layer was then separated, washed twice with water and dried over sodium sulfate. After filtration, the ether solution was concentrated to dryness in vacuo. The residue was crystallized from benzene to yield 7-chloro-5-phenyl-3H-1,4-benzodiazepin-2(1H)-one.

References

Merck Index 6531 DOT 9 (6) 239 (1973)

I.N. p. 688

Stempel, A.; U.S. Patent 3,202,699; August 24, 1965; assigned to Hoffmann-LaRoche Inc.

NORETHANDROLONE

Therapeutic Function: Androgen

Chemical Name: 17-Hydroxy-19-norpregn-4-ene-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52-78-8

Trade Name	Manufacturer	Country	Year Introduced
Nilevar	Searle	U.S.	1956
Nilevar	Searle	France	1960

Raw Materials

Norethindrone Hydrogen

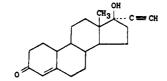
Manufacturing Process

Through a mixture of 11 parts of charcoal containing 5% palladium and 2,000 parts of dioxane as stream of hydrogen is passed for 60 minutes. Then 86 parts of 17-ethynyl-19-nortestosterone (Norethindrone) in 1,500 parts of dioxane are added and the mixture is hydrogenated until 2 mols of hydrogen are absorbed. The catalyst is then removed by filtration and the solvent is evaporated under vacuum. The crystalline residue is dissolved in 2,700 parts of benzene and thus applied to a chromatography column containing 5,000 parts of silica gel. The column is washed with 2,700 parts of benzene, 4,500 parts of a 10% solution of ethyl acetate in benzene and 27,000 parts of a 20% solution of ethyl acetate in benzene and is then eluted with 30,000 parts of a 30% solution of ethyl acetate in benzene. The resulting eluate is concentrated under vacuum and the residue is recrystallized from methanol and dried to constant weight at 75°C. The 17-ethyl-19-nortestosterone thus obtained melts at about 140°C to 141°C.

References

Merck Index 6537 Kleeman & Engel p. 644 OCDS Vol. 1 p. 170 (1977) I.N. p. 688

Colton, F.B.; U.S. Patent 2,721,871; October 25, 1955; assigned to G.D. Searle & Co.


NORETHINDRONE

Therapeutic Function: Progestin

Chemical Name: 17-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one

Common Name: Norethisteron

Structural Formula:

Chemical Abstracts Registry No.: 68-22-4

Trade Name	Manufacturer	Country	Year Introduced
Norlutin	Parke Davis	U.S.	1957
Ortho-Novum	Ortho	U.S.	1963
Norinyl	Syntex	U.S.	1964

Trade Name	Manufacturer	Country	Year Introduced
Nor-QD	Syntex	U.S.	1973
Brevicon	Syntex	U.S.	_
Conceplan	Gruenenthal	W. Germany	_
Gesta-Plan	D.A.K.	Denmark	_
Micronor	Ethnor	Australia	_
Micronor	Ortho	U.S.	_
Micronovum	Cilag	W. Germany	-
Modicon	Ortho	U.S.	-
Monogest	Spofa	Czechosłovakia	_
Norfor	Gremy-Longuet	France	_
Norgestin	Janus	Italy	_
Noriday	Syntex	U.S.	_
Norlestrin	Parke Davis	U.S.	_
Ovcon	Mead Johnson	U.S.	-
Primolut N	Schering	U.K.	_
Tri-Norinyl	Syntex	U.S.	_
Utovlan	Syntex	U.K.	-

Raw Materials

3-Methoxyestrone Ammonia Ethyl orthoformate Acetylene

Lithium Chromic scid Potassium

Manufacturing Process

7.5 grams of 3-methoxyestrone were dissolved in 750 cc of anhydrous dioxane in a threeneck flask, placed in a box and insulated with cotton wool. 2 liters of anhydrous liquid ammonia and 15 grams of lithium metal in the form of wire were added to the mechanically stirred solution. After stirring for one hour, 150 cc of absolute ethanol were added at such speed that no bumping occurred; when the blue color had disappeared, 500 cc of water were added in the same way. The ammonia was evaporated on the steam bath and the product collected with 2 liters of water. It was extracted with ether and then with ethyl acetate and the combined extract was washed to neutral and evaporated to dryness under vacuum, leaving 7.4 grams of a slightly yellow oil.

The oil thus obtained was dissolved in 400 cc of methanol and refluxed during one hour with 150 cc of 4N hydrochloric acid. The mixture was poured into a sodium chloride solution and extracted with ethyl acetate, washed to neutral, dried and evaporated to dryness. The product was a yellow oil which showed an ultraviolet absorption maximum characteristic of a Δ^4 -3-ketone.

A solution of 2.7 grams of chromic acid in 20 cc of water and 50 cc of acetic acid was added to the stirred solution of the above oil in 100 cc of acetic acid, maintaining the temperature below 20°C. After 90 minutes standing, 50 cc of methanol were added and the mixture concentrated under vacuum (20 mm). The residue was extracted with ether, washed to neutral and evaporated to dryness. The residual semicrystalline product (7 grams) was chromatographed over alumina and the fractions eluted with ether yielded 3.2 grams of Δ^4 -19-norandrosten-3,17-dione having a MP of 163° to 167°C.

A solution of 2 grams of Δ^4 -19-norandrosten-3,17-dione and 0,4 gram of pyridine hydrochloride in 50 cc of benzene free of thiophene was made free of moisture by distilling a small portion; 4 cc of absolute alcohol and 4 cc of ethyl orthoformate were added and the mixture was refluxed during 3 hours. 5 cc of the mixture were then distilled and after adding an additional 4 cc of ethyl orthoformate the refluxing was continued for 2 hours longer. The mixture was evaporated to dryness under vacuum and the residue was taken up in ether, washed, dried and evaporated to dryness. The residue was crystallized from

hexane-acetone and then from ether to give $\Delta^{3,5}$ -19-nor-3-ethoxy-androstadien-17-one with a MP of 140° to 142°C.

One gram of potassium metal was dissolved in 25 cc of tertiary amyl alcohol by heating under an atmosphere of nitrogen. One gram of $\Delta^{3,5}$ -19-nor-3-ethoxyandrostadien-17-one in 25 cc of anhydrous toluene was added and nitrogen was passed during 15 minutes. Then acetylene (especially dried and purified) was passed during 14 hours through the mechanically stirred solution, at room temperature.

The mixture was poured in water, acidified to pH 1 with dilute hydrochloric acid, heated on the steam bath for 30 minutes and then subjected to steam distillation to remove the organic solvents. The residue was filtered, dried and recystallized several times from ethyl acetate. The Δ^4 -19-nor-17 α -ethinylandrosten-17 β -ol-3-one thus obtained had a MP of 198° to 200°C (in sulfuric acid bath), 200° to 204°C (Kofler).

References

Merck Index 6538 Kleeman & Engel p. 644 PDR pp. 1104, 1297, 1358, 1372, 1793 OCDS Vol. 1 p. 164 (1977) & 2, 145 (1980) DOT 4 (1) 19 (1968) & 9 (4) 144 (1973) I.N. p. 688 REM p. 992

Djerassi, C., Miramontes, L. and Rosenkranz, G.; U.S. Patent 2,744,122; May 1, 1956; assigned to Syntex SA, Mexico

de Ruggieri, P.; U.S. Patent 2,849,462; August 26, 1958

NORETHINDRONE ACETATE

Chemical Abstracts Registry No.: 51-98-9

Trade Name	Manufacturer	Country	Year Introduced
Norlestrin	Parke Davis	U,S.	1964
Milligynon	Schering	France	1978
Aygestrin	Ayerst	U.S.	1982
Brevicon	Syntex	U.S.	
Norlutin-A	Parke Davis	U.K.	_
Primolut-Nor	Schering	W. Germany	_

Raw Materials

Noreth indrone Acetic anhydride Hydrogen chloride

Manufacturing Process

2.98 grams of 17-ethinyl-19-nor-testosterone (norethindrone) are suspended in 30 cc of acetic anhydride and a solution of 1.9 grams of p-toluenesulfonic acid in 19 cc of acetic anhydride is gradually added while cooling and stirring. Complete dissolution takes place after about one hour. After additional 30 to 60 minutes, a thick, pasty mass separates. The reaction is permitted to continue for a total period of 5 hours, whereupon water is added to the reaction mixture and the 3-enol-17-diacetate which separates after stirring for 1 to 2 hours is filtered off, washed until neutral and dried in vacuo over calcium chloride at room temperature.

In order to prepare the monoacetate, the crude diacetate is suspended in 150 cc of methanol and, after adding 1.5 cc, concentrated hydrochloric acid, heated to boiling for 15 minutes in a nitrogen atmosphere. The crude monoacetate which separates upon the addition of water after cooling is filtered off, washed and dried in vacuo over calcium chloride at room temperature. The pure 17-acetate, obtained after repeated recrystallizations from methylene chloride/hexane has a MP of 161° to 162°C.

References

Merck Index 6538 Kleeman & Engel p. 645 PDR pp. 615, 1378 OCDS Vol. 1 p. 165 (1977) I.N. p. 689 REM p. 992

Engelfried, O., Kaspar, E., Schenck, M. and Popper, A.; U.S. Patent 2,964,537; Dec. 13, 1960; assigned to Schering AG, Germany

NORETHYNODREL

Therapeutic Function: Progestin

Chemical Name: 17-hydroxy-19-nor-17α-pregn-5(10)-en-20-yn-3-one

Common Name: 13-methyl-17-ethynyl-17-hydroxy-1,2,3,4,6,7,8,9,11,12,13,14,16,17-tetra-

decahydro-15H-cyclopenta(α)phenanthren-3-one

Structural Formula:

Chemical Abstracts Registry No.: 68-23-5

Trade Name	Manufacturer	Country	Year Introduced
Enovid	Searle	U.S.	1957

Raw Materials

3-Methoxy-17-oxo-2,5-estradiene Acetylene Acetic acid

Manufacturing Process

Convenient starting materials are the ethers of 3-hydroxy-13-methyl-1,4,6,7,8,9,11,12,13,-14,16,17-dodecahydro-15H-cyclopenta(α)phenanthren-17-one described in U.S. Patent 2,655,518, according to U.S. Patent 2,691,028 where the following preparation is also described. The methyl ether is also designated as 3-methoxy-17-oxo-2,5-estradiene.

A stirred solution of 10.6 parts of 3-methoxy-13-methyl-1,4,6,7,8,9,11,12,13,14,16,17-dodecahydro-15H-cyclopenta(α)phenanthren-17-one in 700 parts of anhydrous ether and 45 parts of dry toluene is cooled to 0°C and saturated with dry acetylene. While a slow stream of acetylene is passed through the reaction mixture, a solution of 20 parts of potassium t-amylate in 135 parts of anhydrous t-pentanol is added in the course of 15 minutes with stirring. Passage of acetylene and stirring are continued for an additional 4½ hours. After standing at 0°C for 16 hours, the mixture is washed with aqueous ammonium chloride solution until the aqueous phase is neutral, then with water and saturated sodium chloride solution. The organic layer is dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to a residue of about 250 parts. 500 parts of petroleum ether are added and after standing at 0°C for an hour, the mixture is filtered. The collected precipitate is recrystallized from ether. The resulting 3-methoxy-13-methyl-17-ethynyl-1,4,6,7,8,-9,11,12,13,14,16,17-dodecahydro-15H-cyclopenta(α)phenanthren-17-ol melts at about 181° to 182°C.

To a refluxing solution of 10 parts of 3-methoxy-17-ethynyl-17-hydroxy-13-methyl-1,4,6,7,-8,9,11,12,13,14,16,17-dodecahydro-15H-cyclopenta(α)phenanthrene in 500 parts of methanol, 20 parts of glacial acetic acid are added. Refluxing is continued for 7 minutes, water is added to the point of turbidity and the reaction mixture is permitted to come to room temperature. The precipitate is collected on a filter and recrystallized from aqueous methanol. The 13-methyl-17-ethynyl-17-hydroxy-1,2,3,4,6,7,8,9,11,12,13,14,16,17-tetradecahydro-15H-cyclopenta(α)phenanthren-3-one thus obtained melts at about 169° to 170°C.

References

Merck Index 6539 Kleeman & Engel p. 647 PDR p. 1680 OCDS Vol. 1 p. 186 (1977) DOT 4 (1) 22 (1968) I.N. p. 689 REM p. 993

Colton, F.B.; U.S. Patent 2,691,028; October 5, 1954; assigned to G.D. Searle & Co. Colton, F.B.; U.S. Patent 2,725,389; November 29, 1955; assigned to G.D. Searle & Co.

NORFENEFRINE

Therapeutic Function: Adrenergic

Chemical Name: α-(Aminomethyl)-3-hydroxybenzenemethanol

Common Name: Norphenylephrine

Structural Formula:

Chemical Abstracts Registry No.: 536-21-0; 4779-94-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Zordel	Grelan	Japan	1970
Coritat	Green Cross	Japan	_
Esbufon	Schaper & Brummer	W. Germany	_
Euro-Cir	Virgiliano	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Molycor R	Mepha	Switz.	_
Nevadrai	Pharmacia	Sweden	_
Normetolo	Selvi	Italy	_
Novadral	Goedecke	W. Germany	_
Stagurai	Stada	W. Germany	_
Sympatosan	Kwizda	Austria	-
Tonolift	Teisan	Japan	_

Raw Materials

m-Acetoxyacetophenone Bromine
Sodium iodide Hexamethylene tetramine
Hydrogen

Manufacturing Process

100 parts of the hydrochloride of meta-hydroxy-ω-aminoacetophenone of melting point 220°C to 222°C (obtainable by brominating meta-acetoxyacetophenone, causing the bromoketone to react with sodium iodide, adding hexamethylenetetramine to the iodide in an indifferent solvent and scission of the addition product in acid solution) are shaken in aqueous solution with hydrogen in presence of 2 parts of palladium catalyst until 2 atomic proportions of hydrogen have been absorbed. The catalyst is now filtered and the filtrate evaporated in a vacuum; and the crystalline and completely dry residue is dissolved in absolute alcohol and a precipitate is produced by adding dry ether. The hydrochloride of meta-hydroxyphenylethanolamine thus obtained forms white crystals of melting point 159°C to 160°C.

References

Merck Index 6540 Kleeman & Engel p. 647 I.N. p. 689

Legerlotz, H.; U.S. Patent 2,312,916; March 2, 1943; assigned to Ciba Pharmaceutical Products Inc.

NORFLOXACIN

Therapeutic Function: Antibacterial

Chemical Name: 1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecar-

boxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 70458-96-7

Trade Name	Manufacturer	Country	Year Introduced
Noroxin	MSD	Italy	1983

Raw Materials

7-Chloro-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid Piperazine

Manufacturing Process

36 g (0.134 mol) of 7-chloro-1-ethyl-6-fluoro-4-oxo-1, A-dihydroquinoline-3-carboxylic acid, 46 g of piperazine and 210 cm³ of pyridine were heated under reflux for 6 hours, while stirring. After the starting material had dissolved, a precipitate appeared after heating for about 2 hours 30 minutes. The major part of the solvent was removed by concentration in vacuo (15 mm Hg; 100°C). In order to remove the pyridine as completely as possible, the residue was taken up in 200 cm³ of water and the concentration in vacuo was repeated.

The residue, resuspended in 150 cm³ of water, was stirred. 150 cm³ of 2N NaOH were added thereto. The solution, which was slightly turbid, was treated with 5 g of animal charcoal and stirred for 30 minutes. After filtration, the pH was brought to 7.2 by adding acetic acid, while stirring. The precipitate was filtered off, washed with water and dissolved in 250 cm³ of a 10% aqueous acetic acid. The acid solution (pH 4.4) was filtered and then brought to pH 7.2 by gradually added 2 N NaOH.

The suspension was heated to 90°C, while stirring. The crystals were separated and recrystal-lized from 280 cm³ of a mixture of DMF (1 volume) and ethanol (4 volumes). After drying in vacuo over phosphorus pentoxide, 29.5 g (yield 70%) of 1-ethyl-6-fluoro-4-oxo-7-pi-perazinyl-1,4-dihydroquinoline-3-carboxylic acid, melting point 222°C, were obtained.

In air, this product is hygroscopic and gives a hemihydrate.

References

Merck Index 6541 DFU 7 (8) 586 (1982) DOT 19 (6) 341 (1983)

I.N. p. 689

Pesson, M.; U.S. Patent 4,292,317; September 29, 1981; assigned to Laboratorie Roger Bellon (France) and Dainippon Pharmaceutical (Japan)

NORGESTREL

Therapeutic Function: Progestin

Chemical Name: 13-ethyl-17-hydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one

Common Name: 17α-ethynyl-18-homo-19-nortestosterone

Structural Formula:

Chemical Abstracts Registry No.: 797-63-7

Trade Name	Manufacturer	Country	Year Introduced
Ovrette	Wyeth	U.S.	1968
Eugynon	Schering	Italy	1969
Neogest	Schering	U.K.	1974
Microlut	Schering	W. Germany	1974
Planovar	Wyeth	Japan	1979
Duoluton	Schering	Japan	1979
Prempak	Ayerst	U.K.	_

Raw Materials

(±)-1.4-Dihydro-17α-ethynyl-18-homo-oestradiol 3-methyl ether Hydrogen chloride

Manufacturing Process

To 0.7 gram of (±)-1.4-dihydro-17α-ethynyl-18-homo-oestradiol 3-methyl ether in 36 cc methanol was added 1.6 cc water and 2.4 cc concentrated hydrochloric acid. After standing at room temperature for 2 hours ether was added, and the washed and dried ethereal solution was evaporated, yielding a gum which was dissolved in 5 cc benzene and the solution absorbed on 50 grams of an activated fuller's earth. Elution with light petroleum containing increasing proportions of benzene gave a crystalline by-product: further elution with benzene containing a small proportion of ether gave a crystalline product which was recrystallized from ethyl acetate, yielding 0.11 gram of (±)-17α-ethynyl-18-homo-19-nortestosterone, MP 203° to 206°C.

References

Merck Index 6543 Kleeman & Engel p. 648 PDR pp. 1952, 1958, 1965

OCDS Vol. 1 p. 167 (1977); 2, 151 (1980) & 3, 84 (1984)

DOT 4 (1) 24 (1968)

I.N. p. 690 REM p. 993

Hughes, G.A. and Smith, H.; British Patent 1,041,280; September 1, 1966

NORTRIPTYLINE

Therapeutic Function: Antidepressant

Chemical Name: 3-(10,11-Dihydro-5H-dibenzo[a,d] cyclohepten-5-ylidene)-N-methyl-1-pro-

panamine

Common Name: Desmethylamitriptyline; desitriptyline

Structural Formula:

CHCH2 CH2 MHCH3

Chemical Abstracts Registry No.: 72-69-5; 894-71-3 (Hydrochloride)

Trade Neme	Manufacturer	Country	Year Introduced
Aventyl	Lilly	U.K.	1963
Nortrilen	Tropon	W. Germany	1964
Aventyl	Lilly	U.S.	1965
Psychosty!	Lilly	France	1966
Vividyl	Lilly	Italy	1967
Noritren	Dainippon	Japan	1971
Altilev	Squibb	France	1976
Pamelor	\$andoz	U.S.	1977
Allegron	Dista	U.K.	_
Ateben	Sintyal	Argentina	-
Martimil	Lafarquin	Spain	_
Nortylin	lkapharm	Israel	_
Norzepine	Bial	Portugal	-
Sensaval	Pharmacia	Sweden	-

Raw Meterials

5-(3-Chloropropylidene)dibenzo[a,d] cyclohepta[1,4] diene Methylamine

Manufacturing Process

A mixture of 114.5 g of 5-(3-chloropropylidene)dibenzo[a,d] cyclohepta[1,4] diene, 75 ml of benzene, and about 400 ml of methylamine is heated in an autoclave at 120°C for six hours. The excess methylamine is distilled from the reaction mixture under vacuum and the residue is stirred with 300 ml of water. Acidification of the mixture with hydrochloric acid causes the separation of the hydrochloride of 5-(3-methylaminopropylidene)dibenzo[a,d]cyclohepta[1,4] diene. The product is collected by filtration and is purified by recrystallization from a mixture of absolute ethanol and ethyl acetate. MP 210°C to 212°C.

References

Merck Index 6558 Kleeman & Engel p. 651 PDR p. 1588

OCDS Vol. 1 p. 151 (1977)

DOT 1 (1) 22 (1965) & 9 (6) 219 (1973)

I.N. p. 691 REM p. 1096

Peters, L.R. and Hennion, G.F.; U.S. Patent 3,281,469; October 25, 1966; assigned to Eli Lilly & Co.

NOVOBIOCIN

Therapeutic Function: Antibiotic

Chemical Name: N-[7-[[3-O-(aminocarbonyl)-5,5-di-C-methyl-4-O-methyl-α-L-lyxopyranosyl] oxy] -4-hydroxy-8-methyl-2-oxo-2H-1-benzopyran-3-yl] -4-hydroxy-3-(3-methyl-

2-butenyl)benzamide

Common Name: Streptonivicin

Structural Formula:

Chemical Abstracts Registry No.: 303-81-1

Trade Name	Manufacturer	Country	Year Introduced
Albamycin	Upjohn	U.S.	1956
Cathomycin	MSD	U.S.	1956
Cathomycine	Theraplix	France	1957
Albiocin	Upjohn	Japan	_
Inamycin	Hoech st	W. Germany	-
Robiocina	San Carlo	Italy	· -
Stilbiocina	Donatello	Italy	_

Raw Materials

Bacterium Streptomyces spheroides Soybean meal Dextrose

Manufacturing Process

The preparation of novobiocin by fermentation is described in U.S. Patent 3,049,534 as follows: A medium containing 2% soybean meal, 1% dextrose, 0.25% sodium chloride and 0.75% distiller's solubles was made up in tap water. About 25 ml of the prepared medium was placed in a 75 ml vial and sterilized by heating at 120°C for 20 minutes. The sterilized medium was then inoculated with a vegetative culture of *Streptomyces spheroides* MA-319 (NRRL 2449), and the vial loosely stoppered with cotton. The vial was then placed on a shaking machine with an amplitude of 1½ inches at 28°C for 6 days. At the end of this fermentation time, the fermented broth was assayed using the cylinder-plate method with *Bacillus megatherium* ATCC 9885 as the assay organism and found to have an activity of 600 units/ml or 30 mcg/ml of novobiocin. The production of larger quantities of novobiocin by submerged fermentation in suitable tanks is also described in U.S. Patent 3,049,534.

The preparation of novobiocin by a synthetic route is described in U.S. Patent 2,966,484, as well as in U.S. Patent 2,925,411.

References

Merck Index 6563 Kleeman & Engel p. 652 I.N. p. 693 REM p. 1212

Stammer, C.H.; U.S. Patent 2,925,411; February 16, 1960

Walton, E. and Spencer, C.; U.S. Patent 2,966,484; December 27, 1960; assigned to Merck & Co., Inc.

Caron, E.L., Johnson, J.L., Hinman, J.W. and Hoeksema, H.; U.S. Patent 2,983,723; May 9, 1961; assigned to The Upjohn Company

Wolf, F.J.; U.S. Patent 3,000,873; September 19, 1961; assigned to Merck & Co., Inc. Stammer, C.H. and Miller, I.M.; U.S. Patent 3,049,475; August 14, 1962; assigned to Merck

& Co., Inc.

Willer, J.M.: U.S. Patent 3.049.476: August 14, 1962; assigned to Merck & Co., Inc.

Miller, I.M.; U.S. Patent 3,049,476; August 14, 1962; assigned to Merck & Co., Inc. Wallick, H.; U.S. Patent 3,049,534; August 14, 1962; assigned to Merck & Co., Inc.

French, G.H.; U.S. Patent 3,068,221; December 11, 1962; assigned to The Upjohn Co.

NOXIPTILIN

Therapeutic Function: Psychostimulant

Chemical Name: 10,11-dihydro-5H-dibenzo [α,d] cyclohepten-5-one O-[2-(dimethylamino)-

ethyl] oxime

Common Name: Dibenzoxin

Structural Formula:

Chemical Abstracts Registry No.: 3362-45-6; 4985-15-3 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Agedal	Bayer	W. Germany	1969
Agedal	Bayer	Italy	1975
Nogedal	Theraplix	France	1978
Elronon	Deutsches Hydrierwerk	E. Germany	_
Sipcar	Bernabo	Argentina	_

Raw Materials

5-Keto-10,11-dihydrodibenzo(a,d)cycloheptene Hydroxyamine hydrochloride Sodium amide β-(Dimethylamino)ethyl chloride

Manufacturing Process

15 grams 5-keto-10,11-dihydrodibenzo-(a,d)cycloheptene dissolved in 225 ml of pyridine was mixed with 15 grams hydroxylamine hydrochloride, and the mixture was boiled under reflux for 22 hours. The bulk of the pyridine was then distilled off under reduced pressure, the residue was poured into water, and the aqueous mixture thus formed was extracted with ether.

The ether extract was washed with water, dried and heated to distill off the ether. The solid residue was recrystallized from a mixture of benzene and light petroleum (BP 40° to 60°C). 12.8 grams of the recrystallized oxime had a MP of 167° to 169°C.

A solution of 22 grams of the above described 5-oximino-10,11-dihydrodibenzo-(a,d)cycloheptene in 120 ml benzene was treated with 7.8 grams sodamide and the mixture was stirred and heated under reflux for 2 hours. At this stage, the 14.4 grams of hydrochloride of β -(dimethylamino)ethyl chloride was added and heating under reflux was continued for 16 hours. 50 ml water was then cautiously added to decompose unreacted sodamide and the benzene layer was separated and extracted with dilute (10%) aqueous hydrochloric acid.

The aqueous acid extracts were made alkaline with concentrated aqueous potassium hydroxide solution and then extracted with ether. The ether extracts were dried, the solvent was removed and the residual oil was distilled under reduced pressure. The product was 14.5 grams of the fraction boiling at 160° to 164°C, under a pressure of 0.05 mm of mercury.

References

Merck Index 6566 Kleeman & Engel p. 653 DOT 6 (2) 56 (1970) I.N. p. 695 Wrigley, T.I. and Leeming, P.R.; British Patent 1,045,911; October 19, 1966; assigned to Pfizer Limited, England

Schutz, S. and Hoffmeister, F.; U.S. Patent 3,505,321; April 7, 1970; assigned to Farbenfabriken Bayer A.G.

NOXYTIOLIN

Therapeutic Function: Antifungal

Chemical Name: 1-Methyl-3-hydroxymethyl-2-thiourea

Common Name: -

Structural Formula:

HOCH₂NHCNHCH₃

Chemical Abstracts Registry No.: 15599-39-0

Trade Name	Manufacturer	Country	Year Introduced
Noxyflex	Geistlich	U.K.	1964
Noxyflex	Innothera	France	1978
Gynaflex	Geistlich	Switz.	_

Raw Materials

Methyl thiourea Formaldehyde

Manufacturing Process

400 g methyl thiourea and 2.5 g NaHCO₃ are dissolved in 400 ml formaldehyde solution of 35% concentration. After having been left at ordinary temperature for 2 to 3 hours, the solution is adjusted with dilute HCl to pH 7 to 7.5. After the reaction mixture had been left overnight at 15°C some of the final product crystallized and was filtered off using a Buchner funnel. The mother liquor was concentrated by evaporation in vacuo at a bath-temperature of 30°C. The crystals obtained were again collected by filtration using a Buchner funnel and were combined with the first crystalline fraction and dried in vacuo at ordinary temperature. Yield of pure substance 400 g; melting point 84°C to 86°C.

References

Merck Index 6567 Kleeman & Engel p. 653 DOT 4 (3) 106 (1968) I.N. p. 695

Aebi, A. and Hafstetter, E.; British Patent 970,414; January 12, 1960; assigned to Ed Geistlich Sohne AG für Chemische Industrie.

NYLIDRIN

Therapeutic Function: Peripheral vasodilator

Common Name: Buphenine

Structural Formula:

Chemical Abstracts Registry No.: 447-41-6; 849-55-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Arlidin	U.S.V.	U.S.	1955
Arlibide	U.S.V.	Argentina	_
Bufedon	Cosmopharma	Neth.	
Buphedrin	Tatsumi	Japan	_
Dilatol	Tropon	W. Germany	_
Dilatropon	Draco	Sweden	_
Dilaver	Neopharma	Finland	_
Dilydrin	Medichemie	Switz.	-
Nyderal	Kobayashi	Japan	_
Nylin	Toho	Japan	
Opino	Bayropharm	W. Germany	_
Penitardon	Woelm	W. Germany	_
Perdilat	Abdi Ibrahim	Turkey	-
Perdilatal	Smith & Nephew	U.K.	_
Pervadii	I.C.N.	Canada	
Pharmadil	Pharmacia	Sweden	_
Rudilin	Darby	U.S.	-
Rydrin	Kodama	Japan	_
Shatorn	Seiko	Japan	_
Tacodilydrin	Swiss Pharma	W. Germany	
Tocodrin	Medichemie	Switz.	_
Vasiten	Crinos	italy	_
Verina	Fujisawa	Japan	_
	·		

Raw Materials

p-Benzoxy-&-bromopropiophenone 1-Phenyi-3-aminobutane Hydrogen

Manufacturing Process

8 grams of the hydrobromide of 1-(p-benzoxyphenyl)-2-(α -methyl- γ -phenyl-propylamino)-propanone-(1) were obtained by heating equivalent quantities of p-benzoxy- α -bromopropio-phenone and 1-phenyl-3-amino-butane for an hour on the water bath in the absence of solvents. The product was purified by twice boiling with five times the quantity of acetic acid and filtration at 80°C, then shaken in contact with hydrogen with 0.8 gram of Raney nickel in 70 cc of pure methanol containing 0.96 gram (corresponding to 1 mol) of KOH. After 4 hours 2 mols of hydrogen had been taken up and the solution was filtered from the catalyst, evaporated in vacuo, and the residue triturated first with water to remove potassium bromide and then with methanol to remove potassium bromide. 3.7 grams (72% of the theoretical yield) of the compound specified, melting at 110° to 112°C, were obtained, as described in U.S. Patent 2,661,373.

References

Merck Index 6577 Kleeman & Engel p. 123 PDR pp. 830, 993, 1606, 1809, 1999 OCDS Vol. 1 p. 69 (1977)

I.N. p. 163 REM p. 892

Schöpf, C. and Kunz, K.J.; U.S. Patent 2,661,372; December 1, 1953; assigned to Tropon-

werke Dinklage & Co., Germany

Külz, F. and Schöpf, C.; U.S. Patent 2,661,373; December 1, 1953

NYSTATIN

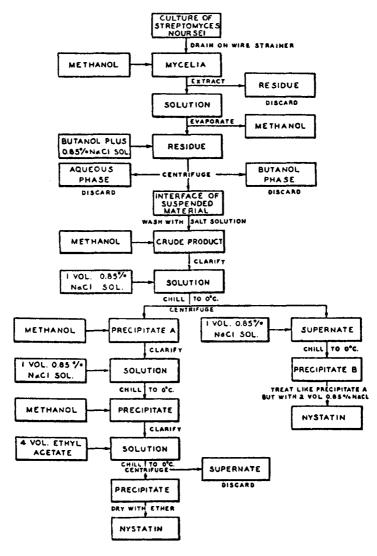
Therapeutic Function: Antifungal

Chemical Name: See structural formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1400-61-9


Trade Name	Manufacturer	Country	Year Introduced
Mycostatin	Squibb	U.S.	1954
Mycostatine	Squibb	France	1956
Nysta-Dome	Dome	U.S.	1964
Nilstat	Lederle	U.S.	1970
Nysert	Norwich-Eaton	U . S.	1979
Multilind	F.A.I.R.	U.K.	1979
Nystex	Savage	U.S.	1983
Biofanal	Pfleger	W. Germany	
Candex	Dome	U.S.	_
Candio-Hermal	Hermal	W. Germany	
Herniocid	Mayrhofer	Austria	_
Korostatin	Holland-Rantos	U.S.	_
Mycolog	S quibb	U.S.	_
Myco-Triacet	Lemmon	U.S.	_
Mytrex	Savage	U.S.	_
Nadostine	Nadeau	Canada	_
Nyaderm	K-Line	Canada	_
Nystacid	Farmos	Finland	_
Nyst-olone	Schein	U.S.	
Rivostatin	Rivopharm	Switz.	_
Stereomycin	Medica	Finland	_

Raw Materials

Bacterium Streptomyces noursei Nutrient medium

Manufacturing Process

A typical isolation and recovery procedure for nystatin is described in U.S. Patent 2.797.183 and is shown in the following diagram:

References

Merck Index 6580 Kieeman & Engel p. 654 PDR pp. 888, 1022, 1034, 1429, 1604, 1751 I.N. p. 696 REM p. 1230

Vandeputte, J. and Gold, W.; U.S. Patent 2,786,781; March 26, 1957; assigned to Olin Mathieson Chemical Corporation

Hazen, E.L. and Brown, R.F.; U.S. Patent 2,797,183; June 15, 1957; assigned to Research Corporation

Vandeputte, J.; U.S. Patent 2,832,719; April 29, 1958; assigned to Olin Mathieson Chemical Corporation

Renella, J.G.; U.S. Patent 3,517,100; June 23, 1970; assigned to American Cyanamid Co.

OCTOPAMINE HYDROCHLORIDE

Therapeutic Function: Hypertensive

Chemical Name: α -(aminomethyl)-4-hydroxybenzene-methanol hydrochloride

Common Name: Norsympatol hydrochloride; norsynephrine hydrochloride

Structural Formula:

HOCHCH₂NH₂

(base)

Chemical Abstracts Registry No.: 770-05-8; 104-14-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Norfen	Morishita	Jap an	1975
Depot-Norphen	Byk Gulden	W. Germany	-
Norphen	Byk Gulden	W. Germany	_

Raw Materials

Phenol Aminoacetonitrile
Hydrogen chloride Hydrogen

Manufacturing Process

A solution of 33 grams of anhydrous aluminum chloride in 60 grams of nitrobenzene, to which a mixture of 14 grams of phenol and 9.3 grams of hydrochloride of amino-acetonitrile was added, had dry hydrochloric acid gas introduced into it for 3 hours, while stirring and cooling to keep the temperature between 20° and 30°C. The reaction mixture was then poured, with cooling, into 70 cc of water and the deposit obtained was sucked off, washed with acetone and dissolved in 300 cc of water. The solution thus prepared was decolorized with carbon, 50 grams of 30% sodium citrate solution was added to it, and then it was made slightly alkaline with ammonia. Thereupon hydroxy-4¹-phenyl-1-amino-2-ethanone crystallized out in the form of leaflets. The yield was 7.7 grams.

The hydrochloride of this base, obtained by evaporation to dryness of a solution of the base in dilute hydrochloric acid and subsequent treatment of the residue with ethyl alcohol and acetone, had a chlorine content of 18.84%, (calculated, 18.90%).

This hydrochloride, on being dissolved in water and hydrogenated with hydrogen and a nickel catalyst, gave a good yield of hydrochloride of hydroxy-4'-phenyl-1-amino-2-ethanol melting, after crystallization from a mixture of ethyl alcohol and butanone-2, at from 177° to 179°C with decomposition.

References

Merck Index 6599 Kleeman & Engel p. 655

I.N. p. 699

Asscher, M.; U.S. Patent 2,585,988; February 19, 1952

OLEANDOMYCIN

Therapeutic Function: Antibiotic

Chemical Name: Oleandomycin; see Structural Formula

Common Name: Troleandomycin

Structural Formula:

Chemical Abstracts Registry No.: 3922-90-5

Trade Name	Manufacturer	Country	Year Introduced
Matromycin	Pfizer	U.S.	1956
Oleandocyn	Pfizer	W. Germany	-
Olmicina	Morgan	Italy	_
Sigmamycin	Pfizer	J apan	_
Taocin-O	Sankyo	Japan	_
TAO	Roerig	U.S.	
Triolmicina	Ripari-Gero	Italy	

Raw Materials

Bacterium Streptomyces antibioticus

Dextrose

Soybean meal

Manufacturing Process

A slant of *S. antibioticus* ATCC 11891 was cultivated on agar under controlled conditions in order to develop spores for the purpose of inoculating a nutrient medium having the following composition: 20 g Cerelose (dextrose hydrate), 15 g soybean meal, 5 g distillers' solubles, 10 g cornmeal, and tap water, in a sufficient amount for a 1,000-ml solution, adjusted to pH 7.0 to 7.2 with potassium hydroxide.

After the pH was adjusted, $5\,\mathrm{g}$ of calcium carbonate was added. This inoculum medium was then subjected to heat sterilization. The medium was then cooled and $2\,\mathrm{ml}$ of a spore sus-

pension of an oleandomycin-producing strain of S. antibioticus was added under aseptic conditions. The cultivation of the organism was conducted in shaken flasks at 28°C for a period of 48 hours.

The mixture of broth and mycelium thus formed was then transferred under aseptic conditions to a 3-liter fermentor containing 2,000 ml of a sterile fermentation medium having the following composition: 60 g Cerelose (dextrose hydrate), 18 g soybean meal, 5 g distillers' solubles, 12 g cornmeal and tap water in a sufficient amount for a 1,000-ml total volume, adjusted to pH 7.0 to 7.2 with potassium hydroxide.

After the pH had been adjusted, 5 g of calcium carbonate, 5 ml of soybean oil antifoam and 0.020 g of Acridine Orange dye were added. The mixture was then autoclaved at 20 psi (250°F) for 15 minutes in order to sterilize the contents, before transferring the broth and mycelium thereto.

After seeding the nutrient medium with the preformed inoculum previously described, the mixture was subjected to agitation and aeration under aseptic conditions for 72 hours; at 27°C to 28°C for the first 24 hours, then at 25°C to 26°C for the next 48 hours; during this period. the pH was in the range of 6.4 to 6.8. Aeration was accomplished by cultivation under submerged conditions at an air flow rate of one volume of air per volume of medium per minute. After termination of the process, the mycelium was removed by filtration and the filtered broth found to contain 450 γ of oleandomycin per ml of solution.

References

Merck Index 6703

Kleeman & Engel p. 657

I.N. p. 701

Sobin, B.A., Routien, J.B. and Lees, T.W.; U.S. Patent 2,757,123; July 31, 1956; assigned to Chas. Pfizer & Co., Inc.

Ratajak, E.J. and Nubel, R.C.; U.S. Patent 2,842,481; July 8, 1958; assigned to Chas. Pfizer & Co., Inc.

OPIPRAMOL

Therapeutic Function: Antidepressant; antipsychotic

Chemical Name: 4-[3-(5H-Dibenz[b,f] azepin-5-yl)propyl] -1-piperazine-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 315-72-0; 909-39-7 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Insidon	Geigy	W. Germany	1962
Insidon	Geigy	France	1962
Insidon	Geigy	Italy	1962
Deprenil	Yurtoglu	Turkey	-
Ensidon	Ciba-Geigy	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Oprimol	Taro	Israel	_
Pramolan	Polfa	Poland	_

Raw Materials

5-(3-Toluene-p-sulfonyloxypropyl)dibenzazepine 1-(2-Hydroxyethyl)piperazina

Manufacturing Process

A solution of 5-(3-toluene-p-sulfonyloxypropyl)dibenzazepine (9.2 g) and 1-(2-hydroxyethyl)piperazine (8.6 g) in anhydrous toluene (50 cc) is heated at boiling point under reflux for 4 hours.

After cooling, distilled water (75 cc) is added. The aqueous phase is decanted. The toluene solution is washed with distilled water (25 cc) and then extracted with N-hydrochloric acid (40 cc). The hydrochloric acid solution is made alkaline to phenolphthalein with sodium hydroxide (d = 1.33). The base which separates is extracted with chloroform (50 cc). The chloroform solution is dried over anhydrous sodium sulfate and then evaporated to dryness. There are obtained $5 \cdot [3 \cdot (4 \cdot \beta \cdot h) droxyethylpiperazino)propyl]$ -dibenzazepine (7.95 g), the dihydrochloride of which, crystallized from ethanol, melts at about 210°C.

References

Merck Index 6727 Kleeman & Engel p. 657 I.N. p. 703

Gaillot, P. and Gaudechon, J.; British Patent 881,398; November 1, 1961; assigned to Societe des Usines Chimiques Rhone-Poulenc

ORAZAMIDE

Therapeutic Function: Treatment of liver diseases

Chemical Name: 5-aminoimidazole-4-carboxamide orotate

Common Name: AICA orotate

Structural Formula:

Chemical Abstracts Registry No.: 2574-78-9

Trade Name	Manufacturer	Country	Year Introduced
Aicamine	Labaz	France	1971
Aicurat	Mack	W. Germany	1962
Aicam in	Crinos	Italy	1977
Aicamin	Fujisawa	Japan	

Raw Materials

4-Amino-5-imidazolecarboxamide Orotic acid

Manufacturing Process

14.4 grams of 4-amino-5-imidazolecarboxamide (monohydrate) and 17.4 grams of orotic acid (monohydrate) were dissolved with heating in 600 cc of water. The solution is decolorized with Norit, cooled and then filtered off. 28.8 grams of a white crystalline salt (dihydrate) is obtained with MP 284°C (decomposition).

References

Merck Index 6739
Kleeman & Engel p. 658
I.N. p. 704
Haraoka, R. and Kamiya, T.; U.S. Patent 3,271,398; September 6, 1966; assigned to Fujisawa Pharmaceutical Co., Ltd., Japan

ORGOTEIN

Therapeutic Function: Antiinflammatory

Common Name: Ormetein

Structural Formula: Orgotein is a complex protein with a molecular weight of about 33,000.

It is a divalent metal (Mg, Cu, Zn) chelated structure.

Chemical Abstracts Registry No.: 9016-01-7

Trade Name	Manufacturer	Country	Year Introduced
Ontosein	Gruenenthal	W. Germany	1980
Peroxinorm	Protochemie	Switz.	1982
Peroxinorm	Gruenenthal	Japan	1982
Oxinorm	Zambeletti	Italy	_

Raw Materials

Beef blood Ethanol Chloroform

Manufacturing Process

Fresh beef blood was centrifuged, e.g., at about 2,600 to 5,000 x g for 10 minutes at 0°C and the plasma decanted. The red blood cells were then washed at least twice and preferably repeatedly with 2 to 3 volumes of 0.9% saline solution. The washed red blood cells were lysed by mixing with 1.1 volumes of cold deionized water containing 0.02% detergent (Saponin). After a minimum of 30 minutes at 4°C with stirring, 0.25 volume (per volume of hemolysate) of ethyl alcohol at -15°C was slowly added while stirring followed by 0.31 volume (per volume of hemolysate) of chloroform, also at -15°C. Stirring was continued for about 15 minutes at -5°C or below, at which time, the mixture was a thick paste. The hemoglobin precipitation was carried out in a cold bath which was kept at below -10°C. After the paste had stood for a further 15 minutes at 4°C, 0.2 volume of cold 0.15 M NaCl solution was added, giving an easily poured suspension. The precipitate and excess chloroform were removed by centrifuging at about 12,000 to 20,000 x g at about -10°C for 10 minutes. The supernatant liquid was removed and if desired, filtered and briefly dialyzed against cold-deionized water, prior to lyophilization.

The alcohol-chloroform precipitate was dislodged, chloroform was removed, the pellet broken

up and reextracted with about an equal amount of deionized water by blending the precipitate and the water in a blender and thereafter centrifuging. The reextraction solution was dialyzed and lyophilized with the main extract. If the process proceeds normally, the reextraction of the precipitated hemoglobin usually yields up to 30% of protein mixture present in the original supernatant. An additional reextraction may give an additional 5 to 15%.

The lyophilized material was redissolved in 0.025 M tris-glycine buffer containing 0.001 M $\rm Mn^{2+}$ at pH 7.5 (usually to a concentration of 20 mg/ml). The solution was heated at or near 65°C for about 15 minutes. This step removes the carbonic anhydrase and other heat labile proteins from the solution. After heating, the solution was rapidly cooled in an ice bath to 5°C. The solution was then centrifuged at 20,000 x g at 0°C for 10 minutes to remove the precipitate. Filtration through "Versapore" works equally well. The supernatant was thoroughly dialyzed against deionized water to remove excess metal ions and buffer and then lyophilized. The resulting solid consists largely of orgotein.

References

Merck Index 6742

DOT 9 (1) 34 (1973; 11 (3) 103(1975) & 13 (3) 105 (1977)

I.N. p. 705

Huber, W.; U.S. Patent 3,579,495; May 18, 1971; assigned to Diagnostic Data, Inc. Huber, W.; U.S. Patent 3,687,927; August 29, 1972; assigned to Diagnostic Data, Inc.

ORNIDAZOLE

Therapeutic Function: Antiinfective

Chemical Name: α-(Chloromethyl)-2-methyl-5-nitro-1H-imidazole-1-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 16773-42-5

Trade Name	Manufacturer	Country	Year Introduced
Tiberal	Roche	W. Germany	1977
Tiberal	Roche	italy	1981
Tiberal	Roche	France	1981
Tiberal	Roche	Switz.	1982
Tiberal	Roche	Australia	1983
Kolpicid	Roche	Sweden	1983
Madelen	Finadiet	Argentina	
Ornidal	Selvi	Italy	_

Raw Materials

1-(2,3-Epoxypropyl)-2-methyl-5-nitroimidazole Hydrogen chloride

Manufacturing Process

5 g of 1-(2,3-epoxypropyl)-2-methyl-5-nitroimidazole was added to 30 ml of concentrated

aqueous hydrochloric acid. The solution was heated to the boiling point for 20 minutes, chilled, diluted with 30 ml of water and carefully neutralized with ammonia to a pH of 7 to 8. It was then saturated with ammonium sulfate. The precipitated oil crystallized after several days. Recrystallized from toluene, there was obtained the 1-(3-chloro-2-hydroxypropy!)-2-methyl-5-nitroimidazole product melting at 77°C to 78°C.

References

Merck Index 6746 OCDS Vol. 3 p. 131 (1984) DOT 11 (9) 369 (1975) I.N. p. 706

REM p. 1224

Hoffer, M.; U.S. Patent 3.435.049; March 25, 1969; assigned to Hoffmann-LaRoche, Inc.

ORNIPRESSIN

Therapeutic Function: Vasoconstrictor

Chemical Name: 8-L-Ornithinevasopressin

Common Name: -

Structural Formula:

Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Orn-GlyNHo

Chemical Abstracts Registry No.: 3397-23-7

Trade Name Manufacturer Year Introduced Country 1977

POR-8 Sandoz W. Germany

Raw Materials

N-α-Carbobenzoxy-N-δ-p-toluenesulfonyl-L-ornithine

Glycine ethyl ester

N-Carbobenzoxy-L-proline

N-Carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl azide

N-Carbobenzoxy-S-benzyl-L-cysteinyl-L-tyrosyl-L-phenylalanine azide

Sodium

Ammonia

Manufacturing Process

- (a) N-α-carbobenzoxy-N-δ-p-toluenesulfonyl-L-ornithyl-glycine ethyl ester: 104 g of N-αcarbobenzoxy-N-δ-p-toluenesulfonyl-L-ornithine and 27 g of glycine ethyl ester are dissolved in 450 cc of acetonitrile, the mixture is cooled at 0°C, 51 g of dicyclohexyl carbodilmide are added and the mixture is shaken at room temperature for 4 hours. Precipitated dicyclohexyl uree is filtered off and washed with acetonitrile. The whole filtrate is eveporated in a vacuum. The residue crystallizes after the addition of petroleum ether. After recrystallization from npropanol, 93 g of N-α-carbobenzoxy-N-δ-toluenesulfonyl-L-ornithyl-glycine ethyl ester are obtained; melting point 136°C; $[\alpha]_{\Omega}^{22} = -6.5^{\circ}$ (96% ethanol).
- (b) N-carbobenzoxy-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide: 90 g of N-αcarbobenzoxy-N-ô-p-toluenesulfonyl-L-ornithyl-glycine ethyl ester are dissolved in 800 cc of anhydrous acetic acid which has been saturated with hydrogen bromide. The mixture is left to stand for one hour at 20°C, evaporated in a vacuum at a temperature below 40°C and the residue washed carefully with diethyl ether. The residue is dissolved in 500 cc of acetonitrile, 25 cc of triethylamine and 43 g of N-carbobenzoxy-L-proline are added, cooling is

effected at 0°C, 35,5 g of dicyclohexyl carbodiimide are then added and the mixture shaken overnight at 20°C. After filtering off dicyclohexyl urea, the filtrate is evaporated in a vacuum at 30°C, the residue dissolved in ethyl acetate and this solution is washed with dilute sulfuric acid and aqueous ammonia. After drying over sodium sulfate, the ethyl acetate is removed by evaporation in a vacuum and the residue dissolved in 1 liter of absolute ethanol. The solution is cooled at 0°C, saturated with ammonia and left to stand overnight at 20°C. After evaporating in a vacuum at 30°C, the residue is recrystallized from dimethylformamide/ethyl acetate. 58 g of N-carbobenzoxy-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide are obtained; melting point 122°C (with decomposition).

- (c) N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N- δ -p-toluenesulfonyl-L-ornithyl-glycinamide: 100 g of N-carbobenzoxy-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide are dissolved in 500 cc of anhydrous acetic acid which has been saturated with hydrogen bromide, the solution is left to stand for one hour at 20°C and is evaporated in a vacuum at a temperature below 40°C. The residue is carefully washed with diethyl ether and then added to a solution of 100 g of N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-azide and 26 cc of triethylamine in 1,000 cc of dimethylformamide. The mixture is left to stand overnight at 20°C, 3,000 cc of ethyl acetate are added thereto, the precipitate is filtered off and washing is effected with ethyl acetate. 105 g of N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N-δ-p-toluenesulfonyl-Lornithyl-glycinamide are obtained; melting point 193°C; $[\alpha]_D^{20} = -38.5^{\circ}$ (dimethyl-formamide).
- (d) N-carbobenzoxy-S-benzyl-L-cysteinyl-L-tyrosyl-L-phenyl-alanyl-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide: 50 g N-carbobenzoxy-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide are dissolved in 250 cc of anhydrous acetic acid which has been saturated with hydrogen bromide and the solution is left to stand for one hour at 20°C. After evaporating the solvent in a vacuum at a temperature below 40°C, the residue is carefully washed with diethyl ether and a solution of 31.5 g of N-carbobenzoxy-S-benzyl-Lcysteinyl-L-tyrosyl-L-phenylalanine-azide and 7.5 cc of triethylamine in 250 cc of dimethylformamide is added thereto. The mixture is left to stand for 2 days at 20°C, 1,000 cc of ethyl acetate are subsequently added and the precipitate is washed with ethyl acetate. After drying in a vacuum at 30°C, the product is washed with warm methanol. 45 g of N-carbobenzoxy-S-benzyI-L-cysteinyI-L-tyrosyI-L-phenylalanyI-L-glutaminyI-L-asparaginyI-S-benzyI-L-cysteinyl-L-prolyl-N-δ-p-toluenesulfonyl-L-ornithyl-glycinamide are obtained; melting point 224°C.
- (e) L-cysteinyl-L-tyrosyl-L-phenylalanyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-Lornithyl-glycinamide: The necessary amount of sodium or potassium metal is added to a solution of 5 g of N-cerbobenzoxy-S-benzyl-L-cysteinyl-L-tyrosyl-L-phenylalanyl-L-glutaminyl-L-asparaginyl-S-benzyl-L-cysteinyl-L-prolyl-N- δ -p-toluenesulfonyl-L-ornithyl-glycinamide in 1,200 cc of dry liquid ammonia, while stirring at the boiling temperature of the solution, to give a stable blue coloration. After the addition of 3 g of ammonium chloride, the solution is evaporated to dryness. The residue contains L-cysteinyl-L-tyrosyl-L-phenyl-alanyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-ornithyl-glycinamide.

References

Merck Index 6747 DOT 13 (11) 498 (1977) I.N.p. 706

Boissonnas, R. and Huguenin, R.; U.S. Patent 3,299,036; January 17, 1967; assigned to Sandoz Ltd. (Switzerland)

ORPHENADRINE CITRATE

Therapeutic Function: Muscle relaxant

Chemical Name: N,N-dimethyl-2-[(2-methylphenyl)phenylmethoxy] ethanamine citrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4682-36-4; 83-98-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Norflex	Riker	U.S.	1959
Neocyten	Central	U.S.	1975
X-Otag	Tutag	U.S.	1976
Banflex	O'Neal, Jones	U.S.	1980
Bio-Flex	Foy	U.S.	_
Flexin	Taro	Israel	_
Mioflex	Formenti	italy	_
Myotrol	Legere	U.S.	-
Norgesic	Riker	U.S.	_
Ro-Orphena	Robinson	U.S.	_
Tega-Flex	Ortega	U.S.	-

Raw Materials

o-Methylbenzhydryl bromide β -Dimethylaminoethanol Citric acid

Manufacturing Process

As described in U.S. Patent 2,567,351, o-methylbenzhydryl bromide is added slowly to β -dimethylaminoethanol at refluxing temperature. After the addition has been completed the mixture is refluxed and stirred for an additional 16 hours. The mixture is cooled and the bottom layer consisting of the crude hydrobromide salt of β -dimethylaminoethanol is drawn off. The excess amino alcohol is distilled from the upper layer in vacuo and the residue is reacted with citric acid.

References

Merck Index 6752 Kieeman & Engel p. 661 PDR pp. 1033, 1452 OCDS Voi. 1 p. 42 (1977) DOT 9 (6) 247 (1973) & 18 (2) 90 (1982)

I.N. p. 707 REM p. 932

Rieveschi, G. Jr.; U.S. Patent 2,567,351; September 11, 1951; assigned to Parke, Davis & Company

Harms, A.F.; U.S. Patent 2,991,225; July 4, 1961; assigned to NV Koninklijke Pharmaceutische Fabrieken, Netherlands

OXACEPROL

Therapeutic Function: Antirheumatic

Chemical Name: N-Acetyl-4-hydroxy-L-proline

Common Name: Aceprolinum

Structural Formula:

Chemical Abstracts Registry No.: 33996-33-7

Trade Name	Manufacturer	Country	Year Introduced
Jonctum	Merrell	France	1970
AHP-2000	Chephasaar	W. Germany	1975
Jonctum	Merrell	Italy	1978
Tejuntivo	Valderrama	Spain	

Raw Materials

L-Hydroxyproline Acetic anhyride

Manufacturing Process

16.7 g (0.127 mol) of I-hydroxyproline are dissolved in 400 ml of pure boiling acetic acid. With vigorous boiling and agitation, a mixture of 13.7 ml (0.154 mol) of rectified acetic anhydride and 250 ml of pure acetic acid is added during 25 minutes. Without discontinuing the stirring, contents of the flask are cooled by simply causing fresh air to circulate externally round the flask until the temperature of the mixture is reduced to about 35°C. The acetic acid is removed by using a rotary evaporator without exceeding 35°C under a vacuum of about 15 mm Hg. After one hour, 20 ml of anhydrous toluene are added, then 10 ml of anhydrous acetone; the mixture is homogenized and concentrated again as above during 30 minutes. Then 25 ml of acetone are added again, and subsequently 20 ml of toluene, the product being concentrated again; gradually the solution is converted into an amber-colored crystallized paste. Finally, 30 ml of acetone are added to the residue, and stirring is carried out until the oily fraction surrounding the crystals is dissolved. The product is then cooled in an ice chamber, centrifuged, washed with anhydrous acetone and eventually dried. After recrystallization from acetone, crystals are obtained, melting point 132°C.

References

Merck Index 90 Kleeman & Engel p. 662 DOT 12 (1) 9 (1976)

I.N. p. 709

Coirre, P. and Coirre, B.; British Patent 1,246,141; September 15, 1971

OXACILLIN SODIUM

Therapeutic Function: Antibacterial

Chemical Name: 3,3-dimethyl-6-(5-methyl-3-phenyl-4-isoxazolecarboxamido)-7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid, sodium salt

Common Name: 6-(5-methyl-3-phenyl-2-isoxazoline-4-carboxamido)penicillanic acid, so-dium salt; 5-methyl-3-phenyl-4-isoxazolylpenicillin, sodium salt

Structural Formula:

Chemical Abstracts Registry No.: 7240-38-2; 66-79-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Resistopen	S gui b b	U. S .	1962
Prostaphlin	Bristol	U.S.	1962
Cryptocillin	Hoechst	W. Germany	1962
Bristopen	Bristol	France	1963
Penstapho	Bristol	Italy	1966
Bactocill	Beecham	U.S.	1972
Oxabel	Sarva	Belgium	-
Penistafil	Antibioticos	Spain	_
Stapenor	Bayer	W. Germany	-
Staphcillin V	Banyu	Japan	_

Raw Meterials

Benzaldehyde Chlorine Thionyl chloride Sodium bicarbonate Hydroxylamine Ethyl acetoacetate 6-Aminopenicillanic acid

Manufacturing Process

(A) Benzaldoxime: (Reference, Vogel, *Textbook of Practical Organic Chemistry*, page 883) — Materials: (Theoretical yield, 121.1 grams of free oxime), 106.1 grams (1.0 mol) of benzaldehyde (NF grade), 69.5 grams (1.0 mol) of hydroxylamine hydrochloride (practical grade), 68.0 grams (1.7 mol) of sodium hydroxide (pellet).

Procedure: The sodium hydroxide is dissolved in 200 ml water and the benzaldehyde is added. With continued stirring the hydroxylamine hydrochloride is added in portions. Some heat is developed and eventually the benzaldehyde dissolves. The solution is stirred for 15 minutes and then cooled in an ice-bath. A waxy, crystalline mass separates, and after further cooling it is collected by suction and dried in air. Yield is 86 to 149 grams. This crude material is suitable for step (B).

(B) Benzohydroximic Chloride: [Reference, G.W. Perrold et al, *J. Am. Chem. Soc.*, 79, 462 (1957)] — Materials: 121 grams (0.77 mol) of crude benzaldoxime from step (A), 500 ml of 8.3 N hydrochloric acid, chlorine.

Procedure: The crude product from (A) is suspended in the hydrochloric acid, cooled in an ice-salt mixture, and chlorine is passed into the mixture with stirring for ½ to 1 hour. Transient blue and green colors may be noticed in the mixture during this time. The temperature will probably rise to 3° to 5°C. The solid is collected by suction filtration and dried for an hour or so on the filter before use in (C). If at all possible, it should be used on the day of preparation. Yield is 71 grams (after 1½ hours on the filter).

(C) 5-Methyl-3-Phenyl-4-Isoxazolecarboxylic Acid: [Reference, A. Quilico and R. Rusco, Gazz. Chim. Ital. 67, 589 (1937); C.A. 32, 21177] — Materials: 71 grams (0.45 mol) of

crude benzohydroximic chloride from (B), 78 grams (0.60 mol) of ethyl acetoacetate (practical grade), 34 grams (0.60 mol) of sodium methoxide (95% minimum), 400 ml of methanol (reagent grade).

Procedure: The sodium methoxide is cautiously added in portions to 200 ml of methanol with stirring. Some heat is evolved. To this warm solution is rapidly added the ethyl acetoacetate with continued stirring. The solution is stirred for 10 minutes and then cooled in an ice-salt-acetone mixture (-25°C). If desired a Dry Ice-acetone cooling bath may be used to shorten the addition time. The crude material from (B) is dissolved in 200 ml of methanol. At this point it is probably easier to filter this mixture by suction to remove a large amount of insoluble solid, which is probably sodium chloride. The solid may be rinsed with more methanol.

The filtrate is chilled in ice-water and added to the cooled methanolic solution of the sodium derivative of ethyl acetoacetate at a rate which keeps the temperature of the reaction mixture below 0°C. The addition time will be 15 to 20 minutes if ice-salt-acetone is used as a coolant. This reaction is extremely exothermic.

The reaction mixture is stirred overnight at room temperature and filtered to remove the sodium chloride. The filtrate is stripped in vacuo and the crude ester (literature reports MP 48°C) is dissolved in 150 ml of ethanol; 28 grams (0.70 mol of sodium hydroxide in 90 ml of water is added and the solution is refluxed for 2 hours. After removal of the ethanol in vacuo the residue is dissolved in water and extracted twice with ether. Dissolved ether is removed from the aqueous solution in vacuo and it is acidified to pH 2 with concentrated hydrochloric acid.

The crystalline crude acid is dried briefly and then recrystallized from acetonitrile to give 32 grams of white product; MP 193° to 194.5°C (literature reports 189° to 190°C). Concentration of the mother liquor gives an additional 5 grams of material having a MP of 192.5 to 194°C. The 37 grams of material represents an 18% overall yield from benzaldehyde.

- (D) The acid is converted to the acid chloride by reaction with thionyl chloride.
- (E) 5-Methyl-3-Phenyl-4-Isoxazolylpenicillin: A solution of 4.43 grams of 5-methyl-3phenylisoxazole-4-carbonyl chloride in 120 ml acetone was added gradually to a stirred solution of 4.32 grams of 6-aminopenicillanic acid in 168 ml of 3% aqueous sodium bicarbonate and 50 ml acetone. When addition was complete the mixture was stirred at room temperature for 4 hours and then extracted with ether (2 x 200 ml), only the aqueous phase being retained. This aqueous solution was covered with 50 ml ether and adjusted to pH 2 by the addition of N hydrochloric acid. After separating the layers, the aqueous phase was extracted with two further 50 ml portions of ether. The combined ether solutions (which at this stage contained the free penicillin acid) were washed with water and then neutralized by shaking with 20 ml N sodium bicarbonate solution. The aqueous phase was separated, washed with ether, and evaporated at low temperature and pressure to leave the crude sodium salt of 5-methyl-3-phenyl-4-isoxazolylpenicillin as a white solid, which was finally dried in vacuo over phosphorus pentoxide and found to weigh 7.34 grams.

References

Merck Index 6777 Kleeman & Engel p. 662 PDR pp. 673, 708, 1606 OCDS Vol. 1 p. 413 (1977) DOT 1 (3) 115 (1965) I.N. p. 709 REM p. 1197 Doyle, F.P. and Nayler, J.H.C.; U.S. Patent 2,996,501; August 15, 1961

OXAFLOZANE HYDROCHLORIDE

Therapeutic Function: Antidepressant

Chemical Name: 2-(3-Trifluoromethyl)phenyl-4-isopropyl-tetrahydro-1,4-oxazine

Common Name: -

Structurel Formula:

Chemical Abstracts Registry No.: 26629-86-7; 26629-87-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Conflictan	Sarbach	France	1982
Conflictan	Riom Lab	France	-

Raw Materials

2-Chloroethylvinyl ether **Bromine** (3-Trifluoromethyl)phenyl magnesium bromide Isopropylamine Hydrogen chloride

Manufacturing Process

(1) 1,2-Dibromo-2-(2-chloro)ethoxyethane: 640 g of bromine (4 mols) are added dropwise, with stirring, to 426 g (4 mois) of 2-chloroethylvinyl ether dissolved in 1,040 ml of chloroform maintained at -10°C.

When addition is ended, the solvent and then the residue are distilled in vacuum to obtain 690 g of product. Yield = 65%.

(2) 2-(3-Trifluoromethyl)-2-(2-chloro)ethoxy-1-bromoethene: (3-Trifluoromethyl)phenyl magnesium bromide is prepared under the normal conditions for magnesium derivatives, from 48.6 g of magnesium turnings and 455.7 g of (3-trifluoromethyl)bromobenzene and 1.5 liters anhydrous ether.

To the solution of the magnesium compound so obtained the following solution is added dropwise, with stirring so as to maintain a slight reflux of ether: 1,2-dibromo-2-(2-chloro)ethoxyethane: 550 g. Anhydrous ether: 300 ml.

After the addition, reflux heating is continued for two hours, cooling is carried out and there is hydrolysis by the mixture: Ice: 500 g. Concentrated HCI: 200 ml.

The organic phase is decanted, washed in NaCl saturated water and dried on anhydrous Na₂SO₄; the ether is distilled and the residue is rectified in vacuum to obtain 361 g of the product. Yield = 54%.

According to gas phase chromatography, the product so obtained is about 95% pure and it can be used in further reactions without a second rectification.

(3) 2-(3-Trifluoromethyl)phenyl-4-isopropyl tetrahydro-1,4-oxazine hydrochloride: The

following mixture is heated in an autoclave at 100°C; 2-(3-trifluoromethyl)-2-(2-chloro)ethoxy-1-bromoethane: 33.15 g (0.1 mol); isopropyl amine: 20 g (0.34 mol); toluene: 100 ml.

After filtration of the isopropylamine hydrochloride and bromohydrate, the solvent is stripped and the residue is admixed with ~4 N HCl and the aqueous phase is washed with ether. The aqueous phase is treated with 50% aqueous NaOH, the amine is ether-extracted and, after drying on anhydrous Na₂SO₄, the ether is distilled and the residue is rectified in vacuum to obtain 14 g of the product. Yield = 50%.

The hydrochloride is crystallized by adding ethyl acetate to the base and then adding the necessary amount of pure alcohol saturated in dry HCI. Melting point 164°C.

References

Merck Index 6780 DFU 3 (9) 667 (1978) Kleeman & Engel p. 663 DOT 18 (10) 536 (1982) I.N. p. 709

Mauvernay, R.Y., Busch, N., Moleyre, J. and Simond, J.; U.S. Patent 3,637,680; January 25, 1972; assigned to Societe Anonyme: Centre Europeen De Recherches Mauvernay

OXAFLUMAZINE DISUCCINATE

Therapeutic Function: Neuroleptic, antihistaminic, antispasmodic

Chemical Name: N-3-(2-Trifluoromethyl-10-phenothiazinyl)-propyl-N'-2-[2-(1,3-dioxanyl)]ethyl-piperazine disuccinate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 41761-40-4: 16498-21-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Oxaflumine	Diamant	France	1970

Raw Materials

N-[2-(3,1-Dioxanyl)ethyl] piperazine 1-Bromo-3-chloropropane 2-Trifluoromethylphenothiazine Sodium Succinic acid

Manufacturing Process

Preparation of N-(3-chloropropyl)-N'-[2-(1,3-dioxanyl)-ethyl] -piperazine: A solution of 30 g

The sodium derivative of the 2-trifluoromethylphenothiazine was prepared from 26.7 g (0.1 mol) of 2-trifluoromethylphenothiazine and 2.3 g (0.1 g atom) of sodium in 500 ml of liquid ammonia. After the reaction was completed, the ammonia was driven off and 500 ml of dry toluene were added. A solution of 25 g (0.09 mol) of N-(3-chloropropyl)-N'-[2-(1,3-dioxanyl)-ethyl]-piperazine in 200 ml of toluene was added drop by drop to this solution which was then refluxed with stirring for 18 hours. After cooling, the precipitate which had formed was filtered and the filtrate was washed with water, dried and concentrated in vacuo. 33 g of brown oil, the N-3-(2-trifluoromethyl-10-phenothiazinyl)-propyl-N'-2-[2-(1,3-dioxanyl)] - ethyl-piperazine, were obtained.

A warm solution of 4.4 g of the base obtained in 100 ml of acetonitrile was added to a warm solution of succinic acid in 200 ml of acetonitrile. After standing for 15 hours at 0°C, the crystalline product was obtained, melting point 138°C.

References

Merck Index 6781 Kleeman & Engel p. 663 DOT 6 (3) 89 (1970) I.N. p. 709

Societe Industrielle Pour La Fabrication Des Antibiotiques (S.I.F.A.); British Patent 1,103,311; February 14, 1968

OXAMETACINE

Therapeutic Function: Antiinflammatory

Chemical Name: 1-(4-Chlorobenzoyl)-N-hydroxy-5-methoxy-2-methyl-1H-indole-3-

acetamide

Common Name: Indoxamic acid

Structural Formula:

Chemical Abstracts Registry No.: 27035-30-9

Trade Name	Manufacturer	Country	Year Introduced
Flogar	A.B.C.	Italy	1976
Flogar	U.C.B.	France	1981
Dinulcid	Pharmascience	France	1983

Raw Materials

1-p-Chlorobenzoyl-2-methyl-5-methoxy-3-indoleacetic acid Thionyl chloride Hydroxylamine hydrochloride

Manufacturing Process

1 g of 1-p-chlorobenzoyl-2-methyl-5-methoxy-3-indoleacetic acid [J. Am. Chem. Soc. 85, 488-489 (1963)] is treated in a nitrogen stream with 10 ml thionyl chloride in which it promptly dissolves. The solution is quickly evaporated in vacuum and the residue (which typically is of a deep brown-green color) is distempered, twice or three times, with a few ml anhydrous benzene which is removed in vacuum each time. The resulting residue is thoroughly distempered with 5 ml anhydrous ether which dissolves most of the color impurities, and separated by filtering, purified by crystallizing from plenty of anhydrous ether, yielding a crystalline mass of needles of straw-yellow color, melting point 124°C to 127°C. Yield: 0,700 g. Found: CI% 18.62 (calculated 18.84).

The product is relatively stable towards water and aqueous alkalies in which it proves to be insoluble even after dwelling therein several hours at room temperature. It reacts, better if at elevated temperature, with lower alcohols with which it forms the corresponding esters, and with ammonia under suitable conditions for forming the amide (melting point 219°C to 221°C).

A solution of 1,330 g sodium hydroxide in 20 ml water is slowly admixed with 2,330 g hydroxylamine hydrochloride while cooling, whereupon 1 g chloride of 1-p-chlorobenzoyl-2methyl-5-methoxy-3-indoleacetic acid is distempered in this neutral or slightly alkaline solution by vigorously stirring during a few minutes.

The acid chloride reacts with the free hydroxylamine with considerable rapidity apparently without dissolving. The reaction is completed when a sample of the suspension shows to become clear on adding aqueous alkali. The crystalline pale-yellow mass of product is separated by filtering, lavishly washed with water and dried in vacuum. The crude product yield is actually quantitative. The product is purified with excellent yields by repeatedly crystallizing from hot dioxane and washing with ether; melting point 181°C to 182°C (dec.).

References

Merck Index 6788

I.N. p. 710

De Martiis, F., Arrigoni-Martelli, E. and Tamietto, T.; U.S. Patent 3,624,103; November 30, 1971: assigned to Instituto Biologico Chemioterapico (A.B.C.) SpA (Italy)

OXAMNIQUINE

Therapeutic Function: Antischistosomal

Chemical Name: 1,2,3,4-Tetrahydro-2-[[(1-methylethyl)amino] methyl] -7-nitro-6-quino-

linemethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21738-42-1

Trade Name	Manufacturer	Country	Year Introduced
Vansil	Pfizer	U.S.	1980
Vansil	Pfizer	France	1981

Raw Materials

Bacterium Aspergillus sclerotiorum Huber Sovbean meal Glucose

2-isopropylaminomethyl-6-methyl-7-nitro-1,2,3,4-tetrahydroquinoline

Manufacturing Process

(1) Four fermenters are set up, each one of which contained 2.0 liters of the following medium, sterilized for 35 minutes at 15 psi, respectively:

Soybean meal	5 grams
Glucose	20 grams
NaCl	5 grams
K ₂ HPO ₄	5 grams
Yeast extract	5 grams
Tap water to	1 liter
pH adjusted with sulfuric acid to 6.5	

The fermenters are inoculated with 7.5% by volume of a 24-hour old culture of Aspergillus sclerotiorum Huber grown at 28°C in 50 ml aliquots of the above described soybean-glucose medium contained in 300 ml Erlenmeyer flasks, placed on a shaker rotating at approximately 230 rpm. The inoculated fermenters are agitated at 1,380 rpm and each aerated with 1 liter of air per minute and at a temperature of 28°C for 47 hours. A silicone antifoam is added when required. At the end of the 47-hour period, the pH of the fermentation broth rose to 6.8 to 6.9. Sulfuric acid is then added with sterile precautions to restore the pH to 6.5.

- (2) 0.75 g of 2-isopropylaminomethyl-6-methyl-7-nitro-1,2,3,4-tetrahydroquinoline as hydrogen maleate, dissolved in 75 ml of sterile water, is added to each of the four fermenters and agitation and aeration are continued for a further 23 hours. The whole fermentation broths from each fermenter are pooled, the pH adjusted to 8.0 with sodium hydroxide and the 8.2 liters of fermentation broth thus obtained are extracted by agitating vigorously with 16.4 liters of methylene chloride for 10 minutes. The solvent extract is then dried over anhydrous sodium sulfate and subsequently evaporated to dryness at a temperature below 40°C (dry weight 5.567 g).
- (3) The dark brown residue from (2) is extracted four times with methanol at room temperature, decanting the solution from the insoluble material. The combined methanol extracts, total volume about 200 ml, are then filtered and treated with 3 g of sodium borohydride, added in portions over a period of 30 minutes with stirring, to reduce any 6-formyl compound present to the 6-hydroxymethyl compound. The methanol solution is then allowed to stand overnight at room temperature and is thereafter diluted with 1 liter of ether. The solution is washed 4 times with 500 mi of water and the resulting pale yellow ethereal solution is dried over magnesium sulfate. The ether is next removed by vacuum distillation from a water bath at 40°C. The residue is dissolved in about 75 ml of isopropanol at 50°C, filtered to remove any insoluble particles and cooled overnight in the refrigerator. The product is collected and dried in vacuo to yield 0.5 g of 6-hydroxymethyl-2-isopropylaminomethyl-7-nitro-1,2,3,4tetrahydroquinoline as pale yellow crystals of melting point 147°C to 149°C. A further 0.5 g of crude material is obtained from the mother liquors of the recrystallization. Total yield is therefore 1.0 g (0.0036 mol) from 3.0 g (0.0079 mol) of starting material, i.e., 45% of the theoretical amount.

Merck Index 6791

OCDS Vol. 2 p. 372 (1980) DOT 17 (4) 152 (1981)

I.N. p. 710

REM p. 1236

Richards, H.C.; U.S. Patent 3,821,228; June 28, 1974; assigned to Pfizer, Inc.

OXANDROLONE

Therapeutic Function: Androgen

Chemical Name: 17β -hydroxy-17-methyl-2-oxa- 5α -androstan-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53-39-4

Trade Name	Manufacturer	Country	Year Introduced
Anavar	Searle	U.S.	1964
Anatrophill	Searle	France	1965
Vasorome	Kowa	Japan	1969
Oxandrolone Spa	SPA	Italy	1979
Lonavar	Searte	Italy	-

Raw Materials

17 β -Hydroxy-17 α -methyl-5 α -androst-1-en-3-one Lead tetraacetate Sodium borohydride

Manufacturing Process

To a solution of 6.36 parts of 17β -hydroxy- 17α -methyl- 5α -androst-1-en-3-one in 95 parts of acetic acid and 12 parts of water is added 40 parts of lead tetracetate and 0.6 part of osmium tetroxide. This mixture is stored at room temperature for about 24 hours, then is treated with 2 parts of lead tetracetate. Evaporation to dryness at reduced pressure affords a residue, which is extracted with benzene. The benzene extract is washed with water, and extracted with aqueous potassium bicarbonate. The aqueous extract is washed with ether, acidified with dilute sulfuric acid, then extracted with ethyl acetate-benzene. This organic extract is washed with water, dried over anhydrous sodium sulfate, and concentrated to dryness in vacuo. To a solution of the residual crude product in 20 parts of pyridine is added 10 parts of 20% aqueous sodium bisulfite and the mixture is stirred for about 20 minutes at room temperature.

This mixture is then diluted with water, washed with ethyl acetate, acidified with dilute sulfuric acid, and finally extracted with benzene. The benzene extract is washed with

water, dried over anhydrous sodium sulfate, and evaporated to dryness at reduced pressure to produce crude 17β-hydroxy-17α-methyl-1-oxo-1.2-seco-A-nor-5α-androstan-2-oic acid, which after recrystallization from aqueous isopropyl alcohol melts at about 166° to 173°C (decomposition).

An aqueous slurry of 6 parts of 17β-hydroxy-17α-methyl-1-oxo-1,2-seco-A-nor-5α-androstan-2-oic acid in 200 parts of water is made alkaline to pH 10 by the addition of dilute agueous sodium hydroxide, then is treated with 6 parts of sodium borohydride. This mixture is allowed to react at room temperature for about 3 hours. Benzene is added and the resulting mixture is acidified carefully with dilute hydrochloric acid. The benzene layer is separated, and the aqueous layer is further extracted with benzene. The combined benzene extracts are washed successively with aqueous potassium bicarbonate and water, dried over anhydrous sodium sulfate, then evaporated to dryness in vacuo. The resulting residue is triturated with ether to afford pure 17β -hydroxy- 17α -methyl-2-oxa- 5α -androstan-3-one, MP about 235° to 238°C, according to U.S. Patent 3,128.283.

References

Merck Index 6794 Kleeman & Engel p. 664 PDR p. 1677 OCD\$ Vol. 1 p. 174 (1977) I.N. p. 710 REM p. 999

Pappo, R.; U.S. Patent 3,128,283; April 7, 1964; assigned to G.D. Searle & Co. Pappo, R.; U.S. Patent 3,155,684; November 3, 1964; assigned to G.D. Searle & Co.

OXATOMIDE

Therapeutic Function: Antiallergic

Chemical Name: 1-[3-[4-(Diphenylmethyl)-1-piperazinyl] propyl] -2-benzimidazolone

Common Name: Oxatimide

Structural Formula:

Chemical Abstracts Registry No.: 60607-34-3

Trade Name	Manufacturer	Country	Year Introduced
Tinset	Janssen	W. Germany	1981
Tinset	Janssen	U.K.	1982
Tinset	Ja nssen	Switz.	1983
Finsedyl	Microsules	Argentina	_

Raw Meterials

- 1-(3-Chloropropyl)-2H-benzimidazol-2-one
- 1-(Diphenylmethyl)piperazine

Manufacturing Process

A mixture of 5.3 parts of 1-(3-chloropropyl)-2H-benzimidazol-2-one, 5 parts of 1-(diphenyl-methyl)piperazine, 6.4 parts of sodium bicarbonate and 200 parts of 4-methyl-2-pentanone is stirred and refluxed overnight with water-separator. After cooling, water is added and the layers are separated. The 4-methyl-2-pentanone phase is dried, filtered and evaporated. The residue is purified by column-chromatography over silica gel using a mixture of trichloromethane and 5% of methanol as eluent. The pure fractions are collected and the eluent is evaporated. The oily residue is crystallized from a mixture of 2,2'-oxybispropane and a small amount of 2-propanol. The product is filtered off and dried, yielding 1-[3-[4-diphenyl-methyl)-1-piperazinyl] -propyl] -2H-benzimidazole-2-one; melting point 153.6°C.

References

Merck Index 6798 DFU 3 (6) 465 (1978) OCDS Vol. 3 p. 173 (1984) DOT 16 (7) 219 (1980); 18 (7) 341 & (9) 440 (1982) I.N. p. 711

Vandenberk, J., Kennis, L.E.J., Van der Aa, M.J.M.C. and Van Heertum, A.H.M.T.; U.S. Patent 4,200,641; April 29, 1980; assigned to Janssen Pharmaceutica N.V.

OXAZEPAM

Therapeutic Function: Minor tranquilizer

Chemical Name: 7-Chloro-1,3-dihydro-3-hydroxy-5-phenyl-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 604-75-1

Trade Name	Manufacturer	Country	Year Introduced
Serax	Wyeth	U.S.	1965
Adumbran	Thomae	W. Germany	1965
Seresta	Wyeth Byla	France	1966
Praxiten	Wyeth	U.K.	1966
Serpax	Wyeth	Italy	1967
Anxiolit	Gerot	Austria	_
Aplakil	Aristegui	Spain	
Aslapax	Asla	Spain	-
Benzotran	Protea	Australia	_
Droxacepam	Je ba	Spain	
Durazepam	Durachemie	W. Germany	-
Enidrel	Syncro	Argentina	
Hilong	Banyu	Japan	
Iranil	litas	Turkey	-
Isochin	Tosi	Italy	-
Limbial	Chiesi	Italy	-

Trade Name	Manufacturer	Country	Year Introduced
Nesontil	Promeco	Argentina	-
Noctazepam	Brenner	W. Germany	_
Oxpam	I.C.N.	Canada	-
Propax	Cipan	Portugal	_
Psicopax	Bama-Geve	Spain	_
Psiquiwas	Wassermann	Spain	_
Purata	Lennon	S. Africa	-
Quen	Ravizza	Italy	_
Quilibrex	Isnardi	Italy	_
Sedokin	Geymonat Sud	Italy	_
Serepax	Ferrosan	Denmark	_
Sigacalm	Siegfried	Switz.	_
Sobile	Lafarquin	Spain	_
Uskan	Desitin	W. Germany	_
Vaben	Rafa	israel	_
Wakazepam	Wakamoto	Japan	_

Raw Materials

7-Chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one-4-oxide Acetic anhydride Sodium hydroxide

Manufacturing Process

- (A) Suspend 10 g of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide in 150 ml of acetic anhydride and warm on a steam bath with stirring until all the solid has dissolved. Cool and filter off crystalline, analytically pure 3-acetoxy-7-chloro-1,3-dihydro-5phenyl-2H-1 A-benzodiazepin-2-one, melting point 242°C to 243°C.
- (B) Add to a suspension of 3.4 g of 3-acetoxy-7-chloro-1.3-dihydro-5-phenyl-2H-1.4-benzodiazepin-2-one in 80 ml of alcohol, 6 ml of 4N sodium hydroxide. Allow to stand after complete solution takes place to precipitate a solid. Redissolve the solid by the addition of 80 ml of water. Acidify the solution with acetic acid to give white crystals. Recrystallize from ethanol to obtain 7-chloro-1,3-dihydro-3-hydroxy-5-phenyl-2H-1,4-benzodiazepin-2-one, melting point 203°C to 204°C.

References

Merck Index 6799 Kleeman & Engel p. 664 PDR p. 1980 OCDS Vol. 1 p. 366 (1977) & 2, 402 (1980) DOT 1 (3) 102 (1965) & 9 (6) 238 (1973) I.N. p. 711 REM p. 1063

Bell, S.C.; U.S. Patent 3,296,249; January 3, 1967; assigned to American Home Products Corp.

OXAZOLAM

Therapeutic Function: Minor tranquilizer

Chemical Name: 7-Chloro-5-phenyl-5'-methyltetrahydrooxazolo [5,4-b] -2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-2-one

Common Name: Oxazolazepam

Structural Formula:

Chemical Abstracts Registry No.: 24143-17-7

Trade Name	Manufacturer	Country	Year Introduced
Serenal	Sankyo	Japan	1970
Quiadon	Merck	W. Germany	1980
Convertal	Roemmers	Argentina	
Hializan	Pharma-Investi	Spain	_
Tranquit	Promonta	W. Germany	_

Raw Materials

5-Chloro-2-chloroacetylaminobenzophenone Isopropanolamine

Manufacturing Process

To a solution of 12.0 g of 5-chloro-2-chloroacetylaminobenzophenone and 3.2 g of isopropanolamine in 100 ml of ethanol was added 3.3 g of sodium acetate.

The resulting mixture was heated under reflux with stirring for 12 hours. After completion of the reaction, the solvent was distilled off and the residue was extracted with dichloromethane. The extract was washed with water, dried over anhydrous sodium sulfate and the solvent was distilled off.

The residue was recrystallized from ethanol to give 10.6 g of the desired product melting at 186°C to 188.5°C.

References

Merck Index 6801 DOT 8 (1) 18 (1972) & 9 (6) 239 (1973) I.N. p. 712 REM p. 1064

Tachikawa, R., Takagi, H., Kamioka, T., Midayera, T., Fukunaga, M. and Kawano, Y.; U.S. Patents 3,772,371; November 13, 1973; and 3,914,215; October 21, 1975; both assigned to Sankyo Co., Ltd.

OXELADIN

Therapeutic Function: Antitussive

Chemical Name: α, α -diethylbenzeneacetic acid 2-[2-(diethylamino)ethoxy] ethyl ester

Common Name: -

Structural Formula: СН₃СН₂СССООСН₂СН₂ОСН₂СН₂N(С₂H₅)₂ С₆H₅

Chemical Abstracts Registry No.: 468-61-1; 16485-39-5 (Citrate)

Trade Name	Manufacturer	Country	Year Introduced
Silopentol	Schulte	W. Germany	1970
Ethochlon	Hokuriku	Japan	1970
Fustopanox	Ottia Pharm.	Japan	1970
Paxeladine	Beaufour	France	1974
Dorex	Woelm	W. Germany	_
Hihustan	Maruko	Japan	_
Hustopan	Ohta	Japan	-
Marukofon	Maruko	Japan	_
Neoasdrin	Toa	Japan	-
Neobex	Lampugn a ni	Italy	_
Neusedan	Nippon Zoki	Japan	_
Pectamol	Malesci	Italy	_
Pectussil	Kwizda	Austria	
Tussilisin	lbirn	italy	_
Tussimo!	B.D.H.	U.K.	_

Raw Materials

Phenylacetonitrile Ethyl chloride B.B'-Dichlorodiethyl ether Sodium Potassium hydroxide Diethylamine

Manufacturing Process

Preparation of Diethylphenylacetonitrile: 25 grams of sodium was dissolved in 300 ml liquid ammonia containing 0.3 gram ferric chloride and 59 grams phenylacetonitrile was added slowly with stirring. After about 15 minutes a cooled solution of 80 grams of ethyl chloride in 200 ml dry ether was added and the mixture stirred for 1 hour. The ammonia was then allowed to evaporate, water added and the ether layer separated, dried, concentrated and the residual oil distilled in vacuo to yield diethylphenylacetonitrile as an oil. BP 85°C/ 1 mm.

Preparation of Diethylphenylacetic Acid: 46 grams of the foregoing nitrile was added to 140 ml ethylene glycol containing 36 grams potassium hydroxide and the mixture refluxed with stirring for about 20 hours. The mixture was diluted with water, extracted with light petroleum (BP 60° to 80°C) to remove traces of impurities and then acidified to yield diethylphenylacetic acid which was recrystallized from dilute ethanol (40% v/v ethanol in water).

Preparation of 2-(\$Chloroethoxy)Ethyl Diethylphenylacetate: 19.2 grams of the foregoing acid was added to a solution of 4 grams of sodium hydroxide in 40 ml ethylene glycol. 28.6 grams β , β '-dichlorodiethyl ether was added and the mixture refluxed for 1 hour. After removal of solvent under reduced pressure. 150 ml water was added to the residue and the product extracted with ether. The ethereal solution was dried, concentrated and the residue distilled in vacuo to yield the product as an oil, BP 140°C/0.7 mm.

Preparation of 2-(\$-Diethylaminoethoxy) Ethyl Diethylphenylacetate: A mixture of 21 grams of 2-(\(\beta\)-chloroethoxy)ethyl diethylphenylacetate and 14 grams diethylamine was heated under pressure in a sealed tube at 140°C for 5 hours. After cooling the mixture was dissolved in dilute hydrochloric acid and extracted with ether to remove traces of neutral impurities. The acid layer was then made alkaline with 10% w/v sodium hydroxide solution with cooling, and re-extracted with two portions of ether. The ether extract was dried, the ether distilled off and the residue distilled in vacuo to yield the product as an oil, BP 140°C/0.1 mm.

References

Merck Index 6803 Kleeman & Engel p. 665 OCDS Vol. 1 p. 90 (1977) I.N. p. 712

Petrow, V., Stephenson, O. and Wild, A.M.; U.S. Patent 2,885,404; May 5, 1959; assigned to The British Drug Houses Limited, England

OXENDOLONE

Therapeutic Function: Antiandrogen

Chemical Name: 16β -Ethyl- 17β -hydroxyestr-4-ene-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33765-68-3

Trade Name	Manufacturer	Country	Year Introduced
Prostetin	Takeda	Japan	1981

Raw Materials

16β-Ethylestra-4-ene-3,17-dione Ethyl orthoformate Sodium borohydride Hydrogen chloride

Manufacturing Process

To a solution of 3.0 g of 16β -ethylestra-4-ene-3.17-dione dissolved in 150 ml of dioxane, are added 15 g of ethyl orthoformate and 0.1 g of p-toluenesulfonic acid, followed by stirring for 2 hours at room temperature. The reaction solution is poured into 300 ml of a 5% agueous solution of sodium hydrogen carbonate and the resultant mixture is extracted with ether. The ether layer is washed with water and dried, followed by evaporation of the solvent to give crude crystals of 3-ethoxy-16β-ethylestra-3,5-diene-17-one. The crystals are recrystallized from ether to give 3.0 g of the compound melting at 114°C to 115°C.

To a solution of 3.0 g of the enol-ether compound obtained above in 50 ml of methanol, is added 1.5 g of sodium borohydride. After standing for 1.5 hours at room temperature, the reaction solution is poured into 300 ml of water. The resulting precipitates are collected by filtration and recrystallized from ether to give 2.8 g of 3-ethoxy-16β-ethylestra-3,5-dien- 17β -ol melting at 131° C to 133° C.

To a solution of 2.5 g of 3-ethoxy-16 β -ethylestra-3,5-diene-17 β -ol dissolved in 50 ml of methanol is added 1.2 ml of concentrated hydrochloric acid, followed by stirring for 10 minutes. The reaction solution is poured into 250 ml of water. The precipitated crystals are collected by filtration and recrystallized from ether to give 2.3 g of 16β -ethyl- 17β -hydroxyestra-4-en-one melting at 152°C to 153°C.

References

Merck Index 6804 DFU 5 (9) 44 (1980)

I.N. p. 712

Hiraga, K., Yoshioka, K., Goto, G., Nakayama, R. and Masuoka, M.; U.S. Patent 3,856,829; December 24, 1974; assigned to Takeda Chemical Industries. Ltd.

OXETHAZINE

Therapeutic Function: Topical anesthetic

Chemical Name: 2,2'-[(2-Hydroxyethyl)imino] bis[N-(1,1-dimethyl-2-phenylethyl)-N-

methylacetamide]

Common Name: Oxetacaine

Structural Formula:

Chemical Abstracts Registry No.: 126-27-2; 13930-31-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Oxaine	Wyeth	U.S.	1960
Emoren	Wassermann	Italy	
Mucaine	Wyeth	U.K.	-
Mutesa	Wyeth-Byla	France	-
Stomacain	Teisan-Pfizer	Japan	_
Strocain	Eisai	Japan	
Tepilta	Wyeth	W. Germany	_
Topicain	Chugai	Japan	_

Raw Materials

Chloro-N-methyl-N-ω-phenyl-tert-butylacetamide Ethanolamine

Manufacturing Process

Chlor-N-methyl-N-ω-phenyl-tert-butyl acetamide (23.95 g) (0.1 moi) is added to n-butanol (150.0 cc) containing anhydrous potassium carbonate (50.0 g). To the stirred refluxing solution is added dropwise freshly distilled ethanolamine (3.1 g) (0.05 mol). Stirring and refluxing is maintained for twenty hours. Upon cooling the solution is filtered; the residue is washed with n-butanol. The combined filtrates are washed with aqueous sodium carbonate solution then water and finally dried over anhydrous magnesium sulfate. The solvent is distilled under vacuum leaving a dry solid residue. The residue is dissolved in dry benzene to which is added n-hexane to crystallize the product melting at 104°C to 104.5°C. Yield 71-73%. Analysis-Carbon: calc. 71.9%; found 71.93%; hydrogen: calc. 8.8%; found 8.9%; nitrogen: calc. 9.0%; found 9.0%.

To make the hydrochloride salt, the bisacetamide or, by another name, 1,11-diphenyl-2,2,3,9,10,10-hexamethyl-4,8-diketo-6-(β-hydroxyethyl)-3,6,9-triazaundecane is dissolved in n-butanol. The solution is chilled and then dry hydrogen chloride gas is passed into the solution causing an oil to separate. To the heavy oil ether is added and then stirred causing crystallization to occur. MP 146°C to 147°C. Analysis for nitrogen: calc. 8,3%, found 8,2%.

To make the acetate salt, the bisacetamide (4.7 g) (0.01 mol) is dissolved in ethyl acetate to which is added glacial acetic acid (0.6 g) (0.01 mol). Ether is added to precipitate the acetate as a gum which is washed with hexane, and finally added to dry ether. Allow to stand for crystallization. MP 141°C. Analysis for nitrogen: calc. 8.0%; found 8.2%.

Other salts are: sulfate, MP 56°C; acid oxalate, MP 127°C; tartrate, MP 45°C; picrate, MP 151°C to 152°C.

References

Merck Index 6806 Kleeman & Engel p. 666 OCDS Vol. 1 p. 72 (1977) I.N. p. 712

Seifter, J., Hanslick, R.S. and Freed, M.E.; U.S. Patent 2,780,646; February 5, 1957; assigned to American Home Products Corp.

OXETORONE FUMARATE

Therapeutic Function: Antiserotonin, antihistamine

Chemical Name: 6-(3-Dimethylamino-1-propylidene)-12H-benzofuro[2,3-e] benz(b] oxepin fumarate

Common Name: -Structural Formula:

$$\begin{array}{c|c} & & & \\ \hline \\ \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{N} \left(\text{CH}_3 \right)_2 \end{array} \tag{base}$$

Chemical Abstracts Registry No.: 34522-46-8; 26020-55-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nocertone	Labaz	France	1975
Nocertone	Labaz	W. Germany	1976
Oxedix	Labaz	_	_

Raw Materials

γ-Dimethylaminopropyl chloride Ethyl iodide Magnesium 6-Oxo-benzo[b] benzofurano[2,3-e] oxepin Sulfuric acid

Fumaric acid

Manufacturing Process

(A) Preparation of 6-(3-dimethylaminopropyl)-6-hydroxybenzo[b] benzofurano[2,3-e] oxepin - In a 250 ml flask equipped with a vertical condenser, a dropping-funnel, a dip thermometer and a stirrer, 1.5 g of magnesium turnings and a crystal of iodine were heated until vaporization of the iodine and then cooled, after which 20 ml of dry tetrahydrofuran were added.

The mixture was heated under reflux and a solution of 0.2 g of ethyl iodide in 5 ml of dry tetrahydrofuran was allowed to flow into the reaction medium. When the reaction started, a solution of 6.2 g of γ -dimethylaminopropyl chloride in 20 ml of dry tetrahydrofuran was added and the mixture so obtained was heated under reflux until the complete disappearance of the magnesium turnings. The reaction medium was then cooled in an ice bath, after which there was added thereto a solution in 45 ml of tetrahydrofuran of 7 g of 6-oxo-benzo[b] benzofurano[2,3-e] oxepin. The reaction mixture was allowed to stand for 20 hours at a temperature of 20°C, and was then poured into a saturated aqueous solution of ammonium chloride maintained at a temperature of 5°C. The mixture was extracted with ether and the organic portion was washed and dried over anhydrous sodium sulfate. After evaporation of the solvent, 9,4 g of crude product were obtained, which after recrystallization from isopropanol, provided 6.7 g of pure 6-(3-dimethylaminopropyl)-6-hydroxybenzo[b] benzofurano-[2,3-e] oxepin, melting point 160°C (yield, 71%).

(B) Preparation of 6-(3-dimethylaminopropylidene)-benzo[b] benzofurano[2,3-e] oxepin and its fumarate - In an Erlenmeyer flask 6,2 g of 6-(3-dimethylaminopropyl)-6-hydroxybenzo[b] benzofurano[2,3-e] oxepin prepared as described above were dissolved in 108 ml of a 10% solution of sulfuric acid. The solution obtained was heated to boiling point for 15 minutes. After cooling, 100 ml of chloroform were added and the solution was made alkaline with a 5% solution of sodium hydroxide. The solution was then extracted with chloroform, weshed with water and dried over anhydrous sodium sulfate. The solvent was evaporated and the resulting oily residue composed of 6-(3-dimethylaminopropylidene)-benzo(b) benzofurano[2,3-e] oxepin was then directly treated with a solution of fumaric acid in isopropanol to give 6.5 g of 6-(3-dimethylaminopropylidene)-benzo[b] benzofurano[2,3-e] oxepin fumarate (yield, 85%). The fumarate had a melting point of 160°C when recrystallized from isopropanol.

References

Merck Index 6807 Kleeman & Engel p. 667 OCDS Vol. 3 p. 247 (1984) DOT 11 (1) 19 (1975) I.N. p. 712

Binon, F. and Descamps, M.L.V.; U.S. Patent 3,651,051; March 21, 1972; assigned to Laboratoires Labaz

OXICONAZOLE NITRATE

Therapeutic Function: Antifungal

Chemical Name: 1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)-O-(2,4-dichlorobenzyl)-

ethanone oxime nitrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Myfungar	Siegfried	Switz.	1983
Oceral	Roche	Switz.	1983

Raw Materials

1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethanone oxime Sodium hydride 2,4-Dichlorobenzyl chloride Nitric acid

Manufacturing Process

13.5 g of 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)-ethanone oxime are dissolved in 100 ml dimethylformamide (DMF) and 1.2 g of sodium hydride are mixed in, whereupon an exothermic reaction is allowed to take place on its own with stirring. After cessation of evolution of hydrogen, a solution of 9.8 g of 2,4-dichlorobenzyl chloride in 10 cc DMF is added dropwise with continuous stirring and the stirring is carried on for 2 hours further. The reaction is then taken to completion at a bath temperature of 80°C, after which the reaction mixture is evaporated in a rotation evaporator under reduced pressure and the residue is dissolved in 100 ml ethanol. After filtering off of undissolved matter, the solution is stirred with 300 ml 2N nitric acid for the conversion of free base to the nitrate.

The liquid standing over the heavy deposits which have separated out is separated off by decanting, whereupon an isomer is obtained which after recrystallization from ethanol is obtained in a yield of 5.2 g and having a melting point of 137°C to 138°C.

References

DFU 6 (2) 99 (1981) DOT 19 (12) 884 (1983)

I.N. p. 713

Mixich, G., Thiele, K. and Fischer, J.; U.S. Patent 4,124,767; November 7, 1978; assigned to Siegfried AG.

OXITRIPTAN

Therapeutic Function: Antidepressant, antiepileptic

Chemical Name: 5-Hydroxytryptophan

Common Name: 5-Hydroxytryptophan

Structural Formula:

Chemical Abstracts Registry No.: 56-69-9

Trade Name	Manufacturer	Country	Year Introduced
Levotonine	Panmedica	France	1973
Pretonine	Arkodex	France	1973
Tript-OH	Sigma Tau	Italy	1980
Levothym	Karlspharma	W. Germany	_
Quietim	Nativelle	France	_
Stimolomens	Irbi	Italy	-
Telesol	Lasa	Spain	-

Raw Materials

 β -(5-Benzyloxyindoly1-3)- α -acetylamino- α -methylthiopropionic acid methane-Hydrogen Sulfuric acid

Manufacturing Process

 β -(5-Benzyloxyindolyl-3)- α -acetylamino- α -methylthiopropionic acid methanethiol ester (449 mg) was added to 10 ml of ethanol and further 1 ml of triethylamine was added to the mixture. Then, the reaction mixture was refluxed for 17 hours, after condensation under reduced pressure and subsequent separation of the residue by column chromatography (silica gel, ethyl acetate), 353 mg of methyl β -(5-benzyloxyindolyl-3)- α -acetylamino- α -methylthiopropionate was obtained as colorless glasslike substance in the yield of 81.5%. Recrystallization of the substance from methanol water afforded 287 mg of crystals.

Raney nickel (3,5 cc) was suspended in 10 ml of ethanol and 356 mg of methyl \(\beta\)-(5-benzyloxyindolyl-3)-α-aminoacetyl-α-methylthiopropionate was added to the mixture together with 20 ml of ethanol. Then, the reaction mixture was stirred for 1 hour at room temperature and thereafter filtered to remove insoluble substances. The residue was washed with 100 ml of ethanol and 50 ml of acetone and both the filtrate and the wash liquid were combined and concentrated under reduced pressure. By column chromatography (silica gel and acetone), 210 mg of methyl β -(5-hydroxyindolyl-3)- α -acetylaminopropionate as colorless glasslike substance in the yield of 90%.

To 430 mg of methyl β -(5-hydroxyindolyl-3)- α -acetylaminopropionate was added 50 ml of 10% sulfuric acid and the reaction mixture was refluxed under heating for 10 hours. After condensation under reduced pressure to 15 ml volume, the reaction solution was neutralized with ammonia to pH 4, to afford the extract. The resulting extract was filtered and washed with water to afford 265 mg of 5-hydroxytryptphan in the yield of 78%.

References

Merck Index 4771 Kleeman & Engel p. 668 I.N. p. 714

Tsuchihashi, G. and Ogura, K.; U.S. Patent 4,001,276; Januery 4, 1977; assigned to Sagami Chemical Research Center (Japan)

OXITROPIUM BROMIDE

Therapeutic Function: Anticholinergic bronchodilator

Chemical Name: (-)-N-Ethylnorscopolamine methobromide

Common Name: OTB

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Ventilat	Boehr, Ingel.	W. Germany	1983

Raw Materials

(--)-Norscopolamine Ethyl bromide
Methyl bromide Sodium carbonate

Manufacturing Process

14.5 g (0.05 mol) of (-)-norscopolamine and 5.4 g (0.05 mol) of ethyl bromide were dissolved in 300 cc of acetonitrile, 5.3 g (0.05 mol) of anhydrous sodium carbonate were suspended in the solution, and the suspension was heated at the boiling point for 10 hours. After a boiling time of 2.5 and 5 hours, respectively, the supply of ethyl bromide and sodium carbonate in the reaction mixture was replenished by adding each time 5.4 g (0.05 mol) of ethyl bromide and 5.3 g (0.05 mol) of anhydrous sodium carbonate. At the end of 10 hours of boiling, the inorganic sodium salts which had separated out were separated by vacuum filtration, the filter cake was washed with acetonitrile, and the acetonitrile was distilled out of the filtrate. The distillation residue was dissolved in ether, the solution was extracted with a small amount of water and then dried, and the ether was distilled off, yielding raw (-)-N-ethylnorscopolamine.

7.0 g (0.022 mol) of (-)-N-ethylnorscopolamine were dissolved in acetonitrile, 10.4 g (0.11 mol) of methyl bromide were added to the solution, and the mixture was allowed to stand at room temperature. The crystalline precipitate formed thereby was collected and recrystallized from acetonitrile, 8.9 g (97.8% of theory) of white crystalline (-)-N-ethylnorscopolamine methobromide, melting point 203°C to 204°C (decomposition), were obtained.

References

Merck Index A-10 DFU 4 (2) 117 (1979) DOT 19 (7) 416 & (8) 444 (1983)

Zeile, K., 8anholzer, R., Walther, G., Schulz, W. and Wick, H.; U.S. Patent 3,472,861; Oct. 14, 1969; assigned to Boehringer Ingelheim GmbH.

OXOLINIC ACID

Therapeutic Function: Urinary antibacterial

Chemical Name: 1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo [4,5-g] quinoline-3-carboxylic acid

Common Name:

Structural Formula:

Chemical Abstracts Registry No.: 14698-29-4

Trade Name	Manufacturer	Country	Year introduced
Prodoxol	Warner	U.K.	1974
Urotrate	Substantia	France	1974
Ossian	Bioindustria	Italy	1974
Utibid	Warner Lambert	U.S.	1975
Nidantin	Sasse/Goedecke	W. Germany	1978
Decme	Poli	Italy	
Emyrenil	Emyfar	Spain	_
Gramurin	Chinoin	Hungary	_
Oksaren	Belupo	Yugoslavia	-
Ossion	Bioindustria	Italy	_
Oxoboi	B.O.I.	Spain	_
Oxoinex	Inexfa	Spain	_
Oxol	Casen	Spain	
Oxolin	Prodes	Spain	_
Pietil	Argentia	Argentina	_
Tilvis	Scharper	italy	_
Tropodil	Elea	Argentina	_
Urinox	Syncro	Argentina	_
Uro-Alvar	Alvarez-Gomez	Spain	_
Uropax	Lefa	Spain	_
Uroxol	Ausonia	Italy	_

Raw Materials

3.4-Methylenedioxyaniline Diethyl ethoxymethylene malonate Sodium hydroxide Ethyl iodide

Manufacturing Process

A mixture of 27 parts by weight of 3,4-methylenedioxyaniline and 43 parts by weight of diethyl ethoxymethylenemalonate is heated at 80° to 90°C for 3 hours. The mixture is then heated at 80° to 90°C for 1 hour under about 15 mm pressure to remove the byproduct ethyl alcohol formed. The residue is recrystallized from ligroin (BP 60° to 90°C) to give diethyl[(3,4-methylenedioxyanilino)methylene] malonate as a yellow solid melting at 100° to 102°C. The analytical sample from ligroin melts at 101° to 102°C.

A mixture of 48 parts by weight of diethyl [(3,4-methylenedioxyanilino)methylene] malonate and 500 parts by weight of diphenyl ether is refluxed for 1 hour. The mixture is allowed to cool to about 25°C with stirring and 500 parts by weight of petroleum ether are added. Filtration gives 3-carbethoxy-6,7-methylenedioxy-4-hydroxy-quinoline as a brown solid, MP 276° to 281°C. Several recrystallizations from dimethylformamide gives almost colorless analytical material, MP 285° to 286°C, (decomposes).

A mixture of 26 parts of 3-carbethoxy-6,7-methylenedioxy-4-hydroxy-quinoline, 16 parts of sodium hydroxide and 50 parts of dimethylformamide is heated at 70° to 75°C for 2 hours, then 31 parts of ethyl iodide is added over 1 hour with continued heating and stirring. After an additional 3 to 4 hours of heating (at 70° to 75°C) and stirring, the mixture is diluted with 500 parts of water, refluxed for 3 to 4 hours, acidified with concentrated hydrochloric acid and filtered to yield 18 to 22 parts of 1-ethyl-1,4-dihydro-6,7-methylenedioxy-4-oxo-3-quinoline-carboxylic acid, MP 309° to 314°C (decomposes). The analytical sample from dimethylformamide melts at 314° to 316°C (decomposes).

References

Merck Index 6814 Kieeman & Engel p. 670 OCDS Vol. 2 pp. 370, 387 (1980) & 3, 185 (1984) I.N. p. 34

Kaminsky, D. and Meltzer, R.I.; U.S. Patent 3,287,458; November 22, 1966; assigned to Warner-Lambert Pharmaceutical Company

OXOMEMAZINE

Therapeutic Function: Antihistaminic

Chemical Name: N.N.B.-Trimethyl-10-H-phenothiazine-10-propanamine 5.5,-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3689-50-7; 4784-40-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Doxergan	Specia	France	1964
lmakol	Rhone Poulenc	W. Germany	1965
Dysedon	Meiji	Japan	_
Rectoplexil	Specia	France	
Toplexil	Specia	France	_

Raw Materials

Phenothiazine Sodium amide 3-Dimethylamino-2-methylpropyl chloride Hydrogen peroxide

Manufacturing Process

Phenothiazine is reacted with 3-dimethylamino-2-methylpropyl chloride in the presence of sodium amide to give 3-(10-phenthiaziny!)-2-methyl-1-dimethylaminopropane. 11.9 g of of this intermediate is dissolved with agitation in glacial acetic acid (120 cc). Pure sulfuric acid (d = 1.83; 0.5 cc) is added and a mixture of glacial acetic acid (10 cc) and hydrogen peroxide (8.5 cc of a solution containing 38 g of hydrogen peroxide in 100 cc) is then run in over 20 minutes. The temperature rises from 25°C to 35°C and is then kept at 60°C for 18 hours. The mixture is cooled and water (150 cc) is added and, with cooling, aqueous sodium hydroxide (d = 1.33; 220 cc). The resulting mixture is extracted with ethyl acetate (3 X 100 cc), the solvent is evaporated on a water bath and the residue is recrystallized from heptane (150 cc). 3-(9.9-dioxy-10-phenthiazinyl)-2-methyl-1-dimethylaminopropane (7.8 g) is obtained, MP 115°C.

The corresponding hydrochloride prepared in ethyl acetate and recrystallized from a mixture of ethanol and isopropanol melts at 250°C.

References

Merck Index 6815 Kleeman & Engel p. 670 DOT 2 (4) 145 (1966)

I.N. p. 715

Jacob, R.M. and Robert, J.G.; U.S. Patent 2,972,612; February 21, 1961; assigned to Societe

des Usines Chimiques Rhone-Poulenc (France)

OXPRENOLOL

Therapeutic Function: Antiarrhythmic

Chemical Name: 1-[(1-methylethyl)amino]-3-[2-(2-propenyloxy)phenoxy]-2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6452-71-7; 6452-73-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Trasicor	Ciba Geigy	Italy	1970
Trasicor	Ciba Geigy	W. Germany	1971
Trasicor	Ciba Geigy	U.K.	1972
Trasicor	Ciba Geigy	France	1975
Trasacor	Ciba-Geigy-Takeda	Japan	1976
Captol	Protea	Australia	_
Cordexol	Lagap	Switz.	_
Coretal	Polfa	Poland	-

Raw Materials

Pyrocatechol monoallyl ether Epichlorohydrin Isopropylamine

Manufacturing Process

75 grams of pyrocatechol monoallyl ether, 75 grams of epichlorohydrin, 75 grams of potassium carbonate and 400 ml of acetone are stirred and heated at the boil for 12 hours. The potassium carbonate is then filtered off. The solvent is distilled off in a water-jet vacuum. The residual oil is dissolved in ether and agitated with 2 N sodium hydroxide solution. The ether is separated, dried and distilled off. The residue is distilled in a water-jet vacuum. 3-(ortho-allyloxy-phenoxy)-1,2-epoxypropane passes over at 145° to 157°C under 11 mm Hg pressure. A solution of 15 grams of 3-(ortho-allyloxy-phenoxy)-1,2-epoxypropane and 15 grams of isopropylamine in 20 ml of ethanol is refluxed for 4 hours. The excess amine and the alcohol are then distilled off under vacuum, to leave 1-isopropylamino-2-hydroxy-3-(ortho-allyloxy-phenoxy)-propane which melts at 75° to 80°C after recrystallization from hexane.

References

Merck Index 6820

Oxybutynin Chloride 1143

Kleeman & Engel p. 671 OCDS Vol. 1 p. 117 (1977) & 2, 109 (1980) DOT 6 (1) 25 (1970)

I.N. p. 716

Ciba Limited, Switzerland; British Patent 1,077,603; August 2, 1967

OXYBUTYNIN CHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: α-cyclohexyl-α-hydroxybenzeneacetic acid 4-(diethylamino)-2-butynyl

ester hydrochloride

Common Name: -

Structural Formula:

$$C = \operatorname{COCE}_2 C \equiv \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N (C_2 H_5)_2 \cdot \operatorname{HCl}_2 C = \operatorname{CCE}_2 N ($$

Chemical Abstracts Registry No.: 1508-65-2; 5633-20-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ditropan	Marion	U.S.	1975
Ditropan	Scharper	Italy	-

Raw Materials

Methyl phenylcyclohexylglycolate 4-Diethylamino-2-butynyl acetate Sodium methylate

Manufacturing Process

A mixture of 394.2 grams of methyl phenylcyclohexylglycolate and 293.1 grams of 4-diethylamino-2-butynyl acetate was dissolved with warming in 2.6 liters of n-heptane. The solution was heated with stirring to a temperature of 60° to 70°C and 8.0 grams of sodium methoxide were added. The temperature of the mixture was then raised until the solvent began to distill. Distillation was continued at a gradual rate and aliquots of the distillate were successively collected and analyzed for the presence of methyl acetate by measurement of the refractive index. The reaction was completed when methyl acetate no longer distilled, and the refractive index observed was that of pure heptane ($n_0^{26} = 1.3855$). About 3½ hours were required for the reaction to be completed.

The reaction mixture was then allowed to cool to room temperature, washed with water, and extracted with four 165 ml portions of 2 N hydrochloric acid. The aqueous extracts were combined and stirred at room temperature to permit crystallization of the hydrochloride salt of the desired product. Crystallization was completed by cooling the slurry in an ice bath, and the product was collected by filtration, pressed dry, and recrystallized from 750 ml of water. Yield of pure crystalline material, 323 grams.

References

Merck Index 6823

Kleeman & Engel p. 672

PDR p. 1076

OCDS Vol. 1 p. 93 (1977)

I.N. p. 716 REM p. 919

Mead Johnson & Company; British Patent 940,540; October 30, 1963

OXYFEDRINE

Therapeutic Function: Coronary vasodilator

Chemical Name: (R)-3-[(2-hydroxy-1-methyl-2-phenylethyl)amino]-1-(3-methoxyphenyl)-1-

propanone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15687-41-9; 16777-42-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Ildamen	Homburg	W. Germany	1966
Ildamen	Chugai	Japan	1970
Ildamen	Homburg	Italy	1972
Ildamen	Farmades	Italy	1973
Modacor	I.S.H.	France	
Myofedrin	Apogepha	E. Germany	
Timoval	Homburg	W. Germany	

Raw Materials

m-Methoxyacetophenone Paraformaldehyde L-Norephedrine

Manufacturing Process

45 grams of m-methoxy acetophenone, 8 grams of paraformaldehyde and 30.2 grams of 1 norephedrine were mixed with about 135 cc of isopropanol HCl solution to provide a pH of 4 and the mixture refluxed for 4 hours. The reaction mixture was cooled and the crystals filtered off on a suction filter. 3-[1-phenyl-1-hydroxypropyl-(2)-amino] -1-(m-methoxyphenyl)-propanone-(1)-HCl was obtained which after recrystallization from methanol had a MP of 190° to 193°C.

References

Merck Index 6830 Kleeman & Engel p. 673 OCDS Vol. 2 p. 40 (1980) I.N. p. 718

Thiele, K.; U.S. Patent 3,225,095; December 21, 1965; assigned to Deutsche Gold- und Silber-Scheideanstalt, Germany

OXYMETAZOLINE HYDROCHLORIDE

Therapeutic Function: Nasal decongestant

Chemical Name: 3-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-6-(1,1-dimethylethyl)-2,4-

dimethylphenol hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2315-02-8; 1491-59-4 (Base)

Trade Name	Manufacturer	Country	Year introduced
Nasivin	Merck	W. Germany	1961
Iliadine	Merck Clevenot	France	1964
Afrin	Schering	U.S.	1964
Nostrilla	Boehr, Ingel,	U.S.	1982
Alrin	Teva	Israel	_
Atomol	Allen & Hanburys	U.K.	_
Dristan	Whitehall	U.S.	
Duration	Plough	U.\$.	-
Nasivin	Bracco	italy	-
Nasafarma	Novofarma	Spain	-
Nezeril	Draco	Sweden	_
Oxymeta	Schein	U. S .	_
Pikorin	Medica	Finland	
Rhinolitan	Kettelhack Riker	W. Germany	
Sinerol	Draco	Sweden	_
Utabon	Uriach	Spain	_

Raw Materials

2,4-Dimethyl-6-t-butylphenol Formaldehyde Hydrogen chloride Sodium cyanide Ethylene diamine Sodium hydroxide p-Toluene sulfonic acid Hydrogen chloride

Manufacturing Process

10 grams 2.6-dimethyl-3-hydroxy-4-tertiary butylbenzylcyanide (produced by chloromethylation of 2,4-dimethyl-6-tertiary butyl-phenol with formaldehyde and HCl and conversion of the substituted benzyl chloride with NaCN; crystals, from alcohol, melting at 135° to 137°C) and 10.7 grams ethylenediamine-mono-p-toluenesulfonate are heated in an oil bath to approximately 235°C for 1½ hours, whereby ammonia is evolved. The free base is obtained from the p-toluene-sulfonic acid imidazoline salt which is difficultly soluble in water, by conversion with 50 cc of a 10% NaOH solution. Said base is recrystallized from benzene, and 7.5 grams (62% of the theoretical yield) 2-(2',6'-dimethyl-3'-hydroxy-4'-tertiary butylbenzyl)-2-imidazoline, MP 180° to 182°C, are obtained.

By dissolving the free base in an ethyl alcohol solution of hydrochloric acid and adding

ether, the hydrochloride can be produced in the usual manner. Said hydrochloride melts, when recrystallized from alcoholic ether, at 300° to 303°C and is decomposed.

References

Merck Index 6834 Kleeman & Engel p. 674 PDR pp. 677, 728, 1606, 1899 OCDS Vol. 1 p. 242 (1977) I.N. p. 719 REM p. 889

Fruhstorfer, W. and Muller-Calgan, H.; U.S. Patent 3,147,275; September 1, 1964; assigned to E. Merck AG, Germany

OXYMORPHONE

Therapeutic Function: Narcotic analgesic

Chemical Name: 4,5α-epoxy-3,14-dihydroxy-17-methylmorphinan-6-one

Common Name: Dihydrohydroxymorphinone

Structural Formula:

OH NCH3

Chemical Abstracts Registry No.: 76-41-5

Trade Name Manufacturer Country Year Introduced
Numorohan Endo U.S. 1959

Raw Materials

Thebaine Hydrogen peroxide Hydrogen bromide Hydrogen

Manufacturing Process

Thebaine is dissolved in aqueous formic acid and treated with 30% $\rm H_2O_2$; neutralization with aqueous ammonia gives 14-hydroxycodeinone. It is hydrogenated to give oxycodone. 90 ml of concentrated hydrobromic acid are heated to 90°C. 9 grams of 14-hydroxydihydrocodeinone (oxycodone) are then added under stirring and the mixture is quickly heated to 116°C and kept at this temperature under reflux condenser for 20 minutes, with continued stirring. The resulting brown solution is diluted with about 90 ml of water and chilled with ice. Aqueous 10% sodium hydroxide solution is now added to alkaline reaction and the liquid is extracted 3 times with 100 cc portions of chloroform. The layers are separated and the aqueous phase is filtered and acidified by the addition of concentrated aqueous hydrochloric acid, treated with charcoal and filtered.

The filtrate is treated with concentrated aqueous ammonia until the mixture gives a pink

color on phenolphthalein paper. The liquid is extracted seven times with 100 cc portions of chloroform, the extracts are combined, dried with anhydrous sodium sulfate and evaporated. The residue is dissolved in ethanol by refluxing and the ethanol evaporated nearly to dryness. 100 cc of benzene are then added, the mixture is refluxed for ½ hour and set aside for crystallization. After cooling, the desired compound is collected by filtration. 2.3 grams of a white crystalline powder are obtained; MP 245° to 247°C. This powder consisting of 14-hydroxydihydromorphinone can be purified by recrystallization from benzene, ethylacetate or ethanol. From benzene it generally forms diamond shaped platelets, while needles are obtained from ethylacetate.

On heating, the crystals are discolored from about 200°C on, and melt at 246° to 247°C to a black liquid, which decomposes with strong volume increase if the temperature is raised further by a few degrees.

References

Merck Index 6837 Kleeman & Engel p. 675 PDR p. 859 OCDS Vol. 1 p. 290 (1977) & 2,319 (1980) J.N. p. 719

REM p. 1105

Lewenstein, M.J. and Weiss, U.; U.S. Patent 2,806,033; September 10, 1957

OXYPENDYL

Therapeutic Function: Antiemetic

Chemical Name: 4-[3-(10H-Pyrido[3,2-b] [1,4] benzothiazin-10-yl)propyl]-1-piperazine-

ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5585-93-3; 17297-82-4 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Pervetral	Homburg	W, Germany	1962

Raw Materials

10- $(\gamma$ -N-PiperazinopropyI)-4-azaphenthiazine Ethylene chlorhydrin

Manufacturing Process

32 parts of $10-(\gamma-N-p)$ ipperazinopropyl)-4-azaphenthiazine in 200 cc of butanol with 9 parts of ethylene chlorhydrin and 14 parts of finely powdered potash are heated for 4 hours under reflux while stirring vigorously. After cooling, extraction is carried out with dilute hydrochloric

acid, the substance is finally washed with water and the combined hydrochloric acid aqueous phase is washed twice with ether. The base is then liberated with concentrated sodium hydroxide solution and taken up in chloroform. The chloroform solution is dried with potash and concentrated by evaporation. 26.4 parts of (10-γ-N-B-hydroxyethylpiperazino-N1propyl)-4-azaphenthiazine are distilled over at 280°C to 300°C/6 mm. The dihydrochloride is obtained in isopropanol with isopropanolic hydrochloric acid. The product melts at 218°C to 220°C.

References

Merck Index 6838 Kleeman & Engel p. 676 OCDS Vol. 1 p. 430 (1977) I.N. p. 719

Deutsche Gold- und Silber Scheideanstalt; British Patent 893,284; April 4, 1962

OXYPHENBUTAZONE

Therapeutic Function: Antiinflammatory

Chemical Name: 4-butyl-1-(4-hydroxyphenyl)-2-phenyl-3,5-pyrazolidinedione

Common Nama: p-hydroxyphenylbutazone

Structural Formula:

Chemical Abstracts Registry No.: 129-20-4

Trade Name	Manufacturer	Country	Year Introduced
Tanderil	Geigy	U.K.	1960
Tandearil	Geigy	U.S.	1961
Tanderil	Ciba Geigy	France	1961
Tanderil	Geigy	W. Germany	1961
Tanderil	Geigy	Italy	1962
Artroflog	Magis	Italy	_
Artzone	Cont. Ethicals	S. Africa	_
Butaflogin	Chemiepharma	Italy	
Butapirone	Brocchieri	Italy	_
Buteril	Protea	S. Africa	-
Butilene	Francia	Italy	_
Deflogin	Valeas	İtaly	_
Fibutox	Pharmador	S. Africa	_
Flanaril	Osfa	Italy	_
Floghene	Chibi	Italy	_
Flogistin	Scharper	Italy	_
Flogitolo	Isn ard i	Italy	_
Flogodin	Firma	Italy	
Iltazon	litas	Turkey	
lmbun	Merckle	W. Germany	_
Inflamil	Leiras	Finland	-

Trade Name	Manufacturer	Country	Year Introduced
Ipebutona	l pecsa	Spain	_
Iridil	Farmila	Italy	_
Isobutil	Panther-Osfa	Italy	_
Miyadril	Fako	Turkey	_
Optimal	Dojin	Japan	_
Optone	Lennon	S. Africa	_
Oxalid	U.S.V.	U.S.	_
Oxibutol	Asla	Spain	
Oxybutazone	I.C.N.	Canada	_
Oxybuton	Streuli	Switz.	_
Phlogase	Adenylchemie	W. Germany	
Phlogistol	Helopharm	W. Germany	
Phlogont	Azochemie	W. Germany	_
Phloguran	Ikapharm	Israel	_
Pirabutina	Ellea	Italy	_
Piraflogin	Jamco	Italy	_
Rapostan	Mepha	Switz.	_
Rheumapax	Erco	Denmark	_
Tantal	Sawai	Japan	_
Teneral	Eczacibasi	Turkey	_
Validil	von Boch	Italy	_
Visobutina	I.S.F.	Italy	_

Raw Materials

n-Butylmalonic acid ethyl ester	Sodium
p-Benzyloxy hydrazobenzene	Hydrogen

Manufacturing Process

43.2 parts of n-butyl malonic acid ethyl ester are added to a solution of 4.6 parts of sodium in 92 parts by volume of absolute alcohol. 39 parts of p-benzyloxy hydrazobenzene (MP 88° to 90°C) are added. About two-thirds of the alcohol is distilled off and 92 parts by volume of absolute xylene are added. Without removing the sloping condenser, the mixture is stirred for 12 hours at a bath temperature of 140° to 145°C. It is then cooled to 0° to 5°C, 100 parts of ice are added, the xylene is removed, the aqueous solution is extracted twice with chloroform and made acid to Congo red at 0° to 5°C with 6 N hydrochloric acid.

The precipitate is taken up in chloroform, the solution obtained is washed twice with water, then with saturated salt solution, dried over Na₂SO₄ and evaporated under vacuum (bath temperature 20°C). The residue is recrystallized from alcohol and produces 1-(p-benzyloxyphenyl)-2-phenyl-4-n-butyl-3,5-dioxo-pyrazolidine (C) as tiny white needles which melt at 132° to 133°C.

16.6 parts of (C) are suspended in 166 parts by volume of ethyl acetate and, in the presence of 16.6 parts of Raney nickel, hydrogen is allowed to act at room temperature and atmospheric pressure.

After 6 hours the calculated amount of hydrogen has been taken up. The residue obtained after filtering and evaporating is taken up in benzene and extracted twice with diluted sodium carbonate solution. The alkali extract is then made acid to Congo red with 6 N hydrochloric acid and the precipitate is taken up in ethyl acetate. The solution obtained is washed twice with salt solution, dried with sodium sulfate and evaporated. The residue is recrystallized from ether/petroleum ether. 1-(p-hydroxyphenyl)-2-phenyl-4-n-butyl-3,5dioxo-pyrazolidine melts at 124° to 125°C.

References

Merck Index 6840 Kleeman & Engel p. 677 PDR p. 1606 OCDS Vol. 1 p. 236 (1977)

I.N. p. 720 REM p. 1119

Häfliger, F.; U.S. Patent 2,745,783; May 15, 1956; assigned to J.R. Geigy AG, Switzerland

OXYPHENCYCLIMINE

Therapeutic Function: Antispasmodic

Chemical Name: α-cyclohexyl-α-hydroxybenzeneacetic acid (1,4,5,6-tetrahydro-1-methyl-

2-pyrimidinyl)methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 125-53-1; 125-52-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Vio-Thene	Rowell	U.S.	1959
Daricon	Pfizer	U.S.	1959
Setrol	Flint	U.S.	1961
Gastrix	Rowell	U.S.	1973
Manir	Vaipan	France	1975
Caridan	B.D.H.	U.K.	_
Cycmin	Тоуо	Japan	_
Inomaru S	Sawai	Japan	-
Norma	S ankyo	Japan	-
Oximin	A.F.I.	Norway	_
Sedomucol	Asla	Spain	-
Spazamin	G.P.	Australia	-
Ulcociclina	Confas	Italy	-
Ulcomin	Remedia	Israel	_
Vagogastrin	Benvegna	Italy	_

Raw Materials

1,3-Diaminobutane Ethyl chlorimidoacetate Benzoyl formic acid Cyclohexyl bromide Magnesium

Manufacturing Process

To a stirred solution of 8.8 grams (0.1 mol) of 1,3-diaminobutane in 150 ml of ethanol maintained at 0° to 5°C, there was added 25.8 grams (0.1 mol) of ethyl chlorimidoacetate hydrochloride during a period of 20 minutes. After the mixture had been stirred at 0° to

5°C for two hours, it was acidified at this temperature by the addition of ethanolic hydrogen chloride. The mixture was warmed to room temperature and filtered to remove 4.3 grams of solid ammonium chloride. The filtrate was concentrated to approximately 40 ml, filtered and refrigerated. The solid which separated was isolated, washed with acetone and dried. There was obtained 7.4 grams (40% of the theoretical yield) of 2-chloromethyl-4methyl-1,4,5,6-tetrahydropyrimidine hydrochloride melting at 158° to 160°C.

In a second step, cyclohexyl bromide was reacted with magnesium, then with benzoyl formic acid to give cyclohexylphenyl glycolic acid. A solution of 1.8 grams (0.01 mol) of 2-chloromethyl-1-methyl-1,4,5,6-tetrahydropyrimidine hydrochloride in 5 ml of water was made alkaline with 5 ml of 50% NaOH and extracted with ether. The ether solution, which contained the basic chloride, was dried over calcium sulfate and added to a solution of 2.3 grams (0.01 mol) of α -cyclohexylphenylglycolic acid in 75 ml of isopropanol. The solution was distilled to remove the ether, and 0.1 gram of powdered potassium iodide added to the residual isopropanol solution which was then refluxed for 6 hours. The solid which had separated was redissolved by the addition of 20 ml of ethanol and the solution charcoaled, concentrated, and cooled. The solid which separated, 1-methyl-1,4,5,6-tetrahydro-2-pyrimidylmethyl α-cyclohexylphenyl-glycolate hydrochloride, weighed 1.4 grams and melted at 228° to 229°C with decomposition after recrystallization from ethanol.

References

Merck Index 6841 Kleeman & Engel p. 677 OCDS Vol. 2 p. 75 (1980) I.N. p. 720 REM p. 917

Chas. Pfizer & Co., Inc.; British Patent 795,758; May 28, 1958

OXYPHENISATIN ACETATE

Therapeutic Function: Cathartic

Chemical Name: 3.3-Bis[4-(Acetyloxy)phenyl]-1,3-dihydro-2H-indol-one

Common Name: Acetphenolisatin; endophenolphthalein; diphesatin

Structural Formula:

Chemical Abstracts Registry No.: 115-33-3

Trade Name	Manufacturer	Country	Year Introduced
Lavema	Winthrop	U.S.	1959
Isalax	Vale	U.S.	1963
Acetalax	Harvey	Australia	
Bisco-Zitron	Biscova	W. Germany	
Bydolax	Moore	U.K.	_

Trade Name	Manufacturer	Country	Year Introduced
Darmoletten	Omegin	W. Germany	_
Eulaxin	Pliva	Yugoslavia	_
Fenisan	Chemimportexport	Rumania	
Laxatan	Divapharma	W. Germany	_
Laxanormal	Uquifa	Spain	_
Med-Laxan	Med	W. Germany	-
Nourilax	Nourypharma	Neth.	_
Obstilax	Zirkulin	W. Germany	_
Promassolax	Ysat Wernigerode	E. Germany	_
Prulet	Mission	U.S.	_
Regal	Ferrosan	Denmark	_
Sanapert	Trogalen	Austria	_
Schokołax	Dallmann	W. Germany	_
Veripaque	Winthrop	U.K.	· -

Raw Materials

Diphenolisatin Acetic anhydride

Manufacturing Process

235 gravimetrical parts of acetic acid anhydride (90%) are poured over 106 gravimetrical parts of diphenolisatin (Berichte der Deutschen Chemischen Gesselschaft, 18, 1885, p. 2641) and the mixture is heated on the water-bath while stirring. The solid starting material temporarily dissolves almost entirely and shortly afterwards the reaction product turns into a crystalline paste. In order to complete the reaction the heating on the water-bath is continued for a short time and then the whole is left to get cold. The reaction product may, for instance, be separated in the following manner: To the cold reaction mixture is gradually added about the same volumetrical quantity of alcohol; in this manner the excess of acetic acid anhydride is destroyed and the paste becomes thinner. Then the fluid is drawn off and the product washed with alcohol. For complete cleansing another extraction is made with warm alcohol and the product crystallized, for instance, from 10 parts of acetic acid. The product represents a light, fine crystalline powder, which is difficultly soluble or even insoluble in the usual organic solvents. Its melting point lies at 242°C.

References

Merck Index 6842 Kleeman & Engel p. 678 OCDS Vol. 2 p. 350 (1980) 1.N. p. 720

Preiswerk, E.; U.S. Patent 1,624,675; April 12, 1927; assigned to Hoffmann-LaRoche Chemical Works

OXYTETRACYCLINE

Therapeutic Function: Antibiotic

Chemical Name: 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,6,10,12,12a-hexahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 79-57-2; 2058-46-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Terramycin	Pfizer	U.S.	1950
Gynamousse	Pfizer	France	1966
Oxy-Kesso-Tetra	McKesson	U.S.	1970
Oxlopar	Parke Davis	U.S.	1974
E.P. Mycin	Edwards	U.S.	1983
Chrysocin	Pliva	Yugoslavia	_
Clinimycin	Glaxo	U.K.	_
Copharoxy	Cophar	Switz.	_
Crisamicin	Frumtost	Spain	_
Devacyclin	Deva	Turkey	
Dura-Tetracyclin	Dura	W. Germany	_
Egocin	Krka	Yugoslavia	_
Elaciclina	J.F.L.	Spain	_
Galenomycin	Galen	U.K.	-
Geocycline	I.E. Kimya Evi	Turkey	_
Geomycin	Pliva	Yugoslavia	-
I.A Loxin	Inter-Alia Pharm.	U.K.	_
Imperacin	I,C.I.	U.K.	_
Macocyn	Mack	W. Germany	_
Oksisiklin	Uranium	Turkey	
Ossitetra	Pierrel	Italy	_
Otesolut	Janapharm	E. Germany	_
Oxacycline	Crookes	U.K.	-
Oxeten	Mochida	Japan	_
Oxymycin	Chelsea	U.K.	_
Proteroxyna	Proter	Italy	_
Stecsolin	Squibb	ข.K.	
Tetra-Tablinen	Sanorania	W. Germany	
Tetrafen	Drifen	Turkey	

Raw Materials

Bacterium Streptomyces rimosus Soybean meal Cerelose (glucose)

Manufacturing Process

Medium	Grams
Soybean meal	10
Cerelose	10
Distillers' solubles	0.5
Sodium chloride	5
Distilled water to 1,000 ml	

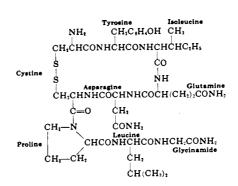
The pH was adjusted to 7.0 with sodium hydroxide and calcium carbonate was added at the rate of 1 g/l.

500 ml portions of the above medium were added to Fernbach flasks which were then sterilized at 121°C for 30 minutes. Upon cooling, the flasks were inoculated with a suspension of the growth of *S. rimosus* obtained from the surface of beef lactose agar slants, and the flasks were shaken for 4 days at 28°C on a rotary shaker having a displacement of 2" at an rpm of 200. At the end of this period the broth was found to contain 640 C.D.U/ml and 400 chloramphenicol units/ml. The mycelium was separated from the broth by filtration and the latter was adjusted to pH 9.0. The antibiotic was extracted from the broth with n-butanol, and when the ultraviolet absorption spectrum was observed on the butanol solution of the antibiotic, peaks in the absorption curve were found at 385 and 270 millimicrons.

References

Merck Index 6846 Kleeman & Engel p. 680 PDR pp. 887, 1413, 1533, 1606 OCDS Vol. 1 p. 212 (1977) & 2,226 (1980) I.N. p. 721 REM pp. 1206, 1260

Sobin, B.A., Finlay, A.C. and Kane, J.H.; U.S. Patent 2,516,080; July 18, 1950; assigned to Chas. Pfizer & Co., Inc.


OXYTOCIN

Therapeutic Function: Oxytocic

Chemical Name: A complex peptide; see structural formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-56-6

Trade Name	Manufacturer	Country	Year Introduced
Syntocinon	Sandoz	U.S.	1957
Syntocinon	Sandoz	France	1958
Uteracon	Hoechst	U.S.	1964
Atonin-O	Teikoku Zoki	Japan	_
Endopituitrina	1,S.M.	Italy	_
Orasthin	Hoechst	W. Germany	_
Oxitocin	Chinoin	Italy	_
Oxystin	Arzneimittelwerk Dresden	E. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Oxytal	A.L.	Norway	_
Partocon	Ferring	Sweden	
Partolact	Medica	Finland	_
Pitocin	S ankyo	Japan	_
Pituitan	Nippon Zoki	Japan	-

Raw Materials

α-Benzyl-L-aspartic acid-β-lower alkyl ester N-Trityl glutamic acid-γ-lower alkyl ester Hydrogen S,N-Ditrityl-L-cysteine diethylamine salt L-Tyrosine lower alkyl ester L-Isoleucine lower alkyl ester Benzyl-L-proline hydrochloride L-Leucine lower alkyl ester Ammonia Hydrogen chloride Glycine lower alkyl ester

Manufacturing Process

As described in U.S. Patent 2,938,891, in the process for producing oxytocin, the steps comprise:

- (a) Adding dicyclohexyl carbodiimide to a solution of the α -benzyl-L-aspartic acid- β -lower alkyl ester in methylene chloride, cooling the mixture to about 0°C, adding thereto the N-trityl glutamic acid- γ -lower alkyl ester, allowing the mixture to stand at room temperature to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicyclohexyl urea, and separating the resulting (N-trityl- γ -lower alkyl-L-glutamyl)- α -benzyl-L-aspartic acid- β -lower alkyl ester.
- (b) Dissolving the (N-trityl- γ -lower alkyl-L-glutamyl)- α -benzyl-L-aspartic acid- β -lower alkyl ester in ethanol, adding triethylamine and palladium black to said solution, introducing hydrogen at room temperature thereinto to split off the benzyl group, and separating the (N-trityl- γ -lower alkyl-L-glutamyl)-L-aspartic acid- β -lower alkyl ester.
- (c) Adding dicyclohexyl carbodiimide to a solution of the diethylamine salt of S,N-ditrityl-L-cysteine and the hydrochloride of the lower alkyl ester of L-tyrosine in methylene chloride, allowing the mixture to stand at a temperature between room temperature and about 35°C to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicyclohexyl urea, and separating the resulting lower alkyl ester of S,N-ditrityl-L-cysteinyl-L-tyrosine.
- (d) Refluxing the aqueous alcoholic solution of said ester with an alcoholic alkali metal hydroxide solution to saponify the lower alkyl ester group, neutralizing the saponification mixture by the addition of hydrochloric acid, extracting the neutralized mixture with ether, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-tyrosine.
- (e) Adding triethylamine to a solution of said S,N-ditrityl compound in chloroform, and precipitating the triethylamine salt of (S,N-ditrityl-L-cysteinyl)-L-tyrosine by the addition of petroleum ether.
- (f) Adding dicyclohexyl carbodiimide to a solution of said triethylamine salt of (S,N-ditrityl-L-cysteinyl)-L-tyrosine and the hydrochloride of the lower alkyl ester of L-isoleucine in methylene chloride, allowing the mixture to stand at room temperature to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicylohexyl urea, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-tyrosyl-L-isoleucine lower alkyl ester.

- (g) Refluxing the aqueous alcoholic solution of said ester with an alcoholic alkali metal hydroxide solution to saponify the lower alkyl ester group, neutralizing the saponification mixture by the addition of hydrochloric acid, extracting the neutralized mixture with ether, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-tyrosine-L-isoleucine.
- (h) Adding dicyclohexyl carbodiimide to a solution of the diethylamine salt of S,N-ditrityl-L-cysteine and the hydrochloride of benzyl-L-proline in methylene chloride, allowing the mixture to stand at about room temperature to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicyclohexyl urea, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-proline benzyl ester.
- (i) Refluxing said benzyl ester with an aqueous alcoholic alkali metal hydroxide solution to saponify the benzyl ester group, neutralizing the saponification mixture by the addition of hydrochloric acid, extracting the neutralized mixture with chloroform, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-proline.
- (j) Adding diethylamine to a solution of said dipeptide compound in ether to yield the diethylamine salt of (S,N-ditrityl-L-cysteinyl)-L-proline.
- (k) Adding dicyclohexyl carbodiimide to a solution of the diethylamine salt of (S,N-ditrityl-L-cysteinyl)-L-proline and the hydrochloride of the L-leucine lower alkyl ester in methylene chloride, allowing the mixture to stand at a temperature between about 25° and 30°C to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicyclohexyl urea, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-prolyl-L-leucine lower alkyl ester.
- (I) Refluxing said lower alkyl ester with an aqueous alcoholic alkali metal hydroxide solution to saponify the lower alkyl ester group, neutralizing the saponification mixture by the addition of hydrochloric acid, extracting the neutralized mixture with ether, and separating the resulting S,N-ditrityl-L-cysteinyl-L-prolyl-L-leucine.
- (m) Adding dicyclohexyl carbodiimide to a solution of the diethylamine salt of S,N-ditrityl-L-cysteinyl-L-prolyl-L-leucine and the hydrochloride of the glycine lower alkyl ester in methylene chloride, allowing the mixture to stand at a temperature between about 25° and 30°C to complete condensation, acidifying the reaction mixture with acetic acid, filtering off precipitated dicyclohexyl urea, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-prolyl-L-leucyl-glycine lower alkyl ester.
- (n) Adding aqueous hydrochloric acid to a mixture of said lower alkyl ester in a solvent selected from the group consisting of acetone and acetic acid, allowing the mixture to stand at a temperature of about 35°C to complete selective detritylation of the N-trityl group, and separating the resulting (S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine lower alkyl ester.
- (o) Adding dicyclohexyl carbodiimide to a solution of the diethylamine salt of the (N-trityl- γ -lower alkyl-L-glutamyl)-L-aspartic acid- β -lower alkyl ester obtained according to step (b) and the hydrochloride of the (S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine lower alkyl ester in methylene chloride, allowing the mixture to stand at about room temperature to complete condensation, filtering off precipitated dicyclohexyl urea, and separating the resulting (N-trityl- γ -lower alkyl-L-glutamyl)-(β -lower alkyl-L-aspartyl)-(S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine lower alkyl ester.
- (p) Adding aqueous hydrochloric acid to a mixture of said lower alkyl ester in a solvent selected from the group consisting of acetone and acetic acid, allowing the mixture to stand at room temperature to complete selective detritylation of the N-trityl group, and separating the resulting hexapeptide compound $\{\gamma\text{-lower alkyl-L-glutamyl}\}$ - $\{\beta\text{-lower alkyl-L-aspartyl}\}$ - $\{\beta\text{-trityl-L-cysteinyl}\}$ - $\{\beta\text{-trityl-L-cys$
- (g) Adding dicyclohexy! carbodiimide to a solution of the diethylamine salt of (S,N-ditrityl-

L-cysteinyl)-L-tyrosyl-L-isoleucine obtained according to step (g) and the hydrochloride of $(\gamma\text{-lower alkyl-L-glutamyl})-(\beta\text{-lower alkyl-L-aspartyl})-(S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine lower alkyl ester in methylene chloride, allowing the mixture to stand at about room temperature to complete condensation, filtering off precipitated dicyclohexyl urea, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-tyrosyl-L-isoleucyl-<math display="inline">(\gamma\text{-lower alkyl-L-glutamyl})-(\beta\text{-lower alkyl-L-aspartyl})-(S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine lower alkyl ester.$

- (r) Dissolving said lower alkyl ester in a lower alkanol, saturating the resulting solution at a temperature of about -15° to -20°C with ammonia gas, allowing the mixture to stand in a sealed container at room temperature to complete replacement of the lower alkyl ester group by the amide group, and separating the resulting triamide (S,N-ditrityl-L-cysteinyl)-L-tyrosyl-L-isoleucyl-L-glutaminyl-L-asparaginyl-(S-trityl-L-cysteinyl)-L-prolyl-L-leucyl glycine amide.
- (s) Dissolving said triamide in an anhydrous solvent selected from the group consisting of chloroform, a mixture of chloroform and acetic acid, and a mixture of methylene chloride and thioglycolic acid, saturating the solution with gaseous hydrochloric acid at room temperature to complete detritylation, and separating the resulting L-cysteinyl-L-tyrosyl-L-isoleucyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-leucyl glycine amide.
- (t) Dissolving said nonapeptide triamide in water and agitating the solution in oxygen to cause conversion thereof into oxytocin.

References

Merck Index 6849 Kleeman & Engel p. 681 PDR pp. 1382, 1596, 1966, 1989 I.N. p. 722 REM pp. 949, 957

Velluz, L., Amiard, G., Bartos, J., Goffinet, B. and Heymes, R.; U.S. Patent 2,938,891; May 31, 1960; assigned to Uclaf, France

Velluz, L., Amiard, G. and Heymes, R.; U.S. Patent 3,076,797; February 5, 1963; assigned to Roussel-UCLAF SA, France

PANCURONIUM BROMIDE

Therapeutic Function: Muscle relaxant

Chemical Name: 1,1'- $[3\alpha,17\beta$ -bis(acetyloxy)- 5α -androstane- $2\beta,16\beta$ -diyl] bis[1-methylpiper-

idinium] dibromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15500-66-0

Trade Name	Manufacturer	Country	Year Introduced
Pavulon	Organon-Teknika	U.K.	1968
Pancuronium	Organon	W. Germany	1969
Pavulon	Organon-Teknika	France	1971
Pavulon	Organon	U.S.	1972
Myoblock	Organon-Sankyo	Japan	1973
Pavaion	Ravasini	Italy	1973

Raw Materials

3,17-Diacetoxy-5α-androstane-2,16-diene m-Chlorperbenzoic acid Piperidine Sodium borohydride Acetic anhydride Methyl bromide

Manufacturing Process

A solution of $2\alpha,3\alpha,16\alpha,17\alpha$ -diepoxy- 17β -acetoxy- 5α -androstane (25 grams), prepared from 3,17-diacetoxy- 5α -androstane-2,16-diene (*Chem. Abs.* 1960, 54, 8908) by treatment with m-chlor-per-benzoic acid, in piperidine (120 ml) and water (40 ml) was boiled under reflux for 5 days, the solution was concentrated and the product precipitated by the addition of water. The solid was collected, dissolved in dilute hydrochloric acid, filtered to give a clear solution and precipitated by the addition of sodium hydroxide solution. Crystalliza-

tion from acetone gave 2β , 16β -bis-piperidino- 5α -androstan- 3α -ol-17-one (18.9 grams), MP 179°-185°C.

A solution of sodium borohydride (8 grams) in water (16 ml) was added to a stirred solution of 2β ,16 β -bis-piperidino-5 α -androstan-3 α -ol-17-one (17 grams) in tetrahydrofuran (70 ml) and methanol (30 ml) and the solution stirred at room temperature for 16 hours. The product was precipitated by the addition of water, filtered off, dried, and crystallized from acetone to give the diol (14.9 grams).

A solution of the piperidino-diol (9 grams) in acetic anhydride (18 ml) was heated at 90°C for 1 hour, the solution cooled, excess acetic anhydride destroyed by the careful addition of water, and the resulting solution carefully made alkaline with 2 N caustic soda solution to precipitate a solid product. The solid was dried, extracted with n-hexane and the solution filtered free of insoluble material before percolation down a column (4 x 1" diameter) of alumina. Elution with n-hexane gave a fraction (4.2 grams) which was crystallized twice from ether to give the diacetate, MP 176°-180°C.

Methyl bromide (17 grams) was added to a solution of the bis-piperidinodiacetate (4 grams) in methylene chloride (10 ml) and the resulting solution allowed to stand at room temperature for 4 days. The solution was evaporated to dryness, the residue triturated with ether, and filtered to give the bis-methobromide (5.2 grams), MP 206°C. Recrystallization from acetone-methylene chloride gave material MP 214°-217°C.

References

Merck Index 6870 Kleeman & Engel p. 681 PDR p. 1288 OCDS Vol. 2 p. 163 (1980) DOT 5 (3) 104 (1969) I.N. p. 726 REM p. 924

Hewett, C.L. and Savage, D.S.; U.S. Patent 3,553,212; January 5, 1971; assigned to Organon Inc.

PAPAIN

Therapeutic Function: Enzyme; used to prevent wound adhesions

Chemical Name: See Structural Formula

Common Name: -

Structural Formula: Has folded polypeptide chain of 212 residues with a molecular weight

of about 23.400.

Chemical Abstracts Registry No.: 9001-73-4

Trade Name	Manufacturer	Country	Year Introduced
Papain	Green Cross	Japan	1969
Panafil	Rystan	U.S.	_
Prevenzyme	Legere	U.S.	-

Raw Materials

Papaya fruit Methanoi

Manufacturing Process

Crude papain, obtained as the dried exudate of the fruit and leaves of Carica papaya L., Caricaceae, is usually found to have been contaminated during collection, drying, or storage by insects, rodent hair and excreta, botanical plant parts, sand, etc. and may thereby become further contaminated by harmful bacteria and enteric organisms.

Heretofore papain has been purified by dispersing the crude enzymes in water, filtering and spray drying. In this procedure, however, the soluble contaminants are retained in the dried product. It has also been known to purify papain by dispersing it in water and adding acetone to reprecipitate the enzymes leaving many of the acetone-soluble and water-soluble impurities in the supernatant liquid. The material thus purified possesses a very disagreeable sulfidelike taste probably due to the reaction between the acetone and reactive sulfhydryl groups present in the papaya latex.

It has now been found that an enzyme mixture of high purity which contains none of the objectionable sulfidelike taste can be obtained by dispersing the crude enzymes in water, adding a quantity of a water-miscible lower-alkanol to the incipient precipitation point of the proteolytic enzymes thereby retaining the maximum proteolytic activity (i.e., the maximum amount of the proteolytic enzymes) in the solvent phase while precipitating the major portion of the lower-alkanol insoluble contaminants, removing the lower-alkanol insoluble contaminants and precipitated inert materials, for example, by filtration or centrifugation, and then adding an additional quantity of the water-miscible lower-alkanol sufficient to precipitate the proteolytic enzymes.

The following is a specific example of the conduct of the present process. 100 g of crude papain were stirred with 120 ml of 0.01 M cysteine hydrochloride for one hour during which time the papain was completely dispersed. To the dispersion was added slowly and with vigorous stirring 147 ml of methanol. The mixture, which contained 55% methanol by volume, was stirred for about thirty minutes and centrifuged and the clear supernatant liquid was removed and saved. The precipitate was washed with 50 ml of 55% aqueous methanol, and the mixture was centrifuged again. The precipitate containing the undesirable, insoluble contaminants was discarded, and the clear wash liquid was combined with the main supernatant. To the combined clear supernatant liquid was added slowly and with vigorous stirring 265 ml of methanol to give a mixture containing 75.5% methanol by volume. The enzymes were precipitated as a taffylike gum which was isolated by decantation of the supernatant liquid containing the undesirable, soluble contaminants and tray-drying. Alternatively, the precipitated enzymes can be redissolved in pure water and spray-dried.

References

Merck Index 6878 PDR pp. 1033, 1576

REM p. 1038

Lesuk, A.; U.S. Patent 3,011,952; December 5, 1961; assigned to Sterling Drug, Inc.

PAPAVERINE MONOPHOSADENINE

Therapeutic Function: Vasodilator and platelet aggregation inhibitor

Chemical Name: Papaverine adenosine 5-monophosphate

Common Name: Papaverine adenylate

Structural Formula:

Chemical Abstracts Registry No.: 58-74-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Lempay Ty-Med	Lemmon	U.S.	1975
Artegodan	Artesan	W. Germany	_
Cepaverin	Eurand	Italy	
Cerespan	U.S.V.	U.S.	_
Dylate	Elder	U.S.	_
Omnopon	Roche	U.K.	_
Pameion	Simes	Italy	_
Panergon	Mack	W. Germany	***
Papaverlumin	Pidefe	Spain	
Papaversan	Abello	Spain	_
Pavabid	Marion	Ú.S.	_
Pavacron	Cenci	U.S.	_
Pavagrant	Amfre-Grant	U.S.	_
Pavakey	Key Pharm.	U.S.	-
Pavatym	Everett	U.S.	_
Paver	Mulda	Turkey	_
Spastretten	Tropon	W. Germany	_
Sustaverine	I.C.N.	U.S.	_
Udip	Marion	U.S.	_

Raw Materials

Adenosine-5'-monophosphoric acid Papaverine base

Manufacturing Process

To 3.65 g (0.01 mol) of monohydrated adenosine-5'-monophosphoric acid, brought into suspension in a mixture of 45 ml of water and 5 ml of ethanol, are added 3,39 g (0.01 mol) of papaverine base (melting point, 147°C). The mixture is gently heated until a final temperature of 40°C is reached. The solution obtained is then filtered and the filtrate is concentrated under vacuum. The remaining product quickly crystallizes. After drying to 50°C to constant weight, there are obtained 6.68 g of desired product, in the monohydrated state, as a white crystalline powder, which melts at 140°C and is very soluble in water.

References

Merck Index 6880 Kleeman & Engel p. 683 PDR pp. 830, 875, 993, 1079, 1569, 1606, 1810 OCDS Vol. 1 p. 347 (1977) DOT 11 (8) 315 (1975) I.N. p. 728 REM p. 852

Mauvernay, R.Y.; U.S. Patent 3,823,234; July 9, 1974; assigned to Centre Europeen de Recherches Mauvernay C.E.R.M.

PARAMETHADIONE

Therapeutic Function: Anticonvulsant

Chemical Name: 5-ethyl-3,5-dimethyl-2,4-oxazolidinedione

Common Name: Isoethadione

Structural Formula:

Chemical Abstracts Registry No.: 115-67-3

Trade Name Year Introduced Manufacturer Country Paradione Abbott U.S. 1949

Raw Materials

Methyl ethyl ketone Sodium cvanide Urea Sodium

Methanol Dimethyl sulfate

Manufacturing Process

About 143.1 grams (one mol) of 5-methyl-5-ethyloxazolidine-2,4-dione is dissolved in 300 cc of methanol containing 23 grams of sodium. To the above mixture is added 126 grams of dimethyl sulfate in 10 cc portions while the temperature is maintained at about 50°C by external cooling. The mixture is then heated briefly to boiling, cooled, diluted with about 500 cc of water and extracted with two 250 cc portions of benzene. The benzene extract is separated, washed once with sodium bicarbonate solution and once with water. The benzene is removed by evaporation on a steam bath and the residue is fractionally distilled. The material boiling at 112° to 116°C at 25 mm pressure is taken; $n_0^{25} = 1.4495$. Upon further fractionation, a very pure specimen boils at 101°-102°C at 11 mm.

The 5-methyl-5-ethyloxazolidine-2,4-dione may be prepared by reacting methyl ethyl ketone with sodium cyanide and with ammonium thiocyanate followed by desulfurization. This intermediate may also be prepared by condensing \(\alpha\)-hydroxy-\(\alpha\)-methylbutyramide with ethyl chlorocarbonate or by condensing ethyl a-hydroxy-a-methylbutyrate with urea. Another method described (Traube and Aschar, Ber., 46, 2077-1913) consists in the condensation of ethyl α -hydroxy- α -methylbutyrate with guanidine followed by hydrolysis.

References

Merck Index 6890 Kleeman & Engel p. 685 PDR p. 545 OCDS Vol. 1 p. 232 (1977) I.N. p. 730 REM p. 1080

Spielman, M.A.; U.S. Patent 2,575,693; November 20, 1951; assigned to Abbott Laboratories

PARAMETHASONE ACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 6α -Fluoro- 11β ,17,21-trihydroxy- 16α -methylpregna-1,4-diene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1597-82-6; 53-33-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Haidrone	Lilly	U.S.	1961
Dilar	Cassenne	France	1962
Paramezone	Recordati	Italy	1962
Monocortin	Gruenenthal	W. Germany	1963
Stemex	Syntex	U. S .	1970
Cortidene	I.F.L.	Spain	_
Metilar	Syntex	U.K.	_
Paramesone	Tanabe	Japan	_
Sintecort	Medicamenta	Portugal	
Triniol	I.F.L.	Spain	-

Raw Materials

 $5\alpha,11\beta,17\alpha,21$ -Tetrahydroxy- 6β -fluoro- 16α -methylallopregnane-3,20-dione-21 acetate 3-ethylene glycol ketal Hydrogen chloride

Manufacturing Process

A solution of 0.144 g of the 3-ethylene glycol ketal of $5\alpha.11\beta.17\alpha.21$ -tetrahydroxy- 6β fluoro-16α-methylallopregnane-3,20-dione 21-acetate in 12 ml of chloroform and 0.1 ml of absolute alcohol was cooled to -10°C in an ice-salt bath and a stream of anhydrous hydrochloric acid was gently bubbled through the solution for 2.5 hours while the temperature was maintained between -5°C and -15°C. The solution was then diluted with 25 ml of chloroform, washed with dilute sodium bicarbonate and water, dried over anhydrous sodium sulfate, and evaporated to dryness under reduced pressure at 60° C or less to give 6α -fluoro-11 β , $17\alpha.21$ -trihydroxy- 16α -methyl-4-pregnene-3,20-dione 21-acetate.

References

Merck Index 6891

Kleeman & Engel p. 686 OCDS Vol. 1 p. 200 (1977)

I.N. p. 730 REM p. 969

Lincoln, F.H., Schneider, W.P. and Spero, G.B.; U.S. Patent 3,557,158; January 19, 1971; assigned to The Upjohn Co.

PARAPENZOLATE BROMIDE

Therapeutic Function: Antiulcer

Chemical Name: N-Methyl-4-piperidylbenzilate methobromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Spacine	Unilabo	France	1968
Vagopax	Essex	Italy	1976
Vagopax	Centrane	France	-

Raw Materials

N-Methyl-4-piperidinol HCl	Methyl iodide
Diphenylchloroacetyl chloride	Silver bromide

Manufacturing Process

N-methyl-4-piperidyl benzilate and the methiodide: An intimate mixture of 0.1 mol of Nmethyl-4-piperidinol hydrochloride and 0.1 mol diphenylchloroacetyl chloride is heated at 160°C to 180°C until the evolution of hydrogen chloride ceases (usually about 4 to 5 hours). The melt is then dissolved in 500 ml of water and the resultant mixture heated on a steam bath for about 1/2 hour, after which time complete solution is effected. The acid solution is cooled and rendered alkaline with ammonium hydroxide solution whereupon the ester is precipitated. The ester is purified either by removal by filtration and recrystallization from benzene petroleum ether or by extracting the mixture with benzene and precipitating the ester by the addition of petroleum ether. After recrystallization there is obtained about 0.06 mol of N-methyl-4-piperidyl benzilate, melting point 162°C to 163°C.

To a solution of 0.05 mol of the above-obtained ester in about 100 ml of anhydrous benzene there are added 15 ml of methyl iodide. The ensuing mixture is refluxed for several hours whereupon the quaternary salt is deposited and removed by filtration. Recrystallization from ethanol or ethanol-ether yields the quaternary salt, melting point 199°C to 200°C.

N-methyl-4-piperidyl benzilate methobromide: To a suspension of 0.15 mol of freshly prepared silver bromide in 300 ml of anhydrous methanol is added a solution of 0.1 mol of quaternary iodide obtained as above. The mixture is stirred and refluxed for several hours after which time transhalogenation is complete. The mixture is cooled, the insoluble silver

salt removed by filtration and the methanolic solution of the quaternary bromide is concentrated in vacuo. The residue is recrystallized from methanol or methanol-ether yielding the quaternary bromide in quantitative amounts, melting point 237°C to 238°C.

References

OCDS Vol. 2 p. 75 (1980) DOT 6 (3) 92 (1970) I.N. p. 731

Papa, D.; British Patent 788,126; December 23, 1957; assigned to Schering Corp.

PARGYLINE HYDROCHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: N-methyl-N-2-propynylbenzenemethanamine hydrochloride

Common Name: N-methyl-N-propargylbenzylamine hydrochloride

Structural Formula:

C_kH_kCH₃ NCH₃ C≡CH·HCI

Chemical Abstracts Registry No.: 306-07-0; 555-57-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Eutonyl	Abbott	U.S.	1963

Raw Materials

Sodium carbonate N-Methylbenzylamine Hydrogen chloride Propargyl bromide

Manufacturing Process

A mixture of 23.8 grams (0.2 mol) of propargyl bromide, 24.2 grams (0.2 mol) of N-methyl benzylamine and 400 ml of anhydrous ethanol in the presence of 42.4 grams (0.4 mol) of anhydrous sodium carbonate was heated at the boiling temperature and under reflux for a period of 17 hours.

The sodium carbonate was then removed by filtration and the alcohol was removed by distillation under reduced pressure. The residue was treated with 300 ml of dry ether and the resulting solution was filtered to remove sodium bromide.

The filtrate was dried and fractionally distilled under reduced pressure to obtain the desired N-methyl-N-propargylbenzylamine which boiled at 96°-97°C at 11 mm pressure.

Analysis calculated for $C_{11}H_{13}N$: C = 82.97%; H = 8.23%; N = 8.80%. Found: C = 82.71%; H = 8.51%; N = 8.93%.

The hydrochloride salt of this amine was prepared by dissolving the amine in ether and adding ethereal hydrogen chloride to the ether solution. The solid hydrochloride salt which precipitated was recrystallized from an ethanol-ether mixture and was found to melt at 154°-155°C.

References

Merck Index 6902 Kleeman & Engel p. 688 PDR p. 523 OCDS Vol. 1 p. 54 (1977) & 2, 27 (1980) DOT 9 (6) 217 (1973)

I.N. p. 732 REM p. 850

Martin, W.B.; U.S. Patent 3,155,584; November 3, 1964; assigned to Abbott Laboratories

PAROMOMYCIN

Therapeutic Function: Amebacidal

Chemical Name: O-2,6-diamino-2,6-dideoxy-β-L-idopyranosyl-(1→3)-O-β-D-ribofuranosyl-

 $(1\rightarrow 5)$ -O-[2-amino-2-deoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$] -2-deoxystreptamine

Common Name: Catenulin, aminosidine, crestomycin, hydroxymycin, neomycin E,

paucimycin

Chemical Abstracts Registry No.: 7542-37-2

Trade Name	Manufacturer	Country	Year Introduced
Humatin	Parke Davis	U. S .	1960
Humatin	Parke Davis	W. Germany	1961
Humatin	Parke Davis	Italy	1961
Humagel	Parke Davis	France	1963
Aminosidine	Kvowa	Japan	_
Aminoxidin	Farmalabor	Italy	_
Gabbromycin	Montedison	Italy	
Gabbroral	Farmalabor	Italy	
Paramicina	Ragionieri	Italy	_

Raw Materials

Bacterium Strep tomyces rimosus forma paromomycinus

Glucose Sovbean meal

Manufacturing Process

As described in U.S. Patent 2,916,485: 12 liters of a nutrient medium having the following composition is placed in a 30 liter fermentor equipped with stainless steel fittings including sparger, impeller, baffles and sampling lines and the medium is sterilized by heating at 121°C for two hours.

	Percent
Glucose monohydrate	0.5
Glycerol	0.5
Casein, acid hydrolyzed	0.3
Peptone	0.25
Brewer's yeast	0.1
Cornsteep solids	0.25
Soybean oil meal	0.25
Acetone-butanol fermentation residue	0.25
Sodium chloride	0.5
Calcium carbonate	0.1
Water sufficient to make 100%	

The medium is cooled and inoculated with 20 ml of a suspension of the spores from two Moyer's sporulation agar slant cultures of *Streptomyces rimosus* forma *paromomycinus* in sterile 0.1% sodium heptadecyl sulfate solution. The inoculated culture mixture is incubated at 26°C for sixty hours during which time the mixture is stirred at 200 rpm and sterile air is passed into the medium through the sparger at the rate of 12 liters per minute. A portion of the resulting incubated culture mixture is employed for inoculation of 16 liters of a nutrient medium having the following composition:

	Percent
Glucose monohydrate	1.0
Soybean oil meal	1.0
Sodium chloride	0.5
Calcium carbonate	0.1
Ammonium chloride	0.167
Hog stomach residue, saline extracted	0.5
Water sufficient to make 100%	

The pH of the latter nutrient medium is adjusted to 7.5 with 10 N sodium hydroxide solution and is placed in a 30 liter glass fermentor equipped with sparger, impeller, baffles and sampling line. The medium is sterilized by heating at 121°C for two hours, is allowed to cool and is then inoculated with 800 ml of the culture mixture obtained as described above.

The resulting culture mixture is incubated at 26°C for 94 hours during which time the mixture is stirred at 200 rpm and sterile air is passed into the medium through the sparger at the rate of 16 liters per minute. During the incubation, foaming is avoided by the addition, as needed, of crude lard and mineral oils containing mono- and diglycerides.

At the end of the incubation period the fermentation culture mixture is adjusted to pH 2 with concentrated hydrochloric acid, the solid material present is removed by filtration, and the filter cake is washed with water. The washings are combined with the main filtrate, adjusted to pH 7.0, and 15.5 liters of the filtered culture liquid is introduced into a columnar exchanger (1½" i.d.) packed with 380 ml of carboxylic acid resin which has been preliminarily washed in succession with two liters of an aqueous solution of 37.5 grams of sodium hydroxide and with two liters of water. The column containing paromomycin is washed with two hold-up volumes of water and is eluted with 0.5 N hydrochloric acid.

The first 19.4 liters of percolate contains little or no paromomycin and varies in pH from 6 to 7.3. When the pH of the eluate begins to fall below 6.0, two liters of the eluate are collected.

The two liter portion of the eluate, collected as indicated, is neutralized to pH 6 with 10 N sodium hydroxide solution and is filtered. The filtrate is concentrated by evaporation in vacuo to a volume of approximately one liter.

An adsorption column is prepared by pouring a slurried aqueous mixture of 65 grams of acid-washed activated charcoal (Darco G-60) and 50 grams of diatomaceous earth in a $1\frac{1}{2}$ " column and 300 ml of the concentrated filtrate is added. The column is washed with 400 ml of water and eluted successively with 325 ml of water, 425 ml of 1% aqueous acetone and 400 ml of 10% aqueous acetone. The water and acetone eluates are concentrated and lyophilized to give paromomycin hydrochloride as a powder. The product is purified by taking up the powder in methanol, adding a large excess of acetone to the solution, recovering the precipitate which forms by filtration. The product, paromomycin hydrochloride, has an optical rotation $[\alpha]_{0}^{25} = +56.5^{\circ}$ (1% in water). By analysis it contains 35.71% carbon, 6.95% hydrogen, 8.24% nitrogen and 21.5% chlorine.

In order to obtain paromomycin in free base form, the hydrochloride is dissolved in water as a 3% solution, the solution is poured into an adsorption column containing an anion exchange resin (Amberlite IR-45 or preferably IRA-411 or IRA-400) in the hydroxyl form and the column is washed with a small amount of water.

The aqueous percolate is concentrated to dryness by lyophilization, and the solid product obtained is purified by taking up in boiling absolute ethanol, cooling and recovering the solid product paromomycin; $[\alpha]_D^{25} = +64^\circ$ (1% in water). By analysis it contains 45.17% carbon, 7.44% hydrogen and 10.35% nitrogen.

References

Merck Index 6903 Kleeman & Engel p. 688 I.N. p. 733 REM p. 1221 Davisson, J.W. and Finla

Davisson, J.W. and Finlay, A.C.; U.S. Patent 2,895,876; July 21, 1959; assigned to Chas. Pfizer & Co., Inc.

Frohardt, R.P., Haskell, T.H., Ehrlich, J. and Knudsen, M.P.; U.S. Patent 2,916,485; Dec. B, 1959; assigned to Parke, Davis & Company

PELARGONIC ACID

Therapeutic Function: Fungicide

Chemical Name: Nonanoic acid

Common Name: -

Structural Formula: CH₃(CH₂)₇COOH

Chemical Abstracts Registry No.: 112-05-0

Trade Name Manufacturer Country Year Introduced
Pellar Crookes Barnes U.S. 1960

Oleic acid Oxygen

Manufacturing Process

A body of liquid, 18 inches high, comprising a 35% (by weight) solution of technical (95%) oleic acid in n-propanol, is maintained at a temperature of 86°C in a reactor. The solution also contains dissolved therein 0.042% by weight of cobalt, in the form of cobalt naphthenate. From the bottom of the reactor very fine bubbles of air are passed into and through the solution at the rate of about 0.3 cubic feet per minute, measured at standard conditions, per square foot for 72 hours. The gases leaving the reactor are first passed through an ice water reflux condenser and then vented to the atmosphere. At the end of the 72 hour period the reaction mixture is separated into its components. It is found that 60% of the oleic acid has been consumed in the reaction. For each pound of oleic acid consumed there are obtained 0.30 pound of azelaic acid (representing an efficiency of 46%, calculated on the basis that the technical oleic acid is 100% oleic acid), 0.13 pound of pelargonic acid (representing an efficiency of 23%) and 0.21 pound of 9,10-dihydroxystearic acid (representing an efficiency of 19%).

References

Merck Index 6923

MacKenzie, J.S. and Morgan, C.S. Jr.; U.S. Patent 2,820,046; January 14, 1958; assigned to Celanese Corp. of America

PEMOLINE

Therapeutic Function: Psychostimulant

Chemical Name: 2-imino-5-phenyl-4-oxazolidinone

Common Name: Phenoxazole; phenylisohydantoin

Structural Formula:

Chemical Abstracts Registry No.: 2152-34-3

Trade Name	Manufacturer	Country	Year Introduced
Deltamine	Aron	France	1960
Cylert	Abbott	U.K.	1975
Cylert	Abbott	U.S.	1975
Antimeran	Nichiiko	Japan	_
Betanamin	Sanwa	Japan	_
Dynalert	Restan	S. Africa	_
Hyton	Pharmacia	Sweden	
Kethamed	Medo	U.K.	-
Nitan	Teva	Israel	_
Phenoxine	P.C.B.	Belgium	_
Pioxol	Horner	Canada	_

Trade Name	Manufacturer	Country	Year Introduced
Pondex	Chinoin	Hungary	_
Revibol	Pliva	Yugoslavia	_
Ronyl	Rona	U,K.	
Sigmadyn	Spemsa	Italy	-
Sofro	Thilo	W. Germany	_
Stimul	Nadrol	W. Germany	_
Tradon	Beiersdorf	W. Germany	_
Vidil	Waldheim	Austria	-

Mandelic acid ethyl ester Guanidine

Manufacturing Process

It is preferably prepared by reacting mandelic acid ethyl ester with guanidine in boiling alcoholic solution whereby it is obtained as difficultly soluble precipitate with a yield of 90%.

This compound is a white, crystalline compound melting at 256°-257°C with decomposition. It is readily soluble in concentrated aqueous alkali hydroxide solutions and in concentrated aqueous mineral acids.

References

Merck Index 6931 Kleeman & Engel p. 690 PDR p. 509 DOT 9 (6) 212 (1973) I.N. p. 736 REM p. 1137

Schmidt, L. and Scheffler, H.; U.S. Patent 2,892,753; June 30, 1959; assigned to C.H. Boehringer Sohn, Germany

PENBUTOLOL

Therapeutic Function: Beta-Adrenergic blocker

Chemical Name: 1-(2-Cyclopentylphenoxy)-3-[(1,1-dimethylethyl)amino]-2-propanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 38363-40-5

Trade Name	Manufacturer	Country	Year Introduced
Betapressin	Hoechst	W. Germany	1980
Betapressin	Hoechst	Switz.	1982
Betapressin	Hoechst	Italy	1983

2-Cyclopentylphenol Epichlorohydrin t-Butylamine

Manufacturing Process

21.8 g (0.1 mol) of 1,2-epoxy-3-(2'-cyclopentylphenoxy)propane, boiling at 113°C to 115°C/0.2 mm Hg (prepared from 2-cyclopentylphenol and epichlorhydrin in the presence of alkali) were dissolved in 250 ml of ethanol; to this solution, there were added dropwise, while stirring, 8.9 g (0.15 mol) of t-butylamine. The reaction mixture was stirred for 2 hours at 60°C and then the solvent and the excess t-butylamine were removed by distillation. The residue which had been purified via the aqueous hydrochloride, crystallized, after removal of the ether by evaporation, upon rubbing or inoculation and yielded, after recrystallization from n-heptane, the 1-t-butylamino-2-hydroxy-3-(2'-cyclopentylphenoxy)propane which was found to melt at 69°C to 70°C.

References

Merck Index 6935 DFU 1 (10) 494 (1976) Kleeman & Engel p. 691 DOT 17 (12) 555 (1981) & 18 (10) 551 (1982) I.N. p. 737

Ruschig, H., Schmitt, K., Lessenich, H. and Hartfelder, G.; U.S. Patent 3,551,493; Dec. 29, 1970; assigned to Farbwerke Hoechst A.G. (W. Germany)

PENFLURIDOL

Therapeutic Function: Antipsychotic

Chemical Name: 1-[4,4-Bis(4-fluorophenyl)butyl]-4-[4-chloro-3-(trifluoromethyl)phenyl]-

4-piperidinol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 26864-56-2

Trade Name	Manufacturer	Country	Year Introduced
Semap	Janssen Le Brun	W. Germany	1975
Semap	Janssen	France	1975

Trade Name	Manu facturer	Country	Year Introduced
Flupidol	Zambeletti	Italy	1979
Longoran	Isis	Yugoslavia	
Micefal	Spofa	Czechoslovakia	_
Semap	Abic	Israel	_

4,4-Bis(p-fluorophenyl)butyl chloride 4-(4-Chloro-α,α,α-trifluoro-m-tolyl)-4-piperidinol

Manufacturing Process

A mixture of 24 parts of 4,4-bis(p-fluorophenyl)butyl chloride, 20.9 parts of 4-(4-chloro- α , α , α -trifluoro-m-tolyl)-4-piperidinol, 13.8 parts of sodium carbonate, a few crystals of potassium iodide in 600 parts of 4-methyl-2-pentanone is stirred and refluxed for 60 hours. The reaction mixture is cooled and 150 parts of water is added. The organic layer is separated, dried, filtered and evaporated. The oily residue is crystallized from diisopropylether, yielding 4-(4-chloro- α , α , α -trifluoro-m-tolyl)-1-[4,4-bis(p-fluorophenyl)butyl]-4-piperidinol; melting point 106.5°C.

References

Merck Index 6939 Kleeman & Engel p. 691 OCDS Vol. 2 p. 334 (1980) DOT 10 (5) 167 (1974) I.N. p. 737

Hermans, H.K.F. and Niemegeers, C.J.E.J.; U.S. Patent 3,575,990; April 20, 1971; assigned to Janssen Pharmaceutica N.V. (Belgium)

PENICILLAMINE

Therapeutic Function: Used in treatment of rheumatoid arthritis

Chemical Name: 3-Mercapto-D-valine

Common Name: Dimethylcysteine

Structural Formula: $\begin{array}{ccc} & \text{SH NH}_2 \\ & & \text{I} & \text{I} \\ & & \text{(CH}_3)_2\text{C} & -\text{CHCOOH} \end{array}$

Chemical Abstracts Registry No.: 52-67-5; 2219-30-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year introduced
Cuprimine	MSD	U.S.	1963
Trolovol	Bayer	W. Germany	1963
Pendramine	B.D.H.	U.K.	1973
Pemine	Lilly	Italy	1975
Trolovol	Bayer	France	1979
Depen	Wallace	U.S.	1979
Artamin	Biochemie	Austria	_
Cuprenil	Polfa	Poland	_
Cupripen	Rubio	Spain	-

Trade Name	Manufacturer	Country	Year Introduced
Depamine	Berk	U.K.	_
Distamine	Dista	U.K.	_
Gerodyl	Gea	Denmark	
Metalcapase	Knoll	W. Germany	
Reumacillin	Medica	Finland	_
Rhumantin	Gea	Denmark	_
Sufortanon	Lacer	Spain	_

Potassium benzyl penicillin Sodium hydroxide Mercuric chloride Phenylhydrazine Hydrogen sulfide

Manufacturing Process

- (a) Preparation of mercuric chloride complex of penicillamine: To a solution of 372 g (1 mol) of potassium benzyl-penicillin in 940 ml of distilled water at room temperature is added a solution of 40 g (1 mol) of sodium hydroxide in 180 ml of distilled water over a period of one-half hour. The solution is then stirred for two hours at room temperature. While maintaining room temperature, 67 ml of concentrated hydrochloric acid is added at a slow rate. This solution is then added, over a period of time of one-half hour, to a solution of 271 g (1 mol) of HgCl₂ in 3.52 liters of distilled water in the presence of 50 g of Hyflo and 5 ml of octyl alcohol. After one hour of agitation, the resulting mixture is treated with 185 ml of concentrated hydrochloric acid and filtered.
- (b) Removal of benzylpenilloaldehyde: To the filtrate obtained in step (a), warmed to 50°C is slowly added 108 g (1 mol) of phenyl hydrazine. The mixture is cooled to room temperature and 84 ml of concentrated hydrochloric acid are added. The mixture is agitated briefly and the precipitated benzylpenilloaldehyde phenyl hydrazone is filtered off.
- (c) Preparation of isopropylidene penicillamine hydrochloride: To the filtrate obtained in step (b) is added at 20°C to 25°C a total of 85 g of hydrogen sulfide. The precipitated HgS is filtered off and the filtrate is concentrated under reduced pressure to a volume of 200 to 500 ml. Following a polish filtration, the product-rich concentrate is mixed with 1.5 liters of isobutyl acetate. The mixture is refluxed at about 40°C under reduced pressure in equipment fitted with a water separation device. When no further water separates, the batch is cooled to 30°C and filtered. The reactor is washed with 1 liter of acetone, which is used also to wash the cake. The cake is further washed with 200 ml of acetone. The acetone washes are added to the isobutyl acetate filtrate and the mixture is refluxed for 20 to 30 minutes. After a holding period of one hour at 5°C, the crystals of isopropylidene penicillamine hydrochloride are filtered and washed with 200 ml of acetone. On drying for twelve hours at 25°C this product, containing 1 mol of water, weighs about 178 g (73%).
- (d) Preparation of penicillamine hydrochloride: The 178 g of isopropylidene penicillamine hydrochloride obtained in step (c) is dissolved in 350 ml of distilled water. The solution is heated at 90°C to 95°C for one to one and one-half hours, removing acetone by distillation through an efficient column. There is then added 2.6 liters of isobutyl acetate. The mixture is refluxed at a temperature of about 40°C under reduced pressure in equipment fitted with a water separation device. When no further water separates, the pressure is adjusted so that the mixture distills at a vapor temperature of 83°C to 88°C. A total of 650 ml of distillate is collected. The batch is allowed to cool to 50°C and then filtered. The crystals are washed with isobutyl acetate and then dried at 35°C for 24 hours. The virtually anhydrous penicillamine hydrochloride obtained weighs about 128 g (69% from potassium benzyl-penicillin).

References

Merck Index 6940 Kleeman & Engel p. 693 PDR pp. 1153, 1872 DOT 9 (7) 302 (1973)

I.N. p. 738 REM p. 1225

Restivo, A.R., Dondzila, F.A. and Murphy, H. Jr.; U.S. Patent 3,281,461; October 25, 1966; assigned to E.R. Squibb & Sons, Inc.

Sota, K., Ogawa, T. and Sawada, J.; U.S. Patent 4,150,240; April 15, 1979; assigned to Taisho Pharmaceutical Co., Ltd. (Japan)

PENICILLIN G BENZATHINE

Therapeutic Function: Antibacterial

Chemical Name: Penicillin G compound with N,N'-dibenzylethylenediamine

Common Name: Benzethacil

Structural Formula:

Chemical Abstracts Registry No.: 1538-09-6

Trade Name	Manufacturer	Country	Year Introduced
Bicillin	Wyeth	U.S.	1951
Permapen	Pfizer	U.S.	1953
Neolin	Lilly	U.S.	1953
Extencilline	Specia	France	1954
Benzetacil-Simple	Antibioticos	Spain	-
Brevicilina-Simple	Wassermann	Spain	_
Brunocillin	Mepha	Switz.	-
Cepacilina	Cepa	Spain	
Depotpen	Dauelsberg	W. Germany	-
Diaminocillina	Farmalabor	İtaly	_
Durabiotic	Teva	Israel	_
Longacillin	Besy	Brazil	_
LPG	C.S.L.	Australia	_
Megacillin	Merck-Frosst	Canada	_
Pen-Di-Ben	Bago	Argentina	_
Pendysin	Jenapharm	E. Germany	_
Penidural	Wyeth	U.K.	_
Peniroger Retard	Roger	S pain	_
Pipercilina	Iskia	S pain	_
Retarpen	Biochemie	Austria	_
Tardocillin	Bayer	W. Germany	_
Tardopenil	Farmabion	S pain	_

Ethylenediamine Benzaldehyde Sodium penicillin G

Manufacturing Process

Ethylenediamine (15 g, 0.25 mol) was added dropwise to 100 ml 98-100% formic acid in a two-necked 500 ml flask, fitted with an addition tube and reflux condenser with drying tube, cooled in an ice-bath. After complete addition of the base, 53 g of benzaldehyde (0.5 mol) was added in one lot. The ice-bath was removed and the flask was heated to the refluxing temperature. The initial rate of carbon dioxide evolution was too rapid to measure. After twenty minutes, the rate was circa 100 ml per minute and decreased rapidly to 8 ml per minute in one hour. Heating at reflux was continued for 35 hours.

Following the refluxing most of the excess formic acid was removed under reduced pressure. Hydrochloric acid (200 ml 6N) was added to the viscous amber residue and heated under reflux. After 15 minutes, bumping necessitated cooling and filtering to remove crystalline dihydrochloride, which after washing with isopropanol was dried, MP circa 300°C. The mother liquors were refluxed one hour and cooled, obtaining an additional amount of product, MP circa 300°C. The filtrate was concentrated in vacuo to 100 ml, cooled and made alkaline with 40% NaOH. The supernatant oil was extracted with ether, dried, and fractionated from a stillpot packed with glass wool and heated in a sand-bath at 320°C. The first fraction at 106°C at 0.6-0.7 mm was N-benzylethylenediamine (dipicrate, MP 222°C). The N.N'-dibenzylethylenediamine was collected at 177°C to 206°C at 0.6-1.0 mm as a coloriess liquid.

To a solution of 60 g of sodium penicillin G in 800 cc of distilled water cooled to 0°C to 4°C in an ice-bath, a solution of 35 g of N,N'-dibenzylethylenediamine diacetate in 200 cc of distilled water is added dropwise with stirring. The thick slurry is filtered with suction, washed twice with 100 cc of cold water, dried by suction and spread out in a thin layer for completion of drying. The product weighed 80 g.

The air-dried powder has a broad melting point, sintering at 100°C, melting above 110°C to a cloudy liquid becoming clear at 135°C.

References

Merck Index 6948 Kleeman & Engel p. 85 PDR pp. 1406, 1941, 1989 I.N. p. 126 REM p. 1197 Szabo, J.L. and Bruce, W.F.; U.S. Patent 2,627,491; February 3, 1953; assigned to Wyeth, Inc.

PENICILLIN G HYDRABAMINE

Therapeutic Function: Antibacterial

Chemical Name: N.N'-Bis(dehydroabietyl)ethylenediamine dipenicillin G

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 3344-16-9

Trade Name	Manufacturer	Country	Year Introduced
Composillin	Abbott	U.S.	1954

Raw Materials

Dehydroabietylamine Ethylene dibromide Penicillin G

Manufacturing Process

A mixture of 142.5 g of "Rosin Amine D" containing about 70% dehydroabletylamine and 30% dihydro and tetrahydroabjetylamine, 47.0 g of ethylene dibromide, and 60.6 g of triethylamine is dissolved in 350 cc of anhydrous xylene and refluxed for about 16 hours. Thereafter the triethylamine dibromide salt formed is separated from the solution by filtering the cool reaction mixture and washing with ether. The solution is then concentrated under reduced pressure to dryness to remove the ether, xylene and excess triethylamines present. The viscous oil resin is slurried twice with 250 cc portions of methanol to remove any unreacted primary amines. The oil residue after being washed with methanol is dissolved in ethyl alcohol and 75 cc of concentrated hydrochloric acid is added dropwise to the warm alcohol solution of the base. The dihydrochloride salts of the several hydroabietyl ethylenediamines precipitates immediately from solution. The salt is then separated by filtering and is washed twice with 100 cc portions of cooled ethyl alcohol. The dihydrochloride salts of the dehydroabietyl, dihydroabietyl and tetrahydroabietyl ethylenediamine mixture have a melting point of about 292°C to 295°C. On subjecting the mixture to solubility analyses it is found that the dehydroabietyl ethylenediamine is present in substantially the same proportion as is the dehydroabietylamine in the original "Rosin Amine D."

An amyl acetate-penicillin acid solution (10 liters) having a potency of 100,000 U/ml which is sufficient to supply 565 g (2 mols) of penicillin acid is added with constant agitation to 505 g of crude N.N'-bis-(dehydroabietyl)-ethylenediamine dissolved in 500 ml of amyl acetate. A slight excess of the ethylenediamine bases is added to the mixture until precipitation is completed. The reaction is preferably carried out in a cold room having a temperature of about 5°C. The precipitation salts comprise about 70% N,N'-bis-(dehydroabietyl)-ethylenediamine-dipenicillin salt and approximately 25-30% of the N,N'-bis-(dihydroabietyl)-ethylenediamine- and N,N'-bis-(tetrahydroabietyl)-ethylenediamine-dipenicillin salts are recovered by filtration and are washed with about 1/10 solution volume of amyl acetate. The crude preparation is further washed with 1/10 solution volume of diethyl ether and dried. The melting point of the product is about 153°C when taken on a microblock.

The total yield of the crude precipitation obtained in the above manner comprising about 1 kg is then dissolved in chloroform so as to form a 15% solution of a crude penicillin salt. To the filtered chloroform solution is added ethyl acetate slowly and with agitation until the solution becomes turbid as crystallization begins. Thereafter crystallization is allowed to proceed undisturbed for about 30-60 minutes in a cold room having a temperature of about 5°C. Sufficient ethyl acetate is slowly added to provide a final concentration of about 50% ethyl

acetate and the mixture is allowed to stand in the cold room for one hour to complete crystallization. The precipitate is filtered and washed with about 750 ml of ethyl acetate and thereafter washed with the same volume of ether. The crystals are dried in vacuo and a yield of about 900 g of N,N'-bis-(dehydroabietyl)-ethylenediamine-dipenicillin G is obtained. The penicillin product melts with decomposition at a temperature of 170°C to 172°C on a Kofler hot stage. Solubility analysis of the product shows the product to be 95,3% pure.

References

Merck Index 6951 I.N. p. 739

De Rose, A.F.; U.S. Patent 2,812,326; November 5, 1957; assigned to Abbott Laboratories

PENICILLIN G PROCAINE

Therapeutic Function: Antibacterial

Chemical Name: Penicillin G compound with 2-(diethylamino)ethyl p-aminobenzoate

Common Name: -

Structural Formula:

$$\begin{array}{c} O & N & O \\ CH_{2}-C-NH & CH_{3} & CH_{3} \\ O & CH_{3} & CH_{3} \\ \end{array}$$

$$\begin{bmatrix} (C_{2}H_{5})_{2}\mathring{N}-CH_{2}CH_{2}-O-\mathring{C}-VH_{3} \\ H \end{bmatrix}$$

Chemical Abstracts Registry No.: 54-35-3

Trade Name	Manufacturer	Country	Year Introduced
Duracillin	Lilly	U.S.	1948
Flo-Cillin	Bristol	U.S.	1949
Ledercillin	Lederle	U.S.	1949
Wycillin	Wyeth	U.S.	1949
Diurnal Penicillin	Upjohn	U.S.	1950
Abbocillin	Abbott	U.S.	1951
Ampin-Penicillin	Badische Arzneim.	W. Germany	-
Aquacaine	C.S.L.	Australia	_
Aquasuspen	SK Kauelsberg	W. Germany	-
Agucilina	Antibioticos	Spain	
Cilicaine	Sigma	Australia	-
Distaquaine	Distillers	U.K.	_
Excolicin	Jenapharm	E. Germany	-
Farmaproina	Cepa	Spain	_
Francacilline	Franca	Canada	-
Hypercillin	Cutter	U.S.	_
Hypropen	Biochemie	Austria	
Intrasept	Streuli	Switz.	_
Klaricina	Clariana	Spain	-
Novocillin	Solac	France	_
Penifasa	Lifasa	S pain	_

Trade Name	Manufacturer	Country	Year Introduced
Peniroger Procain	Roger	Spain	_
Premocillin	Premo	U.S.	_
Procapen	Orion	Finland	
Prokapen	Weifa	Norway	_
Retardillin	Egyt	Hungary	_
Sanciline Procaina	Santos	Spain	
Therapen I.M.	Therapex	Canada	_

Penicillin G Procaine

Manufacturing Process

There was added to 250 ml of a concentrated butyl acetate extract containing 74,000 units of the acid form of penicillin per ml, 50 ml of a butyl acetate solution containing 0.238 g per ml of procaine base. The solution was agitated for one hour. The precipitate which formed was very gummy and not in the form of discrete crystals. This precipitate was crystallized by scratching the side of the vessel and agitating further. After this treatment 18.25 g of crystalline procaine penicillin was obtained which assayed 1010 units per mg representing a yield of 99.6% of the activity contained in the concentrated extract.

References

Merck Index 6953 PDR pp. 1408, 1742, 1941, 1989

I.N. p. 739 REM p. 1198

Bardolph, M.P.; U.S. Patent 2,739,962; March 27, 1956; assigned to Commercial Solvents Corp.

PENICILLIN O

Therapeutic Function: Antibacterial

Chemical Name: 3,3-Dimethyl-7-oxo-6-[[(2-propenylthio)acetyl]amino]-4-thia-1-azabi-

cyclo [3.2.0] -heptane-2-carboxylic acid

Common Name: Allylmercaptomethylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 87-09-2

Trade Name	Manufacturer	Country	Year Introduced
Cero-O-Cillin	Upjohn	U.S.	1950

Raw Materials

Bacterium Penicillium

Lactose
Corn steep liquor
N-(2-Hydroxyethyl)allylmercaptoacetamide

Manufacturing Process

A culture medium is prepared in the following proportions:

Lactose	125 g
Corn steep solids	150 g
Calcium carbonate	25 g
N-(2-Hydroxyethyl)-allylmercaptoacetamide	0.140 g
Water	5,000 cc

The culture medium is distributed in 200 cc portions in 1 liter Erlenmeyer flasks, sterilized, inoculated with a spore suspension of *Penicillium* mold strain Q-176, and stoppered with cotton plugs. The flasks are maintained at a temperature of about 23°C to 26°C and shaken constantly for five days. The flask contents are then filtered to remove the mold mycelium, the filtrate cooled to about 0°C, acidified to about pH 2.2 with o-phosphoric acid and shaken with an equal volume of amyl acetate. The amy acetate layer is separated and extracted with three 100 cc portions of cold water to which cold N/10 sodium bicarbonate solution is added during the course of each extraction until a pH of about 7.1 to 7.3 is attained in the aqueous phase. The aqueous extracts are combined, cooled to about 0°C, acidified to about pH 2.2 with o-phosphoric acid and extracted with three 100 cc portions of ether. The ether extracts are combined, and are passed through a chromatographic type silica adsorption column about 30 mm in diameter and 300 mm long, and containing a pH 6.2 phosphate buffer. The silica column is developed by percolation with six 100 cc portions of ether containing successively increasing amounts of methanol in the order of ½, 1, 1½, 2, 2½, and 3 percent.

The developed silica column is divided into about 12 equal sections and each section is eluted with three 30 cc portions of M/15 phosphate buffer of pH 7.0. The eluates are assayed bacteriologically to determine their penicillin content. Most of the antibiotic activity originates in a single bank in the silica column and results from the presence of allylmercaptomethylpenicillin. The eluates obtained from this band are combined, cooled to about 0°C, acidified to about pH 2.2 and extracted with three 50 cc portions of chloroform. The combined chloroform extracts are then passed through a silica adsorption column containing a pH 6.2 phosphate buffer. This silica gel column is developed by percolation with three 100 cc portions of chloroform containing successively increasing amounts of methanol in the order of 1, 2 and 3 percent. The developed silica column is then divided into 12 equal sections and each section is eluted with three 30 cc portions of M/15 phosphate buffer of pH 7.0. Again, most of the total antibiotic activity originates in a single band in the silica column. The eluates obtained by extraction of the silica column sections which comprise this band are combined, cooled to about 0°C, acidified to about pH 2,2 and extracted with three 100 cc portions of ether. The ether extracts are combined and extracted with about 75 cc of a cool dilute aqueous solution of sodium hydroxide to which N/10 sodium hydroxide solution is added during the course of the extraction so that a final pH of about 7.0 is obtained in the aqueous phase. From this aqueous solution the sodium salt of allylmercaptomethylpenicillin is separated, for example, by freezing and evaporation in vacuo from the frozen state,

References

Merck Index 6955 I.N. p. 58

Behrens, O.K., Jones, R.G., Soper, Q.F. and Corse, J.W.; U.S. Patent 2,623,876; December 30, 1952; assigned to Eli Lilly & Co.

PENICILLIN V

Therapeutic Function: Antibacterial

Chemical Name: 3,3-dimethyl-7-oxo-6-[(phenoxyacetyl)amino]-4-thia-1-azabicyclo[3,2.0]heptane-2-carboxylic acid

Common Name: 6-phenoxyacetamidopenicillanic acid; phenoxymethylpenicillin

Structural Formula:

Chemical Abstracts Registry No.: 87-08-1

Trade Name	Manufacturer	Country	Year Introduced
Oracilline	Theraplix	France	1954
V-Cillin	Lilly	U.S.	1955
Pen-Vee	Wyeth	U.S.	1955
Calcipen	Farmabion	Spain	_
Fenocin	Dumex	Denmark	_
Fenospen	Farmalabor	Italy	_
Ibaden	Lek	Yugoslavia	_
Intalpen	Inter-Alia	U.K.	-
Ospen	Biochemie	Austria	-
Penorline	Allard	France	_
Rivopen V	Rivopharm	Switz.	_
V-Tablopen	Arzneimittelwerk Dresden	E. Germany	_
Weifapenin	Weifa	Norway	_

Raw Materials

Phenoxyacetyl chloride 6-Aminopenicilianic acid

Manufacturing Process

The following description is taken from U.S. Patent 2,941,995. A solution of phenoxyacetyl chloride (360 mg) in dry acetone (5 ml) was added dropwise during 10 minutes to a stirred solution of 6-aminopenicillanic acid (450 mg, approximately 75% pure) in 3% aqueous bicarbonate (18 ml) and acetone (12 ml). When addition was complete the mixture was stirred at room temperature for 30 minutes and then extracted with ether (30 ml in 3 portions), only the aqueous phase being retained. This aqueous solution was covered with butanol (5 ml) and adjusted to pH 2 by the addition of N hydrochloric acid. After separating the layers, the aqueous phase was extracted with two 2.5 ml portions of butanol, adjusting to pH 2 each time. The combined butanol solutions (which at this stage contained the free penicillanic acid) were washed with water (3 x 2 ml) and then shaken with water (10 ml) to which sufficient 3% sodium bicarbonate solution was added to bring the aqueous phase to pH 7. The butanol solution was further extracted with two 5 ml portions of water to each of which was added enough bicarbonate solution to produce an aqueous phase of pH 7. The combined aqueous solutions were washed with ether (20 ml) and then evaporated at low temperature and pressure to leave the crude sodium salt of phenoxymethyl penicillin which, after drying in a vacuum desiccator, was obtained as a slightly hygroscopic powder (591 mg).

References

Merck Index 6957 Kleeman & Engel p. 716 PDR pp. 673, 694, 1071, 1381, 1606, 1723, 1770, 1968 I.N. p. 760 REM p. 1199

Behrens, O.K., Jones, R.G., Soper, Q.F. and Corse, J.W.; U.S. Patent 2,562,410; July 31, 1951; assigned to Eli Lilly and Company

Sheehan, J.C.; U.S. Patent 3,159,617; December 1, 1964; assigned to Arthur D. Little, Inc. Doyle, F.P., Nayler, J.H.C. and Rolinson, G.N.; U.S. Patent 2,941,995; June 21, 1960;

assigned to Beecham Research Laboratories Limited, England

PENICILLIN V HYDRABAMINE

Therapeutic Function: Antibacterial

Chemical Name: N,N'-Bis(dehydroabietyl)ethylendiamine bis(phenoxymethylpenicillin)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6591-72-6

Trade Name	Manufacturer	Country	Year Introduced
Compocillin-V	Abbott	U.S.	1954
Flavopen	G.P.	Australia	_

Raw Materials

Phenoxymethylpenicillin (Penicillin V) Dehydroabietylethylenediamine

Manufacturing Process

The crude dihydrochlorides of dehydroabietylethylenediamine bases (985 g) are extracted with a solution of about 3 liters of chloroform and 3 liters of water which is adjusted to about pH 10 and a second extraction is performed using a solution of about 2 liters of chloroform and the mixture readjusted to about pH 10 with 6N NaOH if necessary. The chloroform layer containing the mixed free bases is separated from the aqueous layer containing NaCl and is washed with about $^{1}/10$ its volume of water to remove any NaCl in the wet chloroform solution. The chloroform solution containing a mixture of the free bases having a volume of about 5 liters is dried with anhydrous Na $_{2}$ SO $_{4}$ and then filtered to obtain a clear solution containing about 0.85 kg of the mixed free bases.

Approximately 1,000 g of phenoxymethylpenicillin acid (Penicillin V) is dissolved directly in about 5 liters of ethyl acetate to a concentration of 20% w/v. The resulting solution is fil-

tered to remove any insoluble salts. The penicillin V acid (1,000 g) may also be obtained by extracting an aqueous solution of 1,110 g of the potassium salt of phenoxymethylpenicillin at a temperature of about 5°C, this solution being adjusted to pH 2-3 by the addition of 6N sulfuric acid, twice with a total of 5 liters of ethyl acetate so that the final washed combined volume will have a concentration of about 20% w/v. The abovementioned ethyl acetate solution having a volume of about 5 liters is then dried with anhydrous Na₂SO₄ and filtered to obtain a clear ethyl acetate solution of phenoxymethylpenicillin acid.

In place of the hydrochlorides of the abovedescribed bases any other acid salt thereof can be used, including both inorganic and organic salts such as phosphoric, sulfuric, and acetic acids. Also, in place of the mentioned penicillin, any of the other common salts of penicillin can be used as a source of penicillin acid.

The chloroform solution of the free bases prepared in the above manner is then slowly added to the ethyl acetate solution of the penicillin V acid prepared in the above manner. A clear solution forms which rapidly becomes turbid as the bases react with the penicillin acid and crystallization commences. The reaction mixture is allowed to stand overnight in a cool room having a temperature of about 5°C after thoroughly agitating the mixture. Thereafter, the crystalline N,N'-bis-(dehydroabietyl)-ethylenediamine-dipenicillin V is filtered to separate therefrom the cooled mother liquor which contains the unprecipitated N,N'-bis-(dihydroabjetyl)-ethylenediamine-dipenicillin salt and N,N'-bis-(tetrahydroabjetyl)-ethylenediaminedipenicillin salt and other impurities. The precipitate is washed thoroughly with about 4 liters of a mixture of chloroform and ethyl acetate (1:1) which is divided into three separate portions. After the final washing, the crystals are substantially colorless. The crystalline penicillin salt is thoroughly dried under vacuum at a temperature of about 50°C. The N,N'bis-(dehydroabietyl)-ethylenediamine-dipenicillin V salt is obtained having purity as determined by solubility analysis in excess of about 90% and melts with decomposition at 163°C to 165°C on a Kofler hot stage.

References

Merck Index 6959 I.N. p. 494

De Rose, A.F.; U.S. Patent 2,812,326; November 5, 1957; assigned to Abbott Laboratories

PENTAERYTHRITOL TETRANITRATE

Therapeutic Function: Coronary vasodilator

Chemical Name: 2,2-bis[(nitroxy)methyl]-1,3-propanediol dinitrate

Common Name: PETN, Pentanitrolum

Structural Formula:

Chemical Abstracts Registry No.: 78-11-5

Trade Name	Manufacturer	Country	Year Introduced
Pentanitrine	Promedica	France	1948
Peritrate	Warner Lambert	U.S.	1952
Pentritol	Armour	U.S.	1955
Pentafin	Tutag	U.S.	1956

Trade Name	Manufacturer	Country	Year Introduced
Vasodia to I	Rowell	U.S.	1958
Metranil	Meyer	U.S.	1960
Pentryate	Fellows Testagar	U.S.	1960
Tranite D-Lay	Westerfield	U.S.	1961
Peridex	Robins	U.S.	1962
Antime	Century	U.S.	1962
SK-Petin	SKF	U.S.	1971
Perispan	USV	U.S.	1971
Pentraspan	Glenwood	U.S.	1980
Pentraspan	Vitarine	U.S.	19 83
Cardiacap	Consol, Chem	U.K.	_
Dilcoran	Godecke	W. Germany	
Duotrate	Marion	U.S.	
Hasethrol	S hionogi	Japan	_
Hypothurol	Nissin	Japan	_
Lentrat	Medinova	Switz.	_
Neo-Corodil	Ethica	Canada	_
Neo-Corovas	Amfre-Grant	U.S.	-
Nitrodex	Dexo	France	_
Nitropent	A.C.O.	Sweden	
Pectolex	Shionogi	Japan	_
Penritol	Langley	Australia	_
Pentalong	Isis-Chemie	E. Germany	_
Peritrine	Norgine	Belgium	_
Perynitrate	Barlow Cote	Canada	-

Pentaerythritol Nitric acid

Manufacturing Process

Cooling water was turned on and 420 parts nitric acid of 94% strength was introduced into the nitrator. The amount of acid was such that the ratio of nitric acid to pentaerythritol was 4.29. The agitator was started and the agitator speed adjusted to 120 rpm. 92 parts pentaerythritol, which had been screened previously through a 14-mesh screen was used in each charge. About 45 parts pentaerythritol was added to the nitrator at such a rate that the temperature in the nitrator gradually rose to 110°F. This required about 12 minutes. Time was allowed for the temperature rise to cease before each succeeding increment of material was added.

After reaching 110°F the charge was maintained at about said temperature from 12 to 14 minutes during which time approximately 30 parts pentaerythritol was added to the nitrator. During the following 14 minutes, approximately, the remainder of the 92 parts pentaerythritol was added in like manner to the charge and the temperature gradually reduced. The pentaerythritol was introduced into the acid in finely divided and well-dispersed particles and not in large unitary quantities. The entire 92 parts of pentaerythritol tetranitrate was introduced in 35 to 40 minutes. The pentaerythritol thus obtained was separated from the spent acid by filtering or drowning in water. To recover the spent acid the charge was passed onto a nutsch and filtered. The crude product was washed with water, then with a weak water-soluble alkali solution, such as sodium carbonate for example, and subsequently with water in order to remove the acid.

After the removal of acid, the nitrate was dried by suction on the nutsch for about 15 minutes. The dried material was refined by means of acetone treatment or other suitable refining means. About 210 parts refined pentaerythritol tetranitrate per charge was obtained.

References

Merck Index 6977 DFU 4 (5) 351 (1979) Kleeman & Engel p. 695 PDR pp. 1382, 1606 I.N. p. 741 REM p. 854

Acken, M.F. and Vyverberg, J.C. Jr.; U.S. Patent 2,370,437; February 27, 1945; assigned to E.I. du Pont de Nemours & Co.

PENTAGASTRIN

Therapeutic Function: Gastrosecretory hormone

 $\label{lem:chemical Name: N-carboxy-} \textbf{β-alanyl-$L-tryptophyl-$L-methionyl-$L-aspartylphenyl-$L-alanin-$L-alani$

amide N-tert-butyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 5534-95-2

Trade Name	Manufacturer	Country	Year Introduced
Peptavlon	I.C.I.	U.K.	1967
Gastrodiagnost	Merck	W. Germany	1970
Pentagastrin	I.C.I.	Japan	1973
Peptavlon	Averst	U.S.	1976
Peptavion	I.Ć.I.	France	1981
Acignost	VEB Berlin-Chemie	E. Germany	_

Raw Materials

L-Tryptophanyl-L-methionyl-L-aspartyl-L-phenylalanine amide trifluoroacetate N-t-Butyloxycarbonyl \$\mathcal{F}\$-alanine 2,4,5-trichlorophenyl ester

Manufacturing Process

A solution of 3.55 parts of L-tryptophanyl-L-methionyl-L-aspartyl-L-phenylalanine amide trifluoroacetate in 30 parts of dimethylformamide is cooled to 0°C, and 1.01 parts of triethylamine are added. The mixture is stirred while 1.84 parts of N-tert-butyloxycarbonyl- β -alanine 2,4,5-trichlorophenyl ester are added at 0°C. The reaction mixture is kept at 0°C for 48 hours and then at 20°-23°C for 24 hours. The mixture is added to a mixture of 100 parts of ice-water, 0.37 part of concentrated hydrochloric acid (SG 1.18), 1.2 parts of acetic acid and 20 parts of ethyl acetate. The mixture is stirred for 15 minutes at 0°-10°C and is then filtered. The solid residue is washed with water and then with ethyl acetate, and is dried at 40°-50°C under reduced pressure. There is thus obtained N-tert-butyloxycarbonyl- β -alanyl-L-tryptophanyl-L-methionyl-L-aspartyl-L-phenylalanine amide, MP 213°C with decomposition.

References

Merck Index 6978 PDR p. 2004 DOT 3 (4) 150 (1967) I.N. p. 742 REM p. 1273

Hardy, P.M., Kenner, G.W., Sheppard, R.C., MacLeod, J.K. and Morley, J.S.; British Patent 1.042.487; assigned to Imperial Chemical Industries Limited, England

Hardy, P.M., Kenner, G.W., Sheppard, R.C., Morley, J.S. and MacLeod, J.K.; U.S. Patent 3,896,103; July 22, 1975; assigned to Imperial Chemical Industries Ltd.

PENTAPIPERIDE METHOSULFATE

Therapeutic Function: Antispasmodic

Chemical Name: \(\alpha \cdot (1-methylpropy!)\) benzeneacetic acid 1-methyl-4-piperidinyl ester metho-

sulfate

Common Name: Pentapiperium methosulfate

Structural Formula:

Chemical Abstracts Registry No.: 7681-80-3; 7009-54-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Quilene	Warner Lambert	U.S.	1969
Crylene	Auclair	France	1971
Crilin	Ayerst	Italy	1973
Perium	Rover	U.S.	_
Togestal	Biosedra	France	-

Raw Materials

Phenylacetonitrile	Sodium amide
Sec-Butyl bromide	Sodium hydroxide
Thionyl chloride	1-Methyl-4-piperidinol
Dimethyl sulfate	• • •

Manufacturing Process

Phenylacetonitrile is alkylated with secondary butyl bromide and the resultant nitrile is hydrolyzed to 3-methyl-2-phenylvaleric acid. The acid is converted to the acid chloride with thionyl chloride and the acid chloride is in turn reacted with 1-methyl-4-piperidinol, Finally dimethyl sulfate is reacted with the ester.

References

Merck Index 6988 Kleeman & Engel p. 697 OCDS Vol. 2 p. 76 (1980) DOT 6 (2) 61 (1970) I.N. p. 743

Martin, H. and Habicht, E.; U.S. Patent 2,987,517; June 6, 1961; assigned to Cilag Chemie Limited, Switzerland

PENTHIENATE BROMIDE

Therapeutic Function: Anticholinergic

Chemical Name: 2-[(Cyclopentylhydroxy-2-thienylacetyl)oxy]-N,N-diethyl-N-methyl-

ethanaminium bromide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 60-44-6

Trade Name	Manufacturer	Country	Year Introduced
Monodral	Winthrop	U.S,	1954
Monodral	Kanebo	Japan	1970

Raw Materials

2-Diethylaminoethyl chloride Cyclopentyl (α-thienyl) hydroxyacetic acid Methyl bromide

Manufacturing Process

An aqueous solution of 13.8 g of 2-diethylaminoethyl chloride hydrochloride was neutralized with sodium hydroxide, and the free 2-diethylaminoethyl chloride was extracted with ether. The ether extracts were dried over anhydrous magnesium sulfate, filtered, and the filtrate was added to a solution of 13.6 g of cyclopentyl-(α-thienyl)hydroxyacetic acid in 100 ml of isopropyl alcohol. The mixture was then distilled through a 25-cm Vigreaux-type column until the temperature of the vapors reached 80°C. The residual solution was refluxed overnight and then transferred to a beaker along with 350 ml of isopropyl alcohol. The crystalline hydrochloride had meanwhile separated out, and this was filtered, washed with isopropyl alcohol, ether and then dried, giving 23 g, melting point 172°C to 173.5°C. Recrystallization from 400 ml of isopropyl alcohol gave 20.3 g of 2-diethylaminoethyl cyclopentyl-(α-thienyl)hydroxyacetate hydrochloride, melting at 174°C to 175°C; deep yellow-orange color with concentrated sulfuric acid.

The hydrochloride may then be converted to the methobromide by reaction with methyl bromide.

References

Merck Index 6996 Kleeman & Engel p. 699 I.N. p. 744

Blicke, F.F.; U.S. Patent 2,541,634; February 13, 1951; assigned to Regents of the University of Michigan

PENTOBARBITAL SODIUM

Therapeutic Function: Hypnotic, sedative

Chemical Name: 5-Ethyl-5-(1-methylbutyl)-2,4,6-(1H,3H,5H)-pyrimidinetrione mono-

sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57-33-0; 76-74-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nembutal	Abbott	U.S.	1941
Butylone	Hartz	Canada	
Hypnol	Stickley	Canada	_
Mintal	Tanabe	Japan	_
Nebralin	Dorsey	U.S.	
Neodrom	Minden	W. Germany	_
Novopentobarb	Novopharm	Canada	_
Penbon	Adams	Australia	_
Pentanca	Anca	Canada	_
Pentogen	Paul Maney	Canada	
Pentone	Faulding	Australia	
Prodormo!	Teva	Israel	_
Repocal	Desitin	W. Germany	_
Sombutol	Farmus	Finland	_
Somnotol	M.T.C.	Canada	_
Sopental	Cont. Ethicals	S. Africa	

Raw Materials

di-n-Butyl ethyl 1-methyl-n-butylmalonate Sodium Butanol

Manufacturing Process

Urea

Sodium (9.6 parts) was dissolved in butanol (192 parts) and di-n-butyl ethyl 1-methyl-nbutylmalonate (62.8 parts) and urea (14.4 parts) were added to the warm solution with agitation. The mixture was then heated to reflux temperature in three quarters of an hour and maintained for 2 hours. The reaction mass was kept, water (150 parts) added, the aqueous portion separated, and the butanol layer extracted with water (3 x 50 parts). The combined aqueous extracts were then given 3 small extractions with benzene, the aqueous liquors separated, charcoaled, filtered and precipitated with concentrated hydrochloric acid (acid to congopaper). The solid was collected, washed with water, dissolved in N-sodium hydroxide and reprecipitated with carbon dioxide. On recrystallization, from aqueous alcohol, the pentobarbitone was obtained.

References

Merck Index 6998 Kieeman & Engel p. 700 PDR pp. 531, 872, 1989 OCDS Vol. 1 p. 268 (1977) I.N. p. 745

REM p. 1067

The Geigy Co. Ltd.; British Patent 650,354; February 21, 1951

PENTOXIFYLLINE

Therapeutic Function: Vasodilator

Chemical Name: 3,7-Dihydro-3,7-dimethyl-1-(5-oxohexyl)-1H-purine-2,6-dione

Common Name: Oxpentifylline; vazofirin

Structural Formula:

Chemical Abstracts Registry No.: 6493-05-6

Trade Name	Manufacturer	Country	Year Introduced
Trental	Albert-Roussel	W. Germany	1972
Torental	Hoechst	France	1974
Trental	Hoechst	U.K.	1975
Trental	Albert-Farma	Italy	1976
Trental	Hoechst	Japan	1977
Agapurin	Spofa	Czech oslovak ja	_
Techlon	Sawai	Japan	_

Raw Materials

1-Bromo-5-hexanone Theobromine sodium salt

Manufacturing Process

A solution of 35.4 g of 1-bromohexanone-5 in 200 ml of ethanol was gradually mixed at the reflux temperature with vigorous stirring with 39.7 g of theobromine-sodium in 100 ml of water. After 3 hours' reflux the unreacted theobromine was filtered off with suction, the filtrate was evaporated to dryness, the residue was dissolved in water and the solution was extracted with chloroform. The chloroform was distilled off and 1-(5'-oxohexyl)-3,7-dimethylxanthine was obtained as residue; after recrystallization from isopropanol, it melted at 102°C to 103°C (about 25% yield, calculated on the reacted theobromine).

References

Merck Index 7002 Kieeman & Engel p. 701 PDR p. 947 OCDS Vol. 2 p. 466 (1980) I.N. p. 746

Mohler, W., Reiser, M. and Popendiker, K.; U.S. Patent 3,737,433; June 5, 1973; assigned to Chemische Werke Albert A.G. (W. Germany)

PEPLOMYCIN SULFATE

Therapeutic Function: Antineoplastic

Chemical Name: 3-[(S)-1'-Phenylethylamino] propylaminobleomycin sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 68247-85-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pepleo	Nippon Kayaku	Japan	1981

Raw Materials

Bleomycinic acid N-[(S)-1'-Phenylethyl]-1,3-diaminopropane Sulfuric acid

Manufacturing Process

In 400 ml of dimethylformamide was dissolved 15.0 g of bleomycinic acid (copper-containing form). To the solution kept at 0°C by cooling were added 1.1 ml of N-methylmorpholine and 10.3 g of 6-chloro-1-p-chlorobenzenesulfonyloxybenzotriazole (CCBT) as an activating compound. The mixture was stirred for 5 minutes at 0°C, then admixed with 5.3 g of N-[(S)-1'-phenylethyl] -1,3-diaminopropane and further stirred for 1 hour.

After termination of the reaction by adding 200 ml of a 25% aqueous acetic acid solution. the reaction mixture was mixed with 5 liters of cold acetone to precipitate the reaction product. The precipitate was collected by filtration, washed with acetone, and dissolved in 500 ml of distilled water. The resulting aqueous solution was immediately adjusted to pH 6.0 and poured into a column containing 2 liters of CM-Sephadex C-25 (NH₄⁺ type) packed in 0.05 M aqueous ammonium chloride solution to adsorb bleomycins.

Using aqueous ammonium chloride solution, elution was performed by passing through the column 20 liters of eluent in which the concentration of ammonium chloride was continually increased from 0.05 to 1.0 M. The unreacted bleomycinic acid was found in the effluent at the ammonium chloride concentration of about 0.05 M and NK631 at the ammonium chloride concentration of about 0.45 M. Both fractions, which showed UV absorption at 292 mu. were separately collected.

The NK631-containing fraction was poured into a resin column containing 2.6 liters of Amberlite XAD-2. The column was then washed thoroughly with water and eluted with 0.01 N hydrochloric acid in methanol-water (4:1 v/v). A total of 2.5 liters of the blue fraction, which showed UV absorption at 292 m\mu, was collected. After evaporating off the methanol from the eluent fraction, the concentrate was adjusted to pH 6.0 with Dowex 44 (OH type, an anion-exchange resin composed of a copolymer of epichlorohydrin and ammonia) and was freeze-dried to obtain 16.1 g (92% yield) of NK631 dihydrochloride (coppercontaining form) in the form of blue amorphous powder.

By similar treatment, 280 mg of the unreacted bleomycinic acid (copper-containing form) were recovered.

In 200 ml of distilled water was dissolved 10.0 g of the NK631 dihydrochloride (copper-containing form). The solution was poured into a column containing 600 ml of Amberlite XAD-2 packed in distilled water. The column was washed successively with 2 liters of an aqueous solution containing 5% of EDTA-Na₂, 2.5 liters of a 5% aqueous sodium sulfate solution, and 630 ml of distilled water.

The column was then eluted with 0,0025N sulfuric acid in methanol-water mixture (1:1 v/v). A total of 900 ml of fractions containing a substance which showed UV absorption at 290 m \mu was collected. After removal of methanol by distillation, the residual liquid was adjusted to pH 6.0 with Dowex 44 (OH type) and freeze-dried to obtain 9.3 g (95% yield) of NK631 monosulfate (copper-free form) in the form of pale yellowish-white amorphous powder.

References

Merck Index 7011 DFU 6 (2) 101 (1981) DOT 17 (8) 331 (1981)

Takita, T., Fujii, A., Fukuoka, T., Muraoka, Y., Yoshioka, O. and Umezawa, H.; U.S. Patent 4,195,018; March 25, 1980; assigned to Nippon Kayaku K.K.

Umezawa, H., Maeda, K., Takita, T., Nakayama, Y., Fujii, A. and Shimada, N.; U.S. Patent 3,846,400; November 5, 1974; assigned to Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai.

PERHEXILINE MALEATE

Therapeutic Function: Coronary vasodilator

Chemical Name: 2-(2,2-dicyclohexylethyl)piperidine maleate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6724-53-4; 6621-47-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pexid	Merrell-Tourade	France	1973
Pexid	Merrell	W. Germany	1974
Pexid	Merrell	Italy	1974
Pexid	Merrell	U.K.	1975
Corzepin	Prodes	Spain	_
Daprin	Gerardo Ramon	Argentina	_

Raw Materials

Cyclohexylmagnesium bromide Ethyl formate α-Picoline Hydrogen chloride Sodium hydroxide Hydrogen Maleic acid

Manufacturing Process

1,1-Dicyclohexyl-2-(2'-pyridyl)ethanol hydrochloride (5 grams) was dehydrated by heating with 25 ml of concentrated hydrochloric acid at steam bath temperature for 10 minutes. 70 ml of water were added to the reaction mixture to give the crystalline hydrochloride salt. The product, 1,1-dicyclohexyl-2-(2'-pyridyl)ethylene hydrochloride, was recrystallized from methanol-ethyl acetate to yield a white solid melting at 150°-151.5°C.

1,1-Dicyclohexyl-2-(2'-pyridyl)ethylene hydrochloride (15 grams) in 150 ml of ethanol was hydrogenated in the presence of platinum oxide at about 60 pounds per square inch of hydrogen pressure. The product, 1,1-dicyclohexyl-2-(2'-piperidyl)ethane hydrochloride, crystallized from a mixture of methanol and methyl ethyl ketone as a white solid melting at 243° to 245.5°C.

The hydrochloride salt was neutralized with 10% sodium hydroxide solution and the free base so produced was dissolved in ether. The ether solution was dried over anhydrous magnesium sulfate. Addition of an excess of maleic acid in methanol to the solution yielded the acid maleate salt which melted at 188.5° 191°C.

The starting material was obtained by reacting ethyl formate with cyclohexylmagnesium bromide to give dicyclohexylcarbinol. That is oxidized to dicyclohexylketone and then reacted with α -picoline.

References

Merck Index 7026 Kleeman & Engel p. 703 DOT 10 (8) 299 (1974) I.N. p. 747 REM p. 854

Richardson-Merrell Inc.; British Patent 1,025,578; April 14, 1966 Horgan, S.W., Palopoli, F.P. and Schwoegler, E.J.; U.S. Patent 4,069,222; January 17, 1978; assigned to Richardson-Merrell Inc.

PERIMETHAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 1-[3-(2-methoxyphenothiazin-10-yl)-2-methylpropyl]-4-piperidinol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13093-88-4

Trade Name Manufacturer Country Year Introduced Leptryl Roger Bellon 1970 France

Raw Materials

3-Methoxy-10-(3-chloro-2-methylpropyl)phenthiazine 4-Hydroxypiperidine

Manufacturing Process

A solution of 3-methoxy-10-(3-chloro-2-methylpropyl)phenthiazine (9.65 grams) and 4hydroxypiperidine (6.1 grams) in xylene (10cc) is heated under reflux for 5 hours. After cooling the mixture is diluted with ether (60 cc) and the basic compounds are extracted by agitation with water (30 cc) and 4 N hydrochloric acid (20 cc). The aqueous acid phase is made alkaline with 4 N sodium hydroxide solution (23 cc) and the liberated base is extracted with ether. The ethereal solution is washed with water (60 cc) and dried over sodium sulfate. Finally the solvent is distilled off on a water-bath.

The solid residue obtained is recrystallized from a mixture (15:85) of benzene and cyclohexane and there is obtained 3-methoxy-10-[2-methyl-3-(4-hydroxy-1-piperidyl)-propyl]phenthiazine (5.7 grams) as a white crystalline powder, MP 137°-138°C.

References

Merck Index 7030 Kleeman & Engel p. 704 DOT 6 (4) 190 (1970) I.N. p. 748

Jacob, R.M. and Robert, J.G.; U.S. Patent 3,075,976; January 29, 1963; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

PERISOXAL CITRATE

Therapeutic Function: Antiinflammatory, analgesic

Chemical Name: 3-(2-Piperidino-1-hydroxyethyl)-5-phenylisoxazole citrate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2055-44-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Isoxal	Shionogi	Japan	1979

Raw Materials

3-(2-Methylthio-2-piperidinoacetyl)-5-phenylisoxazole Sodium borohydride Citric acid

Manufacturing Process

Crude crystals of 3-(2-methylthio-2-piperidinoacetyl)-5-phenylisoxazole (1.631 g) are suspended in 20 ml of methanol without being further purified and the suspension is stirred after a portionwise addition (in about 10 minutes) of 143 mg (3.78 mmol) of sodium borohydride at room temperature for about 30 minutes.

The methanol in the reaction mixture (pale yellow solution) is then removed by evaporation under reduced pressure to leave a residue which is subsequently dissolved in 30 ml of benzene. The benzene solution is shaken four times with 20 ml of 4 N hydrochloric acid each time to extract the basic substance. Each of the hydrochloric acid layers is washed once with 20 ml of benzene and combined together to be neutralized with potassium carbonate while being ice-cooled until it becomes basic (pH = 10).

The liberated crystalline substance is extracted twice with 50 ml of dichloromethane each time. After being separated, the dichloromethane layers are combined and washed once with 30 ml of water and dried over sodium sulfate. The solvent of the layer is removed by evaporation under reduced pressure to leave a crystalline residue (72.56 mg, 53% crude yield).

Recrystallization of this product from dichloromethane-ether (1:4) affords needles of 3-(2-piperidino-1-hydroxyethyl)-5-phenylisoxazole (701 mg, 51.3% as an overall yield calculated based on the starting material, melting point 104°C to 106°C. The product thus obtained may be reacted with citric acid to give the citrate.

References

Merck Index 7038 DFU 4 (4) 269 (1979) I.N. p. 748

Hirai, S. and Kawata, K.; U.S. Patent 3,939,167; February 17, 1976; assigned to Shionogi & Co., Ltd.

PERLAPINE

Therapeutic Function: Hypnotic

Chemical Name: 6-(4-methyl-1-piperazinyl)-11H-dibenz[b,e] azepine

Common Name: 6-(4-methyl-1-piperazinyl)morphanthridine

Structural Formula:

Chemical Abstracts Registry No.: 1977-11-3

Trade Name	Manufacturer	Country	Year Introduced
Hypnodin	Takeda	Japan	1974
Pipnodine	Takeda	Japan	—

Raw Materials

o-Aminodiphenylmethane Aluminum chloride N-Methylpiperazine

Phosgene Phosphorus oxychloride

Manufacturing Process

The 5,6-dihydro-6-oxo-morphanthridine used as a starting material is usefully obtained in the following way. 30.2 grams of o-aminodiphenylmethane are dissolved in 65 ml of absolute toluene and, while stirring and at a temperature of between 0° and -10°C, 140 ml of 20% phosgene solution in toluene are added drop by drop. By bubbling phosgene slowly through it the milky mixture is heated within 30 minutes to reflux temperature, which is maintained during some 20 minutes. While stirring vigorously, dry nitrogen is passed into the boiling reaction mixture for 10 minutes. After evaporation of the solvent there are obtained by vacuum distillation 29.7 grams (86% of the theory of o-isocyanatodiphenylmethane of boiling point 169°C/12 mm Hg.

21.1 grams of aluminum chloride are heated in 110 ml of o-dichlorobenzene to 80°C and, while stirring, a solution of 29.7 grams of o-isocyanatodiphenylmethane in 60 ml of o-dichlorobenzene is added drop by drop, whereupon the temperature of the mixture rises to 120°C. This temperature is maintained for one hour while stirring. After cooling the reaction mixture is poured into 200 ml of 2 N hydrochloric acid, whereupon a brown precipitate is formed. After steam distillation the residue is isolated by filtration and crystallized from acetone/water. There are obtained 28.6 grams (97% of the theory) of 5.6-dihydro-6-oxomorphanthridine of melting point 201°-203°C.

A mixture of 4.9 grams of 5,6-dihydro-6-oxo-morphanthridine, 37 ml of phosphorus oxychloride and 1.5 ml of dimethylaniline is heated for 3 hours at reflux. The viscous oil, obtained by evaporation of the reaction mixture in vacuo at 60°C, is diluted with 20 ml of absolute dioxane and, after adding 30 ml of N-methylpiperazine, heated for 4 hours at reflux. The resulting clear solution is evaporated in vacuo at 60°C to dryness. The residue is distributed between ether and ammonia water. The ethereal solution is separated, washed with water and then extracted with 1N acetic acid. The acetic acid extract is mixed with ammonia water and then extracted with ether. The ethereal solution is washed with water, dried over sodium sulfate, filtered through alumina and evaporated.

The residue is caused to crystallize from ether/petroleum ether, and recrystallized from acetone/petroleum ether. 6.0 grams (88% of the theory) of 6-(4-methyl-1-piperazinyl)morphanthridine of melting point 138°-138.5°C are obtained.

References

Merck Index 7040 Kleeman & Engel p. 705 OCDS Vol. 2 p. 425 (1980) DOT 11 (2) 76 (1975) I.N. p. 748

Schmutz, J., Hunziker, F. and Kunzle, F.M.; U.S. Patent 3,389,139; June 18, 1968; assigned to Dr. A. Wander, SA, Switzerland

PERPHENAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 4-[3-(2-chlorophenothiazin-10-yl)propyl]-1-piperazineethanol

Common Name: Chlorpiprazine

Structural Formula:

Chemical Abstracts Registry No.: 58-39-9

Trade Name	Manufacturer	Country	Year Introduced
Trilafon	Schering	U.S.	1957
Decentan	Merck	W. Germany	_
Etrafon	Schering	U.S.	_
Fentazin	Allen & Hanburys	U.K.	_
F-Mon	Nippon Shinyaku	Japan	_
Peratsin	Farmos	Finland	
Perfenil	Scalari	Italy	_
Perphenan	Taro	Israel	
Phenazine	I.C.N.	Canada	_
Triavil	MSD	U.S.	_
Trilifan	Cetrane	France	_
Triomin	Yamanouchi	Japan	_

Raw Materials

2-Chlorophenothiazine 1-Bromo-3-chioropropane Piperazine 2-Bromoethanol

Manufacturing Process

A mixture of 155 parts of 2-chloro-10-(γ-chloropropyl)phenothiazine, 76 parts of sodium iodide, 216 parts of piperazine and 2,000 parts of butanone is refluxed for 8 hours, con-

centrated and extracted with dilute hydrochloric acid. The extract is rendered alkaline by addition of dilute potassium carbonate and benzene or chloroform extracted. This extract is washed with water, dried over anhydrous potassium carbonate, filtered and evaporated. Vacuum distillation at 0.1 mm pressure yields 2-chloro-10- $[\gamma$ -(N-piperazino)propyl] phenothiazine at about 214°-218°C.

A stirred mixture of 5 parts of 2-chloro-10- $[\gamma-(N-piperazino)propyl]$ phenothiazine, 1.92 parts of 2-bromoethanol, 2.11 parts of potassium carbonate and 35 parts of toluene is refluxed for 5 hours. The mixture is treated with water and benzene and the organic layer is separated, washed with water, dried over anhydrous potassium carbonate, filtered and evaporated. The residue is distilled at about 240°-244°C and 0.15 mm pressure to yield 2-chloro-10-[γ-(N'-β-hydroxyethyl-N-piperazino)-propyl] phenothiazine according to U.S. Patent 2,838,507.

The 2-chloro-10-(γ-chloropropyl)phenothiazine starting material is produced from 2-chlorophenothiazine and 1-bromo-3-chloropropane.

References

Merck Index 7044 Kleeman & Engel p. 705 PDR pp. 1217, 1617, 1655 OCDS Vol. 1 p. 383 (1977) DOT 9 (6) 228 (1973) I.N. p. 749 REM p. 1090

Cusie, J.W. and Hamilton, R.W.; U.S. Patent 2,838,507; June 10, 1958; assigned to G.D. Searle & Co.

Sherlock, M.H. and Sperber, N.; U.S. Patent 2,860,138; November 11, 1958; assigned to Schering Corporation

PHENACTROPINIUM CHLORIDE

Therapeutic Function: Antihypertensive

Chemical Name: α-Hydroxybenzeneacetic acid 8-methyl-8-[(2-oxo-2-phenyl)-ethyl] -8-

azoniabicyclo[3.2,1] oct-3-yl ester chloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Trophenium	Amer, Cyanamid	U.S.	1961
Trophenium	Duncan Flockhart	U.K.	-

Homatropine Phenacyl chloride

Manufacturing Process

330 g (1,2M) of hometropine were dissolved in 1 liter of dry methyl ethyl ketone and gently refluxed on a water-bath during the gradual addition of a solution of 204 g (1,32 M) redistilled phenacyl chloride in 200 ml of the same solvent. After 10 to 15 minutes 1 g of previously prepared homatropine phenacyl chloride was added to avoid formation of a supersaturated solution of the quaternary compound. Reflux was continued for 9 hours, then the thick suspension was allowed to cool, filtered and washed with 200 ml methyl ethyl ketone to yield 490 g (95%) slightly creamy solid, MP 188°C to 191°C.

For purification the crude quaternary salt was dissolved in hot ethyl alcohol (2 ml/g) and warm dry acetone (8 ml/g) was stirred into the clear filtrate. On cooling, 387 g (78% recovery) of a pure white powder, MP 195°C to 197°C, were obtained, in which the ionizable chlorine assayed at 99.7% of the theoretical value.

References

Merck Index 7067 I.N. p. 752 Johnston, R.G. and Spencer, K.E.V.; U.S. Patent 2,828,312; March 25, 1958; assigned to T. & H. Smith, Ltd. (U.K.)

PHENAGLYCODOL

Therapeutic Function: Tranquilizer

Chemical Name: 2-(4-Chlorophenyl)-3-methyl-2,3-butanediol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 79-93-6

Trade Name	Manufacturer	Country	Year Introduced
Ultran	Lilly	U.S.	1957
Felixyn	Radiumpharma	Italy	-

Raw Materials

p-Chloroacetophenone Sodium cyanide Sodium hydroxide Hydrogen chloride Ethanol Methyl iodide Magnesium

Manufacturing Process

To a mixture of 460 g of p-chloroacetophenone, 350 ml of ether and 500 ml of water are added 410 g of sodium cyanide, with vigorous stirring. The reaction mixture is cooled to about 5°C to 10°C and 700 ml of concentrated hydrochloric acid are added at such a rate that no hydrogen cyanide is formed and the temperature of the mixture does not rise above 10°C. After the addition of the acid is complete, the reaction mixture is stirred for about three hours at room temperature, and allowed to separate into an aqueous and an organic phase. The organic phase is removed from the aqueous phase, and the aqueous phase and any salt which may have separated in the course of the reaction are washed with about 300 ml of ether. The combined ether washings and organic phase are dried over anhydrous magnesium sulfate, and the ether is removed by evaporation in vacuo at room temperature. The residue is poured with stirring into 800 ml of concentrated hydrochloric acid kept at about 0°C by cooling with solid carbon dioxide. The acid mixture is saturated with gaseous hydrogen chloride at 0°C, and stirred at room temperature overnight. The resulting precipitate of p-chloroatrolactamide is removed by filtration, washed by slurrying with water and dried. After recrystallization from ethanol, p-chloroatrolactamide melts at about 105°C to 107°C.

A mixture of 200 g of p-chloroatrolactamide and 1 liter of 25% sodium hydroxide solution is refluxed with stirring for about sixteen hours. The reaction mixture is then poured over cracked ice and diluted with water to a volume of about 3 liters. The aqueous solution is washed with two 1 liter portions of ether, and acidified with concentrated hydrochloric acid, whereupon a precipitate of p-chloroatrolactic acid forms. The precipitated acid is removed by filtration, and is dissolved in 500 ml of ether, washed with two 250 ml portions of water and dried. The ether is removed by evaporation, p-chloroatrolactic acid thus prepared melts at about 117°C to 120°C.

A mixture of 185 g of p-chloroatrolactic acid, 600 ml of ethanol and 60 ml of concentrated sulfuric acid is refluxed for about twelve hours. About half the solvent is then removed by evaporation in vacuo at room temperature, the residue is poured over cracked ice, and diluted with water to a volume of about 2 liters. The ethyl p-chloroatrolactate formed in the reaction is extracted with two 1 liter portions of ether. The combined ether extracts are washed with successive 200 ml portions of water, 5% sodium carbonate solution, and water, and are dried over anhydrous magnesium sulfate. The dried ether solution is subjected to fractional distillation, and the fraction boiling at about 90°C to 100°C at a pressure of 0.1 mm of mercury, is collected. The distillate consists of ethyl p-chloroatrolactate.

To a solution of 2 mols of methylmagnesium iodide in 1.5 liters of ether are added with vigorous stirring 107 g (0.5 mol) of ethyl p-chloroatrolactate. The reaction mixture is stirred for about sixteen hours, and is then decomposed by the addition of about 320 ml of saturated aqueous ammonium chloride solution. After standing, the ether layer is decanted from the mixture and the aqueous phase and the precipitated salts are washed with several 500 ml portions of ether. The combined ether solution and washings are washed with successive 500 ml portions of 5% ammonium chloride solution and water, are dried over anhydrous magnesium sulfate, and are evaporated to dryness in vacuo. The crystalline residue consisting of 2-pchlorophenyl-3-methyl-2,3-butanediol, is recrystallized from a mixture of benzene and petroleum ether.

2-p-chlorophenyl-3-methyl-2,3-butanediol thus prepared melts at about 66°C to 67°C.

References

Merck Index 7070 Kleeman & Engel p. 709 OCDS Vol. 1 p. 219 (1977) I.N. p. 752 Mills, J.; U.S. Patent 2,812,363; November 5, 1957; assigned to Eli Lilly & Co.

PHENDIMETRAZINE TARTRATE

Therapeutic Function: Antiobesity

Chemical Name: 3,4-dimethyl-2-phenylmorpholine bitartrate

Common Name: 3,4-dimethyl-2-phenyltetrahydro-1,4-oxazine bitartrate

Structural Formula:

Chemical Abstracts Registry No.: 50-58-8; 634-03-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Plegine	Ayerst	U.S.	1961
Statobex	Lemmon	U.S.	1972
Bacarate	Tutag	U.S.	1972
Prelu-2	Boehr, Ingel.	U.S.	1980
Sprx 105	Tutag	U.S.	1980
Obezine	Western Research	U.S.	1981
X-Trozine	Rexar	U.S.	1981
Hyrex-105	Hyrex	U.S.	1983
Adipost	Ascher	U.S.	1983
Slyn-LL	Edwards	U.S.	1983
Trimcaps	Mayrand	U.S.	1983
Adipo II	Sig	U.S.	-
Adphen	Ferndale	U.S.	_
Amphasu b	Palmedico	U.S.	-
Anoxine T	Winston Pharm.	U.S.	_
Arcotrol	Arco	U.S.	_
Bacarate	Reid Provident	U.S.	-
Bontril	Carnrick	U.S.	_
Di-Ap-Trol	Foy	U.S.	-
Dyrexan	Trimen	U.S.	_
Ephemet	Canright	U.S.	-
Fringanor	Sobio	France	
Melfiat	Reid-Rowell	U.S.	_
Neo-Nilorex	A.V.P.	U.S.	_
Obe-Del	Mariop	U.S.	_
Obepar	Parmed	U.S.	_
Obesan	SCS Pharmalab	S. Africa	_
Obex-LA	Rio Ethicals	S. Africa	_
Pan-Rexin	Pan American	U.S.	
Phenazine	Jenkins	U.S.	-
Reducto	Arcum	U.S.	-
Reton	Tri-State	U.S.	_
Stodex	Jalco	U.S.	-
Symetra	Westerfield	U.S.	-
Trimstat	Laser	U.S.	-
Wehless	Hauck	U.S.	-
Weightrol	N. Amer, Pharm,	U.S.	-
X-Trozine	Rexar	U.S.	_

Propiophenone 2-Methylaminomethanol

Bromine Formic acid

Manufacturing Process

A mixture of 61 grams 1-phenyl-1-oxo-2-(N-methyl-N-ethanolamino)-propane hydrochloride and 100 cc 98-100% formic acid was refluxed at the boiling point at atmospheric pressure for 45 minutes on an oil bath. Thereafter, the oil bath temperature was increased to 180°C and as much of the excess unreacted formic acid as possible was distilled off. A vigorous evolution of carbon dioxide developed during the distillation, which ceased after approximately 45 additional minutes. The honey-yellow syrup which remained as the distillation residue was worked up by admixing it with about six volumes of water and adjusting the aqueous mixture to alkaline reaction with concentrated sodium hydroxide. An oily phase separated out which was extracted with ether. The ether extract was washed with water and dried over potassium carbonate. The solvent was distilled off and the distillation residue was fractionally distilled in vacuo. The base boils at 132°-133°C at 12 mm. The yield was 93% of theory. Reaction with tartaric acid gave the final product.

The starting material is produced by reacting propiophenone with bromine and then reacting the α -bromopropiophenone produced with 2-methylaminomethanol.

References

Merck Index 7088 Kleeman & Engel p. 711 PDR pp. 633,679,778,928,948,992,1448,1450,1807 OCDS Vol. 1 p. 260 (1977) & 2,261 (1980) I.N. p. 754 REM p. 892

Heel, W. and Zeile, K.; U.S. Patent 2,997,469; August 22, 1961; assigned to C.H. Boehringer Sohn, Germany

PHENELZINE SULFATE

Therapeutic Function: Psychostimulant

Chemical Name: (2-phenethyl)hydrazine sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 156-51-4; 51-71-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Nardil	Parke Davis	U.S.	1959
Nardelzine	Substantia	France	_

Raw Materials

Phenethylbromide Hydrazine hydrate

Manufacturing Process

To a refluxing solution containing 147.5 grams of 85% hydrazine hydrate in 500 cc of ethanol was added, during a period of 5 hours, 92.5 grams of phenethylbromide (0.50 mol) in 150 cc of ethanol. Stirring and refluxing were continued for two hours. The ethanol was removed by distillation and the residue extracted repeatedly with ether. The ether was dried with potassium carbonate and the product base collected by distillation, BP 74°C/0.1 mm, yield 52.3 grams (77%). The base is reacted with sulfuric acid in propanol to give the sulfate.

References

Merck Index 7089 Kleeman & Engel p. 711 PDR p. 1368 OCDS Vol. 1 p. 74 (1977) I.N. p. 754 REM p. 1096

Biel, J.H.; U.S. Patent 3,000,903; September 19, 1961; assigned to Lakeside Laboratories, Inc.

PHENETHICILLIN POTASSIUM

Therapeutic Function: Antibacterial

Chemical Name: 3,3-Dimethyl-7-oxo-6-[(1-oxo-2-phenoxypropyl)amino] -4-thia-1-azabicycyclo[3.2.0] heptane-2-carboxylic acid potassium salt

Common Name: Penicillin MY

Structural Formula:

Chemical Abstracts Registry No.: 132-93-4; 147-55-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Syncillin	Bristol	U.S.	1959
Ro-Cillin	Rowell	U.S.	1960
Chemiphen	Squibb	U.S.	1960
Semopen	Massengill	U.S.	1960
Dramcillin-S	White	U.S.	1960
Maxipen	Roerig	U.S.	1960
Darcil	Wyeth	U.S.	1960
Aipen	Schering	U.S.	1960
Altocillin	Caber	Italy	_
Bendralan	Antibioticos	Spain	
Broxil	Beecham	U.K.	_
Metilpen	Boniscontro-Gazzone	Italy	_
Optipen	C.S.L.	Australia	_
Pen-200	Pfizer	W. Germany	-

Trade Name	Manufacturer	Country	Year Introduced
Peniplus	Fumouze	France	_
Penopen	Pliva	Yugoslavia	_
Penorale	Lusofarmaco	Italy	_
Synthecilline	Bristol	France	_
Synthepen	Meiji	Japan	_

α-Phenoxypropionic acid Isobutyl chloroformate 6-Aminopenicillanic acid Potassium 2-ethylhexanoate

Manufacturing Process

Triethylamine (1.5 ml) was added to a cold solution (10°C) of α -phenoxypropionic acid (1.66 g, 0.01 mol) in 15 ml of pure dioxane, with stirring and cooling to 5°C to 10°C while isobutyl chloroformate (1,36 g, 0.01 mol) in 5 ml of dioxane was added dropwise. Then the mixture was stirred for ten minutes at 5°C to 8°C. A solution of 6-amino-penicillanic acid (2.16 g, 0.01 mol) in 15 ml of water and 2 ml of triethylamine was then added dropwise while the temperature was maintained below 10°C. The resulting mixture was stirred in the cold for 15 minutes then at room temperature for 30 minutes, diluted with 30 ml of cold water and extracted with ether which was discarded. The cold aqueous solution was then covered with 75 ml of ether and acidified to pH 2 with 5 N H₂SO₄. After shaking, the ether layer containing the product $6-(\alpha-phenoxypropionamido)$ penicillanic acid, was dried for ten minutes over anhydrous sodium sulfate and filtered. Addition of 6 ml of dry n-butanol containing 0.373 g/ml of potassium 2-ethylhexanoate precipitated the potassium salt of the product as a colorless oil which crystallized on stirring and scratching and was collected, dried in vacuo and found to weigh 2.75 g, to melt at 217°C to 219°C.

References

Merck Index 7093 Kleeman & Engel p. 712 OCDS Vol. 1 p. 410 (1977)

I.N. p. 755

Beecham Research Laboratories, Ltd.; British Patent 877,120; September 13, 1961

PHENFORMIN

Therapeutic Function: Antidiabetic

Chemical Name: N-(2-Phenylethyl)imidodicarbonimidic diamide

Common Name: Phenethyldiguanide

Structural Formula:

Chemical Abstracts Registry No.: 114-86-3

Trade Name	Manufacturer	Country	Year Introduced
DBI	Geigy	U.S.	1959
Meltrol	U.S.V. Pharm	U.S.	1971
Adiabetin	Arcana	Austria	_

Trade Name	Manufacturer	Country	Year Introduced
Antipond	Arcana	Austria	_
Cronoformin	Guidotti	italy	-
De Be J	Isa	Brazil	_
Debeone	U.S.V.	U.S.	_
Diabis	Funk	Spain	_
Dibein	Pharmacia	Sweden	_
Dibophen	Polfa	Poland	_
Insora!	U.S.V.	U.S.	
Kataglicina	Marxer	italy	
Prontoformin	Guidotti	Italy	_

β-Phenylethylamine Hydrogen chloride Dicyandiamide

Manufacturing Process

15.76 g of β -phenylethylamine hydrochloride and 8.4 g of dicyandiamide were ground and intimately mixed. The mixture was heated in an oil bath in a 3-neck flask fitted with a thermometer and stirrer, and the mixture began to melt at a bath temperature of 125°C and was completely fluid at 130°C. Further heating at 145°C to 150°C initiated an exothermic reaction and the temperature of the fusion mixture (156°C) exceeded the oil bath temperature (150°C) by 6°. Heating was continued for one hour at bath temperature of 148°C to 150°C. The reaction mixture was cooled, dissolved in about 100 cc of methanol and filtered. The methanol filtrate was concentrated under reduced pressure, cooled and the product (β -phenylethylbiguanide hydrochloride) filtered off and recrystallized from 95% isopropanol.

References

Merck Index 7099 OCDS Vol. 1 p. 75 (1977)

I.N. p. 755

Shapiro, S.L. and Freedman, L.; U.S. Patent 2,961,377; November 22, 1960; assigned to U.S. Vitamin & Pharmaceutical Corp.

PHENINDAMINE TARTRATE

Therapeutic Function: Antihistaminic

Chemical Name: 2,3,4,9-tetrahydro-2-methyl-9-phenyl-1H-indeno[2,1,c] pyridine tartrate

Common Name: 2-methyl-9-phenyl-2,3,4,9-tetrahydro-1-pyridindene tartrate

Structural Formula:

Chemical Abstracts Registry No.: 569-59-5; 82-88-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Thenhorin	Roche	211	1947

Trade Name	Menufacturer	Country	Year Introduced
Nolahist	Carnrick	U.S.	1982
Nolamine	Carnrick	U.S.	_
Pernovin	Chinoin	Hungary	_
PV-Tussin	Reid-Rowell	U.S.	-

Acetophenone Methylamine
Formaldehyde Sodium hydroxide
Hydrogen bromide Hydrogen
Potassium thiocyanate

Manufacturing Process

A mixture of 750 grams of 1-methyl-3-benzoyl-4-hydroxy-4-phenylpiperidine and 2,500 cc of 48% hydrobromic acid is refluxed for about 20 minutes. It is then poured into 8 liters of water. An oily precipitate appears which on standing crystallizes. It is filtered and crystallized from about 3.5 liters of alcohol. 2-Methyl-9-phenyl-2,3-dihydro-1-pyridindene hydrobromide, MP 201°-203°C, is obtained.

A mixture of 680 grams of 2-methyl-9-phenyl-2,3-dihydro-1-pyridindene hydrobromide, 6,000 cc of water and about 100 grams of Raney-nickel catalyst is hydrogenated at room temperature and at about 1,000 lb pressure for a period of three hours. The catalyst is filtered. The clear filtrate is treated with a solution of 240 grams potassium thiocyanate in 400 cc of water. A heavy solid precipitates from which the supernatant liquid is decanted.

The residue is dissolved in 10 liters of boiling alcohol with stirring in the presence of nitrogen. The solution is cooled to room temperature under nitrogen, and then allowed to stand overnight. 2-Methyl-9-phenyl-tetrahydro-1-pyridindene thiocyanate separates in crystals of MP 188°-189°C. From the concentrated filtrate an additional amount is obtained. The corresponding free base, prepared by treating the slightly soluble thiocyanate in aqueous suspension with sodium hydroxide and extracting with ether, has a MP of 90°-91°C. It forms a tartrate of MP 160°C.

The starting material was prepared by reacting acetophenone, methylamine and formaldehyde followed by treatment of the intermediate with sodium hydroxide.

References

Merck Index 7103 Kleeman & Engel p. 713 PDR pp. 781, 1448 I.N. p. 756

Plati, J.T. and Wenner, W.; U.S. Patent 2,470,108; May 17, 1949; assigned to Hoffmann-La Roche Inc.

PHENIPRAZINE

Therapeutic Function: Antihypertensive

Chemical Name: (1-Methyl-2-phenylethyl)hydrazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55-52-7

Trade Name	Manufacturer	Country	Year Introduced
Catron	Lakeside	U.S.	1959
Catroniazide	Lakeside	U.S.	-

Raw Materials

1-Phenyl-2-propylidenylhydrazine Acetic acid Hydrogen

Manufacturing Process

A solution containing 741 g (5.0 mols) of 1-phenyl-2-propylidenylhydrazine, 300 g (5.0 mols) of glacial acetic acid and 900 cc of absolute ethanol was subjected to hydrogenation at 1,875 psi of hydrogen in the presence of 10 g of platinum oxide catalyst and at a temperature of 30°C to 50°C (variation due to exothermic reaction). The catalyst was removed by filtration and the solvent and acetic acid were distilled. The residue was taken up in water and made strongly alkaline by the addition of solid potassium hydroxide. The alkaline mixture was extracted with ether and the ether extracts dried with potassium carbonate. The product was collected by fractional distillation, BP 85°C (0.30 mm); yield 512 g (68%).

The hydrochloride salt was formed in a mixture of 1:10 isopropyl alcohol:diisopropyl ether and recrystallized from acetonitrile, yield 87%, MP 124°C to 125°C.

References

Merck Index 7105 OCDS Vol. 1 p. 74 (1977) I.N. p. 757

Biel, J.H.; U.S. Patent 2,978,461; April 4, 1961; assigned to Lakeside Laboratories, Inc.

PHENIRAMINE MALEATE

Therapeutic Function: Antihistaminic

Chemical Name: N,N-dimethyl-γ-phenyl-2-pyridine-propanamine maleate

Common Name: Prophenpyridine

Structural Formula:

 $\begin{array}{c} \mathsf{C_{6}^{H_5}} \\ \mathsf{CHCH_2CH_2N(CH_3)_2} \end{array} \qquad \text{(base)}$

Chemical Abstracts Registry No.: 132-20-7; 86-21-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Trimeton Maleate	Schering	U.S.	1948
Avil	Albert-Roussel	W. Germany	
Citra Forte	Doyle	U.S.	-
Daneral	Hoechst	U.K.	_
Dristan	Whitehall	U.S.	_
Fenamine	Fawns & McAilan	Australia	_
Fiogesic	Sandoz	U.S.	-
Inhiston	Upjohn	U.S.	-
Poly-Histine	Bock	U.S.	_
Ru-Tuss	Boots	U.S.	_
S.T. Forte	Scot-Tussin	U.S.	_
Triaminic	Dorsey	U.S.	_
Tussirex	Scot-Tussin	U.S.	-

2-Benzylpyridine β-Dimethylaminoethyl chloride

Potassium amide Maleic acid

Manufacturing Process

According to U.S. Patent 2,676,964: to 1.0 mol of potassium amide in 3 liters of liquid ammonia, is added 1.0 mol of 2-benzylpyridine. After 15 minutes, 1.1 mols of β -dimethylaminoethyl chloride are added. The ammonia is allowed to evaporate and the reaction product decomposed with water and ether extracted. The ether layer is dried over sodium strate and after evaporation the residue is distilled, giving the 3-phenyl-3-(2-pyridyl)-N,N-dimethylpropylamine, BP 139°-142°C/1-2 mm. The maleate is produced by reaction with maleic acid.

References

Merck Index 7106 Kleeman & Engel p. 713 PDR pp. 674, 688, 692, 849, 1583, 1662, 1899 OCDS Vol. 1 p. 77 (1977) I.N. p. 757 REM p. 1131

Sperber, N., Papa, D. and Schwenk, E.; U.S. Patent 2,567,245; September 11, 1951; assigned to Schering Corporation

Sperber, N., Papa, D. and Schwenk, E.; U.S. Patent 2,676,964; April 27, 1954; assigned to Schering Corporation

PHENMETRAZINE

Therapeutic Function: Antiobesity drug

Chemical Name: 3-methyl-2-phenylmorpholine

Common Name: Oxazimedrine

Structural Formula:

Chemical Abstracts Registry No.: 134-49-6; 1707-14-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Preludin	Boehr, Ingel.	U.S.	1956
Anorex	Pfizer	U.S.	_
Cafilon	Yamanouchi	Japan	_
Marsin	Ikapharm	Israel	

Raw Materials

Bromopropiophenone	Benzyl ethanolamine
Hydrogen	Hydrogen chloride

Manufacturing Process

10 grams of β -phenyl- α -methyl- β , β '-dihydroxy-diethylamine hydrochloride (produced by hydrogenation in the presence of palladium and charcoal of β -phenyl- α -methyl- β -keto- β '-hydroxy-N-benzyl-diethylamine hydrochloride obtained from bromopropiophenone by reacting with benzyl-ethanolamine), are warmed with 10% hydrochloric acid for 6 hours on a water bath.

After working up in the usual manner, the hydrochloride of the 2-phenyl-3-methyl-morpholine crystallizes out from methanolic hydrochloric acid and acetone, MP = 182°C, according to U.S. Patent 2,835,669.

References

Merck Index 7108 Kleeman & Engel p. 714 PDR p. 678 OCDS Vol. 1 p. 260 (1977) I.N. p. 757 REM p. 892

Thoma, O.; U.S. Patent 2,835,669; May 20, 1958; assigned to C.H. Boehringer Sohn, Germany

Siemer, H. and Hengen, O.; U.S. Patent 3,018,222; January 23, 1962; assigned to Ravensberg GmbH, Germany

PHENOPERIDINE HYDROCHLORIDE

Therapeutic Function: Analgesic

Chemical Name: 1-(3-hydroxy-3-phenylpropyl)-4-phenyl-4-piperidinecarboxylic acid ethyl ester hydrochloride

Common Name: 3-(4-carboethoxy-4-phenylpiperidino)-1-phenyl-1-propanol hydrochloride

Structural Formula:

$$\begin{array}{c|c} \operatorname{HoCHCH_2CH_2} - \operatorname{N} & \operatorname{Cooc}_{2^{\mathrm{H}_5}} \\ \downarrow \\ C_{\mathrm{c}^{\mathrm{H}_5}} \end{array} \text{ (base)}$$

Chemical Abstracts Registry No.: 3627-49-4; 562-26-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Operidine	Janssen	U.S.	1965
Lealgin	Leo	Sweden	-
R-1406	Le Brun	France	_

Phenylacetonitrile Benzoylethylene Bis-Chloroethyl toluene sulfonyl amide Hydrogen

Manufacturing Process

The starting materials for the overall process are phenylacetonitrile with bis-chloroethyl toluene sulfonyl amide. These react to give a product which hydrolyzes to normeperidine (4-carboethoxy-4-phenylpiperidine). Condensation of that material with benzoylethylene gives the ketone: β -(4-carboethoxy-4-phenylpiperidino)propiophenone.

A reaction mixture was prepared containing 4 grams of β -(4-carboethoxy-4-phenylpiperidino)propiophenone hydrochloride, 100 ml of methanol and about 0.5 gram of platinum oxide catalyst. The mixture was placed in a low pressure hydrogenation apparatus and was hydrogenated at a temperature of about 27°C and a pressure of about 3.5 atmospheres of hydrogen to convert the keto group of the \(\beta\)-(4-carboethoxy-4-phenylpiperidino)-propiophenone to a hydroxy group, and to form 3-(4-carboethoxy-4-phenylpiperidino)-1-phenyl-1-propanol hydrochloride. After the hydrogenation was complete, the catalyst was separated from the reaction mixture by filtration, and the filtrate was evaporated to dryness in vacuo leaving a residue containing 3-(4-carboethoxy-4-phenylpiperidino)-1-phenyl-1-propanol hydrochloride. The residue was digested with ethyl acetate thereby causing 3-(4-carboethoxy-4-phenylpiperidino)-1-phenyl-1-propanol hydrochloride to crystallize. This compound melted at about 188°-189°C after being recrystallized three times from an ethyl acetate-methanol solvent mixture, according to U.S. Patent 2,951,080.

References

Merck Index 7125 Kleeman & Engel p. 715 OCDS Vol. 1 p. 302 (1977) I.N. p. 759

Pohland, A.; U.S. Patent 2,951,080; August 30, 1960; assigned to Eli Lilly and Company Cutler, F.A., Jr. and Fisher, J.F.; U.S. Patent 2,962,501; November 29, 1960; assigned to Merck & Co., Inc.

PHENOXYBENZAMINE HYDROCHLORIDE

Therapeutic Function: Adrenergic blocker

Chemical Name: N-(2-chloroethyl)-N-(1-methyl-2-phenoxyethyl)benzenemethanamine

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 63-92-3; 59-96-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Dibenzyline	SKF	U.S.	1953
Dibenzyran	Rohm Pharma	W, Germany	-

Raw Materials

Thionyl chloride 1-Phenoxy-2-propanol Benzyl chloride Ethanolamine Hydrogen chloride

Manufacturing Process

Step 1: In a 500 ml flask equipped with gas inlet tube, dropping funnel and reflux condenser is placed 139 grams of 1-phenoxy-2-propanol. A stream of dry air is bubbled through the alcohol while 55 grams of thionyl chloride is added dropwise with external cooling. The stream of dry air is continued for about six hours or until most of the hydrogen chloride has been expelled and then another 55 grams of thionyl chloride is added. The reaction mixture is allowed to stand twenty-four hours, a few drops of pyridine are added and the mixture heated 4 hours on the steam bath. The cooled reaction mixture is poured into water, the crude product is washed with dilute sodium bicarbonate solution and finally taken up in benzene. The benzene is distilled at ordinary pressure and the residue distilled in vacuo to yield 60-70% of 1-phenoxy-2-chloropropane, BP 93°-94°C/5 mm.

Step 2: To 494 grams of ethanolamine, heated to approximately 150°C in a 500 ml flask equipped with stirrer, condenser and dropping funnel, is added 465 grams of 1-phenoxy-2chloropropane with mechanical stirring. The reaction mixture is then heated to reflux for 3 hours, cooled and poured into a liter of water. The organic layer is extracted into ether and the ether solution is extracted with dilute hydrochloric acid. The aqueous acid solution is then made alkaline with 40% sodium hydroxide solution and the organic base is extracted into ether. Removal of the ether leaves N-(phenoxyisopropyl)-ethanolamine which, after recrystallization from hexane, melts at 70.5°-72°C.

Step 3: To 43 grams of N-(phenoxyisopropyl)ethanolamine dissolved in 500 ml of alcohol in a 1,000 ml flask equipped with stirrer and condenser is added 28 grams of benzyl chloride and 18.5 grams of sodium bicarbonate. The mixture is stirred and refluxed for 10 hours and then approximately half the alcohol is removed by distillation. The remaining solution is poured into 500 ml of water and the organic material extracted with 3 100-ml portions of ether. The combined ether extracts are washed with water, dried over anhydrous potassium carbonate and filtered. After removal of the ether, the residue is distilled in vacuo to yield N-(phenoxyisopropyl)-N-benzylethanolamine, BP 163°-168°C/0.2 mm.

Step 4: A solution of 20 grams of the above amino alcohol is dissolved in 50 ml of dry chloroform and treated with dry hydrogen chloride until acid. Then a solution of 9 grams of thionyl chloride in 50 ml of dry chloroform is added and the reaction mixture is heated on a water bath at 50°-60°C for 2 hours. Most of the chloroform is removed by distillation under reduced pressure. Addition of ether to the residue causes the product to crystallize. After recrystallization from a mixture of alcohol and ether, the N-(phenoxyisopropyl)-Nbenzyl-β-chloroethylamine hydrochloride melts at 137.5°-140°C.

References

Merck Index 7134 Kleeman & Engel p. 716 PDR p. 1713 OCDS Vol. 1 p. 55 (1977) I.N. p. 760 REM p. 905

Kerwin, J.F. and Ullyot, G.E.; U.S. Patent 2,599,000; June 3, 1952; assigned to Smith, Kline & French Laboratories

PHENPROCOUMON

Therapeutic Function: Anticoagulant

Chemical Name: 4-hydroxy-3-(1-phenylpropyl)-2H-1-benzopyran-2-one

Common Name: 3-(1-phenylpropyl)-4-hydroxycoumarin

Structural Formula:

CHC₆H₅

Chemical Abstracts Registry No.: 435-97-2

Trade Name	Manufacturer	Country	Year Introduced
Liquamar	Organon	U.S.	1958
Falithrom	Fahlberg-List	E. Germany	_
Fencumar	Medica	Finland	_
Marcumar	Roche	W. Germany	_

Raw Materials

Diethyl-(1'-phenylpropyl)malonate Sodium
Acetylsalicylic acid chloride Sodium hydroxide
Methanol

Manufacturing Process

8.3 parts by weight of powdered sodium in 300 parts by volume of benzene, 100 parts by weight of diethyl (1'-phenylpropyl)-malonate and 72 parts by weight of acetylsalicylic acid chloride are reacted together to form diethyl 1-(o-acetoxybenzoyl)-1-(1'-phenylpropyl)-malonate, which boils at 195°-198°C/0.03 mm Hg.

10.3 parts of weight of diethyl 1-(o-acetoxybenzoyl)-1-(1'-phenylpropyl)-malonate are dissolved in 60 parts by volume of absolute ether and to this solution are added portionwise at 10°C, while stirring, 2.6 parts by weight of sodium methylate. The reaction mixture is stirred for 4 hours, whereupon it is poured into ice water. The ether solution is washed neutral with ice water. After having distilled off the ether, a thick oil consisting of 3-carbethoxy-3-(1'-phenylpropyl)-4-oxo-dihydrocoumarin is obtained. This compound crystallized in butyl oxide and has a MP of 108°-109°C.

The 3-carbethoxy-3-(1'-phenylpropyl)-4-oxo-dihydrocoumarin may be hydrolyzed and decarboxylated as follows. The crude product is heated to 85°C for ½ hour with 100 parts by volume of 5% aqueous sodium hydroxide, while agitating or stirring. To remove traces of undissolved oil, the cooled solution is treated with 1 part by weight of charcoal, whereupon it is filtrated and acidified to Congo reaction with dilute sulfuric acid. The 3-(1'-phenylpropyl)-4-hydroxycoumarin formed is separated off and recrystallized in 80% ethanol, whereupon it melts at 178°-179°C according to U.S. Patent 2,701,804.

References

Merck Index 7139 Kleeman & Engel p. 718 I.N. p. 761 **REM p. 827**

Hegedüs, B. and Grüssner, A.; U.S. Patent 2,701,804; February 8, 1955; assigned to Hoffmann-La Roche Inc.

Schroeder, C.H. and Link, K.P.; U.S. Patent 2,872,457; February 3, 1959; assigned to Wisconsin Alumni Research Foundation

Preis, S., West, B.D. and Link, K.P.; U.S. Patent 3,239,529; March 8, 1966; assigned to Wisconsin Alumni Research Foundation

PHENSUXIMIDE

Therapeutic Function: Anticonvulsant

Chemical Name: 1-methyl-3-phenyl-2,5-pyrrolidinedione

Common Name: N-methyl-α-phenylsuccinimide

Structural Formula:

Chemical Abstracts Registry No.: 86-34-0

Trade Name	Manufacturer	Country	Year Introduced
Milontin	Parke Davis	U.S.	1953
Lifene	Debat	France	_
Petimid	Dincel	Turkey	
Succitimal	Katwijk	Neth.	_

Raw Materials

Phenylsuccinic anhydride Methyl amine Acetyl chloride

Manufacturing Process

10 grams of phenylsuccinic anhydride is dissolved in 250 ml of absolute ether and the solution is treated with dry methylamine until a precipitate ceases to form. After standing for 1/2 hour the ether is decanted off and the residue is washed with 40 ml of water by decantation. The mixture is filtered and the precipitate washed with 10 ml of water. By acidification of the filtrate, a white precipitate is obtained. After drying it weighs 8 grams and melts at 136°-140°C. The two precipitates are combined and recrystallized from aqueous alcohol to give β -N-methylphenylsuccinamic acid which melts at 158°-160°C.

9 grams of β -N-methylphenylsuccinamic acid and 200 ml of acetyl chloride are heated together on a steam bath for 1/2 hour. The excess acetyl chloride is removed by distillation and 50 ml of water are added to the thick residue. After allowing for hydrolysis of the excess acetyl chloride the water is decanted and the yellow residue dissolved in 75 ml of ether. The resulting solution is treated with charcoal twice and dried over anhydrous magnesium sulfate. On partial evaporation of the ether a white solid precipitates. There is obtained 4 grams of N-methyl- α -phenylsuccinimide which melts at 71°-73°C.

References

Merck Index 7140 Kleemen & Engel p. 718 PDR p. 1367 OCDS Vol. 1 p. 226 (1977) I.N. p. 762 REM p. 1080

Miller, C.A. and Long, L.M.; U.S. Patent 2,643,258; June 23, 1953; assigned to Parke, Davis & Company

PHENTERMINE HYDROCHLORIDE

Therapeutic Function: Antiobesity drug

Chemical Name: α,α-dimethylbenzeneethanamine hydrochloride

Common Name: \alpha-benzylisopropylamine hydrochloride; phenyl-tert-butylamine hydro-

chloride

Structural Formula: CH_3 $C_6H_5CH_2CNH_2\cdot HCI$

ĊH₃

Chemical Abstracts Registry No.: 1197-21-3; 122-09-8 (Base)

Trade Name	Manufacturer	Country	Year introduced
Wilpo	Dorsey	U.S.	1961
Linyl	Roussel	France	1962
Fastin	Beecham	U.S.	1973
Adipex-P	Lemmon	U.S.	1976
Ona Mast	Mast	U.S.	1980
Obestin	Ferndale	U.S.	1980
Oby-Trim	Rexar	U.S.	1982
Duromine	Riker	U.K.	_
Ex-Adipos	Eurand	Italy	_
Ionamin	Pennwalt	U.K.	
Jonakraft	Kraft Pharm	U.S.	_
Lipopil	Roussel Maestretti	Italy	_
Minobese	Restan	S. Africa	_
Mirapront	Bracco	Italy	-
Netto-Longcaps	Heyden	W. Germany	-
Panbesy	Asperal	Belgium	-
Panshade	Pan American	U.S.	_
Parmine	Parmed	U.S.	_
Phentermine	Schein	U.S.	_
Phentermyl	Diethelm	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Regulin	Kwizda	Austria	_
Span R/D	Metro Med	U.S.	-
Teramine	Legere	U.S.	

Sodium Isobutyryl chloride Benzvi bromide Ammonia Benzene Hydrogen chloride Bromine Potassium hydroxide Calcium hydroxide

Manufacturing Process

Preparation of Isobutyrophenone: In a 12 liter, 3-necked flask, 1,280 grams of aluminum chloride was covered with 2,000 cc of dry thiophene-free benzene and a solution of 919 grams of isobutyryl chloride, (BP 92°-94°C) in 1 liter of benzene was added slowly with stirring. After heating for 3 hours at reflux, the solution was cooled and poured over a mixture of 1 liter of concentrated hydrochloric acid and 5 kg of ice. The benzene layer was separated, the aqueous layer extracted with benzene, and the combined benzene solutions were washed, dried and concentrated in vacuo. The residue was distilled rapidly to give 1,051 grams of isobutyrophenone, boiling at 81°-89°C at 1 mm, yield 83.4%.

Preparation of 1,3-Diphenyl-2,2-Dimethylpropanone-1: Sodamide was prepared from 12.5 grams of sodium added in small portions to 600 cc of liquid ammonia with 1 gram of hydrous ferric chloride as catalyst. The ammonia was replaced by 200 cc of dry toluene and without delay a solution of 74 grams of isobutyrophenone and 76.5 grams of benzyl bromide in 200 cc of benzene was slowly added with stirring. The reaction mixture was heated on a boiling water bath for 48 hours. Water was then added, the organic layer separated and the product isolated by distillation. The 1,3-diphenyl-2,2-dimethylpropanone-1 boiled from 142°-143°C at a pressure of 3 mm, n_0^{20} 1.5652.

Preparation of α,α -Dimethyl- β -Phenylpropionamide: Sodamide was prepared from 7.6 grams of sodium in 350 cc of liquid ammonia with 0.9 gram of hydrous ferric chloride. The ammonia was replaced by 250 cc of toluene, the mixture was heated to 60°C and 71.4 grams of 1,3-diphenyl-2,2-dimethyl propanone-1 dissolved in 150 cc of toluene was added. The mixture was stirred and heated on a steam bath for 5 hours. A clear red color appeared in 15 minutes and disappeared after about an hour. After cooling, water was added, the organic layer was washed, dried, and concentrated to give 36.5 grams of α,α -dimethyl- β phenyl propionamide which crystallized slowly after the addition of an equal volume of petroleum ether. The product melted at 62°C after crystallization from benzene petroleum

Preparation of Di- $(\beta$ -Phenyl- α , α -Dimethylethyl)Urea: 3.5 grams of α , α -dimethyl- β -phenylpropionamide in 420 cc of water was added to a solution of 87.5 grams of potassium hydroxide and 35 grams of bromine in 350 cc of water. After 2 hours at 60°C, the product was obtained on crystallization from ethanol, melting at 184°C.

Preparation of ω-Phenyl-tert-Butylamine: 24 grams of the urea derivative obtained as indicated above, were well mixed with 96 grams of calcium hydroxide in a flask immersed in an air bath and provided with a dropping funnel the stem of which reached the bottom of the flask. The mixture was heated to 240°-260°C (inside temperature) for 7 hours during which time 86 cc of water was slowly added. The vapors were collected in a receiver cooled with ice. After extraction with ether and distillation, the product was obtained as a colorless liquid boiling from 80°-84°C at 9 mm according to U.S. Patent 2,590,079.

The ether solution may be dried and saturated with hydrogen chloride and the precipitated hydrochloride recrystallized from a mixture of 50 parts alcohol and 100 parts of acetone.

The pure hydrochloride is thus obtained as a white crystalline substance having a MP of 195°-196°C, according to U.S. Patent 2,408,345.

References

Merck Index 7141 Kleeman & Engel p. 719 PDR pp. 660, 1033, 1034, 1246, 1450, 1606, 1999 OCDS Vol. 1 p. 72 (1977) I.N. p. 762 REM p. 892

Shelton, R.S. and Van Campen, M.G., Jr.; U.S. Patent 2,408,345; September 24, 1946; assigned to The Wm. S. Merrell Company

Abell, L.L., Bruce, W.F. and Seifter, J.; U.S. Patent 2,590,079; March 25, 1952; assigned to Wyeth Incorporated

PHENTOLAMINE HYDROCHLORIDE

Therapeutic Function: Adrenergic blocker

Chemical Name: 3-[[(4,5-dihydro-1H-imidazol-2-yl)methyl](4-methylphenyl)amino]phenol

hydrochloride

Common Name: 2-(m-hydroxy-N-p-tolylanilinomethyl)-2-imidazoline hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 73-05-2; 50-60-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Regitine	Ciba	U.S.	1952
Regitine	Ciba-Geigy-Takeda	Japan	-
Rogitine	Ciba	U.K.	_

Raw Materials

N-(p-Methylphenyl)-m'-hydroxyphenylamine 2-Chloromethylimidazoline HCl

Hydrogen chloride

Manufacturing Process

199,24 parts of N-(p-methylphenyl)-m'-hydroxyphenylamine and 77.52 parts of 2-chloromethylimidazoline hydrochloride are heated for sixteen hours in an oil bath having a temperature of 150°C, while stirring and introducing a current of nitrogen. The viscous contents of the flask are then cooled to about 100°C, mixed with 400 parts by volume of hot water, and stirred for a short time.

After further cooling to about 60°C, 200 parts by volume of water and 500 parts by volume of ethyl acetate at 60°C are added, and the aqueous layer is separated. The excess of starting material may be recovered from the ethy! acetate.

The aqueous portion is chilled in a cooling chamber at -10°C, whereupon the hydrochloride of 2-[N-(p-methylphenyl)-N-(m'-hydroxyphenyl)-aminomethyl]-imidazoline crystallizes. Upon being concentrated and cooled the mother liquor yields a further quantity of the hydrochloride. The combined quantities of hydrochloride are treated with a small quantity of cold water, dried with care, and washed with ethyl acetate. The product is then crystallized from a mixture of alcohol and ethyl acetate, and there is obtained a hydrochloride melting at 239°-240°C.

References

Merck Index 7143 Kleeman & Engel p. 719 PDR p. 809 OCDS Vol. 1 p. 242 (1977) I.N. p. 762 REM p. 906

Miescher, K., Marxer, A. and Urech, E.; U.S. Patent 2,503,059; April 4, 1950; assigned to Ciba Pharmaceutical Products, Inc.

PHENYL AMINOSALICYLATE

Therapeutic Function: Antibacterial (Tuberculostatic)

Chemical Name: 4-Amino-2-hydroxybenzoic acid phenyl ester

Common Name: Fenamisal

Structural Formula:

Chemical Abstracts Registry No.: 133-11-9

Trade Name	Manufacturer	Country	Year Introduced
Pheny-Pas-Teb-Amin	Purdue Frederick	U.S.	1959
Fenil-PAS	Farmabion	Spain	-

Raw Materials

p-Nitrosalicylic acid Phenol Phosphorus oxychloride Hydrogen

Manufacturing Process

183 g of p-nitrosalicylic acid are dissolved in 564 g of phenol by heating to 140°C to 150°C on an oil bath. When all the p-nitrosalicylic acid is dissolved, 153 g of phosphorus oxychloride are run in, drop by drop, over a period of about 2 hours, while maintaining the temperature at about 150°C. The still warm mixture is run into 2 liters of water with agitation. The precipitate formed is filtered off, washed with water until phenol is removed and then dried.

There are thus obtained 250 g of 2-hydroxy-4-nitrophenylbenzoate which melts at 154° C to 155° C.

In a hydrogenation autoclave are introduced 92 g of 2-hydroxy-4-nitrophenylbenzoate preceded by 200 cc of ethyl acetate; Raney nickel, obtained from 30 g of alloy, is added with 300 cc of ethyl acetate. Hydrogenation under pressure (100 to 120 kg) at ordinary temperature is carried out during a period of about 12 hours. The nickel is filtered off and the ethyl acetate is removed by distillation on the water bath under a vacuum of 300 mm. There is thus obtained 80 g of crude damp 2-hydroxy-4-aminophenylbenzoate which after recrystallization from isopropyl alcohol melts at 153°C.

References

Merck Index 7151 OCDS Vol. 2 p. 89 (1980) I.N. p. 415

Freire, S.A.; U.S. Patent 2,604,488; July 22, 1952; assigned to Soc. des Usines Chimiques Rhone-Poulenc (France)

PHENYLBUTAZONE

Therapeutic Function: Antiinflammatory; antiarthritic

Chemical Name: 4-butyl-1,2-diphenyl-3,5-pyrazolidinedione

Common Name: 3,5-dioxo-1,2-diphenyl-4-n-butylpyrazolidine

Structural Formula:

Chemical Abstracts Registry No.: 50-33-9

Trade Name	Manufacturer	Country	Year Introduced
Butazolidin	Geigy	U.S.	1952
Butazolidin	Ciba Geigy	France	1954
Azolid	U.S.V. Pharm	U.S.	1971
Acrizeal	S.S. Pharm	Japan	_
Alkabutazona	Lovens	Denmark	_
Anuspiramin	Farbios	Spain	_
Artropan	Polifarma	Italy	
Bulentin	Sanwa	Japan	_
Butacal	Langley	A ustralia	_
Butacote	Geigy	U.K.	-
Butadion	Streuli	Switz.	_
Butadiona	Miquel	Spain	_
Butadyne	Bio-Chimique	Canada	_
Butalan	Lancet	Australia	_
Butalgin	Fawns & McAllan	Australia	_

Trade Name	Manufacturer	Country	Year Introduced
Butalgina	Esteve	Spain	-
Butaluy	Miluy	Spain	-
Butaphen	Mulda	Turkey	
Butapirazol	Polfa	Poland	_
Butarex	Adams	Australia	_
Butartril	Chiesi	Italy	_
Butazina	Vis	italy	_
Butazone	DDSA	U.K.	_
Butiwas Simple	Wassermann	S pain	_
Butoroid	Virax	Australia	_
Butrex	SCS Pharmalab	S. Africa	_
Carudol	Lab. Franc. Therap.	France	_
Chembuzone	Chemo-Drug	Canada	_
Demoplas	Adenylchemie	W. Germany	_
Digibutina	Bicsa	Spain	
Diossidone	Eliovit	Italy	_
Ecobutazone	I.C.N.	Canada	_
Elmedal	Thiemann	W. Germany	_
Equi Bute	Fort Dodge Labs	U.S.	
Eributazone	Eri	Canada	-
Fenibutasan	Santos	Spain	_
Fenibutol	Atral	Portugal	
Flexazone	Berk	U.K.	_
IA-But	Inter-Alia	U.K.	_
Intalbut	Inter-Alia	U.K.	_
Kadol	Midi	Italy	
Merizone	Meriot	Canada	_
Neo-Zoline	Neo	Canada	
Neuplus	Tovo	Japan	_
Novobutazone	Novopharm	Canada	_
Novophenyl	Novopharm	Canada	_ _
Panazone	Propan-Lipworth	S. Africa	_
Phenbutazol	Smallwood	Canada	_
Phenyl Betazone	Barlow Cote	Canada	_
•	Medic	Canada	
Phenylone Pilazon	-		-
	Kobayashi	Japan Spain	_
Pirarreumol	Hermes	W, Germany	_
Praecirheumin	Pfleger	•	_
Rectofasa	Lifasa	Spain Finland	_
Reumasyl	Leiras Mohan		
Reumazin Reumuzol	Farmos	Japan Finland	-
	Farmos	Finland	_
Reupolar	Reiss		_
Rheumaphen		W. Germany	_
Schemergen	Azusa	Japan	_
Sedazole Servizolidin	Toho	Japan Switz.	_
	Servipharm	• · · · · · · ·	-
Shigrodin	lkapharm	Israel	-
Spondyril	Dorsch	W. Germany	_
Tetnor	Drugs, Ltd.	U.K.	-
Tevcodyne	Tevcon	U.S.	
Therazone	Western Serum	U.S.	_
Ticinil	De Angeli	italy	
Todalgil	Lopez-Brea	Spain	
Tokugen	Sawai	Japan	_
Uzone	Kempthorne Prosser	New Zealand	
Wescozone	Saunders	Canada	-
Zolidinium	Kwizda	Austria	_

Hydrazobenzene Sodium Diethyl-n-butyl malonate Ethanol

Manufacturing Process

7.6 parts of sodium are dissolved in 190 parts by volume of absolute alcohol; 65 parts of diethyl-n-butyl malonate and 55 parts of hydrazobenzene are added. The alcohol is slowly distilled off and the reaction mixture heated for 12 hours at a bath temperature of 150°C and finally in vacuo, until no more alcohol comes off.

The product is dissolved in water, clarified with a little animal charcoal and 15% hydrochloric acid is slowly added until an acid reaction to Congo red paper is produced. 1,2-Diphenyl-3,5-dioxo-4-n-butyl-pyrazolidine separates as an oil, which rapidly become crystalline. It crystallizes from alcohol as colorless needles with a MP of 105°C.

References

Merck Index 7157 Kleeman & Engel p. 720 PDR pp. 830, 891, 1606, 1999 OCDS Vol. 1 p. 236 (1977) & 2, 388, 474 (1980) I.N. p. 763 REM p. 1120

Stenzl, H.; U.S. Patent 2,562,830; July 31, 1951; assigned to J.R. Geigy AG, Switzerland

PHENYLEPHRINE HYDROCHLORIDE

Therapeutic Function: Adrenergic

Chemical Name: (R)-3-Hydroxy-α-[(methylamino)methyl] benzenemethanol hydrochloride

Common Name: m-Methylaminoethanolphenol hydrochloride; metaoxedrin

Structural Formula: HOCHCH2NHCH3·HCI

OH

Chemical Abstracts Registry No.: 61-76-7

Trade Name	Manufacturer	Country	Year Introduced
Neosynephrine	Badrial	France	1953
Mydfrin	Alcon	U.S.	1979
Nostril	Boehr, Ingel	U.S.	1982
Adrianol	Anasco	W. Germany	-
Atrohist	Adams	U.S.	-
Bromphen	Schein	U.S.	
Codimal	Central	U.S.	<u> </u>
Comhist	Norwich-Eaton	U.S.	
Congespirin	Bristol-Myers	U.S.	-
Coryban	Pfipharmecs	U.S.	_
Dallergy	Laser	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Deconsal	Adams	U.S.	_
Decontabs	Zenith	U.S.	_
Degest	Barnes-Hind	U.S.	_
Derizene	Hollister-Stier	U.S.	_
Donatussin	Laser	U.S.	
Dristan	Whitehall	U.S.	_
Dura-Vent	Dura	U.S.	***
E.N.T.	Springbok	U.S.	_
Entex	Norwich Eaton	U.S.	_
Extendryl	Fleming	U.S.	_
Fenilfar	Farmila	Italy	_
Histalet	Reid-Rowell	U.S.	_
Histamic	Metro Med	U.S.	_
Histaspan	U.S.V. Pharm	U.S.	_
Histor	Hauck	U.S.	_
Hycomine	Du Pont	U.S.	_
Isonefrine	Tubi Lux Farma	Italy	_
Isophrine	Broemmel	U.S.	_
Isotropina	Tubi Lux Farma	Italy	_
Korigesic	Trimen	U.S.	_
Matafa-Lind	Anasco	W. Germany	_
Naldecon	Bristol	U.S.	
Nasophen	Premo	U.S.	
Neosinefrina	Reunidos	Spain	_
Newphrine	Vitarine	Ü.S.	
Nostril	Boehr, Ingel	U.S.	
Pediacof	Winthrop-Breon	U.S.	
Phenergan	Wyeth	U.S.	_
Protid	La Salle	U.S.	_
PV-Tussin	Reid-Rowell	U.S.	_
Quelidrine	Abbott	U.S.	_
Rinisol	Farmos	Finland	_
Ru-Tuss	Boots	U.S.	
Singlet	Lakeside	U.S.	_
S-T Forte	Scot-Tussin	U.S.	_
Synasal	Texas Pharmacal	U.S.	_
Tear-Efrin	Tilden Yates	U.S.	_
Tussar	U.S.V. Pharm.	U.S.	
Tussirex	Scot-Tussin	U.S.	_
Tympagesic	Adria	U.S.	
Visopt	Sigma	Australia	_
Zeph	Scott & Turner	Australia	_
-spii	Scott & Turner	Augu ana	-

m-Hydroxymethylaminoacetophenone Hydrogen Hydrogen chloride

Manufacturing Process

4.5 g of the hydrochloride of m-hydroxymethylaminoacetophenone are dissolved in a small amount of water; to the solution a solution of colloidal palladium obtained from palladiumchloride is added, and the mixture is treated with hydrogen.

After diluting the reaction liquid with acetone it is filtered, and the residue obtained after the evaporation of the filtrate in vacuo, and complete drying over pentoxide of phosphorus is then dissolved in absolute alcohol, and to this is added about the same volume of dry ether,

until turbidity just commences to occur. After a short time the hydrochloride of the m-hydroxyphenylethanol-methylamine of the formula

will separate out as a colorless mass of crystals at a melting point of 142°C to 143°C.

References

Merck Index 7167

PDR pp. 555, 562, 570, 677, 688, 701, 727, 784, 855, 865, 880, 928, 991, 1246, 1272, 1276, 1404, 1447, 1606, 1662, 1735, 1807, 1813, 1824, 1899, 1923, 1973, 1999

OCDS Vol. 1 p. 63 (1977); 2, 265 (1980) & 3, 20 (1984)

I.N. p. 764

REM p. 889

Legerlotz, H.; U.S. Patent 1,932,347; October 24, 1933; assigned to Frederick Stearns & Co.

PHENYLPROPANOLAMINE HYDROCHLORIDE

Therapeutic Function: Nasal decongestant; anorexic

Chemical Name: α -(1-aminoethyl)benzenemethanol hydrochloride

Common Name: dl-norephedrine hydrochloride; 2-amino-1-phenyl-1-propanol hydro-

chloride

Structural Formula:

Chemical Abstracts Registry No.: 154-41-6; 492-41-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Propadrine	MSD	U.S.	1941
Dexatrim	Thompson	U.S.	1980
Dietac	Menley James	U.S.	1980
Obestat	Lemmon	U.S.	1980
Permatrim	Lee	U.S.	1980
Nobese	O'Neal, Jones	U.S.	1981
Dexatrim Extra	Thompson	U.S.	1981
Propagest	Carnrick	U.S.	1982
Acutrim	Ciba Geigy	U.S.	1983
Help	Verex	U.S.	1983
Appedrine	Thompson	U.S.	-
Bromphen	Schein	U.S.	_
Codimal	Central	U.S.	_
Comtrex	Bristol-Myers	U.S.	_
Congespirin	Bristol-Myers	U.S.	_
Control	Thompson	U.S.	-
Corvban-D	Pfipharmecs	U.S.	_
Co-Tylenol	McNeil	U.S.	-

Trade Name	Manufacturer	Country	Year Introduced
Cremacoat	Vicks	U.S.	_
Decontabs	Zenith	U.S.	_
Dietrim	Legere	U.S.	_
Dimetane-D.C.	Robins	U.S.	_
Dura Vent	Dura	U.S.	
E.N.T.	Springbok	U.S.	_
Entex	Norwich Eaton	U.S.	_
Fiogesic	S andoz	U.S.	-
Head & Chest	Procter & Gamble	U.S.	_
Histaminic	Metro Med	U.S.	_
Hycomine	Du Pont	U.S.	_
Korigesic	Trimen	U.S.	_
Kronohist	Ferndale	U.S.	_
Monydrin	Draco	Sweden	_
Naldecon	Bristol	U.S.	_
Nolamine	Carnrick	U.S.	-
Ornade	SKF	U.S.	_
Poly-Histine	Bock	U.S.	_
Prolamine	Thompson	U.S.	_
Rhindecon	McGregor	U.S.	_
Rhinolar	McGregor	U.S.	_
Ru-Tuss	Boots	U.S.	_
Sinubid	Parke Davis	U.S.	_
Sinulin	Carnrick	U.S.	_
Tinaroc	Remeda	Finland	_
Triaminic	Dorsey	U.S.	_
Tuss-Ornade	SKF	U.S.	-

Benzaldehyde Nitroethane Hydrogen chloride

Sodium bisulfite Hydrogen

Manufacturing Process

In one route as described in U.S. Patent 2,151,517, 10.7 kg of technical benzaldehyde is vigorously agitated with a solution of 11.0 kg of sodium bisulfite in 50.0 liters of water until the formation of the addition-product is complete. Simultaneously, 8.25 kg of nitroethane is dissolved in a solution of 4.5 kg of caustic soda in 20.0 liters of water and the resultant warm solution is added with vigorous stirring to the magma of benzaldehyde sodium bisulfite. The mixture is agitated for 30 minutes and then allowed to stand overnight.

The aqueous portion of the mixture is now siphoned off from the supernatant layer of oily phenylnitropropanol and replaced with a fresh solution of 11.0 kg of sodium bisulfite in 50.0 liters of water. The mixture of phenylnitropropanol and bisulfite solution is now vigorously agitated for 15 minutes in order to remove and recover small amounts of unreacted benzaldehyde, and is then again allowed to stratify. This time, the phenylnitropropanol is siphoned off and filtered to remove a small amount of resinous material. The aqueous solution of sodium bisulfite remaining behind is reacted with benzaldehyde, as described above, thus making the process continuous.

The 1-phenyl-2-nitropropanol thus obtained is a colorless oil, specific gravity 1.14 at 20°C, odorless when pure, volatile with steam and boiling at 150° to 165°C under a pressure of 5 mm of mercury. It is soluble in alcohol, ether, acetone, chloroform, carbon tetrachloride, benzene and glacial acetic acid. The yield of 1-phenyl-2-nitropropanol obtained by this procedure is 17.1 to 17.7 kg.

It is hydrogenated and converted to the hydrochloride in subsequent steps. The hydrogen chloride has a melting point of 192°-194°C.

In an alternative route described in U.S. Patent 3,028,429 propiophenone may be reacted with an alkyl nitrite to give isonitrosopropiophenone which is then hydrogenated and finally converted to the hydrochloride.

References

Merck Index 7189

Kieeman & Engel p. 721

PDR pp. 674, 688, 702, 727, 781, 784, 850, 854, 865, 875, 1033, 1084, 1246, 1277, 1388, 1404, 1431, 1454, 1583, 1606, 1719, 1730, 1735, 1805, 1807, 1869, 1999

I.N. p. 766

REM p. 889

Kamlet, J.; U.S. Patent 2,151,517 March 21, 1939

Wilbert, G. and Sosis, P.; U.S. Patent 3,028,429; April 3, 1962; assigned to Nepera Chemical Co., Inc.

PHENYLTOLOXAMINE

Therapeutic Function: Antihistaminic

Chemical Name: N,N-Dimethyl-2-[2-(phenylmethyl)phenoxy] ethanamine

Common Name: Bistrimin

Structural Formula:

Chemical Abstracts Registry No.: 92-12-6; 6152-43-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Bristalin	Bristol	U.S.	1952
Bristamine	Banyu	Japan	_
Codipront	Mack	W. Germany	_
Ephepect	Bolder	W. Germany	_
Floxamine	Durst	U.S.	_
Fluidol	Metadier-Tours	France	_
Histionex	Strasenburgh	U.S.	_
Netux	Roussel	France	-
Pholtex	Riker	U,K.	_
Quadrahist	Schein	U.S.	_
Rinurel	Warner	U.K.	_
Tussionex	Pennwalt	U.S.	_

Raw Materials

o-Benzylphenol	Sodium
Methanol	Dimethylaminoethyl chloride

Manufacturing Process

Sodium methylate is made by dropping 11.7 g of sodium strips into 199 ml of absolute methanol in a 1-liter three-necked flask. 93.9 g of o-benzylphenol are dissolved in 200 ml of dry toluene and added to the sodium methylate solution. The solution is distilled until the boiling point of toluene is reached. At the end of the distillation, enough toluene is added to restore the original volume of solvent.

109.5 g of dimethylaminoethyl chloride hydrochloride and 200 ml of toluene are placed in a 1-liter Erlenmeyer flask, cooled in an ice bath, and decomposed with 167.5 g of 20% sodium hydroxide solution. The toluene and water layers are separated, and the water layer is extracted again with 50 ml of toluene. The toluene layers are combined, washed with saturated salt solution, and dried over anhydrous potassium carbonate,

The dried dimethylaminoethyl chloride solution is poured into the toluene solution of the sodium salt of o-benzylphenol, heated to reflux, and refluxed 16 hours. After refluxing, enough water is added to the mixture to dissolve the precipitated solid. The layers are separated, and the toluene layer is further washed with water until the water extract is just slightly alkaline. The toluene solution is then made acid with 6N hydrochloric acid and extracted with water until no cloudiness is produced when the extract is made alkaline. The acidic aqueous extract is washed with ether, then made alkaline with 20% sodium hydroxide solution, and extracted into ether. The ether solution is washed several times with water, then with saturated salt solution, and is dried over anhydrous potassium carbonate. The dried solution is filtered and distilled. The product distills at 143.5°C/1 mm; 69.7 g of pale vellow oil are recovered.

57.1 g of the free base are dissolved in ether and precipitated with dry HCI. 66.0 g of crude hydrochloride are recovered. The hydrochloride is dissolved in 130 ml of reagent acetone by boiling, filtered hot, and allowed to cool. The crystalline material obtained on cooling is filtered, washed with a little acetone, washed with ether, and dried in vacuo. 44.8 g, MP 119.5°C to 121°C, are recovered from the first crop of crystals. Ethyl acetate may also be used as the solvent for recrystallization.

References

Merck Index 7197 Kleeman & Engel p. 721 PDR p. 1606 OCDS Vol. 1 p. 115 (1977) I.N. p. 766

Binkley, S.B. and Cheney, L.C.; U.S. Patent 2,703,324; March 1, 1955; assigned to Bristol Laboratories, Inc.

PHENYRAMIDOL

Therapeutic Function: Analgesic, skeletal muscle relaxant

Chemical Name: α -[(2-Pyridinylamino)methyl] benzenemethanol

Common Name: Fenyramidol

Structural Formula:

Chemical Abstracts Registry No.: 553-69-5; 326-43-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Analexin	Mallinckrodt	U.S.	1960
Cabral	Kali-Chemie	W. Germany	1962
Fenprin	RBS	Italy	1962
Anabloc	Irbi	Italy	-
Aramidol	A.B.C.	Italy	
Bonapar	Minerva-Chemie	Neth.	_
Evasprine	Millot	France	_
Firmalgil	Firma	Italy	-
Miodar	I.S.M.	Italy	_
Pheniramidol	Pulitzer	Italy	_
Vilexin	Vitrum	Sweden	_

Raw Materials

2-Aminopyridine Lithium amide Styrene oxide

Manufacturing Process

A mixture containing 18.8 g (0.20 mol) of 2-aminopyridine, 0.55 g of lithium amide and 75 cc of anhydrous toluene was refluxed for 1.5 hours. Styrene oxide (12.0 g = 0.10 mol) was then added to the reaction mixture with stirring over a period of ten minutes. The reaction mixture was stirred and refluxed for an additional 3,5 hours. A crystalline precipitate was formed during the reaction which was removed by filtration, MP 170°C to 171°C, 1.5 g. The filtrate was concentrated to dryness and a dark residue remained which was crystallized from anhydrous ether; yield 6.0 g. Upon recrystallization of the crude solid from 30 cc of isopropyl alcohol, 2.0 g of a light yellow solid was isolated; MP 170°C to 171°C.

References

Merck Index 7203 Kleeman & Engel p. 399 OCDS Vol. 1 p. 165 (1977) I.N. p. 422

Biel, J.H.; U.S. Patent 3,040,050; June 19, 1962; assigned to Lakeside Laboratories, Inc.

PHENYTOIN

Therapeutic Function: Antiepileptic

Chemical Name: 5,5-diphenyl-2,4-imidazolidinedione

Common Name: Diphenylhydantoin

Structural Formula:

Chemical Abstracts Registry No.: 57-41-0

Trade Name	Manufacturer	Country	Year Introduced
Dilantin	Parke Davis	U.S.	1938
Ditan	Maliard	U.S.	1980
Aleviatin	Dainippon	Japan	_
Citrullamon	Sudmedica	W. Germany	-
Didan	Canfield	U.S.	_
Difhydan	Leo	Sweden	
Dihydan	Carrion	France	-
Dihydantoin	Orion	Finland	_
Dintoina	Recordati	Italy	-
Diphentyn	I.C.N.	Canada	
Enkefal	Leiras	Turkey	-
Epanutin	Parke Davis	W. Germany	_
Epinat	Nyegaard	Norway	-
Fenantoin	A.C.O,	Sweden	
Hydantin	Medica	Finland	-
Hydantol	Fujinaga	Japan	-
Lehydan	Leo	Sweden	_
Novophenytoin	Novopharm	Canada	
Phenhydan	Desitin	W. Germany	-
Pyoredol	Roussel	France	-
Solantyl	Roussel	France	_
Tacosal	Helvepharm	Switz.	_
Zentropil	Nordmark	W. Germany	

Benzophenone Potassium cyanide Ammonium carbonate

Manufacturing Process

10 g of benzophenone (1 mol), 4 g of potassium cyanide (1.22 mols) and 16 g of ammonium carbonate (3.3 mols) are dissolved in 100 cc of 60% (by volume) ethyl alcohol and the mixture warmed under a reflux condenser without stirring at 58° to 62°C. After warming the mixture for 10 hours a partial vacuum is applied and the temperature is raised enough to permit concentration of the reaction mixture to two-thirds of its initial volume.

A slight excess of mineral acid, such as sulfuric or hydrochloric acid is added to acidify the mixture which is then chilled and the solid which separates is filtered off. It is then treated with an aqueous solution of dilute sodium hydroxide to dissolve the hydantoin from the solid unreacted benzophenone. After filtration, the alkaline extract is then acidified to cause the separation of solid pure diphenylhydantoin which is filtered off and dried. It melts at 293° to 296°C.

A net yield of about 95% is obtained by the procedure described above. If the time of warming the reaction mixture is increased three- or four-fold, practically 100% net yields are obtained. The same high net yields are also obtained by heating for even longer periods of time. For example, by heating for 90 hours, a 100% net yield, or 67% gross yield, is obtained.

References

Merck Index 7204 Kleeman & Engel p. 722 PDR pp. 1334, 1337 DOT 9 (6) 245 (1973) I.N. p. 767

Henze, H.R.; U.S. Patent 2,409,754; October 22, 1946; assigned to Parke, Davis & Company

PHETHENYLATE SODIUM

Therapeutic Function: Anticonvulsant

Chemical Name: 5-Phenyl-5-(2-thienyl)-2,4-imidazolidinedione monosodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 510-34-9

Trade Name	Manufacturer	Country	Year Introduced
Thiantoin	Lilly	U.S.	1950

Raw Materials

Phenyl-(2-thienyl)ketone Potassium cyanide Ammonium carbonate

Manufacturing Process

The 5-phenyl-5-(2-thienyl)hydantoin is prepared by heating a mixture of 5.64 g (0.03 mol) of phenyl-(2-thienyl)ketone, 3.25 g (0.03 mol) of potassium cyanide and 10.2 g (0.09 mol) of ammonium carbonate in 75 cc of 50% ethanol for 28 hours at a temperature of about 110°C. An additional 3.25 g of potassium cyanide and 3 g of ammonium carbonate are added and the mixture heated for 24 hours at about 110°C.

The reaction mixture is removed and about half of the liquid evaporated, an oil separating during the process. The mixture is acidified with concentrated hydrochloric acid and extracted with two 100 cc portions of ether. The extracts, which contain the 5-phenyl-5-(2-thienyl)hydantoin, are combined and the combined ether extracts are shaken with two 25 cc portions of 5% potassium hydroxide solution. The alkaline solution, which dissolves the 5-phenyl-5-(2-thienyl)hydantoin to form the potassium salt thereof, is acidifed with hydrochloric acid and heated to expel ether.

By the process of purification, 4.3 g of 5-phenyl-5-(2-thienyl)hydantoin is obtained, and from the ether layer, 2.2 g of unreacted ketone. The yield of the 5-phenyl-5-(2-thienyl)hydantoin is about 56%. The melting point of the purified 5-phenyl-5-(2-thienyl)hydantoin is about 256°C to 257°C.

References

Merck Index 7206 Spurlock, J.J.; U.S. Patent 2,366,221; January 2, 1945

PHTHALYLSULFATHIAZOLE

Therapeutic Function: Antibacterial (intestinal)

Chemical Name: 2-[[[4-[(2-thiazolylamino)sulfonyl]phenyl]amino] carbonyl] benzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 85-73-4

Trade Name	Manufacturer	Country	Year Introduced
Sulfathalidine	MSD	U.S.	1946
Talidine	Clin Midy	France	1948
AFI-Ftalyl	A.F.I.	Norway	-
Colicitina	Panthox & Burck	Italy	_
Enterosteril	Ripari-Gero	Italy	-
Ftalysept	Ferrosan	Denmark	_
Gelotamide	Choay	France	_
Lyantil	Syntex-Daltan	France	_
Novosulfina	Medosan	Italy	_
Phtalazol	Geistlich	Switz.	_
Phthalazol	Knoll	Australia	_
Sulfatalyl	Pharmacia	Sweden	_
Talisulfazol	Chemiek	E. Germany	_
Thalazole	May & Baker	U.K.	<u>-</u>

Raw Materials

Phthalic anhydride Sulfathiazole

Manufacturing Process

5 g of phthalic anhydride was added to a boiling suspension of 10 g of sulfathiazole in 100 cc of alcohol. The mixture was then refluxed for 5 minutes after the addition was complete at which time all of the solids were in solution. The solution was then cooled and diluted with an equal volume of water. The white solid precipitate which formed was filtered and recrystallized from dilute alcohol, yielding 2-N⁴-phthalylsulfanilamidothiazole, which decomposes above 260°C, according to U.S. Patent 2,324,015.

References

Merck Index 7261 Kleeman & Engel p. 723 OCDS Vol. 1 p. 132 (1977)

I.N. p. 769

Moore, M.L.; U.S. Patent 2,324,013; July 13, 1943; assigned to Sharp & Dohme, Incorpo-

Moore, M.L.; U.S. Patent 2,324,014; July 13, 1943; assigned to Sharp & Dohme, Incorpo-

Moore, M.L.; U.S. Patent 2,324,015; July 13, 1943; assigned to Sharp & Dohme, Incorporated

PHYTATE SODIUM

Therapeutic Function: Hypocalcemic

Chemical Name: Myo-Inositol hexakis(dihydrogen phosphate)sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 83-86-3 (Acid)

Trade Name	Manufacturer	Country	Year Introduced
Rencal	Squibb	U.S.	1962
Iliso	Made	Spain	

Raw Materials

Corn steep water Lime Cation exchange resin

Manufacturing Process

Cereal grains are particularly rich in phytates; corn steep water produced in the wet milling of corn, is one of the best sources of such material. To recover the phytate from corn steep water it is customary to neutralize the same with an alkaline material, suitably lime, causing the phytate to precipitate as a crude salt which can be removed readily by filtration. This material contains substantial amounts of magnesium, even though lime may have been employed as precipitant, and traces of other metallic ions, as well as some proteinaceous materials and other contaminants from the steep water. It may be partially purified by dissolving in acid and reprecipitating but, nevertheless, such commercial phytates do not represent pure salts. They always contain some magnesium, appreciable amounts of iron and nitrogenous materials, and traces of heavy metals, such as copper.

Heretofore, no economical method for preparing pure phytic acid was known. The classical method was to dissolve calcium phytate in an acid such as hydrochloric acid, and then add a solution of a copper salt, such as copper sulfate to precipitate copper phytate. The latter was suspended in water and treated with hydrogen sulfide, which formed insoluble copper sulfide and released phytic acid to the solution. After removing the copper sulfide by filtration, the filtrate was concentrated to yield phytic acid as a syrup.

The phytic acid in the form of a calcium phytate press cake may however be contacted with a cation exchange resin to replace the calcium with sodium to yield phytate sodium,

References

Merck Index 7269 I.N. p. 25

Baldwin, A.R., Blatter, L.K. and Gallagher, D.M.; U.S. Patent 2,815,360; December 3, 1957; assigned to Corn Products Refining Co.

PHYTONADIONE

Therapeutic Function: Prothrombogenic vitamin

Chemical Name: 2-Methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1,4-naphthalenedione

Common Name: Vitamin K, phytomeanadion, phylloquinone

Structural Formula:

Chemical Abstracts Registry No.: 84-80-0

Trade Name	Manufacturer	Country	Year Introduced
Mephyton	MSD	U.S.	1941
Konakion	Roche	U.S.	1959
Aquamephyton	MSD	U.S.	1960
Mono-Kay	Abbott	U.S.	1961
Eleven-K	Nippon Shinyaku	Japan	-
Hymeron	Yamanouchi	Japan	-
Kanavit	Spofa	Czechoslovakia	-
Kativ-N	Takeda	Japan	-
Kayeine	Kanto	Japan	
Kaywan	Eisai	Japan	
K-Eine	Hokuriku	Japan	
Keipole	Kyowa	Japan	-
Kennegin	Kowa	Japan	-
Kephton	Toyo Jozo	Japan	
Kinadione	Chugai	Japan	-
Kisikonon	Kyorin	Japan	-
K-Top Wan	Sawai	Japan	-
Monodion	Maruko	Japan	-
Nichivita-K	Nichiiko	Japan	-
One-Kay	Mohan	Japan	
Synthex P	Tanabe	Japan	
Vita-K	Kobayashi	Japan	-
Vitamine K1	Delagrange	France	-

Raw Materials

2-Methyl-1,4-naphthohydroquinone Phytol Hydrogen

Manufacturing Process

11 parts by weight of 2-methyl-1,4-naphthohydroquinone, 30 parts by volume of water-free

1230

dioxane and 1.5 parts by volume of boron trifluoride etherate are heated to 50°C. While agitating and introducing nitrogen, 10 parts by weight of phytol dissolved in 10 parts by volume of dioxane are added in the course of 15 minutes. Thereupon, the dark colored reaction mixture is stirred for 20 additional minutes at 50°C, cooled down and 60 parts by volume of ether are added. The reaction mixture is washed first with water, then with a mixture of 3 parts of N-sodium hydroxide and 2 parts of a 2.5% solution of sodium hydrosulfite and again with water. The aqueous extracts are washed with ether. The ether solutions are collected, dried over sodium sulfate and concentrated, toward the end under reduced pressure.

The waxlike condensation product so obtained is mixed with 60 parts by volume of petroleum ether (boiling limits 30°C to 40°C) and agitated with hydrogen in the presence of a little active palladium lead catalyst (Pd-CaCO₃ catalyst, the activity of which is reduced by the addition of lead and quinoline). During the operation, the condensation product separates in the form of a voluminous white precipitate. The latter is separated by filtration in the absence of air while adding an inert coarse-grained adsorption agent (for example, aluminum silicate salt for filter purposes), and washed with cooled petroleum ether. Thereupon, the 2-methyl-3-phytyl-1,4-naphthohydroquinone is extracted from the filter cake by means of ether, the ethereal solution is concentrated to 100 parts by volume and the reaction product is oxidized by stirring the solution with 6.6 parts by weight of silver oxide during 30 minutes. The solution is filtered through sodium sulfate, the latter is rinsed with ether and the solvent is evaporated. There are obtained 5.7 parts by weight of 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K_1) in the form of a golden yellow oil.

References

Merck Index 9834 Kleeman & Engel p. 724 PDR pp. 1140, 1488 I.N. p. 770 REM p. 1011

Isler, O. and Doebel, K.; U.S. Patent 2,683,176; July 6, 1954; assigned to Hoffmann-La Roche, Inc.

PICOPERINE

Therapeutic Function: Antitussive

Chemical Name: N-(2-Piperidinoethyl)-N-(2-pyridylmethyl)aniline

Common Name: Picoperamidine

Structural Formula:

Chemical Abstracts Registry No.: 21755-66-8

Trade Name	Manufacturer	Country	Year Introduced
Coben	Takeda	Japan	1971

N-(2-Pyridylmethyl)aniline Sodium amide 2-Piperidinoethyl chloride

Manufacturing Process

To a simultaneously stirred and refluxed suspension of 5.6 parts by weight of sodamide in 60 parts by volume of anhydrous toluene, there is added dropwise a solution of 18.4 parts by weight of N-(2-pyridylmethyl)aniline in 20 parts by volume of anhydrous toluene. After the addition is complete, the mixture is refluxed for two hours under constant stirring.

To the resulting mixture there is added dropwise a solution of 14.9 parts by weight of 2-piperidinoethyl chloride in 20 parts by volume of anhydrous toluene and the whole mixture is stirred and refluxed for another two hours. After cooling, water is added carefully to decompose the unreacted sodamide, the separated toluene layer is dried over anhydrous sodium sulfate and the solvent removed under reduced pressure.

The residual oil is subjected to distillation under reduced pressure, the fraction boiling in the range of 185°C to 198°C/4 mm Hg being collected. Purification of the fraction by redistillation under reduced pressure gives 22.5 parts by weight of N-(2-piperidinoethyl)-N-(2-pyridylmethyl)-aniline which boils at 195°C to 196°C/4 mm Hg. Yield 76.3%,

References

Merck Index 7285 DOT 8 (5) 185 (1972) I.N. p. 771

Mitano, S. and Kase, Y.; U.S. Patent 3,471,501; October 7, 1969; assigned to Takeda Chemical Industries, Ltd.

PICOSUL FATE SODIUM

Therapeutic Function: Laxative

Chemical Name: 4,4'-(2-pyridinylmethylene)bisphenol bis(hydrogen sulfate) (ester) disodium salt

Common Name: Picosulfol

Structural Formula:

Chemical Abstracts Registry No.: 10040-45-6

Trade Name	Manufacturer	Country	Year Introduced
Guttalax	De Angelini	Italy	1967
Laxoberal	Thomae	W. Germany	1972
Laxoberal	W.B. Pharm.	U.K.	1975
Laxoberon	Teijin	Japan	1980

Trade Name	Manufacturer	Country	Year Introduced
Contumax	Casen	Spain	=
Evacuol	Almirall	Spain	_
Gocce Euchessina	Antonetto	Italy	_
Gocce Lassative Aicardi	Aicardi	Italy	_
Laxante Azoxico	Bescansa	Spain	_
Laxidogol	Dolorgiet	W. Germany	· _
Picolax	Falqui	Italy	_
Skilax	Prodes	Spain	
Trali	Sintyal	Argentina	_

2-Pyridinaldehyde Sodium hydroxide 2-Chlorophenol Chlorosulfonic acid

Manufacturing Process

Preparation of 3.3'-Dichloro-4.4'-Dioxy-Diphenyl-(2-Pyridyl)-Methane: 75 g (0.7 mol) of 2-pyridinaldehyde are dropped during about 1 hour to a homogeneous mixture (obtained between 0° and 10°C from 107 ml of concentrated sulfuric acid and 292.9 g (2.28 mols) of 2-chlorophenol], maintaining the temperature between 0° and 5°C. The mixture is stirred for ½ hour at this temperature, which is then allowed to rise spontaneously, taking care not to exceed 30°C. After stirring for 1½ hours, the mixture is maintained overnight at room temperature, then it is dissolved, with external cooling, with a 10% sodium hydroxide solution, filtered with charcoal and neutralized with 5% hydrochloric acid. The precipitate obtained, consisting of crude product, filtered, washed with water, dried, triturated with ether and dried again, weighs 211 g.

The isomer 2,4'-dioxy-3,3'-dichloro-diphenyl-(2-pyridyl)-methane is removed by thoroughly washing with 430 ml of 95°C boiling alcohol, obtaining 167 g of isomer-free product (yield 69%). The 3,3'-dichloro-4,4'-dioxy-diphenyl-(2-pyridyl)-methane is a white solid, crystallizing from 95% alcohol; MP 212° to 215°C.

Preparation of 4,4'-Dioxy-Diphenyl-(2-Pyridyl)-Methane: 100 g of 3,3'-dichloro-4,4'-dioxydiphenyl-(2-pyridyl)-methane, obtained as above described, are dissolved in 660 ml of 10% sodium hydroxide and 49 g of Raney-nickel alloy are added to the solution with vigorous stirring, at room temperature and during 4 hours. The mixture is stirred overnight at room temperature, then it is filtered and brought to pH 5 with 10% acetic acid. The precipitate obtained, filtered, washed and dried is then dissolved in 1,500 ml of 95°C boiling alcohol to eliminate the insoluble salts. The residue obtained after the evaporation of the alcoholic solution weighs 74 g (yield 92%). The yield in respect to 2-pyridinaldehyde is 63.5%. The compound is a white solid, crystallizing from 95% alcohol; MP 248° to 250.5°C, according to U.S. Patent 3,558,643.

Preparation of Disodium 4,4'-Disulfoxy-Diphenyl-(2-Pyridyl)-Methane: In 1/2 hour, 102 g chlorosulfonic acid are added to a solution of 100 g 4,4'-dihydroxydiphenyl-(2-pyridyl)methane in 750 ml of anhydrous pyridine, the temperature being maintained at between 0° and 5°C. Towards the end of the addition of acid, a precipitate is formed which is slowly redissolved during subsequent agitation.

Upon completion of the addition, the mixture is agitated for 7 hours at ambient temperature. The solution is then poured into 3 liters of water/ice obtaining a clear solution of dark yellow color which is rendered alkaline upon phenolphthalein with 30% NaOH and extracted with ethyl ether to eliminate the majority of the pyridine. The mixture is filtered with active charcoal, the pH adjusted to 8 with hydrochloric acid 1:1 and extracted with chloroform to remove the 4,4'-dihydroxydiphenyl-(2-pyridyl)-methane which has not reacted.

The aqueous solution is then concentrated to dryness at an outside temperature of 40° to 45°C and at low pressure. The residue, obtained by drying in a vacuum at 40° to 45°C is triturated in a mortar with ethyl ether and, after filtration, is extracted with 3,400 ml boiling absolute ethanol. The ethanol extract is separated from the undissolved part by filtration, cooled and the product which crystallizes by cooling is filtered and dried at 40°C in a vacuum. In that manner the disodium (4,4¹-disulfoxy-diphenyl)-(2-pyridyl)-methane bi-hydrate is obtained, which takes the form of a white solid, according to U.S. Patent 3,528,986.

References

Merck Index 7286 Kleeman & Engel p. 725 DOT 8 (8) 302 (1972) I.N. p. 771

Pala, G.; U.S. Patent 3,528,986; September 15, 1970; assigned to Istituto de Angeli S.p.A., Italy

Pala, G.; U.S. Patent 3,558,643; January 26, 1971; assigned to Istituto de Angeli S.p.A., Italy

PIFARNINE

Therapeutic Function: Antiulcer

Chemical Name: 1-(1,3-Benzodioxol-5-ylmethyl)-4-(3,7,11-trimethyl-2,6,10-dodecatrienyl)-

piperazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56208-01-6

Trade Name	Manufacturer	Country	Year Introduced
Pifazin	Pierrel	Italy	1983

Raw Materials

1-Bromo-3,7,11-trimethyl-2,6,10-dodecatriene Piperonylpiperazine Triethylamine

Manufacturing Process

A solution of 45 mmols of 1-bromo-3,7,11-trimethyl-2,6,10-dodecatriene (obtained from synthetic farnesol, commercially available and containing four isomers) in 10 ml of benzene was added dropwise at 0° C to a stirred solution of 45 mmols of piperonylpiperazine in 60 ml of benzene containing 5 g of triethylamine. The mixture was stirred for 2 hours and then the precipitated triethylammonium bromide was filtered off. The benzene solution was washed first with water and then with K_2CO_3 solution and finally dried (K_2CO_3). Removal of ben-

zene under reduced pressure gave a crude oily residue which was dissolved in acetone and treated at 5°C to 8°C with a slight excess of 37% HCl solution. The precipitated hydrochloride was filtered, washed with acetone and with absolute ethanol. The corresponding base was purified on a silica gel column and the purity of all fractions was checked by thin layer chromatography and gas liquid chromatography. Thin layer chromatography on silica gel gave three spots in the solvent system ethylacetate-petrol ether 1:1. Gas liquid chromatography showed three peaks indicating the presence of four possible isomers. The pure product was a colorless oil.

References

Merck Index 7299 DFU 2 (12) 829 (1977) Kleeman & Engel p. 725 I.N. p. 772

Zumin. S.T., Riva, M. and Iafolla, G.; U.S. Patent 3,875,163; April 1, 1975; assigned to Pierrel S.p.A. (Italy)

PIMEFYLLINE NICOTINATE

Therapeutic Function: Coronary vasodilator

Chemical Name: 3,7-dihydro-1,3-dimethyl-7-[2-[(3-pyridinylmethyl)amino] ethyl] -1H-

purine-2,6-dione nicotinate

Common Name: 7-(\(\beta\)-picolylaminoethyl)theophylline nicotinate

Structural Formula:

Chemical Abstracts Registry No.: 10058-07-8; 10001-43-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Teonicon	Bracco	Italy	1975
Teonicon	Neopharmed	Japan	_

Raw Materials

7-(β -Bromoethyi)theophylline 3-Picolylamine Nicotinic acid

Manufacturing Process

77 g 7-(β-bromoethyl)-theophylline (C.A. 50, 12071f) and 57.8 g 3-picolylamine in 750 ml toluene were refluxed 16 hours with vigorous agitation. The 3-picolylamine hydrobromide formed was filtered off, and the filtrate was evaporated in a vacuum to about one-third of its original volume. About 300 to 400 ml diisopropyl ether were added, and the solution was seeded with a few pure crystals of the desired product.

 $7-(\beta-3'-picolylaminoethyl)$ -theophylline crystallized over a period of a few hours. It was filtered off with suction, washed with a little diisopropyl ether, and dried. The yield of crude product was 69.3 g (82%), its MP 103° to 106°C. The MP was 111° to 112°C after recrystallization from isopropyl acetate. The compound was identified by microanalysis.

39.3 g 7-(β -3'-picolylaminoethyl)-theophylline were dissolved in 300 ml boiling isopropanol, and 15.4 g nicotinic acid were added to the solution in which the acid promptly dissolved. The nicotinate formed crystallized after a short time. It was filtered with suction and dried. The yield was 52.3 g (95.5%). The MP of 159° to 160°C was not significantly changed by recrystallization from ethanol.

References

Merck Index 7306 Kleeman & Engel p. 727

Suter, H. and Zutter, H.; U.S. Patent 3,350,400; October 31, 1967; assigned to Eprova Limited, Switzerland

PIMOZIDE

Therapeutic Function: Antipsychotic

Chemical Name: 1-[1-[4,4-Bis(4-Fluorophenyl)butyl]-4-piperidinyl]-1,3-dihydro-2H-

benzimidazol-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2062-78-4

Trade Name	Manufacturer	Country	Year Introduced
Orap	Janssen	W. Germany	1971
Opiran	Cassenne	France	1971
Orap	Janssen	U.K.	1971
Orap	Fujisawa	Japan	1974
Orap	Janssen	Italy	1977
Norofren	Dif-Dogu	Turkey	-
Oralep	A bic	Israel	_
Pimotid	Medica	Finland	_

Raw Materials

Cyclopropyl-di-(4-fluorophenyl)-carbinol Thionyl chloride Hydrogen 4-(2-0xo-1-benzimidazolinyl)-piperidine

Manufacturing Process

To a solution of 130 parts cyclopropyl-di-(4-fluorophenyl)-carbinol in 240 parts benzene are added dropwise 43 parts thionyl-chloride. The whole is refluxed until no more gas is evolved. The reaction mixture is then evaporated. The residue is distilled in vacuo, yielding 4-chloro-1,1-di-(4-fluorophenyl)-1-butene, boiling point 165°C to 167°C at 6 mm pressure; n_D²⁰: 1.5698; d₂₀²⁰: 1.2151.

A solution of 61 parts 4-chloro-1,1,-di-(4-fluorophenyl)-1-butene in 400 parts 2-propanol is hydrogenated at normal pressure and at room temperature in the presence of 5.5 parts palladium-on-charcoal catalyst 10% (exothermic reaction: temperature rises to about 30°C). After the calculated amount of hydrogen is taken up, hydrogenation is stopped. The catalyst is filtered off and the filtrate is evaporated. The oily residue is distilled in vacuo, yielding 1chloro-4,4-di-(4-fluorophenyl)-butane, boiling point 166°C to 168°C at 6 mm pressure; n_D²⁰: 1.5425; d₂₀²⁰: 1.2039.

To a mixture of 4.4 parts of 4-(2-oxo-1-benzimidazoliny!)-piperidine, 3.3 parts sodium carbonate, a few crystals of potassium iodide in 200 parts 4-methyl-2-pentanone are added portionwise 6.2 parts 1-chloro-4.4-di-(4-fluorophenyl)-butane. After the addition is complete. the whole is stirred and refluxed for 65 hours. After cooling the reaction mixture, there are added 70 parts water. The organic layer is separated, dried over potassium carbonate, filtered and evaporated. The solid residue is triturated in disopropyl-ether, filtered off again and recrystallized from a mixture of 120 parts acetone and 80 parts 4-methyl-2-pentanone, yielding the crude product. After recrystallization of this crop from 80 parts acetone, 1-[4,4-di-(4fluorophenyl)-butyl] -4-(2-oxo-1-benzimidazolinyl)-piperidine is obtained, melting point 217°C to 219°C.

References

Merck Index 7310 Kleeman & Engel p. 727

PDR p. 1091

OCDS Vol. 2 p. 390 (1980)

DOT 5 (1) 36 (1969); 7 (5) 176 (1971); and 9 (6) 235 (1973)

I.N. p. 774

REM p. 1092

Janssen, P.A.J.; U.S. Patent 3, 196,157; July 20, 1965; assigned to Research Laboratorium Dr. C. Janssen N.V. (Belgium)

PINAZEPAM

Therapeutic Function: Antidepressant

Chemical Name: 7-Chloro-1,3-dihydro-5-phenyl-1-(2-propynyl)-2H-1,4-benzodiazepin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52463-83-9

Trade Name	Manufacturer	Country	Year Introduced
Domar	Zambeletti	Italy	1975
Duna	Zambeletti	Italy	

2-Amino-5-chlorobenzophenone Propargyl bromide Phthalimido acetyl chloride Hydrazine hydrate

Manufacturing Process

46.3 g (0.2 mol) of 2-amino-5-chlorobenzophenone were dissolved in 100 ml (1.28 mols) of propargyl bromide and the mixture refluxed for 4 hours. Thereafter, the whole was evaporated to dryness and the residue recrystallized from methanol to give 32.4 g (60.2%) of the desired 2-propargylamino-5-chlorobenzophenone; melting point 92°C to 93°C.

2.7 g (0.01 mol) of the 2-propargylamino-5-chlorobenzophenone obtained as above and 2.23 g (0.01 mol) of phthalimido-acetyl-chloride were added to 30 ml of chloroform and the whole was refluxed overnight. Thereafter, the reaction mixture was evaporated to dryness and the residue recrystallized from methanol to give 2.66 g (58.3%) of the desired 2-{N-propargyl}-phthalimidoacetamide-5-chlorobenzophenone. Melting point: 176°C.

A suspension of 22.8 g (0.05 mol) of 2-(N-propargyl)-phthalimidoacetamido-5-chlorobenzo-phenone in 250 ml ethanol containing 7.5 g hydrazine hydrate (0.15 mol) was heated under reflux for 2 hours, at the end of which time the reaction mixture was set aside overnight at ambient (25°C) temperature. Thereafter, the crystalline phthalyl hydrazide which had precipitated out was removed by filtration and washed with 3 X 50 ml aliquots of chloroform. The filtrate and washings were diluted with water and exhaustively extracted with chloroform. The chloroform extract was then evaporated and the residue washed with 100 ml hexane to promote crystallization. The crude 7-chloro-1-propargyl-3H-1,4-benzodiazepine-2(1H)-one was recrystallized from a methanol-water mixture to give 10.5 g (71.4%) of the pure product. Melting point: 140°C to 142°C.

References

Merck Index 7316 Kleeman & Engel p. 728 DOT 12 (4) 147 (1976) I.N. p. 774

Podesva, C. and Vagi, K.; U.S. Patent 3,842,094; October 15, 1974; assigned to Delmar Chemicals Ltd. (Canada)

PIPAMAZINE

Therapeutic Function: Antiemetic

Chemical Name: 1-[3-(2-Chloro-10H-phenothiazin-10-yl)propyl] 4-pyridinecarboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 84-04-8

Trade Name	Manufacturer	Country	Year Introduced
Mornidine	Searle	U.S.	1959
Nausidol	Gremy-Longuet	France	_

Raw Materials

4-Piperidinecarboxamide

2-Chloro-10-(\gamma-chloropropy!)phenothiazine

Manufacturing Process

To a stirred and refluxing suspension of 4.95 parts of 4-piperidinecarboxamide. 1 part of sodium iodide and 8.4 parts of potassium carbonate in 40 parts of butanone there are added in the course of 30 minutes 9.3 parts of 2-chloro-10-(γ-chloropropy!)phenothiazine in 40 parts of butanone. Stirring and refluxing are continued for 12 hours after which the mixture is cooled and filtered. The filtrate is concentrated under vacuum to give a residue which is recrystallized from a mixture of 2-propanol and petroleum ether. The 1-[γ-(2'-chloro-10'phenothiazine)propyl] piperidine-4-carboxamide thus obtained melts at approximately 139°C.

This base is dissolved in a small amount of 2-propanol and treated with a 25% solution of hydrogen chloride in 2-propanol. Upon treatment of this solution with anhydrous ether a hydrochloride precipitates as a white solid melting at about 196°C to 197°C with formation of bubbles.

References

Merck Index 7326 Kleeman & Engel p. 729 OCDS Vol. 1 p. 385 (1977) I.N. p. 775

Cusic, J.W. and Sause, H.W.; U.S. Patent 2,957,870; October 25, 1960; assigned to G.D. Searle & Co.

PIPAMPERONE

Therapeutic Function: Antipsychotic

Chemical Name: 1'-[4-(4-Fluorophenyl)-4-oxobutyl] -[1,4'-bipiperidine] -4'-carboxamide

Common Name: Floropipamide

Structural Formula:

Chemical Abstracts Registry No.: 1893-33-0

Trade Name	Manufacturer	Country	Year Introduced
Dipiperon	Janssen	W. Germany	1961

Trade Name	Manufacturer	Country	Year Introduced
Dipiperon	Janssen-Le Brun	France	1968
Piperonil	Lusofarmaco	Italy	1970
Propitan	Eisai	Japan	_

Piperidine hydrochloride Potassium cyanide 1-Benzyl-4-piperidone Sulfuric acid γ -Chloro-4-fluorobutyrophenone Hydrogen

Manufacturing Process

To a stirred solution of 130.4 parts of potassium cyanide and 243.2 parts of piperidine hydrochloride in a mixture of 800 parts of water and 320 parts of ethanol is added portionwise 378 parts of 1-benzyl-4-piperidone. After about one hour a solid starts to precipitate. Stirring is continued for 24 hours. The reaction mixture is filtered and the solid is recrystallized from 1,200 parts of diisopropyl ether. On cooling to room temperature a first crop of 1-benzyl-4-cyano-4-piperidinopiperidine melting at about 104°C to 106°C is obtained. By concentrating and further cooling of the mother liquor a second crop of the above compound is obtained.

A mixture of 14.1 parts of 1-benzyl-4-cyano-4-piperidinopiperidine and 40 parts of 90% sulfuric acid is heated on a steam bath for 10 minutes. Without further heating, the mixture is stirred until a temperature of about 20°C is obtained. The mixture is then poured into 150 parts of ice-water and the resultant solution is alkalized with excess ammonium hydroxide solution. The aqueous solution is decanted from the precipitated oil. On treating this oil with 80 parts of acetone, crystallization sets in. After one hour the solid is filtered off and dried to yield 1-benzyl-4-piperidinopiperidine-4-carboxamide melting at about 137.5°C to 140°C.

A mixture of 215 parts of 1-benzyl-4-piperidinopiperidine-4-carboxamide, 1,200 parts of isopropyl alcohol, 1,000 parts of distilled water and 157 parts of hydrogen chloride is debenzylated under atmospheric pressure and at a temperature of about 40°C in the presence of 40 parts of a 10% palladium-on-charcoal catalyst. After the calculated amount of hydrogen is taken up, hydrogenation is stopped. The mixture is filtered and the filtrate is evaporated. The semisolid residue is treated with a mixture of 80 parts of acetone and 80 parts of benzene and evaporated again. The residue is triturated in 200 parts of methanol and filtered, yielding the dihydrochloride of 4-piperidinopiperidine-4-carboxamide melting at about 299°C to 300.8°C with decomposition. A sample of 20 parts of the dihydrochloride is dissolved in 30 parts of water. The aqueous solution is alkalized with 15 parts of 44% sodium hydroxide and stirred for a short time. The solid obtained is filtered off yielding crude product. To separate the free base from organic and inorganic salts, it is extracted overnight in a Soxhlet apparatus with toluene. The toluene extract is evaporated and the solid residue is filtered off, yielding 4-piperidinopiperidine-4-carboxamide melting at about 118.5°C to 119.5°C.

To a mixture of 4.1 parts of 4-piperidinopiperidine-4-carboxamide, 6.4 parts of sodium carbonate, and a few crystals of potassium iodide in 100 parts of anhydrous toluene is added dropwise a solution of 5.6 parts of γ -chloro-4-fluorobuty rophenone and 40 parts of anhydrous toluene at a temperature of 30°C to 40°C. The mixture is stirred and refluxed for 48 hours. The reaction mixture is cooled and divided between 50 parts of water and 60 parts of chloroform. The combined organic layers—toluene and chloroform—are dried over potassium carbonate, filtered, and evaporated. The oily residue solidifies on treatment with 80 parts of ether. After cooling for 30 minutes at 0° C, there is obtained 1-[γ -(4-fluorobenzoyl)propyl]-4-piperidinopiperidine-4-carboxamide melting at about 124.5°C to 126°C.

References

Merck Index 7327 Kleeman & Engel p. 729 OCDS Vol. 2 p. 388 (1980) I.N. p. 775

Janssen, P.A.J.; U.S. Patent 3,041,344; June 26, 1962; assigned to Research Laboratorium Dr. C. Janssen N.V. (Belgium)

PIPAZETHATE

Therapeutic Function: Antitussive

Chemical Name: 10H-Pyrido[3,2-b] [1,4] benzothiadiazine-10-carboxylic acid 2-(2-piperi-

dinoethoxy)ethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2167-85-3; 6056-11-7 (Hydrochloride)

Trade Name	Manufacturer	Country	Year introduced
Theratuss	Squibb	U.S.	1962
Dipect	Draco	Sweden	_
Lenopect	Draco	Sweden	_
Selvigon	Homburg	W. Germany	_

Raw Materials

1-Azaphenothiazine carboxylic acid chloride Piperidinoethoxy ethanol

Manufacturing Process

8.5 parts of 1-azaphenothiazine carboxylic acid chloride and 14 parts of piperidino-ethoxy-ethanol were introduced into 100 parts of chlorobenzene and the mixture boiled under reflux for 5 minutes. After cooling off the precipitated hydrochloride salt of piperidino-ethoxy-ethanol was filtered off on a suction filter. Water was added to the filtrate and the pH thereof adjusted to 5 to 6 with dilute HCl. The aqueous phase was then removed, a caustic soda solution added thereto and then extracted with ether. The ethyl extract was washed with water, then dried with potash and the ether distilled off. 9.4 parts of the piperidino-ethoxy-ethyl ester of 1-azaphenothiazine carboxylic acid were obtained. This product was dissolved in 20 parts of isopropanol and the solution neutralized with isopropanolic HCl. The monohydrochloride which precipitated out after recrystallization from isopropanol had a melting point of 160°C to 161°C.

References

Merck Index 7328 Kleeman & Engel p. 730 OCDS Vol. 1 p. 390 (1977)

I.N. p. 775

Schuler, W.A.; U.S. Patent 2,989,529; June 20, 1961; assigned to Degussa (Germany)

PIPEBUZONE

Therapeutic Function: Antiinflammatory

Chemical Name: 1,2-Diphenyl-3,5-dioxo-4-n-butyl-4-(N'-methylpiperazinomethyl)pyrazoli-

dine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 27315-91-9

Trade Name	Manufacturer	Country	Year Introduced
Elarzone	Dausse	France	1973

Raw Materials

Phenylbutazone Formaldehyde N-Methylpiperazine

Manufacturing Process

77 g (0.25 mol) of phenylbutazone, 30 ml of a 30% strength solution of formaldehyde and 50 ml of ethyl alcohol are introduced into a 500 ml flask, 25 g (0.25 mol) of N-methylpiperazine are slowly added to this mixture which is stirred mechanically. The mixture is then heated for one hour on a water bath, left to cool, and crystallization started by scratching.

After being left in the refrigerator overnight the mixture, which has set solid, is triturated with 50 ml of isopropyl alcohol and the solid product filtered off and dried in vacuo over phosphorus pentoxide. 63 g (60% yield) of 1,2-diphenyl-3,5-dioxo-4-n-butyl-4-(N'-methylpiperazinomethyl)pyrazolidine are obtained, melting at 129°C after recrystallization from 150 ml of isopropyl alcohol.

References

Merck Index 7329 Kleeman & Engel p. 730 DOT 9 (11) 476 (1973) I.N. p. 775

Dausse, S.A.; British Patent 1,249,047; October 6, 1971

PIPEMIDIC ACID

Therapeutic Function: Antibacterial (urinary)

Chemical Name: 8-ethyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido[2,3-d] pyrimidine-6carboxylic acid

Common Name: Piperamic acid

Structural Formula:

Chemical Abstracts Registry No.: 51940-44-4

Trade Name	Manufacturer	Country	Year Introduced
Pipram	Bellon	France	1975
Deblaston	Madaus	W. Germany	1975
Pipram	RBS Pharma	Italy	1978
Dolcol	Dainippon	Japan	1979
Pipram	Bellon	Italy	1979
Pipedac	Mediolanum	italy	1980
Deblaston	Madaus	Switz.	1981
Filtrax	Biomedica Foscama	Italy	_
Gastrurol	Gibipharma	Italy	_
Memento	Volpino	Argentina	_
Nuril	Prodes	Spain	_
Pipedase	Scalari	Italy	-
Pipemid	Gentili	Italy	-
Pipurin	Brocchieri	Italy	
Priper	Synero	Argentina	_
Septidron	Ethimed	S. Africa	_
Tractur	Baldacci	Italy	-
Uropimid	C.T.	Italy	
Urotractin	Zambeletti	Italy	_
Uroval	Firma	Italy	-

Raw Materials

6-Amino-2-methylthiopyrimidine Ethoxymethylene malonic acid diethyl ester Piperazine hydrate Sodium hydroxide Diethyl sulfate

Manufacturing Process

A mixture containing 1.33 g of 5,8-dihydro-8-ethyl-2-methylthio-5-oxopyridol [2,3-d] pyrimidine-6-carboxylic acid, 1.94 g of piperazine hexahydrate and 20 ml of dimethyl sulfoxide was heated at 110°C for 1 hour with stirring. The separated solid was collected by filtration, washed with ethanol, and then dried at such a temperature that did not rise above 50°C to give 1.57 g of the trihydrate of the product as nearly colorless needles, MP 253° to 255°C.

The starting material may be produced by reacting 6-amino-2-methylthiopyrimidine with ethoxymethylene malonic acid diethyl ester. The intermediate thus produced is converted by boiling in diphenyl ether to 6-ethoxycarbonyl-2-methylthio-5-oxo-5,8-dihydropyrido-[2,3-d]pyrimidine. That is hydrolyzed by sodium hydroxide to cleave the ethoxy group and then ethylated with diethyl sulfate to give the starting material.

References

Merck Index 7332 Kleeman & Engel p. 731 DOT 11 (10, 408 (1975) & 12 (3) 99 (1976) I.N. p. 36

Minami, S., Matsumoto, J.-I., Kawaguchi, K., Mishio, S., Shimizu, M., Takase, Y. and Nakamura, S.; U.S. Patent 3,887,557; June 3, 1975; assigned to Dainippon Pharmaceutical Co. Ltd., Japan

Minami, S., Matsumoto, J.-I., Kawaguchi, K., Mishio, S., Shimizu, M., Takase, Y. and Nakamura, S.; U.S. Patent 3,962,443; June 8, 1976; assigned to Dainippon Pharmaceutical Co. Ltd., Japan

PIPENZOLATE BROMIDE

Therapeutic Function: Antispasmodic

Chemical Name: 1-ethyl-3-[(hydroxydiphenylacetyl)oxy]-1-methylpiperidinium bromide

Common Name: N-ethyl-3-piperidyl benzilate methobromide

Structural Formula:

Chemical Abstracts Registry No.: 125-51-9

Trade Name	Manufacturer	Country	Year Introduced
Piptal	Merrell National	U.S.	1955
Piptal	Roger Bellon	France	1960
Piper	Panthox & Burck	Italy	-

Raw Materials

N-Ethyl-3-chloropiperidine Benzilic acid Methyl bromide

Manufacturing Process

N-ethyl-3-chloropiperidine was prepared according to the method of Fuson and Zirkle described in Volume 70, J. Am. Chem. Soc., p 2760. 12.0 g (0.081 mol) of N-ethyl-3chloropiperidine was mixed with 18.6 g (0.081 mol) of benzilic acid and 80 cc of anhydrous isopropy! alcohol as a solvent. The mixture was refluxed for 72 hours. The solution was then filtered and concentrated at 30 mm of mercury. The concentrate was dissolved in water, acidified with hydrochloric acid and extracted with ether to remove the unreacted benzilic acid.

The aqueous layer was neutralized with sodium bicarbonate and the product was extracted with ether. The ethereal solution of the product was dried with potassium carbonate, the ether was removed by distillation and the residue was distilled at 0.12 to 0.18 mm of mercury, the BP being 194° to 198°C. A yield of 16.5 g (60% of theoretical) of N-ethyl-3piperidyl-benzilate was obtained.

References

Merck Index 7333 Kleeman & Engel p. 732 I.N. p 776

Biel, J.H.; U.S. Patent 2,918,406; December 22, 1959; assigned to Lakeside Laboratories, Inc.

PIPERACILLIN SODIUM

Therapeutic Function: Antibiotic

Chemical Name: Sodium salt of 6-[D(-)-\alpha-(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)-

phenylacetamido] penicillanic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 59703-84-3; 61477-96-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pentcillin	Toyama	Japan	1980
Pipril	Lederle	W. Germany	1980
Pipril	Lederle	Switz.	1980
Piperallin	Tovama	France	1981
Piprii	Lederle	U.K.	1982
Avocin	Cyanamid	Italy	1982
Pipracil	Lederle	U.S.	1982
Pentocillin	Sankyo	Japan	-

Raw Materials

N-Ethylethylenediamine Diethyl oxalate

Phosgene

6-[D(-)-α-aminophenylacetamido] penicillanic acid

Trimethylsilyl chloride

Sodium 2-ethyl hexanoate

Manufacturing Process

To a suspension of 0.9 g of 6-[D(-)- α -aminophenylacetamido] penicillanic acid in 30 ml of anhydrous ethyl acetate were added at 5°C to 10°C 0.55 g of triethylamine and 0.6 g of trimethylsilyl chloride. The resulting mixture was reacted at 15°C to 20°C for 3 hours to form trimethylsilylated 6-[D(-)- α -aminophenylacetamido] penicillanic acid.

To this acid was then added 1 g of 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride (from the reaction of N-ethylethylenediamine and diethyl oxalate to give 2,3-dioxo-4-ethyl-piperazine which is then reacted with phosgene) and the resulting mixture was reacted at 15° C to 20° C for 2 hours. After the reaction, a deposited triethylamine hydrochloride was separated by filtration, and the filtrate was incorporated with 0.4 g of n-butanol to deposit crystals. The deposited crystals were collected by filtration to obtain 1.25 g of white crystals of 6-[D(-)- α -(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetamido] penicillanic acid. Into a solution of these crystals in 30 ml of tetrahydrofuran was dropped a solution of 0.38 g of a sodium salt of 2-ethyl-hexanoic acid in 10 ml of tetrahydrofuran, upon which white crystals were deposited. The deposited crystals were collected by filtration, sufficiently washed with tetrahydrofuran and then dried to obtain 1.25 g of sodium salt of 6-[D(-)- α -(4-ethyl-2,3-dioxo-1-piperazinocarbonylamino)phenylacetamido] penicillanic acid, melting point 183°C to 185°C (decomposition), yield 90%.

References

Merck Index 7335 DFU 3 (11) 829 (1978) Kleeman & Engel p. 732 PDR p. 1026 OCDS Vol. 3 p. 207 (1984) DOT 17 (1) 29 (1981) I.N. p. 776 REM p. 1199

Saikawa, I., Takano, S., Yoshida, C., Takashima, O., Momonoi, K., Kuroda, S., Komatsu, M., Yasuda, T. and Kodama, Y.; U.S. Patents 4,087,424; May 2, 1978; 4,110,327; Aug. 29, 1978; 4,112,090; September 5, 1978; all assigned to Toyama Chemical Co., Ltd.

PIPERIDOLATE

Therapeutic Function: Antispasmodic

Chemical Name: α -phenylbenzeneacetic acid 1-ethyl-3-piperidinyl ester

Common Name: N-ethyl-3-piperidyl diphenylacetate

Structural Formula:

Chemical Abstracts Registry No.: 82-98-4; 129-77-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Dactil	Merrell National	U.S.	1954

Trade Name	Manufacturer	Country	Year Introduced
Dactil	Roger Bellon	France	1958
Cactiran	Kyorin	Japan	_
Crapinon	Sanzen	Japan	_
Dactylate	Sawai	Japan	-
Edelel	Mochida	Japan	_

Furfural	Ethylamine
Hydrogen	Hydrogen bromide
Acetic acid	Diphenylacetyl chloride

Manufacturing Process

To obtain the free base, 34 g (0.256 mol) of N-ethyl-3-piperidinol and 20 g (0.22 mol) of diphenylacetyl chloride were mixed in 80 cc of isopropanol and the solution was refluxed for 2 hours. The isopropanol was evaporated in vacuo at 30 mm pressure, the residue was dissolved in 150 cc of water and the aqueous solution was extracted several times with ether. The aqueous solution was then neutralized with potassium carbonate and extracted with ether. The ethereal solution was dried over anhydrous potassium carbonate and the ether removed by distillation. The product was then distilled at its boiling point 180° to 181°C at 0.13 mm of mercury whereby 14 g of a clear yellow, viscous liquid was obtained. The nitrogen content for C21 H25 NO2 was calculated as 4.33% and the nitrogen content found was 4,21%,

The starting material was produced by the reaction of furfural with ethylamine followed by hydrogenation to give N-ethyl-N-(2-tetrahydrofurfuryl)amine. Treatment of that material with hydrogen bromide in acetic acid gives N-ethyl-3-piperidinol.

References

Merck Index 7345 Kieeman & Engel p. 733 OCDS Vol. 1 p. 91 (1977) i.N. p. 778

Biel, J.H.; U.S. Patent 2,918,407; December 22, 1959; assigned to Lakeside Laboratories, Inc.

PIPETHANATE ETHOBROMIDE

Therapeutic Function: Anticholinergic, antiulcer

Chemical Name: Benzilic acid, 2-piperidinoethyl ester ethobromide

Common Name: Piperilate ethyl bromide

Structural Formula:

Chemical Abstracts Registry No.: 4546-39-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Panpurol	Nippon Shinyaku	Japan	_

Pipethanate hydrochloride Sodium hydroxide Ethyl bromide

Manufacturing Process

Pipethanate hydrochloride is dissolved in water and the solution is made alkaline by adding 10% sodium hydroxide solution. The crystals that are separated are filtered off and recrystallized from dilute ethanol. The monohydrate thereby obtained is dehydrated at 100°C under reduced pressure for 20 minutes. The products that are now in the form of a syrup due to loss of water of crystallization are further dehydrated for 2 days in a desiccator over phosphorus pentoxide whereupon the anhydrous pipethanate is obtained.

3.8 g of the anhydrous pipethanate prepared by the method described is dissolved in 15 cc of acetone, 18 g of purified ethyl bromide is added, and the mixture heated for 8 hours in a sealed tube at 100°C to 110°C. After cooling the crystals are separated and isolated by filtration. They are then washed with acetone to give 5.2 g (95.6%) of pipethanate ethylbromide with a decomposition point of 218°C to 220°C. The crystals are almost pure.

References

Merck Index 7346 DOT 7 (1) 23 (1971)

I.N. p. 779

Nippon Shinyaku Co., Ltd.; British Patent 1,148,858; April 16, 1969

PIPOBROMAN

Therapeutic Function: Antineoplastic

Chemical Name: 1,4-Bis-(3-bromo-1-oxopropyl)piperazine

Common Name: -

Structural Formula: BrCH, CH, CH

Sr Ch. Ch. Co

Chemical Abstracts Registry No.: 54-91-1

Trade Name	Manufacturer	Country	Year Introduced
Vercyte	Abbott	U.S.	1966
Vercyte	Abbott	France	1970
Vercite	Abbott	Italy	1972
Amedel	Dainippon	U.K.	1973

3-Bromopropionyl chloride Piperazine

Manufacturing Process

To a solution of 17.2 g (0.10 mol) of 3-bromopropionyl chloride in 100 ml of anhydrous benzene was added dropwise with stirring a solution of 8.6 g (0.10 mol) of anhydrous piperazine in 20 ml of dry chloroform over a period of 30 minutes. The temperature rose spontaneously to 45°C during the addition. After the temperature ceased to rise, stirring was continued for another hour. The reaction mixture was then filtered to remove the piperazine hydrochloride by-product. The filtrate was evaporated to dryness and the residue recrystallized from ethanol to obtain the desired N,N'-bis-(3-bromopropionyl) piperazine as a white crystalline solid melting at 103°C to 104°C. The identity of the product was further established by elemental analysis.

References

Merck Index 7355 Kleeman & Engel p. 735 OCDS Voi. 2 p. 299 (1980) I.N. p. 779 REM p. 1156

Abbott Laboratories; British Patent 921,559; March 20, 1963

PIPOXOLAN HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: 5,5-diphenyl-2-[2-(1-piperidinyl)ethyl] -1,3-dioxolan-4-one hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18174-58-8: 23744-24-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Rowapraxin	Rowa/Wagner	W. Germany	1969

Raw Materials

 β -Chloropropionaldehyde diethylacetal Benzilic acid **Piperidine** Hydrogen chloride

Manufacturing Process

33 g (0.14 mol) of benzilic acid and 22 g (0.13 mol) of β -chloropropionaldehyde diethyl acetal were dissolved in 100 ml of glacial acetic acid by heating. After cooling to 40°C, a slow stream of dry HCl gas was introduced while stirring for $2\frac{1}{2}$ hours. After evaporating the glacial acetic acid in vacuo, the reforming oil was taken up in CH_2Cl_2 and treated with solid KHCO₃. After the evolution of CO_2 had ended, water was added and the organic phase was neutralized by means of KHCO₃ solution. After drying, the solvent was removed; the remaining oil distilled over under high vacuum at 0.001 mm and at 120° to 130°C to yield the compound $2-(\beta-\text{chloroethyl})-4,4-\text{diphenyl-1},3-\text{dioxolan-5-one hydrochloride}.$

This compound was boiled with 12 g of dry piperidine in 120 ml of absolute benzene for 12 hours under reflux, a total of 6 g of piperidine hydrochloride being separated out. This was filtered off and the benzene solution was concentrated by evaporation. The residue was taken up in a little chloroform and the solution was applied to a dry aluminum oxide column (according to Brockmann); it was thereafter extracted with chloroform. After concentrating the solution by evaporation, an oil was obtained, which was taken up in absolute diethylether. Introduction of dry HCl gas into the cooled solution gave a precipitate which was dissolved and allowed to crystallize from isopropanol/ether. MP 193° to 199°C.

References

Merck Index 7358 Kleeman & Engel p. 736 DOT 6 (3) 95 (1970) I.N. p. 780

Rowa-Wagner Kommanditgesellschaft Arzneimittelfabrik, Germany; British Patent 1,109,959; April 18, 1968

PIPROZOLIN

Therapeutic Function: Choleretic

Chemical Name: [3-Ethyl-4-oxo-5-(1-piperidinyl)-2-thiazolidinylidene] acetic acid ethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 17243-64-0

Trade Name	Manufacturer	Country	Year Introduced
Probilin	Goedecke	W. Germany	1977
Probilin	Parke Davis	Italy	1979
Coleflux	Finadiet	Argentina	-
Epsyl	Exa	Argentina	_
Secrebil	Isnardi	Italy	_

Raw Materials

Ethyl thioglycolate Ethyl cyanoacetate Sodium ethylate Diethyl sulfate Piperidine

Manufacturing Process

Ethyl thioglycolate and ethyl cyanoacetate are first reacted in the presence of sodium ethylate to give 4-oxo-thiazolidin-2-ylideneacetic acid ethyl ester. That is reacted with diethyl sulfate and then with piperidine to give piprozolin.

References

Merck Index 7361 DFU 2 (10) 681 (1977) Kleeman & Engel p. 737 OCDS Vol. 2 p. 270 (1980) DOT 14 (1) 26 (1976) I.N. p. 781

Satzinger, G., Herrmann, M. and Vollmer, K.O.; U.S. Patent 3,971,794; July 27, 1976; assigned to Warner-Lambert Co.

PIRACETAM

Therapeutic Function: Psychotropic

Chemical Name: 2-Oxo-1-pyrrolidineacetamide

Common Name: -

Structural Formula:

CH2CONH2

Chemical Abstracts Registry No.: 7491-74-9

Trade Name	Manufacturer	Country	Year Introduced
Nootropyl	UCB	France	1972
Nootropil	UCB-Smit	Italy	1974
Nootrop	UCB Chemie	W. Germany	1974
Normabrain	Cassella Riedel	W. Germany	1974
Gabacet	Carrion	France	1980
Ciclocetam	Calloi	Spain	_
Ciclofalina	Almirall	Spain	
Encefalux	Bama-Geve	Spain	
Eumental	Wassermann	Spain	
Genogris	Vita	Spain	_
Gericetam	Level	Spain	_
Huberdasen	Hubber	Spain	_
Ideaxan	Millot	France	_
Merapiran	Finadiet	Argentina	_
Nootron	Biosintetica	Brazil	_
Nootropicon	Sidus	Argentina	*****
Norotrop	Drifen	Turkey	_
Norzetam	Albert Farma	Spain	_
Oikamid	Pliva	Yugoslavia	_
Pirroxil	S.I.T.	İtaly	
Pyramen	Pharmachim	Bulgaria	_
Stimubral	Lusofarmaco	Portugal	_
Stimucortex	Kalifarma	Spain	_

2-Pyrrolidone Ethyl chloroacetate Sodium hydride Ammonia

Manufacturing Process

2-Pyrrolidone is first reacted with sodium hydride, then with ethyl chloroacetate to give ethyl 2-oxo-1-pyrrolidine acetate.

A solution of 0.3 mol of ethyl 2-oxo-1-pyrrolidine acetate in 300 ml of methanol, saturated with ammonia at 20° to 30°C, is heated at 40° to 50°C for 5 hours, while continuously introducing ammonia. The reaction mixture is evaporated to dryness and the residue recrystallized from isopropanol. 2-Oxo-1-pyrrolidineacetamide is obtained in a yield of 86%. MP 151.5° to 152.5°C.

References

Merck Index 7363 Kleeman & Engel p. 737 DOT 9 (6) 215 (1973) & (8) 327 (1973)

I.N. p. 781

Morren, H.; U.S. Patent 3,459,738; August 5, 1969; assigned to UCB (Union Chimique-Chemische Bedrijven), Belgium

PIRBUTEROL

Therapeutic Function: Bronchodilator

Chemical Name: 2-Hydroxymethyl-3-hydroxy-(1-hydroxy-2-tert-butylaminoethyl)pyridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 38677-81-5

Trade Name	Manufacturer	Country	Year Introduced
Exirel	Pfizer Taito	Japan	1982
Exirel	Pfizer	U.K.	1983
Exirel	Pfizer	Switz.	1983

Raw Materials

N-tert-butyl-2-(5-benzyloxy-6-hydroxymethyl-2-pyridyl)-2-hydroxyacetamide Diborane Hydrogen

Manufacturing Process

To 78 ml of a 1 M solution of diborane in tetrahydrofuran under nitrogen and cooled to 0°C is added dropwise over a period of 40 minutes 13.5 g of N-tert-butyl-2-(5-benzyloxy-6-hy-

droxymethyl-2-pyridyl)-2-hydroxyacetamide in 250 ml of the same solvent. The reaction mixture is allowed to stir at room temperature for 3.5 hours, and is then heated to reflux for 30 minutes and cooled to room temperature. Hydrogen chloride (70 ml, 1,34N) in ethanol is added dropwise, followed by the addition of 300 ml of ether. The mixture is allowed to stir for 1 hour and is then filtered, yielding 11.0 g, melting point 202°C (dec.). The hydrochloride dissolved in water is treated with a sodium hydroxide solution to pH 11 and is extracted into chloroform (2 x 250 ml). The chloroform layer is dried over sodium sulfate, concentrated to dryness in vacuo, and the residue recrystallized from isopropyl ether, 3.78 g, melting point 81°C to 83.5°C.

A solution of 1.7 g of 2-hydroxymethyl-3-benzyloxy-(1-hydroxy-2-tert-butyl-aminoethyl)pyridine in 30 ml of methanol containing 1.2 ml of water is shaken with 700 mg of 5% palladiumon-charcoal in an atmosphere of hydrogen at atmospheric pressure. In 17 minutes the theoretical amount of hydrogen has been consumed and the catalyst is filtered. Concentration of the filtrate under reduced pressure provides 1.4 g of the crude product as an oil. Ethanol (5 ml) is added to the residual oil followed by 6 ml of 1.75 N ethanolic hydrogen chloride solution and, finally, by 5 ml of isopropyl ether. The precipitated product is filtered and washed with isopropyl ether containing 20% ethanol, 1.35 g, melting point 182°C (dec.).

References

I.N. p. 782

Merck Index 7364 DFU 2 (1) 60 (1977) OCDS Vol. 2 p. 280 (1980) DOT 19 (2) 113 (1983) & (7) 384 (1983)

Barth, W.E.; U.S. Patents 3,700,681; October 24, 1972; 3,763,173; October 2, 1973; 3,772,314; November 13, 1973; all assigned to Pfizer, Inc.

PIRETANIDE

Therapeutic Function: Diuretic

Chemical Name: 3-N-Pyrrolidino-4-phenoxy-5-sulfamylbenzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55837-27-9

Trade Name	Manufacturer	Country	Year Introduced
Arelix	Hoechst	Italy	1980
Arelix	Cassella-Riedel	W. Germany	1982
Tauliz	Hoechst	W. Germany	_

3-N-Succinimido-4-phenoxy-5-sulfamylbenzoic acid methyl ester Sodium borohydride Sodium hydroxide

Manufacturing Process

12.3 g (0.03 mol) of 3-N-succinimido-4-phenoxy-5-sulfamylbenzoic acid methyl ester are dissolved or suspended in 100 ml of absolute diglyme. 9 g of boron trifluoride etherate are added direct to this mixture and a solution of 2.4 g (\sim 0.063 mol) of NaBH₄ in 80 ml of diglyme is then added dropwise at room temperature with stirring. As the reaction proceeds exothermically, it is necessary to cool with ice water. The reaction is normally complete after the dropwise addition and a short period of stirring thereafter.

The excess reducing agent is then decomposed by means of a little water (foaming), the solution is filtered and about 300 ml of water are added while stirring. The 3-N-pyrrolidino-4-phenoxy-5-sulfamylbenzoic acid methyl ester which has crystallized out is recrystallized from methanol in the form of colorless crystals, melting point 191°C to 192°C.

61 g of 3-N-pyrrolidino-4-phenoxy-5-sulfamylbenzoic acid methyl ester are suspended in 350 ml of 1 N NaOH and the suspension is heated for one hour on the waterbath. 3-N-pyrrolidino-4-phenoxy-5-sulfamylbenzoic acid is precipitated from the clear solution by means of 2 N HCl while stirring well. The almost pure crude product can be recrystallized from methanol/water in the form of light yellow platelets, melting point 225°C to 227°C, with decomposition.

References

Merck Index 7366 DFU 2 (6) 393 (1977) OCDS Vol. 3 p. 58 (1984) DOT 18 (6) 274 (1982) & (10) 555 (1982) I.N. p. 782

Bormann, D., Merkel, W. and Muschaweck, R.; U.S. Patents 4,010,273; March 1, 1977; 4,093,735; June 6, 1978; 4,111,953; September 5, 1978; 4,118,397; October 3, 1978; and 4,161,531; July 17, 1979; all assigned to Hoechst AG

PIRIBEDIL

Therapeutic Function: Vasodilator (peripheral)

Chemical Name: 2-[4-(1,3-Benzodioxol-5-ylmethyl)-1-piperazinyl] pyrimidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3605-01-4

Trade Name	Manufacturer	Country	Year Introduced
Trivastal	Eutherapie	France	1969
Trivastan	Servier	Italy	1975
Trivastal	Pharmacodex	W. Germany	1975
Circularina	Searle	<u>-</u>	_

2-Chioropyrimidine

1-(3':4'-Methylenedioxybenzyl)-piperazine

Manufacturing Process

To a solution of 21 g of 1-(3':4'-methylenedioxybenzyl)-piperazine in solution in 300 cc of anhydrous xylene there were added 28 g of anhydrous potassium carbonate and then 11.3 g of 2-chloropyrimidine. The suspension was then heated for 9 hours at boiling point (130°C). After this time, the mixture was cooled and extracted several times with 10% hydrochloric acid. The acid solution obtained was washed with ether and then rendered alkaline with potassium carbonate; the oily product which was separated was extracted with chloroform and this, after drying with potassium carbonate and evaporation, gave an oily residue weighing 20 g. By dissolution in boiling ethanol and crystallization, 15 g of crystals melting at 96°C were recovered.

References

Merck Index 7368 Kleeman & Engel p. 739 DOT (As ET-495) 6 (1) 29 (1970) & 10 (9) 324, 340 (1974) I.N. p. 783

Regnier, G., Canevari, R. and Laubie, M.; U.S. Patent 3,299,067; January 17, 1967; assigned to Science Union Et Cie, Societe Française De Recherche Medicale (France)

PIRITRAMIDE

Therapeutic Function: Analgesic

Chemical Name: 1-(3,3-Diphenyl-3-cyanopropyl)-4-piperidino-4-piperidinecarboxamide

Common Name: Pirinitramide

Structural Formula:

Chemical Abstracts Registry No.: 302-41-0

Trade Name	Manufacturer	Country	Year Introduced
Dipidolor	Janssen	W. Germany	1969
Dipidolor	Janssen	U.K.	1972
Piridolan	Leo	Sweden	_

Raw Materials

3,3-Diphenyl-3-cyanopropyl bromide 4-Piperidino-4-piperidinecarboxamide

Manufacturing Process

A mixture of 84 parts of 3,3-diphenyl-3-cyanopropyl bromide, 41 parts of 4-piperidino-4-piperidinecarboxamide, 64 parts of sodium carbonate, a small amount of potassium iodide and 1.200 parts of anhydrous toluene was stirred, and heated under reflux for 48 hours. At the end of this time the reaction mixture was allowed to cool to room temperature, and 500 parts of water were added. The resultant precipitate was removed by filtration, and triturated with diisopropyl ether. The crystalline material thus obtained was removed by filtration, and recrystallized from 320 parts of acetone, to give 1-(3,3-diphenyl-3-cyanopropyl)-4-piperidino-4-piperidinecarboxamide, melting at about 149°C to 150°C.

References

Merck Index 7373 Kleeman & Engel p. 739 OCDS Vol. 1 p. 308 (1977) DOT 5 (3) 107 (1969) I.N. p. 783

N.V. Research Laboratorium Dr. C. Janssen; British Patent 915,835; January 16, 1963 Janssen, P.A.J.; U.S. Patent 3,080,360; March 5, 1963; assigned to Research Laboratorium Dr. C. Janssen N.V.

PIROHEPTINE

Therapeutic Function: Antiparkinsonian

Chemical Name: 3-(10,11-Dihydro-5H-dibenzo [a,d] cyclohepten-5-ylidene)-1-ethyl-2-methyl-

pyrrolidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 16378-21-5

Trade Name	Manufacturer	Country	Year Introduced
Trimol	Fujisawa	Japan	1974

Raw Materials

2-Methyl-3-(10,11-dihydro-5H-dibenzo(a,d) cycloheptene-5-ylidene)-1-pyrroline Ethyl iodide Sodium borohydride

Manufacturing Process

(1) To 3.8 g of 2-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)-1-pyrroline, there were added 8 g of ethyl iodide. This mixture was placed into a closed vessel and heated at 80°C in a water-bath for one hour. After completing the reaction, the reaction mixture was cooled and the unreacted ethyl iodide was distilled off to yield 5.5 g of 1-ethyl-2methyl-3-(10,11-dihydro-5H-dibenzo[a,d] cycloheptene-5-ylidene)-1-pyrrolinium iodide in the form of yellow crystals. These crystals were recrystallized from a mixture of acetone and ether to yield yellow needles of the melting point 223°C.

(2) 1-Ethyl-2-methyl-3-(10,11)-dihydro-5H-dibenzo [a,d] cycloheptene-5-ylidene)-1-pyrrolinium iodide (4.7 g) was dissolved in 7 cc of methanol. To this solution there were added 1.4 g of sodium boron hydride within about 80 minutes with stirring and stirring of the solution was continued for two hours to complete the reaction. The reaction mixture was acidified with 10% aqueous hydrochloric acid solution and then the methanol was distilled off. The residual solution was alkalized with 20% aqueous sodium hydroxide solution and extracted with ether. The ether layer was dried over magnesium sulfate and the ether was distilled off. The resulting residue was further distilled under reduced pressure to yield 2.0 g of 1-ethyl-2methyl-3-(10,11)-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)pyrrolidine (boiling point 167°C/4 mm Hg.).

References

Merck Index 7375 DOT 9 (6) 247 (1973) & 10 (9) 325 (1974) I.N. p. 784

Deguchi, Y., Nojima, H. and Kato, N.; U.S. Patent 3,454,495; July 8, 1969; assigned to Fujisawa Pharmaceutical Co., Ltd. (Japan)

PIROMIDIC ACID

Therapeutic Function: Antibacterial (urinary)

Chemical Name: 8-Ethyl-5,8-dihydro-5-oxo-2-(1-pyrrolidinyl)pyrido[2,3-d]pyrimidine-6-

carboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 19562-30-2

Trade Name	Manufacturer	Country	Year Introduced
Panacid	Dainippon	Japan	1972
Pirodal	I.S.F.	Italy	1977
Bactramyl	Carrion	France	1978
Septural	Gruenenthal	W. Germany	1978
Adelir	Teikoku	Japan	-
Coltix	Gerardo Ramon	Argentina	_
Panerco	Erco	Denmark	_
Purim	Mayoly-Spindler	France	_
Reelon	Sanken	Japan	_
Uriclor	Almirali	Spain	-
Urisept	Srbolek	Yugoslavia	
Zaomeal	Isei	Japan	-

6-Amino-2-methylthiopyrimidine Ethoxymethylenemalonic acid diethyl ester Sodium hydroxide Diethyl sulfate Pyrrolidine

Manufacturing Process

150 mg of 6-carboxy-5,8-dihydro-8-ethyl-2-methylthio-5-oxopyrido[2,3-d] pyrimidine was added to 30 ml of absolute ethanol containing 1.1 g of dissolved pyrrolidine, and the mixture was reacted for 5 hours at 95°C in a sealed tube. The solvent was removed by distillation, and the residue was recrystallized from methanol-chloroform. There were obtained 111 mg of 6-carboxy-5,8-dihydro-8-ethyl-5-oxo-2-pyrrolidino-pyrido[2,3-d] pyrimidine having a MP of 314° to 316°C.

The starting material is produced by reacting 6-amino-2-methylthiopyrimidine with ethoxymethylenemalonic acid diethyl ester. That intermediate is thermally treated in diphenyl ether to give 6-ethoxycarbonyl-2-methylthio-5-oxo-5,8-dihydro-pyrido[2,3-d] pyrimidine. The ethoxy group is hydrolyzed off with sodium hydroxide and one nitrogen is ethylated with diethyl sulfate to give the starting material. These are the same initial steps as used in the pipemidic acid syntheses earlier in this volume.

References

Merck Index 7377 Kleeman & Engel p. 739 OCDS Vol. 2 p. 470 (1980) DOT 7 (5) 188 (1971)

I.N. p. 36

Dainippon Pharmaceutical Co. Ltd., Japan; British Patent 1,129,358; October 2, 1968 Minami, S., Shono, T., Shmmizu, M. and Takase, Y.; U.S. Patent 3,673,184; June 27, 1972; assigned to Dainippon Pharmaceutical Co. Ltd.

Pesson, M.E. and Geiger, S.W.; U.S. Patent 4,125,720; November 14, 1978; assigned to Laboratoire Roger Bellon

PIROZADIL

Therapeutic Function: Hypolipidemic; platelet aggregation inhibitor

Chemical Name: 2,6-Pyridinemethanol-bis(3,4,5-trimethoxybenzoate)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54110-25-7

Trade Neme	Manufacturer	Country	Year Introduced
Pemix	Prodes	Spain	1982

3.4.5-Trimethoxybenzoic acid Thionyl chloride Pyridine-2,6-dimethanol

Manufacturing Process

15 kg (70.7 mols) of 3,4,5-trimethoxybenzoic acid and 65 liters of benzene were introduced into a reactor, to which mixture was added 27.4 liters of thionyl chloride. The mass was heated to 56°C to 70°C during a period of 5 hours. The excess of benzene and thionyl chloride was distilled under vacuum. The residue was kept under vacuum at 120°C to 123°C for 1 hour, to obtain a hard crystalline solid.

A solution comprising 3.24 kg (23.3 mols) of pyridine-2,6-dimethanol in 35 liters of pure pyridine was added to the residue and the mass was heated to 80°C for 2½ hours. The reaction mass became brown in color. The chlorhydrate of pyridine so formed was cooled and crystallized. The resulting reaction mass was then poured into water. The precipitate obtained was filtered, repeatedly rinsed with water, and dissolved in 400 liters of methanol. The resulting solution was filtered with activated charcoal. From this filtration 50 liters of methanol were distilled at normal pressure and then crystallized. 8.35 kg (15.8 mols) of pyridine-2,6dimethanol trimethoxybenzoate were obtained, which represented a yield of 68%.

The product was a white crystalline solid which melted at 119°C to 126°C. Recrystallization in methanologie gave a product which melted at 126°C to 127°C.

References

Merck Index 7379 DFU 6 (5) 290 (1981) DOT 18, Suppl. 1

Instituto International Terapeutico; British Patent 1,401,608; July 30, 1975

PIRPROFEN

Therapeutic Function: Antiinflammatory

Chemical Name: α-(3-Chloro-4-pyrrolinophenyl)-propionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 31793-07-4

Trade Name	Manufacturer	Country	Year Introduced
Rengasil	Ciba-Geigy	France	1981
Rengasil	Ciba-Geigy	Switz.	1981

Raw Materials

Ethyl α -(3-chloro-4-aminophenyl)-propionate hydrochloride 1.4-Dibromo-2-butene

Manufacturing Process

To the mixture of 85.5 g ethyl α -(3-chloro-4-eminophenyl)-propionate hydrochloride, 142 g sodium carbonate and 600 ml dimethyl formamide, 107 g 1,4-dibromo-2-butene are added dropwise while stirring and the whole is refluxed for 5 hours and allowed to stand overnight at room temperature. The mixture is filtered, the filtrate evaporated in vacuo, the residue is triturated with hexane, the mixture filtered, the residue washed with petroleum ether and the filtrate evaporated. The residue is combined with 280 ml 25% aqueous sodium hydroxide and the mixture refluxed for 8 hours. After cooling, it is diluted with water, washed with diethyl ether, the pH adjusted to 5 to 5.2 with hydrochloric acid and extracted with diethyl ether. The extract is dried, filtered, evaporated and the residue crystallized from benzenehexane, to yield the α -(3-chloro-4-pyrrolinophenyl)-propionic acid melting at 94°C to 96°C,

References

Merck Index 7380 DFU 1 (1) 23 (1976) OCDS Vol. 2 p. 69 (1980) DOT 11 (3) 103 (1975) I.N. p. 784

Carney, R.W.J. and De Stevens, G.; U.S. Patent 3,641,040; February 8, 1972; assigned to Ciba Geigy Corp.

PIVAMPICILLIN

Therapeutic Function: Antibacterial

Chemical Name: 6-[Aminophenylacetyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo-[3.2.0] heptane-2-carboxylic acid (2,2-dimethyl-1-oxopropoxy)methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33817-20-8; 26309-95-5 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Maxifen	Sharp & Dohme	W. Germany	1972
Berocillin	Boehr. Ingel.	W. Germany	1972
Pondocillina	Sigma Tau	Italy	1972
Pivatil	MSD	Italy	1972
Pivatil	Chibret	France	1973
Pondocillin	Burgess	U.K.	1980
Acerum	Jeba	Spain	_
Bensamin	Turro	Spain	_
Brotacilina	Escaned	Spain	_
Co-Pivam	Sanchez Covisa	Spain	
Crisbiotic	Crisol	Spain	-
Dancilin	Hemofarm	Yugoslavia	_
Devonian	Perga	Spain	-
Diancina	Septa	Spain	-

Trade Name	Manufacturer	Country	Year Introduced
Inacilin	Inibsa	Spain	-
Isvitrol	Therapia	Spain	_
Kesmicina	Kessler	Spain	-
Lancabiotic	Lanzas	Spain	_
Novopivam	Osiris	Argentina	_
Oxidina	Sanitas	Argentina	-
Penimenal	Alalan	Spain	_
Pibena	Jebena	Spain	_
Piva	Efesal	Spain	_
Pivabiot	Galepharma Iberica	Spain	_
Pivadilon	De La Cruz	Spain	_
Pivambol	B.O.I.	Spain	_
Pivamkey	Pereira	Spain	_
Pivapen	Juste	Spain	_
Pivastol	Graino	Spain	-
Piviotic	Miquel	Spain	_
Sanguicillin	Zdravlje	Yugoslavia	_
Tam-Cilin	Quim i a	Spain	_
Tryco	Durban	Spain	_
Vampi-Framan	Oftalmiso	Spain	_

Potassium $D(-)-\alpha$ -azidobenzylpenicillinate Chloromethyl pivalate Hydrogen

Manufacturing Process

(A) Pivaloyloxymethyl $D(-)-\alpha$ -azidobenzylpenicillinate: To a suspension of potassium D(-)- α -azidobenzylpenicillinate (4.14 g) and potassium dicarbonate (1.5 g) in acetone (100 ml) and 10% aqueous sodium iodide (2 ml), chloromethyl pivalate (2.7 ml) was added and the mixture refluxed for 2 hours. After cooling, the suspension was filtered and the filtrate evaporated to dry ness in vacuo. The remaining residue was washed repeatedly by decantation with petroleum ether to remove unreacted chloromethyl pivalate. The oily residue was taken up in ethyl acetate (100 ml), and the resulting solution washed with aqueous sodium bicarbonate and water, dried and evaporated in vacuo to yield the desired compound as a yellowish gum, which crystallized from ether, melting point 114°C to 115°C.

(B) Pivaloyloxymethyl D(-)- α -aminobenzylpenicillinate, hydrochloride: To a solution of pivaloyloxymethyl $D(-)-\alpha$ -azidobenzylpenicillinate (prepared as described above) in ethyl acetate (75 ml) a 0.2 M phosphate buffer (pH 2.2) (75 ml) and 10% palladium on carbon catalyst (4 g) were added, and the mixture was shaken in a hydrogen atmosphere for 2 hours at room temperature. The catalyst was filtered off, washed with ethyl acetate (25 ml) and phosphate buffer (25 ml), and the phases of the filtrate were separated. The aqueous phase was washed with ether, neutralized (pH 6.5 to 7.0) with aqueous sodium bicarbonate, and extracted with ethyl acetate (2 X 75 ml). To the combined extracts, water (75 ml) was added, and the pH adjusted to 2.5 with 1 N hydrochloric acid. The aqueous layer was separated, the organic phase extracted with water (25 ml), and the combined extracts were washed with ether, and freeze-dried. The desired compound was obtained as a colorless, amorphous powder.

The purity of the compound was determined iodometrically to be 91%. A crystalline hydrochloride was obtained from isopropanol with a melting point of 155°C to 156°C (dec.).

References

Merck Index 7387 Kleeman & Engel p. 741 OCDS Vol. 1 p. 414 (1977)

DOT 8 (4) 148 (1972) & 19 (6) 331 (1983)

I.N. p. 785 REM p. 1201

Frederiksen, E.K. and Godtfredsen, W.O.; U.S. Patent 3,660,575; May 2, 1972; assigned to Lovens Kemiske Fabrik Produktionsaktieselskab (Denmark)

Binderup, E.T., Petersen, H.J., and Liisberg, S.; U.S. Patent 3,956,279; May 11, 1976; assigned to Leo Pharmaceutical Products Ltd. (Denmark)

PIVMECILLINAM

Therapeutic Function: Antibacterial

Chemical Name: 6-[[(Hexahydro-1H-azepin-1-yl)methylene]amino]-3,3-dimethyl-7-oxo-4thia-1-azabicyclo[3,2,0] heptane-2-carboxylic acid (2,2-dimethyl-1-oxopropoxy) methyl ester

Common Name: Amdinocillin pivoxil

Structural Formula:

Chemical Abstracts Registry No.: 32886-97-8

Trade Name	Manufacturer	Country	Year Introduced
Selexid	Leo	U.K.	1977
Melysin	Takeda	Japan	1979
Selexid	Leo	Switz.	1980
Negaxid	Sigma Tau	italy	1980

Raw Materials

N-Formylhexamethylene imine

Oxalvi chloride

Pivaloyloxymethyl 6-aminopenicillinate tosylate

Sodium bicarbonate

Manufacturing Process

The starting material N-formylhexamethyleneimine was prepared from hexamethyleneimine and chloral.

12.7 g of N-formylhexamethyleneimine were dissolved in 250 ml of dry ether. While stirring and cooling, 8.5 ml of oxalyl chloride in 50 ml of dry ether were added dropwise, whereafter the mixture was stirred overnight at room temperature. The precipitated amide chloride was filtered off and washed with dry ether, and was placed in an exsiccator.

27.5 g of pivaloyloxymethyl 6-aminopenicillinate tosylate was suspended in 1,500 ml of ethyl acetate with continuous stirring and cooling in an ice bath and 950 ml of ice-cold aqueous sodium bicarbonate (2%) were added. The ethyl acetate layer was separated and was shaken with 750 ml of ice-water containing 25 ml of aqueous sodium bicarbonate (2%), whereafter it was dried over magnesium sulfate at 0°C. After filtration, the solution was evaporated to dry-

ness in vacuo. The residue was dissolved in a solution of 15.5 ml of dry triethylamine in 75 ml of dry alcohol-free chloroform. To this solution, 10 g of the above prepared amide chloride dissolved in 75 ml of dry alcohol-free chloroform were added dropwise at a temperature of about -20°C. After standing for half an hour at -20°C, the temperature was raised to 0°C within 15 minutes and the solution was evaporated to dryness in vacuo. The residue was stirred with 750 ml of ether. Undissolved triethylamine hydrochloride was filtered off, and the filtrate was again evaporated to dryness in vacuo. The residue was reprecipitated from acetone (200 ml) - water (150 ml). After recrystallization from cyclohexane an analytically pure product was obtained with a melting point of 118.5°C to 119.5°C.

References

Merck Index 391 Kleeman & Engel p. 741 DOT 19 (6) 331 (1983) I.N. p. 786 REM p. 1201

Lund, F.J.; U.S. Patent 3,957,764; May 18, 1976; assigned to Lovens Kemiske Fabrik Produktionsartieselskab (Denmark)

PIXIFENIDE

Therapeutic Function: Antiinflammatory

Chemical Name: 1-[[4-[1-(Hydroxyimino)ethyl] phenoxy] acetyl] piperidine

Common Name: N-(p-1-Nitrosoethyl)phenoxyacetylpiperidine, pifoxime

Structural Formula:

Chemical Abstracts Registry No.: 31224-92-7

Trade Name	Manufacturer	Country	Year Introduced
Flamanil	Salvoxyl/Wander	France	1975

Raw Materials

p-Hydroxyacetophenone Chloroacetic acid Methanol Piperidine Hydroxylamine

Manufacturing Process

- (A) Preparation of p-Acetylphenoxyacetic Acid: p-Hydroxy-acetophenone is treated with chloroacetic acid in aqueous solution in the presence of sodium hydroxide. The desired acid is then isolated from its sodium salt in a total yield of 80 to 82%, excess of p-hydroxyacetophenone having been extracted with methylene chloride.
- (B) Preparation of Methyl p-Acetylphenoxy-Acetate: A mixture of 80 g of the acid obtained in (A) and 200 ml of methyl alcohol in 600 ml of dichloromethane is refluxed in the presence of sulfuric acid. The desired ester is isolated in accordance with a method known per se, and recrystallized. When the refluxing period is 12 hours, the ester is obtained with a yield of 70%. When the refluxing period is 18 hours, the yield for this ester is 85%.

- (C) Preparation of N-(p-Acety/phenoxy-Acety/)-Piperidine: The ester from (B) is refluxed for 8 hours with 2.5 mols of thoroughly dried piperidine. Then 1 volume of water is added and the product is left to crystallize in the cold. The desired amide is obtained in an 80% yield.
- (D) Preparation of N-(p-[1-Isonitrosoethyl]-Phenoxy-Acetyl)-Piperidine: The amide from (C) is refluxed for 5 hours with technical (98%) hydroxylamine and alcohol denatured with methanol. The desired product is obtained in a 75% yield.

In semiindustrial synthesis, to achieve better yields, it is possible to omit (A), by directly preparing the ester (B) by reaction of p-hydroxy acetophenone on ethyl 2-bromoacetate in the presence of potassium carbonate in butanone. The yield of ester is 90%, and elimination of excess of p-hydroxyacetophenone is effected by washing with sodium hydroxide.

References

Merck Index 7300 Kleeman & Engel p. 725 DOT 12 (2) 50 (1976) Mieville, A.; U.S. Patent 3,907,792; September 23, 1975

PIZOTYLINE HYDROCHLORIDE

Therapeutic Function: Migraine therapy

Chemical Name: 4-(9,10-Dihydro-4H-benzo[4,5] cyclohepta[1,2-b]thien-4-ylidene-1-methyl-

piperidine hydrochloride

Common Name: Pizotifen

Structural Formula:

Chemical Abstracts Registry No.: 15574-96-6 'Rase)

Trade Name	Manufacturer	Country	Year Introduced
Sandomigran	Sandoz	Italy	1972
Sandom igran	Sandoz	W. Germany	1974
Sanomigran	Wander	U,K.	1975
Mosegor	Wander	W. Germany	1976
Sanmigran	Salvoxy/Wander	France	1976
Polomigran	Polfa	Poland	_

Raw Materials

ThienvI-(2)-acetic acid **Phosphorus** 1-Methyl-4-chloropiperidine Hydrogen chloride

Phthalic anhydride Phosphorus pentoxide Magnesium

Manufacturing Process

(A) Preparation of Thenylidene-(2)-Phthalide: 24,2 g of thienyl-(2)-acetic acid, 52.0 g of phthalic acid anhydride, 4.0 g of anhydrous sodium acetate and 125 ml of 1-methylpyrrolidone-(2) are heated while stirring in an open flask for 3 hours to 205° to 208°C, while nitrogen is passed through. It is then cooled and the viscous reaction mixture poured into 1 liter of water. The precipitated substance is filtered off, washed with water and then dissolved in 200 ml of chloroform. After filtering off some undissolved substance, shaking is effected twice with 100 ml of 2N sodium carbonate solution and then with water, drying is then carried out over sodium sulfate and the volume is reduced by evaporation. The crude phthalide is repeatedly recrystallized from ethanol, while treating with animal charcoal. It melts at 114° to 115°C.

(B) Preparation of o-[2-Thienyl-(2')-Ethyl] Benzoic Acid: 24.0 g of thenylidene-(2)-phthalide. 8.8 g of red pulverized phosphorus, 240 ml of hydrochloric acid (d = 1.7) and 240 ml of glacial acetic acid are heated to boiling under nitrogen and while stirring vigorously. 70 ml toluen are then added and 6.0 g of red phosphorus added in small portions over a period of 1 hour. It is then poured into 3 liters of ice water, stirred with 300 ml of chloroform and the phosphorus removed by filtration.

The chloroform phase is then removed, the aqueous phase extracted twice more with 200 ml of chloroform and the united extracts shaken out 4 times, each time with 200 ml of 2 N sodium hydroxide solution. The alkaline solution is then rendered acid to Congo red reagent, using hydrochloric acid and extracted 3 times with chloroform. After drying over sodium sulfate and evaporating the solvent, the residue is chromatographed on aluminum oxide (Activity Stage V). The substance eluted with benzene and benzene/chloroform (1:1) is recrystallized from chloroform/hexane (1:1); MP 107° to 109°C.

(C) Preparation of 9,10-Dihydro-4H-Benzo [4,5] Cyclohepta [1,2-b] Thiophen-(4)-One: 200 ml of 85% phosphoric acid and 112 g of phosphorus pentoxide are heated to 135°C. 7.0 g of o-[2-thienyl-(2')-ethyl] benzoic acid are then introduced while stirring thoroughly over a period of 30 min. Stirring is then continued for another hour at 135°C and the reaction mixture is then stirred into 1 liter of ice water. Extraction is then effected 3 times, using 250 ml ether portions, the ethereal extract is washed with 2 N sodium carbonate solution, dried over sodium sulfate and reduced in volume by evaporation. The residue is boiled up with 55 ml of ethanol, the solution freed of resin by decanting and then stirred at room temperature for 6 hours with animal charcoal. It is then filtered off, reduced in volume in a vacuum and the residue distilled. BP 120° to 124°C/0.005 mm, $n_D^{24.5} = 1.6559$.

(D) Preparation of 4-[1'-Methyl-Piperidyl-(4')]-9,10-Dihydro-4H-Benzo[4,5] Cyclohepta[1,2b] Thiophen-(4)-ol: 0.94 g of magnesium filings which have been activated with iodine are covered with a layer of absolute tetrahydrofuran and etched with a few drops of ethylene bromide. A solution of 5.0 g of 1-methyl-4-chloropiperidine in 5 ml of tetrahydrofuran is then added dropwise and boiling then effected for a further hour under reflux. After cooling to room temperature, the solution of 4.5 g of 9,10-dihydro-4H-benzo[4,5] cyclohepta[1,2-b] thiophen-(4)-one in 5 ml of tetrahydrofuran is added dropwise.

Stirring is carried out first for 3 hours at room temperature and then for 2 hours at boiling temperature, it is then cooled and poured into 300 ml of ice-cold 20% ammonium chloride solution. It is then shaken out with methylene chloride, the methylene chloride solution washed with water and shaken 3 times with 30 ml portions of aqueous 2 N tartaric acid solution. The tartaric acid extract is rendered alkaline while cooling thoroughly and then extracted twice with methylene chloride. After washing with water, drying over potassium carbonate and reducing in volume by evaporation, the residue is recrystallized from ethanol. MP 197° to 199°C.

(E) Preparation of 4-[1'-Methyl-Piperidylidene-(4')]-9,10-Dihydro-4H-Benzo[4,5] Cyclohepta[1,2-b] Thiophene Hydrochloride: 2 g of 4-[1'-methyl-piperidyl-(4')] -9,10-dihydro-4H-benzo [4,5] cyclohepta [1,2-b] thiophen-(4)-ol, 60 ml of glacial acetic acid and 20 ml of concentrated hydrochloric acid are boiled for 30 minutes under reflux. After evaporating in a vacuum, the residue is triturated with 3 ml of acetone, the precipitated hydrochloride is then filtered off and it is recrystallized from isopropanol/ether. MP 261° to 263°C (decomposition).

References

Merck Index 7389 Kleeman & Engel p. 742 DOT 9 (6) 221 (1973) I.N. p. 786

Jucker, E., Ebnother, A., Stoll, A., Bastian, J.-M. and Rissi, E.; U.S. Patent 3,272,826; September 13, 1966; assigned to Sandoz Ltd., Switzerland

POLOXALKOL

Therapeutic Function: Pharmaceutic aid (surfactant)

Chemical Name: Poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene)

Common Name: Poloxalene

Structural Formula: HO(CH2CH2O) [CH(CH3)CH2O] (CH2CH2O) H

average values for a, b, c are: a = 12: b = 34: c = 12

Chemical Abstracts Registry No.: 9003-11-6

Trade Name	Manufacturer	Country	Year Introduced
Polykol	Upjohn	U.S.	1958
Therabloat	Norden	U.S.	_

Raw Materials

Propylene glycol Propylene oxide

Manufacturing Process

- (A) In a 1-liter 3-necked round bottom flask equipped with a mechanical stirrer, reflux condenser, thermometer and propylene oxide feed inlet, there were placed 57 g (0.75 mol) of propylene glycol and 7.5 g of anhydrous sodium hydroxide. The flask was purged with nitrogen to remove air and heated to 120°C with stirring and until the sodium hydroxide was dissolved. Then sufficient propylene oxide was introduced into the mixture as fast as it would react until the product possessed a calculated molecular weight of 2,380. The product was cooled under nitrogen, the NaOH catalyst neutralized with sulfuric acid and the product filtered. The final product was a water-insoluble polyoxypropylene glycol having an average molecular weight of 1,620 as determined by hydroxyl number or acetylation analytical test procedures.
- (B) The foregoing polyoxypropylene glycol having an average 1,620 molecular weight was placed in the same apparatus as described in procedure (A), in the amount of 500 g (0.308 mol), to which there was added 5 g of anhydrous sodium hydroxide. 105 g of ethylene oxide was added at an average temperature of 120°C, using the same technique

as employed in (A). The amount of added ethylene oxide corresponded to 17.4% of the total weight of the polyoxypropylene glycol base plus the weight of added ethylene oxide.

References

Merck Index 7431 I.N. p. 789 REM p. 1320

Lundsted, L.G.; U.S. Patent 2,674,619; April 6, 1954; assigned to Wyandotte Chemicals Corporation

POLYESTRADIOL PHOSPHATE

Therapeutic Function: Estrogen

Chemical Name: Estradiol phosphate polymer

Common Name: Polymeric ester of phosphoric acid and estradiol

Structural Formula:

-ORO- is the estradiol radical

and n is about 80

Chemical Abstracts Registry No.: 28014-46-2

Trade Name	Manufacturer	Country	Year Introduced
Estradurin	Ayerst	U.S.	1957
Estradurin	Abelio	Spain	_
Estradurin	Leo	Sweden	_

Raw Materials

Estradiol

Phosphorus oxychloride

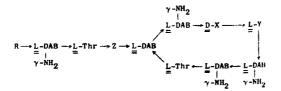
Manufacturing Process

3 g of estradiol was dissolved in 75 ml of anhydrous pyridine. The solution was cooled to -10°C, whereupon a solution of 1.1 ml of phosphorus oxychloride in 10 ml of anhydrous pyridine was added with agitation. After the addition, which required 7 minutes, the reaction mixture was kept at -10°C for a further period of 3 hours, and then it was left standing at room temperature for 15 hours. A clear solution thus resulted, to which finely crushed ice was then added. The resulting solution was evaporated in vacuum to dryness. After drying in a vacuum desiccator, 3.8 g of a white powder was obtained. This powder was suspended in 2 ml of pyridine, and 25 ml of 0.5 N sodium hydroxide was added, whereupon a solution was obtained which was then diluted with water to 100 ml.

The solution was then dialyzed through a cellophane membrane against 4 liters of water for 10 hours, with stirring. The dialysis was repeated 2 additional times, with fresh amounts of water. To the dialyzed solution there was added 2 ml of 1 N hydrochloric acid, whereupon polyestradiol phosphate was precipitated as a white bulky precipitate. This was centrifuged off and washed repeatedly with 0.1 N hydrochloric acid. Thereafter it was dried in a vacuum desiccator. The yield was 3 g of polyestradiol phosphate. The analysis shows 0.65% of water, 1.35% of pyridine and 9.3% of phosphorus (calculated on a dry sample).

Merck Index 7439 PDR p. 618 I.N. p. 790 REM p. 987

Diczfalusy, E.R., Fernő, O.B., Fex, H.J., Högberg, K.B. and Linderot, T.O.E.; U.S. Patent 2,928,849; March 15, 1960; assigned to Leo AB, Sweden


POLYMYXIN

Therapeutic Function: Antibacterial

Chemical Name: Complex antibiotic; see structural formula

Common Name: -

Structural Formula:

DAB = α, γ -diaminobutyric acid R = alkanoy! X,Y,Z = amino acids

Chemical Abstracts Registry No.: 1406-11-7

Trade Name	Manufacturer	Country	Year Introduced
Aerosporin	Burroughs Wellcome	U.S.	1951
Cortisporin	Burroughs Wellcome	U.S.	_
Mastimyxin	Chassot	Switz.	_
Neo-Polycin	Merrell Dow	U.S.	_
Neosporin	Burroughs Wellcome	U.\$.	-
Octic a ir	Pharmafair	U.S.	_
Ophthocort	Parke-Davis	U.S.	_
Otobiotic	Schering	U.S.	
Otocort	Lemmon	U.S.	-
Polyfax	Pitman-Moore	U.S.	_
Polysporin	Burroughs Wellcome	U.S.	-
Pyocidin	Berlex	U.S.	_
Topisporin	Pharmafair	U.S.	
Tri-Thalmic	Schein	U.S.	_

Raw Materials

Bacterium *Bacillus polymyxa* Nutrient medium Corn meal

Manufacturing Process

As described in U.S. Patent 2,595,605, in a pilot plant tank 225 liters of a medium containing the following ingredients was prepared: 2% ammonium sulfate, 0.2% potassium di-

hydrogen phosphate, 0.05% magnesium sulfate heptahydrate, 0.005% sodium chloride, 0.001% ferrous sulfate heptahydrate, 0.5% yeast extract, 1% dextrose, 1% calcium carbonate and 3% corn meal. The fermentation medium was adjusted to pH 7.3 to 7.4. It was then sterilized for 30 minutes at 110°C. After sterilization the pH was about 7. To the medium was added 225 ml of mineral oil.

The fermentation medium was inoculated with Bacillus polymyxa prepared as follows: A culture of Bacillus polymyxa in a tube with Trypticase soybean broth was incubated overnight at 25°C. 5 ml of this culture was transferred to 100 ml of the tank medium in a 500 ml Erlenmeyer flask which was incubated for 48 hours at room temperature. This 100 ml culture served as inoculum for one tank. During the course of fermentation the medium was aerated at the rate of 0.3 volume of air per volume of mash per minute. The temperature was maintained at about 27°C. Samples of mash were taken every 8 hours in order to determine pH and the presence of contaminants and spores. After 88 hours of fermentation the pH was about 6.3 and an assay using Escherichia coli showed the presence of 1,200 units of polymyxin per cubic centimeter. The polymyxin was extracted and purified by removing the mycelia, adsorbing the active principle on charcoal and eluting with acidic methanol.

Polymyxin is usually used as the sulfate.

References

Merck Index 7445 Kleeman & Engel p. 743 PDR pp. 671, 732, 738, 757, 888, 1034, 1232, 1380, 1415, 1429, 1606, 1645 DOT 8 (1) 21 (1972) I.N. p. 790 REM p. 1202

Ainsworth, G.C. and Pope, C.G.; U.S. Patent 2,565,057; August 21, 1951; assigned to Burroughs Wellcome & Co. (U.S.A.) Incorporated

Petty, M.A.; U.S. Patent 2,595,605; May 6, 1952; assigned to American Cyanamid Company Benedict, R.G. and Stodola, F.H.; U.S. Patent 2,771,397; November 20, 1956; assigned to the U.S. Secretary of Agriculture

POLYTHIAZIDE

Therapeutic Function: Diuretic

Chemical Name: 6-Chloro-3,4-dihydro-2-methyl-3-[[(2,2,2-trifluoroethyl)thio] methyl]-2H-

1.2.4-benzothiadiazine-7-sulfonamide-1.1-dioxide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 346-18-9

Trade Name	Manufacturer	Country	Year Introduced
Renese	Pfizer	U.S.	1961

Trade Name	Manufacturer	Country	Year Introduced
Drenusil	Pfizer	W. Germany	1962
Renese	Pfizer	Italy	1962
Renese	Pfizer	France	1965
Envarese	Pfizer	France	_
Minizide	Pfizer	U.S.	_
Nephril	Pfizer	U.K.	_
Polyregulon	Yamanouchi	Japan	_
Toleran	Medica	Finland	-

Raw Materials

Mercaptoacetaldehyde dimethylacetal

Sodium

Trifluoroethyl iodide

4-Amino-2-chloro-5-(methylsulfamyl)benzenesulfonamide

Manufacturing Process

(A) Preparation of Trifluoroethylthioacetaldehyde Dimethylacetal: To 4.6 g (0.2 mol) of metallic sodium dissolved in 75 ml of absolute methanol is rapidly added 24.4 g (0.2 mol) of mercaptoacetaldehyde dimethylacetal followed by dropwise addition of 42.0 g (0.2 mol) of trifluoroethyl iodide.

The resulting reddish mixture is refluxed on a steam bath for one hour. One half of the alcohol is removed by concentration and the remainder diluted with several volumes of water and extracted with ether. The combined ether extracts are dried over sodium sulfate. the ether then removed at reduced pressure and the residue distilled to about 30 g (BP 82°C/25 mm).

- (B) Preparation of 4-Amino-2-Chloro-5-(Methylsulfamyl)Benzenesulfonamide: The 5-substituted-2,4-disulfamyl anilines may be prepared by procedures described in the literature. for example, the general procedures in Monatsch. Chem. vol. 48, p 87 (1927), which involves the treatment of a m-substituted aniline with from 10 to 20 parts by weight of chlorosulfonic acid followed by the gradual addition of from about 90 to 170 parts by weight of sodium chloride. The resultant mixture is heated at approximately 150°C for about 2 hours after which the reaction mixture is poured into water and the resultant 5substituted aniline-2,4-disulfonyl chloride is filtered and is then treated with concentrated ammonium hydroxide or suitable amine by standard procedures to obtain the corresponding disulfonamide.
- (C) Preparation of 2-Methyl-3-(2,2,2-Trifluoroethyl)Thiomethyl-6-Chloro-7-Sulfamyl-3,4-Dihydro-1,2,4-Benzothiadiazine-1,1-Dioxide: To 4.6 g (0.015 mol) of 4-amino-2-chloro-5-(methylsulfamyl)benzenesulfonamide in 30 ml of the dimethyl ether of ethylene glycol is added 4.08 g (0.02 mol) of 2.2.2-trifluoroethylmercaptoacetaldehyde dimethylacetal followed by 1 ml of ethyl acetate saturated with hydrogen chloride gas. The resulting solution is refluxed for 1.5 hours, cooled and then slowly added to cold water dropwise with stirring. The crude product is filtered, dried and recrystallized from isopropanol (3.2 g), MP 202° to 202.5°C. A second recrystallization from isopropanol raised the MP to 202° to 203°C.

References

Merck Index 7457 Kleeman & Engel p. 743 PDR pp. 1409, 1421 OCDS Vol. 1 p. 360 (1977) I.N. p. 791 REM p. 940

McManus, J.M.; U.S. Patent 3,009,911; November 21, 1961; assigned to Chas. Pfizer & Co., Inc.

POVIDONE-IODINE

Therapeutic Function: Topical antiinfective

Chemical Name: 1-Ethenyl-2-pyrrolidinone homopolymer compound with iodine

Common Name: PVP-I

Structural Formula:

Chemical Abstracts Registry No.: 25655-41-8

Trade Name	Manufacturer	Country	Year Introduced
Betadine	Purdue Frederick	U.S.	1957
Betadine	Sarget	France	1970
Efodine	Fougera	U.S.	1978
Vagidine	Beecham	U.S.	1981
Clinidine	Clinipad	U.S.	1982
Mallisol	Mallard	U.S.	1983
ACU-Dyne	Acme	U.S.	_
Batticon	Trommsdorff	W. Germany	_
Betadine Ginecologico	Chinoin	Italy	_
Betaisodona	Mundipharma	Austria	_
Braunol	Braun	W. Germany	_
Chem-O-Dine	Remedia	S. Africa	_
Difexon	Bago	Argentina	_
Disadine	Stuart	U.K.	_
Isodine	Purdue Frederick	U.S.	_
Jodobac	Bode	W. Germany	
Jodocur	Farm, Milanese	Italy	_
Neojodin	lwaki	Japan	_
Nutradine	Restan	S. Africa	_
Pevidine	Berk	U.K.	_
Polydine	Fischer	israe!	_
Povadyne	Chaston	U.S.	_
Proviodine	Rougier	Canada	_
Summer's Eve	Fleet	U.S.	_
Topionic	Rius	Spain	

Raw Materials

Polyvinylpyrrolidone lodine

Manufacturing Process

12 g of dry polyvinylpyrrolidone having a K value of 90 (water content about 2 to 3%) was added to 6 g of solid iodine crystals in a glass bottle containing a few pebbles and beads. This was rolled for 3 days on a roller mill with occasional manual stirring to loosen the material caked on the sides of the bottle. Analysis showed that the thus-obtained product contained 35.4% total iodine and 31.91% available iodine. The material was heattreated at 95°C for 64 hours in a closed glass bottle with occasional stirring. On completion of this treatment, analysis showed that the material contained 35.3% total iodine, 25.7% available iodine, according to U.S. Patent 2,706,701.

Merck Index 7595 PDR pp. 880,888,1432 DOT 7 (4) 149 (1971) I.N. p. 793

1.N. P. 793

REM p. 1164

Beller, H. and Hosmer, W.A.; U.S. Patent 2,706,701; April 19, 1955; assigned to General Aniline & Film Corporation

Hosmer, W.A.; U.S. Patent 2,826,532; March 11, 1958; assigned to General Aniline & Film Corporation

Siggia, S.; U.S. Patent 2,900,305; August 18, 1959; assigned to General Aniline & Film Corporation

PRACTOLOL

Therapeutic Function: Antiarrhythmic

Chemical Name: N-[4-[2-hydroxy-3-[(1-methylethyl)amino]propoxy]phenyl] acetamide

Common Name: 1-(4-Acetamidophenoxy)-3-isopropylamino-2-propanol

Structural Formula:

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CHNIICH_2CH} \left(\operatorname{OH} \right) \operatorname{CH_2O} \\ \end{array} \begin{array}{c} \operatorname{NHCCH_3} \\ \\ \circ \\ \end{array}$$

Chemical Abstracts Registry No.: 6673-35-4

Trade Name	Manufacturer	Country	Year Introduced
Eraldin	I.C.I.	U.K.	1970
Eraldin	I.C. Pharma	Italy	1972
Dalzic	Rhein/Pharma	W. Germany	1973
Eraldine	I.C.I. Pharma	France	1973
Cardiol	Orion	Finland	
Pralon	Farmos	Finland	_

Raw Materials

4-Acetamidophenol Epichlorohydrin Isopropylamine

Manufacturing Process

The 1-(4-acetamidophenoxy)-2,3-epoxypropane used as starting material may be obtained as follows. To a solution of 4.5 parts of 4-acetamidophenol and 1.5 parts of sodium hydroxide in 50 parts of water at 15°C, there is added 3.5 parts of epichlorohydrin. The mixture is stirred for 16 hours at ambient temperature, filtered and the solid residue is washed with water. There is thus obtained 1-(4-acetamidophenoxy)-2,3-epoxypropane, MP 110°C.

A mixture of 2 parts of 1-(4-acetamidophenoxy)-2,3-epoxypropane and 10 parts of isopropylamine is stirred at ambient temperature for 16 hours. The resulting solution is

evaporated to dryness under reduced pressure and the residue is crystallized from butyl acetate. There is thus obtained 1-(4-acetamidophenoxy)-3-isopropylamino-2-propanol. MP 134° to 136°C.

References

Merck Index 7597 OCDS Vol. 2 pp. 106, 108 (1980) DOT 6 (5) 188 (1970) I.N. p. 794

Howe, R. and Smith, L.H.; U.S. Patent 3,408,387; October 29, 1968; assigned to Imperial Chemical Industries Limited, England

PRAJMALINE BITARTRATE

Therapeutic Function: Antiarrhythmic

Chemical Name: 17R,21α-Dihydroxy-4-propylaimalanium

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 2589-47-1; 35080-11-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Neo-Gilurtymal	Giulini	W. Germany	1973
Neo-Aritmina	Byk-Gulden	Italy	1979

Raw Materials

Ajmaline	Allyl bromide
Sodium bicarbonate	Tartaric acid

Manufacturing Process

1 g of aimaline was dissolved in 4 cc of chloroform, and 1 cc of allyl bromide was added to the resulting solution. The reaction mixture thus obtained was allowed to stand for 24 hours at room temperature. Thereafter, the clear reaction solution was briefly cooled to a temperature below 0°C, whereby crystallization set in. The crystals were filtered off and were then recrystallized from a mixture of absolute methanol and absolute ether. The purified colorless: crystalline product was identified to be N-(b)-allyl-ajmalinium-bromide having a melting point of 252°C to 254°C.

75 g of N-(b)-n-propyl-ajmalinium-bromide were suspended in 3 liters of an aqueous saturated solution of sodium bicarbonate, and the suspension was admixed with 3 liters of chloroform. The resulting mixture was vigorously stirred for six to eight hours. Thereafter, the chloroform phase was separated and evaporated to dryness. 68 g of a yellow syrup remained as a

residue. The aldehyde base was dissolved in about 150 cc of acetone and, while stirring and cooling on an ice bath, the solution was slowly admixed with a solution of 25 g of tartaric acid in 2 liters of acetone. The fine white precipitate formed thereby was separated by vacuum filtration, washed with ether and dried. The raw product, weighing 80 g, was recrystallized once from a mixture of ethanol and ether, yielding 50 g of N-(b)-n-propyl ajmalinium hydrogen tartrate having a melting point of 149°C to 152°C (decomposition).

References

Merck Index 7598 Kleeman & Engel p. 744

1.N. p. 794

Keck, J.; U.S. Patent 3,414,577; December 3,1968; assigned to Boehringer Ingelheim G.m.b.H. (Germany)

PRALIDOXIME CHLORIDE

Therapeutic Function: Cholinesterase reactivator (antidote for nerve gas)

Chemical Name: 2-[(Hydroxyimino)methyl] -1-methylpyridinium chloride

Common Name: 2-PAM chloride

Structural Formula:

Chemical Abstracts Registry No.: 51-15-0; 495-94-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Contrathion	Specia	France	1961
Protopam	Ayerst	U.S.	1964
Combo Pen	Rodana Res. Corp.	U.S.	-

Raw Materials

2-Pyridinealdoxime	Dimethyl sulfate
α-Picoline	Methyl chloride
Nitrosyl chloride	Sodium hydroxide

Manufacturing Process

As described in U.S. Patent 3,123,613, the preparation of the intermediate product, 2pyridinealdoxime methomethylsulfate, is as follows. 1 kg of 2-pyridinealdoxime is dissolved in 6 liters of acetone and filtered until clear. 2 kg (2 equivalents) of freshly distilled dimethyl sulfate are added and the solution mixed. In about 30 minutes crystals start to appear, after which a cooling bath is used to keep the temperature at about 30° to 35°C until the reaction is nearly complete (about 2 hours).

The mixture is allowed to stand at room temperature overnight, the crystals filtered off and washed on a filter with acetone. The product is obtained as colorless needles, which melt at 111° to 112.5°C. The methylsulfate is not stable indefinitely. For preparation of pure chloride salt it is desirable to use methylsulfate which gives no titratable acidity with sodium hydroxide using bromophenol blue as indicator.

10 g of 2-pyridinealdoxime methomethylsulfate are then dissolved in 6 cc of concentrated hydrochloric acid, and 60 cc of isopropanol is added with stirring. Crystals appear almost instantly. After 2 hours standing at room temperature, the crystals are separated by filtration and washed with acetone. The product had a melting point of 227° to 228°C and the yield was 85%.

An alternative route is described in U.S. Patent 3,155,674.

(A) Preparation of 1-Methyl-2-Picolinium Chloride: 98 ml of α -picoline is dissolved in 200 ml of methanol, cooled and 85 ml (at -68°C) of methyl chloride is added. The solution is charged to an autoclave, sealed and the nitrogen pressure of 300 psig is established. The mixture is heated at 120° to 130°C for 2 hours, cooled and opened. The resulting solution is then evaporated to dryness in vacuo, yielding a residue of 110 g. This residue is then dissolved in 50 ml of water and extracted with two 50 ml portions of ether. The aqueous phase is then diluted to 150 ml with water and an assay for ionic chloride is performed which indicates the presence of chloride ion equivalent to 721 mg/ml of 1-methyl-2-picolinium chloride.

(B) Preparation of 2-(Hydroxyiminomethyl)-1-Methyl Pyridinium Chloride: An aqueous solution of 15 ml of 1-methyl-2-picolinium chloride having a concentration of 477 mg/ml is covered with 50 ml of benzene in an atmosphere of nitrogen and cooled to below 10°C. An aqueous solution of sodium hydroxide is added dropwise and the mixture is stirred for 5 minutes and allowed to stratify. The aqueous phase is then drawn off and the benzene solution is added slowly to a solution of 3 ml of nitrosyl chloride in 175 ml of benzene containing 0.5 ml of dimethyl formamide at about 10°C in an atmosphere of nitrogen with good agitation. The mixture is then stirred for 1.5 hours and then extracted with four 5 ml of portions of water. The aqueous extracts are then concentrated in vacuo, 30 ml of isopropanol is added and the concentration is repeated. 20 ml of isopropanol is then added to the concentrated mixture, and the mixture is cooled to room temperature and filtered, yielding 3.04 g of crude 2-(hydroxyiminomethyl)-1-methyl pyridinium chloride, melting at 202° to 214°C with decomposition. The filtrate is then further concentrated to a 7 g residue which is crystallized from absolute alcohol and yields 0.9 g of 2-(hydroxyiminomethyl)-1-methyl pyridinium chloride melting at 221° to 225°C with decomposition.

References

Merck Index 7599 Kleeman & Engel p. 744 PDR p. 648 I.N. p. 794 REM p. 901

Bloch, L.P.; U.S. Patent 3,123,613; March 3, 1964; assigned to Campbell Pharmaceuticals, Inc.

Ellin, R.I., Easterday, D.E. and Kondritzer, A.A.; U.S. Patent 3,140,289; July 7, 1964; assigned to the U.S. Secretary of the Army

McDowell, W.B.; U.S. Patent 3,155,674; November 3, 1964; assigned to Olin Mathieson Chemical Corporation

PRAMIVERIN

Therapeutic Function: Antispasmodic

Chemical Name: N-(1-Methylethyl)-4,4-diphenylcyclohexanamine

Common Name: Primaverine; propaminodiphen

Structural Formula:

Chemical Abstracts Registry No.: 14334-40-8; 14334-41-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Sistalgin	Bracco	Italy	1974
Sistalgin	Cascan	W. Germany	1976

Raw Materials

4,4-Diphenyl-cyclohexen-(2)-one Isopropylamine Hydrogen

Manufacturing Process

20 g 4.4-diphenyl-cyclohexen-(2)-one, 10 g isopropylamine, and 50 ml tetrahydrofuran are agitated for 10 hours in a bomb tube at 200°C. Subsequently, the reaction mixture is cooled, and the tetrahydrofuran and the excess isopropylamine are distilled off. The remaining Schiff base is dissolved in methanol and after the addition of 2 g platinum oxide, the base is hydrogenated at normal pressure and room temperature until a quantity of hydrogen corresponding to 2 mols has been absorbed.

The mixture is filtered off from the catalyst, made acidic with dilute hydrochloric acid, and the methanol is removed under vacuum. The remaining aqueous solution is made alkaline with solution of sodium hydroxide and extracted with ether. After drying and concentrating the ether extract, there is obtained 17 g 1-isopropylamino-4,4-diphenyl-cyclohexane, boiling point 164°C to 165°C/0.05 mm. The hydrochloride melts at 230°C.

References

Merck Index 7602 Kleeman & Engel p. 745 DOT 11 (8) 320 (1975) I.N. p. 795

Unger, R., Sommer, S., Schorscher, E. and Encakel, H.J.; U.S. Patent 3,376,312; April 2, 1968; assigned to E. Merck A.G. (Germany)

PRAMOXINE HYDROCHLORIDE

Therapeutic Function: Topical anesthetic

Chemical Name: 4-[3-(4-Butoxyphenoxy)propyl] morpholine hydrochloride

Common Name: Pramocaine hydrochloride; proxazocain hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 637-58-1; 140-65-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tronothane	Abbott	U.S.	1954
Tronothane	Abbott	France	1956
Proctofoam	Reed Carnrick	U.S.	1975
Prax	Ferndale	U.S.	1980
Analpram	Ferndale	U.S.	_
Anusol	Parke Davis	U.S.	_
F.E.P.	Boots	U.S.	_
Fleet Relief	Fleet	U.S.	-
Otic-HC	Hauck	U.S.	_
Pramosone	Ferndale	U.S.	_
Tronolane	Ross	U.S.	_
Zone-A	U.A.D. Labs	U.S.	-

Raw Materials

Hydroquinone monobutyl ether Potassium hydroxide

γ-Morpholinopropyl chloride Hydrogen chloride

Manufacturing Process

About 5.6 g of potassium hydroxide is dissolved in about 150 cc of refluxing ethanol, and then about 16.6 g of hydroquinone monobutyl ether is added to the alcoholic solution. When the hydroquinone is dissolved, about 16.3 g of γ -morpholinopropyl chloride (dissolved in a small amount of ethanol) is added to the refluxing solution. The solution is refluxed for about 24 hours and then cooled. The product is recovered by filtering the reaction mixture and then removing the solvent by vacuum distillation. The oily residue is acidified and shaken with ether. The acidic phase is made strongly alkaline with 40% sodium hydroxide, and the oil which separates is extracted into ether. The ethereal phase is dried, and the solvent removed by vacuum distillation. The product distills at 183° to 184°C at a pressure of 2.8 mm. The hydrochloride salt of the foregoing base is prepared by dissolving the base in ether and acidifying with hydrochloric acid and is found to have a MP of 181° to 183°C.

References

Merck Index 7603 Kleeman & Engel p. 745 PDR pp. 684, 875, 880, 928, 1316, 1565, 1808 OCDS Vol. 1 p. 18 (1977) I.N. p. 795 REM p. 1057

Wright, H.B. and Moore, M.B.; U.S. Patent 2,870,151; January 20, 1959; assigned to Abbott Laboratories

PRANOPROFEN

Therapeutic Function: Analgesic, antiinflammatory

Chemical Name: 2-(5H-[1] benzopyrano[2,3-b] -pyridin-7-yl)propionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52549-17-4

Trade Name	Manufacturer	Country	Year Introduced
Niflan	Yoshitomi	Japan	1981

Raw Materials

Ethyl 2-cyano-2-(5H-[1] benzopyrano[2,3-b] -pyridin-7-yl)propionate Hydrogen chloride

Manufacturing Process

A mixture of 100 g of ethyl 2-cyano-2-(5H-[1] benzopyrano[2,3-b]-pyridin-7-yl)propionate, 500 ml of glacial acetic acid and 200 g of concentrated hydrochloric acid is refluxed for 48 hours. The reaction mixture is concentrated, and the residue is dissolved in hot water. The solution is adjusted to pH 2 to 3 by addition of 10% sodium hydroxide. The resulting crystalline precipitate is washed thoroughly with water, and recrystallized from aqueous dioxane to give 74 g of 2-(5H-[1] benzopyrano[2,3-b]-pyridin-7-yl)propionic acid as white crystals melting at 183°C to 183.5°C.

References

Merck Index 7604

DFU 2 (3) 217 (1977) (As Y-8004) & 2 (12) 829 (1977)

Nakanishi, M., Oe, T. and Tsuruda, M.; U.S. Patent 3,931,205; January 6, 1976; assigned to Yoshitomi Pharmaceutical Industries, Ltd.

PRAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-Chloro-1-(cyclopropylmethyl)-1,3-dihydro-5-phenyl-2H-1,4-benzodiaze-

pin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 2955-38-6

Trade Name	Manufacturer	Country	Year Introduced
Demetrin	Goedecke	W. Germany	1973
Centrax	Parke Davis	U.S.	1977
Demetrin	Cosmopharm	Switz.	1978
Lysanxia	Substantia	France	1979
Prazene	Parke Davis	Italy	1980
Trepidan	Sigma Tau	Italy	1980
Centrax	Warner William	U.K.	1981
Demetrin	Parke Davis	France	1982
Reapam	Goedecke	W. Germany	_
Verstran	Warner-Chilcott	U.S.	-

Raw Materials

2-Amino-5-chlorobenzophenone Cyclopropane carboxylic acid chloride Phthalimidoacetyl chloride

Lithium aluminum hydride Manganese dioxide Hydrazine hydrate

Manufacturing Process

Preparation of 2-Cyclopropylcarbonylamido-5-Chlorobenzophenone: To 400.5 g (1.73 mols) of 2-amino-5-chlorobenzophenone dissolved in 220 g (2.18 mols) of triethylamine and 3.5 liters of tetrahydrofuran is added cautiously 181 g (1.73 mols) of cyclopropanecarboxylic acid chloride. The reaction is refluxed 2½ hours and allowed to cool to room temperature. The solvent is then removed under vacuum to obtain 2-cyclopropylcarbonylamido-5-chlorobenzophenone as a residue which is dissolved in 1 liter of methylene chloride, washed twice with 5% hydrochloric acid, and then twice with 10% potassium hydroxide. The methylene chloride solution is then dried over anhydrous magnesium sulfate, filtered and the solvent removed under vacuum. The residue is recrystallized from 1,500 ml of methanol, charcoal-treating the hot solution to give 356 g of 2-cyclopropylcarbonylamido-5-chlorobenzophenone, MP 105° to 105.5°C (69% yield).

Preparation of 2-Cyclopropylmethylamino-5-Chlorobenzhydrol: To a slurry of 94.8 g (2.47 mols) of lithium aluminum hydride in 1.2 liters of tetrahydrofuran is added with stirring a solution of 356 g (1.18 mols) of 2-cyclopropylcarbonylamido-5-chlorobenzophenone in 1.8 liters of tetrahydrofuran. The addition takes 80 minutes while maintaining gentle refluxing, and the reaction mixture is then refluxed overnight and allowed to cool to room temperature over a period of 3 days. The complex formed in the reaction mixture is then hydrolyzed with water.

During the hydrolysis, 500 ml of tetrahydrofuran is added to facilitate stirring. At a point where the flocculant white precipitate settles quickly when stirring is interrupted, the mixture is filtered, the filter cake washed with solvent, the combined filtrates dried over magnesium sulfate, filtered and the solvent removed under vacuum to obtain 2-cyclopropylmethylamino-5-chlorobenzhydrol as a residue. The residue is recrystallized from 1,300 ml of Skelly B, giving 315 g of 2-cyclopropylmethylamino-5-chlorobenzhydrol, MP 85° to 85.5°C (93% yield).

Preparation of 2-Cyclopropylmethylamino-5-Chlorobenzophenone: To a solution of 315 g (1.09 mols) of 2-cyclopropylmethylamino-5-chlorobenzhydrol in 4 liters of benzene is added 453.6 g (5.22 mols) of manganese dioxide, freshly prepared according to the method of Attenburrow et al, J.C.S. 1952, 1104. The mixture is then refluxed for 11/4 hours, filtered, and the filtrate evaporated under vacuum. The reddish residue is recrystallized from 510 ml of 90% acetone-10% water, giving 181 g of pure 2-cyclopropylmethylamino-5-chlorobenzophenone, MP 79° to 80°C (58% yield). Upon concentration of the mother liquor a second crop of 2-cyclopropylmethylamino-5-chlorobenzophenone weighing 34.1 g and melting at 76.5°-78°C are obtained.

Preparation of 2-(N-Phthalimidoacetyl-N-Cyclopropylmethyl)-Amino-5-Chlorobenzophenone: To a solution of 36.0 g (0.126 mol) of 2-cyclopropylmethylamino-5-chlorobenzophenone in 500 ml of tetrahydrofuran is added 50.7 g (0.252 mol) of phthalimidoacetyl chloride. The resulting solution is refluxed for 16 to 24 hours, the solvent removed under vacuum, the residual oil crystallized from 200 ml of ethanol and recrystallized from 500 ml of 80% ethanol-20% tetrahydrofuran giving 44.7 g of 2-(N-phthalimidoacetyl-N-cyclopropylmethyl)-amino-5-chlorobenzophenone, MP 163° to 164°C (75% yield).

Preparation of 1-Cyclopropylmethyl-5-Phenyl-7-Chloro-1H-1,4-Benzodiazepine-2(3H)-one: To a solution of 39.5 g (0.0845 mol) of 2-(N-phthalimidoacetyl-N-cyclopropylmethyl)amino-5-chlorobenzophenone in a mixture of 423 ml of chloroform and 423 ml of ethanol is added 9.52 g (0.1903 mol) of hydrazine hydrate and 9.52 ml of water. This solution is allowed to stand at room temperature. In 3 hours a precipitate begins to form in the solution. After standing 16 to 24 hours a voluminous pulpy white precipitate forms. The solvents are removed under vacuum while keeping the temperature under 40°C and the residue is partitioned between dilute ammonia water and ether.

The aqueous layer is separated and washed with ether, the ether extracted with 5% hydrochloric acid, the acidic solution is made basic with 10% sodium hydroxide and again extracted with ether. Since some spontaneous crystallization occurs in the ether, the solvent is removed without drying under vacuum and the residue is recrystallized from 35 ml of ethanol giving 18.0 g of 1-cyclopropylmethyl-5-phenyl-7-chloro-1H-1,4-benzodiazepine-2(3H)-one, MP 145° to 146°C (65% yield), according to U.S. Patent 3,192,199.

References

Merck Index 7608 Kleeman & Engel p. 747 PDR p. 1320 OCDS Vol. 2 p. 405 (1980) DOT 2 (3) 119 (1966); 9 (6) 237 (1973); & 10 (5) 179 (1974) I.N. p. 796 REM p. 1063

McMillan, F.H. and Pattison, I.; U.S. Patent 3,192,199; June 29, 1965 Wuest, H.M.; U.S. Patent 3,192,200; June 29, 1965

PRAZIQUANTEL

Therapeutic Function: Anthelmintic

Chemical Name: 2-(Cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a] isoquinolin-4-one

quinoiin-4-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 55268-74-1

Trade Name	Manufacturer	Country	Year Introduced
Cesol	Merck	W. Germany	1980
Biltricide	Bayer	W. Germany	1980
Cenaride	Merck Clevenot	France	1981
Biltricide	Bayer	France	1983
Biltricide	Miles	U.S.	1983
Droncit	Bayvet	U.S.	_

Raw Materials

 $2\text{-Cyclohexylcarbony!} \ 4\text{-}oxo-2,3,6,7-tetrahydro} \ 4\text{H--pyrazino} \ [2,1-a] \ is oquino line Hydrogen$

Manufacturing Process

15 g of a nickel-aluminum alloy (1:1) is introduced in incremental portions and under agitation into 200 ml of 20% sodium hydroxide solution within 5 minutes; the mixture is maintained at 80° C for 45 minutes, then allowed to settle, decanted off, washed with water, and 1,000 ml of 1% (—)-tartaric acid solution is added thereto, adjusted to pH 5 with 1 N sodium hydroxide solution. The mixture is heated under agitation for 90 minutes to 80° C, decanted, and washed with water and methanol. The thus-obtained (—)-tartaric acid - Raney nickel catalyst is added to a solution of 2-cyclohexylcarbonyl-4-oxo-2,3,6,7-tetrahydro-4H-pyrazino-[2,1-a] isoquinoline. The reaction mixture is hydrogenated under normal pressure and at room temperature. After the catalyst has been filtered off and the solvent evaporated, 2-cyclohexylcarbonyl-4-oxo-1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a] isoquinoline, melting point 136° C to 138° C, is produced.

References

Merck Index 7609 Kleeman & Engel p. 748 PDR p. 1249 DOT 13 (3) 121 (1977) & 17 (10) 429 (1981) I.N. p. 796 REM p. 1237

Seubert, J., Thomas, H. and Andrews, P.; U.S. Patent 4,001,411; January 4, 1977; assigned to Merck Patent G.m.b.H. (Germany)

PRAZOSIN

Therapeutic Function: Antihypertensive

Chemical Name: 1-(4-Amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine

Common Name: Furazosin

Structural Formula:

Chemical Abstracts Registry No.: 19216-56-9; 19237-84-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Hypovase	Pfizer	U.K.	1974
Minipress	Pfizer	U.S.	1976
Minipress	Pfizer	W. Germany	1977
Minipress	Pfizer	Italy	1978
Minipress	Pfizer	France	1979
Minipress	Pfizer Taito	Japan	1981
Adversuten	Arzneimittelwerk Dresden	E. Germany	_
Orbisan	Mack	W. Germany	
Pratsiol	Orion	Finland	
Prazac	Erco	Denmark	***
Sinetens	Carlo Erba	U.K.	_
Vasoflex	Alkaloid	Yugoslavia	_

Raw Materials

2,4-Dichloro-6,7-dimethoxyquinazoline	Ammonia
Piperazine	2-Furoyl chloride

Manufacturing Process

Preparation of 2-Chloro-4-Amino-6,7-Dimethoxyguinazoline: To 800 ml of a solution of anhydrous ammonia in tetrahydrofuran at room temperature is added 30 g of 2,4-dichloro-6,7-dimethoxyquinazoline [F.H.S. Curd et al, J. Chem. Soc., p 1759 (1948)]. The mixture is stirred for 44 hours. The precipitate (29 g, MP 267° to 268°C) is filtered and recrystallized from methanol to yield 19 g of 2-chloro-4-amino-6,7-dimethoxyquinazoline, MP 302°C (dec.).

Preparation of 2-(1-PiperazinyI)-4-Amino-6,7-Dimethoxyquinazoline: To 5 g of 2-chloro-4-amino-6,7-dimethoxyquinazoline, is added 20 g of a 25% solution of piperazine in ethanol. The mixture is heated at 160°C for 16 hours in a pressure bottle. The solvent is then evaporated and the residue is recrystallized from methanol/water.

Preparation of 2/4-(2-Furoyl)-Piperazinyl] 4-Amino-6,7-Dimethoxyauinazoline: To 0.10 mol 2-(1-piperazinyl)-4-amino-6,7-dimethoxyguinazoline in 300 ml methanol is added with vigorous stirring, 0.10 mol 2-furoyl chloride. After addition is complete, the mixture is stirred for 3 hours at room temperature. The solids are filtered to give the desired product, MP 278° to 280°C.

References

Merck Index 7610 Kleeman & Engel p. 748 PDR pp. 1420, 1421 OCDS Vol. 2 p. 382 (1980) & 3, 194 (1984) DOT 11 (2) 67,80 (1975) I.N. p. 796 REM p. 844

Hess, H.-J.E.; U.S. Patent 3,511,836; May 12, 1970; assigned to Chas. Pfizer & Co., Inc.

PREDNIMUSTINE

Therapeutic Function: Cancer chemotherapy

1282

Chemical Name: Prednisolone 21-[4'-[p-bis(2-chloroethyl)amino] phenyl] butyrate

Common Name: Prednisolone chlorambucil ester

Structural Formula:

Chemical Abstracts Registry No.: 29069-24-7

Trade Name	Manufacturer	Country	Year Introduced
Stereocyt	Bellon	France	1978
Sterecyt	Leo	Switz.	1981
Mostarina	Abello	Spain	_

Raw Materials

p-[N-Bis(β -chloroethyl)amino] phenyl butyric acid Thionyl chloride Prednisolone

Manufacturing Process

p-[N-bis(β -chloroethyl)amino] phenyl butyric acid was dissolved in a mixture of 150 ml dry benzene and 8.04 ml dry pyridine. The solution was cooled in an ice bath, and a solution of thionyl chloride in 30 ml dry benzene was slowly added with stirring under anhydrous conditions.

The reaction mixture was then kept at room temperature for 1 hour and thereafter poured into a mixture of $5.0\,\mathrm{N}$ HCl and crushed ice. The benzene solution was immediately washed with water, with cold $1.0\,\mathrm{N}$ NaHCO₃ and finally with cold water. After drying over anhydrous sodium sulfate, the benzene was removed in vacuo. The residue is the p-[N-bis(β -chloroethyl)-amino] phenyl butyric anhydride which could be used without any further purification.

To a solution of 42.0 g of p-[N-bis(β -chloroethyl)amino] phenyl butyric anhydride in 500 ml dry pyridine was added 24.4 g of prednisolone. The reaction mixture was kept at room temperature for 24 hours under anhydrous condition. It was then poured into a mixture of concentrated HCl and crushed ice and extracted with ether-ethyl acetate (1:1).

The organic phase was washed several times with cold 1.0 N K_2CO_3 and finally water. After drying over $CaCl_2$ the solvent was removed in vacuo.

The residue is prednisolone 21-[4'-[p-bis(β -chloroethyl)amino] phenyl] butyrate which after crystallization from methanol/water had a melting point of 163°C to 164°C.

References

Merck Index 7612 DFU 1 (3) 137 (1976) Kleeman & Engel p. 749 OCDS Vol. 3 p. 93 (1984) DOT 16 (3) 84 (1980) I.N. p. 797

Fox, H.J., Hogberg, K.B. and Konyves, I.; U.S. Patent 3,732,260; May 8, 1973; assigned to A.B. Leo

PREDNISOLONE

Therapeutic Function: Glucocorticoid

Chemical Name: 11β ,17,21-Trihydroxypregna-1,4-diene-3,20-dione

Common Name: Metacortandralone; Δ^1 -hydrocortisone

Structural Formula:

Chemical Abstracts Registry No.: 50-24-8

Trade Name	Manufacturer	Country	Year Introduced
Sterane	Pfizer	U.S.	1955
Meticortelone	Schering	U.S.	1955
Delta-Cortef	Upjohn	U.S.	1955
Hydeltra	MSD	U.S.	1955
Paracorto!	Parke Davis	U.S.	1957
Sterolone	Rowell	U.S.	1957
Prednis	U.S.V. Pharm.	U.S.	1957
Ulacort	Fellows-Testagar	U.S.	1960
Cosilone	Person Covey	U.S.	1963
Adnisolone	Adams	Australia	_
Aprednision	Arcana	Austria	_
Caberdelta	Caber	Italy	_
Cordrol	Vita Elixir	U.S.	_
Cortalone	Halsey	U.S.	
Cortisolone	S.I.T.	Italy	_
Cotolone	Truxton	U.S.	_
Dacortin	Igoda	Spain	-
Decaprednil	Dorsch	W. Germany	_
Decortasmyl	Larec	Ecuador	_
Delta-Hycortol	Medica	Finland	
Delta-Larma	Larma	Spain	-
Deltalone	D.D.S.A.	U.K.	_
Deltasolone	Knoll	Australia	
Deltidrosol	Poli	Italy	_
Deltisolon	Ferring	Sweden	-
Domucortone	Medici Domus	Italy	_
Encortolone	Polfa	Poland	-
Fernisolon	Ferndale .	U.S.	
lbisterolon	I.B.I.	Italy	_
Keteocort-H	Desitin	W. Germany	_
Neodelta	Amelix	Italy	

Trade Name	Manufacturer	Country	Year Introduced
Normosona	Normon	Spain	_
Novoprednisolone	Novopharm	Canada	_
Panafcortelone	Glebe	Australia	_
Predartrina	Farmochimica	Italy	_
Prednicen	Central	U.S.	
Predni-Coelin	Pfleger	W. Germany	
Prednicort	Cortec	Denmark	-
Predni-Helvacort	Helvepharm	Switz.	_
Predni-H-Tablinen	Sanorania	W. Germany	_
Predniretard	Boots-Dacour	France	-
Prelone	Langley	Australia	_
Ropredione	Robinson	U.S.	_
Scherisolon	Schering	W. Germany	_
Seriione	Serpero	Italy	-
Stermin	Schlicksup	U.S.	-
Vitacort	Vitarine	U.S.	-

Raw Materials

Bacterium Corynebacterium simplex Hydrocortisone

Manufacturing Process

The following procedure is described in U.S. Patent 2,837,464: from a solution of 3 grams of yeast extract (Difco) in 3.0 liters of tap water containing 13.2 grams of potassium dihydrogen phosphate and 26.4 grams disodium hydrogen phosphate (pH of the solution, 6.9) 27 portions of 100 ml each are withdrawn, placed in 300 ml Erlenmeyer flasks and sterilized by autoclaving for 15 minutes at 15 pounds steam pressure (120°C). After autoclaving and cooling of the broth, one ml of suspension of Corynebacterium simplex (ATCC 6946) is placed in each flask. The flasks are then shaken on a shake table at 220 rpm and 28°C for 24 hours.

Into each of 27 Erlenmeyer flasks are placed 150 mg of Kendali's Compound F (hydrocortisone). The flasks and contents are then sterilized for 15 minutes at 15 pounds steam pressure (120°C). To each flask are then added 5.0 ml of ethanol. The 24-hour bacterial culture is then transferred aseptically and the resulting suspensions are shaken on a shake table at 220 rpm and 28°C for 48 hours. The pH at the end of the shake period is 7.0.

The contents of all the flasks are combined and extracted with a total of 9.0 liters of chloroform in 3 equal portions. The combined extracts are then concentrated to a residue which weighs 3.75 grams. The MP of the residue is 227°-232°C. From 2.75 grams of this crude material on sludging with 50 ml of acetone and cooling, there is recovered on filtration 1.35 grams of $\Delta^{1,4}$ -pregnadiene-11 β ,17 α ,21-triol-3,20-dione, MP 237°-239°C (dec.). Additional product can be recovered from the mother liquor. Recrystallization from acetone raised the MP to 239°-241°C (dec.).

References

Merck Index 7613 Kleeman & Engel p. 750 PDR pp. 830, 1569, 1606 OCDS Vol. 1 p. 192 (1977) & 2, 178 (1980) I.N. p. 797 REM p. 969

Nobile, A.; U.S. Patent 2,837,464; June 3, 1958; assigned to Schering Corporation Oliveto, E.P. and Gould, D.H.; U.S. Patent 2,897,216; July 28, 1959; assigned to Schering Corporation

PREDNISOLONE ACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 11\(\beta\),17,21-Trihydroxypregna-1,4-diene-3,20-dione 21-acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 52-21-1

Trade Name	Manufacturer	Country	Year Introduced
Sterane	Phipharmex	U.S.	1955
Nisolone	Ascher	U.S.	1962
Savacort	Savage	U.S.	1969
Econapred	Alcon	U.S.	1973
Pred Mild	Allergan	U.S.	1974
Pred Cor 100	Hauck	U.S.	1977
Alto-Pred	Alto	U.S.	_
Cortipred	Italsuisse	Italy	
Deitacortilen	S.I.F.I.	Italy	_
Dermo-Nydol	Brichard	France	_
Durapred	Federal	U.S.	
Hexacorton	Spirig	Switz.	_
Ibisterolon-Pommada	I.B.I.	Italy	_
Inflanefran	Allergan	W. Germany	_
Key-Pred	Hyrex	U.S.	_
Metimyd	Schering	U.S.	_
Meticortelone	Essex	Italy	_
Predate	Legere	U.S.	_
Predicort	Dunhall	U.S.	_
Prednifor	Vifor	Switz.	_
Prenema	Nortech	U.S.	_
Pricortin	Premedics	U.S.	_
Sigpred	Sig	U.S.	_
Ulacort	Fellows-Testagar	U.S.	_
Ultracortenol	Dispersa	Switz.	_

Raw Materials

Prednisolone Acetic anhydride

Manufacturing Process

To a solution of 0.85 gram of 1,4-pregnadiene- 11β ,17 α ,21-triol-3,20-dione (prednisolone) in 5 ml of pyridine are added 3 ml of acetic anhydride. The reaction mixture is allowed to stand at room temperature overnight and is then diluted with ice water. The resulting precipitate is filtered from the mixture and recrystallized from acetone-hexane. There is recovered 0.45 gram of 1,4-pregnadiene-11β,17α,21-triol-3,20-dione 21-acetate, MP 235°-239°C. On recrystallization, the MP rose to 237°-239°C.

Merck Index 7613 Kleeman & Engel p. 750 PDR pp. 1033, 1633 OCDS Vol. 1 p. 192 (1977)

I.N. p. 798 REM p. 969

Nobile, A.; U.S. Patent 3,134,718; May 26, 1964; assigned to Schering Corporation

PREDNISOLONE PHOSPHATE SODIUM

Therapeutic Function: Glucocorticoid

Chemical Name: 11β ,17,21-Trihydroxypregna-1,4-diene-3,20-dione 21-(dihydrogen phos-

phate)disodium salt

Common Name: -

Structural Formula:

CH₂O OK CH₂O OK (base)

Chemical Abstracts Registry No.: 125-02-0

Trade Name	Manufacturer	Country	Year Introduced
Hydeltrasol	MSD	U.S.	1957
Inflamase	Cooper Vision	U <i>.</i> S.	1969
Optival	White	U.S.	1969
PSP-IV	Tutag	U.S.	1972
Alto-Pred	Alto	U.S.	
Caberdelta	Caber	Italy	_
Codelsol	MSD	U.K.	_
Hydrosol	Rocky Mtn.	U <i>.</i> S.	
Key-Pred S.P.	Hyrex	U,S.	_
Metreton	Schering	U.S.	_
Nor-Preds	North Amer, Pharm,	U.S.	
Parisolon	Riker	U.S.	_
Predate S	Legere	U.S.	-
Prednesol	Glaxo	U.S.	_
Savacort	Savage	U.S.	
Sodasone	Fellows-Testagar	U.S.	_
Solucort	Chibret	France	_
Solu-Pred	Myers-Carter	U.S.	-

Raw Materials

Prednisolone Sodium iodide Sodium hydroxide Methane sulfonyl chloride Phosphoric acid

Manufacturing Process

Preparation of Prednisolone 21-Methanesulfonate: Seventy liters of dry pyridine and 7.5 kg of prednisolone are charged to a 30-gallon jacketed glass-lined still. The mixture is agitated until complete solution is obtained. About 40 liters of pyridine are distilled at high vacuum while maintaining the batch temperature below 40°C. The solution is cooled to 0°C, and 2.2 liters of methanesulfonyl chloride are charged. The batch temperature is maintained between 0°C and +3°C during charging of the methanesulfonyl chloride. An atmosphere of flowing nitrogen is maintained in the still, and the mixture is agitated during the last stages of the addition. The mixture is then aged for one hour, and 15 gallons of ice water are added cautiously to the still while maintaining the temperature between 0° and 5°C.

The still contents are then transferred to a jacketed kettle equipped with an agitator, and 62 kg of cracked ice in 15 gallons of deionized water are added. The batch is aged one hour and a solution of 2 liters of concentrated (37%) hydrochloric acid in 4 gallons of deionized water is added. The batch is centrifuged and the centrifuge cake washed free of pyridine with deionized water. The centrifuge cake is then vacuum-dried at 50°C to a moisture content of about 1%, which requires about 3 days of drying. Yield about 7.77 kg (92%), according to U.S. Patent 2,932,657.

Preparation of Prednisolone 21-lodide: To a 30-gallon jacketed glass-lined still 64.5 lb (31.0 liters) of dimethylformamide are charged by vacuum. The still contents are agitated as 7.74 kg of dry (less than 1% moisture) prednisolone 21-methanesulfonate are charged. Then 4.02 kg of sodium iodide are charged. The still contents are heated to 57° to 60°C by means of a steam jacket and held at this temperature for 30 minutes. The batch is cooled to 35°C and 12 gallons of deionized water are added at the rate of about 1 gallon per minute. In the event the solution becomes cloudy, addition of water is interrupted and the mixture agitated for five minutes before resumption of water addition. After all of the water is added, the batch is transferred to a 50 gallon kettle equipped with agitator and an additional 16.7 gallons of deionized water are added. The batch is cooled to 0° to 5°C and aged for one hour. The batch is filtered and the filter cake washed and vacuum dried at 30° to 35°C to a moisture content of less than 1%. Yield about 7.95 kg (96%), according to U.S. Patent 2,932,657.

Preparation of Prednisolone 21-Disodium Phosphate: Acetonitrile (50.0 ml) containing phosphoric acid (90%; 1.0 ml) was treated with triethylamine (3.0 ml) and the solution added to 11β , 17α -dihydroxy-21-iodopregna-1, 4-diene-3, 20-dione (1.0 gram; powdered). The mixture was refluxed for 2.75 hours and the solvent was then evaporated under reduced pressure to give a yellow oil. The oil was taken up in methanol (25 ml) and titrated to pH 10.9 with sodium hydroxide in methano! (N) using a pH meter. The precipitate was filtered off and the filtrate evaporated to a gum under reduced pressure. The gum was taken up in methanol (5 ml), filtered through filter paper and acetone (100 ml) was added to the filtrate. The precipitate was filtered off, washed with acetone and dried at 100°C/1 mm for 0.75 hour giving a pale yellow solid, prednisolone disodium phosphate (0.74 gram), which was completely soluble in water, according to U.S. Patent 2,936,313.

References

Merck Index 7615 Kieeman & Engel p. 752 PDR pp. 1033, 1633 I.N. p. 798 REM p. 970

Sarett, L.H.; U.S. Patent 2,789,117; April 16, 1957; assigned to Merck & Co., Inc. Christensen, B.G., Hirschmann, R.F. and Putter, I.; U.S. Patent 2,932,657; April 12, 1960; assigned to Merck & Co., Inc.

Elks, J. and Phillipps, G.H.; U.S. Patent 2,936,313; May 10, 1960; assigned to Glaxo Laboratories Limited, England

PREDNISOLONE STEAROYLGLYCOLATE

Therapeutic Function: Glucocorticoid

Chemical Name: 11β ,17-Dihydroxy-21-[[((1-oxoctadecyl)oxy) acetyl)oxy] pregna-1,4-

diene-3,20-dione

Common Name: Prednisolone steadlate

Structural Formula: See prednisolone for formula of base

Chemical Abstracts Registry No.: 5060-55-9

Trade Name	Manufacturer	Country	Year Introduced
Deturgylone	Dausse	France	1970
Erbacort	Erba	Italy	_ '
Estilsona	Erba	Italy	_
Glistelone	Erba	Italy	_
Glitisone	Vis	Italy	_
Prenisol	Cifa	Italy	<u> </u>
Rollsone	Bellon	France	<u> </u>
Sintisone	Erba	italy	
Verisone	Tiber	Italy	_

Raw Materials

Prednisolone	Stearoyl-glycolyl chloride
Prednisolone-21-chloroacetate	Potassium stearate

Manufacturing Process

This material can be prepared, e.g., by reaction of prednisolone-21-chloroacetate in solvent with the sodium or potassium salt of the corresponding aliphatic or aromatic acid, or by reaction of prednisolone with the chloride of the corresponding acyl-glycolic acid, in the presence of a hydrochloric acid acceptor.

Alternative (A): 3 grams (0.0068 mol) prednisolone chloroacetate dissolved in 200 ml tetrahydrofuran and 10 ml H₂O are added with 2.7 grams (0.0084 mol) K stearate and 0.06 g Nal and heated to boiling, under stirring, for 36 hours, then evaporated in vacuum to dryness.

The residue is washed with H₂O to disappearance of the Cl-ion from the filtrate. Crystallization from diluted alcohol results in prednisolone-21-stearoyl-glycolate (MP 104°-105°C).

Alternative (B): 3.6 grams (0.01 mol) prednisolone and 4.32 grams (0.012 mol) stearoylglycolyl-chloride, separately dissolved in dry dioxane, are added with 0.89 ml (0.011 mol) dry pyridine. The mixture is kept at 60°C for 20 hours, then poured into water-ice and filtered. Crystallization from diluted ethanol results in prednisolone-21-stearoyl-glycolate (MP 104°-105°C).

References

Merck Index 7618 Kleeman & Engel p. 753 DOT 3 (1) 18 (1967) I.N. p. 799

Giraldi, P.N. and Nannini, G.; U.S. Patent 3,171,846; March 2, 1965; assigned to Carlo Erba SpA, Italy

PREDNISOLONE TEBUTATE

Therapeutic Function: Glucocorticoid

Chemical Name: 21-(3,3-Dimethyl-1-oxobutoxy)-11 β ,17-dihydroxypregna-1,4-diene-3,20-

dione

Common Name: Prednisolone-21-tert-butyl acetate

Structural Formula: CH2OCOCH2C(CH3)3

Chemical Abstracts Registry No.: 7681-14-3

Trade Name	Manufacturer	Country	Year Introduced
Hydeltra TBA	MSD	U.S.	1956
Codelcortone TBA	MSD	U.S.	
Predate TBA	Legere	U.S.	_
Prednisol TBA	Pasadena	U.S.	-
Rodelta TBA	Rocky Mtn.	U.S.	_

Raw Materials

tert-Butyl acetyl chloride Prednisolone

Manufacturing Process

A solution of about 10 parts of tertiary-butyl acetyl chloride in 45 parts of dry chloroform is added portionwise to a cold solution of 25 parts of $\Delta^{1,4}$ -3,20-diketo-11 β ,17 α ,21-trihydroxy-pregnadiene (prednisolone) in 125 parts of anhydrous pyridine. The resulting solution is allowed to stand for about 15 hours at 0° to 5°C, and the reaction solution is poured into 750 parts of water. The resulting aqueous mixture is extracted four times with 250 parts of chloroform each extraction. The combined chloroform layers are washed with water, dilute aqueous hydrochloric acid solution, water, 5% aqueous sodium bicarbonate solution, and finally with water. The chloroform extract is dried over magnesium sulfate, and the chloroform is evaporated in vacuo to give a residual oil. This oil is triturated with alcohol until it crystallizes, and is then recrystallized from ethanol to give substantially pure $\Delta^{1,4}$ -3,20-diketo-11 β ,17 α ,21-trihydroxy-pregnadiene 21-tertiary-butyl acetate.

References

Merck Index 7619 Kleeman & Engel p. 754 PDR pp. 1033, 1183 I.N. p. 798 REM p. 970

Sarett, L.H.; U.S. Patent 2,736,734; February 28, 1956; assigned to Merck & Co., Inc.

PREDNISONE

Therapeutic Function: Glucocorticoid

Chemical Name: $17\alpha,21$ -Dihydroxy-pregna-1,4-diene-3,11,20-trione

Common Name: Deltacortisone

Structural Formula:

Chemical Abstracts Registry No.: 53-03-2

Trade Name	Manufacturer	Country	Year Introduced
Meticorten	Schering	U.S.	1955
Deltasone	Upjohn	U.S.	1955
Deltra	MSD	U.S.	1955
Paracort	Parke Davis	U.S.	1957
Lisacort	Fellows-Testagar	U.S.	1960
Servisone	Lederle	U.S.	1970
Orasone	Rowell	U.S.	1972
Wojtab	Philips Roxane	U.S.	1981
Adasone	Adams	Australia	_
Alto-Pred	Alto	U. S .	_
Colisone	Merck-Frosst	Canada	_
Cortan	Halsev	U.S.	_
Cortancyl	Roussel	France	_
Cortialper	Santos	Spain	_
Dacortin	Igoda	Spain	_
Decortin	Merck	W. Germany	-
Decortisyl	Roussel	U.K.	_
Decorton	Salfa	Italy	_
Deidrocortisone	Stip	Italy	_
Deltacortene	Lepetit	Italy	_
Delta Dome	Dome	U.S.	
Delta Prenovis	Vister	Italy	_
Deltison	Ferring	Sweden	_
Erftopred	Erfto	W. Germany	_
Fernisone	Ferndale	U.S.	_
Hostacortin	Hoechst	W. Germany	_
Inocortyl	Liposeptine	France	_
Keteocort	Desitin	W. Germany	·
Keysone	Kev	U.S.	_
Liquid Pred	Muro	U.S.	_
Marnisonal	Juan Martin	Spain	_
Marvidiene	Panther-Osfa	Italy	_
Me-Korti	Farmos	Finland	
Nisone	Llorente	Spain	_
Nizon	Bosnalijek	Yugoslavia	_
Novoprednisone	Novopharm	Canada	
Nurison	Nourypharma	Neth.	_
Panafcort	Protea	Australia	
	Kwizda		_
Parmenison		Austria	
Pred-S	Saron	U.S.	_
Predniartrit	Maipe	Spain	
Prednicen-M	Seymour	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Prednifor	Vifor	Switz.	_
Prednilonga	Dorsch	W. Germany	
Predni-Tablinen	Sanorania	W. Germany	_
Predni-Wolner	Wolner	Spain	
Prednovister	Substancia	Spain	_
Predsol	Morgan	Italy	_
Predsone	Century	U <i>.</i> S.	_
Presone	Langley	Australia	_
Pronison	Galenika	Yugoslavia	
Propred	Medac	Australia	
Rectodelt	Trommsdorff	W. Germany	_
Ropred	Robinson	U.S.	-
Sarogesic	Saron	U.S.	-
Sone	Fawns & McAlian	Austra!ia	
Sterapred	Mayrand	U.S.	_
Supopred	Europa	Spain	
Urtilone	Recherche Therap.	France	_
Wescopred	Saunders	Canada	_
Winpred	I.C.N.	Canada	

Raw Materials

Bacterium Corynebacterium simplex Cortisone

Manufacturing Process

From a solution of 30 grams of yeast extract (Difco) in 3.0 liters of tap water containing 13.2 grams of potassium dihydrogen phosphate and 26.4 grams of disodium hydrogen phosphate (pH of the solution 6.9) 27 portions of 100 ml each are withdrawn, placed in 300 ml Erlenmeyer flasks and sterilized by autoclaving for 15 minutes at 15 pounds steam pressure (120°C). After autoclaving and cooling of the broth one ml of a suspension of *Corynebacterium simplex* (ATCC 6946) is placed in each flask. The flasks are then shaken on a shake table at 220 rpm and 28°C for 24 hours.

Into each of 27 Erlenmeyer flasks are placed 150 mg of Kendall's Compound E (cortisone). The flasks and contents are then sterilized for 15 minutes at 15 pounds steam pressure (120°C). To each flask are then added 5.0 ml of ethanol. The 24-hour bacterial culture is then transferred aseptically and the resulting suspensions are shaken on a shake table at 220 rpm and 28°C for 48 hours. The final pH is 7.2.

The contents of all the flasks are combined and extracted with a total of 9.0 liters of chloroform in three equal portions. The combined extracts are then concentrated to a residue which is crystallized from acetone-hexane. There results 1.1 grams of $\Delta^{1,4}$ -pregnadiene-17 α , 21-diol-3,11,20-trione, MP 210°-215°C (dec.). Several additional recrystallizations raised the MP to 230°-232°C (dec.).

References

Merck Index 7621 Kleeman & Engel p. 755 PDR pp. 830, 993, 1268, 1573, 1606, 1723, 1837 OCDS Vol. 1 p. 192 (1977) I.N. p. 799 REM p. 970

Djerassi, C., Rosenkranz, G. and Berlin, J.; U.S. Patent 2,579,479; December 25, 1951; assigned to Syntex SA, Mexico

Nobile, A.; U.S. Patent 2,837,464; June 3, 1958; assigned to Schering Corporation

Oliveto, E.P. and Gould, D.H.; U.S. Patent 2,897,216; July 28, 1959; assigned to Schering Corporation

PRENALTEROL

Therapeutic Function: Adrenergic

Chemical Name: 4-[2-Hydroxy-3-[(1-methylethyl)amino] propoxy] phenol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57526-81-5

Trade Name	Manufacturer	Country	Year Introduced
Coleb	Astra	W. Germany	1981
Hyprenan	Astra	U.K.	1981
Varbian	Ciba	U.K.	1981

Raw Materials

4-Hydroxyphenoxypropylene oxide Isopropylamine

Manufacturing Process

A solution of 100 g (1.7 mols) of isopropylamine in 60 cc of water was stirred into a solution of 4-hydroxyphenoxypropylene oxide. After the exothermic reaction has subsided, the reaction mixture was heated for two hours at 60°C. Thereafter, the aqueous ethanol was distilled off, and the solid residue was dissolved in aqueous hydrochloric acid comprising more than the theoretical stoichiometric molar equivalent of hydrochloric acid. The aqueous acid solution was extracted with ether and was then made alkaline with sodium hydroxide, whereby a solid crystalline precipitate was formed which was filtered off and dried over phosphorus pentoxide. The product was 1,1-(4'-hydroxyphenoxy)-2-hydroxy-3-isopropylamino-propane. Its hydrochloride had a melting point of 166°C to 169°C.

References

Merck Index 7639 DFU 4 (1) 46 (1979) OCDS Vol. 3 p. 30 (1984) DOT 17 (5) 199 (1981) & 18 (4) 190 (1982)

I.N. p. 801

Koppe, H., Engelhardt, A., Ludwig, G. and Zeile, K.; U.S. Patent 3,637,852; January 25, 1972; assigned to Boehringer Ingelheim G.m.b.H. (Germany)

PRENYLAMINE

Therapeutic Function: Vasodilator (coronary)

Chemical Name: N-(1-Methyl-2-phenylethyl)-γ-phenylbenzenepropanamine

Common Name: -

Structural Formula:

(C6H5) 2CHCH2CH2NHCHCH2C6H5

Chemical Abstracts Registry No.: 390-64-7

Trade Name	Manufacturer	Country	Year Introduced
Synadrin	Hoechst	U.K.	1961
Segontin	Hoechst	italy	1962
Segontin	Hoechst	W. Germany	1964
Segontine	Hoechst	France	1965
Agozol	Tableta	Rumania	_
Angiovigor	Violani-Farmavigor	Italy	_
Angorsan	Isola-Ibi	Italy	_
Cardional	Unipharm	Israel	_
Corditin-Same	Savoma	Italy	_
Coredamin	Meiji	Japan	-
Crepasin	Hoei	Japan	_
Daxauten	Woelm Pharma	W. Germany	_
Epocol	Teisan-Nagase	Japan	_
Eucardion	Vita	Italy	_
Falicor	Fahlberg-List	E. Germany	_
Herzcon	Sana	Japan	
Incoran	I.T.A.	Italy	_
Irrorin	Alfa Farm.	Italy	_
Lactamine	Daisan	Japan	_
Newsantin	Sawai	Japan	
NP 30	Sanken	Japan	_
Nyuple	Ohta	Japan	-
Onlemin	Ono	Japan	_
Plactamin	Morishita	Japan	-
Prectolact	Showa Yakuhin	Japan	_
Rausetin	Tanabe	Japan	_
Reocorin	Farmochimica	Italy	_
Roinin	Mohan	Japan	_
Seccidin	Nippon Kayaku	Japan	_
Wasangor	Wassermann	Italy	_
**asangOI	440990111101111	italy	_

Raw Materials

1,1-Diphenyl-propylamine-(3) Phenyl acetone Hydrogen

Manufacturing Process

10.6 g of 1,1-diphenylpropylamine-(3) are hydrogenated by means of palladium with 6.7 g of phenyl acetone in 200 cc of methanol at 50°C. The calculated amount of hydrogen is taken up. The separated oily base is dissolved by heating with alcohol. After filtration water is added until turbidity sets in. 24.5 g of 2-(1',1'-diphenylpropyl-3'-amino)-3-phenyl-propane are obtained with a boiling point at 195°C to 198°C under a pressure of 0.5 mm of mercury, which after prolonged standing crystallizes out. Melting point about 38°C to 40°C. Hydrochloride (prepared in usual manner): melting point 188°C to 190°C.

Merck Index 7641 Kleeman & Engel p. 759 OCDS Vol. 1 p. 76 (1977)

I.N. p. 801

Ehrhart, G., Ott, H. and Lindner, E.; U.S. Patent 3,152,173; October 6, 1964; assigned to Farbwerke Hoechst A.G. (Germany)

PRILOCAINE HYDROCHLORIDE

Therapeutic Function: Local anesthetic

Chemical Name: N-(2-methylphenyl)-2-(propylamino)-propanamide hydrochloride

Common Name: Propitocaine hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 1786-81-8; 721-50-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Xylonest	Astra	W. Germany	1963
Citanest	Astra	U.K.	1974
Citanest	Astra	U.S.	1966
Citanest	Pierrel	italy	1968
Citanest	Bellon	France	1973

Raw Materials

o-Toluidine

 α -Bromopropionyl bromide

n-Propylamine

Manufacturing Process

One mol of ortho-toluidine is dissolved in 800 ml of glacial acetic acid. The mixture is cooled to 10°C whereupon 1.1 mols of α -bromopropionylbromide is added. The mixture is vigorously stirred for about a minute and a solution of sodium acetate (330 grams of CH₃COONa·3H₂O in 1,380 ml of water) or another buffering or alkalizing substance or solution is added in one portion. The reaction mixture is then shaken for half an hour. The precipitate formed is filtered off, washed with water and dried. The product is sufficiently pure for further processing. Yield: 70-80% of theory. MP 133°-134°C.

One mol of α -bromopropio-ortho-toluidide is mixed with a solution of 3 mols of n-propylamine in 500 ml of water-free benzene and the reaction mixture is heated in an autoclave to 80°C for 8 hours. After cooling the reaction mixture is treated as described above. The base is obtained as a colorless oil. BP 159°-162°C/0.1 mm. Yield 55%. The base is then converted to the hydrochloride by reaction with HCl.

Merck Index 7646 DFU 8 (12) 1021 (1983) Kleeman & Engel p. 760 OCDS VOI.1 p. 17 (1977)

I.N. p. 802 REM p. 1053

Aktiebolaget Astra: Apotekarnes Kemiska Fabriker, Sweden; British Patent 839,943; June 29,

1960

PRIMIDONE

Therapeutic Function: Anticonvulsant

Chemical Name: 5-Ethyldihydro-5-phenyl-4,6(1H,5H)-pyrimidinedione

Common Name: 2-Desoxyphenobarbital; primaclone

Structural Formula:

C₂H₅ NH

Chemical Abstracts Registry No.: 125-33-7

Trade Name	Manufacturer	Country	Year Introduced
Mysoline	I.C.1.	France	1953
Mysoline	Ayerst	U.S.	1954
Cyral	Gerot	Austria	_
Liskantin	Desitin	W. Germany	
Majsolin	Pliva	Yugoslavia	
Midone	Protea	Australia	_
Mylepsinum	ICI Pharma	W. Germany	_
Mysedon	Medica	Finland	-
Primidone	Schein	U.S.	_
Primoline	Darby	U.S.	_
Primron	Fujinaga	Japan	_
Prysoline	Abic	Israel	_
Resimatil	Labaz	W. Germany	-
Sertan	Chinoin	Hungary	_

Raw Materials

 $\alpha ,\! \alpha .\!$ Phenylethylmalonic acid diamide Formamide

Manufacturing Process

50 parts of α , α -phenylethylmalondiamide and 150 parts of formamide are boiled together under reflux for 2 hours. The mixture is then cooled to 0°C and filtered. The solid residue is washed with 50 parts of ethanol and then crystallized from 660 parts of an 80% ethanol water mixture. There is obtained 5-phenyl-5-ethylhexahydropyrimidine-4,6-dione, MP 281°-282°C.

Merck Index 7649 Kleeman & Engel p. 761 PDR pp. 631,830,1606 OCDS Vol. 1 p. 276 (1977)

I.N. p. 803 REM p. 1081

Boon, W.R., Carrington, H.C. and Vasey, C.H.; U.S. Patent 2,578,847; December 18, 1951; assigned to Imperial Chemical Industries Limited, England

PROBENECID

Therapeutic Function: Antiarthritic

Chemical Name: 4-[(Dipropylamino)sulfonyl] benzoic acid

Common Name: -

Structural Formula:

(CH3CH2CH2)2NSO2 - COOH

Chemical Abstracts Registry No.: 57-66-9

Trade Name	Manufacturer	Country	Year Introduced
Benem id	MSD	U.S.	1952
Benemide	Theraplix	France	1954
Benecid	Kaken	Japan	_
Benuryl	I.C.N.	Canada	_
Colbenemid	MSD	U.K.	_
Panuric	Propan-Lipworth	S. Africa	_
Perdurine	Pharma-Union	Belgium	_
Probemid	Lefa	Spain	_
Probenicid	Lederle	U.S.	_
Probenemid	Merck-Banyu	Japan	_
Procid	Protea	Australia	_
Solpurin	Salfa	Italy	_
Urecid	Frosst	Australia	_
Uroben	Mitim	Italy	-

Raw Materials

p-Carboxybenzene sulfonyl chloride Di-n-propylamine

Manufacturing Process

24.0 grams (0.11 mol) of p-carboxybenzenesulfonyl chloride was added in small portions to a suspension of 20.0 grams (0.146 mol) of di-n-propylamine in 100 milliliters of 10% sodium hydroxide with vigorous stirring at a temperature of 15°-25°C. Stirring was continued for 15 minutes after the final addition. The clear solution was treated with decolorizing carbon and filtered. The product was precipitated by the addition of an excess of hydrochloric acid. The crude product was purified by reprecipitation from bicarbonate solution and recrystallization from dilute alcohol. The yield was 20.0 grams (64%) melting at 194°-196°C.

Merck Index 7656 Kleeman & Engel p. 761

PDR pp. 705, 830, 993, 1142, 1150, 1606, 1999

OCDS Vol. 1 p. 135 (1977)

I.N. p. 804 REM p. 944

Miller, C.S.; U.S. Patent 2,608,507; August 26, 1952; assigned to Sharp & Dohme, Inc.

PROBUCOL

Therapeutic Function: Hypolipidemic

Chemical Name: Bis(3,5-di-tert-butyl-4-hydroxyphenyl) acetone mercaptole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23288-49-5

Trade Name	Manufacturer	Country	Year Introduced
Loreico	Merrell Dow	U.S.	1977
Lurselle	Lepetit	France	1980
Lurselle	Lepetit	U.K.	1980
Lurselle	Dow-Lepetit	Switz.	1980
Lurselle	Merrell	W. Germany	1980
Lurselle	Lepetit	Italy	1982
Biphenabid	Merrell Dow	· -	_
Lesterol	Lepetit	_	_

Raw Materials

2,6-Di-tert-butyl-4-mercaptophenol Acetone

Manufacturing Process

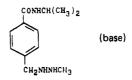
Bis(3,5-di-tert-butyl-4-hydroxyphenyl) acetone mercaptole, melting at 125°C to 126°C is prepared by employing 2,6-di-tert-butyl-4-mercaptophenol and acetone as starting materials. In one representative procedure, the 2,6-di-tert-butyl-4-mercaptophenol (47.5 g, 0.2 mol) is dissolved in methanol (50 ml) heated at a temperature of 50°C. A catalytic amount of concentrated hydrochloric acid (1 ml) is added, followed by acetone (5.8 g, 0.1 mol). The temperature of the mixture rises to about 60°C, and is maintained at about 60°C to 65°C for 1.5 hours. The mixture is cooled, diluted with water and about 10 ml of aqueous sodium bicarbonate and extracted with ether. The ether extract is evaporated, and the product is obtained as a residue, which is recrystallized from ethanol and then from isopropanol to obtain the bis(3,5-di-tert-butyl-4-hydroxyphenyl) acetone mercaptole as a crystalline solid melting at about 125°C to 126°C.

In another representative procedure about 2.3 mols of 2,6-di-tert-butyl-4-mercaptophenol is dissolved in about 1,700 ml of methanol under a nitrogen atmosphere; about 100 ml of concentrated hydrochloric acid and 180 ml of acetone are added, and the mixture is stirred and maintained at a temperature of about 35°C to 50°C, for 1.5 hours. The mixture is then cooled to room temperature and filtered, and the bis(3,5-di-tert-butyl-4-hydroxyphenyl) acetone mercaptole product is collected as a colorless crystalline solid filter cake. The product is washed with water and aqueous sodium bicarbonate and purified by recrystallization from ethanol.

References

Merck Index 7657 DFU 2 (2) 128 (1977) Kleeman & Engel p. 762 PDR p. 1229 OCDS Vol. 2 p. 126 (1980) DOT 14 (1) 33 (1978) I.N. p. 804 REM p. 864

Barnhart, J.W. and Shea, P.J.; U.S. Patent 3,862,332; January 21, 1975; assigned to The Dow Chemical Co.


PROCARBAZINE HYDROCHLORIDE

Therapeutic Function: Cancer chemotherapy

Chemical Name: N-(1-Methylethyl)-4-[(2-methylhydrazino)methyl] benzamide HCI

Common Name: Ibenmethyzin

Structural Formula:

Chemical Abstracts Registry No.: 366-70-1; 671-16-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Natulan	Roche	France	1965
Natulan	Roche	W. Germany	1966
Natulan	Roche	U.K.	1966
Natulan	Roche	Italy	1967
Matulane	Roche	U.S.	1969
Natulan	Nippon Roche	Japan	1973

Raw Materials

4-Methylbenzoic acid	Thionyl chloride
Methanol	Bromine
1-Methyl-1,2-dicarbobenzoxyhydrazine	Sodium hydride
Sodium hydroxide	Isopropyl amine
Hydrogen bromide	Hydrogen chloride

Manufacturing Process

544 grams of 4-methylbenzoic acid was boiled with 550 ml of thionyl chloride until a clear solution was obtained. After the excess thionyl chloride was distilled off, the residue was fractionated, yielding 605 g of 4-methylbenzoyl chloride; BP 91°C/9 mm Hg, $n_D^{24} = 1.5532$. This was dissolved in 550 ml of absolute benzene and the so-formed solution added to a mixture of 248 ml of absolute methanol and 550 ml of absolute benzene. After the exothermic reaction had terminated, the reaction mixture was boiled for a further 20 hours, then concentrated in vacuo and the product, 4-methylbenzoic acid methyl ester, isolated by conventional means. It could be purified by distillation, and the purified product boiled at 91°C/9 mm Hg, MP 32°C.

574 grams of this ester were dissolved in 1200 ml of carbon tetrachloride and, while boiling and exposing to a UV lamp, treated dropwise with a solution of 109 ml of bromine in 400 ml of carbon tetrachloride. After all of the bromine had been dropped in, the mixture was heated for a further hour, concentrated in vacuo and the residue crystallized from low boiling petroleum ether, yielding as colorless fine crystals, 4-(bromo-methyl)-benzoic acid methyl ester, which melted at 52°C. For the reaction of this ester with 1-methyl-1,2-dicarbobenzoxy-hydrazine, the following procedure was followed.

309 grams of a 27% suspension of sodium hydride in an inert solvent was treated with 300 ml of dimethylformamide, and a solution of 1095 grams of 1-methyl-1.2-dicarbobenzoxy-hydrazine in dimethylformamide was added thereto. When all the material had been added and the hydrogen evolution had nearly come to a standstill, the mixture was heated for an hour at about 80°C in order to carry the formation of the sodium salt to completion. A mixture of 759 grams of 4-(bromo-methyl)-benzoic acid methyl ester in 700 ml of dimethylformamide was then dropped in, and finally the reaction mixture was heated for an hour at 80°C. After cooling, the reaction mixture was poured into 10 liters of ice water and the condensation products taken up in ether. The thereby obtained crude methyl ester $(n_D^{24} = 1.1558)$ was used without further purification for the next step. It was dissolved in about 2,200 ml of dioxane, treated with a solution of 133 grams of sodium hydroxide in 870 ml of water, and the resulting mixture stirred for about 24 hours at room temperature. It was then poured into 10 liters of ice water and neutral materials were extracted with ether.

The aqueous phase was rendered acid with concentrated hydrochloric acid (weak Congo red) and the separated acid taken up in ether. The isolated crude acid was recrystallized from dibutyl ether, yielding colorless crystals of 4-[(2-methyl-1,2-dicarbobenzoxy-hydrazino)-methyl]-benzoic acid, which melted at 112°C. The so-obtained product was sufficiently pure for further reaction.

15 grams of 4-[(2-methyl-1,2-dicarbobenzoxy-hydrazino)methyl]-benzoic acid were boiled with an excess of thionyl chloride for 1 hour under reflux. The unconverted thionyl chloride was distilled off in vacuo, the residue twice dissolved each time in 75 ml of absolute benzene and then concentrated in vacuo. The so-obtained 4-[{2-methyl-1,2-dicarbobenzoxyhydrazino)-methyl]-benzoyl chloride, a viscous light yellow oil, was dissolved in 50 ml of absolute benzene and with stirring mixed with a solution of 4.45 grams of isopropylamine in 100 ml of absolute benzene. By cooling, the temperature of the reaction mixture was kept below 30°C. After the mixing had been completed, the reaction mixture was maintained first at room temperature for 3 hours and then for ½ hour at 40°C. It was then cooled down and poured into about 100 ml of ice water. After the addition of a mixture of methylene chloride and ether (40 ml + 200 ml), the organic phase was separated and then washed with water, dilute hydrochloric acid, water, dilute sodium hydroxide and again with water.

The solvents were then evaporated, yielding 4-[(2-methyl-1,2-dicarbobenzoxyhydrazino)methyl]-benzoic acid isopropylamide as a yellow oil, which crystallized upon triturating with ether; MP 90°-92°C. This product was then covered with 70 ml of a 33% solution of hydrogen bromide in glacial acetic acid, and then permitted to stand for 2 hours with occas-

ional swirling, whereupon a thick slurry of crystals was formed. The precipitate was filtered off, washed with 20 ml of glacial acetic acid and finally with ether, yielding crystals of 4-[(2-methyl-hydrazino)-methyl]-benzoic acid isopropylamide hydrobromide, which after recrystallization from methanol/ether melted at 216°-217°C (dec.).

87.5 grams of 4-[(2-methyl-hydrazino)-methyl]-benzoic acid isopropylamide hydrobromide (obtained as described above) were dissolved in 550 ml of water. To this solution, there were added 1,000 ml of methylene chloride and, while cooling with ice and stirring under nitrogen atmosphere, 1,200 grams of potassium carbonate portionwise. The methylene chloride layer was separated and the aqueous slurry extracted three times with 500 ml of methylene chloride in a nitrogen atmosphere. The united methylene chloride extracts were concentrated in vacuo. The residue was dissolved under nitrogen in 100 ml of methanol and treated, while cooling with ice, with 40 ml of a 45% methanolic hydrochloric acid solution, which induces immediate crystallization. The crystals were filtered off and recrystallized from methanol, yielding 4-[(2-methyl-hydrazino)-methyl]-benzoic acid isopropylamide hydrochloride melting at 223°-226°C.

References

Merck Index 7662 Kleeman & Engel p. 763 PDR p. 1491 OCDS Vol. 2 p. 27 (1980) I.N. p. 805 REM p. 1153

Bollag, W., Gutmann, H., Hegedus, B., Kaiser, A., Langemann, A., Muller, M. and Zeller, P.; U.S. Patent 3,520,926; July 21, 1970; assigned to Hoffmann-La Roche Inc.

PROCATEROL

Therapeutic Function: Bronchodilator

Chemical Name: 8-Hydroxy-5-[1-hydroxy-2-[(1-methylethyl)amino]butyl]-2(1H)-quinoli-

none

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 72332-33-3

Trade Name	Manufacturer	Country	Year Introduced
Meptin	Otsuka	Japan	1981

Raw Materials

α-Bromobutyric acid bromide 8-Hydroxycarbostyril Isopropylamine Lithium aluminum hydride

Manufacturing Process

50 g of α -bromobutyric acid bromide, 50 g of anhydrous aluminum chloride and 400 ml of carbon disulfide were added to 20 g of 8-hydroxycarbostyril. The resulting mixture was heated at a temperature of 50°C for 13 hours and the carbon disulfide layer was removed by decantation. Crushed ice was added to the residue, and the precipitated crystals were filtered, washed with water and recrystallized from methanol to obtain 27 g of 5-(α -bromobutyryl)-8-hydroxycarbostyril having a melting point of 218°C to 219°C (with coloring and decomposition). To 5 g of the thus obtained 5-(α -bromobutyryl)-8-hydroxycarbostyril was added 100 ml of isopropylamine, and the mixture was heated at a temperature of 50°C for 4 hours followed by concentration to dryness. Crystals which formed upon addition of water were filtered, washed with water and then recrystallized from methanol to obtain 4.6 g of a methanol solvate of 5-(α -isopropylaminobutyryl)-8-hydroxycarbostyril having a melting point of 136°C to 137°C (with foaming and decomposition).

20 g of tetrahydrofuran was added to 1 g of 5-(α -isopropylaminobutyryl)-8-hydroxycarbostyril hydrochloride, and the resulting mixture was added dropwise to a suspension of 0.12 g of lithium aluminum hydride in 10 ml of tetrahydrofuran while stirring at room temperature. After completion of the addition, a small amount of water was added to the reaction mixture to decompose any excess of lithium aluminum hydride. The reaction mixture was then poured into 50 ml of ice-water and the aqueous layer of the resulting solution was separated and concentrated to dryness. The precipitated crystals were filtered, washed with acetone and dissolved in water. The solution was adjusted to pH of 8 with aqueous sodium hydroxide to precipitate crystals which were then filtered and recrystallized from ethanol to obtain 0.8 g of 5-(1-hydroxy-2-isopropylamino)butyl-8-hydroxycarbostyril monohydrate having a melting point of 141°C to 142°C (with cooling and decomposition).

References

Merck Index 7663 DFU 3 (2) 135 (1978) OCDS Vol. 3 p. 184 (1984) DOT 17 (6) 256 (1981)

Nakagawa, K., Yoshizaki, S., Tanimura, K. and Tamada, S.; U.S. Patent 4,026,897; May 3, 1977; assigned to Otsuka Pharmaceutical Co. (Japan)

PROCHLORPERAZINE

Therapeutic Function: Antiemetic; antipsychotic

Chemical Name: 2-Chloro-10-[3-(4-methyl-1-piperazinyl)propyl] -10H-phenothiazine

Common Name: Chlormeprazine

Structural Formula:

Chemical Abstracts Registry No.: 58-38-8; 84-02-6 (Maleate)

Trade Name	Manufactuer	Country	Year Introduced
Compazine	SKF	U.S.	1956
Tementil	Specia	France	1957
Anti-Naus	Protea	Australia	_
Combid	SKF	U.S.	_
Klometil	Farmos	Finland	-
Mitil	Lennon	S. Africa	_
Nibromin-A	Maruko	Japan	
Normalmin	Sawai	Japan	_
Novamin	Shionogi	Japan	
Pasotomin	Yoshitomi	Japan	_
Stemetil	May & Baker	U.K.	_
Vertigon	SKF	U.K.	_

Raw Materials

3-Chloro-10-[3-(di-N-2-chloroethyl)aminopropyl] phenthiazine hydrochloride Monomethylpiperazine

Manufacturing Process

3-Chloro-10-[3-(di-N-2-chloroethyl)aminopropyl)] phenthiazine hydrochloride (1.8 g) is heated in a sealed tube for 4 hours at 140°C with a 290 g/l aqueous solution (9 cc) of monomethylpiperazine. The contents of the tube are treated with chloroform (40 cc). The aqueous layer is decanted and the chloroform layer is shaken with N hydrochloric acid (15 cc followed by 2 cc). The aqueous solution is treated with sodium hydroxide (d = 1.33, 10 cc) and chloroform (20 cc). After evaporation of the solvent, the base (1.5 g) is obtained. A solution of maleic acid (1 g) in ethanol (5 cc) is added and after recrystallization from water, 3-chloro-10-[3-(4'-methyl-1'-piperazinyl)propyl] phenothiazine dimaleate is obtained, melting point 228°C (inst.).

References

Merck Index 7665 Kleeman & Engel p. 764 PDR pp. 1606, 1706 OCDS Vol. 1 p. 381 (1977) DOT 9 (6) 228 (1973) 1.N.p. 806 REM p. 809

Horclois, R.J.; U.S. Patent 2,902,484; September 1, 1959; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

PROCYCLIDINE HYDROCHLORIDE

Therapeutic Function: Antiparkinsonism

Chemical Name: α-Cyclohexyl-α-phenyl-1-pyrrolidinepropanol hydrochloride

Common Name: -

Structural Formula:

$$\begin{array}{c} \\ \text{HO}-\text{CCH}_2\text{CH}_2-\text{N} \\ \\ \text{C}_6\text{H}_5 \end{array} \hspace{0.5cm} \text{(base)}$$

Chemical Abstracts Registry No.: 1508-76-5; 77-37-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Kemadrin	Burroughs Wellcome	U.S.	1956
Kemadrine	Wellcome	France	1965
Arpicolin	R.P. Drugs	U,K.	_
Kemadren	Gayoso Wellcome	Spain	_
Osnervan	Wellcome	W. Germany	
Procyclid	1.C.N.	Canada	-

Raw Materials

Acetophenone	Paraformaldehyde
Pyrrolidine	Bromobenzene
Magnesium	Hydrogen
Hydrogen chloride	

Manufacturing Process

1.1-Diphenyl-3-pyrrolidinopropan-1-ol (30 grams) was dissolved in glacial acetic acid (120 ml), Adams' platinum catalyst (6 grams) added, and the mixture shaken in an atmosphere of hydrogen until the equivalent of 3.4 molecules had been taken up per molecule of compound. Water was added, the catalyst removed by filtration, excess of ammonia added, and the liberated base extracted with ether. The ethereal extract was dried and evaporated and the residue recrystallized from light petroleum (BP 40°-60°C). The 1-cyclohexyl-1-phenyl-3-pyrrolidinopropan-1-ol (19.3 grams) so obtained had a melting point of 85.5°-86.5°C. The hydrochloride recrystallized from a mixture of ethanol and ethyl acetate, melted with decomposition at 226°-227°C according to U.S. Patent 2,891,890.

The starting material is prepared by the reaction of acetophenone, paraformaldehyde and pyrrolidine to give ω -pyrrolidinopropiophenone. That is in turn reacted with phenyl magnesium bromide to give 1,1-diphenyl-3-pyrrolidinpropan-1-ol.

References

Merck Index 7667 Kleeman & Engel p. 765 PDR p. 745 OCDS Vol. 1 p. 47 (1977) DOT 18 (2) 88 (1982) 1.N. p. 806 REM p. 932

Bottorff, E.M.; U.S. Patent 2,826,590; March 11, 1958; assigned to Eli Lilly and Company Harfenist, M. and Magnien, E.G.; U.S. Patent 2,842,555; July 8, 1958; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Adamson, D.W.; U.S. Patent 2,891,890; June 23, 1959; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

PROGLUMETACIN MALEATE

Therapeutic Function: Antiinflammatory

Chemical Name: N'-2-[1-(p-chlorobenzoy!)-5-methoxy-2-methyl-3-indoleacetoxy]-ethyl-N-3-(N-benzoyl-N',N'-di-n-propyl-DL-isoglutaminoyl)-oxypropyl piperazine dimaleate

Common Name: Protacine

Structural Formula:

Chemical Abstracts Registry No.: 57132-53-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Afloxan	Rotta	Italy	1981
Proxil	Rorer	Italy	1981

Raw Materials

N'-(2-Hydroxyethyl)-N-3-(N-benzoyl-N',N'-di-n-propyl-DL-isoglutaminoyl)-oxypropy! piperazine 1-(p-Chlorobenzoyl)-5-methoxy-2-methyl-3-indoleacetic acid N',N'-Dicyclohexylcarbodiimide

Manufacturing Process

Maleic acid

To a titrated solution of 400 cc of ethyl acetate containing 0.1 mol of N'-(2-hydroxyethyl)-N-3-(N-benzoyl-N', N'-di-n-propyl-DL-isoglutaminoyl)-oxypropyl piperazine [obtained by dissolving 71.9 a (0.105 mol) of the corresponding di-oxalate in 500 cc of water, bringing this solution to a pH of between 9 and 10 with sodium bicarbonate and finally extracting the oily emulsion thus formed twice in succession with a total of 400 cc of ethyl acetate], there are added successively 35.8 g (0.1 mol) of 1-(p-chlorobenzoyl)-5-methoxy-2-methyl-3-indoleacetic acid and 20.6 g (0.1 mol) of N,N'-dicyclohexylcarbodiimide. This is left at room temperature for 24 hours, and after having filtered the N,N'-dicyclohexyl urea precipitate the organic phase is then washed with dilute HCI, a solution of sodium bicarbonate and a saturated solution of sodium chloride.

The ethyl acetate is dried with anhydrous sodium sulfate, filtered and dried off. The oily residue is dissolved in 600 cc of methanol; the di-oxalate is precipitated by the addition of a solution of oxalic acid in methanol. Yield 85%, melting point 190°C to 192°C (crystallized by methanol). Microcrystalline substance, creamy white color.

By the same method one can obtain the dimaleate. Yield, 83%; melting point, 146°C to 148°C (crystallized by ethanol). Microcrystalline pale cream colored substance.

References

Merck Index 7679 DFU 5 (3) 142 (1980) DOT 17 (4) 157 (1981)

Makovec, F., Senin, P. and Rovati, L.; U.S. Patent 3,985,878; October 12, 1976; assigned to Rotta Research Laboratorium S.p.A.

PROMAZINE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: N,N-Dimethyl-10H-phenothiazine-10-propanamine hydrochloride

Common Name: -

Structurel Formule:

Chemical Abstracts Registry No.: 53-60-1; 58-40-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Sparine	Wyeth	U.S.	1956
Atarzine	Saunders	Canada	_
Calmotal	S.I.T.	Itaiy	
Eliranol	Wyeth	Italy	_
Frenil	Polfa	Poland	_
Neuroplegil	Gentili	Italy	_
Promanyl	Paul Maney	Canada	
Promazettes	Barlow Cote	Canada	_
Promezerine	Barlow Cote	Canada	_
Protactyl	Wyeth	W. Germany	
Savamine	Banyu	Japan	_
Sediston	Serono	Italy	_
Starazine	Star	Finland	_
Talofen	Pierrei	Italy	_
Tranquazine	Anthony	U.S.	_

Raw Materials

Phenothiazine 3-Dimethylamino-1-chloropropane

Sodium amide Hydrogen chloride

Manufacturing Process

30 grams of phenothiazine, 120 grams of xylene and 7 grams of sodamide (80%) are mixed and heated under reflux. 23 grams of 3-dimethylamino-1-chloropropane, diluted with its own weight of xylene, is then added little by little during one hour, while maintaining the temperature of the reaction mixture; heating under reflux is then continued for a further hour. After cooling, the mixture is taken up in 400 cc of water and rendered slightly acid with hydrochloric acid. The xylene is decanted, the aqueous layer is rendered strongly alkaline with caustic soda and the base which separates is extracted with ether. On rectification of the ether extract, there is obtained N-(3'-dimethyl-amino-propyl)-phenothiazine which boils at 208°-210°C under 3 mm. The hydrochloride of this base melts at 181°C (Maguenne block).

References

Merck Index 7688 Kleeman & Engel p. 768 PDR p. 1989 OCDS Vol. 1 p. 377 (1977) 1.N. p. 810 REM p. 1090

Charpentier, P.; U.S. Patent 2,519,886; August 22, 1950; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

PROMEGESTONE

Therapeutic Function: Progestin

Chemical Name: $17\alpha,21$ -Dimethyl-19-nor- $\Delta^{4,9}$ -pregnadiene-3,20-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name Manufacturer Country Year Introduced
Surgestone Cassenne France 1983

Raw Materials

17 α -Methyl-19-nor- $\Delta^{5\,(10)}$ -pregnene-3,20-dione Bromine Pyridine

Manufacturing Process

16.3 cc of a solution of 29% of bromine in methanol were added with agitation under a nitrogen atmosphere to a solution of 8.50 g of 17α -methyl-19-nor- $\Delta^{5(10)}$ -pregnene-3,20-dione in 85 cc of pyridine cooled to 0°C and the mixture was stirred for 30 minutes at 0°C. The temperature was allowed to return to room temperature and the mixture was stirred for 16 hours.

The mixture was added to 850 cc of water-ice mixture and 82 cc of hydrochloric acid were added thereto. The mixture was extracted with methylene chloride and the combined extracts were washed with water until the wash waters were neutral, were dried over magnesium sulfate and distilled to dryness to obtain 8.480 g of crude product which is purified by crystallion from isopropyl ether to obtain 5.810 g of 17α -methyl-19-nor- $\Delta^{4.9}$ -pregnadiene-3,20-dione melting at 106°C .

The mother liquors from the purification of the product were combined and evaporated to dryness. The residue was fractionated by chromatography over silica gel (Kieselgel) and elution with a 7:3 mixture of benzene-ethyl acetate. The first fractions were discarded and the ensuing fraction was evaporated to obtain colorless crystals. The product was purified by mixing with five volumes of boiling isopropyl ether and the crystals formed after cooling were recovered by vacuum filtration, were washed twice with two volumes of isopropyl ether and dried in a ventilated atmosphere to obtain $17\alpha,21$ -dimethyl-19-nor- $\Delta^{4.9}$ -pregnadiene-3,20-dione melting at $152^{\circ}\mathrm{C}$.

References

DFU 3 (6) 469 (1978) DOT 19 (7) 416 (1983)

I.N. p. 810

Warnant, J. and Farcilli, A.; U.S. Patents 3,679,714; July 25, 1972; and 3,761,591; Sept. 25, 1973; both assigned to Roussel UCLAF

PROMETHAZINE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: N,N,α-trimethyl-10H-phenothiazine-10-ethanamine hydrochloride

Common Name: Proazamine hydrochloride

Structural Formula:

CH2CHN(CH3)2 (base)

Chemical Abstracts Registry No.: 58-33-3; 60-87-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Phenergan	Wyeth	U.S.	1951
Ganphen	Tutag	U.S.	1971
Remsed	Endo	U.S.	1973
Lemprometh	Lemmon	U.S.	1974
Bromethacon	Alcon	U.S.	1981
Baymethazine	Вау	U.S.	1982
Atosil	Bayer	W. Germany	_
Avomine	May & Baker	U.K.	
Diphergan	Polfa	Poland	
Dorme	A.V.P.	U.S.	-
Fargan	Farmitalia	Italy	
Fellozine	Fellows-Testagar	U.S.	
Fenazil	Sella	Italy	
Fenergan	Rhodia Iberica	Spain	
Hiberna	Yoshitomi	Japan	_
Lenazine	Lennon	S. Africa	_
Lergigan	Recip	S weden	
Mopergan	W yeth	U.S.	_
Pelpica	P.C.B.	Belgium	-
Perduretas	Medea	Spain	-
Phencen	Central	U.S.	_
Pipolphen	Nakataki	Japan	_
Progan	Adams	Australia	
Promet	Legere	U.S.	-
Promethapar	Parmed	U.S.	_
Promethazine	Lederle	U.S.	_
Promine	Laser .	U.S.	_
Prorex	Hyrex	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Prothazine	Knoll	Australia	-
Prothia	Kanto	Japan	_
Prothiazine	Novis	Israel	-
Provigan	Reid-Provident	U.S.	-
Pyrethia	Shionogi	Japan	-
Quadnite	Reid-Provident	U.S.	
Rivozine	Rivopharm	Switz.	_
Sayamol	Cinfa	Spain	-
V-Gan	Hauck	U.S.	
Zipan	Savage	U.S.	_

Phenothiazine 1-Dimethylamino-2-propyl chloride Sodium amide Hydrogen chloride

Manufacturing Process

30 grams of phenothiazine, 120 grams of xylene, and 7 grams of sodamide (85%) are mixed and heated under reflux. A solution of 23 grams of the base obtained by the action of sodium hydroxide on the hydrochloride of 1-dimethylamino-2-chloropropane, in 25 grams of xylene, is then added little by little during one hour, while maintaining the temperature of the reaction mixture; heating under reflux is then continued for a further hour. After cooling, the mixture is taken up in 400 cc of water and rendered slightly acid with hydrochloric acid. The xylene is decanted, the aqueous layer is rendered strongly alkaline with caustic soda and the base which separates is extracted with ether. The ethereal extract is rectified, the fraction which boils at 190°-192°C under 3 mm being recovered. This is diluted with acetone or ethyl acetate and dry hydrochloric acid is added. The hydrochloride of N-(2'-dimethylamino-2'-methyl-ethyl)-phenothiazine separates, according to U.S. Patent 2,530,451.

References

Merck Index 7691 Kleeman & Engel p. 769 PDR pp. 861, 993, 1033, 1959, 1968, 1989 OCDS Vol. 1 pp. 373, 377 (1977) I.N. p. 811 REM p. 1129

Charpentier, P.; U.S. Patent 2,530,451; November 21, 1950; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

Berg, S.S. and Ashley, J.N.; U.S. Patent 2,607,773; August 19, 1952; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

PROPAFENONE HYDROCHLORIDE

Therapeutic Function: Antiarrhythmic

Chemical Name: 2'-(2-Hydroxy-3-propylaminopropoxy)-3-phenylpropiophenone hydro-

chloride

Common Name: Fenoprain

Chemical Abstracts Registry No.: 34183-22-7; 54063-53-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Rytmonorm	Knoll	W. Germany	1978
Rytmonorm	Knoll	Italy	1983
Rytmonorm	Knoll	Switz.	1983
Baxarytmon	Helopharm	W. Germany	_
Normorytmin	Knoll	W. Germany	-

Raw Materials

2'-Hydroxy-3-phenylpropiophenone	Epichlorohydrin
n-Propylamine	Hydrogen chloride

Manufacturing Process

2'-(2,3-epoxypropoxy)-3-phenylpropiophenone — 24.8 g of the sodium salt of 2'-hydroxy-3-phenylpropiophenone were mixed with 40 cm³ of 1-chloro-2,3-epoxypropane (epichlorohydrin) and the mixture heated on a boiling water bath while stirring, using a reflux condenser. The initially pasty-to-solid mixture liquefied after about 2 hours, sodium chloride separating out. Thereafter it was heated for a further 2 hours while stirring, using a reflux condenser. The mixture was then allowed to cool and subsequently freed, by filtration, from the sodium chloride formed. The filtrate was concentrated in vacuo, and the excess 1-chloro-2,3-epoxy-propane thus separated from the desired 2'-(2,3-epoxypropoxy)-3-phenylpropiophenone. The latter remained as a yellowish oil which solidified in the cold, but did not crystallize. Purification of the intermediate product, by distillation in vacuo, was not necessary, particularly as the substance only boiled at a temperature of 280°C/12 mm Hg and at the same time decomposed.

2'-(2-hydroxy-3-propylaminopropoxy)-3-phenylpropiophenone hydrochloride — The above product was treated with 20 cm³ of n-propylamine and the mixture warmed on a water bath for approximately 4 hours, while stirring, using a reflux condenser. Thereafter, the excess n-propylamine was distilled off. On cooling, the residue solidified to give a viscous yellow mass. 20 cm³ of 1M aqueous hydrochloric acid were added to it, and the whole was boiled for 1 hour under reflux, while stirring. The mixture was then poured into a suitable vessel and allowed to crystallize at room temperature. The crude product was drained thoroughly by suction and subsequently crystallized from a mixture of acetone/methanol (80:20, v/v).

Approximately 25 g (66.2% of theory) of a white crystalline substance were obtained. The melting point of the hydrochloride was 173° C to 174° C.

References

Merck Index 7698 DFU 2 (5) 325 (1977) Kleeman & Engel p. 770 I.N. p. 812

Sachse, R.; British Patent 1,307,455; February 21, 1973; assigned to Helopharm W. Petrick & Co. K.G.

PROPANIDID

Therapeutic Function: Anesthetic (intravenous)

Chemical Name: 4-[2-(Diethylamino)-2-oxoethoxy] -3-methoxybenzene-acetic acid propyl

ester

Common Name: -

Structural Formula:

$$\mathsf{(CH_3CH_2)_2} \mathsf{NCCH_2O} - \mathsf{CH_2COOCH_2CH_2CH_3}$$

Chemical Abstracts Registry No.: 1421-14-3

Trade Name	Manufacturer	Country	Year Introduced
Epontol	Bayer	W. Germany	1965
Epontol	Bayer	Italy	1967
Epontol	Theraplix	France	1967
Epontol	Bayer	Japan	1970
Fabontal	Bayer	_	_
Sombrevin	Gedeon Richter	Hungary	_

Raw Materials

Homovanillic acid n-propyl ester Sodium

Chloracetic acid-N,N-diethylamide

Manufacturing Process

To a solution of 4 g of sodium in 200 ml of n-propanol is added 39 g of homovanillic acid-npropyl ester (boiling point 160°C to 162°C/4 mm Hg) and the mixture is concentrated by evaporation under vacuum. After dissolving the residue in 200 ml of dimethylformamide and the addition of 0.5 g of sodium lodide, 26.2 g of chloracetic acid-N,N-diethylamide are added dropwise with stirring at an internal temperature of 130°C, and the mixture is further heated at 130°C for three hours. From the cooled reaction mixture the precipitated salts are removed by filtering off with suction. After driving off the dimethylformamide under vacuum, the product is fractionated under vacuum, and 44.3 g of 3-methoxy-4-N, N-diethylcarbamidomethoxyphenylacetic acid-n-propyl ester are obtained as a yellowish oil of boiling point 210°C to 212°C/0.7 mm Hg.

References

Merck Index 7705 OCDS Vol. 2 p. 79 (1980) DOT 2 (3) 110 (1966) I.N. p. 813 REM p. 1047

Hiltman, R., Wolfweber, H., Hoffmeister, F. and Wirth, W.; U.S. Patent 3,086,978; April 23, 1963; assigned to Farbenfabriken Bayer A.G. (Germany)

PROPANTHELINE BROMIDE

Therepeutic Function: Antispasmodic

Chemical Name: N-Methyl-N-(1-methylethyl)-N-[2-[(9H-xanthen-9-ylcarbonyl)oxy] ethyl] -2-propanaminium bromide

Common Name: Diisopropylaminoethyl xanthene-9-carboxylate methobromide

Structural Formula:

Chemical Abstracts Registry No.: 50-34-0

Trade Name	Manufacturer	Country	Year Introduced
Pro-Banthine	Searle	U.S.	1953
Probanthine	Searle	France	1981
Apopant	A.L.	Norway	_
Banlin	Paul Maney	Canada	_
Corigast	Searle	W. Germany	
Ercoril	Erco	Denmark	-
Giquel	Danal	U.S.	_
Ketaman	Desitin	W. Germany	_
Neo-Banex	Neo	Canada	_
Neo-Dexabine	Nourypharma	Neth.	
Neo-Gastrosedan	Star	Finland	_
Neo-Metantyl	Zambon	Italy	_
Pantheline	Protea	Australia	_
Panthene	Vangard	U.S.	-
Pervagal	Zambeletti	Italy	_
Probital	Searle	U.S.	-
Prodixamon	A.L.	Norway	-
Propanthel:	I.C.N.	Canada	_
Suprantil	Prodotti Erma	Italy	_
Tensilan	Desitin	W. Germany	-

Raw Materials

Xanthene-9-carboxylic acid β -Diisopropylaminoethyl chloride Methyl bromide

Manufacturing Process

365 parts of β -diisopropylaminoethyl chloride and 565 parts of xanthene-9-carboxylic acid dissolved in 800 parts of isopropanol is heated to reflux for 5 hours. The solution is then cooled, diluted with dry ether and the crystalline precipitate of β -diisopropylaminoethyl xanthene-9-carboxylate hydrochloride is collected on a filter and dried. This salt melts at 111°-112°C. 38 parts of the foregoing salt are dissolved in the minimum of water and treated with an aqueous solution of potassium carbonate. The suspension of β -diisopropylaminoethyl xanthene-9-carboxylate thus formed is extracted with ether and the ether extract is dried and evaporated. There is thus obtained 33 parts of the free base which are treated with 10 parts of methyl bromide in 100 parts of chloroform for 22 hours at 70°-80°C. The reaction mixture is chilled, diluted with anhydrous ether and the quaternary salt thus precipitated is collected on a filter and washed with dry ether and then with butanone. β-Diisopropylaminoethyl xanthene-9-carboxylate methobromide thus obtained melts at 152°-153°C. After recrystallization from isopropanol it melts at 157°-155°C.

References

Merck Index 7708 Kleeman & Engel p. 771 PDR pp. 830, 1569, 1606, 1694, 1723 OCDS Vol. 1 p. 394 (1977) I.N. p. 813 REM p. 919

Cusic, J.W. and Robinson, R.A.; U.S. Patent 2,659,732; November 17, 1953; assigned to G.D. Searle & Co.

PROPIRAM FUMARATE

Therapeutic Function: Analgesic

Chemical Name: N-[1-Methyl-2-(1-piperidinyl)ethyl] -N-2-pyridinylpropanamide fumarate

Common Name: -

Structural Formula:

$$\mathsf{CH_3CH_2CON} - \mathsf{CHCH_2} - \mathsf{N} \tag{base}$$

Chemical Abstracts Registry No.: 13717-04-9; 15686-91-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Algeril	Bayropharm	italy	1974
Algeril	Bayer	W. Germany	1974
Dirame	Schering	-	_

Raw Materials

2-(1-Piperidino-isopropyl)aminopyridine Propionic anhydride Fumaric acid

Manufacturing Process

20 g of 2-(1-piperidino-isopropyl)aminopyridine and 50 ml of propionic anhydride are heated to 120°C for 8 hours. The mixture is then evaporated under vacuum and the residue taken up in water. The base is precipitated from the solution with a caustic soda solution, taken up in ether and dried with potassium carbonate. After driving off the ether and distillation under vacuum, there are obtained 18 grams of N-propionyl-2-(1-piperidino-isopropyl)-aminopyridine of BP 162°-163°C/0.5 mm Hg. The base is then reacted with fumaric acid to give the final product.

References

Merck Index 7733 Kleeman & Engel p. 772 DOT 10 (11) 309 (1974) 1.N. p. 815

Hiltmann, R., Wollweber, H., Hoffmeister, F., Wirth, W. and Kroneberg, H.-G.; U.S. Patent 3,163,654; December 29, 1964; assigned to Farbenfabriken Bayer AG, Germany Wollweber, H., Hiltmann, R., Hoffmeister, F. and Kroneberg, H.-G.; U.S. Patent 3,594,477; July 20, 1971; assigned to Farbenfabriken Bayer AG, Germany

PROPOXYPHENE HYDROCHLORIDE

Therapeutic Function: Analgesic

Chemical Name: (S)-α-[2-(dimethylamino)-1-methylethyl]-α-phenylbenzeneethanol pro-

panoate hydrochloride

Common Name: Dextropropoxyphene hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 1639-60-7: 469-62-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Darvon	Lilly	U.S.	1957
Antalvic	Houde	France	1963
SK-65	SKF	U.S.	1973
Propoxychel	Rachelle	U.S.	1973
Dolene-65	Lederle	U.S.	1973
Prophen 65	Halsey	U.S.	1981
Darvocet-N	Lilly	U.S.	_
Depronal SA	Warner	U.K.	
Develin	Goedecke	W. Germany	_
Doloxene	Lilly	U.K.	-
Erantin	Boehr. Mann.	W. Germany	_
Liberen	Lisapharma	Italy	_
Lorcet	U.A.D. Labs	U.S.	
Wygesic	Wyeth	U.S.	-

Raw Materials

Benzyl chloride α -Methyl- β -dimethylaminopropiophenone Propionic anhydride

Magnesium Hydrogen chloride

Manufacturing Process

A solution of benzylmagnesium chloride prepared from 63.3 grams (0.5 mol) of benzyl chloride, 30.5 grams (1.25 mol) of magnesium and 750 cc of ether was added dropwise with stirring to a solution of 61.9 grams (0.35 mol) of α -methyl- β -dimethylaminopropiophenone (prepared by the method of Burchalter et al, JACS 70 page 4186, 1948), in 150 cc of ether. When all of the Grignard reagent had been added, the solution was refluxed for about 1 hour. The reaction mixture was then decomposed by the addition of saturated aqueous ammonium chloride solution. The ether solution containing the 1,2-diphenyl-2-hydroxy-3-methyl-4-dimethylaminobutane formed in the reaction was decanted from the granular precipitate and dried over anhydrous magnesium sulfate.

Dry hydrogen chloride gas was passed into the ether solution until precipitation was completed. The solid was removed by filtration and was recrystallized from a mixture of methanol and ethyl acetate. The α -dl-1,2-diphenyl-2-hydroxy-3-methyl-4-dimethylamino-butane hydrochloride thus obtained melted at about 231° to 232°C.

A mixture of 50 grams of α -dl-1,2-diphenyl-2-hydroxy-3-methyl-4-dimethylaminobutane hydrochloride, 50 grams of propionic anhydride and 50 cc of pyridine was refluxed for about 5 hours. The reaction mixture was cooled to 50°C and ethyl ether was added to the point of incipient precipitation. The hydrochloride salt of α -dl-1,2-diphenyl-2-propionoxy-3-methyl-4-dimethylaminobutane formed in the reaction precipitated upon cooling and was removed by filtration and washed with anhydrous ether. On recrystallization from a mixture of methanol and ethyl acetate, α -dl-1,2-diphenyl-2-propionoxy-3-methyl-4-dimethyl-aminobutane hydrochloride melted at 170°-171°C.

References

Merck Index 7739 Kleeman & Engel p. 285 PDR pp. 993, 1044, 1606, 1723, 1808, 1996, 1999 OCDS Vol. 1 pp. 50, 298 (1977) & 2,57 (1980) I.N. p. 816 REM p. 1114

Pohland, A.; U.S. Patent 2,728,779; December 27, 1955; assigned to Eli Lilly and Company

PROPRANOLOL HYDROCHLORIDE

Therapeutic Function: β -adrenergic blocker

Chemical Name: 1-(isopropylamino)-3-(1-naphthyloxy)-2-propanol hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 318-98-9; 525-66-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Inderal	I.C.I.	U.K.	1965
Dociton	Rhein Pharma	W. Germany	1965
Avlocardyl	I.C.I.	France	1967
Inderal	Ayerst	U.S.	1968
Angilol	D.D.S.A.	U.K.	. <u>~</u>
Arcablock	Arcana	Austria	_
Bedranol	Lagap	Switz.	· <u></u>
Berkolol	Berk	U.K.	_
Beta-Neg	Ellem	Italy	
Beta-Tablinen	Sanorania	W. Germany	-
Cardinol	Protea	Australia	
Caridolol	Sankyo	Japan	_
Corotrend	Siegfried	Switz.	-

Trade Name	Manufacturer	Country	Year Introduced
Deralin	Abic	Israel	_
Detensol	Desbergers	Canada	_
Dideral	Dif-Dogu	T urkey	_
Frekven	Ferrosan	Denmark	_
Herzbase	Nichilko	Japan	_
Herzul	Ono	Japan	_
Inderide	Ayerst	U.S.	-
Indobloc	Homburg	W. Germany	_
Kemi	Otsuka	Japan	_
Nedis	Omega	Argentina	
Noloten	Beta	Argentina	
Novopranol	Novopharm	Canada	
Obsidan	Iris-Chemie	E. Germany	_
Oposim	Richet	Argentina	-
Pranolol	A.L.	Norway	_
Pronovan	A.L.	Norway	
Propranolol	Lederle	U.S.	_
Propranur	Henning	W. Germany	_
Pur-Bloka	Lennon	S. Africa	_
Pylapron	Kyorin	Japan	-
Reducor	Leiras	Finland	
Sawatal	Sawai	Japan	_
Tonum	Tubi Lux Pharma	Italy	_

1-Naphthol Isopropyl amine Epichlorohydrin Hydrogen chloride

Manufacturing Process

In a first step, 1-naphthol was reacted with epichlorohydrin to give 1-chloro-3-(1-naphthoxy)-2-propanol.

A mixture of 4.4 parts of 1-chloro-3-(1-naphthoxy)-2-propano and 16 parts of isopropylamine is heated in a sealed vessel at 70°-80°C for 10 hours. The vessel is cooled and to the contents there are added 50 parts of water. The mixture is acidified with 2 N hydrochloric acid, and washed with 50 parts of ether. The aqueous phase is decolorized with carbon, and then added to 50 parts of 2N sodium hydroxide solution at 0°C. The mixture is filtered. The solid residue is washed with water, dried, and crystallized from cyclohexane. There is thus obtained 1-isopropylamino-3-(1-naphthoxy)-2-propanol, MP 96°C.

The base may be converted into the hydrochloride as follows. 4.65 parts of the base are dissolved in 60 parts of warm acetone. To the warm solution there are added 2 parts of 10 N hydrochloric acid. The mixture is allowed to cool, and is then filtered. The solid residue is washed with acetone and then dried. The solid is crystallized from propanol, and there is thus obtained 1-isopropylamino-3-(1-naphthoxy)-2-propanol hydrochloride MP 163°C.

References

Merck Index 7740 Kleeman & Engel p. 773 PDR pp. 622, 993, 1999 OCDS Vol. 1 p. 117 (1977) & 2, 105, 107, 212 (1980) DOT 19 (3) 172 (1983) I.N. p. 816 REM p. 906

Crowther, A.F. and Smith, L.H.; U.S. Patent 3,337,628; August 22, 1967; assigned to Imperial Chemical Industries Limited, England

PROPYLHEXEDRINE

Therapeutic Function: Nasal decongestant

Chemical Name: N, \alpha - dimethylcyclohexaneethanamine

Common Name: Hexahydrodesoxyephedrine

Structural Formula:

Chemical Abstracts Registry No.: 101-40-6; 6192-98-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Benzedrex	SKF	U.S.	1949
Dristan	Whitehall	U.S.	_
Eggobesin	Fahlberg-List	E. Germany	-
Eventin	Minden	W. Germany	

Raw Materials

Cyclohexylacetone N-Methylformamide Sulfuric acid Sodium hydroxide

Manufacturing Process

33.6 grams of cyclohexylacetone, a compound known to the art, dissolved in 13 grams of 85% formic acid is caused to interact with 72.0 grams of N-methyl formamide at 160°-180°C for 4 hours. This results in the formation of the formyl derivative of the amine, according to the following reaction:

The formyl derivative is then hydrolyzed by refluxing with 50% sulfuric acid for about 4 hours, after which the hydrolysate is extracted with ether to remove the acid-insoluble material and the aqueous solution made strongly alkaline with any suitable alkalizing agent, for example, sodium hydroxide, to liberate the amine.

The amine is then taken up in ether, dried over potassium hydroxide and purified by distillation, preferably under reduced pressure. β -cyclohexylisopropylmethylamine thus obtained boils at 90.0°-92°C at 22 mm Hg.

References

Merck Index 7761 Kleeman & Engel p. 774 OCDS Vol. 1 p. 37 (1977) I.N. p. 817 REM p. 890

Ullyot, G.E.; U.S. Patent 2,454,746; November 23, 1948; assigned to Smith, Kline & French Laboratories

PROQUAZONE

Therapeutic Function: Antiinflammatory

Chemical Name: 1-Isopropyl-7-methyl-4-phenyl-2(1H)-quinazolinone

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22760-18-5

Trade Name	Manufacturer	Country	Year Introduced
Biarison	Sandoz	Italy	1977
Biarison	Sandoz	Japan	1977
Biarison	Sandoz	France	1977
Biarison	Sandoz	Switz.	1977
Biarison	Wander	W. Germany	1979

Raw Materials

4-Methyl-2-isopropylaminobenzophenone Urethane

Manufacturing Process

A mixture of 5.9 g of 4-methyl-2-isopropylaminobenzophenone, 13.9 g urethane and 500 mg of zinc chloride is heated at a temperature of 190°C for 1½ hours. There is then additionally added 7 g of urethane and 250 mg of zinc chloride, and the heating continued at a temperature of 190°C for an additional 2½ hours. The resulting mixture is cooled to about 100°C and diluted with chloroform. The resulting mixture is then filtered and the filtrate washed first with water and then with brine. The organic phase is separated, dried over anhydrous sodium sulfate and concentrated in vacuo to remove substantially all of the chloroform and obtain an oily residue which is dissolved in a small amount of about 20 ml of methylene chloride. The resulting solution is then diluted with about 40 ml of ethyl acetate and concentrated in vacuo to crystallize 1-isopropyl-7-methyl-4-phenyl-2(1H)-quinazolinone; melting point 137°C to 138°C.

References

Merck Index 7775 DFU 1 (11) 540 (1976) Kleeman & Engel p. 777 OCDS Vol. 2 p. 386 (1980)

DOT 8 (3) 116 (1972) & 13 (12) 534 (1977)

I.N. p. 818

Linder, J., Mattner, P.G. and Salmond, W.G.; U.S. Patent 3,759,720; September 18, 1973; assigned to Sandoz-Wander Inc.

Denzer, M.; U.S. Patent 3,793,324; February 19, 1974

Ott, H.; U.S. Patent 3,925,548; December 9, 1975; assigned to Sandoz, Inc.

PROSCILLARIDIN

Therapeutic Function: Cardiotonic

 $\textbf{Chemical Name:} \hspace{0.2cm} 3 - [(6 - Deoxy - \alpha - L - mannopyranosyl)oxy] - 14 - hydroxybufa - 4,20,22 - trienolide$

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 466-06-8

Trade Name	Manufacturer	Country	Year Introduced
Talusin	Knoll	W. Germany	1964
Talusin	Biosedra	France	1968
Apocerpin	Kotani	Japan	_
Bunosquin	Seiko	Japan	
Caradrin	Kowa	Japan	_
Cardimarin	Santen	Japan	_
Cardiolidin	Nichiiko	Japan	_
Cardion	Nippon Chemiphar	Japan	_
Cardon	Kanto	Japan	-
Herzo	Toho	Japan	_
Mitredin	Nippon Shoji	Japan	_
Procardin	Mohan	Japan	_
Procillan	Hokuriku	Japan	_
Proherz	Shinshin	Japan	_
Proscillan	Streuli	Switz.	-
Proscillar	Toyo Jozo	Japan	_
Prosiladin	Sawai	Japan	_
Prostosin	lwari	Japan	_
Proszin	Teisan	Japan	_
Protasin	Bayropharm	W. Germany	_
Purosin-TC	Tatsumi	Japan	_
Sandoscill	Sandoz	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Scillaridin	Moroshita	Japan	-
Silamarin A	Wakamoto	Japan	_
Stellarid	Tobishi-Mochida	Japan	_
Talusin	Dainippon	Japan	
Urgilan	Simes	Italy	_
Wirnesin	Inpharzam	W. Germany	_

Sauill

Manufacturing Process

350 g of dried and cut squill were fermented at 50°C for two hours in 1.1 liters of water. The suspension was then extracted three times with 1.1 liters of ethyl acetate. The extracts were united and evaporated to dryness, the residue was dissolved in 2 ml of dioxane and chromatographed in a twenty-fold quantity (based on the amount of dried residue) of silica gel. The proscillaridin was then eluated with toluene to which increasing quantities of a methanol-dioxane mixture were added. The main fraction, containing proscillaridin, was evaporated to dryness. The residue was crystallized out of methanol. Pure proscillaridin was obtained with a melting point of 227°C to 230°C; $\alpha_{20}^{\rm D} = -93.5$ °C (in methanol).

The same result was obtained by fermentation on the aqueous suspension of the cut squill at room temperature for 24 hours and working up in the manner described.

References

Merck Index 7776 Kleeman & Engel p. 777 DOT 3 (3) 97 (1967) I.N. p. 819

Steidle, W.; U.S. Patent 3,361,630; January 2, 1968; assigned to Knoll A.G. (Germany)

PROTHIPENDYL HYDROCHLORIDE

Therapeutic Function: Sedative; antihistaminic

Chemical Name: N,N-Dimethyl-10H-pyrido [3,2-b] [1,4] benzothiazine-10-propanamine hy-

drochloride

Common Name: ~

Structural Formula:

CH2CH2CH2N(CH3)2

N
N
N
(base)

(base

Chemical Abstracts Registry No.: 1225-65-6; 303-69-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Timovan	Ayerst	U.S.	1960
Dominal	Homburg	W. Germany	_
Prosyl	Kanto	Japan	
Tolnate	SKF	U.K.	_

Sodium amide 1-Azaphenothiazine 3-Dimethylaminopropyl chloride Hydrogen chloride

Manufacturing Process

A mixture of 20 g (0.1 mol) of 1-azaphenothiazine, 4.3 g (0.11 mol) of sodamide and 300 ml of dry toluene is stirred and refluxed for eight hours. A slow stream of dry nitrogen gas is used to sweep out the ammonia as formed. The mixture is cooled and 110 ml of a 1 M solution of 3-dimethylaminopropyl chloride in toluene is added dropwise, with stirring. Subsequently, the mixture is stirred and refluxed for fifteen hours, cooled, and concentrated in vacuo. The viscous residue is refluxed with 500 ml of chloroform and filtered hot. The chloroform filtrate is treated with activated charcoal and again filtered. The filtrate is concentrated and the residue distilled to give about 19.8 g (69% yield) of product, an oil distilling at about 195°C to 198°C (under 0.5 mm pressure of mercury).

To a solution of 16.4 g (0.058 mol) of the free base in 75 ml of dry acetonitrile is added dropwise while cooling (ice bath) and stirring 14.5 ml (0.053 mol) of 3.6N ethereal hydrogen chloride. An equal volume of anhydrous ether is added and the product altered, dried and recrystallized from monochlorobenzene. The product melts at about 177°C to 178°C with sintering at about 176°C. The yield is about 11.0 g (60%).

References

Merck Index 7789 Kleeman & Engel p. 779 OCDS Vol. 1 p. 430 (1977)

I.N. p. 821

Yale, H.L. and Bernstein, J.; U.S. Patent 2,943,086; June 28, 1960; assigned to Olin Mathieson Chemical Corp.

PROTIONAMIDE

Therapeutic Function: Antitubercular

Chemical Name: 2-propyl-4-pyridinecarbothioamide

Common Name: \alpha-propyl-isonicotinic thioamide

Structural Formula:

Chemical Abstracts Registry No.: 14222-60-7

Trade Name	Manufacturer	Country	Year Introduced
Ektebin	Bayer	W. Germany	1969
Protionizina	Farmitalia	Italy	1970
Entelohl	Kyowa	Japan	_
Peteha	Saarstick stoff-Fatol	W. Germany	_
Promid	Biofarma	Turkey	

Trade Name	Manufacturer	Country	Year Introduced
Prothionamide	Toho	Japan	
Trevintix	Theraplix	France	_
Tuberamin	Meiji	Japan	_
Tuberex	Shionogi	Japan	-
Tubermide	Sankyo	Japan	_

Ethyl oxalate Methyl-n-propyl ketone Sodium ethylate Cyanacetamide Hydrogen chloride Phosphorus oxychloride Hydrogen Ammonia Hydrogen sulfide Phosphoric anhydride

Manufacturing Process

- (A) Ethyl Butyryl-Pyruvate: 146 grams of ethyl oxalate are condensed with 86 grams of methyl-(n)-propyl-ketone in the presence of sodium ethylate prepared from 25 grams of sodium. 135 grams of product, having a boiling point of 113°C/6 mm, are obtained.
- (B) 3-Cyano-4-Carbethoxy-6-(n)-Propyl-2-Pyridone: The 135 grams of the product just obtained are condensed with 62 grams of cyanacetamide in the presence of 24 cc of piperidine in 1200 cc of 95% alcohol. 64 grams of a product, melting at 152°C, are obtained.
- (C) 6-(n)-Propyl-2-Pyridone-4-Carboxylic Acid: The 64 grams of the product just obtained are treated with 500 cc of concentrated hydrochloric acid at boiling point. 40 grams of a product, having a melting point of 285°C, are obtained.
- (D) Ethyl 2-Chloro-6-(n)-Propyl-Isonicotinate: The 40 grams of the acid just obtained are treated with 80 grams of phosphorus oxychloride and 95 grams of phosphorus pentachloride. The phosphorus oxychloride is distilled and the reaction mixture is treated with 400 grams of absolute alcohol. 40 grams of chlorinated ester, having a BP of 115°-116°C/2 mm, are obtained.
- (E) Ethyl 2-(n)-Propyl-Isonicotinate: The product just obtained is dechlorinated by catalytically hydrogenating it in an alcoholic medium in the presence of palladium black and potassium acetate. 30 grams of ester, having a boiling point of 121°-125°C/7 mm, are obtained.
- (F) 2-(n)-Propyl-Isonicotinamide: The 30 grams of the ester just obtained are treated with 40 cc of concentrated ammonia saturated with gaseous ammonia. 20 grams of product, having a melting point of 135°C, are obtained.
- (G) 2-(n)-Propyl-Isonicotinic-Nitrile: The 20 grams of the amide just obtained are treated with 32 grams of phosphoric anhydride. 11 grams of nitrile, having a BP of 90°-95°C/4 mm, are obtained.
- (H) 2-(n)-Propyl-Isonicotinic Thioamide: The 11 grams of nitrile just obtained, dissolved in 40 cc of ethanol containing 4 grams of triethanolamine, are treated with hydrogen sulfide. 8 grams of the desired product, having a melting point of 142°C, are obtained.

References

Merck Index 7791 Kleeman & Engel p. 780 DOT 3 (1) 24 (1967) I.N. p. 821

Chimie et Atomistique, France; British Patent 800,250; August 20, 1958

PROTIZINIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: 7-methoxy-α.10-dimethylphenothiazine-2-acetic acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 13799-03-6

Trade Name	Manufacturer	Country	Year Introduced
Pirocrid	Theraplix	France	1974
Pirocrid	Mochida	Japan	1979
P.R.T.	Mochida	J a pan	_

Raw Materials

Methyl (7-methoxy-10-methyl-3-phenthiazinyl)acetate

Sodium

Ethanol

Methyl iodide

Diethyl carbonate

Sodium hydroxide

Hydrogen chloride

Manufacturing Process

Methyl ethyl (7-methoxy-10-methyl-3-phenthiazinyl)malonate is prepared by reacting a solution of sodium (4.37 grams) in anhydrous ethanol (110 cc) with a solution of methyl (7-methoxy-10-methyl-3-phenthiazinyl)acetate (59 grams) in ethyl carbonate (180 cc). The reaction mixture is heated at about 105°-110°C for 3 hours and the ethanol formed is distilled off as it is formed.

The reaction mixture is acidified with N hydrochloric acid (200 cc) and the oil formed is extracted with methylene chloride (200 cc). The methylene chloride solution is washed with water (210 cc), treated with decolorizing charcoal (5 grams), dried over anhydrous sodium sulfate and concentrated to dryness under reduced pressure (20 mm Hg) giving an oil (77 grams) which is crystallized from methanol (300 cc) to yield methyl ethyl (7-methoxy-10-methyl-3-phenthiazinyl)-malonate (62.4 grams) melting at 80°-82°C.

Methyl ethyl (7-methoxy-10-methyl-3-phenthiazinyl)malonate (62.2 grams) followed by methyl iodide (45.7 grams) is added to a solution of sodium (4.45 grams) in anhydrous ethanol (500 cc). The reaction mixture is heated under reflux for 1 hour at 45°C, then for 6 hours at 55°C, and finally concentrated to dryness under reduced pressure (20 mm Hg). The residue is taken up in methylene chloride (300 cc) and water (250 cc), filtered in the presence of a filtration adjuvant, washed with methylene chloride (150 cc) and water (150 cc), and decanted. The aqueous solution is extracted once again with methylene chloride (100 cc), and the combined organic solutions washed with water (100 cc), aqueous 0.1 N sodium hyposulfite solution (200 cc) and finally with water (200 cc). After drying over anhydrous sodium sulfate and evaporation to dryness under reduced pressure (20 mm Hg), there is obtained an oil (64.8 grams) which is dissolved in methylene chloride (100 cc) and

chromatographed over alumina (650 grams). After elution with methylene chloride, a fraction of 2.5 liters is recovered and concentrated to dryness under reduced pressure (20 mm Hg) to give methyl ethyl methyl-(7-methoxy-10-methyl-3-phenthiazinyl)malonate (59.7 grams) melting at 70°-72°C.

1 N sodium hydroxide solution (296 cc) is poured over a period of 3 hours into a solution of methyl ethyl methyl-(7-methoxy-10-methyl-3-phenthiazinyl)malonate (59.7 grams) in ethanol (600 cc) heated under reflux in an atmosphere of nitrogen. The reaction mixture is concentrated to dryness under reduced pressure (20 mm Hg), the residue obtained acidified with N hydrochloric acid (300 cc) and the gum formed extracted with methylene chloride (150 cc). The organic solution is washed with water (200 cc), treated with decolorizing charcoal (10 grams), dried over anhydrous sodium sulfate and concentrated to dryness under reduced pressure (20 mm Hg). The oil obtained (48 grams) is dissolved in N sodium hydroxide solution (200 cc) and the aqueous solution washed with diethyl ether (300 cc), treated with decolorizing charcoal (5 grams) and acidified with N hydrochloric acid (200 cc). The oil formed is dissolved in methylene chloride (350 cc), the solution washed with water (100 cc), treated with decolorizing charcoal (5 grams) and dried over anhydrous sodium sulfate. The solution is concentrated to dryness under reduced pressure (20 mm Hg) to give an oil (35.6 grams) which crystallizes slowly. On recrystallization from disopropyl ether (180 cc) a product (19.5 grams), melting at 123°-124°C, is obtained. Further recrystallization from disopropyl ether (290 cc) yields 2-(7-methoxy-10-methyl-3-phenthiazinyl)propionic acid (12.9 grams) melting at 124°-125°C.

References

Merck Index 7792 Kleeman & Engel p. 782 DOT 8 (12) 452 (1972) I.N. p. 36

Farge, D., Jeanmart, C. and Messer, M.N.; U.S. Patent 3,450,698; June 17, 1969; assigned to Rhone-Poulenc SA, France

PROTOKYLOL

Therapeutic Function: Bronchodilator

Chemical Name: 4-[2-[[2-(1,3-benzodioxol-5-yl)-1-methylethyl] amino]-1-hydroxyethyl] - 1,2-benzenediol

-

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 136-70-9; 136-69-6 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Caytine	Lakeside	U.S.	1959
Ventaire	Marion	U.S.	1974

Manufacturer	Country	Year Introduced
Benvegna	Italy	_
Sanol	W. Germany	
Simes	Italy	_
Nemi	Argentina	_
Farmasimes	Spain	
	Benvegna Sanol Simes Nemi	Benvegna Italy Sanol W. Germany Simes Italy Nemi Argentina

3,4-Methylenedioxyphenylisopropanolamine Chloroacetylcatechol Hydrogen

Manufacturing Process

3,4-Methylenedioxyphenylisopropanolamine is reacted with chloroacetylcatechol in a 3:1 mol ratio in 60% ethanol at reflux temperature with continuous stirring. Stirring and refluxing were continued for another five hours after which the reaction mixture was cooled and then acidified with 20 cc of concentrated aqueous HCl. The acid solution was concentrated in vacuo to a viscous consistency and the residue dissolved in acetone. On standing, the aminoketone precipitated and was filtered. The precipitate was dissolved in isopropyl alcohol and permitted to recrystallize. An alcoholic solution of this aminoketone precipitate was reduced with PtO₂ and hydrogen, clarified by filtration, concentrated to dryness in vacuo and the residue crystallized from acetone giving the desired product.

References

Merck Index 7798 Kleeman & Engel p. 783 I.N. p. 821

Biel, J.H.; U.S. Patent 2,900,415; August 18, 1959; assigned to Lakeside Laboratories, Inc.

PROTRIPTYLINE

Therapeutic Function: Psychostimulant

Chemical Name: N-methyl-5H-dibenzo[a,d] cycloheptene-5-propylamine

Common Name: Amimetilina; 5-(3-methylaminopropyl)-5H-dibenzo[a,d] cycloheptene

Structural Formula:

Chemical Abstracts Registry No.: 438-60-8; 1225-55-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Vivactil	MSD	U.S.	1967
Maximed	Sharp & Dohme	W. Germany	1968
Concordin	MSD	Italy	1972
Concordine	MSD	France	1973
Triptil	Merck-Frosst	Canada	_

3-Methylaminopropanol-1 Thionyl chloride

Potassium amide

Formamide
5H-Dibenzo[a,d]-cycloheptene
Potassium hydroxide

-Manufacturing Process

Preparation of 3-(N-Formyl-N-Methyl)-Aminopropanol-1: A mixture of 40 grams of 3-methylaminopropanol-1 and 20 grams of formamide is heated while stirring for 4 hours at 165°C. The crude product is fractionated in vacuo using a Widmer column yielding substantially pure 3-(N-formyl-N-methyl)-aminopropanol-1.

Preparation of 3-(N-Formyl-N-Methyl)-Aminopropyl Chloride: 50 grams of 3-(N-formyl-N-methyl)-aminopropanol-1 obtained above is dissolved in a mixture of 100 ml of chloroform and 25 grams of pyridine. 40 grams of thionyl chloride is then slowly added while maintaining the temperature below 65°C. After 6 hours of refluxing, the mixture is washed with water, then with sodium bicarbonate solution and again with water and then dried over magnesium sulfate and the solvent distilled off in vacuo. Fractional distillation at 1 mm pressure yields substantially pure 3-(N-formyl-N-methyl)-aminopropyl chloride.

Preparation of 5-[3-(N-Formyl-N-Methyl)-Aminopropyl]-5H-Dibenzo [a,d] Cycloheptene:
To a suspension of 3.9 grams of potassium amide is slowly added a solution of 19.2 grams (0.1 mol) of 5H-dibenzo [a,d] cycloheptene in 600 ml of ether with stirring. The suspension is refluxed with stirring for 3 hours, then cooled to room temperature and a solution of 0.1 mol of 3-(N-formyl-N-methyl)-aminopropyl chloride in 100 ml of ether added. The mixture is then refluxed with stirring for 5 hours and then 100 ml of water added. The ether layer is then washed with dilute hydrochloric acid, then water and then dried over magnesium sulfate and evaporated to dryness yielding 5-[3-(N-formyl-N-methyl)-aminopropyl]-5H-dibenzo [a,d] cycloheptene.

Preparation of 5-(3-Methylaminopropyl)-5H-Dibenzo [a,d] Cycloheptene from 5-[3-(N-Formyl-N-Methyl)-Aminopropyl]-5H-Dibenzo [a,d] Cycloheptene: 29.5 grams of 5-[3-(N-formyl-N-methyl)-aminopropyl]-5H-dibenzo [a,d] cycloheptene is refluxed for 24 hours under nitrogen in a solution of 36.3 grams of potassium hydroxide in 378 ml of n-butanol. After cooling to room temperature, the solvent is evaporated in vacuo, the residue is stirred with 200 ml of water, 300 ml of n-hexane, the layers separated, the water layer extracted with 100 ml of n-hexane and the combined hexane layers washed with water (2 x 100 ml) and then with 0.5 N sulfuric acid (100, 80, 80 ml). The acid solution is then alkalized and extracted with ether (2 x 150 ml and 1 x 100 ml), dried over MgSO₄ and the solution evaporated to dryness yielding substantially pure 5-(3-methylaminopropyl)-5H-dibenzo [a,d] cycloheptene according to U.S. Patent 3,244,748.

References

Merck Index 7804 Kleeman & Engel p. 783 PDR p. 1220 OCDS Vol. 1 p. 152 (1977) I.N. p. 822

REM p. 1097

Tishler, M., Chemerda, J.M. and Kollonitsch, J.; U.S. Patent 3,244,748; April 5, 1966; assigned to Merck & Co., Inc.

Tishler, M., Chemerda, J.M. and Kollonitsch, J.; U.S. Patent 3,271,451; September 6, 1966; assigned to Merck & Co., Inc.

PROXAZOLE CITRATE

Therapeutic Function: Antispasmodic

Chemical Name: N,N-diethyl-3-(1-phenylpropyl)-1,2,4-oxadiazole-5-ethanamine citrate

Common Name: Propaxoline citrate

(C2H5)2NCH2CH2 Structural Formula:

Chemical Abstracts Registry No.: 132-35-4: 5696-09-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Recidol	Lampugnani	Italy	1967
Pirecin	Yoshitomi	Japan	1970
Mendozal	Beaufour	France	1976
Flou	Elea	Argentina	
Solacil	Finadiet	Argentina	•
Toness	Angelini	Italy	_

Raw Materials

α-Ethylbenzamidoxime β -Chloropropionyl chloride

Citric acid Diethylamine

Manufacturing Process

α-Ethylbenzamidoxime and anhydrous potassium carbonate are suspended in chloroform. To this mixture, under continuous stirring and controlling of the reaction temperature to remain beyond 15°C, there is slowly added β -chloropropionyl chloride. After addition of the acid chloride, stirring is continued for a further hour. Then with cooling there is added portionwise a small amount of water. Further amounts of water are introduced into the reaction mixture and the chloroform solution containing the β -chloropropionyl α -ethylbenzamidoxime is separated.

To this solution there is added in about 20 minutes a solution of diethylamine in CHCl₃ while the temperature is kept below 35°C. The reacting mixture is heated to boiling, water formed during the reaction being distilled off thereby. After two hours the distillate contains no more water and the reaction is finished. Water is added to dissolve diethylamine hydrochloride formed during the reaction, and the chloroform layer containing the product is separated from the aqueous layer. The product may be purified by distillation; it boils at 132°C at 0.2 mm pressure. It is converted to the citrate by reaction with citric acid.

References

Merck Index 7805 Kleeman & Engel p. 784 OCDS Vol. 2 p. 271 (1980)

I.N. p. 822

Palazzo, G. and Silvestrini, B.; U.S. Patent 3,141,019; July 14, 1964; assigned to Angelini Francesco, Aziende Chimiche Riunite, Italy

PROXIBARBAL

Therapeutic Function: Sedative

Chemical Name: 5-(2-Hydroxypropyl)-5-(2-propenyl)-2,4,6(1H,3H,5H)pyrimidinetrione

Common Name: Proxibarbital

Structural Formula:

Chemical Abstracts Registry No.: 2537-29-3

Trade Name	Manufacturer	Country	Year Introduced
Axeen	Hommel	W. Germany	1962
Centralgol	Valpan	France	1965
Ipronal	Polfa	Poland	_
Vasalgin	Chinoin	Hungary	_

Raw Materials

Diallylbarbituric acid Sulfuric acid Water

Manufacturing Process

9 Parts of dially!-barbituric acid are added to a precooled mixture of 15.5 parts of concentrated sulfuric acid and 0.5 part of water while stirring intensively, the mixture being cooled so that its temperature does not exceed 25°C. The honey-colored viscous solution is stirred vigorously and all at once into 45 parts of water, whereupon the mixture warms up to 35°C to 40°C and, after several seconds, solidifies into a thick pulp, which is then heated as quickly as possible to 95°C, at which temperature a clear solution is formed. This is cooled slowly until the 5-allyi-5-(β -hydroxypropyl)-barbituric acid begins to form coarse-grained crystals, after which the mass is cooled rapidly to 20°C.

The crystallized 5-allyl-5-(β -hydroxypropyl)-barbituric acid is centrifuged off, 55 to 58 parts of mother liquor and 10 to 13 parts of crude product being obtained. The latter is dispersed in 20 parts of saturated aqueous sodium chloride solution and after two hours is again centrifuged off.

The thus-washed crude product is dissolved in a mixture of 12 parts of ethanol and 20 parts of benzene, with mild warming if necessary. 1 Part of sodium chloride and 1.5 parts of saturated aqueous sodium chloride solution are added to the obtained solution in ethanol-benzene, and whole thoroughly admixed. When the brine layer has settled, it is separated and the aforedescribed washing repeated. The clear solution is concentrated under reduced pressure until incipient formation of crystals and is then poured into 30 parts of benzene, whereupon a thick crystalline pulp is forthwith formed which, after being cooled to room temperature, is centrifuged off. The so-obtained 5-allyl-5-(eta-hydroxypropyl)-barbituric acid is dried at 70°C under reduced pressure and can be used for therapeutic purposes without further purification. Melting point 164°C to 165°C. Yield: 5 parts.

References

Merck Index 7806 I.N. p. 822

Hommel A.G.; British Patent 953,387; March 25, 1964

PYRANTEL PAMOATE

Therapeutic Function: Anthelmintic

Chemical Name: E-1,4,5,6-tetrahydro-1-methyl-2-[2-(2-thienyl)vinyl] pyrimidine pamoate

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 22204-24-6; 15686-83-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Antiminth	Roerig	U.S.	1972
Helmex	Roerig	W. Germany	1972
Cobantrin	Pfizer Taito	Japan	1973
Combantrin	Pfizer	France	1973
Combantrin	Pfizer	Italy	1975
Lombriareu	Areu	Spain	~
Piranver	ICN-Usafarma	Brazil	~

Raw Materials

Thiophene-2-carboxaldehyde 1,2-Dimethy!-1,4,5,6-tetrahydropyrimidine Tartaric acid Pamoic acid

Manufacturing Process

A solution of 0.1 mol of each of thiophene-2-carboxaldehyde and 1,2-dimethyl-1,4,5,6tetrahydropyrimidine in dimethyl carbonate (0.2 mol) is held at 27°C for 48 hours. The reaction mixture is then stripped to give a 65% yield of product as the free base.

The base may be isolated as the tartrate as follows: A portion of reaction mixture is added to a well stirred solution of tartaric acid in ethanol at 27°C. The mixture is stirred for two hours and the product recovered by filtration. The filter cake is washed with cold ethanol followed by ether and air-dried. MP 144°-147°C.

The tartrate salt is recrystallized by dissolving in hot methanol, filtering, adding hot ethanol to the filtrate and cooling. The product is collected and air-dried. MP 148° 150°C. A second crop is obtained from the filtrate for a total yield of 59%. The tartrate is then metathesized with pamoic acid (Merck Index #6867) to give pyrantel pamoate as the product.

References

Merck Index 7856 Kleeman & Engel p. 786 PDR p. 1403 OCD\$ Vol. 1 p. 266 (1977) & 2, 303 (1980) DOT 8 (11) 431 (1972); 17 (1) 41 (1981); & (6) 262 (1981) I.N. p. 825 REM p. 1237

Kasubick, R.V. and McFarland, J.W.; U.S. Patent 3,502,661; March 24, 1970; assigned to Chas. Pfizer & Co., Inc.

PYRATHIAZINE

Therapeutic Function: Antihistaminic

Chemical Name: 10-[2-(1-Pyrrolidinyl)ethyl] phenothiazine

Common Name: Parathiazine

Structural Formula:

Chemical Abstracts Registry No.: 84-08-2

Trade Name	Manufacturer	Country	Year Introduced
Pyrrolazote	Upjohn	U.S.	1949

Raw Materials

Phenothiazine
Sodium amide
β-Pyrrolidinoethyl chloride

Manufacturing Process

To a stirred suspension of 4.29 g (0.11 mol) of sodium amide in 100 ml of dry toluene was added 19.9 g (0.1 mol) of phenothiazine. The solution was heated at reflux for two hours, the sodium selt of phenothiazine precipitating from solution. The toluene suspension of the sodium selt of phenothiazine was cooled to room temperature, whereupon there was added dropwise with continued stirring 13.36 g (0.1 mol) of β -pyrrolidinoethyl chloride in 50 ml of dry toluene. After addition was complete, the solution was heated under reflux, with stirring, for an additional 15 hours. Upon cooling, the toluene was extracted with dilute hydrochloric acid and the toluene then discarded. The aqueous acid solution was made alkaline with dilute sodium hydroxide, the crude N-(β -pyrrolidinoethyl)-phenothiazine separating as a brownish oil.

The oil wes extracted with ether, the ether solution dried with anhydrous magnesium sulfate, and then filtered. Dry hydrogen chloride was passed into the ether solution and a semisolid mass, which crystallized after scratching, separated therefrom. The crude N-(β -pyrrolidinoethyl)-phenothiazine was separated from the ether and, after two crystallizations from isopropanol, 17.0 g of desired product, melting at 196°C to 197°C (uncorr.), was obtained.

References

Merck Index 7857 OCDS Vol. 1 p. 373 (1977) I.N. p. 731

Hunter, J.H. and Reid, W.B. Jr.; U.S. Patent 2,483,999; October 4, 1949; assigned to The Upjohn Co.

PYRAZINAMIDE

Therapeutic Function: Antibacterial (tuberculostatic)

Chemical Name: Pyrazinecarboxamide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 98-96-4

Trade Name	Manufacturer	Country	Year Introduced
Aldinamide	MSD	U.S.	1955
Pirilene	Lepetit	France	1981
Eprazin	Krugmann	W. Germany	-
Isopyratsin	Leiras	Finland	_
Pezatamid	Hefa-Frenon	W. Germany	_
Piraldina	Bracco	Italy	•••
Pirazimida	Madaus Cerafarm	Spain	_
Pyrafat	Saarstickstoff-Fatol	W. Germany	_
Pyrazide	SCS Pharmalab	S. Africa	_
P.Z.A.	Servipharm	Switz.	_
Tebrazid	Continental Pharma	Belgium	_
Tisamid	Orion	Finland	_
Zinamide	MSD	U.K.	_

Raw Materials

Pyrazine-2,3-dicarboxamide Sodium hydroxide

Manufacturing Process

166 Parts of pyrazine-2,3-dicarboxamide (1 mol) is slurried in 1,000 parts of 1 N aqueous sodium hydroxide. The reaction mixture is heated at 95°C to 98°C until a clear solution results. Thereupon the mixture is cooled with ice to about 5°C and acidified to approximately a pH of 1. The cold reaction mixture is allowed to stand until precipitation of the pyrazine-2-carboxamide-3-carboxylic acid is substantially complete whereupon it is recovered by filtration and dried at 50°C to 60°C.

100 Parts of pyrazine-2-carboxamide-3-carboxylic acid is heated in a reaction vessel provided with an intake for inert gas. The reaction mixture is heated in a bath held at 220°C and nitrogen is introduced. The solid material melts and effervesces and sublimed pyrazinamide vapors are carried out of the reaction vessel in the nitrogen stream. They are introduced into a suitably cooled condenser, condensing in the form of a white sublimate. After the reaction is proceeding vigorously the bath temperature is raised to 255°C and then gradually and slowly allowed to drop to 190°C over a period of time sufficient to permit the reaction to go substantially to completion. The sublimed pyrazinamide, if desired, is further purified by recrystallization from water or alcohol.

References

Merck Index 7858 Kleeman & Engel p. 787 OCDS Vol. 1 p. 277 (1977) I.N. p. 826 REM p. 1216

Webb, J.S. and Arlt, H.G. Jr.; U.S. Patent 2,780,624; February 5, 1957; assigned to American Cyanamid Co.

PYRIDINOL CARBAMATE

Therapeutic Function: Antiarteriosclerotic

Chemical Name: Bis{Methylcarbamic acid} -2,6-pyridinediyldimethylene diester

Common Name: Pyricarbate

Structural Formula:

Chemical Abstracts Registry No.: 1882-26-4

Trade Name	Manufacturer	Country	Year Introduced
Movecil	Erba	Italy	1969
Angioxine	Roussel	France	1971
Anginin	Banyu	Japan	_
Angiovital	I.S.M.	Italy	
Angioxil	Firma	Italy	_
Angiperl	Sawai	Japan	
Arteriolangal	Lanzas	Spain	
Aterin	lisan	Turkey	_
Aterofal	Nativelle	Italy	_
Atero-Flavin	indelfar	Spain	_
Aterollano	Llano	Spain	_
Ateronova	Cheminova	Spain	_
Atover	Oti	Italy	
Carbatona	Turro	Spain	-
Cicloven	A.G.1.P.S.	Italy	_
Colesterinex	Galenica	Switz.	
Dual-Xol	Lifepharma	Spain	
Duaxol	Argentia	Argentina	
Duvaline	Almirall	Spain	***
Gasparol	Castejon	Spain	_
Meduxal	Allard	France	_
Plavolex	Wolner	Spain	_
Prodectin	Kobanyai	Hungary	
Ravenil	Caber	Italy	_
Sospitan	Kali-Chemie	W. Germany	
Vasagin	Sidus	Italy	_
Vasapril	Cifa	Italy	_
Vasmol	Lifasa	Spain	-
Vasocil	Magis	Italy	-
Vasoverin	Biochimica	Switz.	
Veranterol	Asla	Spain	_

Raw Materials

2,6-Dihydroxymethylpyridine hydrochloride Methyl isocyanate

Manufacturing Process

(A) 15.7 g (0.1 mol) of 2,6-dihydroxymethylpyridine hydrochloride are suspended in 176 ml of acetonitrile, and 20.8 ml (0.15 mol) of triethylamine are added to the suspension. Thereafter 13 ml (0.22 mol) of methyl isocyanate are added dropwise to the reaction mixture at 20°C to 25°C. The reaction mixture is stirred at 20°C to 30°C for one hour, thereafter boiled for 3 hours, and finally the solvent is evaporated under reduced pressure. 35 to 40 g of a greyish, crystalline residue are obtained, which is a mixture of 2,6-dihydroxymethylpyridine-bis-(N-methylcarbamate) and triethylamine hydrochloride. The obtained residue is dissolved in 80 ml of hot water, decolorized with 2 g of activated carbon when hot, and filtered after 30 minutes of stirring. The filtrate is cooled, the resulting crystal suspension is stirred at 0°C to 5°C for 3 hours, the solids are filtered off, and dried at 50°C to 60°C.

23.3 g (94.4%) of 2,6-dihydroxymethylpyridine-bis(N-methylcarbamate) are obtained. The product melts at 134°C to 135°C; its purity is 99.8% (determined by UV spectrophotometry). When examined by thin layer chromatography, the product is uniform.

(B) 23.3 g of 2,6-dihydroxymethylpyridine-bis(N-methylcarbamate), prepared as described above, are dissolved in a boiling mixture of 46.6 ml of methanol and 46.6 ml of water. When the dissolution is complete, the solution is allowed to cool under slow stirring, without applying any external cooling means. The crystals start to separate at 48°C to 50°C. When the temperature of the mixture falls spontaneously below 35°C, it is cooled externally to 0°C to 5°C, and allowed to stand at this temperature for about 8 hours. The separated substance is filtered off and dried at 50°C to 100°C. 22.65 g of 2,6-dihydroxymethylpyridine-bis(N-methylcarbamate) are obtained. The quality of the product meets pharmaceutical requirements.

The yield of this crystallization procedure is 95.7%. The above process provides the γ_2 modification of 2,6-dihydroxymethylpyridine-bis(N-methylcarbamate), which can be tabletted directly. The substance melts at 134°C to 136°C, its purity is 99.9% (determined by UV spectrophotometry).

References

Merck Index 7874 Kleeman & Engel p. 787 DOT 5 (1) 16 (1969) I.N. p. 826

Sprung, M., Toth, J., Kovatsits, M., Sztrokay, K., Szen, T., Gorgenyi, K., Boor, A., Forgacs, L., Szabo, J. and Kruzics, A.; British Patent 1,548,334; July 11, 1979; assigned to Richter Gedeon Vegyeszeti Gyar R.T. (Hungary)

PYRIDOSTIGMINE BROMIDE

Therapeutic Function: Cholineraic

Chemical Name: 3-[[(Dimethylamino)carbonyl]oxy]-1-methylpyridinium bromide

Common Neme: -

Structural Formula:

Chemical Abstracts Registry No.: 101-26-8

Trade Name	Manufacturer	Country	Year Introduced
Mestinon	Roche	U.S.	1955
Mestinon	Roche	Japan	1970
Regonol	Organon	U.S.	1973
Mestinon	Roche	France	1981
Kalymin	Arzneimittelwerk Dresden	E. Germany	

Raw Meterials

3-Hydroxypyridine Dimethyl carbamic acid chloride Methyl bromide

Manufacturing Process

12 parts by weight of dimethyl-carbamic acid chloride, dissolved in 20 parts by weight of xylol, are added dropwise to a boiling solution of 19 parts by weight of 3-hydroxypyridine in 120 parts by weight of xylol. Heating is continued under reflux for 3 hours. When the solution has cooled down, it is separated from the precipitated 3-hydroxypyridine hydrochloride and washed with water. After drying over sodium sulfate, the xylol is distilled off and the residue fractionated under reduced pressure. The N,N-dimethyl-carbamic acid ester of 3-hydroxypyridine distills at 148°C under a pressure of 15 mm.

A solution of 20 parts by weight of methyl bromide in 30 parts by weight of acetone is added to a solution of 35 parts by weight of N,N-dimethyl-carbamic acid ester of 3-hydroxypyridine in 70 parts by weight of acetone. After standing for a lengthy period (1 or 2 days), the N,N-dimethyl-carbamic acid ester of 3-hydroxy-1-methyl-pyridinium-bromide separates. It can be recrystallized from absolute alcohol. The colorless, strongly hygroscopic crystals melt at 151°-152°C.

References

Merck Index 7877 Kleeman & Engel p. 789 PDR pp. 1289, 1491 I.N. p. 826 REM p. 900

Urban, R.; U.S. Patent 2,572,579; October 23, 1951; assigned to Hoffmann-La Roche Inc.

PYRILAMINE

Therapeutic Function: Antihistamine

Chemical Name: N-[(4-Methoxyphenyl)methyl]-N',N'-dimethyl-N-2-pyridinyl-1,2-ethanedi-

amine (often used as the maleate)

Common Name: Mepyramine, pyranisamine

Structural Formula:

Chemical Abstracts Registry No.: 91-84-9; 6036-95-9 (Hydrochloride); 59-33-6 (Maleate)

Trade Name	Manufacturer	Country	Year Introduced
Neo-Antergan	MSD	U.S.	1948
Thylogen	Rorer	U.S.	1949
Statomin	Bowman	U.S.	1950
Pyra-Maleate	Mallinckrodt	U.S.	1950
Copsamine	Durst	U.S.	1950
Stamine	Tutag	U.S.	1951
Albatussin	Bart	U.S.	_
Allergan	Wiedenmann	Switz.	_
Amfeta	Bama-Geve	Spain	_
Anthisan	May & Baker	U.K.	_
Citra Forte	Boyce	U.S.	_
Codimal	Central	U.S.	_
Copsamine	Durst	U.S.	_
Fiogesic	Sandoz	U.S.	_
Histalet	Reid-Rowell	U.S.	_
Histavet-P	Burns-Biotec	U.S.	_
Kontristin	Eczacibasi	Turkey	_
Kriptin	Whitehall	U.S.	-
Kronohist	Ferndale	U.S.	_
Midol PMS	Glenbrook	U.S.	
Poly-Histine	Bock	U.S.	_
Primatene	Whitehall	U.S.	_
PV-Tussin	Reid-Rowell	U.S.	_
Pyra	Mallinckrodt	U.S.	
Pyramal	Columbus	U.\$.	
Statomin	Bowman	U.S.	_
Triaminic	Dorsey	U.S.	_

Raw Materials

4-Methoxybenzaldehyde 1-Dimethylamino-2-chloroethane 2-Aminopyridine Sodium amide

Manufacturing Process

43 g of α -p-methoxybenzylaminopyridine (from 4-methoxybenzaldehyde reaction with 2aminopyridine) are heated in 60 cc of toluene to 95°C to 100°C. 18 g of sodamide (85%) and 110 cc of a 40% toluene solution of 1-dimethylamino-2-chloroethane are added in small amounts alternately with shaking; the addition takes 1 hour. Toluene is distilled off, first at normal pressure, then under reduced pressure, until there remains a pasty mass. The mass is taken up with dilute hydrochloric acid and ether, neutralized to pH 7, and p-methoxybenzylaminopyridine separates. After making alkaline using excess of potash, it is extracted with benzene, dried and distilled. The product thereby obtained, N',N'-dimethylaminoethyl-N-pmethoxybenzyl- α -aminopyridine boils at 185°C to 190°C/2 mm. The monohydrochloride melts at 135°C (block Maguenne).

References

Merck Index 7883 Kleeman & Engel p. 561

PDR pp. 654, 674, 692, 784, 850, 875, 925, 1447, 1583, 1900

OCDS Vol. 1 p. 51 (1977)

I.N. p. 597 REM p. 1129

Horclois, R.J.; U.S. Patent 2,502,151; March 28, 1950; assigned to Societe des Usines Chimiques Rhone-Poulenc

PYRIMETHAMINE

Therapeutic Function: Antimalarial

Chemical Name: 5-(4-chlorophenyl)-6-ethyl-2,4-pyrimidinediamine

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 58-14-0

Trade Name	Manufacturer	Country	Year Introduced
Daraprim	Burroughs Wellcome	U.S.	1953
Daraprim	Burroughs Wellcome	W. Germany	1969
Erbaprelina	Erba	Italy	
Fansidar	Roche	France	_
Malocide	Specia	France	_
Pirimecidan	Cidan	Spain	
Pyrimethamin-Heyl	Heyl	W. Germany	_
Tindurin	Egyt	Hungary	_

Raw Materials

p-Chlorophenylacetonitrile Ethyl propionate Diazomethane Sodium ethoxide Guanidine

Manufacturing Process

p-Chlorophenylacetonitrile (36.5 grams) and ethyl propionate (25.5 grams) were added to a solution of sodium ethoxide (from 5.75 grams sodium) in absolute ethanol (150 ml). The solution was heated on a steam bath for 6 hours. After cooling, the whole was poured into water and the oil extracted well with ether, the ether solution was discarded and the aqueous solution neutralized with 1 N sulfuric acid. A heavy oil separated which was taken into ether, washed with water, bicarbonate solution and again with water. After drying, the ether was removed to give a thick oil which solidified on standing (34.6 grams). After recrystallization from an ether-petroleum ether mixture it formed needles, MP 108°-112°C.

The above keto-nitrile (15 grams) was methylated with a solution of diazomethane in ether. (The diazomethane solution was prepared using 20 grams of N-nitrosomethylurea.) The ether and excess diazomethane were evaporated on the steam bath and the oil dissolved in ethanol (50 ml). To this was added a solution of guanidine in ethanol (100 ml) (prepared from 8.1 grams of the hydrochloride). The solution was refluxed for 5 hours, the alcohol removed and the residue treated with 5 N sodium hydroxide. The insoluble material was then filtered. After purification by precipitation from dilute acetic acid with sodium hydroxide and by recrystallization from ethanol the product formed clear colorless needles (8.0 grams), MP 218°-220°C as described in U.S. Patent 2,602,794.

References

Merck Index 7884 Kleeman & Engel p. 791 PDR pp. 741, 1484 OCDS Vol. 1 p. 262 (1977) DOT 16 (5) 174 (1980)

I.N. p. 827

REM p. 1219

Hitchings, G.H., Russell, P.B. and Falco, E.A.; U.S. Patent 2,576,939; December 4, 1951; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings, G.H. and Falco, E.A.; U.S. Patent 2,579,259; December 18, 1951; assigned to Burroughs Weilcome & Co. (U.S.A.) Inc.

Hitchings, G.H., Russell, P.B. and Falco, E.A.; U.S. Patent 2,602,794; July 8, 1952; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Jacob, R.M.; U.S. Patent 2,680,740; June 8, 1954; assigned to Societe des Usines Chimiques Rhone-Poulenc (France)

PYRITHYLDIONE

Therapeutic Function: Hypnotic; sedative

Chemical Name: 3,3-Diethyl-2,4-(1H,3H)pyridinedione

Common Name: --

Structural Formula:

$$\bigcup_{0}^{H} \bigcup_{C_2H_5}^{O}$$

Chemical Abstracts Registry No.: 77-04-3

Trade Name	Manufacturer	Country	Year Introduced
Presidon	Roche	U.S.	1948
Persedon	Roche	W. Germany	_

Raw Materials

Methyl formate	Sodium methylate
Diketene	Ammonia
Ethyl bromide	

Manufacturing Process

108 g of sodium methylate were suspended in 500 ml of toluene. 120 g of methyl formate were dropped into the sodium methylate suspension thus formed at a rate so that temperature did not exceed 30 °C. Thereafter a solution of 157 g of α,α -diethylacetoacetamide in 500 ml of toluene were added so that the temperature did not exceed 50 °C. The mixture was stirred for one hour at 50 °C and then overnight at room temperature. The reaction mixture was poured into 700 ml of ice water, permitted to stratify, the aqueous layer was separated, covered with a layer of 200 ml of toluene and then treated while stirring with 200 g of 50% sulfuric acid. Finally the reaction mixture, which was acid to congo red, was warmed at 50 °C and the toluene-containing layer was separated. The aqueous layer was extracted with four 200 ml portions of toluene at 50 °C and then discarded. The toluene extracts were combined and then concentrated in vacuo at 60 °C. There were obtained 135 g of crystalline residue which was recrystallized from 200 ml of toluene. The 3,3-diethyl-2,4-dioxo-1,2,3,4-tetrahydropyridine thus obtained melted at 96 °C.

The α,α -diethylacetoacetamide used as starting material was obtained by converting diketene with aqueous ammonia to acetoacetamide and alkylating twice with ethyl bromide in the presence of sodium alcoholate.

References

Merck Index 7893 Kleeman & Engel p. 793 I.N. p. 828

Hinderling, R., Lutz, A.H. and Schnider, O.; U.S. Patent 3,019,230; January 30,1962; assigned to Hoffmann-La Roche Inc.

PYRITINOL

Therapeutic Function: Neurotropic agent

Chemical Name: 3,3'-(Dithiodimethylene)bis[5-hydroxy-6-methyl-4-pyridine methanol]

Common Name: Pyrithioxin

Structural Formula:

CH₃ N CH₂SSCH₂ OH CH₂OH

Chemical Abstracts Registry No.: 1098-97-1; 10049-83-9 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Encephabol	Merck	W. Germany	1963
Enbol	Chugai	Japan	1971
Biocefalin	Benvegna	Italy	-
Bonoi	lkapharm	Israel	_
Cefalogen	Montefarmaco	Italy	
Cerebropirina	Chemil	italy	-
Cerebrotrofina	N.C.S.N.	Italy	_
Cervitalin	Savoma	Italy	-
Chioebon	Kyowa Yakuhin	Japan	-
Divalvon	Nippon Kayaku	Japan	_
Encebrovit	Sierochimica	Italy	-
Encefabol	Bracco	Italy	_
Encefort	Intersint	Italy	-
Encerebron	Pulitzer	Italy	_
Enerbol	Polfa	Poland	-
Evolubran	A.B.C.	Italy	-
Fulneurina	Fulton	Italy	_
Gladius	SKF	Italy	_
Leonar	Kalopharma	Italy	_
Life	S.I.T.	Italy	_
Maind	Also	Italy	_
Miriplex	Poli	Italy	_
Musa	Poli	Italy	-
Neurotin	Nakataki	Japan	_
Neuroxin	Yamanouchi	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Piritinol	Magis	Italy	=
Piritiomin	Hishiyama	Japan	-
Sawaxin	Sawai	Japan	_
Scintidin	1.C.I.	Italy	_
Tonobrein	C.T.	Italy	_
Tonomentis	lon	Italy	

Potassium xanthogenate 3,4-Bis-bromoethyl-4-hydroxy-5-methyl-pyridinium bromide Ammonia Methanol

Manufacturing Process

To a solution of 60 q of potassium xanthogenate in 240 cc of water there is added dropwise. while being cooled with ice, a solution of 42 g of 3,4-bis-bromomethy!-4-hydroxy-5-methylpyridinium-bromide in 1 liter of water so that the temperature remains between 2°C and 5°C. After stirring for 1 hour at the same temperature, the water is decanted off and the residue is triturated with acetone. Yield: 25 g of 4-hydroxymethyl-5-hydroxy-6-methyl-pyridyl-(3)methylxanthogenate; melting point: 170°C to 171°C (alcohol, decomposition).

40 g of 4-hydroxymethyl-5-hydroxy-6-methyl-pyridyl-(3)-methylxanthogenate are left standing at room temperature for 5 days in a mixture of 800 cc of alcohol and 400 cc of aqueous NH₃-solution, and subsequently concentrated under vacuum to about 50 cc. The precipitated bis(4-hydroxymethyl-5-hydroxy-6-methyl-3 pyridylmethyl) disulfide is sucked off. Yield: 20 g of the disulfide; melting point: 218°C to 220°C (butanol, decomposition).

References

Merck Index 7894 Kleeman & Engel p. 793 DOT 9 (6) 215 (1973) I.N. p. 828

Zima, O. and Schorre, G.; U.S. Patent 3,010,966; November 28, 1961; assigned to E. Merck A.G. (Germany)

PYROVALERONE HYDROCHLORIDE

Therapeutic Function: Psychostimulant

Chemical Name: 1-(4-methylphenyl)-2-(1-pyrrolidinyl)-1-pentanone hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1147-62-2; 3563-49-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Thymergix	Joullie	France	1973
Motoriale			

Raw Materials

p-Methylvalerophenone Bromine
Pyrrolidine Hydrogen chloride

Manufacturing Process

23.1 grams of α -bromo-p-methyl-valerophenone, obtained by bromination of p-methyl-valerophenone, are dissolved in 50 ml of benzene and 25 ml of pyrrolidine are added at 0°C. The whole is boiled for 20 minutes, cooled, washed twice with water, dried and acidified with about 50 ml of 2 N hydrochloric acid. After evaporation, it is recrystallized from methanol-acetone-ether. 22.6 grams of α -pyrrolidino-p-methyl-valerophenone hydrochloride, melting point 178°C, equivalent to a yield of 88.5% of the theoretical are obtained according to British Patent 927,475.

References

Merck Index 7914 Kleeman & Engel p. 794 OCDS Vol. 2 p. 124 (1980) DOT10 (5) 188 (1974)

I.N. p. 829

Dr. A. Wander SA, Switzerland; British Patent 927,475; May 29, 1963 Dr. Karl Thomae, GmbH, Germany; British Patent 933,507; August 8, 1963

PYRROBUTAMINE

Therapeutic Function: Antihistaminic

Chemical Name: 1-[4-(4-Chlorophenyl)-3-phenyl-2-butenyl] -pyrrolidine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 91-82-7

Trade Name	Manufacturer	Country	Year Introduced
Pyronil	Lilly	U.S.	1952
Co-Pyronil	Lilly	U.K.	_
Proladyl	Lilly	_	-

Raw Materials

Pyrrolidine Acetophenone
Paraformaldehyde p-Chlorobenzyl chloride
Magnesium Hydrogen chloride

Manufacturing Process

A mixture of 1,800 ml of absolute ethanol, 427 g (6 mols) of pyrrolidine, and a trace of methyl

orange is cooled in an ice bath and gaseous hydrogen chloride is bubbled through the mixture until a red color develops, indicating that all of the amine has been converted to the hydrochloride. The addition of hydrogen chloride is stopped, the ice bath is removed and to the solution are added 720 g of acetophenone, 270 g of paraformaldehyde and 10 ml of concentrated hydrochloric acid. The mixture is stirred and refluxed vigorously for one hour. An additional 180 g of paraformaldehyde are then added, and refluxing is continued for about three hours. The hot solution is poured into 6 liters of acetone and the mixture is chilled overnight. A precipitate of ω -(N-pyrrolidino)-propiophenone hydrochloride separates. The precipitate is filtered off, washed with cold acetone, and dried in air.

ω-(N-pyrrolidino)-propiophenone hydrochloride thus prepared melted at about 163°C to 164°C after recrystallization from acetone.

To a suspension of 4 mols of ω (N-pyrrolidino) propiophenone hydrochloride in 1,500 ml of water and 100 g of ice in a separatory funnel are added a 50% aqueous solution containing 200 g of sodium hydroxide, and 2 liters of ether. The mixture is shaken vigorously until all of the suspended matter dissolves. The ether is then removed, washed with 1 liter of water and dried over anhydrous magnesium sulfate. The anhydrous ether solution of ω-(N-pyrrol)dino)-propiophenone thus prepared is added to a Grignard reagent prepared from 6 mols of p-chlorobenzyl chloride and 6 mols of magnesium turnings in 3,000 ml of anhydrous ether. The ethereal solution of the ketone is added to the Grignard reagent at such a rate that rapid refluxing is maintained. After all of the ketone has been added, the reaction mixture is stirred for 2 hours and is decomposed by pouring it over a mixture of 500 g of ice and 6 mols of concentrated hydrochloric acid. The hydrochloric acid addition salt of 1-p-chlorophenyl-2phenyl-4-N-(pyrrolidino)-butanol-2 formed in the reaction separates at the ether-water interface as a white crystalline material. The aqueous phase is removed and discarded, and the mixture of ether and hydrochloride salt is converted to 1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino) butanol-2 by treatment with 10% sodium hydroxide solution. The base is removed by extraction with ether, and the ether extracts are dried over magnesium sulfate.

1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino--butanol-2 melted at about 109°C to 110°C after recrystallization from petroleum ether.

A solution of 200 g of 1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino)-butanol-2 in 750 ml of concentrated hydrochloric acid is refluxed for 9 hours thereby causing a dehydration of the butanol compound, and the formation of the hydrochloric acid addition salt of a 1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino)-butene. The hydrochloride salt formed crystallizes in the oily lower layer of the two phase reaction mixture and is removed therefrom by filtration. The filtrate is again refluxed for 9 hours, cooled to 0°C, and a second crop of the hydrochloric acid addition salt of the dehydration product is obtained and filtered off. The filtrate containing residual amounts of 1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino)-butanol-2 is again refluxed for 9 hours to yield an additional crop of the salt of the dehydration product. The several fractions of the butene compound are combined and triturated with several small portions of hot acetone and recrystallized from alcohol-ether mixture. The hydrochloric acid addition salt of the dehydration product, 1-p-chlorophenyl-2-phenyl-4-(N-pyrrolidino)-butene hydrochloride, melts at about 227°C to 228°C.

References

Merck Index 7916 Kleeman & Engel p. 794 OCDS Vol. 1 p. 78 (1977) I.N. p. 829

Mills, J.; U.S. Patent 2,655,509; October 13, 1953; assigned to Eli Lilly & Co.

PYRVINIUM PAMOATE

Therapeutic Function: Anthelmintic

Chemical Name: 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methylquinolium salt with pamoic acid (2:1)

Common Name: Pyrvinium embonate; viprynium embonate

Structural Formula:

Chemical Abstracts Registry No.: 3546-41-6

Trade Name	Manufacturer	Country	Year Introduced
Povan	Parke Davis	U.S.	1959
Povanyl	Parke Davis	France	1981
Antioxur	Esteve	Spain	_
Molevac	Parke Davis	W. Germany	_
Neo-Oxypaat	Katwijk	Neth.	-
Oxialum	Wolner	Spain	_
Pamovin	Merck-Frosst	Canada	_
Pamoxan	Uríach	Spain	_
Pirok	Bilim	Turkey	_
Poquil	Parke Davis Sankyo	Japan	_
Privonium	Rivapharm	Switz.	_
Pyrcon	Jenapharm	E. Germany	_
Pyrvin	Farmos	Finland	_
Tolapin	Taro	Israel	_
Tru	Elea	Argentina	-
Vanquin	Parke Davis	italy	_
Vermitiber	Tiber	Italy	

Raw Materials

Pyrvinium chloride Sodium pamoate

Manufacturing Process

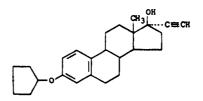
A hot, filtered solution of 2.27 grams of pyrvinium chloride dihydrate in 250 ml of water is added slowly to a solution of 2.25 grams of sodium pamoate monohydrate in 50 ml of water. A red precipitate immediately forms. The mixture is heated at about 90°-100°C for 5 minutes more and then filtered. The reaction product is washed with hot water and dried at about 75°C in a vacuum. This preparation melts at about 210°-215°C with prior softening from about 190°C.

References

Merck Index 7927 Kleeman & Engel p. 796 PDR p. 1384 I.N. p. 830 REM p. 1237

Van Lare, E. and Brooker, L.G.S.; U.S. Patent 2,515,912; July 18, 1950; assigned to Eastman Kodak Company

Elslager, E.F. and Worth, D.F.; U.S. Patent 2,925,417; February 16, 1960; assigned to Parke, Davis & Company


QUINESTROL

Therapeutic Function: Estrogen

Chemical Name: 3-(cyclopentyloxy)-19-nor-17α-pregna-1,3,5(10)-trien-20-yn-17-ol

Common Name: 17\alpha-ethinylestradiol 3-cyclopentyl ether

Structural Formula:

Chemical Abstracts Registry No.: 152-43-2

Trade Name	Manufacturer	Country	Year Introduced
Estrovis	Goedecke	W. Germany	1968
Estrovis	Warner	U.K.	1969
Estrovis	Warner-Lambert	U.S.	1979
Agalacto-Quilea	Elea	Argentina	****
Basaquines	Boehr, Mann,	_	

Raw Materials

 17α -Ethynyl estradiol Cyclopentyl bromide

Manufacturing Process

A solution of 1.5 grams of 17α -ethynyl estradiol in 50 cc of absolute ethanol is added slowly to a mixture of 3 grams of cyclopentyl bromide and 2 grams of potassium carbonate. This mixture is heated to reflux and stirred for 3 hours, then filtered. Most of the alcohol is eliminated by distillation and the resulting solution diluted with water, and cooled in an ice-bath. The product which precipitates is collected by filtration, washed and dried. After recrystallization from methanol the 3-cyclopentyl ether of 17α -ethynyl estradiol shows a melting point of 107° to 108° C.

References

Merck Index 7959 Kleeman & Engel p. 797 PDR p. 1347 DOT 17 (4) 163 (1981) I.N. p. 832 REM p. 988

Ercoli, A.; U.S. Patent 3,159,543; December 1, 1964; assigned to Francesco Vismara SpA, Italy

Ercoli, A., Gardi, R. and Pedrali, C.; U.S. Patent 3,231,567; January 25, 1966; assigned to Francesco Vismara SpA, Italy

QUINETHAZONE

Therapeutic Function: Diuretic

Chemical Name: 7-chloro-2-ethyl-1,2,3,4-tetrahydro-4-oxo-6-quinazolinesulfonamide

Common Name: Chinethazonum

Structural Formula:

Chemical Abstracts Registry No.: 73-49-4

Trade Name	Manufacturer	Country	Year Introduced
Hydromox	Lederle	U.S.	1962
Aquamox	Lederle	U.K.	_

Raw Materials

7-Chloro-2-ethyl-6-sulfamyl-4-quinazolinone Sodium borohydride

Manufacturing Process

For preparation of the desired tetrahydroquinazolinone, 103 parts of aluminum chloride were added to 25,000 parts by volume of diethylene glycol dimethyl ether while cooling in an ice bath. The mixture was then stirred with warming and 200 parts of 7-chloro-2ethyl-6-sulfamyl-4-quinazolinone added. A second solution of 140 parts of sodium borohydride in 7,000 parts of dry diethylene glycol dimethyl ether was then added gradually. An orange mixture resulted which was kept at 85°C until the reaction was complete. The reaction mixture was then cooled to approximately 0°C and 4,000 parts of water slowly added. Dilute HCl was then added to form a strongly acidic clear solution which was evaporated to dryness. Following this, the solid was triturated with cold water to yield 90 parts of a solid. Fibrous crystals were obtained by recrystallization from 50% acetone.

References

Merck Index 7960 Kleeman & Engel p. 797 PDR p. 1010 OCDS Vol. 1 p. 354 (1977) 1.N. p. 833 REM p. 940

Cohen, E. and Vaughan, J.R., Jr.; U.S. Patent 2,976,289; March 21, 1961; assigned to American Cyanamid Company

QUINGESTANOL ACETATE

Therapeutic Function: Gestagen

Chemical Name: 19-Norpregna-3,5-dien-20-yn-17-ol-3-(cyclopentyloxy) acetate (17a)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3000-39-3; 10592-65-1 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Demovis	Parke Davis	Italy	1972
Demovis	Vister	Italy	-
Delovis	Substantia	France	-

Raw Materials

3-Cycloethylenedioxy-10-cyano-17 α -ethynyl-19-nor- Δ^5 -androstene-17 β -ol Lithium Ammonia Acetic anhydride Cyclopentanol

Manufacturing Process

The starting material for the purposes of this discussion is 3-cycloethylenedioxy-10-cyano- 17α -ethynyl-19-nor- Δ^5 -androstene-17 β -ol (I).

A solution of 10-cyano-3-monoketal (I) in 60 cc of dry ether and 60 cc of dry dioxane is dropped into 400 cc of liquid ammonia. Then, 1.2 g of lithium in small pieces are introduced over a period of 90 minutes and the mixture is maintained under stirring until the blue color of the solution is discharged.

10 g of ammonium chloride are added and the stirring is continued for some hours longer at room temperature. The moist ammonia is left to evaporate cautiously, maintaining the mixture on water-bath and diluting the resulting solution with water. After repeated extractions with ether, an oily residue is obtained consisting of a mixture of $\Delta^{5(6)}$ and $\Delta^{5(10)}$ isomers of 17α -ethynyl-19-nor-androstene-17 β -ol-3-one 3-ethylene ketal (II).

To a solution of 1 g of the mixture of 3-ketal-isomers of compound (II) in 10 cc of acetic anhydride is added a solution of 700 mg of p-toluenesulfonic acid in 7 cc of acetic anhydride. The reaction mixture is kept at room temperature and under stirring for 5 hours. After some time a crystalline product begins to precipitate and the precipitation is complete by diluting with water. The precipitate is filtered and crystallized from methanol to give 17α-ethynyl-19-nortestosterone 3,17-diacetate (III), melting point 175°C to 178°C.

A solution of 1 g of the diacetate (III) in 100 cc of n-heptane containing 2.5 cc of cyclopentanol and 50 mg of p-toluenesulfonic acid is heated under reflux for 20 hours. After cooling, a few drops of pyridine are added and the solvent is eliminated by evaporation under vacuum. The residue is taken up with methanol to give 3-cyclopentyl enolether of 17α-ethynyl-19-nortestosterone acetate which, after recrystallization from methanol, melts at 182°C to 184°C.

References

Kleeman & Engel p. 798 DOT 9 (5) 182 (1973)

I.N. p. 833

Ercoli, A. and Gardi, R.; U.S. Patent 3,159,620; December 1, 1964; assigned to Francesco Vismara S.p.A. (Italy)

QUINIDINE POLYGALACTURONATE

Therapeutic Function: Antiarrhythmic

Chemical Name: See structural formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 65484-56-2

Trade Name	Manufacturer	Country	Year Introduced
Cardioquin	Purdue Frederick	U.S.	1960
Cardioquin	N.A.P.P.	U.K.	1970
Cardioquine	Berenguer-Beneyto	Spain	-
Galactoquin	Mundipharma	W. Germany	-
Galatturil-Chinidina	Francia	Italy	_
Naticardina	Chinoin	Italy	_
Neochinidin	Brocchieri	Italy	_
Ritmocor	Matesci	Italy	_

Raw Materials

Polygalacturonic acid Quinidine

Manufacturing Process

100 grams of polygalacturonic acid are dissolved in 1 liter of a 60% (v/v) mixture of meth-

anol and water. The neutralization equivalent of the polygalacturonic acid is determined by titration with tenth-normal alkali on an aliquot sample. A stoichiometric equivalent of quiniding alkaloid dissolved in 2,500 cc of 80% methanol is slowly added, with continued stirring.

The pH of the reaction mixture is taken both before and after the addition of the last portion of the quinidine-methanol solution. The mixture is gently warmed (30° to 50°C), and the pH determined at 20 minute intervals. At the end of 4 hours, or when the reaction has gone to completion as evidenced by the pH of the mixture (between pH 6.5 and 7.5), the stirring is then stopped and the mixture cooled to 0°C and filtered. The solvent is evaporated to dryness under reduced pressure, utilizing as little heat as is feasible. The dried residue is powdered and suspended in 10 volumes of methanol and filtered. The insoluble powder is dried, and is quinidine polygalacturonate, melting at 180°C with decomposition.

References

Merck Index 7966 PDR p. 1433 OCDS Vol. 1 p. 339 (1977) I.N. p. 833

REM p. 859

Halpern, A.; U.S. Patent 2,878,252; March 17, 1959; assigned to Synergistics, Inc.

QUINUPRAMINE

Therapeutic Function: Antidepressant

Chemical Name: 5-(3-Quinuclidinyl)-10,11-dihydro-dibenzo[b,f] azepine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 31721-17-2

Trade Name	Manufacturer	Country	Year Introduced
Kinupril	Fournier	France	1979

Raw Materials

Iminodibenzyl Sodium amide 3-Phenylsulfonyloxyquinuclidine

Manufacturing Process

3.9 g of iminodibenzyl were added in one batch to a suspension of 0.96 g of sodium amide in 50 ml of anhydrous toluene. The mixture was heated to reflux temperature for a period of 6 hours. A solution of 5.34 g of 3-phenylsulfonyloxyquinuclidine in 15 ml of anhydrous toluene was added dropwise over a period of 75 minutes to the suspension at reflux temperature and the latter was maintained for 150 minutes after the completion of the addition. The reaction mixture was cooled to ambient temperature and treated with 75 ml of distilled water and 75 ml of ethyl acetate.

The decanted aqueous phase was extracted three times with a total of 150 ml of ethyl acetate. The combined organic solutions were filtered over Clarcel and extracted three times with a total of 150 ml of an iced normal aqueous methane-sulfonic acid solution. The combined acid extracts were rendered alkaline on an ice bath with 30 ml of 10 N caustic soda solution. The separated oil was extracted four times with a total of 200 ml of ether. The combined ethereal extracts were washed twelve times with a total of 360 ml of distilled water, dried over anhydrous magnesium sulfate in the presence of 0.3 g of animal charcoal and evaporated under reduced pressure on a water bath at 40°C. The oily residue obtained (3.8 g) was dissolved in 30 ml of boiling acetonitrile. After cooling for 2 hours at 3°C, the crystals formed were separated, washed with 5 ml of acetonitrile and dried at ambient temperature at low pressure. 1.6 g of 5-(3-quinuclidiny!)-10,11-dihydro-dibenzo[b,f] azepine, melting point 150°C, were obtained.

References

Merck Index 8006 DFU 3 (7) 548 (1978) Kleeman & Engel p. 799 DOT 16 (4) 122 (1980) 1.N. p. 835

Gueremy, C. and Wirth, P.C.; British Patent 1,252,320; November 3, 1971; assigned to Societe Generale De Recherches Et D'Applications Scientifiques Sogeras

R

RANITIDINE

Therapeutic Function: Antiulcer, antiallergic

Chemical Name: N-[2-[[[5-(Dimethylamino)methyl-2-furanyl]methyl]thio]ethyl]-N'-

methyl-2-nitro-1.1-ethenediamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 66357-35-5

Trade Name	Manufacturer	Country	Year Introduced
Zantac	Glaxo	U.K.	1981
Zantac	Glaxo	Italy	1981
Zantic	Glaxo	Switz.	1982
Zantac	Glaxo	France	1982
Sostril	Cascan	W. Germany	1982
Zantic	Glaxo	W. Germany	1982
Zantac	Glaxo	Neth.	1982
Zantac	Glaxo	Sweden	1983
Zantac	Glaxo	Canada	1983
Zantac	Glaxo	U.S.	1983
Acidex	Syncro	Argentina	-
Ranidil	Duncan	Italy	-
Taural	Roemmers	Argentina	_
Toriol	Vita	Spain	-
Ulcex	Guidotti	Italy	_
Vizerul	Montpellier	Argentina	-

Raw Materials

N-Methyl-1-(methylthio)-2-nitroetheneamine 2-[[[5-(Dimethylamino)methyl-2-furanyl]methyl]thio]ethanamine

Manufacturing Process

N-methyl-1-(methylthio)-2-nitroetheneamine (230 g) in water (400 ml) was stirred and heated at 45°C to 50°C. 2-[[[5-(Dimethylamino)methyl-2-furanyl] methyl] thio] ethanamine (321 g) was added dropwise over 4 hours and the resultant solution stirred for a further 3½ hours.

The solution was then heated at reflux for $\frac{1}{2}$ hour, cooled to $\frac{10^{\circ}\text{C}}{10^{\circ}\text{C}}$ and 4-methylpentan-2-one (2 liters) added. The water was removed by azeotropic distillation under reduced pressure (260 torrs) and the resultant solution treated with charcoal (10 g) at $\frac{10^{\circ}\text{C}}{10^{\circ}\text{C}}$. The solution was filtered and cooled to $\frac{10^{\circ}\text{C}}{10^{\circ}\text{C}}$. N-[2-[[[5-dimethylamino)methyl-2-furanyl] methyl] thio] ethyl] - N'-methyl-2-nitro-1,1-ethenediamine (380 g) was filtered off and dried, melting point 69°C to $\frac{10^{\circ}\text{C}}{10^{\circ}\text{C}}$.

References

Merck Index 8019 DFU 4 (9) 663 (1979) PDR p. 919 OCDS Vol. 3 p. 131 (1984) DOT 18 (12) 665 (1982) I.N. p. 839 REM p. 798

Price, B.J., Clitherow, J.W. and Bradshaw, J.; U.S. Patent 4,128,658; December 5, 1978; assigned to Allen & Hanburys Ltd.

RAZOXANE

Therapeutic Function: Antitumor

Chemical Name: dl-1,2-Bis(3,5-dioxopiperazin-1-yl)propane

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 21416-87-5

Trade Name	Manufacturer	Country	Year Introduced
Razoxin	I.C.I.	U.K.	1977

Raw Materials

1,2-Diaminopropane tetraacetic acid Formamide

Manufacturing Process

1,2-Diaminopropane tetraacetic acid (100 g) and formamide (400 ml) are heated together at reduced pressure under nitrogen at 100°C to 110°C for 1 hour, and then at 150°C to 155°C for 4 hours. The brown solution is evaporated under reduced pressure at 80°C to 90°C and the residue is taken up in methanol (120 ml) and cooled in the refrigerator overnight. Filtration, followed by washing with methanol and vacuum drying at 65°C gives dl-1,2-bis(3,5-di-oxopiperazin-1-y1)propane (62 g, 70%) as a very pale cream microcrystalline solid, melting point 237°C to 239°C.

References

Merck Index 8026

DFU 2 (7) 473 (1977) Kleeman & Engel p. 800 DOT 13 (12) 546 (1977)

Creighton, A.M.; U.S. Patents 3,941,790; March 2, 1976; and 4,275,063; June 23, 1981; both assigned to National Research Development Corp.

RELAXIN

Therapeutic Function: Ovarian hormone

Chemical Name: See under Structural Formula

Common Name: Releasin

Structural Formula: Polypeptide of approximately 6,000 molecular weight

Chemical Abstracts Registry No.: 9002-69-1

Trade Name	Manufacturer	Country	Year Introduced
Releasin	Warner Lambert	U.S.	1956
Cervilaxin	National	U.S.	1957

Raw Materials

Hog ovaries Acetone

Manufacturing Process

500 pounds of frozen hog ovaries (relaxin content: 20,200 G.P.U./lb) are ground with 50 pounds of solid carbon dioxide (Dry Ice) in a Fitzpatrick mill using a 1/2 inch screen. The resulting finely divided tissue-carbon dioxide homogenate at a temperature of -20°C is stirred into a 1.6N HCl solution prepared by mixing 15 liters of concentrated (12N) HCl with 100 liters of water. The homogenate is added to the aqueous acid over a period of approximately 1 hour so that the temperature of the mixture does not fall below -5°C. The resulting slurry is stirred for 6 hours and then allowed to stand overnight.

The following day, a quantity of 200 gallons of acetone is added to the suspension followed by stirring for 8 hours. The mixture is again allowed to stand overnight. The following day, the clear supernatant liquid is decanted from the suspension and the tissue residue is removed by filtration. The filter cake (tissue residue) is repulped with 35 gallons of a mixture of 0.3 volume 12N HCl, 9.7 volumes water and 30.0 volumes acetone and the resulting suspension is filtered. The filtrates are combined with the supernatant liquid obtained by decantation to form the acid-acetone extract with a volume of 275 gallons. The relaxin content of the extract is 9.4 G.P.U./ml or 19,600 G.P.U./lb ovaries extracted, an activity yield of about 97 percent.

References

Merck Index 8031 I.N. p. 841

Doczi, J.; U.S. Patent 3,096,246; July 2, 1963; assigned to Warner-Lambert Pharmaceutical Co.

REPROTEROL

Therapeutic Function: Bronchodilator

Chemical Name: 7-[3-[[2-(3,5-Dihydroxyphenyl)-2-hydroxyethyl] amino] propyl] -3,7-di-

hydro-1,3-dimethyl-1H-purine-2,6-dione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54063-54-6; 13055-82-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Bronchospasmin	Homburg	W. Germany	1977
Bronchospasmin	Farmades	Italy	1981
Bronchodil	Berlimed	U.K.	1981
Asmaterol	Lusofarmaco	Italy	
Tiffen	Tosi	Italy	_

Raw Materials

Theophylline 3,5-Dihydroxy-ωbromoacetophenone Hydrogen 1-Bromo-3-chloropropane Benzylamine

Manufacturing Process

Theophylline is reacted first with 1-bromo-3-chloropropane to give chloropropyl theophylline, then with benzylamine to give benzylaminopropyltheophylline. That is reacted with 3.5-dihydroxy- ω -bromoacetophenone to give the starting material.

500 g of 7-[3-[2-(3,5-dihydroxyphenyl)-2-oxoethyl-benzylamino] -propyl] -theophylline hydrochloride obtained as above were dissolved in 5 liters of dimethyl acetamide. There were added 25 g of a 10% palladium-carbon catalyst, the mixture heated to 70°C and hydrogenated with stirring at this temperature and 2 bar pressure until the speed of hydrogenation perceptibly slowed (about 2 hours). Subsequently, the mixture was filtered and after addition of a further 25 g of the palladium catalyst hydrogenated at 6 bar to the end (2 to 3 hours). The mixture was filtered, the greatest part of the solvent distilled off at a water jet vacuum, and the residue treated with 8 liters of ethanol. The solution was cooled for 12 hours with flowing water and the precipitated material filtered off with suction. Then it was boiled for one hour with 2 liters of methanol with stirring and the passing through of nitrogen, allowed to cool to 25°C and filtered off with suction. After drying in a vacuum at 55°C there were obtained 391 g (= 94.5% of theory) of pure 7-[3-[2-(3,5-dihydroxyphenyl)-2-hydroxyethyl-amino] -propyl] -theophylline hydrochloride. Melting point 263°C to 265°C.

References

Merck Index 8035 Kleeman & Engel p. 800 OCDS Vol. 3 p. 231 (1984) DOT 13 (2) 552 (1977)

I.N. p. 842

Klingler, K.H. and Bickel, E.; U.S. Patent 4,150,227; April 17, 1979; assigned to Degussa (Germany)

RESCIMETOL

Therapeutic Function: Antihypertensive

Chemical Name: Methylreserpate 3'-methoxy-4'-hydroxycinnamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 73573-42-9

Trade Name	Manufacturer	Country	Year Introduced
Toscara	Nippon Chemiphar	Japan	1982

Raw Materials

Methylreserpate 3'-methoxy-4'-ethoxycarboxycinnamate Sodium Methanol

Manufacturing Process

28 mg of a metal sodium were dissolved in 25 ml of anhydrous methanol, and one drop of water was added thereto. 1.5 g of methylreserpate 3'-methoxy-4'-ethoxycarboxycinnamate in 25 ml of tetrahydrofuran were added thereto.

The mixture was then stirred at room temperature for 2 hours. One drop of acetic acid was added thereto, and the solvent was evaporated. The residue was extracted with chloroform, the extract was washed with saturated sodium bicarbonate solution and then with water.

The chloroform layer was dried over sodium sulfate, and the solvent was evaporated, so that there was obtained a brown amorphous matter. This was recrystallized from chloroformhexane, and there was then obtained 1.0 a (78% of yield) of methylreserpate 3'-methoxy-4'hydroxycinnamate which was characterized as pale yellow needles having a melting point of 259°C to 260°C.

References

Merck Index 8038 DFU 3 (3) 183 (1978) (As CD-3400) & 5 (12) 635 (1980) DOT 18 (10) 551 (1982)

Kametani, T.; U.S. Patent 3,898,215; August 5, 1975; assigned to Nippon Chemiphar Co., Ltd.

RESCINNAMINE

Therapeutic Function: Antihypertensive

Chemical Name: $11,17\alpha$ -dimethoxy- 18β -[[1-oxo-3-(3,4,5-trimethoxyphenyl]-2-propenyl]-

oxy] -3β,20α-yohimban-16β-carboxylic acid methyl ester

Common Name: 3,4,5-trimethoxycinnamoyl methyl reserpate

Structural Formula:

Chemical Abstracts Registry No.: 24815-24-5

Trade Name	Manufacturer	Country	Year Introduced
Moderil	Pfizer	U.S.	1956
Aldatense	Searle	France	
Anaprel	Servier	France	-
Apolon	Toyama	Japan	-
Aporecin	Kayaku	Japan	-
Aporesin	A.L.	Norway	_
Apotension	Santen	Japan	-
Apoterin	Seiko	Japan	-
Atension	Santen	Japan	-
Caniramine	Hokuriku	Japan	-
Cartric	Sanwa	Japan	
Cinnaloid	Taito Pfizer	Japan	
Colstamin	Kowa	Japan	
Daisaloid	Mohan	Japan	-
Isocalsin	Kowa	Japan	
Paresinan	Wakamoto	Japan	
Rescamin	Pharmacia	Sweden	
Rescimin	Torian	Spain	
Rescinate	Ohta	Japan	
Rescisan	Pharmacia	Sweden	
Rescitens	Fargal	Italy	
Resiloid	Nippon Shoji	Japan	- -
Rosex	Teikoku	Japan	_
Rozex	Teisan	Japan	
Sciminan	Kotani	Japan	_
Seripinin	Fuji Zoki	Japan	_
Sinselpin	Kobayashi	Japan	

Raw Materials

3,4,5-Trimethoxycinnamic acid Methyl reserpate

Thionyl chloride Rauwolfia plants

Manufacturing Process

4.0 grams of 3,4,5-trimethoxycinnamic acid, MP 125.5° to 127°C was refluxed for 35 minutes under anhydrous conditions with 6.0 parts by volume of redistilled thionyl chloride.

The excess thionyl chloride was removed under vacuum and by distilling from the residue two portions of dry benzene. The crystalline residue was crystallized twice from hexaneether to yield 3,4,5-trimethoxycinnamoyl chloride which was obtained in the form of bright vellow prisms. MP 95° to 96°C.

To a solution of 0.80 part by weight of methyl reserpate in 10 parts by volume of dry distilled pyridine at 10° to 15°C were added in portions during 20 minutes with stirring and external cooling 1.1 parts by weight of 3,4,5-trimethoxycinnamoyl chloride. The reaction was carried out under nitrogen. After standing at room temperature for 65 hours the pyridine was removed under reduced pressure and at a temperature of 50° to 60°C. A brown solid froth-like material was obtained which was chromatographed on 30 parts by weight of alumina (activity II-III). The fractions eluted with benzene-acetone mixtures, on crystallization from benzene yielded 3,4,5-trimethoxycinnamate of methyl reserpate in the form of needles, which on recrystallization from methanol melted at 232° to 234°C as described in U.S. Patent 2,854,454.

The 3.4.5-trimethoxycinnamic ester of methyl reserpate is also present in Rauwolfia plants and obtainable in purified form therefrom by extraction as described in U.S. Patents 2,974,144 and 2,876,228.

References

Merck Index 8039 Kleeman & Engel p. 801 PDR p. 1422 OCDS Vol. 1 p. 319 (1977) I.N. p. 843 REM p. 909

Ulshafer, P.R.; U.S. Patent 2,854,454; September 30, 1958

Ordway, H.W. and Guercio, P.A.; U.S. Patent 2,876,228; March 3, 1959; assigned to Chas. Pfizer & Co., Inc.

Klohs, M.W., Draper, M.D. and Keller, F.; U.S. Patent 2,974,144; March 7, 1961; assigned to Riker Laboratories, Inc.

RESERPINE

Therapeutic Function: Antihypertensive

Chemical Name: $11,17\alpha$ -dimethoxy- 18β -[{3,4,5-trimethoxybenzoyl}oxy]- 3β ,20 α -yohimban-

16B-carboxylic acid methyl ester

Common Name: 3,4,5-trimethoxybenzoyl methyl reserpate

Structural Formula:

Chemical Abstracts Registry No.: 50-55-5

Trade Name	Manufacturer	Country	Year Introduced
Serpasil	Ciba	U.S.	1953
Sandril	Lilly	U.S.	1954
Rau-Sed	Squibb	U.S.	1954
Crystoserpine	Dorsey	U.S.	1954
Serpine	Pitman Moore	U.S.	1954
Serfin	Parke Davis	U.S.	1954
Reserpoid	Upjohn	U.S.	1954
Serpiloid	Riker	U.S.	1954
Serpanray	Panray	U.S.	1954
Vio-Serpine	Rowell	U.S.	1955
Serpena	Haag	U.S.	1955
Serpate	Vale	U.S.	1955
Rausaingle	Philips Roxane	U.S.	1955
Sertabs	Table Rock	U.S.	1955
Eskaserp	SKF	U.S.	1955
Serolfia	Mallard	U.S.	1955
Resercen	Central	U.S.	1956
Banasil	Ulmer	U.S.	1956
Roxinoid	MSD	U.S.	1956
Respital	Premo	U.S.	1956
Raurine D-Lay	Westerfield	U.S.	1961
Lemiserp	Lemmon	U.S.	1962
Abesta	A.N.A.	France	-
Broserpine	Brothers Pharm	U.S.	-
Cardioserpine	Star	Finland	_
Chloroserpine	Schein	U.S.	_
Demi-Regroton	U.S.V.	U.S.	_
Diupres	MSD	U.S.	
Diutensin	Wallace	U.S.	-
HHR	Schein	U.S.	-
Hydro-Fluserpine	Schein	U.S.	_
Hydromox	Lederle	U.S.	_
Hydropres	MSD	U.S.	_
Hydroserpine	Schein	U.S.	_
Key-Serpine	Key	U.S.	_
Lemiserp	Lemmon	U.S.	_
Metatensin	Merrell Dow	U.S.	-
Naguival	Schering Neo	U.S.	_
Neo-Serp Raulen	Paul Maney	Canada	-
Rausan	Wassermann	Canada	
Rausedan	Arzneimittelwerk Dresden	<i>S</i> pain E. Germany	
Rauvilid	Pharmacia	Sweden	_
Rauwita	Lifasa	Spain	_
Regroton	U.S.V.	U.S.	-
Renese-R	Pfipharmecs	U.S.	~
Resedril	Estedi	Spain	_
Rese-Lar	Perga	Spain	~
Reser-Ar	Luar	U.S.	
Resercrine	Casgrain & Charbonneau	Canada	-
Reserfia	Medic	Canada	~
Reserpur	A.F.I.	Norway	-
Resine	Kirk	U.S.	~
Resomine	Bonjean	Belgium	~
Rivasin	Giulini	W. Germany	~
Salutensin	Bristol	U.S.	-
Ser-Ap-Es	Ciba	U.S.	-
Serolfia	Ascher	U.S.	~

Trade Name	Manufacturer	Country	Year Introduced
Serpalan	Lannett	U.S.	_
Serpax	Verdun	Canada	_
Serpedin	Pharmacia	Sweden	•
Serpena	Haag	U.S.	-
Serpentil	Pliva	Yugoslavia	_
Serpipur	Kwizda	Austria	_
Serpivite	Vitarine	U.S.	_
Serpoid	Canfield	U.S.	_
Serpone	Hartz	Canada	_
Serpresan	Maipe	Spain	_
Sertina	Fellows-Testagar	U.S.	_
SK-Reserpine	SKF	U.S.	-
Unipres	Reid-Rowell	U.S.	_
Vio-Serpine	Rowell	U.S.	_
V-Serpine	Vangard	U.S.	_
V Octo	* u.,gu, u		

Raw Materials

Rauwolfia plant bark Methanol

Manufacturing Process

7,000 parts by weight of powdered bark from the root of Rauwolfia serpentina Benth, are percolated with about 35,000 parts by volume of methanol. After evaporating the methanol extract, 1,050 parts by weight are obtained of a dark colored powder which is treated several times with water for removal of soluble constituents. The insoluble residue remaining from this operation is subsequently masticated five times, in each case with 1,500 parts by volume of 10% aqueous acetic acid, the solution being best separated from the smeary residue by centrifuging. The brown acetic acid solution, which for further working up can be concentrated at low temperature to a small volume or be diluted with half the volume of water, possesses a pH of about 3.9. This solution is extracted by shaking with 3,500 to 4,000 parts by volume of chloroform divided into 3 to 4 portions. These chloroform extracts are washed once with potassium carbonate solution and twice with water, dried with sodium sulfate and evaporated to dryness under reduced pressure. The residue, amounting to 70 to 80 parts by weight, forms a green-brown colored powder. For further purification, this residue is dissolved in benzene and chromatographed over 1,000 to 1,200 parts by weight of neutral aluminumoxide (activity H-III according to Brockmann). On elution with benzene there are first obtained small quantities of a yellow oil and 0.9 part by weight of an inactive crystallizate of melting point 238°C to 239°C, after which the substance of sedative activity follows. As soon as the major quantity of the active substance has been eluted, further elution is carried out with a mixture of 2 parts by volume of benzene and 1 part by volume of acetone. In this manner the residue of the sedative substance is obtained and after that a further inactive crystallizate of melting point 141°C to 143°C. The eluate fractions containing the sedative substance are evaporated to dryness. By recrystallization of the residue from hot acetone or a mixture of chloroform and ether, 6.5 to 7 parts by weight of reserpine are obtained in the form of almost colorless crystals of melting point 262°C to 263°C (with decomposition).

References

Merck Index 8042 Kleeman & Engel p. 802 PDR pp. 710,812,993,1011,1168,1185,1231,1409,1449,1606,1634,1723,1820, 1876, 1999 I.N. p. 843 REM p. 908

Schwyzer, R. and Mueller, J.; U.S. Patent 2,833,771; May 6, 1958; assigned to Ciba Pharmaceutical Products, Inc.

RIBOSTAMICIN

Therapeutic Function: Antibiotic

Chemical Name: O-2,6-Diamino-2,6-dideoxy- α -D-glucopyranosyl- $(1\rightarrow 4)$ -O- $[\beta$ -D-ribo-

furanosyl-(1→5)] 2-deoxy-D-streptamine

Common Name: Ribostamin

Structural Formula:

Chemical Abstracts Registry No.: 25546-65-0

Trade Name	 Manufacturer 	Country	Year Introduced
Vistamycin	Meiji Seika	Japan	1972
Ribomycine	Delalande	France	1977
Ribostamin	Delalande	Italy	1979
lbistacin	ſ.B.ſ.	Italy	1979
Landamycin	Delalande	W. Germany	1980

Raw Materials

Bacterium Streptomyces thermoflavus Glucose

Soybean meal

Manufacturing Process

Streptomyces thermoflavus SF-733 strain was inoculated to 15 liters of a liquid medium (pH 7.0) containing glucose 2.5%, soybean meal 3.5%, soluble vegetable protein 1.0% and NaCl 0.25% and shake-cultured in a jar-fermenter at 28°C for 3 days. 10 liters of culture filtrate (potency, 200 meg/ml) obtained by filtering culture broth at pH 4.0 was adjusted to pH 7.0 and applied to a column filled with 1 liter of Amberlite IRC 50 (NH4+type, Rohm & Haas) to adsorb active ingredient on ion-exchange resin. After washing with water the column was eluted with 0.5 N ammonia water. Active fractions were concentrated in vacuo and freezedried. 5.9 g of crude powder thus obtained was dissolved in 10 ml of water, applied to a column filled with 400 ml of Dowex 1 X2 (OH type, Dow Chemicals) and developed chromatographically with water to give 250 ml of active fraction which was concentrated in vacuo. whereby 2.1 g of light yellow powder of SF-733 substance was obtained. 2.0 g of this powder was dissolved in 3 ml of water, applied to a column filled with 100 ml of Amberlite CG 50 (NH₄* type) washed with water and eluted with 0.2N ammonia water. 400 ml of active fraction was collected, concentrated in vacuo and freeze-dried to give 600 mg of white powder of free base of SF-733 substance. This powder was dissolved in about 5 ml of water and concentrated to syrup and added with about 50 ml of ethanol. The mother liquor together with white precipitate thus formed was concentrated in vacuo to dry ness. 650 mg of ethanolsolvate-like white powder was dissolved in 6.5 ml of methanol. The solution became cloudy immediately after dissolution and crystals were gradually separated. After tightly sealed and left alone at 30°C overnight crystals were collected by means of glass filter and washed with

about 1 ml of methanol. The crystals were held on calcium chloride as a drying agent at room temperature in vacuo and then dried on phosphorus pentoxide as a drying agent at 60°C for 19 hours in vacuo to give 440 mg of free base crystals of SF-733 substance. Yield: 73%.

References

Merck Index 8106 Kleeman & Engel p. 807 DOT 9 (3) 112 (1973) I.N. p. 848

Shomura, T., Ezaki, N., Tsuruoka, T., Niwa, T., Akita, E. and Niida, T.; U.S. Patent 3,661,892; May 9, 1972; assigned to Meiji Seika Kaisha, Ltd. (Japan)

RIFAMPIN

Therapeutic Function: Antitubercular

Chemical Name: 5,6,9,17,19,21-hexahydroxy-23-methoxy-2,4,12,16,18,20,22-heptamethyl-8-{N-(4-methyl-1-piperazinyl)formimidoyl]-2,7-(epoxypentadeca[1,11,13]trienimino}naphtho[2,1-b] furan-1,11(2H)-dione 21-acetate

Common Name: 3-[(4-Methyl-1-piperazinyl)iminomethyl] rifamycin SV; rifaldazine; rifamycin AMF; rifampicin

Structural Formula:

Chemical Abstracts Registry No.: 13492-46-1

Trade Name	Manufacturer	Country	Year Introduced
Rifadin	Lepetit	Italy	1968
Rifadin	Merrell	U.K.	1969
Rimactan	Ciba	W. Germany	1969
Rifadine	Lepetit	France	1969
Rimactane	Ciba Geigy	U.K.	1969
Rifadin	Dailchi	Japan	1971
Rimactan	Ciba	Japan	1971
Rimactane	Ciba	U.S.	1971
Rifadin	Dow	U.S.	1971
Archidyn	Lepetit	Italy	_
Arficin	Belupo	Yugoslavia	
Benemicin	Polfa	Poland	_
Fenampicin	Antibioticos	Spain	_
Feronia	Lifepharma	Spain	-

Trade Name	Manufacturer	Country	Year Introduced
Riasin	Yurtoglu	Turkey	_
Rifa	Gruenenthal	W. Germany	_
Rifagen	Morgens	Spain	_
Rifam	Nobel	Turkey	
Rifapiam	Piam	Italy	_
Rifaprodin	Prodes	Spain	_
Rifarm	Pharmacal	Finland	_
Rifobac	Llade	Spain	-
Rifonilo	Aristegui	Spain	-
Riforal	Llade	Spain	_
Rimapen	Orion	Finland	_
Ripamisin	Deva	Turkey	_
Rofact	1.C.N.	Canada	-
Santadin	Santa Farma	Turkey	_
Seamicin	Galepharma Iberica	Spain	_
Tubocin	Farmakhim	Bulgaria	-

Raw Materials

- 3-Formylrifamycin SV
- 1-Amino-4-methylpiperazine

Manufacturing Process

3-Formylrifamycin SV is treated with 1-amino-4-methylpiperazine in tetrahydrofuran to give rifampin.

References

Merck Index 8113 Kleeman & Engel p. 808 PDR pp. 810, 1236 DOT 5 (1) 24 (1969) I.N. p 848 REM p. 1233

Maggi, N. and Sensi, P.; U.S. Patent 3,342,810; September 19, 1967; assigned to Lepetit SpA, Italy

RIMITEROL

Therapeutic Function: Bronchodilator

Chemical Name: 4-(hydroxy-2-piperidinylmethyl)-1,2-benzenediol

Common Name: Erythro-3,4-dihydroxyphenyl-2-piperidinylcarbinol

Structural Formula:

Chemical Abstracts Registry No.: 32953-89-2; 31842-61-2 (Hydrogen bromide)

Trade Name	Manufacturer	Country	Year Introduced
Pulmadil	Riker	U.K.	1974
Asmaten	Riker	_	_

Raw Materials

Magnesium 4-Bromoveratrole Hydrogen chloride 2-Cvanopyridine Sodium hydroxide Hydrogen bromide Hydrogen

Manufacturing Process

To a stirred suspension of 5.0 grams (0.21 gram atom) of magnesium turnings in 15 ml of tetrahydrofuran under nitrogen is added 43.4 grams (0.2 mol) of 4-bromoveratrole to maintain constant reflux. An additional 40 ml of solvent is added and the Grignard reagent thus prepared is heated on a steam bath for one hour. This solution is then added dropwise to a solution of 20.8 grams (0.2 mol) of 2-cyanopyridine in 300 ml of ether. The mixture is stirred overnight at room temperature, decomposed by addition of 250 ml of 10% hydrochloric acid and the separated aqueous layer is made alkaline with 40% sodium hydroxide solution. This mixture is extracted with methylene chloride and the dried extract concentrated. The residue is distilled and the fraction at 190° to 235°C/12 mm is crystallized to give 3,4-dimethoxyphenyl-2-pyridyl ketone, MP 93° to 94°C.

A solution of 0.5 gram of the above ketone in 15 ml of 48% hydrobromic acid is refluxed for 11/2 hours and then concentrated in vacuo. The residue is dissolved in ethanol, toluene is added, the solution concentrated and the residue stripped with toluene to yield 3.4-dihydroxyphenyl-2-pyridyl ketone hydrobromide, MP 246° to 247°C (decomposition).

A mixture of 0.5 gram of platinum oxide and a solution of 2.0 grams (0.0067 mol) of 3.4dihydroxyphenyl-2-pyridyl ketone hydrobromide in 20 ml of water and 80 ml of ethanol is hydrogenated on the Parr apparatus using an initial hydrogen pressure of 50 psi at room temperature. The reaction mixture is filtered, the filtrate concentrated in vacuo and the residue triturated with acetone to give erythro-3,4-dihydroxyphenyl-2-piperidinylcarbinol hydrobromide, MP 210° to 211°C (decomposition).

Treatment of the above hydrobromide with aqueous sodium bicarbonate followed by extraction with ethyl acetate yields the free base of the carbinol MP 203° to 204°C which may be reacted with other acids to give other acid addition salts.

References

Merck Index 8117 Kleeman & Engel p. 809 OCDS Vol. 2 p. 278 (1980) DOT 10 (11) 272 (1974) I.N. p. 849

Kaiser, C. and Ross, S.T.; U.S. Patent 3,705,169; December 5, 1972; assigned to Smith Kline & French Laboratories

RITODRINE

Therapeutic Function: Muscle relaxant (obstetric)

 $\textbf{Chemical Name:} \quad \textbf{erythro-}p-hydroxy-\alpha-[1-[(p-hydroxyphenethyl)amino]ethyl]} \ benzyl$

alcohol

Common Name: N-(p-hydroxyphenylethyl)-4-hydroxynorephedrine

Structural Formula:

Chemical Abstracts Registry No.: 26652-09-5; 23239-51-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Pre-Par	Duphar	Italy	1975
Yutopar	Duphar	U.K.	1976
Pre-Par	Duphar	France	1976
Pre-Par	Duphar/Thomae	W. Germany	1976
Yutopar	Merrell Dow	U.S.	1980
Yutopar	Astra	U.\$.	1980
Miolene	Lusofarmaco	Japan	_
Utopar	Ferrosan	Denmark	

Raw Materials

2-Bromo-4'-benzyloxypropiophenone Hydrogen chloride 2-(4-Methoxyphenyl)ethylamine Hydrogen Hydrogen bromide

Manufacturing Process

A solution of 44 grams of 2-bromo-4'-benzyloxypropiophenone and 44 grams of 2-(4-methoxyphenyl)ethylamine in 270 ml of ethanol was refluxed for 3 hours. Then the ethanol was distilled off in vacuo and the concentrate mixed with ether. The resulting crystallizate was sucked off after which the filtrate was mixed with an excess of 2 N hydrochloric acid. As a result of this the hydrochloride of 4'-benzyloxy-2-[2-(4-methoxyphenyl)ethylamino]-propiophenone slowly crystallized. This substance was also sucked off, washed with water and alcohol, and dried in vacuo. After recrystallization from dilute alcohol the yield was 25.5 grams of a product with a melting point of 217° to 218°C.

12 grams of the product thus obtained were dissolved in a mixture of 300 ml of ethanol and 90 ml of water. After 42 ml of 1% palladium chloride solution and 3.9 grams of Norit had been added to this solution it was hydrogenated at room temperature and at a pressure of 1.1 atmospheres until approximately 760 ml of hydrogen had been taken up. Then the catalyst was removed by filtration and the solvent of the filtered solution was evaporated entirely in vacuo.

The resulting residue, which consisted of the hydrochloride of 4'-hydroxy-2-[2-(4-methoxy-phenyl)ethylamino] propiophenone, was mixed with 30 ml of a 48% hydrobromic acid solution and the mixture was boiled until no methylbromide developed any more, which was the case after approximately 45 minutes. Then the reaction mixture was stored in the refrigerator, after which the hydrobromide of 4'-hydroxy-2-[2-(4-hydroxyphenyl)ethyl-amino] propiophenone crystallized. It was sucked off and converted into the hydrochloride by again dissolving the resulting substance in water, discoloring the solution with a little Norit and then adding an equal volume of concentrated hydrochloric acid. As a result of this the hydrochloride crystallized. The yield was 9.6 grams of a product with a melting point of 136° to 138°C. After this product had been recrystallized once again it was reduced to the amino alcohol.

For this purpose a solution of 3.2 grams of the hydrochloride in 160 ml of distilled water was provided with 0.5 gram of Norit and 8 ml of 1% palladium chloride solution and the mixture was hydrogenated at room temperature and at a pressure of 1.1 atmospheres until no hydrogen was taken up any more. The catalyst was then removed by filtration, after

which the filtrate was concentrated in vacuo. To the concentrated solution of the reduced product was then added an excess of dilute ammonia, as a result of which the base of the 1-(4-hydroxyphenyl)-2-[2-(4-hydroxyphenyl)ethylamino] propanol precipitated as a tough mass. After the mixture had been stored in the refrigerator for some time, the product was sucked off, washed with water and dried in vacuo. This base was a resinous mass with a melting point of approximately 88° to 90°C. Yield was 2.3 grams.

References

Merck Index 8121 Kleeman & Engel p. 810 PDR p. 609 OCDS Vol. 2 p. 39 (1980) DOT 10 (1) 23 (1974) I.N. p. 850

Claassen, V., Van Dijk, J. and Moed, H.D.; U.S. Patent 3,410,944; November 12, 1968; assigned to North American Philips Company, Inc.

ROCIVERINE

Therapeutic Function: Antispasmodic

Chemical Name: 1-(Diethylamino)-2-propyl cis-2-hydroxy-2-cyclohexylcyclohexane-1- car-

boxylate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53716-44-2

Trade Name Manufacturer Year Introduced Country Rilaten Guidotti 1979 Italy

Raw Materials

2-Phenyl-2-hydroxycyclohexane carboxylic acid Hydrogen 1-Bromo-2-propanol Diethylamine

Manufacturing Process

5.6 g of 2-phenyl-2-hydroxy-cyclohexane-carboxylic acid were dissolved in 75 cc of glacial acetic acid and reduced in the presence of 0.1 a of platinum oxide under hydrogen pressure of 22 kg/cm² at a temperature of 70°C to 80°C.

Hydrogen absorption being completed, the solution was filtered and evaporated to one-fifth of its volume and cooled in a refrigerator. The precipitate was filtered, washed with water, and then crystallized from ligroin, thus yielding 4 g of 2-cyclohexyl-2-hydroxy-cyclohexanecarboxylic acid, melting point (Kofler) 122°C to 124°C. This material was esterified with 1bromo-2-propanol by means of 85% H₂SO₄ yielding 1-bromoisopropyl-2-cyclohexyl-2-hydroxycyclohexanecarboxylate. Finally this compound was treated with diethylamine and triethylamine at 120°C to give rociverine.

References

Merck Index 8125 DFU 4 (4) 276 (1979)

I.N. p. 852

Turbanti, L; U.S. Patents 3,700,675; and 3,700,775; both dated October 24, 1972

ROLITETRACYCLINE

Therapeutic Function: Antibacterial

Chemical Name: 4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-N-(1-pyrrolidinyl-methyl)-2-naphthacenecarboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 751-97-3

Trade Name	Manufacturer	Country	Year Introduced
Syntetrin	Bristol	U.S.	1959
Velacycline	Sq⊎ibb	U.S.	1960
Transcycline	Hoechst	France	1961
Anergomycil	C.N.N.	Italy	_
Bristacin	Bristol Banyu	Japan	_
Farmaciclina	Selvi	Italy	-
Hostacyclin-PRM	Hoechst	Japan	_
Kinteto	Fujita	Japan	
Quadraciclina	Squibb	Italy	_
Reverin	Hoechst	Italy	-
Solvocillin	Fabr. Antibiot.	Rumania	_
Tetrafarmed	Neopharmed	Italy	.
Tetraldina	Italsuisse	italy	_
Tetraverin	Polfa	Poland	

Raw Materials

Tetracycline Paraformaldehyde Pyrrolidine hydrochloride

Manufacturing Process

1 g (0.00225 mol) of anhydrous tetracycline base, 0.101 g (0.0038 mol) of paraformaldehyde

and 0.302 g (0.0025 mol) pyrrolidine hydrochloride are refluxed in 25 ml absolute ethanol. After two hours an additional 0.101 g paraformaldehyde is added and refluxing is continued for two more hours. The solution is then cooled and two drops of concentrated hydrochloric acid are added. The product, N'-(1-pyrrolidyl-methyl)-tetracycline hydrochloride, forms and is isolated as a crystalline, antibacterially active solid differing in specific rotation from tetracycline hydrochloride. The product is converted to the free base by solution in water followed by the addition of one equivalent of sodium hydroxide. Thus for isolation, the alcoholic solution of N'-(1-pyrrolidyl-methyl)-tetracycline hydrochloride is diluted with 5.0 ml ether to precipitate the product, which is collected by filtration and dried in vacuo over P_2O_5 . The product is a crystalline solid melting at about 158°C to 165°C with decomposition.

References

Merck Index 8127 Kleeman & Engel p. 810 OCDS Vol. 1 p. 216 (1977) I.N. p. 853

Cheney, L.C., Risser, W.C. and Gottstein, W.J.; U.S. Patent 3,104,240; September 17, 1963; assigned to Bristol-Myers Co.

ROSOXACIN

Therapeutic Function: Antibacterial; antigonorrheal

Chemical Name: 1-Ethyl-1, 4-dihydro-4-oxo-7-(4-pyridyl)-3-quinolinecarboxylic acid

Common Name: Acrosoxacin

Structural Formula:

Chemical Abstracts Registry No.: 40034-42-2

Trade Name	Manufacturer	Country	Year Introduced
Eradacin	Sterling Winthrop	U.K.	1981
Eracine	Winthrop	France	1981
Winuron	Winthrop	W. Germany	1981
Eradacil	Winthrop	Canada	1983
Winoxacin	Winthrop	Switz.	1983
Roxadyl	Winthrop	_	_

Raw Materials

4-(3-Nitrophenyl)pyridine Iron
Ethoxymethylene malonic acid diethyl ester Acetic acid
Ethyl iodide Sodium hydride
Sodium hydroxide

Manufacturing Process

To a stirred suspension containing 5.1 g of 57% sodium hydride dispersed in mineral oil and

150 ml of dimethylformamide was added in portions 32.6 g of ethyl 1,4-dihydro-4-oxo-7-(4-pyridyl)-3-quinolinecarboxylate [tautomeric with ethyl 4-hydroxy-7-(4-pyridyl)-3-quinolinecarboxylate] followed by the addition of 18.7 g of ethyl iodide. The resulting reaction mixture was heated on a steam bath for three hours with stirring and then concentrated in vacuo to remove the solvent. The semisolid residue was shaken well with a mixture of chloroform and water, and a small quantity of amorphous brown solid was filtered off. The layers were separated and the chloroform layer was evaporated in vacuo to remove it.

To the oily residue containing ethyl 1-ethyl-1, A-dihydro-4-oxo-7-(4-pyridyl)-3-quinolinecarboxylate was added excess 10% aqueous sodium hydroxide solution and ethanol, and the solution was heated on a steam bath for forty-five minutes to hydrolyze the ethyl ester to the corresponding carboxylic acid. The alkaline solution was diluted to a volume of about 500 ml with water, decolorizing charcoal was added and the mixture filtered. The filtrate was neutralized with acetic acid whereupon the carboxylic acid separated as a solid. The solid was collected and dried in a rotary evaporator. The solid was boiled with ethanol, the solution chilled and the resulting solid collected. The solid was recrystallized from dimethyl-formamide (about 150 ml) using decolorizing charcoal. The filtrate was chilled, diluted with about one-half volume of ethanol and the separated crystalline product was collected, recrystallized again from dimethylformamide and dried in vacuo to yield 4.3 g 1-ethyl-1,4-dihydro-4-oxo-7-(4-pyridyl)-3-quinolinecarboxylic acid, melting point 272°C to 273°C raised by further recrystallization to 290°C.

4-(3-nitrophenyl)pyridine is reduced with iron in acetic acid to give 4-(3-aminophenyl)pyridine. That in turn is reacted with ethoxymethylenemalonic acid diethyl ester and then thermally rearranged to give the starting material.

References

Merck Index 8136 DFU 5 (4) 199 (1980) Kleeman & Engel p. 811 OCDS Vol. 3 p. 185 (1984) DOT 18 (3) 147 (1982) I.N. p. 855

Carabateas, P.M.; U.S. Patent 3,922,278; November 25, 1975; assigned to Sterling Drug, Inc. Lesher, G.Y. and Carabateas, P.M.; U.S. Patents 3,753,993; August 21, 1973 and 3,907,808; September 23, 1975; both assigned to Sterling Drug, Inc.

Lorenz, R.R. and Thielking, W.H.; U.S. Patent 4,107,167; August 15, 1978; assigned to Sterling Drug, Inc.

SALICYLANILIDE

Therapeutic Function: Antifungal

Chemical Name: 2-hydroxy-N-phenylbenzamide

Common Name: N-phenylsalicylamide

Structural Formula:

CONH-CeH5

Chemical Abstracts Registry No.: 87-17-2

Trade Name	Manufacturer	Country	Year Introduced
Salinidol	Doak	U.S.	1946
Ansadol	Rorer	U.S.	1947
Hyanilid	Peau Seche	U.S.	_

Raw Materials

Salicylic acid Aniline

Manufacturing Process

Salicylanilide is ordinarily made by reacting salicylic acid with aniline in the presence of phosphorus trichloride at an elevated temperature. The theoretical proportions of reactants are usually employed for best results, that is, one mol each of aniline and salicylic acid to a third of a mol of phosphorus trichloride. An improved process employs an inert organic solvent as a reaction diluent.

References

Merck Index 8188 I.N. p. 861

Majewski, T.E., Parsey, E.S. and Skelly, N.E.; U.S. Patent 3,221,051; November 30, 1965 Majewski, T.E., Stoesser, W.C. and Parsey, E.S.; U.S. Patent 3,231,611; January 25, 1966; assigned to The Dow Chemical Company

SALICYLIC ACID

Therapeutic Function: Keratolytic

Chemical Name: 2-Hydroxybenzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 69-72-7

Trade Nama	Manufacturer	Country	Year Introduced
Saligel	Stiefel	U.S.	1978
Fomac	Dermik	U.S.	1979
Aveenobar	Rydelle	U.S.	_
Barseb	Barnes-Hind	U.S.	-
Cantharone	Seres	U <i>.</i> S.	_
Compound W	Whitehall	U.S.	_
Duofilm	Stiefel	U.S.	_
Egocappol	Ego	Australia	
Fostex	Westwood	U.S.	
Fungi-Nail	Kramer	U.S.	_
Hydrisalic	Pedinol	U.S.	_
Jabon Salicilico	lmba	Spain	
Keralyt	Westwood	U.S.	-
Komed	Barnes-Hind	U.S.	
Night-Cast	Seres	U.S.	
Occlusal	Gen Derm	U.S.	-
Pernox	Westwood	U.S.	_
Sal Ac	Gen Derm	U.S.	-
Salactic	Pedinol	U.S.	_
Sebucare	Westwood	U.S.	-
Sebulex	Westwood	U.S.	_
Tinver	Barnes-Hind	U.S.	_
Verrex	C & M	U.S.	_
Verrusal	C & M	U.S.	_
Viranol	Amer. Dermai	U.S.	_
Wart-Off	Pfipharmecs	U.S.	_
Whitfield's Ointment	Fougera	U.S.	-

Raw Materials

Sodium phenolate Bacterium Pseudomonas Nutrient medium

Carbon dioxide Naphthalene

Manufacturing Process

Made by reacting sodium phenolate and carbon dioxide. May also be made by microbiological oxidation of naphthalene by forming an aqueous nutrient medium for microorganisms capable of oxidizing naphthalene to salicylic acid of the genus Pseudomonas containing basal mineral salts, 0.5 to 4 wt % of finely divided naphthalene and 0.1 to 1 wt % of a boron compound, inoculating the nutrient medium with an inoculum containing a microorganism capable of oxidizing naphthalene to salicylic acid of the genus Pseudomonas, the inoculated nutrient medium having an initial pH value of about 4 to 9, incubating the inoculated nutrient medium at a temperature of about 25° to 50°C for a period of about 2 to 7 days and then recovering salicylic acid from the nutrient medium.

References

Merck Index 8190

PDR pp. 580, 653, 777, 905, 985, 1397, 1417, 1575, 1696, 1779, 1890, 1898

I.N. p. 37

REM p. 785

Zajic, J.E. and Dunlap, W.J.; U.S. Patent 3,274,074; September 20, 1966; assigned to Kerr-McGee Oil Industries, Inc.

SECNIDAZOLE

Therapeutic Function: Antiamebic; antiprotozoal

Chemical Name: α,2-Dimethyl-5-nitro-1H-imidazole-1-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 3366-95-8

Trade Name	Manufacturer	Country	Year Introduced
Flagentyl	Rhone Poulenc	Switz.	1980

Raw Materials

1-(2-Acetoxypropyl)-2-methylimidazole Nitric acid Hydrogen chloride

Manufacturing Process

1-(2-Acetoxypropyl)-2-methylimidazole (18.2 g) is gradually dissolved in furning nitric acid (d = 1.52; 25 cc) with stirring, the temperature being kept at about 2°C. Phosphorus pentoxide (20 g) is added, with caution, to the resulting solution and while maintaining the temperature at about 2°C. Afterwards, the reaction mixture is stirred for a further 3 hours 30 minutes at 2°C and poured onto ice (180 g).

The solution obtained is treated with ammonium hydroxide (d = 0.92; 105 cc), saturated with sodium chloride, and then extracted with ethyl acetate (total 650 cc). The combined organic extracts are washed with a saturated aqueous sodium chloride solution (50 cc) and then dried over sodium sulfate. The volatile products are evaporated under reduced pressure (20 mm Hg) and a mixture of 1-(2-acetoxypropyl)-2-methyl-4-nitroimidazole and 1-(2-acetoxypropyl)-2methyl-5-nitroimidazole (18.6 g) is obtained in the form of a red oil.

A solution of a mixture of 1-(2-acetoxypropyl)-2-methyl-4-nitroimidazole and of 1-(2-acetoxypropyl)-2-methyl-5-nitroimidazole (18.6 g) (prepared as described above) in 4N hydrochloric acid (186 cc) is heated at 90°C for 90 minutes. The cooled solution is treated with ammonium hydroxide (d = 0.9; 100 cc), saturated with sodium chloride, and then extracted with ethyl acetate (total 550 cc). The combined organic extracts are washed with a saturated aqueous

sodium chloride solution (50 cc) and then dried over sodium sulfate. The volatile products are evaporated under reduced pressure (25 mm Hg); the residual brown oil weighs 9.2 g.

This oil (5.8 g) is dissolved in methyl ethyl ketone (20 cc) and chromatographed over silica (232 g) contained in a column 4.5 cm in diameter. The column is eluted with methyl ethyl ketone; the first 600 cc of eluate are discarded and 500 cc of eluate are then collected and concentrated under reduced pressure (25 mm Hg); a partially crystalline product (2.4 g) is thus obtained. 1-(2-Hydroxypropyl)-2-methyl-5-nitroimidazole (0.96 g), melting point 72°C, is obtained on recrystallization from water (4 cc).

References

Merck Index 8267 DFU 4 (4) 280 (1979) Kleeman & Engel p. 817 DOT 17 (2) 62 (1981) I.N. p. 867

Jeanmart, C. and Messer, M.N.; British Patent 1,278,757; June 21, 1972; assigned to Rhone-Poulenc S.A. (France)

SECOBARBITAL SODIUM

Therapeutic Function: Hypnotic

Chemical Name: 5-(1-methylbutyl)-5-(2-propenyl)-2,4,6(1H,3H,5H)-pyrimidinetrione mono-

sodium salt

Common Name: Meballymal sodium; quinalbarbitone sodium

Structural Formula:

Chemical Abstracts Registry No.: 309-43-3; 76-73-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Seconal	Lilly	U.S.	1945
Dormatylan	Herz-Jesu-Apotheke	Austria	_
Dormona	Wiedenmann	Switz.	-
Immenoctal	I.S.H.	France	-
Ional Sodium	Yoshitomi	Japan	-
Novosecobarb	Novopharm	Canada	_
Proquinal	Protea	Australia	
Quinbar	Adams	Australia	-
Sebar	Vangard	U.S.	_
Secaps	Saunders	Canada	_
Secocaps	M.T.C.	Canada	-
Secogen	Paul Maney	Canada	-
Seral	Medic	Canada	-
Tuinal	Lilly	U.S.	_

Raw Materials

Propyl-methyl-carbinyl barbituric acid Allyl bromide Sodium hydroxide

Manufacturing Process

Propyl-methyl-carbinyl allyl barbituric acid (also called allyl 1-methyl-butyl barbituric acid) may be prepared as follows: 1 mol of propyl-methyl-carbinyl barbituric acid is dissolved in a suitable vessel in a 10 to 35% aqueous solution of 1 mol of potassium hydroxide. To this are added somewhat in excess of 1 mol of allyl bromide, and alcohol equal to about 10% of the total volume of the solution. The vessel is agitated for 50 to 75 hours. At the end of this time, the solution, which may still exhibit two layers, is concentrated to about one-half its volume to remove the excess allyl bromide and the alcohol. On cooling, an oily layer, which is propyl-methyl-carbinyl allyl barbituric acid, separates out as a sticky viscous mass. It is dried, washed with petroleum ether, and dissolved in the minimum amount of benzene. Any unreacted propyl-methyl-carbinyl barbituric acid, which does not dissolve, is filtered off. The addition of petroleum ether to the clear filtrate causes the propyl-methyl-carbinyl allyl barbituric acid to precipitate as an oily mass.

This is separated, washed with petroleum ether, and dried in vacuo. After some time it hardens into a whitish solid, which if it was prepared from a 1-bromo-pentane which had some of its isomer 3-bromo-pentane copresent with it has a melting point of about 80° to 83°C. However, by using a pure 2-bromo-pentane, and/or by recrystallizing a number of times from dilute alcohol, the melting point may be raised to 98° to 100°C, corrected.

One part by weight of propyl-methyl-carbinyl allyl barbituric acid is added to enough alcohol to facilitate handling, in this case conveniently about six times its weight. To this is added a solution of sodium hydroxide, preferably carbonate-free or substantially so, containing ⁴⁰/₂₃₈ parts by weight of sodium hydroxide, which is the amount of sodium hydroxide necessary to combine in equal molecular proportions with the propyl-methyl-carbinyl allyl barbituric acid. This solution is filtered clear, and is then evaporated under vacuum until the sodium propyl-methyl-carbinyl allyl barbiturate (alternatively named sodium allyl 1-methyl-butyl barbiturate) separates out in solid form. The salt as thus obtained in solid form contains a varying amount of moisture.

If it is desired to have a stable salt substantially free from contaminants, the alcohol used for dissolving the barbituric acid is absolute alcohol, and the sodium hydroxide is added as a very concentrated aqueous solution so that the reaction which occurs to form the salt is in a substantially alcoholic solution. By having a substantially alcoholic solution, decomposition of the salt during the process of drying is effectively avoided; and the drying may be carried to a point where materially less than 1% of moisture remains, so that the salt is substantially anhydrous. In this way a stable salt substantially free from decomposition products formed during preparation or drying or on standing is obtained. This salt may be used safely for making aqueous solutions for intravenous injection; for such aqueous solutions, when freshly made, are clear solutions substantially free from haziness.

Sodium propyl-methyl-carbinyl allyl barbiturate is a white hygroscopic solid, readily soluble in water and alcohol, and insoluble in ether.

References

Merck Index 8268 Kleeman & Engel p. 816 PDR pp. 1067, 1989 OCDS Vol. 1 p. 269 (1977) I.N. p. 867 REM p. 1068

Shonle, H.A.; U.S. Patent 1,954,429; April 10, 1934; assigned to Eli Lilly and Company

SECRETIN

Therapeutic Function: Diagnostic aid (organ function)

Chemical Name: A complex polypeptide

Common Name: -

Structural Formula:

His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-1 2 3 4 5 6 7 8 9 10 11 12

Leu-Arg-Asp-Ser-Ala-Arg-Leu-Glu (NH₃)-Arg-Leu-13 14 15 16 17 18 19 20 21 22

Leu-Glu-(NII₂)-Gly-Leu-Val-NII₃
23 24 25 26 27

It is a peptide containing 27 amino acid residues containing the amino acids: L-histidine (His); L-aspartic acid (Asp); L-serine (Ser); glycine (Gly); L-threonine (Thr); L-phenylalanine (Phe); L-glutamic acid (Glu); L-glutamine [Glu(NH₂)]; L-leucine (Leu); L-arginine (Arg); L-alanine (Ala); and L-valinamide (Val-NH₂).

The above mentioned peptide salts include, for instance, hydrochlorides, hydrobromides, acetates, fluoroacetates, such as trifluoroacetate, and chloroacetates such as dichloroacetate.

Chemical Abstracts Registry No.: 1393-25-5

Trade Name	Manufacturer	Country	Year Introduced
Secretin-Boots	Warren-Teed	U.S.	1970
Secretin-Kabi	Kabi	U.S.	1981
Secrepan	Eisai	Japan	_
Secretine Sinbio	Fimex	France	_
Secretolin	Hoechst		_

Raw Materials

Tetrapeptide: L-Thr-L-Phe-L-Thr-L-Ser

Tetrapeptide: L-His-L-Ser-β-Benzyl-L-Asp-L-Gly

Manufacturing Process

The gastrointestinal hormone secretin is prepared by fragment condensation. The tetrapeptide L-Thr-L-Phe-L-Thr-L-Ser is coupled to the C-terminal nonadecapeptide of the hormone, and the tetrapeptide L-His-L-Ser- β -benzyl-L-Asp-Gly is coupled to the tricosapeptide resulting from the first coupling.

References

Merck Index 8269 Kleeman & Engel p. 817

PDR p. 1428

DOT 10 (6) 210 (1974) & 16 (3) 87 (1980)

I.N. p. 868 REM p. 1277

Bodanszky, M., Ondetti, M.A., von Saltza, M.H., Narayanan, V.L. and Levine, S.D.; U.S. Patent 3,767,639; October 23, 1973; assigned to E.R. Squibb & Sons, Inc.

SELEGILINE

Therapeutic Function: Antidepressant

Chemical Name: N-(1-Phenylisopropyl)-N-methyl-prop-2-ynylamine

Common Name: Deprenil, deprenaline

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Eldepryl	Britannia	U.K.	1982
Deprenyl	Egyt	Hungary	_
Jumex	Medimpex	Hungary	_

Raw Materials

L-N-(2-phenylisopropyl)methylamine Propargyl bromide

Manufacturing Process

50 g of L-N-(2-phenylisopropyl)methylamine are dissolved in 62.5 ml of toluene, whereupon 13 ml of propargyl bromide are added dropwise within about 20 minutes at a temperature in the range of 50°C to 60°C. The reaction mixture is stirred at 80°C for 3 hours, whereupon it is cooled and the toluene solution is extracted with 125 ml of a 5% hydrochloric acid solution. The acidic layer is separated and made alkaline. The precipitated oil is isolated, washed with benzene and evaporated. The residue is subjected to fractional distillation in vacuo, L-N-(2-phenylisopropyl)methylamine distills off at 65°C to 67°C (0.6 mm Hg, $n_D^{20} = 1.5083$). The L-N-(1-phenylisopropyl)-N-methyl-prop-2-ynylamine is obtained at 92°C to 93°C (0.8 mm Hg, $n_D^{20} = 1.5180$). The melting point of the hydrochloride is 141°C.

References

Merck Index 2876 DFU 4 (2) 128 (1979) DOT 19 (1) 29 (1983) I.N. p. 869

Chinoin Gyogyszer- es Vegyeszeti Termekek Gyara R.T.; British Patents 1,031,425; June 2, 1966; and 1,153,578; May 29, 1969

SELENIUM SULFIDE

Therapeutic Function: Dermatological

Chemical Name: Selenium sulfides

Common Name: -

Structural Formula: Se₄S₄ and Se₂S₆

Chemical Abstracts Registry No.: 7488-56-4

Trade Name	Manufacturer	Country	Year Introduced
Selsun	Abbott	U.S.	1951
Bioselenium	Uriach	Spain	_
Caspiselenio	Kin	Spain	-
Exsel	Herbert	U.S.	_
losel	Owen	U.S.	_
Sebusan	Laake	Finland	_
Selenol	N. D. & K.	Denmark	_
Sel-O-Rinse	U.S.V.	U.S.	_
Selsorin	Farmos	Finland	_
Selsun Blue	Ross	U.S.	_
Selukos	Kabi	W. Germany	

Raw Materials

Selenious acid Hydrogen sulfide

Manufacturing Process

Selenium disulfide, SeS_2 , may be made by the reaction of selenious acid, H_2SeO_3 , and hydrogen sulfide. Its manufacture is described by B.W. Nordlander in U.S. Patents 1,860,154 and 1,860,336. It is prepared in a detergent suspension for therapeutic use.

References

Merck Index 8283 PDR pp. 552, 930, 1563 I.N. p. 869

REM p. 1165

Baldwin, M.M. and Young, A.P. Jr.; U.S. Patent 2,694,669; November 16, 1954; assigned to Abbott Laboratories

SILYMARIN

Therapeutic Function: In liver dysfunction

Chemical Name: 2-[2,3-Dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-

benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one

Common Name: Silybin, silibinine

Structural Formula:

Chemical Abstracts Registry No.: 27359-03-1

Trade Name	Manufacturer	Country	Year Introduced
Legalon	Madaus	W. Germany	1969
Legalon	I.B.I.	Italy	1971
Legalon	Roger Bellon	France	1974
Silliver	Abbott	Italy	1977
Apihepar	Panchemie Homburg	Austria	_
Cardomerin	Deiters	Spain	
Cronol	Kappa	Spain	
Dura Silymarin	Durachemie	W. Germany	
Emil	Horus	Spain	-
Eparfit	Europa	Spain	-
Escarmine	Dreikehl	Spain	_
Flavobion	Spofa	Czechoslovakia	_
Halodren	Escaned	Spain	-
Hepadestal	Krugmann	W. Germany	_
Hepagerina	Kairon	Spain	
Hepalar	Larma	Spain	
Hepallolina	Callol	Spain	_
Hepato-Framan	Oftalmiso	Spain	_
Laragon	Roemmers	Argentina	_
Sematron	Madariaga	Spain	-
Silarine	Vir	Spain	-
Silepar	lbirn	Italy	-
Silgen	Morgens	Spain	
Silibancol	Durban	Spain	_
Silimazu	Mazuelos	Spain	_
Silirex	Lampugnani	Italy	_

Raw Materials

Silybum marianum fruit Ethyl acetate

Manufacturing Process

Silymarin comprising polyhydroxyphenyl chromanones is recovered from the dried fruit of Silybum marianum Gaertn. by separating the fatty oils therefrom, extracting the remaining solid residue with ethyl acetate, evaporating the ethyl acetate and dissolving the dry residue in a solvent mixture comprising methanol, water and petroleum ether to form a two-phase system wherein the chromanones are contained in the lower phase, recovering the polyhydroxyphenyl chromanones from the lower phase after subjecting same to multiple countercurrent contact with petroleum ether.

References

Merck Index 8372 Kleeman & Engel p. 818 DOT 7 (6) 216 (1971) I.N. p. 873

Madaus, R.; U.S. Patent 3,773,932; November 20, 1973; assigned to Dr. Madaus & Co. (Germany)

SIMETHICONE

Therapeutic Function: Antiflatulent

Chemical Name: Dimethyl polysiloxane

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 8050-81-5

Trade Name	Manufacturer	Country	Year Introduced
Mylicon	Stuart	U.S.	1960
Silain	Robins	U.S.	1961
Celluzyme	Dalin	U.S.	
Gelusil	Parke Davis	U.S.	_
Mylanta	Stuart	U.S.	
Phazyme	Reed & Carnrick	U.S.	_
Riopan-Plus	Ayerst	U.S.	-
Simeco	Wyeth	U.S.	-
Tri-Cone	Glaxo	U.S.	-

Raw Materials

Dimethyl diethoxy silane Trimethyl ethoxy silane Sodium hydroxide

Manufacturing Process

In a 5 liter three-necked flask, fitted with a reflux condenser, agitator and thermometer, were placed 1,393 grams (9.41 mols) of redistifled $(CH_3)_2Si(OEt)_2$ and 1,110 grams (9.41 mols) of $(CH_3)_3SiOEt$. To this solution was added 254 grams (14.11 mols) of water containing 7.5 grams of NaOH, (approximately 1 NaOH per 100 silicon atoms). This insured the formation of only straight chain polymers. The mixture was heated to $40^{\circ}C$ and the temperature continued to rise for nearly an hour. After adding 50 cc (20% excess) more water, the mixture was refluxed for two hours and then allowed to stand overnight.

Alcohol was then distilled off, until the temperature reached 100°C. 1,706.6 grams of distillate was collected (theory 1,430 grams). This alcohol was poured into four times its volume of water and an insoluble oil separated (457 grams). The insoluble fraction was added back to the copolymer residue from the distillation and 555 cc of 20% hydrochloric acid was added. The acid mixture was refluxed for two hours, and the silicon oils were carefully washed with distilled water until neutral. The yield was 1,420 grams (theory, 1,469 grams).

References

Merck Index 8374 PDR pp. 650, 829, 916, 1352, 1444, 1569, 1783, 1981 REM p. 814

Hyde, J.F.; U.S. Patent 2,441,098; May 4, 1948; assigned to Corning Glass Works

SIMFIBRATE

Therapeutic Function: Cholesterol-reducing agent

Chemical Name: 2-(4-chlorophenoxy)-2-methylpropanoic acid 1,3-propanediyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 14929-11-4

Trade Name	Manufacturer	Country	Year Introduced
Cholesorbin	Takeda	Japan	1971
Cholesolvin	Cyanamid	Italy	1977
Liposolvin	Tosi-Novara	Italy	—

Raw Materials

α-(p-Chlorophenoxy) isobutyric acid 1,3-Propanediol

Manufacturing Process

A mixture of 22 grams of α -(p-chlorophenoxy)isobutyric acid, 3.8 grams of 1,3-propanediol, 0.5 gram of p-toluenesulfonic acid and 150 ml of xylene was refluxed. When the theoretically calculated amount of water had been removed, the xylene solution was washed with dilute aqueous sodium bicarbonate and then the xylene was distilled off. The residue was distilled under reduced pressure to give 11 grams (47% yield) of 1,3-propanediol bis[α -(p-chlorophenoxy)isobutyrate] boiling at 197° to 200°C/0.03 mm Hg.

References

Merck Index 8377 Kleeman & Engel p. 819 DOT 7 (6) 221 (1971) I.N. p. 874

Nakanishi, M., Kuriyama, T., Oe, T. and Kobayakawa, T.; U.S. Patent 3,494,957; Feb. 10, 1970; assigned to Yoshitomi Pharmaceutical Industries, Ltd., Japan

SINCALIDE

Therapeutic Function: Choleretic

Chemical Name: 1-De(5-oxo-L-proline)-2-de-L-glutamine-5L-methioninecaerulein

Common Name: --

Structural Formula: so

so₃H

Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NHo

Chemical Abstracts Registry No.: 25126-32-3

Trade Name	Manufacturer	Country	Year Introduced
Kinevac	Squibb	U.S.	1976
Kinevac	Squibb	W. Germany	1977

t-Butyloxycarbonyl-L-aspartyl-L-tyrosyl-L-methionylglycyl-L-tryptophyl-L-methionyl-L-aspartyl-L-phenylalanine amide Sulfuric Acid

Manufacturing Process

The starting material in the following synthesis is: t-butyloxycarbonyl-L-aspartyl-L-tyrosyl-L-methionylglycyl-L-tryptophyl-L-methionyl-L-aspartyl-L-phenylalanine amide designated (SM).

- (A) A solution of (SM) (320 mg) in trifluoroacetic acid (7 ml) was kept under nitrogen at room temperature for 15 minutes. Ether (100 ml) was added and the precipitate filtered, washed thoroughly with ether and dried. This material (280 mg) was added to concentrated sulfuric acid (20 ml), cooled at -20°C. The solution was kept in the dry ice-acetone bath at -20°C for 75 minutes. The sulfuric acid solution was poured into ice water (80 ml). The precipitate was centrifuged, resuspended in ice water (30 ml) and 4N sodium hydroxide was added until a clear solution was obtained. After reacidification to pH 4 with dilute sulfuric acid, the precipitate formed was centrifuged, washed twice with ice water and dried. Yield 155 mg. Chromatograph of DEAE Sephadex (with ammonium carbonate buffer) yielded the desired octapeptide sulfate ester: 30 mg.
- (B) A solution of (SM) (330 mg) in trifluoroacetic acid (7 ml) was kept under nitrogen at room temperature for 15 minutes. Ether (100 ml) was added and the precipitate was filtered, washed thoroughly with ether and dried. This material (300 mg) was added in portions to concentrated sulfuric acid (18 ml) cooled at -20°C with vigorous stirring. After 15 minutes a solution of potassium bisulfate in concentrated sulfuric acid (408 mg in 3 ml) was added. The reaction mixture was stirred for 75 minutes at -15°C and then stored at -7°C for 285 minutes. The sulfuric acid solution was poured into cold ether (400 ml); precipitate was filtered, washed with cold ether, and suspended in cold water. Complete solution was then achieved by careful addition of 2N sodium hydroxide. Acidification with N hydrochloric acid led to the precipitation of the desired octapeptide sulfate ester. Yield 200 mg.

References

Merck Index 8380 DOT 13 (9) 356 (1977) I.N. p. 874 REM p. 1277

Ondetti, M.A., Pluscec, J., Sheehan, J.T., Jorpes, J.E. and Mott, V.; U.S. Patent 3,723,406; March 27, 1973; assigned to E.R. Squibb & Sons, Inc.

SISOMICIN

Therapeutic Function: Antibiotic

Chemical Name: O-2,6-diamino-2,3,4,6-tetradeoxy- α -D-glycero-hex-4-enopyranosyl- $(1\rightarrow 4)$ -O-[3-deoxy-4-C-methyl-3-(methylamino)- β -L-arabinopyranosyl- $(1\rightarrow 6)$] -2-deoxy-D-streptamine

Common Name: Rickamicin

Structural Formula:

Chemical Abstracts Registry No.: 32385-11-8; 53179-09-2 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Pathomycin	Byk-Essex	W. Germany	1976
Extramycin	Bayer	W. Germany	1976
Extramycin	Bayer	Switz.	1978
Baymicina	Bayer	Italy	1978
Sisomin	Sc hering	Switz.	1978
Sisomicin	Essex	Italy	1978
Mensiso	Menarini	Italy	1979
Sissolline	Cetrane	France	1980
Siseptin	Essex	Japan	1981
Baymicine	Bayer	France	1981
Extramycin	Yoshitomi	Japan	1981

Raw Materials

Bacterium Micromonspora inyoensis Dextrin

Soybean meal

Manufacturing Process

Tank fermentation of Micromonospora inyoensis - Germination stage 1: Under aseptic conditions, add a lyophilized culture (or cells obtained from a slant culture) of M. inyoensis to a 300 ml shake flask containing 100 ml of the following sterile medium:

Beef extract	3	g
Tryptone	5	g
Yeast extract	5	g
Dextrose	1	g
Starch	24	g
Calcium carbonate	2	g
Tap water	1,000	ml

Incubate the flask and its contents for 5 days at 35°C on a rotary shaker (280 rpm, 2" stroke).

Germination stage 2: Aseptically transfer 25 ml of the fermentation medium of Germination stage 1 to a 2- ℓ shake flask containing 500 ml of the abovedescribed sterile germination medium. Incubate the flask and its contents for 3 days at 28°C on a rotary shaker (280 rpm, 2" stroke).

Fermentation stage: Aseptically transfer 500 ml of the medium obtained from Germination stage 2 to a 14 ℓ fermentation tank containing 9.5 ℓ of the following sterile medium:

Dextrin	50 g
Dextrose	5 g
Soybean meal	35 g

Calcium carbonate	7 g
Cobalt chloride	10 ⁻⁶ M
Tap water	1,000 ml
Antifoam (GE 60)	10 mi

Prior to sterilizing the abovedescribed medium, adjust the pH to 8. Aerobically ferment for 66 to 90 hours while stirring at 250 rpm with air input at 4.5 ℓ/ℓ /min and 25 psi. The potency of the antibiotic produced at the end of this period reaches a peak of 150 to 225 μ g/ml and remains relatively constant. The pH of the fermentation medium changes slightly during the antibiotic production, varying in the range of 6.8 to 7.3.

Isolation of Antibiotic 66-40 — The whole broth is adjusted to pH 2 with 6N sulfuric acid. (For the purpose of this example, quantities are given in terms of 170 $^{\circ}$ 0 of fermentation broth obtained by pooling acidified broth from 17 batches.) The acidified broth is stirred for about 15 minutes and then filtered. Wash the mycelium with water and combine the washings with the filtrate. Adjust the pH of the filtrate to 7 with 6N ammonium hydroxide.

To the neutralized filtrate, add sufficient oxalic acid to precipitate calcium and filter. Reneutralize the filtrate with ammonium hydroxide. Charge the filtrate onto a cationic exchange adsorption column containing 1,500 to 2,000 g of IR C-50 Amberlite in its ammonium form. Discard the eluate, wash the resin with water, and elute with 2 N ammonium hydroxide. Collect 400 ml fractions and monitor by disc testing with *S. aureus* ATCC-6538P. Combine active fractions and evaporate to dryness under vacuum obtaining about 28 g of crude Antibiotic 66-40 having an activity of about 500 μ g/g.

Purification of Antibiotic 66-40 — Dissolve 28 g of crude Antibiotic 66-40 in 100 ml of distilled water and charge to an anion exchange adsorption column (Dowex 1X2) in the hydroxyl form. Slurry 2,000 g of the resin in water into a column 2½" in diameter and 36" high. Elute the column with distilled water at a rate of about 23 ml/min collecting 100 ml fractions and monitor with a conductivity meter and by disc testing against Staphylococcus aureus.

The disc testing provides a gross separation of antibiotic-containing eluate fractions from those devoid of antibiotic. To insure that the fractions are properly combined, a portion of each fraction is paper chromatographed using the lower phase of a chloroform:methanol:17% ammonium hydroxide system (2:1:1). Each paper is sprayed with ninhydrin and the eluates containing like material are combined and lyophilized yielding about 5.7 g of Antibiotic 66–40 assaying about 900 μ_0/m_0 .

References

Merck Index 8384 Kleeman & Engel p. 819 DOT 8 (8) 315 (1972) & 12 (10) 407 (1976) I.N. p. 875 REM p. 1183

Weinstein, M.J., Luedemann, G.M. and Wagman, G.H.; U.S. Patent 3,832,286; August 27, 1974; assigned to Schering Corp.

SOBREROL

Therapeutic Function: Mucolytic

Chemical Name: 5-Hydroxy-\alpha,\alpha,4-trimethyl-3-cyclohexene-1-methanol

Common Name: Pinol hydrate

Chemical Abstracts Registry No.: 498-71-5

Trade Name	Manufacturer	Country	Year Introduced
Sobrepin	Corvi	Italy	1970
Lysmucol	Schering	Switz.	1983

Raw Materials

α-Pinene oxide

Manufacturing Process

To 19 \mathbb{R} of well-agitated distilled water plus 18 g of ditertiary-butyl-p-cresol was added 19.84 kg (130 mols) of pure \mathbb{R} -pinene oxide that was about half racemic, half d-form. The temperature was maintained at 30°C to 50°C, first with ice bath cooling and then with tap water cooling. The addition of the pinene oxide required 1½ hours. After the addition was complete and the exothermic reaction was about over, the mixture was stirred for 2½ hours at about 30°C, and then centrifuged to separate the crude sobrerol from the liquid phase consisting of oil and water.

The crude sobrerol was washed with naphtha and then air dried to yield 14.81 kg (87.5 mols) of pure sobrerol, $\left[\alpha\right]_D^{25}$ -77.0°. It was found that 1 liter of the aqueous phase from the reaction contained 22 g of sobrerol, so, therefore, the entire aqueous phase contained 0.42 kg (2.5 mols) of sobrerol.

References

Merck index 8395 1.N. p. 877

Klein, E.A.; U.S. Patent 2,815,378; December 3, 1957; assigned to The Glidden Co.

SOMATOTROPIN

Therapeutic Function: Growth stimulant

Chemical Name: See under Structural Formula

Common Name: Somatropin

Structural Formula: Proteins of molecular weights ranging from 22,124 for human growth

hormone (HGH) to 47,400 for bovine growth hormone.

Chemical Abstracts Registry No.: 9002-72-6

Trade Name	Manufacturer	Country	Year Introduced
Somatotrope	Choay	France	1951
Wachtungshormon	Kabi	W. Germany	1970

Trade Name	Manufacturer	Country	Year Introduced
Crescormon	Sumitomo	U.K.	1973
Grorm	Serono	Italy	1975
Asellacrin	Calbiochem	U.S.	1976
Crescormon	Kabi	U.S.	1978
Nanormon	Hormon-Chem.	W. Germany	1978
Corpormon	Nikken	Japan	_
Somacton	Ferring	W. Germany	
Somatormone	Byla	France	-

Human pituitary glands Acetone

Manufacturing Process

It has been found that the growth hormone can be obtained in crystalline form from human pituitary glands by procedures comprising (1) extraction of the fresh glands with acetone, (2) extraction of the acetone residue with aqueous salt solutions, (3) precipitation from aqueous salt solutions by the addition of suitable miscible organic solvents of alkaline and acid pH, and finally crystallization from aqueous salt solutions by the addition of suitable miscible organic solvents.

References

Merck Index 8562 DOT 14 (9) 422 (1978) I.N. p. 880 REM pp. 952, 955

Lewis, U.J. and Brink, N.G.; U.S. Patent 2,974,088; March 7, 1961; assigned to Merck & Co., Inc.

SPECTINOMYCIN

Therapeutic Function: Antibacterial

Chemical Name: Decahydro-4a,7,9-trihydroxy-2-methyl-6,8-bis(methylamino)-4H-pyrano-

[2,3-b] [1,4] benzodioxin-4-one

Common Name: Actinospectacin

Structural Formula:

Chemical Abstracts Registry No.: 1695-77-8; 22189-32-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Trobicin	Upjohn	U.S.	1971
Trobicin	Upjohn	Italy	1973
Stanilo	Upjohn	W. Germany	1973

Trade Name	Manufacturer	Country	Year Introduced
Trobicin	Upjohn	U.K.	1973
Trobicine	Upjohn	France	1974
Trobicin	Upjohn	Japan	1978
Kempi	Alter	Spain	

Bacterium *Streptomyces spectabilis*Nutrient medium

Manufacturing Process

A lyophilized culture of *Streptomyces spectabilis*, NRRL 2792, was used to seed the following sterile agar medium on tubed slants:

	Grams
Maltose	10
Tryptone	5
K ₂ HPO ₄	0.5
NaCl	0.5
FeSO₄	0.1
Agar	20
Deionized water to make 1 liter	

The slants were incubated for 7 days at 30°C, after which time sporulation was complete. The spores from the agar slants were used, in an aqueous suspension, to inoculate 100 ml of preseed medium in a 500 ml Erlenmeyer flask. The sterile preseed medium consisted of:

	Grams
Dried whole yeast	10
Glucose	10
Pancreatic digest of casein	
(N-Z-Amine B)	5
Tap water to make 1 liter adjusted	
to pH 7.2 before sterilizing	

The seed flash was incubated for 24 hours at 32°C on a reciprocating shaker after which it was used as an inoculum for a 20 liter seed fermenter in the amount of approximately 5%, the 20 liter seed fermenter contained a sterile medium consisting of:

	Grams
Glucose	15
Cornstarch	25
Distiller's solubles	15
Brewer's yeast	10
Corn steep liquor	20
Tap water to make 1 liter adjusted	
to pH 7.2 before sterilizing	

The 20 liter seed fermenter was incubated for 24 hours at 32°C and aerated at the rate of 6 standard liters or about 0.2 standard cubic feet of air per minute and agitated with a sweep stirrer. The 20 liter seed fermenter was used to inoculate 250 liters of the same medium in a 100 gallon fermentation tank. 1,200 ml of lard oil were added during the fermentation to control foaming. The tank was agitated with a propeller and aerated at the rate of 75 standard liters of air per minute. After 96 hours of fermentation the beer assayed 500 mcg/ml (18.3 mcg/mg on a dry basis) of actinospectacin. Actinospectacin is assayed by its activity against *Klebsiella pneumoniae* by standard agar diffusion procedure and based on crystalline actinospectacin sulfate according to U.S. Patent 3,234,092.

References

Merck Index 8584 Kleeman & Engel p. 821 PDR p. 1864 DOT 8 (3) 107 (1972)

I.N. p. 884 REM p. 1211

Jahnke, H.K.; U.S. Patent 3,206,360; September 14, 1965; assigned to The Upjohn Co. Bergy, M.E. and De Boer, C.; U.S. Patent 3,234,092; February 8, 1966; assigned to The

Upjohn Company

Peters, V.J.; U.S. Patent 3,272,706; September 13, 1966; assigned to The Upjohn Company Nara, T., Takasawa, S., Okachi, R., Kawamoto, I., Kumakawa, M., Yamamoto, M. and Sato, S.; U.S. Patent 3,819,485; June 25, 1974; assigned to Abbott Laboratories

SPIPERONE

Therapeutic Function: Tranquilizer

Chemical Name: 8-[4-(4-fluorophenyl)-4-oxobutyl]-1-phenyl-1,3,8-triazaspiro[4.5] decan-4-

one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 749-02-0

Trade Name	Manufacturer	Country	Year Introduced
Spiropitan	Eisai	Japan	1969
Spiroperidol	Janssen		_

Raw Materials

4-Carbamoyl-4-N-anilinopiperidine Formamide

4-Chloro-p-fluoro-butyrophenone

Manufacturing Process

A mixture of 4-carbamoyl-4-N-anilinopiperidine and formamide is heated for 12 hours at 170°C. After cooling, the reaction mixture is divided between 100 parts water and 900 parts chloroform. The organic layer is separated, dried over MgSO₄, filtered and the filtrate is evaporated. The semisolid residue is stirred in ethyl acetate. The undissolved part is filtered off, washed with ethyl acetate, and dried, yielding 1-oxo-4-phenyl-2,4,8-triazaspiro-(4.5)decane.

A mixture of 3.2 parts 4-chloro-p-fluoro-butyrophenone, 3.5 parts 1-oxo-4-phenyl-2,4,8-triazaspiro(4.5) decane, 2 parts Na_2CO_3 and 0.1 part KI in 200 parts hexone is refluxed with stirring for 50 hours. The mixture is cooled to room temperature, 200 parts water are added and the layers are separated. The organic layer is dried over 10 parts MgSO₄,

filtered and the solvent removed under reduced pressure on the water bath. The residue is treated with 50 parts diisopropylether. The precipitate is filtered on a Buchner filter and recrystallized from 20 parts hexone at room temperature. The solid is filtered off and dried to yield 1-oxo-4-phenyl-8-[3-(4-fluorobenzoyl)-propyl] -2,4,8-triazaspiro(4.5)decane, melting point 190° to 193.6°C, as a light brown amorphous powder.

References

Merck Index 8596 Kleeman & Engel p. 821

I.N. p. 885

Janssen, P.A.J.; U.S. Patent 3,155,669; November 3, 1964; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

Janssen, P.A.J.; U.S. Patent 3,155,670; November 3, 1964; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

Janssen, P.A.J.; U.S. Patent 3,161,644; December 15, 1964; assigned to Research Laboratorium Dr. C. Janssen NV, Belgium

SPIRAMYCIN

Therapeutic Function: Antibacterial

Chemical Name: Spiramycin

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 8025-81-8

Trade Name	Manufacturer	Country	Year Introduced
Rovamycine	Specia	France	1972
Rovamycina	Carlo Erba	Italy	1979
Apyrectol Spiramycine	Theranol	France	-
Bykomycetin	Byk Gulden	_	_
Selectomycin	Gruenenthal	W. Germany	-
Spiramycin	Kyowa	Japan	_

Raw Materials

Bacterium Streptomyces ambofaciens Nutrient medium

Manufacturing Process

The process for producing spiramycin comprises inoculating an aqueous nutrient medium with a culture of the NRRL No. 2420, allowing aerobic fermentation to take place and separating from the culture medium the spiramycin thus formed. The culture medium also contains the antibiotic substance known as Congocidin which, however, does not possess the same useful properties as spiramycin and which can be isolated in crystalline form. The separation of the two antibiotic substances is readily achieved.

References

Merck Index 8597 Kleeman & Engel p. 822 I.N. p. 885 REM p. 1224

Ninet, L. and Verrier, J.; U.S. Patent 2,943,023; June 28, 1960; assigned to Societe des Usines Chimiques Rhone-Poulenc

Ninet, L., Pinnert S. and Preud'homme, J.; U.S. Patent 3,000,785; September 19, 1961; assigned to Societe des Usines Chimiques Rhone-Poulenc

SPIRONOLACTONE

Therapeutic Function: Diuretic

Chemical Name: 7α -(acetylthio)- 17α -hydroxy-3-oxopregn-4-ene-21-carboxylic acid

Common Name: -

Structural Formula:

Chemicel Abstracts Registry No.: 52-01-7

Trade Name	Manufacturer	Country	Year Introduced
Aldactone	Searle	U.S.	1959
Aldactone	Searle	France	1960
Altex	Cenci	U.S.	1980
Diatensec	Searle	U.K.	1981
Acelat	Endopharm	W. Germany	_
Airolactone	Horita	Japan	_
Aldactazide	Searle	U.S.	-
Aldopur	Heumann	W. Germany	_
Aldospirone	Teva	Israel	_
Alexan	Sanwa	Japan	_
Almatol	Fujisawa	Japan	_
Alpamed	Sawai	Japan	
Alpolasnon	Nihon Yakuhin	Japan	-
Aporasnon	Nichiiki	Japan	-
Dairopeal	Daito Koeki	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Deverof	Waldheim	Austria	~
Dira	Kakenyaku Kako	Japan	_
Duraspiron	Durachemie	W. Germany	
Euteberol	Merckle	W. Germany	-
Hokulaton	Hokuriku	Japan	-
Idrolattone	Zoja	ltaly	-
Lacalmin	Tatsumi	Japan	
Lacdene	Tsuruhara	Japan	-
Nefurofan	Maruko	Japan	-
Osyrol	Hoechst	W. Germany	-
Penantin	Teikoku	Japan	-
Practon	Genekod	France	~
Sagisal	Sagitta	W. Germany	
Sincomen	Schering	W. Germany	~
Spiresis	Farmos	Finland	~
Spiretic	D.D.S.A.	U.K.	~
Spiridon	Orion	Finland	
Spirix	Benzon	Denmark	-
Spirolong	SKF	Italy	-
Spironazide	Schein	U.S.	~
Spiropal	A.F.I.	Norway	-
Spiro-Tablinen	Sanorania	W. Germany	
Spirotone	Protea	Australia	_
Suracton	Toho Iyaku	Japan	-
Uractone	Spa	italy	-
Urosonin	lsei	Japan	-
Xenalone	Mepha	Switz.	_

 17α -(2-Carboxyethyl)- 17β -hydroxyandrosta-4,6-dien-3-one factore Thioacetic acid

Manufacturing Process

A mixture of approximately 11 parts of 17α -(2-carboxyethyl)-17 β -hydroxyandrosta-4,6dien-3-one lactone and 10 parts of thioacetic acid is heated at 85° to 95°C for 1/2 hour. Excess thioacetic acid is removed by vacuum distillation at this point, and the residue is twice recrystallized from methanol, affording 7α -acetylthio- 17α -(2-carboxyethyl)- 17β -hydroxyandrost-4-en-3-one lactone, melting at approximately 134° to 135°C. Heated above this melting point, the product solidifies and melts again at approximately 201° to 202°C (with decomposition).

References

Merck Index 8610 Kleeman & Engel p. 822 PDR pp. 830, 993, 1388, 1606, 1674, 1999 OCDS Vol. 1 p. 206 (1977); 2, 172 (1980) & 3, 91 (1984) I.N. p. 886 REM p. 941

Cella, J.A. and Tweit, R.C.; U.S. Patent 3,013,012; December 12, 1961; assigned to G.D. Searle & Co.

STALLIMYCIN HYDROCHLORIDE

Therapeutic Function: Antibiotic

Chemical Name: N"-(2-Amidinoethyl)-4-formamido-1,1',1"-trimethyl-N,4':N',4"-ter-(pyrrole-2-carboxamide) hydrochloride

Common Name: Distamycin A

Chemical Abstracts Registry No.: 6576-51-8; 636-47-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Herperal	Farmitalia	Italy	1978

Raw Materials

Bacterium Streptomyces distallicus Dextrose Corn steep liquor

Manufacturing Process

A spore suspension obtained upon washing a culture of Streptomyces distallicus is added to 3,000 ml of a sterile medium consisting of the following:

Dextrose	2 %
Corn steep liquor extract	2 %
CaCO ₃	1 %
(NH ₄) ₂ SO ₄	0.3 %
NaCl	0.3 %

Fermentation is continued at 28°C for 40 hours at a stirring rate of 150 to 250 rpm and a rate of air flow of 1 to 2 $\ell/\min/\ell$ of culture medium.

300 ml of a suspension of the vegetative mycelium of this culture are used for inoculating 6,000 ml of a similar sterile culture medium. At this production stage, the culture is kept fermenting for 85 to 100 hours (pH 7.6 at 28°C) at a stirring rate of 350 to 450 rpm and a rate of air flow of 1 to 1.5 ℓ /min/ ℓ of culture medium.

To 17 ℓ of a culture obtained by submerged fermentation as mentioned above, siliceous earth is added and the batch is filtered. The mixture of mycelium and the siliceous earth are agitated for 1 hour with 2.5 ℓ of butanol. This treatment is repeated twice. The butanolic extracts are combined, washed with water, evaporated to dryness (about 10 g) and boiled with acetone (80 ml). The residue (5.41 g of yellowish powder) is distamycin.

5 g of distamycin is extracted six times with ethanol. The ethanolic extracts are combined, concentrated and filtered through a column containing 70 g of alumina. Elution is carried

out with the same solvent. The effluent (central fractions) is collected and evaporated to dryness to yield 0.43 g of pure distamycin A: decomposition point, 183°C to 185°C. The product can be further purified by crystallization from aqueous n-butanol.

References

Merck Index 8623 Kleeman & Engel p. 824 DOT 13 (8) 322 (1977) 1.N.p. 887

Arcamone, F., Canevazzi, G., Grein, A. and Bizioli, F.; U.S. Patent 3,190,801; June 22, 1965; assigned to Societa Farmaceutici Italia

STANOLONE

Therapeutic Function: Androgen

Chemical Name: 17-Hydroxyandrostan-3-one

Common Name: Androstanolone

Structural Formula:

Chemical Abstracts Registry No.: 521-18-6

Trade Name	Manufacturer	Country	Year introduced
Neodrol	Pfizer	U.S.	1953
Anabolex	Lloyd	U.K.	_
Anaprotin	Cuxson	U.K.	_
Androlone	Orma	Italy	_
Ophthovitol	Winzer	W. Germany	_
Pesomax	Boniscontro	Italy	_
Protona	Gremy-Longuet	France	
Stanaprol	Pfizer	_	_

Raw Materials

3.17-Androstandione Selenium dioxide Sodium borohydride

Manufacturing Process

A solution of 1.0 g of 3,17-androstandione in 50 ml of methanol and containing 1 g of selenium dioxide, was allowed to remain in an ice-chest overnight. The formed 3,3-dimethoxyandrostan-17-one was not separated. 1 g of solid potassium hydroxide and 2.5 g of sodium borohydride in 2.5 ml of water were added and the mixture allowed to react at room temperature for 24 hours. The solution was then poured into a large excess of water, extracted with methylene chloride, the organic layer dried and evaporated to a residue. The residue was dissolved in ether, and a small amount of selenium removed by filtration. The ether was boiled off and the organic material dissolved in 100 ml of boiling acetone. 25 ml of diluted hydrochloric acid were added, the solution boiled for 5 minutes and then allowed to cool. Upon crystallization, 0.85 g of androstan-17 β -ol-3-one was obtained, melting point 175 $^{\circ}$ C to 178℃.

References

Merck Index 8646 Kleeman & Engel p. 54

I.N. p. 88

Oliveto, E.P. and Hershberg, E.B.; U.S. Patent 2,927,921; March 8, 1960; assigned to Schering Corp.

STANOZOLOL

Therapeutic Function: Anabolic

Chemical Name: 17-methyl-2H-5 α -androst-2-eno[3,2-c] pyrazol-17 β -ol

Common Name: Androstanazole

Structural Formula:

Chemical Abstracts Registry No.: 10418-03-8

Trade Name	Manufacturer	Country	Year Introduced
Winstrol	Winthrop	U.\$.	1961
Strombaject	Winthrop	W. Germany	1961
Stromba	Sterling	U.K.	1961
Winstol	Zamba	ltaly	1962
Stromba	Winthrop	France	1964
Anasynth	Causyth	Italy	-

Raw Materials

 17β -Hydroxy-17 α -methyl-4-androsteno[3,2-c] pyrazole Lithium Ammonia

Manufacturing Process

To a stirred solution of 1.00 gram of 17β -hydroxy- 17α -methyl-4-androsteno[3,2-c] pyrazole in 200 ml of tetrahydrofuran and 400 ml of liquid ammonia was added 2.12 grams of lithium wire during 5 minutes. The dark blue mixture was stirred for 45 minutes. A solution of 40 ml of tertiary-butyl alcohol in 160 ml of diethyl ether was added with stirring.

After 15 minutes, 25 ml of ethanol was added with stirring. The mixture turned colorless after several hours, and the liquid ammonia was allowed to evaporate and the mixture was allowed to warm to room temperature over a period of about 15 hours.

The solvent was evaporated to yield a colorless solid residue, which was taken up in ethyl acetate-ice water. The two layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water, saturated sodium chloride solution and filtered through anhydrous sodium sulfate. The solvent was evaporated to yield 1.20 grams of light tan crystals, MP 151° to 155°C, ultraviolet maximum at 224 $m\mu$ (E = 4,095). Two recrystallizations from ethanol afforded: 1st crop, 0.619 grams (62%) of colorless crystals (dried at 120°C in vacuo for 17 hours), MP 232.8° to 238.0°C, ultraviolet maximum at 224 m μ (E = 4,840); 2nd crop, 0.142 gram (14%) of colorless crystals, MP 234° to 242°C.

References

Merck Index 8647 Kleeman & Engel p. 825 PDR p. 1935 DOT 15 (6) 278 (1979) I.N. p. 888

REM p. 1000

Manson, A.J.; U.S. Patent 3,030,358; April 17, 1962; assigned to Sterling Drug Inc.

STREPTOKINASE

Therapeutic Function: Enzyme

Chemical Name: Streptococcal fibrinolysin

Common Name: -

Structural Formula: Complex enzyme mixture

Chemical Abstracts Registry No.: 9002-01-1

Trade Name	Manufacturer	Country	Year Introduced
Streptase	Hoechst	France	1970
Streptase	Hoechst	U.S.	1977
Kabikinase	Kabi	U.S.	1980
Awelysin	Arzneimittelwerk Dresden	E. Germany	_
Varidase	Lederle	U.K.	

Raw Materials

Bacterium Streptococcus haemoly ticus Nutrient medium

Manufacturing Process

The following description is from U.S. Patent 2,701,227: To 50 liters of distilled water there was added 10.17 kg of enzyme hydrolyzed casein (N-Z-Amine). The temperature was raised to 100°C and held until the casein digest solution was clear. The container was then cooled rapidly to 15°C and the cooled solution filtered through a coarse grade of filter paper. A small amount of toluene was added as a preservative and the solution

stored at 2°C for 4 days, at the end of which time it was again filtered to remove any insoluble material.

The following ingredients were then added to the casein digest solution: 1,165.0 grams of KH₂PO₄ dissolved in 8 liters of distilled water; 35.0 grams of cysteine in approximately 800 cc of 10% HCI (the least amount of 10% HCI required to obtain a clear solution); 35 grams of glycine dissolved in 100 cc of distilled water; 300 grams dextrose in 2 liters of distilled water; 3.5 grams of uracil in 1 liter of distilled water; 3.5 grams of adenine sulfate in 1 liter of distilled water; 0.35 gram of nicotinic acid in 35 cc of distilled water; 0.59 gram of pyridoxine dissolved in 59 cc of distilled water; 7.0 grams of tryptophane in 1 liter of distilled water; 1.75 grams of calcium pantothenate in 70 cc of distilled water; 0.875 gram of thiamin hydrochloride dissolved in 87.5 cc of distilled water; 0.175 gram of riboflavin dissolved in 1,000 cc of distilled water; 55.65 cc of thioglycollic acid in 100 cc of distilled water; 700 grams of KHCO₃ in 500 cc of distilled water and 700 cc of a trace element salt solution containing 11.5 kg of MgSO₄; 50 g of CuSO₄·5H₂O; 50 g of ZnSO₄·7H₂O; 20 g MnCl₂·4H₂O; 50 g of FeSO₄·7H₂O; 1 liter of HCl per 100 liters of solution. The medium was then adjusted to pH 7.2 and sterilized by filtration.

The above sterilized medium was inoculated with 11 liters of seed inoculum having a bacterial count of approximately 20 billion per cc. The tank was fermented at 37°C without pH adjustment, aeration, or other modification for 14 hours at the end of which time 320 cc of 50% dextrose was added. After this the pH was adjusted to 7.0 at 15 minute intervals with 5.0 N sodium hydroxide. The volume of sodium hydroxide required for neutralization was noted and 115% of this volume of 50% dextrose solution added after each pH adjustment. At the end of about 8 hours the bacterial count had ceased to increase and the fermentation was terminated. At this time the fermentation medium contained approximately 1,000 units of streptokinase per cc.

References

Merck Index 8683 Kleeman & Engel p. 826 PDR pp. 944, 963, 1428 I.N. p. 891 REM p. 1037

Ablandi, F.B. and Adam, J.N. Jr.; U.S. Patent 2,701,227; February 1, 1955; assigned to American Cyanamid Company

Mowat, J.H., Krupka, G.C. and Nalesnyk, S.: U.S. Patent 2,753,291; July 3, 1956; assigned to American Cyanamid Company

Singher, H.O. and Zuckerman, L.; U.S. Patent 3,016,337; January 9, 1962; assigned to Ortho Pharmaceutical Corporation

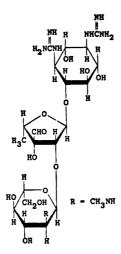
Siegel, M., Palombo, G. and Baumgarten, W.; U.S. Patent 3,042,586; July 3, 1962; assigned to Merck & Co., Inc.

von Pölnitz, W., Schwick, H.G. and Bickhard, J.H.; U.S. Patent 3,063,913; November 13, 1962; assigned to Behringwerke AG, Germany

von Pölnitz, W., Schwick, H.G. and Bickhard, J.H.; U.S. Patent 3,063,914; November 13, 1962; assigned to Behringwerke AG, Germany

Baumgarten, W. and Cole, R.B.; U.S. Patent 3,107,203; October 15, 1963; assigned to Merck & Co., Inc.

von Pölnitz, W., Schwick, H.G. and Bickhard, J.H.; U.S. Patent 3,138,542; June 23, 1964; assigned to Behringwerke AG, Germany


STREPTOMYCIN

Therapeutic Function: Antitubercular

Chemical Name: O-2-deoxy-2-(methylamino)-α-L-glucopyranosyl-(1→2)-O-5-deoxy-3-Cformyl- α -L-lyxofuranosyl-(1 \rightarrow 4)-N,N'-bis(aminoiminomethyl)-D-streptamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57-92-1

Trade Name	Manufacturer	Country	Year Introduced
Streptomycin	MSD	U.S.	1945
Streptomycine	Diamant	France	1961
Cidan-Est	Cidan	Spain	_
Darostrep	SCS Pharmalab	S. Africa	_
Estrepto E	Wassermann	Spain	_
Estrepto Level	Level	Spain	_
Estreptomicina	Сера	Spain	_
Estreptomicina Normon	Normon	Spain	
Estrepto Wolner	Wolner	Spain	_
Estreptomade	Made	Spain	
Neodiestostreptobap	Martin Santos	Spain	_
Orastrep	Dista	U.K.	
Servistrep	Servipharm	Switz.	_
Solvo-Strep	Heyl	W. Germany	_
Streptaguaine	Dista	U.K.	_
Streptobretin	Norbrook	U.K.	_
Streptosol	Therapex	Canada	_
Strycin	Squibb	U.S.	

Raw Materials

Bacterium Streptomyces griseus Nutrient medium

Manufacturing Process

A medium is prepared having the following composition in tap water: 1.0% glucose; 0.5% peptone; 0.3% meat extract; and 0.5% NaCl. This medium is distributed in appropriate vessels to a depth of 1 to 2 inches, sterilized at 10 pounds steam pressure for 45 to 50 minutes, and then cooled.

The medium in each vessel is then inoculated with a heavy aqueous suspension of spores of a strain of *Actinomyces griseus*, and the inoculated media are maintained at an incubation temperature of 22° to 28°C for 10 days. The growth is then filtered off and the filtrates are combined for further treatment.

To a batch of approximately 10 liters of filtered broth is added 150 grams of activated charcoal. The mixture is stirred continuously for about 5 minutes and is then filtered. The slightly yellowish (almost colorless) filtrate is discarded and the charcoal residue is washed several times with distilled water and finally with 95% ethanol. The washed material is then suspended in 1.5 liters of 95% ethanol, made 0.15 normal with hydrochloric acid. The suspension is stirred for about an hour and allowed to stand in the cold for about 10 hours more with occasional stirring. The suspension is then filtered, the charcoal residue discarded, and the yellowish clear filtrate thus obtained is poured into 10 liters of ether, with stirring. A brown-colored aqueous layer separates and is drawn off.

The alcohol-ether solution is washed with 100 cc of water and the brown aqueous layer is drawn off and added to the first aqueous layer. The aqueous solution is neutralized to pH 6 to 7 with dilute sodium hydroxide and any precipitate that forms is filtered off and discarded. A faintly colored aqueous solution containing streptomycin is thus obtained.

References

Merck Index 8685 Kleeman & Engel p. 827 PDR p. 1410 I.N. p. 892 REM p. 1260

Waksman, S.A. and Schatz, A.; U.S. Patent 2,449,866; September 21, 1948; assigned to Rutgers Research and Endowment Foundation

Bartels, C.R., Bryan, W.L. and Berk, B.; U.S. Patent 2,868,779; January 13, 1959; assigned to Olin Mathieson Chemical Corporation

STREPTOZOCIN

Therapeutic Function: Antineoplastic

Chemical Name: 2-Deoxy-2-(3-methyl-3-nitrosoureido)-D-glucopyranose

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 18883-66-4

Trade Name	Manufacturer	Country	Year Introduced
Zanosar	Upjohn	U.S.	1982

Raw Materials

Bacterium *Streptomyces achromogenes*Nutrient medium

Manufacturing Process

On a sterile maltose-tryptone agar slant of the following composition: 1 g maltose; 0.5 g tryptone; 0.05 g K₂HPO₄; 0.01 g FeSO₄·7H₂O; 1.5 g agar; and sufficient distilled water to make 100 ml, Streptomyces achromogenes var. streptozoticus was grown for 7 days at 28°C.

The culture thus produced was used as an inoculum for the following sterile medium: 1 g glucose: 1 g beef extract: 0.5 g Bacto peptone (Difco): 0.5 g NaCl; and sufficient distilled water to make 100 ml. The pH was adjusted to 7.0 before sterilization. The inoculated medium was incubated in shake flasks for 3 days at 28°C on a reciprocating shaker and 75 ml of the resulting growth was used to inoculate 12 ℓ of sterile medium of the same formulation. The medium was incubated in a 20 ℓ stainless steel bottle, at 28°C for 2 days, the contents being stirred continuously with sparged air at the rate of 6 ℓ of free air per minute. The resulting growth was used to inoculate 250 ℓ of the following sterile medium: 2 g Bacto peptone (Difco); 2.5 g blackstrap molasses; 2 g glucose; 0.25 g NaCl; and sufficient distilled water to make 100 ml. The pH was adjusted to 7.0 before sterilization.

This medium was incubated in a 100 gallon stainless steel fermentor, at 24°C with sparged air being introduced at the rate of 50 ℓ /min and with agitation by an impeller. After 66 hours of fermentation the beer was harvested. To 100 gallons of harvested beer was added 17 pounds of diatomite, and 35 pounds of activated carbon. The mixture was stirred well and then filtered, the cake was water-washed with 10 gallons of tap water, and then washed with 25 gallons of acetone followed by 30 gallons of 1:1 aqueous acetone. The acetone solutions of streptozotocin were pooled and dried in vacuo to 3.88 pounds.

References

Merck Index 8695 DFU 4 (2) 137 (1979) DOT 19 (5) 242 (1983) I.N. p. 892 REM p. 1156

Bergy, M.E., De Boer, C., Dietz, A., Eble, T.E., Herr, R.R. and Johnson, L.E.; U.S. Patent 3,027,300; March 27, 1962; assigned to The Upjohn Co.

SUCCINYLSULFATHIAZOLE

Therapeutic Function: Antibacterial (intestinal)

Chemical Name: 4-Oxo-4[[4-[(2-thiazolylamino)-sulfonyl] phenyl] amino] butanoic acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 116-43-8

Trade Name	Manufacturer	Country	Year Introduced
Sulfasuxidine	MSD	U.S.	1942
Thiacyl	Theraplix	France	1946
Colistatin	Smith & Nephew	U.K.	_
Cremosuxidine	MSD	U.K.	_

2-Sulfanilamidothiazole Succinic anhydride

Manufacturing Process

3.92 g of succinic anhydride was added to a boiling suspension of 10 g of 2-sulfanilamidothiazole in 100 cc of alcohol. The mixture was then refluxed for five minutes after the addition was complete at which time all of the solids were in solution. The solution was then cooled and diluted with an equal volume of water. The white solid precipitate which formed was filtered and recrystallized from dilute alcohol, yielding 2-N⁴-succinylsulfanilamidothiazole, melting at 184°C to 186°C.

References

Merck Index 8753 Kleeman & Engel p. 831 OCDS Vol. 1 p. 132 (1977)

I.N. p. 894

Moore, M.L.; U.S. Patents 2,324,013 and 2,324,014; both dated July 13, 1943; assigned to Sharp & Dohme, Inc.

SUCRALFATE

Therapeutic Function: Antiulcerative

Chemical Name: Hexadeca- μ -hydroxytetracosahydroxy[μ_8 -[1,3,4,6-tetra-O-sulfo- β -D-fructofuranosyl-α-D-glucopyranoside tetrakis(hydrogen sulfato)(8-)]] hexadecaaluminum

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54182-58-0

Trade Name	Manufacturer	Country	Year Introduced
Antepsin	Baldacci	Italy	1975
Ulcogant	Cascan	W. Germany	1980
Carafate	Marion	U.S.	1981
Ulogant	Merck	Switz.	1982

Trade Name	Manufacturer	Country	Year Introduced
Antepsin	Ayerst	U.K.	1982
Ulsanic	DuPont	Australia	1983
Andapsin	Farmos	Sweden	1983
Sulcrate	Nordic	Canada	-
Ulcerlmin	Chugai	Japan	_

Sulfur trioxide **Pvridine**

Sucrose Sodium hydroxide

Aluminum dihydroxychloride

Manufacturing Process

A disaccharide is added to a pyridine SO₃ complex solution, which is prepared by reacting 5 to 6 times the molar amount of liquid SO3 as much as that of disaccharide with 5 to 10 times the amount of pyridine as that of the disaccharide at 0°C to 5°C, for sulfation at 50°C to 70°C for 3 to 7 hours. After the completion of sulfation, the greater part of pyridine is removed by decantation. The obtained solution exhibits an acidity that is so strong that it is improper to apply the reaction with aluminum ion and, therefore, sodium hydroxide is added for neutralization. After the remaining pyridine is removed by concentration, 100 unit volumes of water per unit volume of the residue is added thereto. To the solution is then added aluminum ion solution mainly containing aluminum dihydroxychloride, the pH of which is 1.0 to 1.2, in such an amount that the aluminum ion is present in an amount of 4 to 6 molar parts of the amount of disaccharide to provide a pH of 4 to 4.5. The mixture is reacted under stirring at room temperature and the formed disaccharide polysulfate-aluminum compound is allowed to precipitate. After filtration, the residue is washed with water and dried.

References

Merck Index 8755 PDR p. 1074 I.N. p. 894 REM p. 815

Nitta, Y., Namekata, M., Tomita, E. and Hirota, Y.; U.S. Patent 3,432,489; March 11, 1969; assigned to Chugai Seiyaku K.K. (Japan)

SUFENTANIL

Therapeutic Function: Analgesic

Chemical Name: N-[4-(Methoxymethyl)-1-[2-(2-thienyl)ethyl]-4-piperidinyl]-N-phenylpro-

panamide

Common Name: -

Structural Formula:

$$\begin{array}{c} \operatorname{ch_3^{OCH_2}} \\ \operatorname{ch_3^{CH_2CON}} \\ \operatorname{ch_3^{CH_2CON}} \\ \end{array}$$

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Sufenta	Janssen	Neth.	1983
Sufenta	Janssen	U.S.	-

N-[4-(Methoxymethyl) 4-piperidinyl] -N-phenylpropanamide 2-Thiopheneethanol

Manufacturing Process

A mixture of 4.1 parts of N-[4-(methoxymethyl)-4-piperidinyl] -N-phenylpropanamide, 5.3 parts of sodium carbonate and 120 parts of 4-methyl-2-pentanone is stirred and refluxed with water-separator. Then there are added 4.1 parts of 2-thiopheneethanol methanesul fonate ester and stirring at reflux is continued for 18 hours. The reaction mixture is cooled, washed twice with water and evaporated. The oily residue is purified by column-chromatography over silica gel, using a mixture of trichloromethane and 5% of methanol as eluent. The first fraction is collected and the eluent is evaporated. The oily residue is converted into the hydrochloride salt in 2,2'-oxybispropane. The free base is liberated again in the conventional manner. After extraction with 2,2'-oxybispropane, the latter is dried, filtered and evaporated. The oily residue solidifies on triturating in petroleum-ether. The solid product is filtered off and crystallized from petroleum-ether at -20°C, yielding, after drying, N-[4-(methoxymethyl)-1-[2-(2-thienyl)ethyl] 4-piperidinyl] -N-phenylpropanamide; melting point 98.6°C.

References

Merck Index A-12 DFU 2 (5) 334 (1977) PDR p. 959 I.N. p. 895

Janssen, P.A.J. and Daele, H.P.V.; U.S. Petent 3,998,834; December 21, 1976; assigned to Janssen Pharmaceutica N.V. (Belgium)

SULBENICILLIN

Therapeutic Function: Antibacterial

Chemical Name: 3,3-Dimethyl-7-oxo-6-[(phenylsulfoacetyl)amino] -4-thia-1-azabicyclo-

[3.2.0] heptane-2-carboxylic acid

Common Name: Sulfocillin

Structural Formula:

Chemical Abstracts Registry No.: 41744-40-5; 28002-18-8 (Na salt)

Trade Name	Manufacturer	Country	Year Introduced
Lillacillin	Takeda	Japan	1973
Kedacillina	Bracco	Italy	1982

α-Sulfophenacetyl chloride 6-Aminopenicillanic acid

Manufacturing Process

To a suspension of 1.08 parts by weight of 6-aminopenicillanic acid in 8 parts by volume of water is added 1.48 parts by weight of sodium bicarbonate. After the mixture is dissolved, a solution of 1.18 parts by weight of α -sulfophenylacetyl chloride in 10 parts by volume of diethylether is gradually added thereto. The mixture is stirred at a temperature in the neighborhood of 0°C for 1 hour. The aqueous layer is washed twice with 10 parts by volume of portions of ether and adjusted to pH 1.2 with cation exchange resin of polystyrene sulfonic acid type under constant cooling. Then the solution is washed twice with 15 parts by volume of portions of ethyl acetate, followed by extraction twice with 15 parts by volume of portions of n-butanol. The extracts are combined and washed twice with 15 parts by volume of portions of water and, then, extracted with an aqueous solution of sodium bicarbonate. The extract is adjusted to pH 6.5, washed with ether and lyophilized to give the sodium salt of &sulfobenzylpenicillin. Yield is 1.2 parts by weight.

References

Merck Index 8762 DOT 8 (5) 199 (1972) & 9 (4) 149 (1973) I.N. p. 895 REM p. 1201

Morimoto, S., Nomura, H., Fugono, T., Maeda, K. and Ishiguro, T.; U.S. Patent 3,600,379; May 2, 1972; assigned to Takeda Chemical Industries, Ltd. (Japan)

SULFACETAMIDE

Therapeutic Function: Antimicrobial

Chemical Name: N-[(4-aminophenyl)sulfonyl] acetamide

Common Name: N'-acetylsulfanilamide

Structural Formula:

Chemical Abstracts Registry No.: 144-80-9

Trade Name	Manufacturer	Country	Year Introduced
Sulamyd	S chering	U.S.	1941
Urosulfon	Consol, Midland	U.S.	1955
Sulfacidin	Crookes	U.K.	_
Sultrin	Ortho	U.S.	
Triple Sulfa	Fougera	U.S.	_
Trysul	Savage	U.S.	_

Raw Materials

4-Aminobenzenesulfonamide Acetic anhydride Sodium hydroxide

Manufacturing Process

17.2 grams of 4-aminobenzene-sulfonamide are heated to boiling with 75 cc of acetic anhydride for 1 hour and thereupon the diacetyl product caused to separate by stirring into ice water. After recrystallization from alcohol the 4-acetylaminobenzene-sulfonacetyl-amide forms colorless prisms of melting point 253°C with decomposition. The product is easily soluble in alkalies and forms neutral salts. The acetylation can also take place with acetyl chloride. Instead of the 4-aminobenzene-sulfonamide also 4-acetylaminobenzene-sulfonamide can be employed. The action of 4-acetylaminobenzene-sulfonic acid chloride on acetamide yields the same product.

By heating the diacetyl compound with sodium hydroxide solution partial saponification of the acetyl groups takes place. 25.6 grams of diacetyl compound are heated to boiling for some hours with 100 cc of 2 N sodium hydroxide solution. The precipitate produced by acidification of the solution with acetic acid is filtered off and treated with dilute sodium carbonate solution. The 4-aminobenzene-sulfonacetylamide passes into solution while the simultaneously formed 4-acetylaminobenzene-sulfonamide remains undissolved. It is filtered with suction and the filtrate again acidified with acetic acid. The 4-aminobenzene-sulfonacetamide separates out and is recrystallized from water. It forms colorless lustrous rhombic crystals of MP 181°C.

References

Merck Index 100 Kleeman & Engel p. 833 PDR pp. 888, 1306, 1606 OCDS Vol. 1 p. 123 (1977) I.N. p. 897 REM p. 1176

Dohrn, M. and Diedrich, P.; U.S. Patent 2,411,495; November 19, 1946; assigned to Schering Corporation

SULFACHLORPYRIDAZINE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(6-chloro-3-pyridazinyl)benzenesulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 80-32-0

Trade Name	Manufacturer	Country	Year Introduced
Sonilyn	Mallinckrodt	U.S.	1962
Nefrosul	Riker	U.S.	1974
Consulid	Ciba-Geigy	U.S.	_
Cosulfa	Elliott-Marion	Canada	_
Durasulf	Dessy	Italy	-
Sulfaciorazina	Ellem	Italy	_

3.6-Dichloropyridazine Sulfanilamide

Manufacturing Process

1.9 parts of 3,6-dichloropyridazine, 3.4 parts of sulfanilamide, 2.7 parts of potassium carbonate and 1 part of sodium chloride were ground together. The solid mixture was heated with stirring and as the dichloropyridazine and sulfanilamide melted, the mixture became a slurry. When the bath temperature had reached 140°C a sudden evolution of carbon dioxide occurred which lasted about 5 minutes, after which the mixture set in fine granules, When no more carbon dioxide was evolved, heating was stopped and the reaction mixture was heated with sufficient water to dissolve it and the solution allowed to cool. Unreacted sulfanilamide was collected by filtration. Excess dichloropyridazine was removed from the filtrate by extraction with a water immiscible organic solvent such as ether.

The basic solution was chilled and poured into one-half volume of 1:3 acetic acid. Sufficient hydrochloric acid was added to bring the mixture to pH 4. The crude 3-sulfanilamido-6-chloropyridazine which precipitated was purified by solution in 6 parts of 1:100 ammonium hydroxide, charcoal treatment and precipitation by pouring of the filtrate into dilute acetic acid.

References

Merck Index 8770 Kleeman & Engel p. 833 OCDS Vol. 1 pp. 124, 131 (1977) I.N. p. 897

Lester, M.M. and English, J.P.; U.S. Patent 2,790,798; April 30, 1957; assigned to American Cyanamid Company

SULFACYTINE

Therapeutic Function: Antibacterial

Chemical Name: 4-(amino-N-(1-ethyl-1,2-dihydro-2-oxo-4-pyrimidinyl)benzenesulfonamide

Common Name: N-SulfanilyI-1-ethylcytosine; sulfacitine

Structural Formula:

$$\mathsf{H_2N} - \underbrace{\hspace{1.5cm}}^{\mathsf{N}} \mathsf{SO_2NH} - \underbrace{\hspace{1.5cm}}^{\mathsf{N}} \mathsf{NCH_2CH_3}$$

Chemical Abstracts Registry No.: 17784-12-2

Trade Name	Manufacturer	Country	Yeer Introduced
Renoquid	Glenwood	U.S.	1975
Renoquid	Parke Davis	U.S.	1983

Raw Materials

3-(Ethylamino)propionitrile Potassium cyanate Sodium Methanol Hydrogen bromide Bromine N-Acetylsulfanilyl chloride Sodium hydroxide

Manufacturing Process

The N-(N-acetylsulfanilyl)-1-ethylcytosine used as a starting material is prepared as follows: To a solution of 333 grams of 3-(ethylamino)propionitrile in 1,697,3 ml of 2 N hydrochloric acid is added 275 grams of potassium cyanate, the resulting solution is concentrated under reduced pressure to a syrup, and the syrup is heated at 90° to 100°C for 6 hours and then evaporated to dryness at 90° to 100°C under reduced pressure. The residue is extracted with 1,600 ml of hot absolute ethanol, and the extract is concentrated to 500 ml and chilled. The crystalline 1-(2-cyanoethyl)-1-ethylurea obtained is isolated, washed with cold absolute ethanol, and dried, melting point 88° to 91°C. This intermediate (58.7 grams) is added to a solution of 11.5 grams of sodium in 500 ml of methanol and the resulting solution is heated under reflux for 30 minutes. After cooling, the mixture, containing 1-ethyl-5,6-dihydrocytosine, is treated with a slight excess of gaseous hydrogen bromide and evaporated to dryness. The residue is extracted, first with 500 ml, then with 100 ml of hot isopropyl alcohol, the extracts are combined and chilled, and the crystalline 1-ethyl-5,6-dihydrocytosine hydrobromide obtained is isolated and dried, MP 167.5 to 169.5°C. This salt (88.8 grams) is dissolved in 200 ml of nitrobenzene at 174°C, 22.6 ml of bromine is added over a period of 8 minutes, and the mixture is kept at 170° to 175°C until hydrogen bromide evolution ceases (about 15 minutes). Upon cooling, there is obtained crude 1-ethylcytosine hydrobromide, which is isolated, washed with ether, and dried, MP 170° to 187°C.

This salt is heated at 90° to 100°C with 70 ml of N,N-dimethylformamide and 60 ml of piperidine, and the resulting solution is chilled to give 1-ethylcytosine, MP 238° to 243°C. A mixture of 10.5 grams of 1-ethylcytosine, 18.6 grams of N-acetylsulfanilyl chloride, and 50 ml of pyridine is stirred at room temperature for 2 days. The precipitated solid is removed by filtration, and the filtrate is evaporated at 60°C under reduced pressure to a syrup. The syrup is triturated with 0.25 N hydrochloric acid, and the solid N-(N-acetyl-sulfanilyl)-1-ethylcytosine obtained is isolated and dried. This solid is suitable for use without further purification.

A solution of 65 grams of N-(N-acetylsulfanilyl)-1-ethylcytosine in 380 ml of 2 N aqueous sodium hydroxide is heated under reflux for 1 hour. Upon cooling, the solution is treated with charcoal, purified by filtration, and acidified with acetic acid. The solid N-sulfanilyl-1-ethylcytosine that precipitates is isolated, washed with water, and dried, MP 166.5° to 168°C following successive crystallizations from butyl alcohol and from methanol.

References

Merck Index 8771 Kleeman & Engel p. 834 PDR p. 926 OCDS Vol. 2 p. 113 (1980) DOT 12 (9) 370 (1976) I.N. p. 898 REM p. 1172

Doub, L. and Krolls, U.; U.S. Patent 3,375,247; March 26, 1968; assigned to Parke, Davis & Company

SULFADIAZINE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-2-pyrimidinylbenzenesulfonamide

Common Name: Sulfanilylaminopyrimidine; sulfapyrimidine

Structural Formula:

Chemical Abstracts Registry No.: 68-35-9

Trade Name	Manufacturer	Country	Year Introduced
Sulfadiazine	Lederle	U.S.	1941
Adiazin	Star	Finland	_
Adiazine	Theraplix	France	_
Coco-Diazine	Lilly	U.S.	
Di-Azu-Mul	First Texas	U.S.	-
Flamazine	Smith & Nephew	U.K.	
Lipo-Diazine	Donley Evans	U.S.	_
Magmoid Sulfadiazine	Pitman-Moore	U.S.	_
Sulfadets	Dymond	Canada	_
Sulfolex	Medica	Finland	-
Theradia	Daiichi	Japan	_
Theradiazine	Daiichi	Japan	-
Ultradiazin	Atabay	Turkey	_

Raw Materials

2-Aminopyrimidine p-Nitrobenzenesulfonyl chloride Hydrogen chloride

Manufacturing Process

5.4 parts of 2-amino-pyrimidine were covered with 15 parts of anhydrous pyridine. The reaction mixture was treated with 14 parts of p-nitrobenzenesulfonyl chloride and the whole heated briefly on the steam bath and let stand 45 minutes at room temperature. To the reaction mixture were added 80 parts of hot alcohol and the precipitate was filtered off and washed with water. The solid was dissolved in dilute caustic solution and the solution was filtered, cooled and acidified. The 2-(p-nitrobenzenesulfonamido)-pyrimidine precipitated and was collected.

The crude 2-(p-nitrobenzenesulfonamido)-pyrimidine from the preceding step was suspended in 130 parts alcohol and 1.5 parts of concentrated hydrochloric acid were added. The suspension was then heated to reflux and 30 parts of iron powder were added with mechanical stirring. The mixture was refluxed and stirred for 24 hours with conssional addition of concentrated hydrochloric acid. The reaction mixture was then made slightly basic and filtered hot and the residues were extracted with several portions of boiling alcohol. The filtrate and wash solutions were combined and evaporated. The 2-(sulfanilamido)-pyrimidine was recrystallized from boiling water with decolorizing charcoal added, according to U.S. Patent 2,410,793.

References

Merck Index 8772 Kleeman & Engel p. 834 OCDS Vol. 1 p. 124 (1977) DOT 16 (8) 261 (1980) I.N. p. 898

Sprague, J.M.; U.S. Patent 2,407,966; September 17, 1946; assigned to Sharp & Dohme, Inc. Winnek, P.S. and Roblin, R.O. Jr.; U.S. Patent 2,410,793; November 5, 1946; assigned to American Cyanamid Company

SULFADIMETHOXINE

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(2,6-dimethoxy-4-pyrimidinyl)benzenesulfonamide

Common Name: Sulforthomidine; sulphormethoxine

Structural Formula:

Chemical Abstracts Registry No.: 122-11-2

Trade Name	Manufacturer	Country	Year Introduced
Madribon	Roche	U.S.	1958
Madrigid	Roche	U.S.	1959
Abcid	Daiichi	Japan	
Albon	Roche	U.S.	_
Ancosul	Anchor	U.S.	_
Asthoxin	Kobayashi	Japan	
Bensulfa	Caber	Italy	
Chemiosalfa	Salfa	Italy	_
Crozinal	Borromeo	Italy	-
Deltin	Wassermann	Italy	_
Deposol	Pliva	Yugoslavia	_
Diasulfa	Crosara	Italy	_
Diazinol	Washington	Italy	_
Dimetossilina	Lister	Italy	_
Dimetossin	Caber	Italy	-
Dimetoxan	Nessa	Spain	_
Dimetoxin	Nissin	Japan	_
Dimexin	Fuso	Japan	_
Duramid	Deva	Turkey	_
Emerazina	Croce Bianca	Italy	_
Fultamid	Fulton	Italy	_
Hachimetoxin	Τογο	Japan	_
Ipersulfa	lon	Italy	_
Jatsulph	Clinimed	S. Africa	_
Lensulpha	Lennon	S. Africa	_
Levisul	A.F.I.	Italy	_
Madribon	Roche	Italy	_
Madroxin	Polfa	Poland	_
Melfa	Tanabe	Japan	
Micromega	Sidus	Italy	
Mition D	Taisho	Japan	_
Neostreptal	Locatelli	Italy	_
Neosulfamyd	Libra	Italy	
Omnibon	Yamanouchi	Japan	_
Oxazina	Made	Spain	_
Redifal	A.M.S.A.	Italy	_
Risulpir	Lisapharma	Italy	_
Ritarsulfa	Benvegna	Italy	_
Scandisil	Firma	Italy	_
Sulfabon	Vaillant	Italy	_
Sulfadomus	Medici Domus	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Sulfaduran	Janus	Italy	_
Sulfalon	Sumitomo	Japan	_
Sulfastop	Vis	Italy	_
Sulfathox	SCS Pharmalab	S. Africa	_
Sulfoplan	Gea	Denmark	_
Sulf-Reten	Pons	Spain	-
Sulmethon	Mohan	Japan	
Sulmetoxyn	Nichiiku	Japan	_
Sulxin	Chugai	Japan	_
Sumetamin	Samva	Japan	
Tempodiazina	C.I.F.	Italy	_

Sodium sulfanilamide 4-Phenylsulfonyl-2,6-dimethoxypyrimidine

Manufacturing Process

1.4 g of 4-phenylsulfonyl-2,6-dimethoxypyrimidine and 4 g of sodium sulfanilamide (both dried over potassium hydroxide) were very finely ground and heated in an oil bath for 10 hours at 120°C (inside temperature). The reaction mixture was taken up in 30 ml of water and treated with 3 ml of 2 N sodium hydroxide solution. After standing for one hour at 0°C, the turbid solution was filtered and the filtrate was made alkaline with sodium carbonate. After again standing for one hour at 0°C, the precipitate was filtered off (1.9 g of regenerated sulfanilamide) and the filtrate was neutralized with acetic acid, whereupon crystallization resulted. The isolated crystals of 4-sulfanilamido-2,6-dimethoxypyrimidine weighed 1.3 g (84% of theory), melting point 190°C to 196°C.

References

Merck Index 8775 Kleeman & Engel p. 835 OCDS Vol. 1 pp. 125. 129 (1977)

I.N. p. 899

Bretschneider, H. and Klotzer, W.; U.S. Patent 2,703,800; March 8, 1955; assigned to Oester-reichische Stickstoffwerke AG

Bretschneider, H. and Klotzer, W.; U.S. Patent 3,127,398; March 31, 1964; assigned to Hoffmann-LaRoche, Inc.

SULFADOXINE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(5,6-dimethoxy-4-pyrimidinyl)benzenesulfonamide

Common Name: Sulforthomidine; sulformethoxine

Structural Formula:

Chemical Abstracts Registry No.: 2447-57-6

Trade Name	Manufacturer	Country	Year Introduced
Fanasil	Roche	italy	1973
Fansidar	Roche	U.S.	1982

α-Methoxycyanoacetic acid methyl ester
Thiourea
Sodium
Methanol
Methyl iodide
Phenyltrimethylammonium toluene sulfonate
p-Acetylaminobenzenesulfonyl chloride

Manufacturing Process

- (a) α -methoxy-cyanoacetic acid methyl ester is condensed with thiourea, in the presence of sodium methylate, to form 2-thio-4-amino-5-methoxy-6-hydroxy-pyrimidine.
- (b) The product thus obtained is methylated in a sodium methylate solution with methyl iodide to form 2-methylthio-4-amino-5-methoxy-6-hydroxy-pyrimidine of MP 203°C, from water.
- (c) The latter product is methylated with phenyltrimethylammonium-toluenesulfonate to form 2-methylthio-4-amino-5,6-dimethoxy-pyrimidine of MP 112° to 115°C, from 20% methanol.
- (d) 0.9 gram of 2-methylthio-4-amino-5,6-dimethoxy-pyrimidine are dissolved in 3 ml of absolute pyridine. At 0°C, 1.2 grams of p-acetylaminobenzenesulfonyl chloride are added thereto and the mixture is shaken until all the material is dissolved. The solution is allowed to stand for 22 hours at 0°C and the pyridine eliminated in vacuo at 20°C. To the resulting product are added 20 ml of water and 3 ml of glacial acetic acid, whereupon the whole mixture is heated to the boil, thus causing crystallization. The crude product obtained is dissolved in 40 ml of 2.5% soda solution, and the solution obtained is filtered and supersaturated with gaseous carbon dioxide. There is thus obtained 1.5 grams (85%) of 2-methyl-thio-4-(N₄-acetyl-sulfanilamido)-5,6-dimethoxy-pyrimidine of MP 220° to 221°C, from 50% ethanol.
- (e) 1.3 grams of 2-methylthio-4-(N_4 -acetyl-sulfanilamido)-5,6-dimethoxy-pyrimidine are dissolved in 25 ml of water and 0.4 gram of anhydrous sodium carbonate, then refluxed for 3½ hours in the presence of 6 to 7 grams of Raney nickel. Then, a solution of 1 gram of sodium hydroxide in 3 ml of water is added thereto and heating continued for another hour. The catalyst is filtered off and the filtrate acidified to Congo red with hydrochloric acid. The pH is then brought to 5 by means of ammonia, thus causing crystallization. There is thus obtained 0.51 gram of 4-sulfanilamido-5,6-dimethoxy-pyrimidine of MP 190° to 194°C, from 50% ethanol.

References

Merck Index 8776 PDR p. 1484 I.N. p. 899 REM p. 1176

Bretschneider, H., Klotzer, W. and Schantl, J.; U.S. Patent 3,132,139; May 5, 1964; assigned to Hoffmann-La Roche Inc.

SULFAETHIDOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 94-19-9

Trade Name	Manufacturer	Country	Year Introduced
Sul-Spansion	SKF	U.S.	1956
Globucid	Schering	-	-
Spasmo-Urosulf	T.A.D.	W. Germany	_
Sulfa-Perlongit	Boehr, Ing.	W. Germany	_
Urosulf	T.A.D.	W. Germany	-

Raw Materials

2-Amino-5-ethyl-1,3,4-thiadiazole p-Acetylaminobenzene sulfonyl chloride

Manufacturing Process

0.163 mol of 2-amino-5-ethyl-1 3.4-thiadiazole was covered with 43 parts of anhydrous pyridine. To the mixture was added 50 parts (0.214 mol) of p-acetylaminobenzene sulfonyl chloride with vigorous shaking at 50°C to 60°C. The reaction mixture was then heated to 125°C. When the mixture had cooled somewhat it was placed in a Claisen flask and 27.6 parts (0.69 mol) of sodium hydroxide dissolved in 110 parts of water was added through a dropping funnel while distilling off a mixture of pyridine and water. The distillation was stopped when the temperature reached 100°C and the residual liquor in the flask heated at 95°C for 30 minutes.

The reaction mixture was then poured into 1.650 parts of hot water, the pH adjusted to 8 to 9, decolorizing charcoal was added and the whole was heated on the steam for 15 minutes. The charcoal was filtered off and the hot filtrate neutralized and cooled. The 2-(sulfanilamido)-5-ethyl-1.3.4-thiadiazole was purified by repeated crystallization from boiling water.

References

Merck Index 8777 Kleeman & Engel p. 836 OCDS Vol. 1 p. 125 (1977) I.N. p. 900

Roblin, R.O. Jr. and Winner, P.S.; U.S. Patent 2,358,031; September 12, 1944; assigned to American Cyanamid Co.

SULFAGUANIDINE

Therapeutic Function: Antimicrobial

Chemical Name: 4-Amino-N-(aminoiminomethyl)benzenesulfonamide

Common Name: Sulfanilylguanidine

Structural Formula:

Chemical Abstracts Registry No.: 57-67-0

Trade Name	Manufacturer	Country	Year Introduced
Sulfaguanidine	Lederle	U.S.	1941
Aseptil-Guanadina	Wassermann	Italy	
Aterian	Takeda	Japan	
Devaguanil	Deva	Turkey	_
Ganidan	S pecia	France	_
Guabeta	O.T.W.	W. Germany	
Guasept	Ferrosan	Denmark	
Resulfon	Nordmark	W. Germany	_

Raw Materials

Guanidine hydrochloride Iron

p-Nitrobenzene sulfonyl chloride Hydrogen chloride

Manufacturing Process

10 parts of quaniding hydrochloride (0.1 mol) was dissolved in 75 parts of water and the pH adjusted to 8 to 9. The solution was warmed to 50°C to 60°C and kept at this temperature while a slurry of 25 parts (0.113 mol) of p-nitrobenzene sulfonyl chloride was added slowly with mechanical stirring. The pH was kept at 8 to 9 by the addition of 40% sodium hydroxide solution. At the end of the reaction the solution was cooled and filtered from the separated solid. The p-nitrobenzene sulfonyl quanidine was recrystallized from hot water.

5 parts (0.024 mol) of p-nitrobenzene sulfonyl guanidine was dissolved in 50 parts of boiling 95% alcohol and to the solution was added 0.5 part of concentrated hydrochloric acid. The solution was heated to reflux and 6 parts of iron dust was added. The suspension was refluxed for 3 hours, made basic with potassium carbonate, and filtered hot. The alcohol was evaporated off and the p-aminobenzene sulfonyl guanidine recrystallized from boiling water with the addition of decolorizing charcoal.

References

Merck Index 8779 Kleeman & Engel p. 837 OCDS Vol. 1 p. 123 (1977)

I.N, p. 900

Winnek, P.S.; U.S. Patent 2,218,490; October 15, 1940; assigned to American Cyanamid Co. Winnek, P.S.: U.S. Patent 2,229,784; January 28, 1941; assigned to American Cyanamid Co. Winnek, P.S.; U.S. Patent 2,233,569; March 4, 1941; assigned to American Cyanamid Co.

SULFAGUANOL

Therapeutic Function: Antibacterial

Chemical Name: N1-[(4,5-dimethyl-2-oxazolyl)amidino] sulfanilamide

Common Name: Sulfadimethyloxazolylguanidine

.Structural Formula:

Chemical Abstracts Registry No.: 27031-08-9

Trade Name	Manufacturer	Country	Year Introduced
Enterocura	Nordmark	W. Germany	1973
Enterocura	De Angeli	Italy	1981

Raw Materials

N¹-[p-Aminobenzenesulfonyl]-N³-cyanoguanidine Hydrogen chloride

Manufacturing Process

23.9 grams (0.1 mol) of N1-[p-amino benzene sulfonyl]-N3-cyano quanidine and 13.2 grams (0.15 mol) of acetoin are thoroughly stirred in a mixture of 120 cc of water and 120 cc of methanol. 25 cc of concentrated hydrochloric acid are added dropwise with stirring to this suspension at 40°C. A clear solution is obtained after 30 minutes which solution is kept at 40°C for another hour. Thereafter, the methanol is distilled off in a vacuum, the remaining solution is treated with charcoal and the pH of the filtered solution is quickly brought to 11 by addition of 10% soda lye with quick stirring.

The compound at first precipitated is redissolved at a pH of 11. The solution is treated another time with charcoal and is filtered. Thereafter, a mixture of anhydrous acetic acid and water in a proportion of 1:1 is added with stirring and cooling until a pH of 7 is reached. Thus, the reaction product separates with crystallization.

For purification, the product is recrystallized from 15 times the amount of a 9:1 mixture of acetone and water. The resulting N1-[p-amino benzene sulfonyl]-N3-(4,5-dimethyl-oxazolyl-(2)] quanidine is obtained as colorless crystals having a MP of 233° to 236°C.

References

Merck Index 8780 Kleeman & Engel p. 838 DOT 9 (5) 185 (1973) I.N. p. 900

Loop, W., Baganz, H., Kohlmann, F.-W. and Schultze, H.; U.S. Patent 3,562,258; Feb. 9. 1971; assigned to Nordmark-Werke GmbH. Germany

SULFALENE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(3-methoxypyrazinyl)benzenesulfonamide

Common Name: Sulfamethopyrazine

Structural Formula:

Chemical Abstracts Registry No.: 152-47-6

Trade Name	Manufacturer	Country	Year Introduced
Longum	Farmitalia	W. Germany	1962
Kelfizina	Farmitalia	Italy	1962
Kelfizine	Farmitalia	U.K.	1969
Kelfizine	Bellon	France	1969

Raw Materials

2-Aminopyrazine	Bromine
Sodium	Methanol
p-Acetylaminobenzene sulfonyl chloride	Sodium hydroxide
Hydrogen	

Manufacturing Process

2-Amino-3,5-Dibromo-Pyrazine: 112.7 ml of bromine in 375 ml of acetic acid are slowly added at 0° to +2°C, while stirring, to a solution of 95.11 grams of 2-amino-pyrazine and 326.5 grams of acetic acid trihydrate (CH₃COONa-3H₂O) in 1,480 ml of acetic acid. This addition requires about 2 to 3 hours and it is carried out in the dark. The mixture is then allowed to stand at room temperature (25° to 30°C) for 15 to 16 hours. About 1.5 liters of acetic acid are distilled off under vacuum (12 to 14 mm Hg) at 35°C and the brown and viscous residue is poured into 500 grams of ice-water under stirring.

Aqueous 20% sodium hydroxide is added in order to obtain a pH = 8 and then the product is filtered and air-dried. The air-dried product is extracted 6 times with 150 ml of ether; the filtered ethereal solutions are evaporated to dryness and the residue (50 to 52 grams) is crystallized from hot water. The yield is 34.36 grams, melting at 114° C.

2-Amino-3-Methoxy-5-Bromo-Pyrazine: 7 grams of 2-amino-3,5-dibromo-pyrazine are boiled for 9 hours in a methanolic solution of sodium methylate (obtained from 0.65 gram of Na and 18.5 ml of methanol). By cooling a crystalline product is obtained, filtered and washed once with methanol and 2 to 3 times with water. The yield is 5.4 grams, melting at 138°C.

2-Amino-3-Methoxy-Pyrazine: 3 grams of 2-amino-3-methoxy-5-bromo-pyrazine are hydrogenated, in methanolic solution at room temperature and at atmospheric pressure, in the presence of 1 gram of palladium over charcoal (10%) and 0.9 gram of potassium hydroxide. When the stoichiometric amount of hydrogen is absorbed, the suspension is filtered and the filtrate is evaporated to dryness. The residue is extracted with acetone, the acetonic solution is evaporated and the residue (1.8 grams, melting at 75° to 82°C) is crystallized from cyclohexane. The yield is 1.5 grams, melting at 85°C.

2-(p-Acetylaminobenzene-sulfonamido)-3-Methoxy-Pyrazine: 1.5 grams of 2-amino-3-methoxy-pyrazine dissolved in 15 ml of anhydrous pyridine are treated, under cooling and stirring, with 2.81 grams of p-acetylaminobenzene-sulfonyl-chloride, at small portions in about 30 minutes. The mixture is allowed to stand for 20 hours at room temperature and then is heated to 50°C for 4 hours.

The solution is concentrated to one-third of its volume, under vacuum, and poured into ice-water under stirring. The precipitate is filtered and washed with water. 2.21 grams melting at 218° to 220°C are obtained. The MP (crystallized from alcohol) is 224°C.

2-Sulfanilamido-3-Methoxy-Pyrazine: 1.5 grams of the product from the preceding step and 7 to 8 ml of aqueous 10% sodium hydroxide are boiled for 1 hour. The cooled solution is slightly acidified to pH 6 with aqueous 2 N hydrochloric acid and the product is filtered. The yield is 1.25 grams, melting at 175°C.

References

Merck Index 8781 Kleeman & Engel p. 838 OCDS Vol. 1 p. 125 (1977) I.N. p. 901

Camerino, B. and Palamidessi, G.; U.S. Patent 3,098,069; July 16, 1963; assigned to Societa Farmaceutici Italia, Italy

SULFAMERAZINE

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(4-methyl-2-pyrimidinyl)benzenesulfonamide

Common Name: Sulfamethyldiazine; methylsulfadiazine

Structural Formula:

$$\mathsf{H}_2\mathsf{N} - \underbrace{\hspace{1cm}}^{\mathsf{N}} \mathsf{So}_2\mathsf{NH} - \underbrace{\hspace{1cm}}^{\mathsf{N}} \mathsf{So}_3$$

Chemical Abstracts Registry No.: 127-79-7

Trade Name	Manufacturer	Country	Year Introduced
Sulfamerazine	Lederle	U.S.	1943
Dosulfin	Geigy	W. Germany	-
Mebacid	Veb Berlin Chemie	E. Germany	_
Polagin	De Angeli	Italy	
Percoccide	A.C.F.	Neth.	
Romezin	Tanabe	Japan	_
Septosil	Egyt	Hungary	
Solumedine	Specia	France	_
Spanbolet	Norden	U.S.	

Raw Materials

2-Amino-6-methyl pyrimidine p-Acetylaminobenzene sulfonyl chloride Hydrogen chloride

Manufacturing Process

To a well agitated solution of 6.95 grams of 2-amino-6-methyl pyrimidine in 40 cc of pyridine, 15 grams of p-acetylaminobenzenesulfonyl chloride are added in small portions over a 30 minute period. The reaction mixture is then heated on a steam bath for 30 minutes, the free pyridine being then removed under reduced pressure and the residue mixed with cold water, and the latter mixture is vigorously stirred. The solid reaction product is removed by filtration and washed with cold water.

There is obtained a yield of 14 grams of crude 2-(p-acetylaminobenzenesulfonamido)-6methyl pyrimidine, which on recrystallization from alcohol and water melts at 238° to 239°C. The crude product is hydrolyzed by suspending it in 400 cc of 2 N hydrochloric acid and warming until solution is complete. The solution is neutralized with sodium carbonate and the precipitated 2(sulfanilamido)-6-methyl pyrimidine is removed by filtration. The latter on recrystallization from alcohol and water shows a melting point of 225° to 226°C.

References

Merck Index 8783 Kleeman & Engel p. 839 OCDS Vol. 1 pp. 124, 128 (1977) I.N. p. 901

REM p. 1173

Sprague, J.M.; U.S. Patent 2,407,966; September 17, 1946; assigned to Sharp & Dohme, Inc.

SULFAMETER

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(5-methoxy-2-pyrimidinyl)benzenesulfonamide

Common Name: Sulfamethoxydiazine

Structural Formula:

Chemical Abstracts Registry No.: 651-06-9

Trade Name	Manufacturer	Country	Year Introduced
Sulla	Robins	U.S.	1968
Bayrena	Bayer Pharma	France	_
Durenat	Bayer/Schering	W. Germany	
Durenate	Bayer	U.K.	_
Fortesul	Pliva	Yugoslavia	
Kirocid	Schering	W. Germany	
Kiron	Schering	W. Germany	
Ultrax	Chemie Linz.	Austria	-

Raw Materials

Methoxymalonic acid ester Guanidine carbonate Phosphorus oxychloride Zinc

Carbethoxy-sulfanilic acid chloride Sodium hydroxide

Manufacturing Process

2-Amino-5-methoxy pyrimidine is obtained having a melting point of about 300°C by condensation of methoxymalonic acid ester with guanidine carbonate in the presence of sodium ethylate. The resultant reaction product is then converted to 2-amino-5-methoxy-4,6-dichloropyrimidine (melting point 216°C to 217°C) by heating this reaction product with phosphorus oxychloride. The dichloro compound is then suspended in water with zinc dust and

is tested in the presence of caustic alkaline or carbonates to produce the 2-amino-5-methoxy pyrimidine compound, melting point 80°C to 82°C, (benzene).

12.6 g of 2-amino-5-methoxy pyrimidine, 26.4 g of carbethoxy-sulfanilic acid chloride and 50 cc of dry pyridine are heated for 30 minutes with frequent shaking to a temperature of 80°C. The reaction product is then mixed with 200 cc of water and with dilute hydrochloric acid (0.1 N) until the reaction is acid to Congo Red indicator. A precipitate is formed which is then filtered under suction, washed with distilled water, and dried at 150°C. A practically quantitative yield is recovered of 2-(p-carbethoxyaminobenzene-sulfonamido)-5-methoxy-pyrimidine, melting point 248°C to 250°C.

To hydrolyze the sulfa pyrimidine compound, the same is heated at 90°C with 200 cc of 2N potassium hydroxide solution for about one hour until complete solution is obtained. The resultant solution is then cooled to room temperature (25°C) and acidified with acetic acid to precipitate the hydrolyzed product, which is then recrystallized from dilute acetone admixed with animal charcoal.

References

Merck Index 8785 Kleeman & Engel p. 841 OCDS Vol. 1 pp. 125, 129 (1977) I.N. p. 902

Diedrich, P.; U.S. Patent 3,214,335; October 26, 1965; assigned to Schering A.G. (Germany)

SULFAMETHAZINE

Therapeutic Function: Antimicrobial

Chemical Name: 4-Amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide

Common Name: Sulfamezathine, sulfadimerazine, sulfamidine, sulfadimethylpyrimidine,

sulfadimidine (U.K. Name)

Structural Formula:

Chemical Abstracts Registry No.: 57-68-1

Trade Name	Manufacturer	Country	Year Introduced
Cremomethazine	MSD	U.S.	1947
Deladine	Delmaak	S. Africa	_
Intradine	Norbrook	U.K.	-
Rigesol	Ferrosan	Denmark	Agen
Rivodine	Rivopharm	Switz.	
S-Dimidine	Protea	Australia	_
Sulphix	Protina	W. Germany	_

Raw Materials

p-Aminobenzenesulfonamidoguanidine Sodium acetylacetonate

Manufacturing Process

A flask heated in an oil bath is filled with 600 ml water and 60 g (1 mol) glacial acetic acid (or an equivalent quantity of diluted acetic acid). While stirring 235 g (1.1 mols) anhydrous p-aminobenzenesulfonamidoguanidine (or an equivalent quantity of a nonanhydrous product) and 122 g (1 mol) sodium acetylacetonate 100% purity (or an equivalent quantity of product of a lower purity) are introduced into the flask while stirring.

The temperature of the reaction mixture is brought to 102°C to 103°C, the mixture is further stirred at this temperature during 24 hours. The pH value of the mixture, which should range between 5 and 6 is checked during the reaction.

On expiry of the reaction period heating is cut off, the mass being cooled or allowed to cool down to 60°C.

Filtering under suction is effected, the solids on the filter being washed with 100 ml water at 80°C.

After drying of the product on the filter 256 g of 2-p-aminobenzenesulfonamido-4,6-dimethylpyrimidine, melting point 196°C to 197°C, purity 99.5% are obtained. The output is 92% of the theory calculated with respect to the sodium acetylacetonate employed.

References

Merck Index 8786 I.N. p. 839 REM p. 1173

Sprague, J.M.; U.S. Patent 2,407,966; September 17, 1946; assigned to Sharp & Dohme, Inc. Garzia, A.; U.S. Patent 3,119,818; January 28, 1964; assigned to Istituto Chemioterapico Italiano SpA

SULFAMETHIZOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide

Common Name: Sulfamethylthiadiazole

Structural Formula:

Chemical Abstracts Registry No.: 144-82-1

Trade Name	Manufacturer	Country	Year Introduced
Thiosulfil	Ayerst	U.S.	1953
Sulfurine	Table Rock	U.S.	1963
Ultrasul	Webcon	U.S.	1963
Sulfasol	Hyrex-Key	U.S.	1963
Renasul	Century	U.S.	1966
Famet	Calmic	Australia	_
Harnway	Nichiiko	Japan	_
Rufol	Debat	France	

Trade Name	Manufacturer	Country	Year Introduced
Salimol	Maruishi	Japan	_
S-Methizole	Protea	Australia	
Starisil	Star	Finland	_
Sulfa Gram	Beach	U.S.	_
Sulfametin	Pharmacia	Sweden	_
Urobiotic	Roerig	U.S.	-
Urokinon	Chugai	Japan	-
Urokizol	Chugai	Japan	-
Urolex	Ohio Medical	U.S.	
Urosol	Kanto	Japan	
Urosul	Mohan	Japan	
Utrasul	Chicago Pharmacal	U.S.	

Acetaldehyde thiosemicarbazone p-Acetaminobenzolsulfonyl chloride Calcium ferricyanide

Manufacturing Process

To 10 grams acetaldehyde-thiosemicarbazone in 80 grams pyridine gradually 20 grams pacetaminobenzolsulfonylchloride is added. The reaction mixture is heated about 1 hour on a water bath and is then charged in 1 liter water, to which some acetic acid is added. The bottom sediment is sucked off and washed with water, after which it is crystallized by alcohol. 20 grams of the condensation product thus obtained is cleared in 100 cc water at about 30°C, after which 45 grams calcium ferricyanide dissolved in about 100 cc water is added. The reaction mixture is made slightly alkaline and held at a temperature of about 80°C for 2 to 3 hours. It is important that the reaction mixture during the whole period of 2 to 3 hours is steadily held alkaline.

After the said 2 to 3 hours the liquid is cooled and the bottom sediment, which has a greenish color, is filtered off. The liquid sucked off eventually is treated with active carbon, filtered and made slightly acid by means of acetic acid, at which 2-amino-benzolsulfon-amido-5-methyl-1,3,4-thiodiazol (melting point 204° to 206°C) is precipitated.

References

Merck Index 8787 Kleeman & Engel p. 839 PDR pp. 650, 1533 OCDS Vol. 1 p. 125 (1977) I.N. p. 901 REM p. 1174

Hübner, O.; U.S. Patent 2,447,702; August 24, 1948; assigned to H. Lundbeck & Co., Kemisk Pharmaceutisk Laboratorium A/S, Denmark

SULFAMETHOXAZOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(5-methyl-3-isoxazolyl)benzenesulfonamide

Common Name: Sulfisomezole

Structural Formula:

Chemical Abstracts Registry No.: 723-46-6

Trade Name	Manufacturer	Country	Year Introduced
Gantanol	Roche	U.S.	1961
Urobax	Shionogi	U.S.	1980
Azo Gantanol	Roche	U.S.	_
Bactrim	Roche	U.S.	_
Comoxol	Squibb	U.S.	-
Cotrim	Lemmon	U.S.	_
Gantaprim	Ausonia	Italy	
Metoxal	Farmos	Finland	-
Septra	Burroughs Wellcome	U.S.	_
Sinomin	Shionogi	Japan	_
Sulfatrim	Schein	U.S.	_
Urobak	Shionogi	Japan	_

Raw Materials

Ethyl 5-methylisoxazole-3-carbamate Sodium hydroxide Acetylsulfanil chloride

Manufacturing Process

Preparation of 3-Amino-5-Methylisoxazole: 1.7 grams of ethyl 5-methylisoxazole-3-carbamate was heated on a boiling water-bath with 5 cc of a 10% aqueous sodium hydroxide solution for 8 hours, then the reaction mixture was extracted several times with ether or benzene and the extract was cooled followed by the removal of the solvent and drying. The residue was solidified after a while and gave prismatic crystals, melting point 61° to 62°C, of 3-amino-5-methylisoxazole by recrystallization from benzene.

Preparation of 3-Acetylsulfanilamido-5-Methylisoxazole: 0.9 gram of 3-amino-5-methylisoxazole in 5 cc of pyridine was allowed to react with 2.0 grams of acetylsulfanil chloride accompanied by the generation of heat. After about one hour, water was added to the reaction mixture and the crystal precipitated out was recrystallized from alcohol to give 2.5 grams of 3-acetylsulfanilamido-5-methylisoxazole, melting point (decomposition) 220° to 221°C.

Preparation of 3-Sulfanilamido-5-Methylisoxazole: 2 grams of 3-acetylsulfanilamido-5-methylisoxazole was heated with 10 cc of an aqueous sodium hydroxide solution on a water-bath for one hour and after cooling the reactant was acidified by addition of acetic acid. The precipitate thus formed was recrystallized from dilute alcohol to give 15 grams of colorless prisms of 3-sulfanilamido-5-methylisoxazole, melting point 167°C.

References

Merck Index 8789 Kleeman & Engel p. 840 PDR pp. 673, 763, 830, 993, 1034, 1473, 1606, 1738 DOT 7 (5) 189 (1971) I.N. p. 901 REM p. 1174

Kano, H., Nishimura, H., Nakajima, K. and Ogata, K.; U.S. Patent 2,888,455; May 26, 1959; assigned to Shionogi & Co., Ltd., Japan

SULFAMETHOXYPYRIDAZINE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(6-methoxy-3-pyridazinyl)benzenesulfonamide

Common Name: -

Structural Formula:

$$H_2N$$
 \longrightarrow SO_2NH \longrightarrow OCH_3

Chemical Abstracts Registry No.: 80-35-3

Trade Name	Manufacturer	Country	Year Introduced
Kynex	Lederle	U.S.	1957
Midicel	Parke Davis	U.S.	1957
Aseptilex	Wassermann	Spain	_
Asey-Sulfa	Quimia	Spain	
B-Sulfamethoxy	Biokema	Switz.	_
Davosin	Parke Davis	W. Germany	-
Durasul	Estedi	Spain	_
Exazol	Andreu	Spain	_
Fercasulf	Arco	Switz.	_
Lederkyn	Lederle	U.K.	
Lentosulfa	1.S.F.	Italy	_
Longamid	A.L.	Norway	_
Longisul Jarabe	Landerlan	Spain	_
Metazina	Piam	Italy	_
Microcid	Borromeo	Italy	_
Novosulfin	Galenika	Yugoslavia	_
Oroxin	Otsuka	Japan	_
Paramid Supra	Kwizda	Austria	_
Pirasulfon	Neo	Canada	-
S.D.M.	Barlow Cote	Canada	_
Sulfabon	Biokema	Switz.	_
Sulamin	Pliva	Yugoslavia	
Sulfadazina	Guidi	Italy	
Sulfadepot	Almirall	Spain	
Sulfadin	C.I.F.	Italy	_
Sulfaintensa	Robert	Spain	
Sulfalex	De Angeli	Italy	-
Sulfamizina	Wells	Italy	_
Sulfamyd	Libra	Italy	
Sulfapyrazin	Bosnalijek	Yugoslavia	_
Sulfatar	Arnaldi	Italy	_
Sulfocidan	Cidan	Spain	_
Sulforetent	Cifa	Italy	~-
Sulfo-Rit	Aristochimica	italy	-
Sultirene	Specia	France	-
Unisulfa	Angelini	Italy	~~

Raw Materials

3-Sulfanilamido-6-chloropyridazine Sodium Methanol

Manufacturing Process

The following description is taken from U.S. Patent 2,712,012: 2.3 parts of clean sodium metal is dissolved in 50 parts of anhydrous methyl alcohol. 11.4 parts of 3-sulfanilamido-6-chloropyridazine is added and the mixture heated in a sealed tube 13 hours at 130° to 140°C. After the tube has cooled it is opened and the reaction mixture filtered, acidified with dilute acetic acid, then evaporated to dryness on the steam bath. The residue is dissolved in 80 parts of 5% sodium hydroxide, chilled and acidified with dilute acetic acid. The crude product is filtered and then recrystallized from water to give 3-sulfanilamido-6-methoxypyridazine of melting point 182° to 183°C.

References

Merck Index 8790 Kleeman & Engel p. 842 OCDS Vol. 1 pp. 124, 131 (1977) I.N. p. 902

Clark, J.H.; U.S. Patent 2,712,012; June 28, 1956; assigned to American Cyanamid Co. Murphy, D.M. and Shepherd, R.G.; U.S. Patent 2,833,761; May 6, 1958; assigned to American Cyanamid Co.

SULFAMOXOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(4,5-dimethyl-2-oxazolyl)benzenesulfonamide

Common Name: Sulfadimethyloxazole

Structural Formula:

Chemical Abstracts Registry No.: 729-99-7

Trade Name	Manufacturer	Country	Year Introduced
Sulfuno	Nordmark	W. Germany	1960
Justam il	Anphar-Rolland	France	1961
Justamil	Anphar-Rolland	Italy	1964
Naprin	Upjohn	U.S.	-
Oxasulfa	Trinum	Italy	_
Tardamide	Gruenenthal	W. Germany	_

Raw Materials

2-Amino-4,5-dimethyloxezole p-Acetaminobenzenesulfonyl chloride Hydrogen chloride

Manufacturing Process

11.2 g of 2-amino-4,5-dimethyloxazole (0.1 mol), 46.8 g of anhydrous p-acetaminobenzenesulfonyl chloride (0.2 mol) and 60 cc of methylene chloride are mixed and then treated while stirring and with exclusion of water with 12.0 g (0.2 mol) of anhydrous trimethylamine, dissolved in 60 cc of benzene. After adding the trimethylamine, the mixture is heated for 30 minutes to 40°C, left to stand for 12 hours and then the solvent is distilled off. The distillation residue is heated with 300 cc of water until the residual organic solvents are driven off. The residue is filtered and thoroughly washed with water. Yield of condensation product: 46.4 g. The mass is triturated with 80 cc of cold 2,5% caustic soda solution, filtered and thoroughly washed with water. The residue which is insoluble in caustic soda solution consists of bis-(p-acetaminobenzenesulfonyl)-2-amino-4,5-dimethyloxazole. It melts indefinitely between 201°C and 206°C with decomposition (browning). Yield: 42.3 g corresponding to 83.6%.

The 42.3 g of the bis-compound are heated under reflux in 210 cc of 96% ethanol containing 10% of hydrogen chloride, to the boiling point of the alcohol. After dissolution, the substance is boiled for 20 minutes under reflux. It is cooled, filtered and washed with alcohol. By concentrating the mother liquor and the washing liquid by evaporation, further amounts of substance are obtained.

The total amount of the hydrochloride obtained is stirred with 50 cc of water and the mixture is mixed with 15 cc of 45% caustic soda solution. After complete dissolution, the mixture is treated with decolorizing carbon and the filtrate is brought to a pH value of 5.5 by means of hydrochloric acid. 17.6 g of p-aminobenzenesulfonyl-2-amino-4,5-dimethyloxazole are obtained as colorless crystals with a melting point of 193°C to 194°C (corrected), corresponding to a yield of 65.9% calculated on the basis of the 2-amino-4,5-dimethyloxazole used.

References

Merck Index 8797 Kleeman & Engel p. 843 OCDS Vol. 1 p. 124 (1977) DOT 12 (9) 377 (1976) I.N. p. 903

Loop, W., Luhrs, E. and Hauschildt, P.; U.S. Patent 2,809,966; October 15, 1957; assigned to Nordmark-Werke G.m.b.H. (Germany)

SULFAPHENAZOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(1-phenyl-1H-pyrazol-5-yl)benzenesulfonamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 526-08-9

Trade Name	Manufacturer	Country	Year Introduced
Sulfabid	Purdue Frederick	U.S.	1962
Fenazolo	S.A.M.	Italy	
Merian	Dainippon	Japan	_
Microsulf	Novafarnova	Italy	_
Orisul	Ciba	W. Germany	***

3-Amino-2-phenylpyrazole p-Carbethoxyaminobenzenesulfonyl chloride Sodium hydroxide

Manufacturing Process

Into a solution of 15.9 grams of 3-amino-2-phenyl-pyrazole in 60 cc of anhydrous pyridine, 29 grams of p-carbethoxyamino-benzene sulfonyl chloride are introduced within about 25 minutes. When the reaction subsides, heating is carried out for a further hour to 90° to 95°C internal temperature. The reaction solution is then poured into 300 cc of 2 N hydro-chloric acid. The precipitate is filtered with suction and recrystallized from dilute alco-hol. The 3-(p-carbethoxyaminobenzene sulfonamido)-2-phenyl-pyrazole is obtained thus in white crystals of MP 175° to 176°C.

These are taken up in 250 cc of 2 N caustic soda solution and heated for 1 hour on a boiling water bath. With hydrochloric acid, the pH is then adjusted to 6 to 7 and the precipitate is filtered with suction and crystallized from 75% ethyl alcohol. The resulting 3-(p-aminobenzene sulfonamido)-2-phenyl-pyrazole crystallizes in white crystals and has a melting point of 177° to 178°C.

References

Merck Index 8810 Kleeman & Engel p. 844 OCDS Vol. 1 p. 124 (1977) I.N. p. 904

Druey, J. and Schmidt, P.; U.S. Patent 2,858,309; October 28, 1958; assigned to Ciba Pharmaceutical Products Inc.

SULFASALAZINE

Therapeutic Function: Antibacterial

Chemical Name: 2-Hydroxy-5-[[4-[(2-pyridinylamino)sulfonyl] phenyl] azo] -benzoic acid

Common Name: Salicylazosulfapyridine, salazosulfapyridine

Structural Formula:

Chemical Abstracts Registry No.: 599-79-1

Trade Name	Manufacturer	Country	Year Introduced
Azulfidine	Pharmacia	U.S.	1952
Salazopyrine	Pharmacia	France	1958
Salazopyrin	Pharmacia	U.K.	1968
Salazopyrin	Green Cross	Japan	1969
S.A.S500	Rowell	U.S.	1972
Sulcolon	Lederle	U.S.	1974
Rorasul	Rorer	U.S.	1975
Colo-Pleon	Henning	W, Germany	-
Salisulf	Giuliani	Italy	

α-(p-Aminobenzenesulfonamido)pyridine Sodium nitrite Hydrogen chloride Salicylic acid

Manufacturing Process

50 g of α-(p-aminobenzenesulfonylamido)pyridine are dissolved in a mixture of 50 cc of concentrated hydrochloric acid and 25 cc of water and diazotized with a solution of 13.8 g sodium nitrite. In the meantime 28 g of salicylic acid, 24 g of potassium hydroxide and 12 g of sodium carbonate are dissolved in water. The diazo suspension is added in portions to the alkaline solution of salicylic acid and the alkalinity maintained at a sufficiently high level during the whole reaction by means of addition of further quantities of potassium hydroxide solution. After 2 days the reaction mixture is heated for ½ hour at 50°C. After cooling the azo compound formed is precipitated by means of hydrochloric acid and filtered off.

References

Merck Index 8818 Kleeman & Engel p. 812 PDR pp. 830, 993, 1426, 1606 OCDS Vol. 2 p. 114 (1980) 1.N. p. 860 REM p. 1175

Askelof, E.E.A., Svartz, N. and Willstaedt, H.C.; U.S. Patent 2,396,145; March 5, 1946; assigned to A.B. Pharmacia (Sweden)

SULFINPYRAZONE

Therapeutic Function: Antiarthritic (uricosuric)

Chemical Name: 1,2-diphenyl-4-[2-(phenylsulfinyl)ethyl] -3,5-pyrazolidinedione

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 57-96-5

Trade Name	Manufacturer	Country	Year Introduced
Anturane	Geigy	U.S.	1959
Anturan	Ciga Geigy	France	1960
Antazone	I.C.N.	Canada	_
Enturen	Geigy	Italy	_
Novopyrazone	Novopharm	Canada	_
Pyrocard	Trima	Israel	_
Zvnol	Horner	Canada	

Hydrazobenzene $(\beta$ -Phenylmercaptoethyl)malonic acid diethyl ester Sodium Ethanol

Manufacturing Process

296 parts of $(\beta$ -phenylmercapto-ethyl)-malonic acid diethyl ester and then 203 parts of hydrazobenzene are added while stirring to a warm sodium ethylate solution obtained from 23 parts of sodium and 400 parts by volume of absolute alcohol. About half the alcohol is then distilled off, after which 200 parts by volume of absolute xylene are gradually added without removing the inclined condenser. The temperature of the oil bath is kept at about 130°C for 12 hours while continuously stirring so that the alcohol still present and that which is liberated distills off but the xylene remains as solvent.

After cooling, 400 parts by volume of water are stirred in. The aqueous layer is separated from the xylene, shaken out twice with 40 parts by volume of chloroform and then made acid to Congo red paper with concentrated hydrochloric acid. The oil which separates is taken up in ethyl acetate and the solution obtained is washed with water. After drying over sodium sulfate the solvent is distilled off under reduced pressure and the residue is recrystallized from alcohol. 1,2-diphenyl-3,5-dioxo-4-(β-phenylmercapto-ethyl)-pyrazolidine melts at 106° to 108°C.

References

Merck Index 8828 Kleeman & Engel p. 845 PDR pp. 788, 830, 1606, 1999 OCDS Vol. 1 p. 238 (1977) DOT 15 (2) 61 (1979) I.N. p. 907

REM p. 1115

Häfliger, F.; U.S. Patent 2,700,671; January 25, 1955; assigned to J.R. Geigy AG, Switzerland

SULFISOMIDINE

Therapeutic Function: Antibacterial

Chemical Name: 4-Amino-N-(2,6-dimethyl-4-pyrimidinyl)benzenesulfonamide

Common Name: Sulfadimetine, sulfaisodimidine, sulfasomidine

Structural Formula:

Chemical Abstracts Registry No.: 515-64-0

Trade Name	Manufacturer	Country	Year Introduced
Elkosin	Ciba	U.S.	1951
Elosine	Ciba Geigy	France	1953
Aristamid	Nordmark	W. Germany	_
Domion	Dainippon	Japan	_
Entamidine	Nippon Shoji	Japan	_
Isosulf	A.L.	Norway	_
Sulfamethin	Chemiek, Bitterfeld	E. Germany	

Raw Materials

6-Amino-2,4-dimethylpyrimidine Iron

p-Nitrobenzenesulfonyl chloride Hydrogen chloride

Manufacturing Process

This starting material can be prepared as follows. 123 parts of finely powdered 6-amino-2,4-dimethylpyrimidine are suspended in 250 parts of dry pyridine and 222 parts of p-nitrobenzenesulfonyl chloride added at 50°C to 55°C. The whole is then warmed for 2 hours to 55°C. Water is added to the crystalline aggregate obtained, the precipitated bis-N-(p-nitrobenzenesulfonyl)-6-amino-2,4-dimethylpyrimidine filtered off by suction and washed with water. It is purified by recrystallizing from methyl ethyl ketone. On slowly heating it decomposes; on rapidly heating it melts at about 210°C to 215°C with decomposition.

49.3 parts of bis-N-(p-nitrobenzenesulfonyl)-6-amino-2,4-dimethylpyrimidine are heated to boiling for one hour with 12.3 parts of 6-amino-2,4-dimethylpyrimidine in 50 parts of dry pyridine. After cooling, the 6-(p-nitrobenzenesulfonamido)-2,4-dimethylpyrimidine formed is precipitated with water and filtered off by suction. It is purified by dissolving in dilute caustic soda and precipitating with acid. On recrystallization from dilute alcohol it melts (with decomposition) at 188°C to 189°C.

On reaction, for example, with iron and hydrochloric acid, 6-(p-aminobenzenesulfonamido)-2,4-dimethylpyrimidine, melting point 236°C is obtained.

References

Merck Index 8831 Kleeman & Engel p. 846 I.N. p. 907

Hartmann, M., von Meyenburg, H. and Druey, J.; U.S. Patent 2,429,184; October 14, 1947; assigned to Ciba Pharmaceutical Products, Inc.

SULFISOXAZOLE

Therapeutic Function: Antibacterial

Chemical Name: 4-amino-N-(3,4-dimethyl-5-isoxazolyl)benzenesulfonamide

Common Name: Sulfafurazole

Structural Formula:

Chemical Abstracts Registry No.: 127-69-5

Trade Name	Manufacturer	Country	Year Introduced
Gantrisin	Roche	U.S.	1949
Unisulf	Lemmon	U.S.	1964
Entusul	U.S.V.	U.S.	1964
Sosol	Mc Kesson	U.S.	1970
SK-Soxazole	SKF	U.S.	1971
Soxomide	Upjohn	U.S.	1972
Sulfalar	Parke Davis	U.S.	1973
Soxo	Su tcliff/Case	U.S.	1974
Koro-Sulf	Holland Rantos	U.S.	1978
Amidoxal	Polfa	Poland	-
Azo-Gantrisin	Roche	U.S.	-
Dow-Sulfisoxazole	Dow	U.S.	
Gansol	Abdi Ibrahim	Turkey	
Isoxamin	Fuso	Japan	
Novosoxazole	Novopharm	Canada	_
Pancid	Lister	Italy	-
Pediazole	Ross	U.S.	-
Sulfagan	Ohio Medical	U.S.	_
Sulfagen	Verdun	Canada	
Sulfapolar	Farmos	Finland	-
Sulfazin	Shionogi	Japan	-
Sulfazole	Protea	Australia	
Sulfizole	I.C.N.	Canada	***
Sulfoxol	Neopharma	Finland	_
Sulsoxin	Reid-Provident	U.S.	_
Thiasin	Yamanouchi	Japan	-
TL-Azole	Zenith	U.S.	
Urazole	Propan-Lipworth	S. Africa	
Urogan	Adams	Australia	
U.S67	Saunders	Canada	_
V-Sul	Vangard	U.S.	•

Raw Materials

3,4-Dimethyl-5-aminoisoxazole p-Acetaminobenzene sulfonic acid chloride Hydrogen chloride

Manufacturing Process

112 parts of 3,4-dimethyl-5-amino-isoxazole were dissolved in a mixture of 100 volume parts of pyridine and 200 volume parts of acetone. The mixture is cooled with cold water and 240 parts p-acetamino-benzene sulfonic acid chloride are added in small portions under stirring at temperatures of below 30°C. The mixture is left standing overnight at 20° to 30°C and then the 5-acetamino-benzene-sulfonylamino-3,4-dimethyl-isoxazole is precipitated by the addition of water. Recrystallized from acetic acid or alcohol it forms small prisms of the melting point 210°C.

100 parts of the 5-acetamino-benzene-sulfonyl-amino-3,4-dimethyl-isoxazole are boiled under reflux with 500 volume parts 15 to 20% aqueous hydrochloric acid for 30 to 45 minutes until all is dissolved. 500 parts crystallized sodium acetate are added and the liquid left cooling for crystallization. The sulfanilamido-3,4-dimethyl-isoxazole is sucked off, washed with water and dried. In the pure state it forms white prisms with the melting point of 193°C.

References

Merck Index 8832 Kleeman & Engel p. 837 PDR pp. 1473, 1487, 1558, 1606, 1999 OCDS Vol. 1 p. 124 (1977) I.N. p. 900 REM p. 1175

Wuest, H.M. and Hoffer, M.; U.S. Patent 2,430,094; November 4, 1947; assigned to Hoffmann-La Roche, Inc.

SULFOXONE SODIUM

Therapeutic Function: Antibacterial (leprostatic)

Chemical Name: Disodium[sulfonylbis(p-phenylenimino)] dimethanesulfinate

Common Name: Aldesulfone sodium

Structural Formula:

$$\mathsf{Nao}_2\mathsf{SCH}_2\mathsf{NH} - \underbrace{\hspace{1cm}} \mathsf{SO}_2 - \underbrace{\hspace{1cm}} \mathsf{NHCH}_2\mathsf{SO}_2\mathsf{Na}$$

Chemical Abstracts Registry No.: 144-75-2

Trade Name	Manufacturer	Country	Year Introduced
Diasone Sodium	Abbott	U.S.	1947

Raw Materials

Diaminodiphenyl sulfone Sodium formaldehyde sulfoxylate

Manufacturing Process

About 20 grams of diamino diphenyl sulfone is dissolved in about 500 cc of ethyl alcohol (3A made up of 5 parts methyl alcohol and 100 parts of ethyl alcohol) by placing the ingredients in a flask provided with a reflux condenser and warming over a water bath. About 24 grams of pure grade, very finely powdered (40 to 60 mesh) sodium formaldehyde sulfoxylate is then rapidly added to the alcohol solution of diamino diphenyl sulfone and the mixture refluxed in the usual manner. It was found that the mixture should be refluxed for a total of 5 hours and that a precipitate starts to form near the 3 hour period. The reaction mixture is then cooled to 15°C and kept at this temperature for about 1 hour. The precipitate formed in the filtrate is filtered off rapidly and drained as much as possible to remove mother liquor and then washed with small amounts of cold alcohol. The solid product is immediately placed in a desiccator and dried over sulfuric acid for about 20 hours.

Sulindac 1425

References

Merck Index 8848 Kleeman & Engel p. 847

OCDS Vol. 1 p. 140 (1977)

I.N. p. 51 REM p. 1217

Rosenthal, S.M. and Bauer, H.; U.S. Patent 2,234,981; March 18, 1941; assigned to the U.S.

Secretary of the Treasury

Raiziss, G.W., Clemence, L.R.W. and Freifelder, M.; U.S. Patent 2,256,575; September 23, 1941; assigned to Abbott Laboratories

SULINDAC

Therapeutic Function: Antiinflammatory

Chemical Name: (Z)-5-fluoro-2-methyl-1[[4-(methylsulfinyl)phenyl] methylene]-1H-indene-

3-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 38194-50-2

Trade Name	Manufacturer	Country	Year Introduced
Imbaral	Sharp & Dohme	W. Germany	1976
Clinoril	MSD	italy	1976
Arthrocine	Chibret	France	1977
Clinorii	MSD	U.K.	1977
Clinoril	MSD	U.S.	1978
Clinoril	Banyu	Japan	1982
Clinoril	Kyorin	Japan	1982
Aflodac	Benvegna	Italy	1982
Algocetil	Francia	Italy	***
Citireuma	C.T.	Italy	_
Lyndak	Tiber	Italy	_
Mobilin	Teva	Israel	-
Reumofil	Ausonia	Italy	-
Sudac	Errekappa	Italy	_
Sulene	Scalari	Italy	_
Sulic	Crosara	Italy	_
Sulinol	Farnex	Italy	_

Raw Materials

Hydrogen p-Methylthiobenzaldehyde Sodium periodate

Polyphosphoric acid Cvanacetic acid

Manufacturing Process

The following process sequence is described in U.S. Patent 3,654,349:

p-Fluoro-α-Methylcinnamic Acid: 200 grams (1.61 mols) p-fluorobenzaldehyde, 3.5 grams (2.42 mols) propionic anhydride and 155 grams (1.61 mols) sodium propionate are mixed in a 1 liter three-necked flask which had been flushed with nitrogen. The flask is heated gradually in an oil-bath to 140°C. After 20 hours the flask is cooled to 100°C and the contents are poured into 8 liters of water. The precipitate is dissolved by adding 302 grams potassium hydroxide in 2 liters of water. The aqueous solution is extracted with ether, and the ether extracts washed with potassium hydroxide solution. The combined aqueous layers are filtered, acidified with concentrated HCI, filtered and the collected solid washed with water, thereby producing p-fluoro- α -methylcinnamic acid which is used as obtained.

p-Fluoro-α-Methylhydrocinnamic Acid: To 177.9 grams (0.987 mol) p-fluoro-α-methylcinnamic acid in 3.6 liters ethanol is added 11.0 grams of 5% Pd/C and the mixture reduced at room temperature under a hydrogen pressure of 40 psi. Uptake is 31/32 pounds (97% of theoretical). After filtering the catalyst, the filtrate is concentrated in vacuo to give the product p-fluoro-α-methylhydrocinnamic acid used without weighing in next step.

6-Fluoro-2-Methylindanone: To 932 grams polyphosphoric acid at 70°C on the steam bath is added 93.2 grams (0.5 mol) p-fluoro-α-methylhydrocinnamic acid slowly with stirring. This temperature is gradually raised to 95°C and the mixture kept at this temperature for 1 hour. The mixture is allowed to cool and added to 2 liters of water. The aqueous layer is extracted with ether, the ether solution washed twice with saturated sodium chloride solution, 5% Na₂CO₃ solution, water, and then dried. The ether filtrate is concentrated with 200 grams silica-gel, and added to a five pound silica-gel column packed with 5% ether-petroleum ether. The column is eluted with 5 to 10% ether-petroleum ether and followed by TLC to give 6-fluoro-2-methylindanone.

5-Fluoro-2-Methylindene-3-Acetic Acid: A mixture of 18.4 grams (0.112 mol) of 6-fluoro-2-methylindanone, 10.5 grams (0.123 mol) cyanacetic acid, 6.6 grams acetic acid and 1.7 grams ammonium acetate in 15,5 ml dry toluene is refluxed with stirring for 21 hours, as the liberated water is collected in a Dean Stark trap. The toluene is concentrated and the residue dissolved in 60 ml of hot ethanol and 14 ml of 2.2 N aqueous potassium hydroxide solution. 22 grams of 85% KOH in 150 ml of water is added and the mixture refluxed for 13 hours under N2. The ethanol is removed under vacuum, 500 ml water added, the aqueous solution washed well with ether and then boiled with charcoal. The aqueous filtrate is acidified to pH 2 with 50% hydrochloric acid, cooled and the precipitate collected In this way dried 5-fluoro-2-methyl-indenyl-3-acetic acid (MP 164° to 166°C) is obtained.

5-Fluoro-2-Methyl-1-(p-Methylthiobenzylidene)-3-Indenylacetic Acid: 15 grams (0.072 mol) 5-fluoro-2-methyl-3-indenylacetic acid, 14.0 grams (0.091 mol) p-methylthiobenzaldehyde and 13.0 grams (0.24 mol) sodium methoxide are heated in 200 ml methanol at 60°C under nitrogen with stirring for 6 hours. After cooling the reaction mixture is poured into 750 milliliters of ice-water, acidified with 2.5 N hydrochloric acid and the collected solid triturated with a little ether to produce 5-fluoro-2-methyl-1-(p-methylthiobenzylidene)-3indenylacetic acid (MP 187° to 188.2°C).

5-Fluoro-2-Methyl-1-(p-Methylsulfinylbenzylidene)-3-Indenylacetic Acid: To a solution of 3.4 grams (0.01 mol) 5-fluoro-2-methyl-1-(p-methylthiobenzylidene)-3-indenylacetic acid in a 250 ml mixture of methanol and 100 ml acetone is added a solution of 3.8 grams (0.018 mol) of sodium periodate in 50 ml water with stirring.

450 ml water is added after 18 hours and the organic solvents removed under vacuum below

30°C. The precipitated product is filtered, dried and recrystallized from ethyl acetate to give 5-fluoro-2-methyl-1-(p-methylsulfinylbenzylidene)-3-indenylacetic acid. Upon repeated recrystallization from ethylacetate there is obtained cis-5-fluoro-2-methyl-1-(p-methylsulfinylbenzylidene)-3-indenylacetic acid (MP 184° to 186°C).

References

Merck Index 8863 Kleeman & Engel p. 847

PDR p. 1147

OCDS Vol. 2 p. 210 (1980)

DOT 12 (2) 496 (1976)

I.N. p. 909

REM p. 1120

Hinkley, D.F. and Conn, J.B.; U.S. Patent 3,647,858; March 7, 1972; assigned to Merck & Co., Inc.

Shen, T.-Y., Greenwald, R.B., Jones, H., Linn, B.O. and Witzel, B.E.; U.S. Patent 3,654,349; April 4, 1972; assigned to Merck & Co., Inc.

SULISOBENZONE

Therapeutic Function: Ultraviolet screen

Chemical Name: 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 4065-45-6

Trade Name	Manufacturer	Country	Year Introduced
Uvai	Dome	U.S.	1965
Cyasorb	Cyanamid	U.S.	_
Spectra-Sorb	Cyanamid	U.S.	_
Sungard	Miles	U.S.	_
Uvinul	G.A.F.	U.S.	

Raw Materials

2-Hydroxy-4-methoxybenzophenone Chlorosulfonic acid

Manufacturing Process

663 g of dichloroethane and 74.6 g 2-hydroxy-4-methoxybenzophenone were charged into a 3-neck flask equipped with stirrer, thermometer, reflux condenser and dropping funnel and a heating mantle. The solution was heated to the reflux temperature (85°C to 86°C) and was dehydrated by distilling off 66.5 g 1,2-dichloroethane. While maintaining at reflux, 30 g chlorosulfonic acid was added slowly over a period of about two hours. The rate of addition was

regulated by the speed of evolution of the HCI. After all the chlorosulfonic acid was added, the charge was still maintained at reflux for an additional 15 minutes to remove traces of HCI. It was then cooled to 5°C and filtered. The filter cake was washed with 500 g cold 1,2-dichloroethane and dried. 98 g of product were obtained.

References

Merck Index 8865 I.N. p. 909

Cofrancesco, A.J.; British Patent 1,136,525; December 11, 1968; assigned to General Aniline & Film Corp.

SULOCTIDIL

Therapeutic Function: Spasmolytic, vasodilator

Chemical Name: 1-(4-Isopropylthiophenyl)-2-n-octylaminopropanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 54063-56-8

Trade Name	Manufacturer	Country	Year Introduced
Sulocton	Cooper	Switz.	1978
Flavisco	Searle	France	1980
Locton	Lepetit	Italy	1980
Fluversin	Searle	W. Germany	1980
Bemperil	Sidus	Argentina	-
Cerebro	Sidus	italy	_
Circleton	I.B.I.	italy	-
Dulasi	Durron	Italy	-
Duloctil	Searle	U.K.	
Euvasal	Selvi	Italy	_
lbisul	1.B.I.	Italy	
Locton	Lepetit	Italy	
Polivasal	Coli	Italy	-
Su dil	Errekappa	Italy	_
Sulc	Tosi	Italy	-
Sulodene	Alfa Farm.	Italy	_
Suloktil	Yurtoglu	Turkey	_
Sutidil	Krka	Yugoslavia	_
Tamid	Serpero	Italy	_

Raw Materials

α-Bromo-4-isopropylthiopropiophenone n-Octylamine Sodium borohydride

Manufacturing Process

(a) To 28.7 g of α -bromo-4-isopropylthiopropiophenone (0.1 mol) in 100 ml of isopropanol there are rapidly added 14.2 g of n-octylamine while stirring, and then the mixture is brought to 80°C for 1 hour. The solvent is evaporated under vacuum, the residue is diluted with 1 liter of ether and is left to stand overnight in the refrigerator. The precipitate obtained is filtered and dried. There are thus obtained 25 g of α -n-octylamino-4-isopropylthiopropiophenone hydrobromide. Yield: 60%; melting point: 162°C to 164°C.

(b) 41.6 g of the preceding product (0.1 mol) in 200 ml of methanol are cooled in an ice bath to 0°C. There is added drop by drop while stirring a solution of 4.1 g of NaB H_4 in 50 ml of water and 2 ml of 5% NaOH. Next, the mixture is stirred for 2 hours at room temperature. The methanol is evaporated under vacuum, diluted with 200 ml of water and extracted with methylene chloride or ether. The organic phase is dried on MgSO₄ and the solvent is evaporated under vacuum. The oily residue obtained solidifies rapidly and is recrystallized in pentane. 33.2 g are thus obtained. Yield: 90%; melting point: 62°C to 63°C.

References

Merck Index 8870 Kleeman & Engel p. 849 OCDS Vol. 3 p. 26 (1984) DOT 13 (3) 107 (1977) I.N. p. 910

Lambelin, G.E., Gillet, C.L. and Roba, J.L.; U.S. Patent 4,228,187; October 14, 1980; assigned to Continental Pharma

SULPIRIDE

Therapeutic Function: Tranquilizer; digestive aid

Chemical Name: 5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenz-

amide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15676-16-1

Trade Name	Manufacturer	Country	Year Introduced
Dogmatil	Delagrange	France	1969
Dogmatil	Schurholz	W. Germany	1972
Dogmatil	Delagrange	Italy	1972
Dogmatil	Delagrange	Switz.	1972
Dogmatil	Fujisawa	Japan	1973
Dogmatil	Squibb	U.K.	1983
Abilit	Sumitomo	Japan	_
Betamac	Sawai	Japan	_

Trade Name	Manufacturer	Country	Year Introduced
Chamionil	Vita	Italy	_
Coolspan	Hishiyama	Japan	
Digton	Areu	Spain	
Dobren	Ravizza	Italy	
Eglonyl	Afkaloid	Yugoslavia	
Equilid	Lepetit	Italy	_
Eusulpid	C.T.	Italy	_
Guastil	Uriach	Spain	_
Isnamide	Isardi	Italy	
Kapiride	Карра	Spain	_
Lavodina	Turro	Spain	-
Lusedan	Bryan	Spain	_
Meresa	Dolorgiet	W. Germany	
Miradol	Mitsui	Japan	
Misulvan	Bernabo	Argentina	-
Modal	Rafa	Israel	-
Neogama	Hormosan	W. Germany	_
Neuromyfar	Emyfar	Spain	
Normum	Serpero	Italy	_
Omperan	Taiho	Japan	_
Paratil	Medica	Finland	
Psicosen	Centrum	Spain	~
Pyrikappl	Isei	Japan	_
Quiridil	Zoja	Italy	_
Sato	Scharper	Italy	. -
Seeglu	Teikoku	Japan	-
Sicofrenol	Basileos	Spain	_
Sulpiril	Leiras	Finland	
Sulpisidan	Llano	Spain	-
Suprium	Orion	Finland	-
Sursumid	Sarm	Italy	-
Tepavil	Prodes	Spain	_
Tonofit	Europa	Spain	-
Trilan	Esseti	Italy	
Ulpir	Lesvi	Spain	_
Vipral	Roemmers	Argentina	

- 1-Ethyl-2-aminomethylpyrrolidine
- 2-Methoxy-5-sulfamylbenzoic acid

Manufacturing Process

1-Ethyl-2-aminomethylpyrrolidine is reacted with 2-methoxy-5-sulfamoylbenzoic acid to give sulpiride.

References

Merck Index 8875 Kleeman & Engel p. 849 OCDS Vol. 2 p. 94 (1980) DOT 9 (6) 244 (1973) I.N. p. 911

Miller, C.S., Engelhardt, E.L. and Thominet, M.L.; U.S. Patent 3,342,826; Sept. 19, 1967; assigned to Societe d'Etudes Scientifiques et Industrielles de l'Ile-de-France, France

SULPROSTONE

Therapeutic Function: Fertility control

Chemical Name: N-Methanesulfonyl-9-oxo-11α,15α-dihydroxy-5-cis-13-trans-16-phenoxy-

ωtetranorprostadienamide

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 60325-46-4

Trade Name	Manufacturer	Country	Year Introduced
Nalador	Schering	W. Germany	1981
Nalador	Schering	Switz.	1983

Raw Materials

(4-Carbohydroxy-n-butyl)triphenylphosphonium bromide Sodium methylsulfinylmethide

 $2-[5\alpha-Hydroxy-3\alpha(tetrahydropyran-2-yloxy)-2\beta-(3\alpha-tetrahydropyran-2-yloxy-4$ phenoxy-trans-1-buten-1-yl)cyclopent- 1α -yl] -acetaldehyde α -hemiacetal

Chromic anhydride

Methanesulfonyl isocyanate

Acetic acid

Manufacturing Process

9α-Hydroxy-11α,15α-bis-(tetrahydropyran-2-yloxy)-16-phenoxy-cis-5-trans-13-ω-tetranorprostadienoic acid: To a solution of 1.6 g (3.6 mmols) (4-carbohydroxy-n-butyl)triphenylphosphonium bromide in a dry nitrogen atmosphere in 6.0 ml dry dimethyl sulfoxide was added 3.24 ml (6.5 mmols) of a 2.0 M solution of sodium methylsulfinylmethide in dimethyl sulfoxide. To this red ylide solution was added dropwise a solution of 613 mg (1.29 mmols) 2- $[5\alpha-hydroxy-3\alpha-(tetrahydropyran-2-yloxy)-2\beta-(3\alpha-tetrahydropyran-2-yloxy-4-phenoxy$ trans-1-buten-1-yl)cyclopent-1 α -yl] acetaldehyde, γ -hemiacetal in 5.0 ml dry dimethyl sulfoxide over a period of 20 minutes.

After an additional 2 hours stirring at room temperature, the reaction mixture was poured onto ice water. The basic aqueous solution was washed twice with ethyl acetate (20 ml) and acidified to pH 3 with 10% aqueous hydrochloric acid.

The acidic solution was extracted with ethyl acetate (3 x 20 ml) and the combined organic extracts washed once with water (10 ml), dried (MgSO₄) and evaporated to a solid residue. This solid residue was triturated with ethyl acetate and the filtrate concentrated. Yield: 754 mg of 9α -hydroxy- 11α , 15α -bis-(tetrahydropyran-2-yloxy)-16-phenoxy-cis-5-trans-13- ω tetranorprostadienoic acid was collected.

9-Oxo-11α,15α-bis-(tetrahydropyran-2-yloxy)-16-phenoxy-cis-5-trans-13-ω-tetranorprostadienoic acid: To a solution cooled to -10° C under nitrogen of 754 mg (1.3 mmols) 9α -hydroxy-11 α ,15 α -bis-(tetrahydropyran-2-yloxy)-16-phenoxy-cis-5-trans-13- ω -tetrahorprostadienoic acid in 13 ml reagent grade acetone was added dropwise to 0,56 ml (1,41 mmols) of Jones' reagent (chromic anhydride). After 20 minutes at -10°C, 0,260 ml 2-propanol was

added and the reaction mixture was allowed to stir an additional 5 minutes at which time it was combined with 75 ml ethyl acetate, washed with water (3 x 10 ml), dried (MgSO₄) and concentrated to give 752 mg of 9-oxo-11α,15α-bis-(tetrahydropyran-2-yloxy)-16-phenoxycis-5-trans-13-ω-tetranorprostadienoic acid, which was chromatographed on silica gel using ethyl acetate as eluent to afford 505 mg of pure intermediate.

N-Methanesulfonyl-9-oxo-11α,15α-dihydroxy-5-cis-13-trans-16-phenoxy-ω-tetranorprostadienamide: To 1,0 mmols of 9-oxo-11\alpha,15\alpha-bis-(tetrahydropyran-2-yloxy)-16-phenoxy-cis-5-trans-13-ω-tetranorprostadienoic acid in 40 ml THF is added 2 ml triethylamine. After 15 minutes of stirring at room temperature 10.0 ml of 0.1M methanesulfonylisocyanate in THF is added. After a further 1 hour of stirring, the reaction mixture is neutralized with acetic acid and the solvent removed by evaporation (in vacuo). The resultant residue is taken up in methylene chlorine and washed successively with water and sodium bicarbonate to yield, after drying and solvent evaporation, N-methanesulfonyl-9-oxo-11\alpha,15\alpha-bis-\tetrahydropyran-2-yloxy\rightarrow-16-phenoxy-cis-5-trans-13-ω-tetranorprostadienamide. This intermediate is then hydrolyzed overnight with acetic acid/water and purified by column chromatography to give the desired N-methanesulfonyl-9-oxo-11α,15α-dihydroxy-5-cis-13-trans-16-phenoxy-ω-tetranorprostadienamide.

References

Merck Index 8877 DFU 3 (1) 59 (1978) OCDS Vol. 3 p. 9 (1984) DOT 18 (7) 331 (1982) I.N. p. 911

Bindra, J.S. and Johnson, M.R.; U.S. Patents 4,024,179; May 17, 1977; and 4,244,887; January 13, 1981; both assigned to Pfizer, Inc.

SULTOPRIDE HYDROCHLORIDE

Therapeutic Function: Neuroleptic

Chemical Name: N-(1-Ethyl-2-pyrrolidylmethyl)-2-methoxy-5-ethylsulfonylbenzamide

hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53583-79-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Barnetil	Delagrange	France	1976
Barnotil	Vita	Italy	1983
Topral	Alkaloid	Yugoslavia	

N-Ethyl-\alpha-aminomethylpyrrolidine Phosphorus trichloride 2-Methoxy-5-ethylsulfonylbenzoic acid

Manufacturing Process

A solution of 17.22 g of N-ethyl- α -aminomethylpyrrolidine in 360 ml of pyridine is placed in a 1 ℓ balloon flask. A solution of 3.51 g of phosphorus trichloride in 40 ml of pyridine is added at ambient temperature. After the mixture has been stirred for 1 hour, 10 g of 2-methoxy-5-ethylsulfonylbenzoic acid is introduced. The mixture is heated under reflux for 41/2 hours. After cooling, the solvent is evaporated under vacuum and the residue is dissolved in 200 ml of 20% sodium hydroxide. The solution is extracted with 200 ml of chloroform.

The organic solution is dried and filtered and the solvent is evaporated under vacuum; the residue is dissolved in 150 ml of ethanol and the solution is acidified with hydrochloric acid. The hydrochloride is dried without heating and recrystallized from 100 mi of absolute ethanol. 7.2 g of N-(1-ethyl-2-pyrrolidyl-methyl-2-methoxy-5-ethylsulfonylbenzamide hydrochloride is produced. Melting point: 190°C to 193°C.

References

Merck Index 8879 DFU 1 (2) 83 (1976) Kleeman & Engel p. 851 DOT 13 (4) 154 (1977) I.N. p. 911

Societe D'Etudes Scientifiques et Industrielles de L'Ile-de-France; British Patent 1,394,559; May 21, 1975

SULTOSILIC ACID PIPERAZINE SALT

Therapeutic Function: Hypolipemic

Chemical Name: 2-Hydroxy-5-[[(4-methylphenyl)sulfonyl]oxy] benzenesulfonic acid,

piperazine salt

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 57775-27-6; 57775-26-5 (Free acid)

Trade Name	Manufacturer	Country	Year Introduced
Mimedran	Esteve	S pain	1982

Raw Materials

2.5-Dihydroxybenzenesulfonic acid Tosyl chloride Pyridine Piperazine

Manufacturing Process

The monotosylation of 2,5-dihydroxybenzenesulfonic acid is carried out in a pyridine medium by treating it with tosyl chloride, thus preferably isolating the 2-hydroxy-5-tosyloxybenzenesulfonic acid, pyridine salt. This product subjected to reflux with an alcoholic solution of piperazine yields 2-hydroxy-5-tosyloxybenzenesulfonic acid, piperazine salt.

References

DFU 6 (11) 688 (1981) Esteve-Subirana, A.; U.S. Patent 3,954,767; May 4, 1976

SULTROPONIUM

Therapeutic Function: Antispasmodic

Chemical Name: Endo(±)-3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(3-sulfopropyl)-8-azoniabicyclo[3.2.1] octane hydroxide, inner salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 15130-91-3

Trade Name	Manufacturer	Country	Year Introduced
Sultroponium-B	Biotherax	France	1970

Raw Materials

Atropine Propane-1,3-sultone

Manufacturing Process

To a cold solution of 29 g of atropine in 250 ml of acetone a solution of 13 g of propane-1,3-sultone in 100 ml of acetone is generally added. The combined solution is left for 48 hours. The white precipitate of fine crystalline needles is separated, washed several times with acetone, and then recrystallized from ethanol. It melts at 220°C.

References

Merck Index 8880 Kleeman & Engel p. 851 DOT 6 (3) 97 (1970) I.N. p. 912 Raudnitz, J.P.M. and Wahl, H.; British Patent 1,082,445; September 6, 1967

SYROSINGOPINE

Therapeutic Function: Antihypertensive

Chemical Name: 18-[[4-[(Ethoxycarbonyl)oxy]-3,5-dimethoxybenzoyl]oxy]-11,17-di-

methoxyyohimban-16-carboxylic acid methyl ester

Common Name: -

Structural Formula:

$$CH_3O$$
 CH_3OCC
 $OCCH_3$
 $OCCH_3$
 $OCCH_3$
 $OCCH_3$

Chemical Abstracts Registry No.: 84-36-6

Trade Name	Manufacturer	Country	Year Introduced
Singoserp	Ciba	U.S.	1958
Syringia	Toyo Jozo	Japan	1975
Aurugopin	Nisshin	Japan	_
Elumonon	Tatsumi	Japan	_
Hipotensor Zambe	Zambeletti	Italy	_
Neoreserpan	Panthox & Burck	Italy	_
Nichiserpine-S	Nichiiko	Japan	_
Novoserpina	Ghimas	Italy	_
Raunova	Zambeletti	Italy	_
Rosidil	Nippon Chemiphar	Japan	_
Siroshuten	Is ei	Japan	_
Tesamurin	Zensei	Japan	_

Raw Materials

Methyl reservate

O-Carbethoxysyringoyl chloride

Manufacturing Process

1 part by weight of methyl reserpate and 1.9 parts by weight of O-carbethoxysyringoyl chloride were dissolved in 20 parts by volume of anhydrous pyridine and allowed to stand at 5°C for 3 days. An equal volume of ice was then added, and the mixture evaporated to dryness in vacuo. The residue was dissolved in 50 parts by volume of chloroform and washed in succession with three 50 parts by volume portions of 2% sodium hydroxide solution and two 50 parts by volume portions of water. The chloroform solution was dried over sodium sulfate and evaporated to dryness. The residue was dissolved in 15 parts by volume of benzene and chromatographed on a 10 part by weight column of II-III grade alumina. Eluates of benzene, 90 benzene: 10 acetone, 80 benzene: 20 acetone, 60 benzene: 40 acetone; and acetone were removed. From the 90 benzene: 10 acetone eluate there was recovered crystalline methyl O-(O'-carbethoxysyringoyl)-reserpate, melting point 175°C to 178°C, on crystallization from acetone.

References

Merck Index 8901

Kleeman & Engel p. 853 OCDS Vol. 1 p. 319 (1977)

I.N. p. 917

Lucas, R.A.; U.S. Patent 2,813,871; November 19, 1957; assigned to Ciba Pharmaceutical Products, Inc.

TALAMPICILLIN

Therapeutic Function: Antibacterial

Chemical Name: (2S)-6-[(aminophenylacetyl)amino] -3,3-dimethyl-7-oxo-4-thia-1-azabicyclo-

[3.2.0] heptane-2-carboxylic acid 1,3-dihydro-3-oxo-1-isobenzofuranyl ester

Common Name: Phthalidyl-D-\alpha-aminobenzylpenicillanate

Structural Formula:

Chemical Abstracts Registry No.: 47747-56-8; 39878-70-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Talpen	Beecham	U.S.	1975
Yamacillin	Yamanouchi	Japan	1977
Talampicillina	Midy	Italy	1980
Talat	Polifarma	Italy	-
Talmen	Prodes	Spain	-

Raw Materials

Ampicillin 3-Bromophthalide

Manufacturing Process

A fine suspension of 25.18 grams (0.05 mol) of potassium salt of enamine protected ampicillin and 10.65 grams (0.05 mol) 3-bromophthalide were reacted in a 1:2 mixture of acetone/ethyl acetate (1,500 ml) for 24 hours. After filtration the organic layer was washed twice with 250 ml portions of 1N sodium bicarbonate and brine, dried over anhydrous magnesium sulfate and concentrated in vacuo. Addition of ether crystallized the phthalide enamine protected α -aminophenylacetamido penicillanate in 85% yield.

The enamine protecting group was removed by dissolving 10 grams in aqueous acetone (250 ml water to 250 ml acetone) and vigorously stirring this solution at pH 2.5 for 1 hour. The acetone was removed in vacuo and the ester, which was salted out of the aqueous phase as a sticky yellow gum, was dissolved in ethyl acetate (200 ml) and washed twice with 200 ml portions of 1N sodium bicarbonate and brine and dried over anhydrous magnesium sulfate. Careful addition of dry ester (about 50 ml) to the dry ethyl acetate layer

yielded the ampicillin phthalide ester as hydrochloric salt as a fine white amorphous solid in 80% yield.

References

Merck Index 8912 Kleeman & Engel p. 854 OCDS Vol. 2 p. 438 (1980) DOT 12 (7) 283 (1976) & 15 (8) 349 (1979) I.N. p. 919 REM p. 1201

Ferres, H.; U.S. Patent 3,860,579; January 14, 1975; assigned to Beecham Group Limited, England

Murakami, M., Isaka, I., Kashiwagi, T., Matsui, H., Nakano, K., Takahashi, K., Horiguchi, H. and Koda, A.; U.S. Patent 3,951,954; April 20, 1976; assigned to Yamanouchi Pharmaceutical Co., Ltd., Japan

TALNIFLUMATE

Therapeutic Function: Antiinflammatory, analgesic

Chemical Name: 2-[[3-(Trifluoromethyl)phenyl] amino] -3-pyridine carboxylic acid 1,3-di-

hydro-3-oxo-1-isobenzofuranyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 66898-62-2

Trade Name	Manufacturer	Country	Year Introduced
Somalgen	Bago	Argentina	1972

Raw Materials

2-(3'-Trifluoromethylanilino)nicotinic acid

3-Bromophthalide

Manufacturing Process

49 ml of triethylamine were added to a suspension of 2-(3'-trifluoromethylanilino)nicotinic acid (70.6 g in 250 ml of dimethylformamide). After stirring for 30 minutes 53.3 g of 3-bromophthalide were added. The reaction mixture was maintained at 25°C to 30°C during 4 hours. Ethyl acetate (750 ml) was poured into the reaction mixture. This solution was filtered and extracted with water (4 X 250 ml), discarding the water layer.

The organic layer was dried with anhydrous magnesium sulfate and then filtered. The solution was concentrated under vacuum at 30°C to 35°C until reduced to half of its original volume and then cooled to 5°C to allow the crystallization of the compound. Thus, the cake was filtered, washed with cool ethyl acetate, and dried under vacuum. Yield: 74% (76.7 g) of phthalidyl ester of 2-(3'-trifluoromethylanilino)-pyridin-3-carboxylic acid, melting point: 165°C to 167°C .

References

Merck Index 8921 DFU 4 (6) 448 (1979) OCDS Vol. 3 p. 146 (1984) DOT 19 (7) 99 (1983)

I.N. p. 919

Bago, S.; U.S. Patent 4,168,313; September 18, 1979

TAMOXIFEN

Therapeutic Function: Antiestrogen, antineoplastic

Chemical Name: 2-[4-(1,2-Diphenyl-1-butenyl)phenoxy]-N,N-dimethylethanamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 10540-29-1; 54965-24-1 (Citrate)

Trade Name	Manufacturer	Country	Year Introduced
Nolvadex	I.C.I.	U.K.	1973
Noivadex	1.C.1.	W. Germany	1976
Nolvadex	I.C. Pharma	Italy	1976
Nolvadex	1.C.1.	France	1977
Nolvadex	1.C.1.	Switz.	1978
Nolvadex	Stuart	U.S.	1978
Nolvadex	Sumitomo	Japan	1981
Tamofen	Rhone-Poulenc	_	
Valodex	Abic	Israel	

Raw Materials

Bromobenzene

Magnesium

4- $(\beta$ -Dimethylaminoethoxy)- α -ethyldesoxybenzoin

Manufacturing Process

To the Grignard reagent prepared from 0.59 part of magnesium, 3.95 parts of bromobenzene

and 50 parts of ether there are added 7.5 parts of 4-(β-dimethylaminoethoxy)-α-ethyldesoxybenzoin in 50 parts of ether. After heating under reflux for 3 hours, the mixture is decomposed by the addition of a solution of 60 parts of ammonium chloride in 150 parts of water. The mixture is separated, and the ethereal layer is dried with anhydrous sodium sulfate, and the ether is evaporated. The residue is crystallized from methanol. There is thus obtained 1-(pβ-dimethylaminoethoxyphenyl)-1,2-diphenylbutan-1-ol, melting point 120°C to 121°C.

2.15 parts of 1-(p- β -dimethylaminoethoxyphenyl)-1,2-diphenylbutan-1-ol, 25 parts of ethanol and 0.8 part of 10N hydrochloric acid are heated together under reflux for 3 hours. The solution is evaporated to dryness under reduced pressure and the residue is extracted with methylene chloride. The methylene chloride extract is decolorized with charcoal and then evaporated to dryness. The residue is dissolved in 100 parts of water, the solution is basified by the addition of sodium hydroxide solution, and the precipitated solid is extracted three times, each time with 50 parts of ether. The combined extracts are dried with anhydrous sodium sulfate and then evaporated. The residue is crystallized from aqueous methanoi, and there is thus obtained 1-(p-\$\beta\$-dimethylaminoethoxyphenyl)-1,2-diphenylbut-1-ene, melting point 95°C to 96°C.

References

Merck Index 8923 Kleeman & Engel p. 854 PDR p. 1783 OCDS Vol. 2 p. 127 (1980) & 3,70 (1984) DOT 10 (2) 71 (1974) I.N. p. 920 REM p. 990

Harper, M.J.K., Richardson, D.N. and Walpole, A.L.; British Patent 1.013,907; December 22. 1965; assigned to Imperial Chemical Industries, Ltd. (U.K.)

TANPHETAMIN

Therapeutic Function: Antiobesity drug

Chemical Name: d-Amphetamine tannate

Common Name: Dexamphetamine tannate

Structural Formula: A complex of amphetamine, C₆H₅CH₂CH(CH₃)NH₂ and tannic acid

Chemical Abstracts Registry No.: 1407-85-8

Trade Name	Manufacturer	Country	Year Introduced
Synatan	Neisler	U.S.	195 5
Obotan	Mallinckrodt	U.S.	_
Proptan	Irwin, Neisler	U.S.	_

Raw Materials

d-Amphetamine Tannic acid

Manufacturing Process

Approximately 75 grams of d-amphetamine as a free base was dissolved in 300 ml of isopropanol (solution A). Approximately 200 grams of NF tannic acid was dissolved in 700 milliliters of slightly warmed isopropanol (solution B). Solution B was poured, with rapid stirring, into solution A to provide an almost immediate precipitation of the insoluble tannate complex. The solution was cooled to room temperature and the product filtered off and dried. During the filtration, most of the isopropanol was removed by washing with acetone, and the precipitate dried at 140°F to yield a light tan product. The amount of precipitate was approximately 200 grams of tannate salt but more could be obtained by concentration of the mother liquors.

References

Merck Index 8930 I.N. p. 301

Cavallito, C.J.; U.S. Patent 2,950,309; August 23, 1960; assigned to Irwin, Neisler and Company

TEGAFUR

Therapeutic Function: Antineoplastic

Chemical Name: 1-(Tetrahydro-2-furanyl)-5-fluorouracil

Common Name: Ftorafur

Structural Formula:

Chemical Abstracts Registry No.: 17902-23-7

Trade Name	Manufacturer	Country	Year Introduced
Futraful	Taiho	Japan	1974
Ftorafur	Gruenenthal	W. Germany	1977
Citofur	Lusofarmaco	Italy	1981
Futraful	Simes	Italy	1981
Coparogin	Nippon Chemiphar	Japan	_
Daiyalose	Daito	Japan	-
Exonal	Toyama	Japan	_
Fental	Kanebo	Japan	-
F.H.	Mitsui	Japan	
Filacul	Torii	Japan	-
Fiopholin	Tsuruhara	Japan	
Franroze	Hishiyama	Japan	
Ftoral	Abic	Israel	_
F.T.R.	Tenyosha	Japan	-
Fulaid	Takeda	Japan	_
Fulfeel	Kyorin	Ja pan	_
Furofluor	Green Cross	Japan	
Furofutran	Taiyo	Japan	_
Futraful Zupo	Taiho	Japan	

Trade Name	Manufacturer	Country	Year Introduced
Geen	Tatumi	Japan	_
Helpa	Teikoru	Japan	_
Icalus	Isei	Japan	-
Lamar	Tokyo Tanabe	Japan	_
Lifril	Kissei	Japan	_
Lunacin	Sawai	Japan	_
Natira	Mohan	Japan	
Neberk	Fuji	Japan	_
Nitobanil	Ohta	Japan	_
Pharmic	Toyo	Japan	_
Rescret	Nikken	Japan	_
Richina	Taiyo	Japan	_
Riol	Toa Eiyo	Japan	
Sinoflurol	Kaken	Japan	
Sunfural	Toyo Jozo	Japan	_
Tefsiel	Towa	Japan	
THF-FU	Taiho	Japan	
Utefos	Almirall	Spain	_
Videcocan	Unifa	Argentina	_
Youfural	Showa	Japan	_

2,4-Bis(trimethylsilyl)-5-fluorouracil Ammonia

2-Chlorofuranidin

2,3-Dihydrofuran 5-Fluorouracilmercury

Manufacturing Process

One process from U.S. Patent 4.107.162: 27.4 g of 2.4-bis(trimethylsilyl)-5-fluorouracil and 7.7 g of 2,3-dihydrofuran are dissolved in 70 ml of acetonitrile, and 30 ml of an acetonitrile solution containing 1.3 g of anhydrous stannic chloride are added thereinto with cooling and stirring, 50 ml of acetonitrile containing 1,3 ml of water dissolved therein are then dropwise added over 15 minutes. After return to room temperature, the reaction is further effected with stirring at 40°C for 5 hours. The reaction mixture is neutralized by adding 1 N aqueous ammonia with cooling and stirring (conversion 83%). After the nondissolved substances are removed by filtration, the filtrate is concentrated and dried under reduced pressure. 100 ml of water and 300 ml of dichloromethane are added to the residue to completely dissolve the residue by stirring. The obtained dichloromethane layer is separated. The water layer is subjected to extraction twice with dichloromethane. The thus obtained extracts are combined with the separated dichloromethane layer and the combined extracts, after drying with anhydrous magnesium sulfate, are concentrated and dried. The obtained residue is dissolved in ethanol, and the nondissolved substances are removed by filtration. The filtrate is subjected to recrystallization to give white crystals, followed by further recrystallization of the mother liquor. There are totally obtained 15.6 g of N₁-(2'-furanidy!)-5-fluorouracil. Yield: 78% of theory, with respect to 2,4-bis(trimethylsilyl)-5-fluorouracil.

An alternative process from U.S. Patent 3,635,946: A vigorously stirred reaction mixture consisting of 32.87 g (0.1 mol) of 5-fluorouracilmercury, 100 ml of dimethylformamide and 50 ml of toluene is dried by azeotropic distillation of toluene. It is then cooled to -40°C in a stream of dry nitrogen, and a solution of 21.3 g (0.2 mol) of 2-chlorofuranidin in 20 ml of dried dimethylformamide is gradually added to the stirred mixture, the temperature being maintained between -40°C and -30°C. After completion of the reaction (which is marked by complete dissolution of the starting 5-fluorouracilmercury) i.e. after about 3 to 4 hours, 60 to 80 ml of the solvent are distilled off in vacuo at a bath temperature not exceeding 35°C; 50 to 70 ml of dry acetone are then added and also vacuum distilled. The residue is easily crystallized. It is collected, washed three times with small quantities of ethanol—10 ml each—and air-dried. 12.2 g of N_1 -(2'-furanidyl)-5-fluorouracil are obtained in the form of white crystal-

line solids; melting point 160°C to 162°C. Additional treatment of the mother liquor yields 3.0 g more of the product. Yield: 75% of theory, based on the starting 5-fluorouracilmercury.

After recrystallization from ethanol, 14.3 g of N $_1$ -(2'-furanidyl)-5-fluorouracil are obtained, MP 164°C to 165°C.

References

Merck Index 8963

Kleeman & Engel p. 855

OCDS Vol. 3 p. 155 (1984)

I.N. p. 923

Townsend, L.B., Earl, R.A. and Manning, S.J.; U.S. Patent 3,960,864; June 1, 1976; assigned to The University of Utah

Giller, S.A., Zhuk, R.A., Lidak, M.J. and Zidermane, A.A.; U.S. Patent 3,635,946; Jan. 18, 1972

Suzuki, N., Kobayashi, Y., Hiyoshi, Y., Takagi, S., Sone, T., Wakabayashi, M. and Sowa, T.; U.S. Patent 4,107,162; August 15, 1978; assigned to Asahi Kasei Kogyo K.K. (Japan)

TEMAZEPAM

Therapeutic Function: Tranquilizer

Chemical Name: 7-chloro-1,3-dihydro-3-hydroxy-1-methyl-5-phenyl-2H-1,4-benzodiazepin-

2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 846-50-4

Trade Name	Manufacturer	Country	Year Introduced
Levanxol	Carlo Erba	Italy	1970
Euhypnos	Montedison	U.K.	1977
Normison	Wyeth	U.K.	1977
Restoril	Sandoz	U.S.	1981
Planum	Carlo Erba	W. Germany	1981
Normison	Wyeth Byla	France	1981
Euhypnos	Farmitalia	France	1981
Normison	Wyeth	Switz.	1983
Planum	Carlo Erba	Switz.	1983
Mabertin	Sidus	Argentina	_
Maeva	Ravizza	ltaly	_
Signopam	Poifa	Poland	_

3-Acetoxy-7-chloro-1-methyl-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one Sodium hydroxide

Manufacturing Process

According to British Patent 1,022,645 3.4 g of 3-acetoxy-7-chloro-1-methyl-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one suspended in 80 ml alcohol was treated with 6 ml of 4 N NaOH. After complete solution had taken place, a solid precipitated; this solid was redissolved by the addition of 80 ml of water. The solution was acidified with acetic acid to give white crystals which were recrystallized from alcohol to yield 7-chloro-3-hydroxy-5-phenyl-1-methyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one, MP 119° to 121°C.

References

Merck Index 8976 Kleeman & Engel p. 856 PDR p. 1591 OCDS Vol. 2 p. 402 (1980) DOT 6 (6) 224 (1970) & 9 (6) 238 (1973) I.N. p. 923 REM p. 1064

American Home Products Corporation; British Patent 1,022,642; March 16, 1966
American Home Products Corporation; British Patent 1,022,645; March 16, 1966
Bell, S.C.; British Patent 1,057,492; February 1, 1967; assigned to American Home Products Corporation

TENIPOSIDE

Therapeutic Function: Antineoplastic

Chemical Name: 4'-Demethylepipodophyllotoxin-β-D-thenylidene glucoside

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 29767-20-2

Trade Name	Manufacturer	Country	Year Introduced
Vehem	Sandoz	France	1976
Vumon	Bristol	W. Germany	1980
Vumon	Bristol	Switz.	1980
Vumon	Bristo!	Italy	1982

4'-Demethylepipodophyllotoxin- β -D-glucoside Thiophene-2-aldehyde

Manufacturing Process

10 ml of pure thiophene-2-aldehyde and 0.25 g of anhydrous zinc chloride are added to 0.5 g of dried 4'-demethylepipodophyllotoxin- β -D-glucoside and the mixture is shaken on a machine at 20°C in the absence of moisture, whereupon a clear solution is gradually obtained. The course of condensation is checked by thin layer chromatography. After a reaction period of 3 to 4 hours the solution is diluted with chloroform and shaken out with water. The chloroform phase is washed twice more with a small amount of water and then dried over sodium sulfate and concentrated by evaporation. Excess thiophene-2-aldehyde is removed by dissolving the resulting residue in a small amount of acetone and reprecipitation is effected by adding pentane.

Reprecipitation from acetone/pentane is repeatedly effected until the condensation product sults in flaky form. Further purification is effected in that the crude product is chromatographed on silica gel. The fractions which are uniform in accordance with thin layer chromatography are combined and yield crystals from absolute alcohol. Pure 4'-demethylepipodophyllotoxin- β -D-thenylidene glucoside has a melting point of 242°C to 246°C (last residue up to 255°C).

References

Merck Index 8978 Kleeman & Engel p. 857 DOT 12 (11) 465 (1976) & 16 (5) 170 (1980) I.N. p. 924 REM p. 1156

Keller-Juslen, C., Kuhn, M., Renz, J. and von Wartburg, A.; U.S. Patent 3,524,844; Aug. 18, 1970; assigned to Sandoz, Ltd. (Switz.)

TERBUTALINE

Therapeutic Function: Bronchodilator

Chemical Name: 1-(3',5'-Dihydroxyphenyl)-2-(t-butylamino)-ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 23031-25-6; 23031-32-5 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Bricanyl	Pharma-Stern	W. Germany	1971
Bricanyl	Astra	U.K.	1971
Bricanyl	Lematte-Boinot	France	1973
Bricanyl	Astra	U.S.	1974

Trade Name	Manufacturer	Country	Year Introduced
Bricanyl	Fujisawa	Japan	1974
Brethine	Ciba Geigy	U.S.	1975
Terbasmin	Farmitalia	Italy	1976
Arubendol	Ankerwerk	E, Germany	-
Brethaire	Ciba Geigy	U.S.	w -
Bricalin	Teva	Israel	_
Brican	Draco	Sweden	_
Bristurin	Bristol	Japan	_
Filair	Riker	U.K.	_

Benzyl-t-butylamine 3,5-Dibenzyloxy-ω-bromoacetophenone Hydrogen

Manufacturing Process

To a solution of 32 g of benzyl-t-butylamine in 300 ml of absolute ethanol at reflux temperature was added 32 g of 3,5-dibenzyloxy-ωbromoacetophenone in 10 ml of dry benzene. The mixture was refluxed for 20 hours and then evaporated. When absolute ether was added to the residue, benzyl-t-butylamine hydrobromide was precipitated. The precipitated compound was filtered off and to the filtrate was added an excess of 2N sulfuric acid. This caused precipitation of the hydrogen sulfate of 3,5-dibenzyloxy-ω-(benzyl-t-butylamino)-acetophenone which was recrystallized from acetone/ether. If the product is crystallized from different organic solvents, the melting point will vary with the type and amount of solvent of crystallization, but the product can be used directly for hydrogenation.

15 q of 3.5-dibenzyloxy-ω-(benzyl-t-butylamino)-acetophenone hydrogen sulfate in 200 ml of glacial acetic acid were hydrogenated in a Parr pressure reaction apparatus in the presence of 1.5 g of 10% palladium charcoal at 50°C and 5 atmospheres pressure. The reaction time was 5 hours. The catalyst was filtered off, the filtrate was evaporated to dryness and the hydrogen sulfate of 1-(3',5'-dihydroxyphenyl)-2-(t-butylamino)-ethanol was received. This compound is hygroscopic, but it can be transformed into a nonhygroscopic sulfate in the following manner.

The hydrogen sulfate was dissolved in water and the pH of the solution was adjusted to 5.6 (pH-meter) with 0.1 N sodium hydroxide solution. The water solution was evaporated to dryness and the residue dried with absolute ethanol/benzene and once more evaporated to dryness. The remaining crystal mixture was extracted in a Soxhlet extraction apparatus with absolute methanol. From the methanol phase the sulfate of 1-(3'.5'-dihydroxyphenyi)-2-(tbutylamino)-ethanol crystallized. Melting point 246°C to 248°C.

References

Merck Index 8986 Kleeman & Engel p. 858 PDR pp. 889, 987 I.N. p. 925 REM p. 890

Wetterlin, K.Z.L. and Svensson, L.A.; U.S. Patent 3,937,838; February 10, 1976; assigned to A.B. Draco (Sweden)

TEROFENAMATE

Therapeutic Function: Antiinflammatory, analgesic

Chemical Name: 2-[(2,6-Dichloro-3-methylphenyl)amino] benzoic acid ethoxymethyl ester

Common Name: Etoclofene

Structural Formula:

Chemical Abstracts Registry No.: 29098-15-5

Trade Name	Manufacturer	Country	Year Introduced
Etofen IIfi	Lusofarmaco	Italy	1980

Raw Materials

N-2,6-Dichloro-m-tolylanthranilic acid Chloromethyl ethyl ether

Manufacturing Process

10 g sodium salt of N-2,6-dichloro-m-tolylanthranilic acid, 3 ml chloromethyl ethyl ether and 80 ml dry acetone were refluxed for 12 hours on waterbath under stirring. The solid was filtered off, and the solution evaporated to dryness. The residue was dissolved in chloroform, washed with sodium carbonate solution, then with water until neutral. After drying on sodium sulfate, the solution was evaporated to dryness. The obtained product was recrystallized from 95% ethanol. Melting point 73°C to 74°C.

References

Merck Index 8992 DFU 1 (8) 421 (1976)

I.N. p. 927

Manghisi, E.; U.S. Patent 3,642,864; February 15, 1972; assigned to Istituto Luso Farmaco D'Italia S.R.L. (Italy)

TESTOLACTONE

Therapeutic Function: Cancer chemotherapy

Chemical Name: D-homo-17-α-oxaandrosta-1,4-diene-3,17-dione

Common Name: 1-dehydrotestololactone

Structural Formula:

Chemical Abstracts Registry No.: 968-93-4

Trade Name	Manufacturer	Country	Year Introduced
Fludestrin	Heyden	W. Germany	1968
Teslac	Squibb	U.S.	1969

Bacterium *Cylindrocarpon radicola*Corn steep liquor
Brown sugar

Manufacturing Process

(a) Fermentation: A medium of the following composition is prepared: 3.0 grams cornsteep liquor solids; 3.0 grams $NH_4H_2PO_4$; 2.5 grams $CaCO_3$; 2.2 grams soybean oil; 0.5 gram progesterone and distilled water to make 1 liter. The medium is adjusted to pH 7.0 ± 0.1 . Then, 100 ml portions of the medium are distributed in 500 ml Erlenmeyer flasks and the flasks plugged with cotton and sterilized in the usual manner (i.e., by autoclaving for 30 minutes at $120^{\circ}C$). When cool, each of the flasks is inoculated with 5 to 10% of a vegetative inoculum of $Cylindrocarpon\ radicola$ [the vegetative inoculum being grown from stock cultures (lyophilized vial or agar slant) for 48 to 72 hours in a medium of the following composition: 15 grams cornsteep liquor; 10 grams brown sugar; 6 grams 10 NaNO $_3$; 10001 gram 10001 gram 10001 grams 1001 grams 1001 gram

The flasks are then placed on a reciprocating shaker (120 one and one-half inch cycles per minute) and mechanically shaken at 25° C for 3 days. The contents of the flasks are then pooled and, after the pH of the culture is adjusted to about 4 ± 0.2 with sulfuric acid, filtered through Seitz filter pads to separate the mycelium from the fermented medium.

(b) Extraction: 40 liters of the culture filtrate obtained in (a) is extracted with 40 liters chloroform in an extractor (e.g., Podbelniak, U.S. Patent 2,530,886, or improvements thereon) and the filtered chloroform extract is evaporated to dryness in vacuo. The residue (11.1 grams) is taken up in 200 ml of 80% aqueous methanol, and the resulting solution is extracted four times with 100 ml portions of hexane. The 80% aqueous methanol solution is then concentrated in vacuo until crystals appear; and, after cooling at 0°C for several (usually about 3 to 4) hours, the crystals formed are recovered by filtration. About 2.9 grams 1-dehydrotestololactone (MP 217° to 217.5°C) are thus obtained. Concentration of the mother liquors yields additionally about 6.0 grams of the lactone. Recrystalization from acetone yields a purified 1-dehydrotestololactone having a melting point of 218° to 219°C.

References

Merck Index 8999 Kleeman & Engel p. 860 PDR p. 1768 OCDS Vol. 2 p. 160 (1980) I.N. p. 928 REM p. 1000

Fried, J. and Thoma, R.W.; U.S. Patent 2,744,120; May 1, 1956; assigned to Olin Mathieson Chemical Corporation

TESTOSTERONE 17β-CYPIONATE

Therapeutic Function: Androgen

Chemical Name: 17β -(3-Cyclopentyl-1-oxopropoxy)androst-4-en-3-one

Common Name: Depo-testosterone

Structural Formula:

Chemical Abstracts Registry No.: 58-20-8

Trade Name	Manufacturer	Country	Year Introduced
Depo-Testosterone	Upjohn	U.S.	1951
T-Ionate P.A.	Tutag	U.S.	1970
Andro-Cyp	Keene	U.S.	_
Andronate	Pasadena	U.S.	
Ciclosterone	Farmigea	Italy	_
Depostomead	Spencer-Mead	U.S.	
Depotest	Blaine	U.S.	_
Dep-Test	Sig	U.S.	
Dep-Testosterone	Rocky Mtn.	U.S,	_
Durandro	Ascher	U.S.	
Jectatest	Reid-Provident	U.S.	_
Malogen Cyp	O'Neal, Jones & Feldman	U.S.	_
Pertestis Dep.	Orma	Italy	_
Testomed P.A.	Medics	U.S.	_
Testorit-Dep	Gallo	Italy	_

Raw Materials

β -Cyclopentylpropionic acid	Acetic anhydride
Testosterone 3-enol-ethyl ether	Hydrogen chloride

Manufacturing Process

1 g of crude 3-enol-ethyl ether of testosterone dissolved in 3 cc of pyridine is treated with 2 cc of β -cyclopentylpropionic anhydride (obtained from the β -cyclopentylpropionic acid and acetic anhydride: boiling point 180°C/2 mm Hg). After standing at room temperature overnight the mixture is diluted with water and extracted with ether, the ethereal layer, washed with water to neutrality and dried, is evaporated by vacuum. The oily residue is taken up in petroleum ether and filtered through a layer of aluminum oxide, which is afterwards washed with a further amount of petroleum ether. The solution so filtered and purified is evaporated to dryness; the crystalline residue is recrystallized from a small amount of methanol containing a trace of pyridine: about 1 g of 3-enol-ethyl-ether of the β -cyclopentyl propionate of testosterone, melting point 86°C to 88°C, is so obtained (by further recrystallization melting point 90°C to 91°C). This product (that may be employed either in the crystalline state, or in the oily one, that is, before the purification by filtration through aluminum oxide) by treatment with a small amount of hydrochloric acid in acetone solution yields the β -cyclopentyl propionate of testosterone, melting point 99°C to 101°C (recrystallized from methanol).

References

Merck Index 9002 Kleeman & Engel p. 861 PDR pp. 950, 1033, 1841 OCDS Vol. 1 p. 172 (1977) I.N. p. 929 REM p. 1001

Ercoli, A. and de Ruggieri, P.; U.S. Patent 2,742,485; April 17, 1956; assigned to Francesco Vismara Societa per Azioni & A. Ercoli (Italy)

TESTOSTERONE ENANTHATE

Therapeutic Function: Androgen

Chemical Name: 17β -[(1-oxoheptyl)oxy] and rost-4-en-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 315-37-7

Trade Name	Manufacturer	Country	Year Introduced
Delatestryl	Squibb	U.S.	1954
Reposo-TMD	Canfield	U.S.	1961
Testate	Savage	U.S.	1970
Testostroval PA	Tutag	U.S.	1970
Androtardyl	S.E.P.P.S.	France	-
Andryl	Keene	U.S.	_
Arderone	Buring-Arden	U.S.	_
Atlatest	I.C.I.	U.S.	
Deladumon	Squibb	U.S.	_
Delatest	Dunhali	U.S.	_
Dura-Testate	Ries	U.S.	_
Duratesterone	Myers-Carter	U.S.	_
Enarmon	Teikoku Zoki	Japan	_
Everone	Hyrex	U.S.	_
Malogen LA	Fellows	U.S.	-
Malogex	Stickley	Canada	_
Primoteston	Schering	W. Germany	_
Reprosteron	Spencer-Mead	U.S.	
Repro Testro Med	Medics	U.S.	_
Retandros	Rocky Mtn.	U.S.	_
Span-Test	Scrip	U.S.	_
Tesone	Sig	U.S.	_
Testanate	Kenyon	U.S.	_
Testinon	Mochida	Japan	_
Testisan Depo	I.E. Kimya Evi	Turkey	-
Testo-Enant	Geymonat Sud	Italy	
Testone	Ortega	U.S.	_
Testrin	Pasadena	U.S.	_
Testoviron	Schering	W. Germany	
Testrone	N. Amer, Pharm,	U.S.	_

Oenanthic acid Testosterone

Manufacturing Process

A mixture of testosterone, pyridine and oenanthic acid anhydride is heated for 1½ hours to 125°C. The cooled reaction mixture is decomposed with water while stirring and cooling. After prolonged standing at a temperature below room temperature, the whole is extracted with ether and the ethereal solution is washed consecutively with dilute sulfuric acid, water, 5% sodium hydroxide solution, and again with water. The crude ester remaining on evaporation of the dried ether solution, after recrystallization from pentane, melts at 36° to 37.5°C.

References

Merck Index 9003 Kleeman & Engel p. 862 PDR pp. 1033, 1604 I.N. p. 929 REM p. 1001

Junkmann, K., Kathol, J. and Richter, H.; U.S. Patent 2,840,508; June 24, 1958; assigned to Schering AG, Germany

TETRABENAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 1,3,4,6,7,11b-hexahydro-9,10-dimethoxy-3-(2-methylpropyl)-2H-benzo-

(a) quinolizin-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 58-46-8

Trade Name	Manufacturer	Country	Year Introduced
Nitoman	Roche	U.K.	1960

Raw Materials

1-Carbethoxymethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline Isobutyl malonic acid dimethyl ester Paraformaldehyde Sodium Ethanol Hydrogen chloride

Manufacturing Process

280 grams of 1-carbethoxymethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, 150 grams of mono-isobutylmalonic acid dimethyl ester and 35 grams of paraformaldehyde were refluxed for 24 hours in 1,000 ml of methanol. Upon cooling, 1-carbethoxymethyl-2-(2,2dicarbomethoxy-4-methyl-n-pentyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoguinoline crystallized; MP after recrystallization from methanol, 94° to 96°C. The latter was subjected to Dieckmann cyclization, hydrolysis and decarboxylation in the following manner.

28 grams of sodium was dissolved in 650 ml of absolute ethanol, the solution was concentrated to dryness, and the residue was mixed with 3,600 ml of toluene and 451 grams of the intermediate prepared above. The mixture was heated, and the methanol formed by condensation was distilled off until the boiling point of toluene was reached. The mixture was thereupon refluxed for 2 hours, and then it was concentrated to dryness. The residue was dissolved in 5,200 ml of 3 N hydrochloric acid and heated for 14 hours at 120°C, thereby effecting hydrolysis and decarboxylation. The mixture was cooled, washed with diethyl ether, decolorized with carbon, made alkaline and taken up in diethyl ether. The process yields 2-oxo-3-isobutyl-9,10-dimethoxy-1,2,3,4,6,7-hexahydro-11b-benzo[a] quinolizine; MP after recrystallization from diisopropyl ether, 126° to 128°C.

References

Merck Index 9009 OCDS Vol. 1 p. 350 (1977) I.N. p. 931

Brossi, A., Schnider, O. and Walter, M.; U.S. Patent 2,830,993; April 15, 1958; assigned to Hoffmann-La Roche, Inc.

TETRACYCLINE

Therapeutic Function: Antibacterial

Chemical Name: 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide

Common Name: Deschlorobiomycin; omegamycin

Structural Formula:

Chemical Abstracts Registry No.: 60-54-8

Trade Name	Manufacturer	Country	Year Introduced
Tetracyn	Pfizer	U.S.	1953
Achromycin	Lederle	U.S.	1953
Polycycline	Bristol	U.S.	1954
Panmycin	Upjohn	U.S.	1955
Cancycline	Canfield	U.S.	1964
Abricycline	Farmakhim	Bulgaria	
Biotetra	I.E. Kimya Evi	Turkey	_

Trade Name	Manufacturer	Country	Year Introduced
Copharlan	Cophar	Switz.	_
Economycin	D.D.S.A.	U.K.	_
Mervacycline	Byk	Neth.	_
Mysteclin	Squibb	U.S.	***
Pediatetracycline	Theranol	France	
Pervasol	Poen	Argentina	_
Sanbiotetra	Santos	Spain	_
SK-Tetracycline	SKF	u.s.	
Sumycin	Squibb	U.S.	
Teclinazets	Miluy	Spain	_
Tetra-Co	Coastal	Ú.S.	
Tetramig	Inava	France	_
Tetra-Proter	Proter	Italy	_

Chlortetracycline Hydrogen Bacterium Streptomyces aureofaciens

Manufacturing Process

Tetracycline is usually prepared by the catalytic dechlorination of chlortetracycline as described in U.S. Patents 2,699,054 and 3,005,023, or obtained directly by fermentation of Streptomyces aureofaciens or Streptomyces viridifaciens according to U.S. Patents 2,712,517, 2,734,018, 2,886,595 and 3,019,173. The purification of tetracycline produced by either route is described in U.S. Patent 3,301,899.

The production of tetracycline by catalytic dechlorination is described in U.S. Patent 2,699,054 as follows: Pure chlortetracycline (4.8 grams) was suspended in 100 ml of methanol and sufficient anhydrous dioxane was added to completely dissolve the product. To the solution was added 0.5 gram of 5% palladium-on-charcoal catalyst. The mixture was placed in a conventional hydrogenation apparatus and subjected to a pressure of 50 psi of hydrogen while being agitated.

After the initial drop in pressure due to the absorption of gas by the catalyst and the solvent, there was a steady drop in pressure due to the hydrogenation of the antibiotic. After approximately 1 mol of hydrogen had been absorbed, no further reaction was observed. This occurred after about 2 hours. The catalyst was filtered and washed with boiling methanol and boiling dioxane. The solution gave a positive test for chloride ion when treated with silver nitrate solution. It also possessed a strongly acidic reaction demonstrating the release of the nonionic chlorine in the form of hydrogen chloride. A bioassay of the crude product in solution indicated a potency of approximately 580 μg/mg with oxytetracycline as the standard at a potency of 1,000 $\mu \mathrm{g/mg}$. The solution was concentrated under vacuum at room temperature and the residual liquid was dried from the frozen state under vacuum. 3.1 grams of bright yellow amorphous tetracycline hydrochloride was obtained.

This product may be converted to tetracycline per se by redissolving it in water, carefully neutralizing it to pH 4.5 with dilute sodium hydroxide, and recovering the product by drying the solution.

References

Merck Index 9021 Kleeman & Engel p. 864 PDR pp. 996, 1391, 1723, 1752, 1767 OCDS Vol. 1 p. 212 (1977) I.N. p. 932 REM p. 1207

Conover, L.H.; U.S. Patent 2,699,054; January 11, 1955

Gourevitch, A. and Lein, J.; U.S. Patent 2,712,517; July 5, 1955; assigned to Bristol Laboratories Inc.

Minieri, P.P., Sokol, H. and Firman, M.C.; U.S. Patent 2,734,018; February 7, 1956; assigned to American Cyanamid Company

Heinemann, B. and Hooper, I.R.; U.S. Patent 2,886,595; May 12, 1959; assigned to Bristol Laboratories Inc.

Miller, P.A.; U.S. Patent 3,005,023; October 17, 1961; assigned to American Cyanamid Company

Arishima, M. and Sekizawa, Y.; U.S. Patent 3,019,173; January 30, 1962; assigned to American Cyanamid Company

Kaplan, M.A. and Granatek, A.P.; U.S. Patent 3,301,899; January 31, 1967; assigned to Bristol-Myers Company

TETRACYCLINE PHOSPHATE COMPLEX

Therapeutic Function: Antibacterial

Chemical Name: Tetracycline phosphate complex; see tetracycline for chemical name

Common Name: -

Structural Formula: See tetracycline for formula of base

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Tetrex	Bristol	U.S.	1956
Sumycin	Squibb	U.S.	1957
Panmycin Phos	Upjohn	U.S.	1957
Austrastaph	C.S.L.	Australia	_
Binicap	S.A.M.	Italy	-
Biocheclina	Wolner	Spain	_
Bristaciclina Retard	Antibioticos	Spain	
Conciclina	Lusofarmaco	Italy	
Devacyclin	Deva	Turkey	
Fusfosiklin	T.E.M.S.	Turkey	
Hexacycline	Diamant	France	
Tetraksilin	Atabay	Turkey	_
Tetralet	Fako	Turkey	_
Tetramin	Efeyn	Spain	-
Tetrazetas Retard	Miluy	Spain	-
Upcyclin	Cophar	Switz.	_

Raw Materials

Tetracycline Phosphorus pentoxide

Manufacturing Process

In a 500-ml round-bottomed flask equipped with stirrer, condenser and thermometer was placed 7.1 grams (0.05 mol) P_2O_5 which was immediately covered with 100 ml of chloroform. To the mixture was added with stirring 0.9 ml (0.05 mol) of distilled water. In a

few minutes, a lower oily layer appeared, which was believed to be freshly formed metaphosphoric acid resulting from the action of the P2O5 with an equimolar amount of water, To this mixture was added 100 ml of methanol and on continued stirring, the lower oily layer disappeared in the methanol forming a complete pale yellowish-green colored solution.

An additional 50 ml of methanol was added to the flask and then 22.2 grams (0.05 mol) of tetracycline, neutral form, was added portionwise intermittently with another 50 ml of methanol. A clear solution was maintained throughout the addition of the tetracycline. After addition of all of the tetracycline, the solution was a deep orange color and the temperature in the reaction flask was 35°C.

One hour after addition of the tetracycline, the clear reaction solution was poured into 1,500 ml of chloroform. A yellow product separated and was collected on a coarse sintered glass filter and air dried. The tetracycline-metaphosphoric acid complex weighed about 10 grams, contained 7.34% of phosphorus and had a bioassay of 634 gammas per milligram. Solubility in water is 750 mg/ml.

References

Merck Index 9021 I.N. p. 933 REM p. 1208

Sieger, G.M. Jr. and Weidenheimer, J.F.; U.S. Patent 3,053,892; September 11, 1962; assigned to American Cyanamid Company

TETRAHYDROZOLINE HYDROCHLORIDE

Therapeutic Function: Nasal decongestant, eye preparation

Chemical Name: 4,5-Dihydro-2-(1,2,3,4-tetrahydro-1-naphthalenyl)-1H-imidazole hydro-

chloride

Common Name: Tetryzoline HCI

Structural Formula:

Chemical Abstracts Registry No.: 522-48-5; 84-22-0 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tyzine	Pfizer	U.S.	1954
Visine	Leeming	U.S.	1958
Constrilia	P.O.S.	France	1979
Azolin	Fischer	Israel	_
B urnil	Kurtsan	Turkey	
Collyrium	Wyeth	U.S.	_
Ischemol	Farmila	Italy	_
Murine	Ross	U.S.	_
Narbel	Chugai	Japan	_
Nasin	Abic	Israel	_
Oftan-Starine	Star	Finland	

4	A	=	_

Trade Name	Manufacturer	Country	Year Introduced
Rhinopront	Mack	W. Germany	_
Stilla	Abic	Israel	_
Tinarhinin	VEB Berlin Chemie	E. Germany	_
Typinal	lkapharm	Israel	_
Yxin	Pfizer	W. Germany	_

1,2,3,4-Tetrahydro-α-naphthoic acid Ethylenediamine Hydrogen chloride

Manufacturing Process

A mixture of 540 grams (9.0 mols) of ethylenediamine, 270 grams (1.53 mols) of 1,2,3,4tetrahydro-alpha-naphthoic acid, and 360 ml (4.32 mols) of concentrated hydrochloric acid was introduced into a two-liter, three-necked flask fitted with a thermometer, stirrer, and distillation takeoff. The mixture was distilled under a pressure of about 20 mm of mercury absolute until the temperature rose to 210°C. Thereafter, heating was continued under atmospheric pressure and when the temperature reached about 260°C, an exothermic reaction was initiated. The heat was then adjusted to maintain a reaction temperature of 275° to 280°C for 45 minutes and the mixture thereafter cooled to room temperature.

900 ml of 4 N hydrochloric acid was added and the aqueous layer stirred with warming until a clear, brown solution resulted. This brown solution was made strongly alkaline with sodium hydroxide. The oil that separated solidified and was collected on a filter leaving filtrate A. The solid was dissolved in 370 ml of alcohol with warming, and the solution was treated with 130 ml of concentrated hydrochloric acid with stirring and cooling. This acidified mixture was diluted with 300 ml of ether and chilled. The solid salt was collected and dried and the filtrate concentrated to approximately 300 ml, diluted with 300 ml of ether and the salt which separated collected and dried.

Filtrate A was extracted with ether, dried, acidified with alcoholic hydrogen chloride, and the salt which separated was collected and dried. There was thus obtained, when all the salt had been combined, 250 grams (69.3% of the theoretical yield) of 2-(1,2,3,4-tetrahydro-1-naphthyl)imidazoline hydrochloride, melting at 256° to 257°C.

References

Merck Index 9042 Kleeman & Engel p. 867 PDR pp. 974, 1555, 1945 OCDS Vol. 1 p. 242 (1977) I.N. p. 936 REM p. 890

Synerholm, M.E., Jules, L.H. and Sahyun, M.; U.S. Patent 2,731,471; January 17, 1956; assigned to Sahvun Laboratories

Gardocki, J.F., Hutcheon, D.E., Lanbach, G.D. and P'an, S.Y.; U.S. Patent 2,842,478; July 8, 1958; assigned to Chas. Pfizer & Co., Inc.

TETRAZEPAM

Therapeutic Function: Muscle relaxant

Chemical Name: 7-chloro-5-(1-cyclohexen-1-yl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-

2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 10379-14-3

Trade Name	Manufacturer	Country	Year Introduced
Myolastan	Clin-Comar	France	1969
Musaril	Mack-Midy	W. Germany	1980

Raw Materials

7-Chloro-5-cyclohexyl-2-oxo-2,3-dihydro-1H-benzo(f)diazepine-1,4 Sodium hypochlorite Lithium carbonate Sodium methylate Methyl iodide

Manufacturing Process

1,7-Dichloro-5-Cyclohexyl-2-Oxo-2,3-Dihydro 1H-Benzo(f)-Diazepine-1,4: (a) Process Using Sodium Hypochlorite — 40 ml of a solution of sodium hypochlorite of 14.5 British chlorometric degrees are added to a suspension of 5.4 grams of 7-chloro-5-cyclohexyl-2-oxo-2,3-dihydro 1H-benzo(f)diazepine-1,4 in 80 ml of methylene chloride. The mixture is stirred at room temperature for 15 minutes; the solid dissolves rapidly. The organic layer is decanted, washed with water, dried over anhydrous sodium sulfate and the solvent evaporated under reduced pressure without exceeding a temperature of 30°C. The residue is taken up in a little diisopropyl ether and the crystals which form are dried. They are recrystallized as rapidly as possible from ethyl acetate. Colorless crystals are obtained (3.9 grams; yield, 85%); MP_k = 163°C, with decomposition.

(b) Process Using Tertiary-Butyl Hypochlorite — 1.2 grams of tertiary-butyl hypochlorite are added to a suspension of 2.7 grams of 7-chloro-5-cyclohexyl-2-oxo-2,3-dihydro 1H-benzo(f)diazepine-1,4 in 20 ml of methylene chloride and the mixture is stirred and at the same time cooled in a water bath for 30 minutes. The solid dissolves in about 15 minutes. The product is evaporated to dryness under reduced pressure at a temperature below 40°C. The residue is taken up in disopropyl ether and the crystals which separate are dried. Colorless crystals are obtained (2.8 grams; yield, 98%); MP_k = 161° to 162°C, with decomposition, according to U.S. Patent 3,551,412.

7-Chloro-5-(1'-Chlorocyclohexyl)-2-Oxo-2,3-Dihydro 1H-Benzo(f)Diazepine-1,4: A solution of 117 grams of the compound prepared above in 450 ml ethyl acetate is heated under reflux until a precipitate begins to form. From then onwards reflux is continued until a negative reaction is obtained when the reaction mixture is tested with a solution of sodium iodide in acetone. The reaction mixture is left to cool and the solid which separates is dried. Colorless crystals are obtained (76 grams), MP_k = 194° to 195°C, with decomposition. A second portion (14 grams) is isolated by concentrating the mother liquor, MP_k = 194° to 195°C, with decomposition. The total yield is 77%. The melting point is raised to 196° to 197°C by recrystallization from ethyl acetate.

7-Chloro-5-(1'-Cyclohexenyl)-2-0xo-2,3-Dihydro 1H-Benzo(f)Diazepine-1,4: 68 grams of 7-chloro-5-(1'-chlorocyclohexyl)-2-oxo-2,3-dihydro 1H-benzo(f)diazepine-1,4, 34 grams of lithium carbonate and 17 grams of lithium bromide and 340 ml of anhydrous dimethylformamide are placed in a three-necked flask equipped with a mechanical stirrer, immersion thermometer and a reflux condenser connected with a bubble counter.

The reaction mixture is gradually heated, with stirring, until evolution of carbon dioxide commences (about 100°C) and the temperature is maintained thereat until the reaction ceases. The temperature is then raised to 110°C and held thereat for 15 minutes.

The reaction mixture is allowed to cool and the mineral salts separated and dried. The solvent is evaporated under reduced pressure and the residue dissolved in water. It is allowed to crystallize, dehydrated, dried and then recrystallized from ethyl acetate. The product is yellowish crystals (47.5 grams; yield, 80%); $MP_k = 207^{\circ}$ to 208°C.

7-Chloro-5-(1'-Cyclohexenyl)-1-Methyl-2-Oxo-2,3-Dihydro 1H-Benzo(f)Diazepine-1,4: 9,7 grams of sodium methylate are added to a solution of 16.5 grams of 7-chloro-5-(1'-cyclohexenyl)-2-oxo-2,3-dihydro 1H-benzo(f)diazepine-1,4 dissolved in 120 ml of drv dimethylformamide and the mixture stirred for one-half hour. The reaction mixture is cooled in a water bath and a solution of 33.8 grams of methyl iodide dissolved in 35 ml of anhydrous dimethylformamide is then slowly added with stirring. The solution becomes dark brown in color and a precipitate forms. It is stirred for 2 hours, then diluted with a large volume of water and extracted with ethyl acetate. The ethyl acetate solution is washed with water, dried over anhydrous sodium sulfate and the solvent evaporated under reduced pressure. The residue is crystallized from a small volume of ethyl acetate. Brownish yellow crystals are obtained (9 grams; yield, 52%), $MP_k = 144^{\circ}C$.

References

Merck Index 9065 Kleeman & Engel p. 865 DOT 6 (4) 148 (1970) I.N. p. 936

Berger, L. and Sternbach, L.H.; U.S. Patent 3,268,586; August 23, 1966; assigned to Hoffmann-La Roche Inc.

Schmitt, J.; U.S. Patent 3,426,014; February 4, 1969; assigned to Etablissements Clin-Byla, France

Schmitt, J.; U.S. Patent 3,551,412; December 29, 1970; assigned to Etablissements Clin-Byla, France

THIABENDAZOLE

Therapeutic Function: Anthelmintic

Chemical Name: 2-(4-thiazolyl)-1H-benzimidazole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 148-79-8

Trade Name	Manufacturer	Country	Year Introduced
Mintezol	MSD	U.S.	1967
Mintezol	MSD	U.K.	1968
Mintezol	MSD-Chibret	France	1969
Minzolum	Sharp & Dohme	W. Germany	1970

Thiazole-4-carboxylic acid o-Nitroaniline Thionyl chloride Hydrogen chloride Zinc

Manufacturing Process

6.5 grams of thiazole-4-carboxylic acid is stirred with 5.9 grams of thionyl chloride in 20 ml xylene for 10 hours at room temperature to form 4-thiazolyl acid chloride. 1.3 grams of 4-thiazolyl acid chloride and 1.3 grams of o-nitroaniline are then stirred together in 3.5 ml of pyridine at room temperature for about 12 hours. At the end of this time, the mixture is quenched in ice water and the solid nitroanilide recovered by filtration and washed with dilute sodium carbonate solution. The solid is suspended in 15 ml of glacial acetic acid, and 8 ml of 6 N hydrochloric acid added to the suspension. 6 grams of zinc dust is added in small portions to the acetic mixture. After the zinc addition is complete, and the reaction is essentially finished (by visual observation), the reaction mixture is filtered and the filtrate neutralized with concentrated ammonium hydroxide to precipitate 2-(4'-thiazolyl)-benzimidazole. The product is purified by recrystallization from ethyl acetate, according to U.S. Patent 3,274,207.

References

Merck Index 9126 PDR p. 1200 OCDS Vol. 1 p. 325 (1977) DOT 7 (5) 195 (1971) REM p. 1237

Sarett, L.H. and Brown, H.D.; U.S. Patent 3,017,415; January 16, 1962; assigned to Merck & Co., Inc.

Kaufman, A. and Wildman, G.T.; U.S. Patent 3,262,939; July 26, 1966; assigned to Merck

Kollonitsch, J.; U.S. Patent 3,274,207; September 20, 1966; assigned to Merck & Co., Inc. Jones, R.E. and Gal, G.; U.S. Patent 3,274,208; September 20, 1966; assigned to Merck & Co., Inc.

THIAMINE DISULFIDE

Therapeutic Function: Enzyme cofactor vitamin

Chemical Name: N,N'-[dithiobis[2-(2-hydroxyethyl)-1-methylvinylene]]bis[N-[(4-amino-2-methyl-5-pyrimidinyl)methyl] formamide]

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 67-16-3

Trade Name	Manufacturer	Country	Year Introduced
Arcalion	Servier	France	1974

Raw Materials

Thiamine

Potassium ferricyanide

Manufacturing Process

20 parts by weight of thiamin are dissolved in 25 parts of water, a cold solution of 5 parts by weight of caustic soda in 25 parts of water added and the mixture oxidized with a solution of 2.4 parts by weight of caustic soda and 20 parts by weight of potassium ferric cyanide in 80 parts of water while stirring in the cold. The liquid is then evaporated to dryness and the resulting oxidation product extracted with warm butyl alcohol.

The butyl-alcoholic solution is evaporated in vacuo and the residue dissolved with gentle heating in 25 parts by volume of methyl alcohol. 100 parts by volume of acetone are added, the solution filtered and further quantities of acetone added, whereupon crystallization sets in. Yield: 12.2 parts by weight of the pure product, having the melting point 177° to 179°C.

References

Merck Index 9130

I.N. p. 941

Warnat, K.; U.S. Patent 2,458,453; January 4, 1949; assigned to Hoffmann-La Roche Inc.

THIAMPHENICOL

Therapeutic Function: Antibacterial

Chemical Name: D-Threo-2,2-dichloro-N-[β -hydroxy- α -(hydroxymethyl)-p-methylsulfonyl-

phenethyl] -acetamide

Structural Formula:

Common Name: Dextrosulphenidol, thiophenicol

Chemical Abstracts Registry No.: 15318-45-3

Trade Name	Manufacturer	Country	Year Introduced
Thiophenicol	Clin Midy	France	1967
Chlomic J	Kowa Shinyaku	Japan	_
Descocin	Kanto	Japan	_
Efnicol	Nichizo	Japan	_
Ericol	S.S. Pharm	Japan	_
Glitisol Orale	Zambon	Italy	_
Hyrazin	Kowa	Japan	_
Igralin	Zeria	Japan	_
Macphenicol	Nakataki	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Masatirin	Maruko	Japan	-
Namicain	Nippon Kayaku	Japan	_
Neomyson	Eisai	Japan	
Racenicol	Kissei	Japan	
Rigelon	Dojin	Ja pan	-
Rincrol	Tanabe	Japan	-
Roseramin	Takata	Japan	_
Synticol	Nisshin	Japan	_
Thiamcetin	Mochida	Japan	_
Thiamcol	Morishita	Japan	_
Thiamyson	Ohta	Japan	-
Thiancol	Kakenyaku	Japan	_
Thiofact	Showa	Japan	-
Thionicol	Mohan	Japan	_
Thiotal	Sumitomo	Japan	_
Tiozon	Mitsui	Japan	
Unaseran-D	Isei	Japan	_
Urfamycine	Zambon	Italy	_
Urophenyl	Sanwa	Japan	wina

2-Acetylamino-1-(4-methylmercaptophenyl)-1,3-propanediol Hydrogen chloride Ethyl dichloroacetate Peracetic acid

Manufacturing Process

A mixture of 50 parts by weight of racemic 2-acetylamino-1-(4-methylmercaptophenyl)-1,3propanedial, 100 parts by weight of concentrated hydrochloric acid, and 500 parts by weight of water was warmed on a steam bath for thirty minutes. The resulting solution was cooled to about 40°C and was then made strongly alkaline by addition of 35% aqueous sodium hydroxide solution. The alkaline solution was then refrigerated. The white solid which separated from the cooled solution was collected on a filter. There was thus obtained 27 parts by weight of 2-amino-1-(4-methylmercaptophenyl)-1,3-propanediol. This product melted at 130.7°C to 131.9°C after recrystallization from methanol.

This compound was converted to the tartrate and the optical isomers were resolved.

A mixture of 1.1 g of 2-amino-1-(4-methylmercaptophenyl)-1,3-propanediol, obtained as described above and 1.6 ml of ethyl dichloroacetate was heated on a steam bath for three hours, The resulting viscous yellow oil was dissolved in 25 ml of ethylene chloride and filtered hot with charcoal, and the filtrate was allowed to cool to about 25°C. From the filtrate there separated 0.92 g of tiny white leaflets which were collected on a filter. Recrystallization of this product, which was a dextro-rotary form of 2-dichloroacetylamino-1-(4-methylmercaptophenyl)-1,3-propanediol from nitroethane yielded the pure product, which melted at 111.6°C to 112.6℃.

7 g of the 2-dichloroacetylamino-1-(4-methylmercaptophenyl)-1,3-propanediol obtained as described above was dissolved in 30 ml of acetone. To this solution there was added dropwise with stirring 10 ml of 40% peracetic acid. The temperature during the reaction was maintained at 39°C to 45°C by cooling the reaction vessel. After stirring the mixture for two hours, it was diluted with 100 ml of water and the solution allowed to stand over the weekend in the refrigerator. The solid which separated from solution was collected on a filter, washed several times with ice water, and dried overnight at 70°C.

References

Merck Index 9140 Kleeman & Engel p. 874

OCDS Vol. 2 p. 45 (1980)

I.N. p. 942

Suter, C.M.; U.S. Patent 2,759,976; August 21, 1956; assigned to Sterling Drug, Inc.

Parke, Davis & Co.; British Patent 770,277; March 20, 1957

THIAMYLAL

Therapeutic Function: Anesthetic (injectable)

Chemical Name: Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidine-

dione

Common Name: Thioseconal

Structural Formula:

Chemical Abstracts Registry No.: 77-27-0

Trade Name	Manufacturer	Country	Year Introduced
Surital	Parke Davis	U.S.	1951
Citosol	Kyorin	Japan	_
Isozoi	Yoshitomi	Japan	-

Raw Materials

Diethyl allyl-(1-methylbutyl)malonate

Sodium Methanol

Thiourea

Manufacturing Process

In 450 cc of methanol is added 47 grams of sodium metal and the mixture allowed to completely react to form a methanol solution of sodium methoxide. The methanol solution of sodium methoxide is then cooled to 60°C and 68 grams of thiourea which has been thoroughly dried is added with stirring until a uniform solution is formed. Thereafter, 157 grams of diethyl allyl-(1-methylbutyl)malonate is added to the solution of the sodio derivative of thiourea at a temperature of 55°C and the condensation reaction mixture maintained at the said temperature for 24 hours. Methyl alcohol is removed under vacuum during the course of the reaction while maintaining a temperature of 55°C.

The viscous reaction mixture is then poured into 1.5 liters of ice water and agitated to form a uniform solution. The solution is treated with activated carbon and filtered. Thereafter, 80% acetic acid is added until the filtered solution remains acidic to litmus. The precipitate formed is filtered and washed thoroughly with distilled water. The product is airdried at a temperature of 95° to 100°C for 48 hours to yield 133 grams of 5-allyl-5-(1methylbutyl)-2-thiobarbituric acid having a melting point of 132° to 133°C and assaying at 99.5% pure, from U.S. Patent 2,876,225.

References

Merck Index 9141

Kieeman & Engel p. 875 OCDS Vol. 1 p. 274 (1977)

I.N. p. 942

REM p. 1046

Volwiler, E.H. and Tabern, D.L.; U.S. Patent 2,153,729; April 11, 1939; assigned to Abbott

Laboratories

Donnison, G.H.; U.S. Patent 2,876,225; March 3, 1959; assigned to Abbott Laboratories

THIETHYLPERAZINE

Therapeutic Function: Antiemetic

Chemical Name: 2-(Ethylthio)-10-[3-(4-methyl-1-piperazinyl)propyl] phenothiazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1420-55-9; 52239-63-1 (Maleate)

Trade Name	Manufacturer	Country	Year Introduced
Torecan	Boehr, Ingel.	U.S.	1961
Torecan	Sandoz	Italy	1962
Torecan	Sandoz	France	1962
Torecan	Sandoz	U.K.	1962
Torecan	Sandoz	W. Germany	1964
Toresten	Sandoz-Sankyo	Japan	_

Raw Materials

3-Ethylmercapto-phenothiazine

1-Methyl-4-(3'-chloropropyl-1')-piperazine

Sodium amide

Manufacturing Process

26.1 parts of 3-ethylmercapto-phenothiazine (melting point 95°C to 97°C), 4.7 parts of finely pulverized sodium amide and 120 parts by volume of absolute xylene are heated to boiling for two hours, under reflux and while stirring the reaction mixture, at an oil-bath temperature of 180°C. Without interrupting the heating, a solution of 20.0 parts of 1-methyl-4-(3'chloropropyl-1')-piperazine (boiling point 95°C to 97°C at a pressure of 10 mm Hg) in 20 parts by volume of xylene is added dropwise in the course of 1½ hours. After heating 3 more hours, the reaction mixture is cooled and 10.0 parts of ammonium chloride added; the mixture is then shaken out three times, using 50 parts by volume of water each time. The xylene solution is extracted with 250 parts by volume of aqueous tartaric acid of 15% strength, after which the tartaric acid extract is washed with 80 parts by volume of benzene and then rendered phenolphthalein-alkaline by the addition of 60 parts by volume of concentrated aqueous caustic soda solution. The base which precipitates is taken up in a total of 150 parts by volume of benzene; the benzene layer is dried over potassium carbonate and is then evaporated under reduced pressure. The residue from the evaporation is distilled in a high vacuum. After separating a preliminary distillate which passes over up to 226°C under a pressure of 0.01 mm Hg the main fraction-3-ethylmercapto-10-[3'(1"-methyl-piperazyl-4")-propyl-1']-phenothiazine—which distills at 226°C to 228°C under the last-mentioned pressure is collected. The analytically pure base boils at 227°C under a pressure of 0.01 mm Hg and melts at 62°C to 64°C.

Upon the addition of ethanolic HCl to a solution, cooled to 0°C, of 26.38 parts of the free base in 130 parts by volume of absolute ethanol, until a Congo-acid reaction is achieved, the crystalline dihydrochloride of 3-ethylmercapto-10-[3'-(1"-methyl-piperazyl-4")-propyl-1']phenothiazine is precipitated. The analytically pure salt has a melting point of 214°C to 216°C (bubbles); it begins to sinter at 205°C. The dimaleate melts at 188°C to 190°C after sintering from 180°C (recrystallized from methanol).

References

Merck Index 9151 Kleeman & Engel p. 875 PDR p. 683 OCDS Vol. 1 p. 382 (1977) DOT 9 (6) 228 (1973) 1.N. p. 943

REM p. 810

Renz, J., Bourguin, J.P., Gamboni, G. and Schwarb, G.; U.S. Patent 3,336,197; August 15, 1967; assigned to Sandoz, Ltd. (Switz.)

THIHEXINOL

Therapeutic Function: Anticholinergic

Chemical Name: α -[4-(Diethylamino)cyclohexyl] - α -2-thienyl-2-thiophene-methanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53626-54-3

Trade Name	Manufacturer	Country	Year Introduced
Sorboquel	Schering	U.S.	1960
Entoquel	White	U.S.	1961

Raw Materials

Ethyl-p-aminobenzoate Hydrogen Formaldehyde 2-Bromothiophene Magnesium

Manufacturing Process

The requisite intermediate, ethyl 4-dimethylaminocyclohexylcarboxylate is prepared as follows: 33 g of ethyl p-aminobenzoate dissolved in 300 cc of absolute ethanol containing 16.8 cc of concentrated hydrochloric acid is hydrogenated at 50 pounds hydrogen pressure in the presence of 2 g of platinum oxide. The theoretical quantity of hydrogen is absorbed in several hours, the catalyst removed by filtration and the filtrate concentrated to dryness in vacuo. The residue is dissolved in water, made alkaline with ammonium hydroxide and extracted with chloroform. After removal of the solvent, the residual oil is distilled to yield ethyl 4aminocyclohexylcarboxylate, boiling point 114°C to 117°C/10 mm.

A mixture of 49 g of this ester compound, 76 g of 98% formic acid and 68 ml of formalin solution is heated under reflux for 8 hours. The solvents are then removed in vacuo on the steam bath, the residue dissolved in water, made alkaline with ammonium hydroxide and extracted with chloroform. Removal of the solvent and distillation in vacuo yields ethyl 4-dimethylaminocyclohexylcarboxylate, boiling point 122°C to 125°C/10 mm.

To a solution of thienyl magnesium bromide prepared from 21.4 g of magnesium and 144 g of 2-bromothiophene are added 39.8 g of ethyl 4-dimethylaminocyclohexylcarboxylate. The mixture is allowed to warm to room temperature and stirred for an additional six hours. The reaction mixture is then decomposed with dilute ammonium chloride solution and extracted with ether. The combined ether extracts are extracted thoroughly with 10% hydrochloric acid and the acid solution made alkaline with ammonium hydroxide. The aqueous solution is extracted with chloroform which is then washed with water, dried and evaporated to a residue in vacuo. Recrystallization of the residue from hexane yields α , α^1 -dithienyl-4-dimethylaminocyclohexyl carbinol, melting point 156°C to 157°C after recrystallization from benzene.

References

Merck Index 9152 I.N. p. 943 Villani, F.J.; U.S. Patent 2,764,519; September 25, 1956; assigned to Schering Corp.

THIOCARBARSONE

Therapeutic Function: Antiamebic

Chemical Name: 2,2'-[[[4-[(Aminocarbonyl)amino] phenyl] arsinidene] bis(thio)] bis[acetic

acid]

Structural Formula:

Common Name: Thio-carbamisin

Chemical Abstracts Registry No.: 120-02-5

Trade Name	Manufacturer	Country	Year Introduced
Thiocarbarsone	Lilly	U.S.	1951

Thioglycolic acid Carbarsone oxide

Manufacturing Process

121 g of thioglycolic acid and 100 g of carbarsone oxide are reacted in a solution of 128 g of sodium bicarbonate in 2 liters of water.

The mixture is heated on a steam bath for 20 minutes. The reaction mixture is then cooled and filtered to remove a small amount of insoluble material. The filtrate is diluted with about 600 cc of water and is acidified with concentrated hydrochloric acid.

On treating the reaction mixture with acid, di-(carboxymethylthio)-p-carbamidophenylarsine precipitates, and is separated by filtration and dried.

Di-(carboxymethylthio)-p-carbamidophenylarsine thus prepared was obtained as a white amorphous solid, soluble in dilute alkali. It contained about 19,85% of arsenic as compared with the calculated amount of 19,09%.

References

Merck Index 9162

I.N. p. 944

Rohrmann, E.; U.S. Patent 2,516,831; July 25, 1950; assigned to Eli Lilly & Co.

THIOGUANINE

Therapeutic Function: Cancer chemotherapy

Chemical Name: 2-aminopurine-6-thiol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 154-42-7

Trade Name	Manufacturer	Country	Year Introduced
Thioguanine Tabloid	Burroughs Wellcome	U.S.	1966
Lanvis	Wellcome	U.K.	1972
Thioguanine Wellcome	Burroughs Wellcome	Italy	1974
Thioguanin Wellcome	Burroughs Wellcome	W. Germany	1975

Raw Materials

Guanine

Phosphorus pentasulfide

Manufacturing Process

A mixture of 2.7 grams of finely divided guanine, 10 grams of pulverized phosphorus pentasulfide, 10 ml of pyridine and 100 ml of tetralin was heated at 200°C with mechani-

cal stirring for 5 hours. After cooling, the mixture was filtered and the insoluble residue treated with 150 ml of water and 50 ml of concentrated ammonium hydroxide. The ammoniacal solution was filtered, heated to boiling and acidified with acetic acid. Upon cooling, 2-amino-6-mercaptopurine precipitated as a dark yellow powder, according to U.S. Patent 2.697,709.

References

Merck Index 9177 Kieeman & Engel p. 892 PDR p. 765 OCDS Vol. 2 p. 464 (1980) I.N. p. 954 REM p. 1153

Hitchings, G.H. and Elion, G.B.; U.S. Patent 2,697,709; December 21, 1954; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings, G.H. and Elion, G.B.; U.S. Patent 2,800,473; July 23, 1957; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings, G.H. and Elion, G.B.; U.S. Patent 2,884,667; May 5, 1959

Hitchings, G.H., Elion, G.B. and Mackay, L.E.; U.S. Patent 3,019,224; January 30, 1962; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hitchings, G.H., Elion, G.B. and Goodman, I.; U.S. Patent 3,132,144; May 5, 1964; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

THIOPROPAZATE

Therapeutic Function: Antipsychotic

Chemical Name: 4-[3-(2-Chlorophenothiazin-10-yl)propyl] -1-piperazine-ethanol acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 84-06-0; 146-28-1 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Dartal	Searle	U.S.	1957
Dartalan	Searle	U.K.	
Vesitan	Boehr. Mann.	W. Germany	<u>-</u> -

Raw Materials

2-Chloro-10-(γ-chloropropyl)phenothiazine Piperazine β-Bromoethyl acetate

Manufacturing Process

A mixture of 155 parts of 2-chloro-10-(γ -chloropropyl)phenothiazine, 75 parts of sodium

iodide, 216 parts of piperazine and 2,000 parts of butanone is refluxed for 8 hours, concentrated and extracted with dilute hydrochloric acid. The extract is rendered alkaline by addition of dilute potassium carbonate and extracted with ether. This ether extract is washed with water, dried over anhydrous potassium carbonate, filtered and evaporated. Vacuum distillation at 0.1 mm pressure yields 2-chloro-10-(γ -piperazinopropyl)phenothiazine at about 214°C to 218°C.

A mixture of 50 parts of the distillate, 25.6 parts of β -bromoethyl acetate, 10.7 parts of potassium carbonate and 400 parts of toluene is stirred at reflux temperature for 16 hours. The mixture is heated with water. The organic layer is separated, washed with water and extracted with dilute hydrochloric acid. The resulting extract is washed with benzene, rendered alkaline and extracted with benzene. The resulting benzene solution is dried over anhydrous potassium carbonate, filtered and concentrated. The residue is dissolved in 300 parts of ethanol and treated with 2.2 equivalents of a 25% solution of anhydrous hydrochloric acid in 2-propanol. The resulting crystals are recrystallized from 400 parts of ethanol and 10 parts of water. The dihydrochloride of N-(β -acetoxyethyl)-N'-(γ -(2'-chloro-10'-phenothiazine)propyl] piperazine melts unsharply at about 200°C to 230°C.

References

Merck Index 9198 Kieeman & Engel p. 878 OCDS Vol. 1 p. 383 (1977)

I.N. p. 946

Cusic, J.W.; U.S. Patent 2,766,235; October 9, 1956

THIOPROPERAZINE

Therapeutic Function: Neuroleptic, antiemetic

Chemical Name: N,N-Dimethyl-10-[3-(4-methyl-1-piperazinyl)propyl] -phenothiazine-2-

sulfonamide

Common Name: Thioperazine

Structural Formula:

Chemical Abstracts Registry No.: 316-81-4

Trede Name	Manufacturer	Country	Year Introduced
Majeptil	Specia	France	1960
Cephalmin	Shionogi	Japan	_
Mayeptil	Rhodia Pharma	W. Germany	_
Vontil	S.K.F.	U.S.	-

Raw Materials

3-Dimethylsulfamovlphenothiazine

3-(4-Methyl-1-piperazinyl)-1-chloropropane

Sodium amide

Manufacturing Process

A solution of 3-dimethylsulfamoylphenthiazine (5 g) in anhydrous xylene (100 cc) is heated under reflux for 1 hour with sodamide (0.67 g). 3-(4-methyl-1-piperazinyl)-1-chloropropane (3.2 g) in solution in anhydrous xylene (20 cc) is added and the mixture heated under reflux for 5 hours. After treatment of the reaction products, a crude oily base (2.5 g) is obtained after treatment. By the addition of a solution of fumaric acid in ethanol to an ethanolic solution of the base, 3-dimethylsulfamoyl-10-(3- 4^1 -methyl-1 1 -piperazinylpropyl)-phenthiazine diacid furnarate (2.6 g) is obtained, melting point 182°C. The base recrystallized from ethyl acetate melts at about 140°C.

References

Merck Index 9199 Kleeman & Engel p. 879

I.N. p. 946

Soc. des Usines Chimiques Rhone-Poulenc; British Patent 814,512; June 3, 1959

THIORIDAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[2-(1-methyl-2-piperidyl)ethyl] -2-(methylthio)phenothiazine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50-52-2; 130-61-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Mellaril	Sandoz	U.S.	1959
Mellaril	Sandoz	France	1960
Baylaril	Bay	U.S.	1983
Mellerette	Wander	Italy	-
Melleretten	Sandoz	W. Germany	_
Novoridazide	Novopharm	Canada	_
Orsanil	Orion	Finland	_
Ridazin	Taro	Israel	_
Stalleril	Pharmacai	Finland	_
Thioril	1.C.N.	Canada	_

Raw Materials

m-Methylmercaptoaniline Potassium o-chlorobenzoate lodine 2-(N-methylpiperidyl-2')-1-chloroethane Sodium amide

Manufacturing Process

N-(m-methylmercapto-phenyl)-aniline (MP 59° to 61°C) is prepared by condensing m-methylmercapto-aniline (BP 163° to 165°C/16 mm Hg) with the potassium salt of o-chloro-benzoic acid and decarboxylating the resultant N-(m-methylmercapto-phenyl)-anthranilic acid (MP 139° to 141°C) by heating, and then distilling.

9.87 parts of N-(m-methylmercapto-phenyl)-aniline are heated with 2.93 parts of sulfur and 0.15 part of powdered iodine for 15 minutes in a bath at about 160°C. Upon termination of the ensuing evolution of hydrogen sulfide, animal charcoal is added to the reaction mixture and recrystallization carried out first from 40 parts by volume of chlorobenzene, and then from 25 to 30 parts by volume of benzene at the boiling temperature. The obtained citron-yellow 3-methylmercapto-phenothiazine has a MP of 138° to 140°C.

17.82 parts of 2-methylmercapto-phenothiazine, 3.4 parts of finely pulverized sodamide and 80 parts by volume of absolute xylene are heated to boiling for two hours at a bath temperature of 180°C under a reflux condenser and while stirring the reaction mixture. Without interrupting the heating, a solution of 13.2 parts of 2-(N-methyl-piperidyl-2')-1-chloro-ethane in 40 parts by volume of absolute xylene is then added dropwise in the course of 1½ hours. After further heating for 3 hours, the reaction mixture is cooled and, after the addition of 5 parts of ammonium chloride, is shaken three times with water, using 25 parts by volume each time. The xylene solution is extracted once with 35 parts by volume of 3 normal acetic acid and then three times, each time with 15 parts by volume of the said acid, after which the acetic acid extract is washed with 60 parts by volume of ether and is then made phenolphthalein-alkaline by means of 25 parts by volume of concentrated aqueous caustic soda solution.

The precipitated oily base is taken up in a total of 100 parts by volume of benzene. The benzene layer, dried over potassium carbonate, is filtered and then evaporated under reduced pressure. The residue from the evaporation is distilled in a high vacuum; after separating a preliminary distillate which passes over up to 228°C under a pressure of 0.92 mm Hg, the principal fraction, 2-methylmercapto-10-[2¹-(N-methyl-piperidyl-2")-ethyl-1¹]-phenothiazine, which distills over at 228° to 232°C under the last-mentioned pressure, is collected. The analytically pure base has a BP of 230°C/0.02 mm Hg.

References

Merck Index 9202 Kleeman & Engel p. 879 PDR pp. 1586, 1606 OCDS Vol. 1 p. 389 (1977) DOT 9 (6) 227 (1973) I.N. p. 946 REM p. 1090

Renz, J., Bourquin, J.P., Gamboni, G. and Schwarb, G.; U.S. Patent 3,239,514; March 8, 1966; assigned to Sandoz Ltd., Switzerland

THIOTEPA

Therapeutic Function: Antineoplastic

Chemical Name: 1,1',1''-Phosphionothioylidynetrisaziridine

Common Name: Triethylenethiophosphoramide

Structural Formula:

Chemical Abstracts Registry No.: 52-24-4

Trade Name	Manufacturer	Country	Year Introduced
Thio-Tepa	Lederle	U.S.	1959
Onca-Tiotepa	Simes	Italy	_
Tespamin	Somitomo	Japan	-

Raw Materials

Ethyleneimine

Thiophosphoryl chloride

Manufacturing Process

A solution of 30.3 parts of triethylamine and 12.9 parts of ethylenimine in 180 parts of dry benzene is treated with a solution of 16.9 parts of thiophosphoryl chloride in 90 parts of dry benzene at 5° C to 10° C. Triethylamine hydrochloride is filtered off. The benzene solvent is distilled from the filtrate under reduced pressure and the resulting crude product is recrystalized from petroleum ether. The N,N',N''-triethylenethiophosphoramide had a melting point of 51.5° C.

References

Merck Index 9484 Kleeman & Engel p. 880 PDR p. 1030 I.N. p. 946 REM p. 1156

Kun, E. and Seeger, D.R.; U.S. Patent 2,670,347; February 23, 1954; assigned to American Cyanamid Co.

THIOTHIXENE

Therapeutic Function: Tranquilizer

Chemical Name: (Z)-N,N-dimethyl-9-[3-(4-methyl-1-piperazinyl)propylidene] thioxanthene-

2-sulfonamide

Common Name: Tiotixen

Structural Formula:

Chemical Abstracts Registry No.: 3313-26-6

Trade Name	Manufacturer	Country	Year Introduced
Navane	Roerig	U.S.	1967
Navane	Pfizer	U.K.	1967
Orbinamon	Pfizer	W. Germany	1968
Navane	Pfizer Taito	Japan	1970
Navane	Pfizer	Italy	1971

Raw Materials

Thioxanthene	Chlorosulfonic acid
Thionyl chloride	Dimethylamine
n-Butyllithium	Methyl acetate
Paraformaldehy de	1-Methylpiperazine
Sodium borohydride	Phosphorus oxychloride

Manufacturing Process

Sodium Thioxanthene-2-Sulfonate: A solution of thioxanthene (32.2 grams, 0.160 mol) in 160 ml of chloroform was cooled to 0°C and chlorosulfonic acid (12.4 ml, 0.190 mol) added as rapidly as possible while maintaining the internal temperature below 10°C. After the addition was complete, the reaction mixture was allowed to approach room temperature during 30 minutes, then refluxed for an additional 20 minutes. The deep red solution was poured onto 100 grams of crushed ice and to convert the sulfonic acid to its sodium salt there was added 20 grams of sodium chloride. After filtering the slurry through a sintered glass funnel, the filter cake was washed with 50 ml of chloroform and 50 ml of 20% sodium chloride solution.

The crude sulfonate product was digested in 1,500 ml of boiling water, and filtered at the boiling point. Crystallization was allowed to proceed overnight at 4°C and after filtration and vacuum drying at 100°C, 33.3 grams (69%) of glistening, colorless plates were obtained.

2-Dimethylsulfamylthioxanthene: To a slurry of dry sodium thioxanthene-2-sulfonate (33.3 grams, 0.111 mol) in 50 ml of N,N-dimethylformamide was added thionyl chloride (14.3 grams, 0.122 mol) in divided portions. An exothermic reaction ensued with complete dissolution being effected in minutes. Treatment of the reaction mixture with crushed ice precipitated a gum which crystallized after a short period of stirring. The sulfonyl chloride was filtered, washed with water, and stirred with 100 ml of liquid dimethylamine. After allowing the mixture to evaporate to dryness, water was added and the sulfonamide filtered, washed with water, and dried in vacuo. The crude product (32.5 grams, 96%) obtained melts at 163.5° to 165°C. One crystallization from ethanol chloroform yielded an analytical sample, MP 164.5 to 166.5°C.

9-Acetyl-2-Dimethylsulfamylthioxanthene: A suspension of 2-dimethylsulfamylthioxanthene (12.22 grams, 0.04 mol) in 60 ml of dimethoxymethane is cooled to 0°C and 17.2 ml of a 2.91 M solution of n-butyl lithium in heptane is added slowly in a nitrogen atmosphere while the temperature is maintained below 10°C. After an additional 10 minutes of stirring, the cooling bath is removed and a solution of 2.96 grams of methyl acetate in 20 ml of dimethoxyethane is added during ½ hour and then the mixture is stirred at 25°C for an additional 3 hours. The reaction mixture is then treated with 60 ml of ethyl acetate and with 60 ml of a 10% aqueous ammonium chloride solution. The layers are separated and the ethyl acetate layer is washed once with water (25 ml) and then the solvent is removed by distillation.

The product is purified by the method of Teitelbaum, J. Org. Chem., 23, 646 (1958). The gummy residue is treated with 7.8 grams of Girard's "T" reagent, a commercially available (carboxymethyl) trimethylammonium chloride hydrazide which can be prepared by the method described by Girard in Organic Syntheses, collective volume II, page 85

(1943), 0.2 grams of a methacrylic-carboxylic cation exchange resin of 20 to 50 mesh particle size, such as Amberlite IRC-50 (Rohm & Haas Co.) and 20 ml of ethanol. The mixture is refluxed for 1 hour, then is cooled to 25°C, is diluted with 80 ml of water and is filtered. The filtrate is stirred for 16 hours with 20 ml of aqueous formaldehyde and the product precipitates as a white solid, MP 118° to 123°C, net 5.6 grams, yield, 40% of the theoretical.

9-(3-Dimethylaminopropionyl)-2-Dimethylsulfamylthioxanthene: To a mixture of 9-acetyl-2-dimethylsulfamylthioxanthene (54.1 grams, 0.155 mol), 100 ml isopropanol, 10.6 grams paraformaldehyde and 16.4 grams (0.200 mol) dimethylamine hydrochloride, is added 1.0 milliliter of concentrated hydrochloric acid. The mixture is refluxed in a nitrogen atmosphere for 24 hours, then is concentrated to one-half volume by distillation of part of the solvent in vacuo. The concentrate is treated with 60 ml of ethyl acetate then the mixture is cooled to 5°C whereupon the crystalline product precipitates. This is removed by filtration and, after drying, weighs 47.8 grams, and melts at 177° to 181°C. After two crystallizations from isopropanol the product is obtained as the monohydrochloride addition salt, MP 187° to 189°C.

9-[3-(4-Methyl-1-Piperazinyl)-1-Hydroxypropyl] -2-Dimethylsulfamylthioxanthene: A mixture of 9-(3-dimethylaminopropionyl)-2-dimethylsulfamylthioxanthene hydrochloride (17 grams, 0.039 mol) and 20.0 grams (0.2 mol) 1-methylpiperazine in 40 ml of isopropanol is refluxed in a nitrogen atmosphere for 3 hours. 200 ml ethyl acetate is then added and the mixture is washed twice with 100 ml of water, the organic layer is separated and dried with anhydrous sodium sulfate, then the solvent is removed by distillation in vacuo. The 9-[3-(4-methyl-1-piperazinyl)propionyl] -2-dimethylsulfamylthioxanthene which remains as a residue is treated with a solution of 3.03 grams (0.08 mol) of sodium borohydride in 100 ml of ethanol. The mixture is refluxed under nitrogen for 3 hours, is cooled and is treated with an equal volume of water. The aminoalcohol is extracted 3 times with equal volumes of ethyl acetate. The organic layer is separated and is dried with anhydrous magnesium sulfate, then the solvent is removed by distillation leaving the product as a white, amorphous solid.

9-[3-(4-Methyl-1-Piperazinyl)-Propylidene] -2-Dimethylsulfamylthioxanthene: A solution of 12 grams of 9-[3-(4-methyl-1-piperazinyl)-1-hydroxypropyl] -2-dimethylsulfamylthioxanthene in 20 ml of pyridine is cooled to 0°C in an ice bath and 18.4 ml of phosphorus oxychloride dissolved in 60 ml of pyridine is added dropwise. The mixture is allowed to warm to 25°C during 30 minutes, then is heated, immersed in an 80°C oil bath, for an additional 30 minutes. The dark brown reaction mixture is cooled to 25°C then is poured onto 50 grams of ice. After the ice has melted, the aqueous solution is saturated with potassium carbonate and the liberated oil is extracted with three 150 ml portions of ethyl acetate. The solvents are removed from the separated organic layer by distillation. The product, a light brown amorphous solid, remains as a residue from the distillation. The free base is dissolved in 50 ml of acetone, is treated with two stoichiometric equivalents of maleic acid in 50 ml of acetone and the white crystalline dimaleate salt is removed by filtration. There is obtained 12.3 grams, 47% yield, MP 158° to 160.5°C (after recrystallization from ethanol).

References

Kleeman & Engel p. 894 PDR p. 1528 OCDS Vol. 1 p. 400 (1977) & 2, 412 (1980) DOT 4 (4) 163 (1968) & 9 (6) 229 (1973) I.N. p. 955 REM p. 1091

Bloom, B.M. and Muren, J.F.; U.S. Patent 3,310,553; March 21, 1967; assigned to Chas. Pfizer & Co., Inc.

THIPHENAMIL HYDROCHLORIDE

Therapeutic Function: Antispasmodic

Chemical Name: α-phenylbenzeneethanethioic acid S-[2-(diethylamino)ethyl] ester hydro-

chloride

Common Name: 2-diethylaminoethyl diphenylthiolacetate hydrochloride

Structural Formula:

Chemical Abstracts Registry No.: 548-68-5; 82-99-5 (Base)

Trade Name Manufacturer Country Year Introduced Trocinate **Poythress** U.S. 1950

Raw Materials

2-Diethylaminoethanethiol Diphenylacetyl chloride

Manufacturing Process

The following procedure is described in U.S. Patent 2,510,773: To an ice-cold solution of 13.3 grams of 2-diethylaminoethanethiol in 100 cc of dry benzene is slowly added a solution of 23.05 grams of diphenylacetyl chloride in 200 cc of dry benzene. The mixture is stirred 2 hours, then heated to dissolve the fine white solid that is formed. Upon cooling 31.3 grams of 2-diethylaminoethyl diphenylthiolacetate hydrochloride precipitates. It recrystallizes from a mixture of benzene and petroleum ether (BP 60° to 70°C) as rosettes of tiny needles and melts at 129° to 130°C. From a mixture of absolute ethanol and ethyl acetate it recrystallizes as large, almost transparent prisms,

References

Merck Index 9215

REM p. 919

Richardson, A.G.; U.S. Patent 2,390,555; December 11, 1945; assigned to William P. Poythress & Company, Inc.

Clinton, R.O.; U.S. Patent 2,510,773; June 6, 1950; assigned to Sterling Drug Inc.

THONZYLAMINE HYDROCHLORIDE

Therapeutic Function: Antihistaminic

Chemical Name: N-[(4-Methoxyphenyl)methyl]-N,N'-dimethyl-N-2-pyrimidinyl-1,2-ethane-

diamine monohydrochloride

Common Name: ~

Structural Formula:

Chemical Abstracts Registry No.: 63-56-9

Trade Name	Manufacturer	Country	Year Introduced
Neohetramine	Warner Lambert	U.S.	1948
Anahist	Warner Lambert	U.S.	1949
Tonamil	Ecobi	Italy	_

2-(p-Methoxybenzyl)aminopyrimidine Sodium amide Dimethylaminoethyl chloride

Manufacturing Process

54 g of 2-(p-methoxybenzyl)aminopyrimidine and 12.0 g of sodamide were suspended in 250 cc of toluene and were refluxed for 31 hours. To the thus prepared sodium salt of 2-(p-methoxybenzyl)aminopyrimidine, 28.1 g of dimethylaminoethyl chloride were added and refluxed under continuous stirring for 26 hours. After cooling, the reaction mixture was extracted with dilute hydrochloric acid at about pH 5.0, removing the product thus formed containing only very little of the unreacted 2-(p-methoxybenzyl)aminopyrimidine. This solution was then made alkaline to liberate the free base of the product, which was extracted with ether. The ether solution was evaporated and the residue vacuum distilled. The product, 2-(p-methoxybenzyl, dimethylaminoethyl)aminopyrimidine forms an oily liquid, boiling point 185°C to 187°C at 2.2 mm.

References

Merck Index 9219 OCDS Vol. 1 p. 52 (1977) I.N. p. 947

Friedman, H.L. and Tolstoouhov, A.V.; U.S. Patent 2,465,865; March 29, 1949; assigned to Pyridium Corp.

TIADENOL

Therapeutic Function: Cholesterol-reducing agent

Chemical Name: 2,2'-(decamethylenedithio)diethanol

Common Name: -

Structural Formula: HOCH2CH2S(CH2)10SCH2CH2OH

Chemical Abstracts Registry No.: 6964-20-1

Trade Name	Manufacturer	Country	Year Introduced
Fonlipol	Lafon	France	1972
Tiaden	Malesci	Italy	1979
Braxan	Bago	Argentina	-
Delipid	Coop. Farm.	Italy	_
Eulip	Robin	Italy	-
Millaterol	Therapia	Spain	
Tiaclar	C.I.	Italy	-
Tiodenol	Leti	Spain	-

Thioethylene glycol Decamethylene bromide

Manufacturing Process

Thioethylene glycol, HSCH2CH2OH (prepared from ethylene oxide and hydrogen sulfide) is first reacted with sodium to give HOCH2CH2SNa. It is then reacted with decamethylene bromide, Br(CH₂)₁₀Br to give tiadenol.

References

Merck Index 9263 Kleeman & Engel p. 881 DOT 8 (12) 454 (1972) I.N. p. 948

Williams, J.L.R. and Cossar, B.C.; U.S. Patent 3,021,215; February 13, 1962; assigned to Eastman Kodak Company

TIANEPTINE

Therapeutic Function: Antidepressant

Chemical Name: Sodium 7-[8-chloro-10-dioxo-11-methyldibenzo[c,f] thiazepin-(1,2)-5-yl] -

aminoheptanoate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 66981-73-5

Trade Name	Manufacturer	Country	Year Introduced
Stablon	Servier	France	1983

Raw Materials

Ethyl 7-aminoheptanoate 5,8-Dichloro-10-dioxo-11-methyldibenzo[c,f] thiazepine(1,2) Sodium hydroxide

Manufacturing Process

A solution of 27.6 g (0.16 mol) of freshly distilled ethyl 7-aminoheptanoate in 40 ml of nitromethane was added all at once and with mechanical stirring to a suspension of 26.2 g (0.08 mol) of 5,8-dichloro-10-dioxo-11-methyldibenzo(c,f) thiazepine(1,2) in 120 ml of nitromethane. The whole was heated to 55°C for 30 minutes, the solvent was then evaporated in vacuo and the residue was taken up in water. The crude ester was extracted with ether. After evaporation of the ether 36 g of crude ester were obtained, and 30 g (0.065 mol) thereof were treated under reflux with a solution of 2.8 g (0.07 mol) of sodium hydroxide in 75 ml of ethanol and 25 ml of water. After one hour's refluxing, the alcohol was evaporated in vacuo. The residue was taken up in 150 ml of water.

The mixture was twice extracted with 75 ml of chloroform and the aqueous phase was evaporated in vacuo. The sodium salt was then dissolved in 150 ml of chloroform, the solution was dried over sodium sulfate and the product precipitated with anhydrous ether.

The salt was filtered off, washed with ether and dried at 50°C. 13 g of sodium 7-[8-chloro-10-dioxo-11-methyldibenzo[c,f] thiazepin-(1,2)-aminoheptanoate, melting with decomposition at about 180°C, were obtained.

References

Merck Index 9265

DFU 4 (7) 522 (1979) (As S-1574) & 6 (12) 797 (1981)

DOT 19 (6) 306 (1983)

Malen, C., Danree, B. and Poignant, J.C.; U.S. Patents 3,758,528; September 11, 1973; and 3,821,249; June 28, 1974; both assigned to Societe et Nom Collectif Science Union et Cie, Societe Française de Recherche Medicale

TIAPRIDE

Therapeutic Function: Antiemetic

Chemical Name: N-(Diethylaminoethyl)-2-methoxy-5-methylsulfonylbenzamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 51012-32-9; 51012-33-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Tiapridal	Delagrange	France	1977
Tiapridex	Schuerholz	W, Germany	1977
Sereprile	Vita	Italy	1977
Tiapridal	Pharmos	Switz.	1981
Italprid	Prophin	Italy	_
Neuropri	Italchemi	Italy	_

Raw Materials

2-Methoxy-5-methylsulfonylbenzoic acid Isobutyl chloroformate N,N-diethylethylenediamine

Manufacturing Process

5 g of 2-methoxy-5-methylsulfonylbenzoic acid, 50 ml of dioxan, 3.02 ml of triethylamine and 3 g of isobutyl chloroformate were introduced into a 250 ml balloon flask at ambient temperature.

After the mixture had been stirred for 30 minutes, 3 g of N,N-diethylethylenediamine were added. The reaction mixture was stirred for 6 hours and the solvents were evaporated under vacuum.

The residue was dissolved in 50 ml of water and the solution was made alkaline with sodium hydroxide. The precipitate formed was filtered, washed and dried in a drying oven at 60°C. 6 g of N-(diethylaminoethyl)-2-methoxy-5-methylsulfonylbenzamide (melting point: 124°C to 125°C) was produced.

References

DFU 1 (2) 88 (1976) Kleeman & Engel p. 881 DOT 13 (8) 340 (1977)

I.N. p. 949

Societe d'Etudes Scientifiques et Industrielles de l'Ile-de-France; British Patent 1,394,563; May 21, 1975

TIAPROFENIC ACID

Therapeutic Function: Antiinflammatory

Chemical Name: 5-Benzoyl-α-methyl-2-thiopheneacetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33005-95-7

Trade Name	Manufacturer	Country	Year Introduced
Surgam	Roussel	France	1975
Surgam	Roussel	W. Germany	1980
Surgam	Hoechst	Switz.	1982
Surgam	Roussel	U.K.	1982
Surgamic	Roussel-Iberica	Spain	_

Raw Materials

Thiophene- 2α -methylacetic acid Benzoyl chloride

Manufacturing Process

A mixture of 10.3 g of thiophene- 2α -methylacetic acid [prepared by process of Bercot-Vatteroni, et al., Bull. Soc. Chim. (1961) pp. 1820-21], 11.10 g of benzoyl chloride and a suspension of 23.73 g of aluminum chloride in 110 cc of chloroform was allowed to stand for 15 minutes and was then poured into a mixture of ice and hydrochloric acid. The chloroform phase was extracted with a 10% aqueous potassium carbonate solution and the aqueous alkaline phase was acidified with N hydrochloric acid and was then extracted with ether. The ether was evaporated off and the residue was crystallized from carbon tetrachloride to obtain a 54% yield of 5-benzoyl-thiophene- 2α -methylacetic acid melting at 83°C to 85°C. The

product occurred in the form of colorless crystals soluble in dilute alkaline solutions, alcohol and ether and insoluble in water.

References

Merck Index 9266 Kleeman & Engel p. 882 DOT 12 (6) 238 (1976)

I.N. p. 38

Clemence, F. and Le Martret, O.; U.S. Patent 4,159,986; July 3, 1979; assigned to Roussel Uclaf (France)

TIARAMIDE

Therapeutic Function: Antiinflammatory

Chemical Name: 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl] -1-piperazineethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32527-55-2; 35941-71-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Solantal	Fujisawa	Japan	1975
Ventava!	Crinos	Italy	1981
Royzolon	Sawai	Japan	_

Raw Materials

Ethyl 5-chloro-2-oxobenzothiazoline acetate 1-(2-Hydroxyethyl)piperazine

Manufacturing Process

A solution of ethyl 5-chloro-2-oxo-3-benzo-thiazolineacetate (4.0 grams) in 1-(2-hydroxy-ethyl)piperazine is heated at 100°C for 24 hours. After cooling, the resulting mixture is extracted with chloroform. The chloroform extract is washed with water and shaken with 10% hydrochloric acid. The hydrochloric acid layer is washed with chloroform, made alkaline with 10% sodium hydroxide solution and extracted with chloroform. The chloroform extract is washed with water, dried over magnesium sulfate and concentrated. The residual oil (5.5 grams) is allowed to stand to form crystals, which are recrystallized from a mixture of ethyl acetate (40 ml) and ethanol (15 ml) to give 3-[4-(2-hydroxyethyl)-1-piperazinylcarbonylmethyl] -5-chloro-2(3H)-benzothiazolinone (3.2 grams) as colorless crystals, MP 159° to 161°C.

The following is an alternate method of preparation: A mixture of 3-(1-piperazinyl)carbonylmethyl-5-chloro-2(3H)-benzothiazolinone (500 mg), anhydrous potassium carbonate (400 mg), 2-hydroxyethyl bromide (300 mg) and anhydrous ethanol (20 ml) is heated while refluxing for 5 hours. The reaction mixture is concentrated under reduced pressure. The residue is extracted with chloroform. The chloroform layer is dried over magnesium

product occurred in the form of colorless crystals soluble in dilute alkaline solutions, alcohol and ether and insoluble in water.

References

Merck Index 9266 Kleeman & Engel p. 882 DOT 12 (6) 238 (1976)

I.N. p. 38

Clemence, F. and Le Martret, O.; U.S. Patent 4,159,986; July 3, 1979; assigned to Roussel Uclaf (France)

TIARAMIDE

Therapeutic Function: Antiinflammatory

Chemical Name: 4-[(5-chloro-2-oxo-3(2H)-benzothiazolyl)acetyl] -1-piperazineethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32527-55-2; 35941-71-0 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Solantal	Fujisawa	Japan	1975
Ventava!	Crinos	Italy	1981
Royzolon	Sawai	Japan	_

Raw Materials

Ethyl 5-chloro-2-oxobenzothiazoline acetate 1-(2-Hydroxyethyl)piperazine

Manufacturing Process

A solution of ethyl 5-chloro-2-oxo-3-benzo-thiazolineacetate (4.0 grams) in 1-(2-hydroxy-ethyl)piperazine is heated at 100°C for 24 hours. After cooling, the resulting mixture is extracted with chloroform. The chloroform extract is washed with water and shaken with 10% hydrochloric acid. The hydrochloric acid layer is washed with chloroform, made alkaline with 10% sodium hydroxide solution and extracted with chloroform. The chloroform extract is washed with water, dried over magnesium sulfate and concentrated. The residual oil (5.5 grams) is allowed to stand to form crystals, which are recrystallized from a mixture of ethyl acetate (40 ml) and ethanol (15 ml) to give 3-[4-(2-hydroxyethyl)-1-piperazinylcarbonylmethyl] -5-chloro-2(3H)-benzothiazolinone (3.2 grams) as colorless crystals, MP 159° to 161°C.

The following is an alternate method of preparation: A mixture of 3-(1-piperazinyl)carbonylmethyl-5-chloro-2(3H)-benzothiazolinone (500 mg), anhydrous potassium carbonate (400 mg), 2-hydroxyethyl bromide (300 mg) and anhydrous ethanol (20 ml) is heated while refluxing for 5 hours. The reaction mixture is concentrated under reduced pressure. The residue is extracted with chloroform. The chloroform layer is dried over magnesium

sulfate and concentrated. The residue is crystallized from a mixture of ethyl acetate and ethanol to give 3-[4-(2-hydroxyethyl]-1-piperazinylcarbonylmethyl]-5-chloro-2(3H)-benzothiazolinone (370 mg) as crystals, MP 159° to 160°C.

References

Merck Index 9268 Kleeman & Engel p. 882 DOT 9 (9) 390 (1973) I.N. p. 949

Umio, S.; U.S. Patent 3,661,921; May 9, 1972; assigned to Fujisawa Pharmaceutical Co., Ltd., Japan

TIBEZONIUM IODIDE

Therapeutic Function: Antimicrobial

Chemical Name: 2β -N-Diethylaminoethylthio-4-p-phenylthiophenyl-3H-1,5-benzodiazepine

iodomethylate

Common Name: Thiabenzazonium iodide

Structural Formula:

Chemical Abstracts Registry No.: 54663-47-7

Trade Name	Manufacturer	Country	Year Introduced
Antoral	Recordati	Italy	1977

Raw Materials

4-Acetyldiphenylsulfide o-Phenylenediamine **M**ethyl iodide

Carbon disulfide β -Dimethylaminoethyl chloride

Manufacturing Process

4-Acetyldiphenylsulfide is reacted with carbon disulfide in an initial step to give 4-phenyl-thiobenzoyl dithioacetic acid. That, in turn, is reacted with o-phenylenediamine.

A mixture of 3.6 g of the thus obtained 4-p-phenylthiophenyl-1,3-dihydro-2H-1,5-benzodiazepine-2-thione, 0.50 g of 50% sodium hydride in oil and 200 ml of benzene is refluxed for 30 minutes, then a solution of 2.02 g of β -diethylaminoethyl chloride in 5 ml of benzene are added dropwise over 5 minutes.

The mixture is refluxed for 10 hours. The mixture is then cooled and filtered to separate the sodium chloride. The filtrate is evaporated to dryness in vacuo. The oily residue is dissolved

in petroleum ether and the solution is filtered with charcoal. The solvent is evaporated in vacuo. The oily residue is heated to 50°C in vacuo (0.01 mm Hg) to remove the excess of β diethylaminoethyl chloride.

This treatment is continued until the β -diethylaminoethyl chloride disappears (TLC). The oil is then dissolved in isopropanol and weakly acidified with HCl in propanol. The 2β -N-diethylaminoethylthio-4-p-phenylthiophenyl-3H-1,5-benzodiazepine-HCl product crystallizes by addition of anhydrous ethyl ether to the solution. The crystals are filtered and recrystallized from ethyl acetate. Yield 3.65 g, melting point 150°C.

2.55 g of methyl iodide are added to a solution of 5.93 g of 2\$-N-diethylaminoethylthio-4-pphenylthiophenyl-3H-1,5-benzodiazepine in 100 ml of isopropanol. The mixture is kept at 20°C to 30°C for 60 hours. The crystals are then filtered. Yield 6.2 g, melting point 161°C.

References

Merck Index 9269 DFU 3 (2) 152 (1978) Kleeman & Engel p. 883 DOT 14 (6) 252 (1978) I.N. p. 950

Nardi, D., Massarani, E. and Degen, L.; U.S. Patent 3,933,793; January 20, 1976; assigned to Recordati S.A. Chemical & Pharmaceutical Co.

TICARCILLIN DISODIUM

Therapeutic Function: Antibiotic

Chemical Name: α -Carboxy- α -(3-thienyl) methyl penicillin disodium salt

Common Name: -

Structural Formula: (base)

Chemical Abstracts Registry No.: 4697-14-7; 3973-04-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ticar	Beecham	U.S.	1976
Aerugipen	Beecham-Woelfing	W. Germany	1977
Ticar	Beecham	U.K.	1979
Monapen	Fujisawa	Japan	1979
Ticarpenin	Beecham	Japan	1980
Ticalpenin	Beecham	Italy	1980
Ticar	Beecham	France	1981
Neoanabactyl	Beecham	_	_
Ticillin	C.S.L.	Australia	
Timentin	Beecham	U.S.	_

Raw Materials

6-Aminopenicillanic acid Hydrogen Sodium bicarbonate

Manufacturing Process

A mixture of monobenzyl-3-thienylmalonate (1.38 g, 5 mmol) and thionyl chloride (2.5 ml) was warmed at 50°C to 55°C for 1 hour, then at 60°C to 65°C for 10 minutes. The excess of thionyl chloride was removed in vacuo at not more than 30°C, the last traces being removed by codistillation with dry benzene (1 ml) under high vacuum, leaving monobenzyl-3-thienylmalonyl chloride as a yellow oil.

The acid chloride obtained as described above was dissolved in dry acetone (10 ml) and added in a steady stream to a stirred solution of 6-aminopenicillanic acid (1.08 g, 5 mmol) in a mixture of N sodium bicarbonate (15 ml) and acetone (5 ml). After the initial reaction the reaction mixture was stirred at room temperature for 45 minutes, then washed with ether (3 x 25 ml). Acidification of the aqueous solution with N hydrochloric acid (11 ml) to pH 2 and extraction with ether (3 x 15 ml) gave an ethereal extract which was decolorized with a mixture of activated charcoal and magnesium sulfate for 5 minutes.

The resulting pale yellow ethereal solution was shaken with sufficient N sodium bicarbonate (4 ml) to give an aqueous extract of pH 7 to 7.5. This extract was concentrated to syrup at low temperature and pressure, then isopropanol was added with stirring until the mixture contained about 10% water.

Crystallization was initiated, and completed at about 0° C overnight, to give the sodium salt of α -(benzyloxycarbonyl)-3-thienylmethylpenicillin as white crystals in 50% weight yield. This product was estimated by colorimetric assay with hydroxylamine to contain 91% of the anhydrous sodium salt.

A solution of the sodium salt of α -(benzyloxycarbonyl)-3-thienylmethylpenicillin (2.13 g, 4.3 mmol) in water (30 ml) was added to a suspension of 5% palladium on calcium carbonate (10.65 g) in water (32 ml) which had been prehydrogenated for 1 hour.

The mixture was then hydrogenated at just above atmospheric pressure for 1% hours and filtered through a Dicalite bed. The clear filtrate was evaporated at low temperature and pressure, and the residue dried in vacuo over phosphorus pentoxide, to give 1.64 g of the salt of α -(3-thienyl)methylpenicillin as a white solid.

Colorimetric assay with hydroxylamine showed this salt to contain 94% of the anhydrous penicillin. Paper chromatography showed complete reduction of the benzyl group.

References

Merck Index 9271 Kleeman & Engel p. 883 PDR pp. 663, 666 OCDS Vol. 2 p. 437 (1980) DOT 10 (2) 55 (1974): 11 (11) 446 (1975) & 13 (9) 374 (1977)

I.N. p. 950 REM p. 1199

Beecham Group, Ltd.; British Patent 1,125,557; August 28, 1968

Brain, E.G. and Nayler, J.H.C.; U.S. Patent 3,282,926; November 1, 1966; and U.S. Patent 3,492,291; January 27, 1970; both assigned to Beecham Group, Ltd.

TICLOPIDINE HYDROCHLORIDE

Therapeutic Function: Platelet inhibitor

Chemical Name: 5-[(2-Chlorophenyl)methyl]-4,5,6,7-tetrahydrothieno[3,2-c] pyridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53885-35-1; 55142-85-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Ticlid	Millot	France	1978
Tiklidan	Labaz	W. Germany	1980
Panaldin	Daiichi Seiyaku	Japan	1981
Tiklid	Midy	Italy	1981
Ticlodone	Crinos	Italy	1982
Caudaline	Exa	Argentina	_

Raw Materials

Thieno [3,2-c] pyridine 2-Chlorobenzyl chloride Sodium borohydride Hydrogen chloride

Manufacturing Process

A solution of thieno[3,2-c] pyridine (13.5 g; 0.1 mol) and 2-chlorobenzyl chloride (17.7 g) in acetonitrile (150 ml) is boiled during 4 hours.

After evaporation of the solvent, the solid residue consists of 5-(2-chlorobenzyl)-thieno[3,2-c]-pyridinium chloride which melts at 166°C (derivative n° 30). This compound is taken up into a solution comprising ethanol (300 ml) and water (100 ml). Sodium borohydride (NaBH₄) (20 g) is added portionwise to the solution maintained at room temperature. The reaction medium is maintained under constant stirring during 12 hours and is then evaporated. The residue is taken up into water and made acidic with concentrated hydrochloric acid to destroy the excess reducing agent. The mixture is then made alkaline with ammonia and extracted with ether. The ether solution is washed with water, dried and evaporated. The oily residue is dissolved in isopropanol (50 ml) and hydrochloric acid in ethanol solution is then added thereto.

After filtration and recrystallization from ethanol, there are obtained 5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno [3,2-c] -pyridine hydrochloride crystals (yield: 60%) having a melting point (Koefler block) of 190°C.

References

Merck Index 9272 DFU 1 (4) 190 (1976) Kleeman & Engel p. 884 OCDS Vol. 3 p. 228 (1984) DOT 15 (8) 354 (1979) I.N. p. 951

Castaigne, A.R.J.; U.S. Patent 4,051,141; September 27, 1977; assigned to Centre d'Etudes Pour l'Industrie Pharmaceutique (France)

TICRYNAFEN

Therapeutic Function: Diuretic, hypertensive

Chemical Name: [2,3-Dichloro-4-(2-thienylcarbonyl)phenoxy] acetic acid

Common Name: Thienylic acid

Structural Formula:

Chemical Abstracts Registry No.: 41080-04-9

Trade Name	Manufacturer	Country	Year Introduced
Diflurex	Anphar	France	1976
Diflurex	Ritter	Switz.	1978
Selacryn	SK Dauelsberg	W. Germany	1979
Selacryn	SKF	U.S.	1979

Raw Materials

2,3-Dichloroanisole	Thiophene-2-carboxylic acid chloride
Ethyl chloroacetate	Sodium hydroxide
Sulfuric acid	

Manufacturing Process

(a) To a solution of 55 g of 2,3-dichloroanisole (0.31 mol), 91 g of thiophene-2-carboxylic acid chloride (0.62 mol) and 180 ml carbon disulfide; there was added little by little 82.7 g of anhydrous aluminum chloride, keeping the temperature at about 25°C. The reaction mixture was stirred at ambient temperature for five hours, left standing overnight and then heated for one hour at 55°C. The solution was cooled and hydrolyzed by 250 g of ice and 60 ml concentrated hydrochloric acid. The precipitate formed is treated with a 30% solution of caustic soda, then washed with water. After recrystallization in 95% ethanol, 88.6 g (yield 92%) of crystals are obtained melting at 108°C.

The process can also be carried out without solvent keeping the same proportions of reactants, or in methylene chloride by adding a slight excess of aluminum chloride powder to a solution of one mol of dichloroanisole and one mol of acid chloride.

(b) 88.6 g of the ketone just obtained (0.308 mol) were dissolved in 300 ml of benzene, 123.5 g of aluminum chloride was added in small doses, and the mixture was boiled under reflux for two hours.

The reaction mixture was hydrolyzed by 500 g ice; the precipitate extracted and taken up in a 10% aqueous caustic soda solution. The benzene phase obtained after hydrolysis is concentrated. The oil obtained is treated as above and the precipitate added to the other. The crystals were recrystallized in 50% ethanol, 60 g of product were obtained, melting at 142°C.

The reaction may also be effected with excellent yields in methylene chloride.

(c) A solution of sodium ethylate was prepared by dissolving 3.45 g of sodium (0.15 mol) in 300 ml absolute ethanol. There was then added 31 g of the preceding phenol (0.15 mol) then 25.8 g ethyl chloroacetate. The mixture was refluxed for 15 hours. Hot extraction was carried out to eliminate the sodium chloride.

The ester precipitated on cooling the filtrate. The product was recrystallized once in isopropanol to give 29.4 g of crystals melting at 58°C. The pure product melts at 63°C to 64°C.

The ester was dissolved in a solution of 500 ml 95% ethanol and 9 ml of 10N caustic soda.

The mixture was boiled under reflux for 30 minutes. The precipitate of the sodium salt of the acid which forms in the cold was extracted and taken up in warm water. The free acid was then precipitated in mineral acid medium. After recrystallization in 50% ethanol, it melted at 148°C to 149°C.

References

Merck Index 9273 Kleeman & Engel p. 886 OCDS Vol. 2 p. 104 (1980) DOT 12 (10) 413 (1976) I.N. p. 38

Godfroid, J.J. and Thuillier, J.E.; U.S. Patent 3,758,506; September 11, 1973; assigned to Centre Europeen de Recherches Pharmacologiques (C.E.R.P.H.A.) (France)

TIEMONIUM IODIDE

Therapeutic Function: Antispasmodic, anticholinergic

Chemical Name: 4-[3-Hydroxy-3-phenyl-3-(2-thienyl)propyl] -4-methyl-morpholinium

iodide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 144-12-7

Trade Name	Manufacturer	Country	Year Introduced
Visceralgine	Riom	France	1963
Viseralgina	S.I.T.	Italy	1965
Ottimal	Farnex	Italy	—

Raw Materials

Bromobenzene Magnesium Thienyl-morpholinoethyl ketone Methyl iodide

Manufacturing Process

(a) N-(3-hydroxy-3-phenyl-3- α -thienyl-propyl) morpholine was first prepared: The following quantities of reactants were mixed in a 2-liter balloon flask having 3 tubes fitted respectively with a mercury-sealed agitator, a reflux condenser having a calcium chloride seal, and a dropping funnel:

Magnesium turnings	27 g (1.1 g at. wt)
Bromobenzene	181 g (1.15 mol)
Anhydrous ether	500 cc

(b) To the cold Grignard solution was added a solution containing:

Thienyl-morpholinoethyl ketone	180 g (0.8 mol)
Anhydrous ether	250 cc

The ketone, preferably prepared by a Grignard reaction, was added in such a way as to maintain the ether under constant reflux. When all of the solution had been added, the mixture was refluxed for a further hour. The mixture was then allowed to stand for 12 hours at ambient temperature, after which the reaction mass was extracted with ice and ammonium chloride in known manner.

(c) The ether solution was treated with 2 N hydrochloric acid solution and the amino-alcohol was obtained as the hydrochloride (yield approximately 60%); it was purified by recrystallization from methanol.

The resulting product was dissolved in water, made alkaline with dilute NH₄OH and was extracted with ether. After evaporation of the ether, the amino-alcohol was obtained as a base.

(d) To prepare the quaternary ammonium iodide, the amino-alcohol above was dissolved in a minimum amount of anhydrous ether and was treated with its own weight of methyl iodide. A well-crystallized product was obtained and was washed with anhydrous ether. (Melting point 189°C to 191°C).

References

Merck Index 9274 Kleeman & Engel p. 885 DOT 15 (9) 427 (1979) i.N. p. 951

Laboratoires d'Analyses et de Recherches Biologiques Mauvernay C.E.R.F.A.; British Patent 953,386; March 25, 1964

TILIDINE HYDROCHLORIDE

Therapeutic Function: Analgesic

Chemical Name: 2-(dimethylamino)-1-phenyl-3-cyclohexene-1-carboxylic acid ethyl ester

hydrochloride

Common Name: -

Structural Formula:

$$\begin{array}{c} \text{N(CH}_3)_2 \\ \text{COOC}_2\text{H}_5 \\ \text{C}_6\text{H}_5 \end{array} \tag{base}$$

Chemical Abstracts Registry No.: 27107-79-5; 20380-58-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Valoron	Goedecke	W. Germany	1970
Valoron	Isom	Italy	1983
Kitadol	Larma	Spain	_
Perdolat	Inca	Argentina	
Tilitrate	Substancia	Spain	

Diethylamine Atropic acid ethyl ester Crotonaldehyde Hydrogen chloride

Manufacturing Process

In a first step, dimethylamine is reacted with crotonaldehyde to give 1-(dimethylamino)-1,3butadiene.

A solution of 194 grams (2 mols) of fresh-distilled 1-(dimethylamino)-1.3-butadiene is combined at room temperature in a 1 liter round-bottom flask with 352 grams (2 mols) atropic acid ethyl ester. After being stirred for about 10 minutes, the reaction mixture gradually becomes exothermic. By cooling with ice water, the contents of the flask are kept at a temperature of 40° to 60°C. After the reaction has ceased, the mixture is kept overnight (about 8 to 24 hours) at room temperature. The next day the viscous product is dissolved in 10 liters of ether and precipitated with ethereal hydrogen chloride forming the corresponding hydrochloride. By fractional crystallization from ethyl acetate/methyl ethyl ketone (10:1), an almost complete separation of the isomeric cis/trans isomers (I) and (II) is achieved. The separation can be carried out very easily due to the low solubility of the 1½-hydrate of (I). Therefore, during the crystallization a sufficient quantity of water for the formation of the 11/2-hydrate of (I) is added to the mixture of solvents, whereby (I) readily precipitates.

Isomer (I): 4-phenyl-3-cis-dimethylamino-4-cis-carbethoxy- Δ^1 -cyclohexene hydrochloride, [ethyl-cis-3-(dimethylamino)-4-phenyl-1-cyclohexene-4-carboxylate hydrochloride] MP 84°C (the free base boils at 97.5° to 98°C at 0.01 mm pressure), 64.4% yield.

/somer (//): 4-phenyl-3-trans-dimethylamino-4-trans-carbethoxy-Δ¹-cyclohexene hydrochloride, [ethyl-trans-3-(dimethylamino)-4-phenyl-1-cyclohexene-4-carboxylate hydrochloride], MP 159°C (the free base boils at 95.5° to 96°C at 0.01 mm pressure), 22.2% yield.

References

Merck Index 9280 Kleeman & Engel p. 887 DOT 7 (1) 33 (1971) I.N. p. 952

Satzinger, G.; U.S. Patent 3,557,127; January 19, 1971; assigned to Warner-Lambert Pharmaceutical Company

TIMEPIDIUM BROMIDE

Therapeutic Function: Anticholinergic

Chemical Name: 3-(Di-2-thienylmethylene)-5-methoxy-1,1-dimethylpiperidinium bromide

Common Name: -

Chemical Abstracts Registry No.: 35035-05-3

Trade Name	Manufacturer	Country	Year Introduced
Sesden	Tanabe Seiyaku	Japan	1976
Mepidum	Poli	Italy	—

Raw Materials

5-Hydroxynicotinic acid Methanol Dimethyl sulfate Hydrogen 2-Thienvi bromide Hydrogen chloride Methyl bromide

Manufacturing Process

120 g of 5-hydroxynicotinic acid are dissolved in 1 liter of methanol. After saturating with dry-hydrogen chloride gas at 0°C, the solution is refluxed for 2 hours. Then, the solution is concentrated to dryness. The residue thus obtained is dissolved in water. The solution is neutralized with sodium bicarbonate. The precipitated crystals are collected by filtration, washed with water and then dried, 126 g of methyl 5-hydroxynicotinate are obtained. Yield: 93%, Melting point 184°C to 186°C.

460 g of methyl 5-hydroxynicotinate and 621 g of potassium carbonate are suspended in 200 ml of tetrahydrofuran-methanol (4:1). 1,134 g of dimethyl sulfate are added dropwise to the suspension in nitrogen atmosphere at room temperature. The mixture is stirred overnight at the same temperature and then filtered. The filtrate is concentrated to dryness. The residue thus obtained is mixed with 1.6 liters of methanol and 280 ml of Raney-nickel, and hydrogenated overnight in an autoclave at room temperature and at a pressure of 85 atmospheres. 200 g of Raney-nickel are added to the reaction mixture. The mixture is adjusted to pH 9.5 with triethylamine, and is further subjected to hydrogenation for 20 hours in an autoclave at 70°C and at a pressure of 100 atmospheres. Potassium carbonate and a small amount of ice are added to the reaction mixture to bring the pH to 11. The mixture is extracted with ether. After drying, the ether layer is filtered. The filtrate is evaporated to remove ether. The residue thus obtained is distilled under reduced pressure. 450 g of methyl N-methyl-5-methoxynipecotinate are obtained. Yield: 80%. Boiling point 80°C to 81°C/0.5 mm Hg.

A solution of 18 g of 2-thienyl bromide in 30 ml of tetrahydrofuran is gradually added to a mixture of 2.6 g of magnesium and 80 ml of tetrahydrofuran under stirring at 50°C. The mixture is stirred for 5 hours at room temperature until the magnesium is entirely dissolved in the solution. 6.2 g of methyl N-methyl-5-methoxy-nipecotinate are added to the mixture. Then, the mixture is refluxed for 4 hours. After the reaction is completed, tetrahydrofuran is distilled off under reduced pressure. An aqueous ammonium chloride solution is added to the residue, and the solution is extracted with chloroform. The extract is dried and then evaporated to remove chloroform. The viscous oil thus obtained is recrystallized from a mixture of benzene and ether. 7 g of di-(2-thienyl)-(N-methyl-5-methoxy-3-piperidyl)-carbinol are obtained as crystals. Melting point 142°C to 146°C.

7 g of the product are r' `olved in 150 ml of 10% hydrochloric acid, and the solution is heated at 80°C for 30 minutes. After the reaction is completed, the solution is basified with sodium hydroxide and then extracted with ether. The extract is washed with water, dried and evaporated to remove ether. 5 g of di-(2-thienyl)-(N-methyl-5-methoxy-3-piperidylidene)-methane are obtained as pale yellow oil.

365 mg of di-(2-thienyl)-(N-methyl-5-methoxy-3-piperidylidene)-methane are dissolved in 15 ml of ether. 1 ml of methyl bromide is added to the solution. Then, the solution is stirred overnight. The precipitated crystals are collected by filtration and recrystallized from a mixture of acetone and ether. 390 mg of di-(2-thienyl)-(N-methyl-5-methoxy-3-piperidylidene)methane methyl bromide are obtained as colorless crystals. Melting point 198°C to 200°C.

References

Merck Index 9283 Kleeman & Engel p. 888

DOT 12 (12) 490 (1976)

I.N. p. 952

Kawazu, M., Kanno, T., Saito, S. and Tamaki, H.; U.S. Patent 3,764,607; October 9, 1973; assigned to Tanabe Seiyaku Co., Ltd. (Japan)

TIMOLOL MALEATE

Therapeutic Function: Antiarrhythmic, antiglaucoma

Chemical Name: S-(-)-1-tert-butylamino)-3-[(4-morpholino-1,2,5-thiadiazol-3-yl)oxy]-2-

propanol maleate

Common Name: ~

Structural Formula:

Chemical Abstracts Registry No.: 26921-17-5; 26839-75-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Blocadren	MSD	U.K.	1974
Timacor	MSD	France	1976
Timserin	Sharp & Dohme	W. Germany	1976
Timoptic	MSD	U.S.	1978
Timoptic	Chibret	Switz.	1978
Timoptol	MSD	U.K.	1979
Timoptol	Sharp & Dohme	W. Germany	1979
Blocadren	MSD	italy	1980
Timoptic	MSD	Italy	1980
Timoptol	Merck Banyu	Japan	1981
Blocadren	MSD	U.S.	1981
Betim	Leo	Denmark	-
Cardina	Orion	Finland	_
Chibro-Timoptol	Chibret	France	
Cusimolol	Cusi	Spain	_

Raw Materials

Bromoacetol t-Butylamine p-Toluene sulfonyl chloride Sodium borohydride 3-Morpholino-4-hydroxy-1,2,5-thiadiazole Maleic acid

Manufacturing Process

Step A: Preparation of 3-tert-Butylamino-2-Oxopropanol - To an aqueous solution of tert-butylamine (1 mol) at ambient temperature, there is added slowly and with vigorous stirring 2 mols bromoacetol. The reaction mixture is allowed to stand at ambient temperature for about 5 hours whereupon it is made basic by the addition of sodium hydroxide.

The reaction mixture then is extracted with ether, the excess amine is removed from the ethereal solution under reduced pressure and the ether then removed by evaporation to give 3-tert-butylamino-2-oxopropanol.

Step 8: A solution of the 3-tert-butylamino-2-oxopropanol in a mixture of pyridine hydrochloride and pyridine is treated with p-toluenesulfonylchloride. The mixture is stirred for ½ hour at 25° to 30°C and then poured into cold water. The solution is treated with potassium carbonate and the pyridine evaporated in vacuo at a temperature between 55° and 60°C. The aqueous residue is treated with potassium carbonate and the mixture extracted with methylene chloride. Evaporation of the dried extract provides 1-toluene-sulfonyloxy-2-oxo-3-tert-butylaminopropane.

Step C: Preparation of 3-Morpholino-4-(3-tert-Butylamino-2-Oxopropoxy)-1,2,5-Thiadiazole — The 1-toluenesulfonyloxy-2-oxo-3-tert-butylaminopropane, prepared as described in Step B, (11 mols) is added to 0.80 N methanolic sodium methoxide (15 ml) at 0°C. The mixture is stirred for 15 minutes at 0° to 5°C, treated with 3-morpholino-4-hydroxy-1,2,5-thiadiazole (4.29 grams) and then refluxed for 16 hours. The solvent is evaporated in vacuo and the residue is treated with excess potassium carbonate to provide 3-morpholino-4-(3-butylamino-2-oxopropoxy)-1,2,5-thiadiazole.

Step D: Chemical Reduction Preparation of 3-Morpholino-4-(3-tert-Butylamino-2-Hydroxy-propoxy)-1,2,5-Thiadiazole — The 3-morpholino-4-(3-tert-butylamino-2-oxopropoxy)-1,2,5-thiadiazole (0.01 mol) is dissolved in isopropanol (10 ml). To the solution is added sodium borohydride in portions until the initial evolution of heat and gas subsides. The excess sodium borohydride is destroyed by addition of concentrated hydrochloric acid until the mixture remains acidic. The precipitate of sodium chloride is removed, ether is added, and the solution is concentrated to crystallization. The solid material is removed by filtration and dried thus providing 3-morpholino-4-(3-tert-butylamino-2-hydroxypropoxy)-1,2,5-thiadiazole, MP 161° to 163°C (as hydrochloride).

Alternative Step D: Reduction with a Reductate — Sucrose (1 kg) is dissolved in water (9 liters) in a 20-liter bottle equipped with a gas trap. Baker's yeast (Saccharomyces cerevisiae, 1 kg) is made into a paste with water (1 liter) and added to the sucrose solution with stirring. After lively evolution of gas begins (within 1 to 3 hours), 3-morpholino-4-(3-tert-butylamino-2-oxopropoxy)-1,2,5-thiadiazole hydrogen maleate [1.35 mols, prepared by reaction of the 3-morpholino-4-(3-tert-butylamino-2-oxopropoxy)-1,2,5-thiadiazole with an equimolar quantity of maleic acid in tetrahydrofuran]. The mixture is allowed to stand until fermentation subsides, after which the bottle is kept in a 32°C incubator until all fermentation has ended (in approximately 1 to 3 days). The yeast is filtered off with addition of diatomaceous earth and the filtrate is evaporated to dryness to give S-3-morpholino-4 β -tert-butylamino-2-hydroxypropoxy)-1,2,5-thiadiazole, MP 195° to 198°C (as hydrogen maleate), according to U.S. Patent 3,619,370.

Step E: The base may be converted to the maleate by maleic acid.

References

Merck Index 9284 Kleeman & Engel p. 889 PDR pp. 1145, 1211, 1214 OCDS Vol. 2 p. 272 (1980) DOT 10 (4) 145 (1974) & 16 (3) 92 (1980) I.N. p. 953 REM p. 907

Weinstock, L.M., Tull, R.J. and Mulvey, M.D.; U.S. Patent 3,619,370; November 9, 1971; assigned to Charles E. Frosst & Co.

Wasson, B.K.; U.S. Patent 3,655,663; April 11, 1972

Weinstock, L.M., Tull, R.J. and Mulvey, D.M.; U.S. Patent 3,657,237; April 18, 1972; assigned to Charles E. Frosst & Co.

TIMONACIC SODIUM

Therapeutic Function: Hepatotherapeutic, choleretic

Chemical Name: 4-Thiazolidinecarboxylic acid sodium salt

Common Name: ATC

Structural Formula:

Chemical Abstracts Registry No.: 444-27-9 (acid)

Trade Name	Manufacturer	Country	Year Introduced
Hepaldine	Riker	France	1964
Leberschutz	Karner	W. Germany	1977
Dexotepa	Ayerst	Italy	1979
Tiazolidin	U.C.MDifme	Italy	1980
Heparegene	Syntex-Pharm.	Switz.	_
Thiobiline	Riker	France	-

Raw Materials

Cysteine Formaldehyde Sodium hydroxide

Manufacturing Process

Cysteine is first dissolved in distilled water which has been freed of oxygen by boiling. Formaldehyde of 30% (w/v) concentration is added while stirring and the temperature of the mixture rises, while the thiazolidine carboxylic acid begins crystallizing. The stirring is continued for 2 hours after which ethyl alcohol of 95% (w/v) concentration is added to induce further crystallization. The mixture is left to stand for 24 hours at 4°C. The mixture is then filtered with retention of a crude product, which is purified by recrystallization from boiling distilled water. The crystals are then dried at about 40°C. The free acid is then converted to the sodium salt with NaOH.

References

Merck Index 9285 DFU 5 (8) 415 (1980) Kleeman & Engel p. 890

Sogespar, S.A.; British Patent 1,041,787; September 7, 1966

TINIDAZOLE

Therapeutic Function: Antitrichomonal (vaginal)

Chemical Name: 1-[2-(ethylsulfonyl)ethyl] -2-methyl-5-nitroimidazole

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 19387-91-8

Trade Name	Manufacturer	Country	Year Introduced
Simplotan	Pfizer	W. Germany	1971
Fasigyne	Pfizer	France	1975
Fasigyn	Pfizer	Italy	1975
Fasigyn	Pfizer Taito	Japan	1981
Fasigyn	Pfizer Taito	U,K.	1982
Amplium	Farmaşa	Brazil	-
Pletil	Andromaco	Brazil	
Protocide	Unipharm	Israel	
Sorquetan	Basotherm	W. Germany	_
Tinigyn	Leiras	Finland	_
Tricanix	Orion	Finland	_
Trichogin	Chiese	Italy	_
Trimonase	Tosi	Italy	_

Raw Materials

Ethyl sulfonyl ethanol p-Toluenesulfonyl chloride 2-Methyl-5-nitroimidazole

Manufacturing Process

The preparation of ethylsulfonylethyl-p-toluenesulfonate is carried out in the following manner: 69.0 grams (0.5 mol) ethylsulfonylethanol dissolved in 150 ml pyridine is cooled to 0°C with stirring and while maintaining the temperature between 0° to 10°C, 95 grams (0.5 mol) p-toluenesulfonyl chloride is added in portions over a 10 minute period. After this time, 250 ml water is added slowly and the mixture extracted with chloroform, the organic phase washed first with 2 N HCI, then with water, separated and dried. The product which crystallizes on cooling is filtered and dried to give 77.5% yield of this intermediate.

A mixture of 12.7 grams (0.1 mol) of 2-methyl-5-nitroimidazole and 58.4 grams (0.2 mol) ethylsulfonylethyl-p-toluenesulfonate is heated with stirring, under nitrogen, at 145° to 150°C for about 4 hours. After this time, the reaction mixture is extracted with 500 ml hot water, the aqueous portion adjusted with 10% Na₂CO₃ to a pH of 9 and extracted with chloroform (3 times with 150 ml portions). The separated organic phase is washed with water, dried with Na₂SO₄ and evaporated to dryness. The crude tinidazole product is then crystallized from benzene to give 4.36 grams of product having a MP of 127° to 128°C.

References

Merck Index 9287 Kleeman & Engel p. 890 DOT 7 (5) 193 (1971) & 8 (2) 73 (1972) I.N. p. 953 REM p. 1224

Butler, K.; U.S. Patent 3,376,311; April 2, 1968; assigned to Chas. Pfizer & Co., Inc.

TINORIDINE

Therapeutic Function: Antiinflammatory

Chemical Name: 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno [2,3-c] pyridine-3-carboxylic

acid ethyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 24237-54-5; 23237-55-6 (Hydrochloride)

Trade Name	Manu facturer	Country	Year Introduced
Nonflamin	Yoshitomi	Japan	1971
Dimaten	Promeco	Argentina	

Raw Materials

1-Benzyl-4-piperidone Ethyl cyanoacetate Sulfur Morpholine

Manufacturing Process

A solution of 1-benzyl-4-piperidone, ethyl cyanoacetate, powdery sulfur and morpholine in ethanol is heated moderately under reflux for about 20 minutes to dissolve the powdery sulfur. The mixture is heated under reflux for one further hour to complete the reaction. On standing at room temperature, the mixture yields a precipitate. The precipitate is collected by filtration, washed well with methanol and recrystallized from methanol to give 2-amino-6-benzyl-3-ethoxycarbonyl-4,5,6,7-tetrahydrothieno(2,3-c)-pyridine as almost colorless needles melting at 112° to 113°C.

References

Merck Index 9289 Kleeman & Engel p. 891 DOT 7 (6) 224 (1971) I.N. p. 954

Nakanishi, M., Tahara, T., Imamura, H. and Maruyama, Y.; U.S. Patent 3,563,997; Feb. 16, 1971; assigned to Yoshitomi Pharmaceutical Industries, Ltd., Japan

TIOCARLIDE

Therapeutic Function: Antitubercular

Chemical Name: N,N'-[4-(3-Methylbutoxy)phenyl] thiourea

Common Name: Thiocarlide

$$(CH_3)_2$$
CHC H_2 CH $_2$ O \longrightarrow HNCSNH \longrightarrow OCH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3)_2$

Chemical Abstracts Registry No.: 910-86-1

Trade Name	Manufacturer	Country	Year Introduced
Tiocarlide	Ciba	W. Germany	1963
Tiocarlide	Ciba	Italy	1964
Tiocarlide	Ciba	France	1 96 5
Isoxyl	Continental Pharm	U.K.	1969
Amixyl	Inibsa	Portugal	-
Disoxyl	Ferrosan	Denmark	

Raw Materials

Isoamyloxyaniline Carbon disulfide

Manufacturing Process

100 parts by weight of p-isoamyloxyaniline are refluxed for 6 hours with 34 parts by volume of carbon disulfide, 300 parts by volume of ethanol and 5 parts by weight of potassium ethyl xanthate. The reaction mixture is then cooled and the formed 1,3-bis-(p-isoamyloxyphenyl)-2-thiourea is filtered off, washed with a small amount of ethanol and water, and recrystallized from ethanol. The thus-obtained product melts at 134°C to 145°C.

References

Merck Index 9292 Kleeman & Engel p. 891

I.N. p. 954

Huebner, C.F. and Scholz, C.R.; U.S. Patent 2,703,815; March 8, 1955; assigned to Ciba Pharmaceutical Products, Inc.

TIOCLOMAROL

Therapeutic Function: Anticoagulant

Chemical Name: 3-[3-(4-Chlorophenyl)-1-(5-chloro-2-thienyl)-3-hydroxypropyl]-4-hydroxy-

2H-1-benzopyran-2-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22619-35-8

Trade Name	Manufacturer	Country	Year Introduced
Apegmone	Oberval	France	1978

Raw Materials

p-Chloroacetophenone 5-Chlorothiophene-2-aldehyde 4-Hydroxycoumarin Aluminum isopropylate

Manufacturing Process

- (a) 1-parachlorophenyl-3-(5'-chloro-2'-thienyl)-2-propen-1-one (a) This new compound was prepared in the following manner:
- 4.4 g of NaOH, in solution in 40 ml of water and 20 ml of ethanol, are cooled to 120° C, and then there are successively added at this temperature 13.2 g (0.086 mol) of parachloroaceto-phenone and 12.6 g of 5-chlorothiophene-2-aldehyde. The solution is left standing for 3 hours while stirring at ambient temperature and the precipitate which has formed is centrifuged off, whereafter it is washed with water and recrystallized from alcohol. Yield: 18.4 g, i.e., 75.7% of product, melting at 134° C.
- (b) The ketone prepared according to a is condensed at the rate of 14.15 g (0.05 mol) with 8.9 g (0.055 mol) of 4-hydroxycoumarin in 80 ml of water in the presence of 42 mg of hexamethyleneimine. Heating takes place for 4 hours under reflux and, after recrystallization, first of all from a mixture of acetone and water and then from benzene, there are obtained: 12.6 g of 3-(4'-hydroxy-3'-coumarinyl)-3-(5"-chloro-2"-thienyl)-parachloropropiophenone, melting at 162°C (sealed tube).
- (b) 4.45 g (0.01 mol) of 3-(4'-hydroxy-3'-coumarinyl)-3-(5"-chloro-2"-thienyl)-parachloro-propiophenone, in solution in 75 ml of isopropanol, are reduced with 6.12 g (0.03 mol) of aluminum isopropylate, introduced while stirring and in small quantities at ambient temperature.

The solution is refluxed for one hour and after cooling it is poured into 250 ml of ice and 15 ml of concentrated HCl. On standing, a white precipitate is obtained, which is centrifuged, washed with water, taken up in methanol and filtered.

5 volumes of water are added to this solution, and it is allowed to crystallize at ambient temperature.

The product is analytically pure and shows a pasty fusion at 104°C (sealed tube). Yield: 89%.

References

Merck Index 9293 Kleeman & Engel p. 892 DOT 14 (8) 383 (1978) I.N. p. 954

Boschetti, E., Molho, D. and Fontaine, L.; U.S. Patent 3,574,234; April 6, 1971; assigned to Lyonnaise Industrielle Pharmaceutique (LIPHA) (France)

TIOCONAZOLE

Therapeutic Function: Antifungal

Chemical Name: 1-[2-[(2-Chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl]-1Himidazole

Common Name: -

Chemical Abstracts Registry No.: 65899-73-2

Trade Name	Manufacturer	Country	Year Introduced
Fungata	Pfizer	W. Germany	1981
Trosyd	Pfizer	Switz.	1983
Trosyd	Pfizer	U.S.	1983

Raw Materials

1-(2,4-Dichlorophenyl)-2-(1-imidazolyl)ethanol Sodium hydride 2-Chloro-3-chloromethylthiophene

Manufacturing Process

A solution of 1-(2,4-dichlorophenyl)-2-(1-imidazolyl)ethanol (1.5 g, 5.8 mmol) dissolved in dry tetrahydrofuran (10 ml) was added to a stirred suspension of sodium hydride (0.39 g, as 80% dispersion in oil, 16 mmol) in dry tetrahydrofuran (10 ml) and warmed to 70°C for 90 minutes.

The mixture was cooled in ice and a solution of 2-chloro-3-chloromethylthiophene (8.8 mmol) in dry tetrahydrofuran was added. The mixture was heated at 70°C for 3 hours and allowed to stir at room temperature overnight. The solvent was removed under vacuum and the residue stirred with dry ether (200 ml). The ether solution was filtered through Celite and saturated with hydrogen chloride gas to precipitate an oil which was solidified by trituration with ether and ethyl acetate. The solid product was collected and recrystallized from a mixture of acetone and diisopropy! ether to give the product, melting point 168°C to 170°C.

References

Merck Index 9294 DFU 5 (10) 509 (1980) DOT 19 (8) 341 (1983) I.N. p. 954

REM p. 1231

Gymer, G.E.; U.S. Patent 4,062,966; December 13, 1977; assigned to Pfizer, Inc.

TIOPRONIN

Therapeutic Function: Antidote in heavy metal poisoning

Chemical Name: N-(2-Mercapto-1-oxopropyl)glycine

Common Name: Mercamidum

Structural Formula:

Chemical Abstracts Registry No.: 1953-02-2

Trade Name	Manufacturer	Country	Year Introduced
Thiosol	Coop. Farm,	Italy	1969
Mercaptopropionylglycin	Fresenius	W. Germany	1976
Mucolysin	Proter	Italy	1976
Mucolysin	Interdecta	Switz.	1982

Trade Name	Manufacturer	Country	Year Introduced
Capen	Phoenix	Argentina	_
Epatiol	Medici	Italy	_
Sutilan	Cusi	Spain	-
Thiola	Santen	Japan	_
Vincol	Reig. Jofre	Spain	_

α-Mercaptopropionic acid Benzyl chloride Thionyl chloride Glycine Sodium Ammonia

Manufacturing Process

α-Benzylmercaptopropionic acid (melting point 76°C to 78°C; 100 g) prepared by condensation of α -mercaptopropionic acid with benzyl chloride is allowed to stand overnight with 80 g of thionyl chloride. After removal of excess thionyl chloride distillation in vacuo gives 70 g of α -benzylmercaptopropionic acid chloride of boiling point 138°C to 139°C/7 to 8 mm Hg.

Then, 25 g of glycine is dissolved in 165 ml of 2N sodium hydroxide solution and 70 g of α -benzylmercaptopropionic acid chloride and 100 ml of 2N sodium hydroxide solution are dropped thereinto simultaneously at 3°C to 5°C. The solution is then stirred at room temperature for 3 to 4 hours to complete the reaction, the reaction solution is washed with ether, the aqueous layer is acidified with hydrochloric acid, and the resulting crystals are collected by filtration. These are recrystallized from a mixture of methanol and ethyl acetate to give 60 g of α -benzylmercaptopropionylglycine of melting point 133°C to 134°C.

This α -benzylmercaptopropionylglycine (60 g) is dissolved in 400 ml of liquid ammonia, kept at about -50°C, and 12 g of sodium metal is gradually added thereto. After the reaction, excess ammonia is removed therefrom, the residue is dissolved in water, washed with ether and the residual aqueous layer is adjusted to pH 1 with hydrochloric acid and concentrated in vacuo in a stream of hydrogen sulfide. The crystalline residue is dried and recrystallized from ethyl aceta te to give 25 g of α -mercaptopropionylglycine of melting point 95°C to 97°C.

References

Merck Index 9296 Kleeman & Engel p. 893 DOT 14 (1) 38 (1978) I.N. p. 955

Mita, I., Toshioka, N. and Yamamoto, S.; U.S. Patent 3,246,025; April 12, 1966; assigned to Santen Pharmaceutical Co. (Japan)

TIRATRICOL

Therapeutic Function: Thyroid replacement therapy

Chemical Name: [4-(4-Hydroxy-3-iodophenoxy)-3.5-diiodophenyl] acetic acid

Common Name: Triiodothyroacetic acid

Chemical Abstracts Registry No.: 51-24-1

Trade Name	Manufacturer	Country	Year Introduced
Triacana	Ana	Italy	1972

Raw Materials

Ethyl-3,5-diiodo-4-(4'-hydroxyphenoxy)phenyl acetate Hydriodic acid lodine

Manufacturing Process

Preparation of 3:5-diiodo-4-(4'-hydroxyphenoxy)phenylacetic acid (diac): A solution of ethyl 3:5-diiodo-4-(4'-methoxyphenoxy)phenyl acetate (9,5 g) in acetic acid (60 ml) was heated under reflux with hydriodic acid (SG 1.7, 50 ml) and red phosphorus (0.5 g) for 1 hour. The hot solution was filtered and the filtrate concentrated at 50°C and 15 mm of mercury to above 20 ml. The residue was treated with water (70 ml) containing a little sodium thiosulfate to decolorize the product. The solid was collected by filtration and purified by the method of Harington and Pitt-Rivers [Biochem. J. (1952), Vol. 50, page 438]. Yield 8.36 g (95%). After crystallization from 70% (v/v) acetic acid it melted at 219°C.

A solution of 438 mg of diac in methanol (20 ml) and ammonia solution (SG 0.88; 20 ml) was iodinated at 0°C with 1.8 ml 1 N jodine solution. The product was isolated in almost theoretical yield in a manner similar to that described for tetrac. After crystallization from 50% (v/v) methanol, triac was obtained as colorless needles which melted over the range 65°C to 90°C according to the rate of heating. The molten form resolidified at about 110°C and finally melted at 180°C to 181°C without decomposition. The compound, dried at 25°C/3 mm over silica gel, contains methanol of crystallization.

References

Merck Index 9299

I.N. p. 956

Wilkinson, J.H.; British Patent 805,761; December 10, 1958; assigned to National Research Development Corp. (U.K.)

TIROPRAMIDE

Therapeutic Function: Smooth muscle relaxant

Chemical Name: α -(Benzoylamino)-4-[2-(diethylamino)ethoxy]-N,N-dipropylbenzenepro-

panamide

Common Name: -

Chemical Abstracts Registry No.: 55837-29-1

Trade Name	Manufacturer	Country	Year Introduced
Maiorad	Rotta	Italy	1982
Alfospas	Rorer	U.S.	_

Raw Materials

N-Benzoyl-DL-tyrosil-di-n-propylamide Sodium methylate 2-Diethylaminoethyl chloride

Manufacturing Process

36.8 g (0.1 mol) of N-benzoyl-DL-tyrosil-di-n-propylamide are suspended in 350 cc of toluene; there are then added, under agitation, 5.4 g (0.1 mol) of sodium methylate and 50 cc (0.1 mol) of a titrated toluenic solution of 2-diethylamino-ethyl-chloride. The temperature is taken up to 105° C and the solution is left at this temperature, in agitation, for 12 hours. The toluenic solution is extracted with HCl 2N; the aqueous acid phase is alkalized, cold, with sodium carbonate, and then reextracted with successive portions of ethyl acetate.

The reunited organic phases are anhydrified upon anhydrous Na_2SO_4 , filtered and dried off. The oily residue which is obtained crumbles after a few hours of rest. Amount obtained 39.2 g, Yield 84%. Melting point 65°C to 67°C (crystallizes with petroleum ether).

The free base can be salified so as to render it hydrosoluble. For this purpose, for example, it is dissolved in acetone and precipitated as an oxalate by the addition of a solution of oxalic acid in ethanol. Recrystallizes with ethanol. Melting point (oxalate): 159°C to 162°C. Alternatively it can be dissolved in acetone and precipitated with an acetone solution of HCI. Recrystallizes with acetone-ethanol. Melting point (chlorhydrated): 181°C to 183°C.

References

Merck Index 9301 DFU 7 (6) 413 (1982) DOT 19 (2) 114 & (5) 271 (1983) I.N. p. 956

Makovec, F., Rovati, L. and Senin, P.; U.S. Patent 4,004,008; January 18, 1977; assigned to Rotta Research Laboratorium S.p.A. (Italy)

TIXOCORTOL PIVALATE

Therapeutic Function: Antiinflammatory

Chemical Name: 11,17-Dihydroxy-21-mercaptopregn-4-ene-3,20-dione

Common Name: -

Chemical Abstracts Registry No.: 55560-96-8; 61951-99-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Pivalone	Jouveinal	France	1978

Raw Materials

S-Thiopivalic acid Sodium methylate Dihydroxy-11 β ,17 α -iodo-21-dioxo-3,20-pregnene-4

Manufacturing Process

In a reactor of 50 liters, sodium S-thiopivalate is prepared from 100 g of S-thiopivalic acid (0,844 mol), 214 cc of solution of sodium methylate, 3.95M (0.844 mol) in 25 liters of anhydrous acetone.

There are then added 285 g (0.603 mol) of dihydroxy-11β,17α-iodo-21-dioxo-3,20-pregnene-4 and the mixture is brought up to the acetone reflux for two hours. The solvent is eliminated by distillation under vacuum until there is obtained a syrupy residue which is poured into 10 liters of iced water. The insoluble part is filtered and dried under vacuum.

The crude product is purified by recrystallization from ethanol; weight: 250 g; yield: 89.5%.

References

Merck Index 9315 Kleeman & Engel p. 895 I.N. p. 957

Torossian, D.R., Aubard, G.G. and Legeai, J.M.G.; U.S. Patent 4,014,909; March 29, 1971; assigned to Jouveinal S.A. (France)

TOCAINIDE

Therapeutic Function: Antiarrhythmic

Chemical Name: 2-Amino-2',6'-propionoxylidide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 41708-72-0

Trade Name	Manufacturer	Country	Year Introduced
Tonocard	Astra	U.K.	1981
Xylotocan	Astra	W. Germany	1982
Tonocard	Hassle	Sweden	1983
Tonocard	Astra	Australia	1983

2-Bromo-2',6'-propionoxylidide Ammonia

Manufacturing Process

The compound 2-amino-2',6'-propionoxylidide was synthesized by saturating with gaseous ammonia at room temperature a suspension of 50 g (0.195 mol) of 2-bromo-2',6'-propionoxylidide in a mixture of 500 ml of 95% alcohol and 400 ml of concentrated aqueous ammonia. The saturation was carried out under mechanical stirring. After 25 hours the mixture was resaturated with ammonia gas. The stirring at room temperature was continued for a total period of 116 hours, and a sample was taken at that time. Gas chromatographic analysis indicated that about 95% of the bromo compound had been converted to the desired product.

The solvents were evaporated in vacuo, and the residue was taken up in 80 ml of 3M hydrochloric acid. After addition of 220 ml of water, the insoluble material was filtered off, washed with 100 ml of water and then dried. The insoluble material weighed 9.5 g and was mainly unreacted bromo compound. The filtrate was reacted with 50 ml of 7 M NaOH, extracted three times with methylene chloride (50 ml + 2 x 25 ml portions), dried over potassium carbonate, and then evaporated. The yield of residue was 26.8 g which corresponds to 71.4% of the theoretical yield. This residue was a colorless solidifying oil and was dissolved in 200 ml chloroform. Hydrogen chloride was bubbled in until a sample of the solution tested acidic to wet pH indicator paper. A precipitate was obtained and recovered by filtration. The precipitate was washed with chloroform and dried. The melting point was determined to be from 246°C to 247.5°C.

References

Merck Index 9319 DFU 2 (2) 141 (1977) PDR p. 1216 OCDS Vol. 3 p. 55 (1984) DOT 18 (3) 153 & (10) 548 (1982) I.N. p. 958 REM p. 861

Boyes, R.N., Duce, B.R., Smith, E.R. and Byrnes, E.W.; U.S. Patents 4,218,477; August 19, 1980; and 4,237,068; December 2, 1980; both assigned to Astra Pharmaceutical Products, Inc.

TOFENACIN HYDROCHLORIDE

Therapeutic Function: Psychostimulant

Chemical Name: N-methyl-2-[(2-methylphenyl)phenylmethoxy] ethanamine hydrochloride

Common Name: N-demethylorphenadrine hydrochloride; N-methyl-2[α -(2-tolybenzyl) α xy] ethylamine hydrochloride

Chemical Abstracts Registry No.: 10488-36-5; 15301-93-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Elamol	Brocades	U.K.	1971
Tofalin	Brocades	Italy	1981

Raw Materials

2-Methylbenzhydrol	eta-Chloroethanol
Methylamine	Hydrogen chloride

Manufacturing Process

A mixture of 39.5 grams of 2-methylbenzhydrol, 200 ml of beta-chloroethanol and 10 ml of concentrated hydrochloric acid is boiled under reflux for 4 hours. After cooling, the reaction mixture is poured into water and extracted with petroleum ether (boiling range 40° to 60°C). The layers are separated and the ethereal solution dried with sodium sulfate. It is then filtered. The filtrate is concentrated by evaporation of the solvent. The residue is distilled under reduced pressure to give 51.0 grams (yield 98%) of beta-chloroethyl-2methylbenzhydryl ether, boiling at 156° to 158°C/2.5 mm.

A mixture of 51 grams of beta-chloroethyl-2-methylbenzhydryl ether and 35 grams of methylamine in 140 ml of methanol is heated for 6 hours in a closed vessel at a temperature of 125° to 135°C. After cooling, the reaction mixture is poured into water and extracted with petroleum ether (boiling range 40° to 60°C). The ether layer is separated and washed with a 2 N hydrochloric acid solution. The acidic layer is made alkaline and extracted with ether. The ethereal solution is separated and dried with sodium sulfate. After filtration, the solvent is evaporated and the residue distilled under reduced pressure. There is thus obtained 40 grams (yield 80%) of N-methylaminoethyl-2-methylbenzhydryl ether boiling at 139° to 143°C/0.7 mm.

The base is dissolved in anhydrous ether, and an ethereal solution of hydrochloric acid is added to form the hydrochloride of N-methylaminoethyl-2-methylbenzhydryl ether. The salt is crystallized from a mixture of ethanol and ether. Yield is 36 grams (78%); melting point 147° to 148°C.

References

Merck Index 9331 Kleeman & Engel p. 899 OCDS Vol. 2 p. 32 (1980) DOT 8 (5) 189 (1972) I.N. p. 960

Harms, A.F.; U.S. Patent 3,407,258; October 22, 1968; assigned to Brocades-Stheeman & Pharmacia, Netherlands

TOFISOPAM

Therapeutic Function: Tranquilizer

Chemical Name: 1-(3,4-Dimethoxyphenyl)-4-methyl-5-ethyl-7,8-dimethoxy-5H-2,3-benz-

diazepine

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 22345-47-7

Trade Name	Manufacturer	Country	Year Introduced
Grandaxine	Ozothine	France	1975
Seriel	Fabre	France	_
Tavor	Gerardo Ramon	Argentina	_

Raw Materials

3,4,3',4'-Tetramethoxy-6-(α -acetopropyl)benzophenone Hydrazine hydrate

Manufacturing Process

A mixture of 38.6 g (0.1 mol) of 3,4,3',4'-tetramethoxy-6-(α -acetopropyl)-benzophenone, 5.5 g (0.11 mol) of 100% hydrazine hydrate or 3.52 g (0.11 mol) of hydrazine, and 500 ml of absolute ethanol is boiled for 5 hours. After adding 100 ml of benzene, 400 ml of solvent mixture is distilled off from the reaction mixture by slow boiling for 3 hours. After cooling for 8 hours, 19 g of 5H-2,3-benzodiazepine derivative are separated from the residue as small, white crystals. The melting point is 133°C to 136°C (after recrystallizing from absolute ethanol, 136°C).

References

Merck Index 9332 Kleeman & Engel p. 899

DOT 9 (6) 240 (1973); 11 (5) 198 (1975) & 12 (2) 60 (1976)

I.N. p. 960

Egyesult Gyogszer és Tapszer Gyar; British Patent 1,202,579; August 19, 1970 Korosi, J., Lang, T., Komlos, E. and Erdelyi, L.; U.S. Patent 3,736,315; May 29, 1973; assigned to Egyesult Gyogszer és Tapszer Gyar (Hungary)

TOLAZAMIDE

Therapeutic Function: Oral hypoglycemic

Chemical Name: N-[[(hexahydro-1H-azepin-1-yl)amino] carbonyl]-4-methylbenzenesulfon-

amide

Common Name: -

Chemical Abstracts Registry No.: 1156-19-0

Trade Name	Manufacturer	Country	Year Introduced
Tolinase	Upjohn	Italy	1964
Tolanase	Upjohn	U.K.	1965
Norglycin	Upjohn	W. Germany	1966
Tolinase	Upjohn	U.S.	1966
Diabewas	Wassermann	Italy	_
Diabutos	Medica	Finland	_
Tolazamide	Schein	U.S.	-

Raw Materials

Hexamethyleneimine Sodium nitrite Lithium aluminum hydride 4-Methylbenzenesulfonylurethane

Manufacturing Process

1-Nitrosohexamethyleneimine: A solution of 89.5 grams of hexamethyleneimine, 75 ml of concentrated hydrochloric acid and 36 ml of water was heated to 70°C on a steam bath. The solution was made acidic by adding 5 ml of 2 N hydrochloric acid. While maintaining the reaction mixture at 70° to 75°C, a solution of 67 grams of sodium nitrite in 95 ml of water was added with stirring over a period of 1 hour. The mixture was then stirred at 70°C for 2 hours, and then cooled. The upper oily layer was separated and the aqueous layer was then extracted with ether. The combined ether extract and oil was dried over anhydrous magnesium sulfate and concentrated to dryness. Upon distillation of the residue there was obtained 1-nitrosohexamethyleneimine as a yellow oil, boiling at 136° to 138°C/34 mm.

1-Aminohexamethyleneimine: To a mixture of 15.18 grams of lithium aluminum hydride and 400 ml of anhydrous ether was added about 10% of a solution of 51.27 grams of 1nitrosohexamethyleneimine in 100 ml of anhydrous ether. The mixture was refluxed until the reaction started. The remainder of the solution was added at such a rate as to maintain gentle reflux. Refluxing was continued for 2 hours more, followed by the successive addition of 16 ml of water, 12 ml of 20% aqueous sodium hydroxide solution and 56 ml of water. The inorganic precipitate was removed by filtration and washed with ether. The filtrate and ether washes were dried and the ether was removed by evaporation. Upon distillation of the residue there was obtained 25.46 grams (56%) of 1-aminohexamethyleneimine as a colorless liquid boiling at 94° to 96°C/55 mm.

N-(4-Methylbenzenesulfonyl)-N'-Hexamethyleneiminourea Free Base: A mixture of 11.42 grams of 1-aminohexamethyleneimine and 24.33 grams of 4-methylbenzenesulfonylurethane was heated at 130°C (oil-bath temperature) for 2 hours. The resulting ethanol and unreacted amine were removed at 15 mm pressure for 2 hours while keeping the oil bath at 130°C. The residue was cooled and recrystallized from methanol, giving 16.73 grams (54%) of N-(4-methylbenzenesulfonyl)-N'-hexamethyleneiminourea free base melting at 163° to 166°C. After a second recrystallization from methanol, the melting point was 163.5° to 166.5°C.

References

Merck Index 9334 Kleeman & Engel p. 900 PDR pp. 1606, 1862, 1999 OCDS Vol. 1 p. 137 (1977) DOT 3 (2) 71 (1967) I.N. p. 960 REM p. 977

Wright, J.B.; U.S. Patent 3,063,903; November 13, 1962; assigned to The Upjohn Company

TOLAZOLINE

Therapeutic Function: Peripheral vasodilator

Chemical Name: 4,5-dihydro-2-(phenylmethyl)-1H-imidazole

Common Name: Benzazoline; 2-benzyl-4,5-imidazoline

Structural Formula:

Chemical Abstracts Registry No.: 59-98-3; 59-97-2 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Priscoline	Ciba	U.S.	1948
Tolavad	Blue Line	U.S.	1962
Benzimidon	Donau-Pharm.	Austria	_
Benzolin	Nissin	Japan	-
Dilatol	A.F.Z.	Norway	
Dilazol	Phyteia	Switz.	
lmidalin	Yamanouchi	Japan	- .
Lambral	Maggioni	İtaly	_
Priscol	Ciba	U.K.	**-
Vaso-Dilatan	Agepha	Austria	_
Zoline	Protea	Australia	_

Raw Materials

Benzyl cyanide Ethanol

Ethylenediamine

Manufacturing Process

The phenyl-acetiminoether hydrochloride of the formula

from 12 parts of benzylcyanide and ethanol and HCl is mixed with 8 parts of ethylenediamine hydrate which has been diluted with little alcohol, whereby the crystals go into solution. The whole is then heated on the water-bath until the ammonia odor has disappeared, cooled, concentrated caustic potash solution added, and the separated oil extracted with ether. The solution is dried with potassium carbonate and potassium hydroxide. After evaporation a pale oil is left which distills at 147°C under a pressure of 9 mm and which solidifies in the condenser to a white crystalline mass. The yield amounts to 90% of the theory. The hydrochloride melts at 168° to 170°C.

References

Merck Index 9335 Kleeman & Engel p. 900 PDR p. 808 OCDS Vol. 1 p.241 (1977) & 2, 106 (1980) I.N. p. 960 REM p. 851

Sonn, A.; U.S. Patent 2,161,938; June 13, 1939; assigned to the Society of Chemical Industry in Basle, Switzerland

TOLBUTAMIDE

Therapeutic Function: Oral hypoglycemic

Chemical Name: N-[(butylamino)carbonyl]-4-methylbenzenesulfonamide

Common Name: 1-butyl-3-(p-tolylsulfonyl)urea

Structural Formula:

Chemical Abstracts Registry No.: 64-77-7

Trade Name	Manufacturer	Country	Year Introduced
Dolipol	Hoechst	France	1956
Orinase	Upjohn	U.S.	1957
Abeformin T	Maruko	Japan	
Aglicem	Wassermann	Spain	
Aglycid	Wassermann	Italy	_
Artosin	Boehr, Mann.	W. Germany	_
Chembu tam ide	Chemo-Drug	Canada	
Diabetol	Polfa	Poland	_
Diabeton	Teknofarma	Italy	_
Diabex-T	Funai	Japan	_
Diatol	Protea	Australia	-
Dirastan	Spofa	Czechoslovakia	
Fordex	Martin Santos	Spain	
Glyconon	D.D.S.A.	U.K.	_
Guabeta N	O.T.W.	West Germany	_
Insilange D	Horita	Japan	_
Mellitos D	Ono	Japan	
Mobinol	Horner	Canada	
Neo-Dibetic	Neo	Canada	-
Neo-Insoral	Valeas	Italy	_
Nigloid	Nippon Universal	Japan	_
Novobutamide	Novopharm	Canada	_
Oramide	I.C.N.	Canada	_
Oribetic	Cenci	U.S.	_
Orsinon	Teva	lsrael	_
Oterben	Chinoin	Hungary	
Pramidex	Berk	U.S.	_
Proinsul	Crosara	Italy	
Rankmin	Maruishi	Japan	_
Rastinon	Hoechst	W. Germany	
Takazide	Fuso	Japan	
Tolbusal	Krka	Yugoslavia	-
Tolbutol	Smallwood	Canada	_
Tolubetin	Kwizda	Austria	
Tolumid	A.F.I.	Norway	=
Toluvan	Zambeletti	italy	
Unimide	Sankyo	Japan	_
Urerubon	Seiko	Japan	_
Wescotol	Saunders	Canada	_

Raw Materials

n-Butyl isocyanate

Sodium 4-methylbenzenesulfonamide

Manufacturing Process

50 grams of n-butyl isocyanate are stirred at room temperature into a suspension of 96 grams of sodium 4-methyl-benzenesulfonamide in 120 cc of dry nitrobenzene and the whole is then heated for 7 hours at 100° C. After being cooled, the reaction mixture, which is a thick magma, is diluted with methylene chloride or ethyl acetate and the sodium salt of the sulfonylurea formed is separated by centrifuging. The centrifuged crystalline residue freed from organic solvents is dissolved in 500 to 600 cc of water heated at 50°C and decolorized with animal charcoal.

The precipitate obtained by acidification with dilute hydrochloric acid is dissolved in an equivalent quantity of dilute ammonia solution (about 1:20), again treated with animal charcoal and reprecipitated with dilute hydrochloric acid. In this manner N-4-methylbenzenesulfonyl-N'-n-butyl-urea is obtained in analytically pure form in a yield of 70 to 80% of theory. It melts at 125° to 127°C (with decomposition).

References

Merck Index 9337 Kleeman & Engel p. 901 PDR pp. 830, 993, 1606, 1723, 1856, 1999 OCDS Vol. 1 p. 136 (1977) & 3, 62 (1984) I.N. p. 961 REM p. 977

Ruschig, H., Aumüller, W., Korger, G., Wagner, H., Scholz, J. and Bänder, A.; U.S. Patent 2,968,158; January 17, 1961; assigned to The Upjohn Company

TOLCICLATE

Therapeutic Function: Topical antimycotic

 $\textbf{Chemical Name:} \quad O-\{1,4-\text{Methano-1},2,3,4-\text{tetrahydro-6-naphthyl}\}-N-\text{methyl-N-(m-tolyl)-naphthyl}\}-N-\text{methyl-N-(m-tolyl)-naphthyl}\}-N-\text{methyl-N-(m-tolyl)-naphthyl}]$

thiocarbamate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 50838-36-3

Trade Name	Manufacturer	Country	Year Introduced
Tolmicen	Carlo Erba	Italy	1979
Fungifos	Basotherm	W. Germany	1981
Kilmicen	Farmitalia	W. Germany	1983

Raw Materials

Thiophosgene
1,4-Methano-1,2,3,4-tetrahydro-6-naphthoxide
N-Methyl-m-toluidine

Manufacturing Process

Thiophosgene (1.15 g, 0.01 mol) in chloroform (40 ml) was slowly treated at room tempera-

ture with sodium 1,4-methano-1,2,3,4-tetrahydro-6-naphthoxide (1,82 g, 0,01 mol). After 30 minutes, N-methyl-m-toluidine (2.42 g. 0.02 mol) in chloroform (40 ml) was added dropwise to the solution so obtained at room temperature. The reaction mixture was stirred for 48 hours at room temperature and then refluxed for 2 hours. The solvent was evaporated. and the residue redissolved in water and extracted repeatedly with diethyl ether. The organic phase was dried (Na₂SO₄) and evaporated to dryness to give, after crystallization from isopropanol, O-(1,4-methano-1,2,3,4-tetrahydro-6-naphthyl)-N-methyl-N-(m-tolyl)-thiocarbamate (1.3 g) melting point 92°C to 94°C.

References

Merck Index 9338 DFU 1 (11) 543 (1976) OCDS Vol. 3 p. 69 (1984) DOT 17 (3) 94 (1981) I.N. p. 961

Melloni, P., Metalli, R., Vecchietti, V., Logeman, W., De Carneri, I., Castellino, S. and Monti, G.; U.S. Patent 3,855,263; December 17, 1974; assigned to Carlo Erba SpA

TOLMETIN

Therapeutic Function: Antiinflammatory

Chemical Name: 5-(p-ToluoyI)-1-methylpyrrole-2-acetic acid

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 26171-23-3; 35711-34-3 (Na salt)

Trade Name	Manufacturer	Country	Year Introduced
Tolectin	McNeil	U.S.	1976
Tolectin	Cilag	Italy	1977
Tolectin	Cilag	W. Germany	1977
Tolectin	Ortho	U.K.	1979
Tolectin	Dainippon	Japan	1979
Reutol	Errekappa	Italy	
Safitex	Montpellier	Argentina	_

Raw Materials

p-Toluoyl chloride 1-Methylpyrrole-2-acetonitrile Sodium hydroxide

Manufacturing Process

5-(p-Toluoyl)-1-methylpyrrole-2-acetonitrile - To a cooled suspension of 26.6 g (0.2 mol) aluminum chloride in 80 ml dichloroethane is added dropwise 30.8 g (0.2 mol) p-toluoyl chloride. The resulting solution is added dropwise to a solution of 1-methylpyrrole-2-acetonitrile in 80 ml dichloroethane cooled externally with an ice bath. After the addition, the

resulting solution is stirred at room temperature for 20 minutes and then refluxed for 3 minutes. The solution is poured into ice acidified with dilute hydrochloric acid. The organic and aqueous fractions are separated. The aqueous fraction is extracted once with chloroform.

The organic fractions are combined and washed successively with N,N-dimethyl-1,3-propane-diamine, dilute hydrochloric acid, saturated sodium bicarbonate solution and saturated sodium chloride solution. The organic fraction is dried over anhydrous magnesium sulfate. The solvent is then evaporated off. Upon trituration of the residue with methanol, a solid crystallizes, 5-(p-toluoyl)-1-methylpyrrole-2-acetonitrile, which is removed by filtration and purified by recrystallization from benzene.

Additional product is isolated from the mother liquors which are combined, concentrated in vacuo and the resulting oily residue column chromatographed on neutral alumina using hexane, benzene and ether as successive solvents. The product is isolated by concentrating in vacuo the first few major compound-bearing fractions (10% ether in benzene). The solids are combined and recrystallized from methanol and then from benzene-hexane, melting point 102°C to 105°C.

5-(p-Toluoyl)-1-methylpyrrole-2-acetic acid — A solution of 3.67 g (0.015 mol) of 5-(p-toluoyl)-1-methylpyrrole-2-acetonitrile, 24 ml of 1 N sodium hydroxide and 50 ml of 95% ethanol is stirred and refluxed for 24 hours.

The resulting solution is poured into ice acidified with dilute hydrochloric acid. A white solid precipitates which is extracted into ether. The ether phase is washed with a saturated solution of sodium chloride and dried over anhydrous magnesium sulfate. The solvent is evaporated and a white solid, 5-(p-toluoyl)-1-methylpyrrole-2-acetic acid is obtained which is recrystallized twice from isopropanol, melting point 155°C to 157°C.

References

Merck Index 9346 Kleeman & Engel p. 902 PDR p. 1094 OCDS Vol. 2 p. 234 (1980) DOT 8 (1) 39 (1972) & 11 (3) 109 (1975)

I.N. p. 962 REM p. 1121

Carson, J.R.; U.S. Patents 3,752,826; August 14, 1973; 3,865,840; February 11, 1975; and 3,952,012; April 20, 1976; all assigned to McNeil Laboratories, Inc.

TOI NAFTATE

Therapeutic Function: Antifungal

Chemical Name: Methyl (3-methylphenyl)carbamothioic acid O-2-naphthalenyl ester

Common Name: Naphthiomate T

Structural Formula:

Chemical Abstracts Registry No.: 2398-96-1

Trade Name	Manufacturer	Country	Year Introduced
Tinactin	Schering	U.S.	1965
Tonoftai	Essex	W. Germany	1965
Tinaderm	Kirby-Warrick	U.K.	1967
Aftate	Plough	U.S.	_
Alarzin	Yamanouchi	Japan	~
Chinofungin	Chinoin	Hungary	_
Pitrex	lkapharm	Israel	_
Separin	Sumitomo	Japan	_
Sorgoa	Scheurich	W. Germany	
Sporiderm	Cetrane	France	_
Sporilene	Cetrane	France	_
Tinavet	Schering	W. Germany	_

N-Methyl-3-toluidine 2-Naphthol Thiophosgene

Manufacturing Process

In a first step, 2-naphthol is reacted with thiophosgene to give 2-naphthyl chlorothionoformate.

A mixture of 4.0 grams of N-methyl-3-toluidine and 2.8 grams of sodium hydrogencarbonate in 50 cc of acetone was stirred at 0° to 10°C and 7.4 grams of 2-naphthyl chlorothionoformate was added in small portions thereto and the mixture was heated under reflux for 30 minutes. The cooled mixture was poured into about 150 cc of cold water and 2naphthyl-N-methyl-N-(3-tolyl)thionocarbamate was obtained as white crystals. Yield is 9.1 grams (90%). Recrystallization from alcohol gave colorless needle crystals, MP 110.5° to 111.5°C.

References

Merck Index 9347 Kleeman & Engel p. 903 PDR pp. 888, 1429 OCDS Vol. 2 p. 211 (1980) & 3.69 (1984) DOT 2 (1) 20 (1966) I.N. p. 962 REM p. 1230

Miyazaki, K., Hashimoto, K., Kaji, A., Sakimoto, R., Taniguchi, K., Noguchi, T. and Igarashi, Y.; U.S. Patent 3,334,126; August 1, 1967; assigned to Nippon Soda KK, Japan

TOLONIDINE NITRATE

Therapeutic Function: Antihypertensive

Chemical Name: N-(2-Chloro-4-methylphenyl)-4,5-dihydro-1H-imidazol-2-amine

Common Name: -

Chemical Abstracts Registry No.: 4201-23-4; 4201-22-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Euctan	Essex	Switz.	1978
Euctan	Delalande	France	1978

Raw Materials

2-Chloro-4-methylaniline	Ammonium thiocyanate
Methyl iodide	Ethylenediamine
Nitric acid	

Manufacturing Process

43 g of the thiourea compound (melting point 124°C) of the formula

obtained in known fashion from 2-chloro-4-methylaniline and ammonium thiocyanate and 20 cc of methyl iodide were dissolved in 200 cc of methanol, and the solution was refluxed for two hours. Thereafter, the solvent was evaporated in vacuo, leaving 73.2 g of the isothiouronium hydrojodide of the formula

as a residue. This isothiouronium salt was admixed with 20 cc of ethylenediamine, and the mixture was heated for about 30 minutes at 150°C to 160°C, accompanied by stirring; methyl mercaptan escaped during that time. Subsequently, the reaction mixture was taken up in hot dilute acetic acid, and the resulting solution was made alkaline with 2 N sodium hydroxide, A precipitate formed, which was separated by vacuum filtration, washed with water and dried. It was identified to be 2-(2'-chloro-4'-methylphenyl)-amino-1,3-diazacyclopentene-(2) of the formula

having a melting point of 142°C to 145°C. The yield was 10.2 g.

The nitrate of the base, obtained by acidifying a solution of the free base with nitric acid, had a melting point of 162°C to 164°C and was soluble in water and methanol.

References

Merck Index 9348 DFU 1 (5) 263 (1976) Kleeman & Engel p. 903 DOT 15 (6) 303 (1979) & 18 (10) 550 (1982)

Zelle, K., Hauptmann, K.H., and Stahle, H.; U.S. Patent 3,236,857; February 22, 1966; and U.S. Patent 3,454,701; July 8, 1969; both assigned to Boehringer Ingelheim GmbH (Germany)

TOLONIUM CHLORIDE

Therapeutic Function: Coagulant

Chemical Name: 3-amino-7-(dimethylamino)-2-methylphenothiazin-5-ium chloride

Common Name: Dimethyltoluthionine chloride; blutene chloride; toluidine blue O

Structural Formula:

Chemical Abstracts Registry No.: 92-31-9

Trade Name	Manufacturer	Country	Year Introduced
Blutene	Abbott	U.S.	1953
Gabilin	Simons	W. Germany	_

Raw Materials

Dimethyl-p-phenylenediamine	Sodium nitrite
Zinc	o-Toluidine
Sodium thiosulfate	Zinc chloride

Manufacturing Process

As taken from U.S. Patent 416,055 (probably the oldest patent on the manufacture of a currently-used drug): In carrying out this process about 6 pbw of dimethyl-p-phenylenediamine was dissolved in about 18 pbw of hydrochloric acid of about 1.16 specific gravity and then a solution of about 3.8 pbw of nitrite of soda in about 6 pbw of water was gradually added. The hydrochlorate of nitroso-dimethylaniline thus produced in the wellknown manner is then submitted to the reducing action of zinc-dust by adding, first about 30 pbw of hydrochloric acid of about 1.16 specific gravity and then (in small portions at a time) about 10 pbw of zinc-dust as is well understood by chemists. The solution of hydrochlorate of paramido-dimethylaniline thus obtained is afterwards diluted with about 250 pbw of water and then the uncombined hydrochloric acid contained in the solution is, if any, neutralized by the addition of an alkali. There are then added about 16 pbw of sulfate of alumina and about 13 pbw of thiosulfate of sodium, (hyposulfite of soda) and immediately afterwards a solution of about 5 pbw of bichromate of potash in about 60 pbw of water is quickly run in.

In this stage of the process the formation of an acid sulfureted compound of paramidodimethylaniline takes place, possessing the formula C₈H₁₁N₂S·SO₃H (paramido-dimethylaniline-thiosulfonic acid). Without previous separation of this intermediate compound a solution of about 5.3 pbw of orthotoluidine, in the requisite amount of dilute hydrochloric acid (about 6 pbw of hydrochloric acid, SG about 1.16, diluted with about 6 pbw water) and shortly afterwards a solution of about 14 pbw of bichromate of potash in about 160 parts by weight of water is then added under constant agitation, when a precipitate will be formed chiefly consisting of a green indamine possessing in its dry condition the formula C₁₅H₁₇N₃S₂O₃. In order to transform the same into toluidine-blue, about 50 pbw of a solution of chloride of zinc of about 1.5 specific gravity are added and the mixture thus obtained is boiled during about half an hour, when, after cooling, the toluidine-blue thus formed will separate out and may then be filtered and purified, if necessary, by repeated solution in water and precipitation by means of chloride of sodium and chloride of zinc.

In the above described process the sulfate of alumina may be dispensed with and replaced

by as much hydrochloric, sulfuric, or acetic acid as will be required to liberate the thiosulfuric acid from the thiosulfate of sodium employed.

Toluidine-blue prepared as above described presents the following characteristic properties: It consists principally of the hydrochlorate of dimethyltoluthionine, the composition of which corresponds to the formula C₁₅H₁₅N₃S·HCl.

References

Merck Index 9349

1.N. p. 962

Dändliker, G. and Bernthsen, H.A.; U.S. Patent 416,055; November 26, 1889; assigned to Badische Anilin and Soda Fabrik, Germany

March, B. and Moore, E.E.; U.S. Patent 2,571,593; October 16, 1951; assigned to Abbott Laboratories

Hoff, D.A.; U.S. Patent 2,809,913; October 15, 1957; assigned to The Warren-Teed Products Company

TRAMADOL HYDROCHLORIDE

Therapeutic Function: Analgesic

 $\textbf{Chemical Name: } (\pm)\text{-trans-2-}\{\{Dimethylamino\}methyl\}\text{-1-(m-methoxyphenyl)} cyclohexanol$ hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 22204-88-2; 27203-92-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tramadol	Gruenenthal	W. Germany	1977
Crispin	Kowa	Japan	1978
Tramal	Gruenenthal	Switz.	1978

Raw Materials

m-Bromoanisole	Magnesium
2-Dimethylaminomethyl-cyclohexanone	Hydrogen chloride

Manufacturing Process

5 g of magnesium turnings are treated while stirring with a mixture of 37.4 g of m-bromoanisole and 160 ml of absolute tetrahydrofuran at such a rate that the reaction mixture boils gently because of the heat produced by the immediately starting reaction. Thereafter, the reaction mixture is boiled under reflux while stirring until all the magnesium dissolves. The reaction mixture is cooled to 0°C to -10°C and then a mixture of 23.25 g of 2-dimethylaminomethylcyclohexanone and 45 ml of absolute tetrahydrofuran is added dropwise.

The resulting mixture is stirred for 4 hours at room temperature and then poured, while stir-

ring slowly, into a mixture of $25\,\mathrm{g}$ of ammonium chloride, $50\,\mathrm{ml}$ of water and $50\,\mathrm{g}$ of ice. The layers are separated and the aqueous layer is extracted twice with $50\,\mathrm{ml}$ portions of ether. The organic layers are combined, dried with sodium sulfate and evaporated. The residue is distilled, and $1\cdot(\mathrm{m-methoxyphenyl})\cdot 2\cdot\mathrm{dimethylaminomethyl-cyclohexanol}\cdot(1)$, boiling point at $0.6\,\mathrm{mm}$ Hg $138^\circ\mathrm{C}$ to $140^\circ\mathrm{C}$, is obtained in a yield of 78.6% of theoretical.

The hydrochloride obtained from the product, e.g., by dissolving in ether and treating with dry hydrogen chloride, melts at 168°C to 175°C. By recrystallization from moist dioxan this hydrochloride is separated into isomers melting at 162°C to 163°C and 175°C to 177°C, respectively.

References

Merck Index 9388 Kleeman & Engel p. 906 OCDS Vol. 2 p. 17 (1980) DOT 13 (8) 345 (1977) I.N. p. 966

Chemie Grunenthal GmbH; British Patent 997,399; July 7, 1965

Flick, K. and Frankus, E.; U.S. Patent 3,652,589; March 28, 1972; assigned to Chemie Grunenthal GmbH

TRANEXAMIC ACID

Therapeutic Function: Coagulant

Chemical Name: trans-4-(aminomethyl)cyclohexanecarboxylic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1197-18-8

Trade Name	Manufacturer	Country	Year Introduced
Anvitoff	Knoll	W. Germany	1967
Transamin	Bayer-Daiichi	Japan	1970
Ugorol	Bayer	Italy	1970
Frenolyse	Specia	France	1971
Cyklokapron	Kabi	U.K.	1978
Amcacid	Bonomelli-Hommel	Italy	
Amchafibrin	Fides	Spain	_
Amikapron	Kabi-Vitrum	Sweden	ferent
Carxamin	Sankyo	Japan	-
Emorhalt	Bayropharm	W. Germany	
Exacyl	Choay	France	
Hexakapron	Teva	Israel	_
Hexapromin	Kowa	Japan	
Hexatron	Nippon Shinyaku	Japan	_
Mastop	Sawai	Japan	-
Rikaverin	Toyo Jozo	Japan	1-48-

Trade Name	Manufacturer	Country	Year Introduced
Spiramin	Mitsui	Japan	_
Tranex	Malesci	Italy	-
Tranexan	Taiyo	Japan	_
Transamin	Daiichi	Japan	
Transamion	Toho	Japan	_
Vasolamin	Daiichi	Japan	_

p-Aminomethylbenzoic acid Hydrogen

Manufacturing Process

In an autoclave, 2 grams of a mixture of cis- and trans-4-aminomethylcyclohexane-1-carboxylic acid, which is obtained by catalytic reduction of p-aminomethylbenzoic acid in the presence of platinum catalyst and contains 60% by weight of cis-isomer was reacted at 200°C, for 8 hours with 20 ml of ethyl alcohol in which 0.44 gram of sodium metal had been dissolved. After cooling, the reaction solution was concentrated under a reduced pressure to give a white residue. This residue was dissolved in 40 ml of water and passed through a column of a strongly acidic cation ion-exchanger resin (NH₄⁺). The eluate was concentrated under reduced pressure to form a white mass. An adequate amount of acctone was added thereto and 1.95 grams of white powder was obtained. This powder was recrystallized from water-acetone to give 1.85 grams (yield, 92.5%) of white crystalline powder having a melting point of 380° to 390°C (decomposition). This product was identified as trans-4-aminomethylcyclohexane-1-carboxylic acid by means of infrared spectrum.

References

Merck Index 9390 Kleeman & Engel p. 907 OCDS Vol. 2 p. 9 (1980) DOT 2 (1) 26 (1966) I.N. p. 39

I.N. p. 39 REM p. 831

Naito, T., Okano, A., Aoyagi, T., Miki, T., Kadoya, S., Inaoka, M. and Shindo, M.; U.S. Patent 3,499,925; March 10, 1970; assigned to Daiichi Seiyaku Company Limited, Japan and Mitsubishi Chemical Industries Limited, Japan

TRANILAST

Therapeutic Function: Antiallergic

Chemical Name: 2-[[3-(3,4-Dimethoxyphenyl)-1-oxo-2-propenyl] amino] -benzoic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53902-12-8

Trade Name	Manufacturer	Country	Year Introduced
Rizaben	Kissei	Japan	1982

3,4-Dimethoxycinnamic acid Benzene sulfonyl chloride Methyl anthranilate Sodium hydroxide

Manufacturing Process

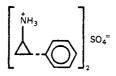
4 g of 3,4-dimethoxycinnamic acid was dissolved in 20 ml of dry pyridine. To this solution were added under cooling with ice and agitation 2 g of benzenesulfonyl chloride whereby a red orange precipitate was formed. The reaction mixture was stirred for about one hour and then 2 g of methyl anthranilate were added to the mixture under cooling with ice. The mixture was stirred for 2 hours at room temperature to complete the reaction. After completion of the reaction, the reaction mixture was concentrated and, the residue was taken up in about 10 ml of chloroform. The solution was washed first with a 10% aqueous solution of caustic soda, then with a 10% aqueous solution of hydrochloric acid and finally with water and then distilled to remove chloroform whereby crystals of N-(3',4'-dimethoxycinnamoyl)-anthranilic acid methyl ester were obtained.

This product was dissolved in 10 ml of chloroform. To this solution were added 10 ml of a 10% aqueous solution of caustic soda and the mixture was warmed at 50°C to effect hydrolysis of the ester group. After completion of the reaction, the organic phase was separated, washed with water and distilled to remove the solvent whereby 2.1 g (yield: 48%) of the end product, i.e., N-(3',4'-dimethoxycinnamoyl)-anthranilic acid, were obtained. This product had a melting point of 211°C to 213°C.

References

Merck Index 9392 DFU 7 (12) 907 (1982) DOT 19 (2) 114 & (9) 485 (1983) I.N. p. 966

Harita, K., Ajisawa, Y., Iizuka, K., Kinoshita, Y., Kamijo, T. and Kobayashi, M.; U.S. Patent 3,940,422; February 24, 1976; assigned to Kissei Yakuhin Kogyo K.K. (Japan)


TRANYLCYPROMINE SULFATE

Therapeutic Function: Psychostimulant

Chemical Name: trans(±)-2-phenylcyclopropanamine sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13492-01-8; 155-09-9 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Parnate	SKF	U.K.	1960
Parnate	SKF	U.S.	1961

Trade Name	Manufacturer	Country	Year Introduced
Tylciprine	Theraplix	France	1963
Parnate	Rohm	W. Germany	1969
Parmodalin	Maggioni	Italy	—

Ethyl diazoacetate Styrene Thionyl chloride Sodium hydroxide Hydrogen chloride Sodium azide Sulfuric acid

Manufacturing Process

A solution containing 167 grams of stabilized styrene and 183 grams of ethyl diazoacetate is cooled to 0°C and dropped into 83.5 grams of styrene with stirring, in a dry nitrogen atmosphere, at 125° to 135°C. This produced the ester ethyl 2-phenylcyclopropanecarboxylate.

A solution of the above ester (207.8 grams) and 64.5 grams of sodium hydroxide in 80 cc of water and 600 cc of ethanol is refluxed for 9 hours. The carboxylic acid of 2-phenylcyclopropane is liberated with 200 cc of concentrated hydrochloric acid. The 2-phenylcyclopropanecarboxylic acid contains 3 to 4 parts of the trans isomer to 1 part of the cis isomer. The acid is recrystallized from hot water. The pure trans isomer comes out as crystalline material (solid) while the cis isomer stays in solution.

A solution of 4.62 grams of 2-phenylcyclopropanecarboxylic acid in 15 cc of dry benzene is refluxed with 4 cc of thionyl chloride for 5 hours, the volatile liquids are removed and the residue once more distilled with benzene. Fractionation of the residue yields the carbonyl chloride of 2-phenylcyclopropane.

A mixture of 15 grams of technical sodium azide and 50 cc of dry toluene is stirred and warmed and a solution of 10 grams of 2-phenylcyclopropanecarbonyl chloride in 50 cc of dry toluene is added slowly. Inorganic salts are filtered and washed well with dry benzene and the solvents are removed under reduced pressure. The RCON₃ compound produced undergoes the Curtius rearrangement to RNCO + $\rm N_2$. The residual isocyanate is a clear red oil of characteristic odor. It is cooled to 10°C and treated cautiously with 100 cc of 35% hydrochloric acid whereupon RNCO + H₂O gives RNH₂ + CO₂. After most of the evolution of carbon dioxide has subsided the mixture is refluxed for 13 hours, the cooled solution is diluted with 75 cc of water and extracted with three 50 cc portions of ether. The acid solution is evaporated under reduced pressure with occasional additions of toluene to reduce foaming.

The almost dry residue is cooled to 0°C and made strongly alkaline with a 50% potassium hydroxide solution. The amine is extracted into several portions of ether, dried over potassium hydroxide, the solvent removed, and the base fractioned. Reaction of the base with a half-molar quantity of sulfuric acid gives the sulfate.

References

Kieeman & Engel p. 907 PDR p. 1719 OCDS Vol. 1 p. 73 (1977) & 2, 7, 50 (1980) I,N. p. 967 REM p. 1097

Tedeschi, R.E.; U.S. Patent 2,997,422; August 22, 1961; assigned to Smith Kline & French Laboratories

TRAPIDII

Therapeutic Function: Coronary vasodilator

Chemical Name: 5-Methyl-7-diethylamino-1-triazolo-(1,5-a)-pyrimidine

Common Name: Trapymin

Structural Formula:

Chemical Abstracts Registry No.: 15421-84-8

Trade Name	Manufacturer	Country	Year Introduced
Rocornal	Mochida	Japan	1978
Rocornal	Deutsches Hydrierwerk	E. Germany	_

Raw Materials

5-Methyl-7-chloro-s-triazolo-(1,5-a)-pyrimidine Diethylamine

Manufacturing Process

8.4 g of 5-methyl-7-chloro-s-triazolo-(1,5-a)-pyrimidine were suspended in 30 cc of water and 7.3 g of diethylamine added. After 2 hours heating with stirring, the mixture was concentrated under vacuum. The residue was recrystallized from n-heptane. This process yielded 8.1 g of the 5-methyl-7-diethylamino-s-triazolo-(1,5-a)-pyrimidine having a melting point of 103°C to 104°C. The hydrochloride produced in the usual manner had a melting point of 212°C.

References

Merck Index 9396 DOT 8 (1) 25 (1972)

I.N. p. 967

Tenor, E., Fuller, H. and Hausschild, F.; British Patent 1,148,629; April 16, 1969; assigned to Veb. Deutsches Hydrierwerk Rodleben

TRAZODONE HYDROCHLORIDE

Therapeutic Function: Tranquilizer

Chemical Name: 2-[3-[4-(3-chlorophenyl)-1-piperazinyl] propyl] -1,2,4-triazolo[4,3-a] -

pyridin-3(2H)-one hydrochloride

Chemical Abstracts Registry No.: 25332-39-2; 19794-93-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Trittico	Angelini	Italy	1972
Thombran	Thomae	W. Germany	1977
Pragmazone	U.P.S.A.	France	1980
Molipaxin	Roussel	U.K.	1980
Desyrel	Bristol	Canada	1982
Desyrel	Mead Johnson	U.S.	1982
Beneficat	Nemi	Argentina	_
Bimaran	Roux-Ocefa	Argentina	-
Manegan	Argentia	Argentina .	
Tramensan	Medica	Finland	-

Raw Materials

2-Chloropyridine Semicarbazide Sodium hydride

1-(3-Chloropropyl)-4-m-chlorophenylpiperazine

Manufacturing Process

In an initial step, 2-chloropyridine is reacted with semicarbazide to give s-triazolo-[4,3-a] -pyridine-3-one.

To a boiling solution of 6.7 grams s-triazolo-[4,3-a]-pyridine-3-one in 80 ml dioxane, there is added 2.4 grams 50% NaH. The mixture is refluxed during 1 hour under stirring, then 13.5 grams 1-(3-chloropropyl)-4-m-chlorophenylpiperazine is added. The mixture is refluxed under stirring for 20 hours, cooled, diluted with an equal volume of ether, the sodium chloride filtered out, and ethereal HCl added. The solid which precipitates is filtered out and crystallized from 95% alcohol. Yield is 13.5 grams, MP 223°C.

The following is an alternative method of preparation: 1 gram 2-(γ-chloropropyl)-s-triazolo-[4,3-a]-pyridine-3-one and 5 ml saturated ammonia alcoholic solution are heated for 5 hours in a closed tube at 100°C. The contents of the tube are cooled, the ammonium chloride filtered out and the solvent is removed. There remains a residue of 0.9 grams 2-(\gamma-aminopropyl)-s-triazolo-[4.3-a]-pyridine-3-one.

This residue is dissolved in isopropyl alcohol and 1 gram N-bis-chloroethyl-aniline is added to it. The mixture is refluxed for 3 hours. The solvent is removed at a reduced pressure. the residue is treated with 50% potassium carbonate, and extracted with ether. By treating with ethereal hydrochloric acid, 2-N'-m-chlorophenylpiperazino-propyl-s-triazole-[4,3-a] pyridine-3-one hydrochloride is precipitated; MP 223°C.

References

Merck Index 9398 Kleeman & Engel p. 908 PDR p. 1123 OCDS Vol. 2 p. 472 (1980) DOT 9 (3) 115 (1973) I.N. p. 968 REM p. 1097

Palazzo, G. and Silvestrini, B.; U.S. Patent 3,381,009; April 30, 1968; assigned to Aziende Chimiche Riunite Angelini Francesco a Roma, Italy

TRENBOLONE ACETATE

Therapeutic Function: Anabolic steroid

Chemical Name: 17β-Aceto-3-oxoestra-4,9,11-triene-3-one

Common Name: Trienolone acetate

Structural Formula:

Chemical Abstracts Registry No.: 10161-34-9; 10161-33-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Parabolan	Negma	France	1980
Finaject	Distrivet	France	
Finaplix	Distrivet	France	-
Hexabolan	Phartec	France	_ `

Raw Materials

 17β -Benzyloxy-4,5-seco-estra-9,11-diene-3,5-dione Sodium-t-amvlate Acetic acid Methanol Acetic anhydride

Manufacturing Process

Stage A: Preparation of 17β-Benzoyloxy-Estra-4,9,11-Trien-3-one - 0.400 g of 17β-benzoyloxy-4.5-seco-estra-9.11-diene-3.5-dione is dissolved in 4 cc of toluene under an inert atmosphere. The solution is cooled to 3°C, then 0.48 cc is added of the solution of sodium tert-amylate in anhydrous toluene, diluted by the addition of a further 4.8 cc of anhydrous toluene.

This reaction mixture is kept between 0°C and +5°C for six hours, with agitation and under an inert atmosphere, then 5 cc of a 0.2 N solution of acetic acid in toluene are added. The mixture is extracted with toluene, and the extracts are washed with water and evaporated to dryness. The residue is taken up in ethyl acetate, and then the solution is evaporated to dryness in vacuo, yielding a resin which is dissolved in methylene chloride, and the solution passed through a column of 40 g of magnesium silicate. Elution is carried out first with methylene chloride, then with methylene chloride containing 0.5% of acetone, and 0.361 g is thus recovered of a crude product, which is dissolved in 1.5 cc of isopropy! ether; then hot methanol is added and the mixture left at 0°C for one night.

0.324 g of the desired 17β -benzoyloxy-estra-4,9,11-trien-3-one are thus finally obtained, being a yield of 85%, melting point is 154°C.

Stage B: Preparation of 17β -Hydroxy-Estra-4,9,11-Trien-3-one -3 g of 17β -benzoyloxyestra-4,9,11-trien-3-one, obtained as described in Stage A are dissolved in 15 cc of methanol. 0.03 g of hydroquinone is added, and the mixture is taken to reflux while bubbling in nitrogen. Then 1.2 cc of 11% methanolic caustic potash is added and reflux is maintained for three hours, after which the reaction product is acidified with 0.36 cc of acetic acid.

The methyl benzoate thus formed is eliminated by steam distillation, and 2.140 g of crude product are obtained, which are dissolved in 20 cc of methylene chloride. This solution is passed through 10 parts of magnesium silicate, elution being performed with 250 cc of methylene chloride containing 5% of acetone. After evaporation of the solvent 2.050 g of product is recovered, which is recrystallized from isopropyl ether.

In this way 1.930 g of the desired 17β -hydroxy-estra-4,9,11-trien-3-one is obtained being a yield of 89%, melting point is 186°C. It is converted to the acetate by acetic anhydride.

References

Merck Index 9402 Kleeman & Engel p. 908 DOT 12 (3) 121 (1976)

I.N. p. 968

Roussel-Uclaf; British Patent 1,035,683; July 13, 1966

TREPIBUTONE

Therapeutic Function: Choleretic

Chemical Name: 3-(2',4',5'-Triethoxybenzoyi)-propionic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 41826-92-0

Trade Name	Manufacturer	Country	Year Introduced
Supacal	Takeda	Japan	1981
Cholibil	Takeda	Japan	

Raw Materials

1,2,4-Triethoxybenzene Succinic anhydride

Manufacturing Process

To a mixture of 7.5 parts by weight of 1,2,4-triethoxybenzene, 40 parts by volume of tetrachloroethane and 7.5 parts by weight of succinic anhydride are added 23 parts by weight of anhydrous aluminum chloride. The mixture is stirred for 1 hour at 25°C and for another 2 hours at 60°C. After addition of 50 parts by weight of ice and 50 parts by volume of concentrated hydrochloric acid, the reaction mixture is subjected to steam distillation.

After cooling crystals separated from the remaining liquid are collected by filtration and recrystallized from aqueous ethanol, whereby 2.5 parts by weight of 3-(2',4',5'-triethoxybenzoyl)-propionic acid are obtained as colorless needles, melting point 150°C to 151°C.

References

Merck Index 9404 DFU 3 (11) 846 (1978)

DOT 17 (12) 566 (1981)

I.N. p. 969

Mutara, T., Nohara, A., Sugihara, H. and Sanno, Y.; U.S. Patent 3,943,169; March 9, 1976; assigned to Takeda Chemical Industries, Ltd.

TRETINOIN

Therapeutic Function: Keratolytic

Chemical Name: 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraenoic

acid

Common Name: Vitamin A acid; retinoic acid

Structural Formula:

CH₃ CH₃ COOH

Chemical Abstracts Registry No.: 302-79-4

Trade Name	Manufacturer	Country	Year Introduced
Aberel	McNeil	U.S.	1973
Vitamin-A-Saure	Roche	W. Germany	1973
Retin-A	Ortho	U.K.	1973
Airol	Roche	Italy	1975
Effederm	Sauba	France	1975
Retin-A	Cilag	Italy	1975
Acnelyse	Abdi Ibrahim	Turkey	_
Aknoten	Krka	Yugoslavia	
Cordes-Vas	icthyol-Ges.	W. Germany	_
Dermojuventus	Juventus	Spain	_
Epi-Aberel	Cilag	W. Germany	
Eudyna	Nordmark	W. Germany	_
Stie Vaa	Stiefel	U.S.	_
Tretin-M	lkapharm	Israel	_
Vitacid-A	Merima	Yugoslavia	

Raw Materials

Beta-ionol

Triphenylphosphine hydrobromide 4-Methyl-1-al-hexadiene-(2,4)-acid-(6)

Manufacturing Process

100 parts of beta-ionol are dissolved in 200 parts of dimethylformamide and after the addition of 165 parts of triphenylphosphine hydrobromide, stirred for 7 hours at room temperature. Then 70 parts of 4-methyl-1-al-hexadiene-{2,4}-acid-{6} (melting point 177°C, white needles from water) are added to the now clear solution. 150 parts of isopropanol

are added and the whole cooled to -30°C. Into this solution, while stirring vigorously, 190 parts by volume of a 30% solution of sodium methylate in methanol are allowed to flow in. A vigorous exothermic reaction takes place and the temperature in the interior of the flask rises to +5°C. It is stirred for another 5 minutes and neutralized with 10% of sulfuric acid (until acid to Congo).

After stirring for 2 hours at room temperature, the mass of vitamin A acid has crystallized out. It is sharply filtered off by suction and washed with a little ice-cold isopropanol. From the filtrate, a further small amount of mainly all trans vitamin A acid crystallizes out upon the addition of water. The filter cake is suspended in 600 parts of water and stirred for 4 hours at room temperature; it is filtered by suction and the product washed with water. It is dried in vacuo at 40° to 50°C and 115 parts of vitamin A acid are obtained. The melting point lies between 146° and 159°C.

The mixture of the all trans and mainly 9,10-cis vitamin A acid may be separated by fractional crystallization from ethanol. All trans vitamin A acid has a melting point of 180° to 182°C and 9,10-cis vitamin A acid, which crystallized in the form of pale yellow fine needles collected into clusters, has a melting point of 189° to 190°C.

References

Merck Index 8065 Kleeman & Engel p. 910 PDR p. 1309 DOT 8 (8) 305 (1972) I.N. p. 970 REM p. 785

Pommer, H. and Sarnecki, W.; U.S. Patent 3,006,939; October 31,1961; assigned to Badische Anilin- & Soda-Fabrik AG, Germany

TRIACETIN

Therapeutic Function: Topical antifungal

Chemical Name: 1,2,3-propanetriol triacetate

Common Name: Glyceryl triacetate

Structural Formula: CH2OCOCH

снососн₃ сн₂ососн₃

Chemical Abstracts Registry No.: 102-76-1

Manufacturer	Country	Year Introduced
Ayerst	U.S.	1957
Blair	U.S.	1957
Ayerst	U.S.	1959
	Ayerst Blair	Ayerst U.S. Blair U.S.

Raw Materials

Allyl acetate Acetic acid Oxygen

Manufacturing Process

200 grams of allyl acetate, 450 grams of glacial acetic acid and 3.71 grams of cobaltous bromide were charged to the reactor and the mixture was heated to 100°C. Pure oxygen was then introduced into the reactor below the surface of the liquid reaction mixture at the rate of 0.5 standard cubic feet per hour. Initially, all of the oxygen was consumed, but after a period of time oxygen introduced into the mixture passed through unchanged, During the course of the reaction, a small quantity of gaseous hydrogen bromide (a total of 1.9 grams) was introduced into the reaction zone, along with the oxygen. The reaction was allowed to continue for 6 hours following which the reaction mixture was distilled. Essentially complete conversion of the allyl acetate took place. A yield of 116 grams of glycerol triacetate was obtained, this being accomplished by distilling the glycerol triacetate overhead from the reaction mixture, at an absolute pressure of approximately 13 mm of mercury.

References

Merck Index 9407 PDR pp. 618, 1397 I.N. p. 970 REM p. 1231

Keith, W.C.; U.S. Patent 2,911,437; November 3, 1959; assigned to Sinclair Refining Co.

TRIAMCINOLONE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-fluoro-11β,16α,17,21-tetrahydroxypregna-1,4-diene-3,20-dione

Common Name: Δ^1 -16 α -hydroxy-9 α -fluorohydrocortisone

Structural Formula:

Chemical Abstracts Registry No.: 124-94-7

Trade Name	Manufacturer	Country	Year Introduced
Kenacort	Squibb	U.S.	1958
Aristocort	Lederle	U.S.	1958
Aristoge!	Lederle	U.S.	1975
Albacort	Teknofarma	Italy	
Cinolone	Pierrel	Italy	
Cortinovus	Lampugnani	Italy	_
Delsolone	Medosan	Italy	_
Ditrizin	Ester	Spain	
Eczil	Aesculapius	Italy	_
Flogicort	Francia	Italy	_

Trade Name	Manufacturer	Country	Year Introduced
Ipercortis	A.G.I.P.S.	Italy	_
Ledercort	Cyanamid	Italy	
Medicort	Medici	Italy	_
Neo-Cort	Italchemi	Italy	-
Oticortrix	Oti	Italy	_
Sadocort	Guistini	italy	
Sedozalona	Loa	Argentina .	_
Sterocort	Taro	Israel	_
Tedarol	Specia	France	_
Trialona	Alter	Spain	_
Triamcort	Helvepharm	Switz.	_
Triam-Oral	Nattermann	W. Germany	_
Tricortale	Bergamon	Italy	_
Trilon	Panther-Osfa	Italy	_
Volon	Heyden	W. Germany	_

Bacterium Corynebacterium simplex Δ^4 -Pregnene-9 α -fluoro-11 β , 16 α , 17 α , 21-tetrol-3, 20-dione-16, 21-diacetate Soy broth Potassium hydroxide

Manufacturing Process

Preparation of Δ^{1A} -Pregnadiene- 9α -Fluoro- 11β , 16α , 17α , 21-Tetrol 16, 21-Diacetate: An agar slant of Corynebacterium simplex was washed with 5 ml of sterile saline and the spore suspension added to 100 ml of Trypticase soy broth in a 500 ml Erlenmeyer. The mixture was incubated at 32° C for 8 hr and 1 ml was used to inoculate 10 flasks, each containing 100 ml of Trypticase soy broth. The flasks were incubated with shaking at 32° C for 16 hr. $20 \text{ mg } \Delta^4$ -pregnene- 9α -fluoro- 11β , 16α , 17α , 21-tetrol-3, 20-dione 16, 21-diacetate dissolved in 2 ml ethanol was added and the flasks pooled. This solution was extracted several times with methylene chloride, washed with saturated saline and evaporated under reduced pressure. The residue was dissolved in methanol, treated with activated charcoal, filtered through diatomaceous earth and reevaporated to afford 277 mg of oil and acetylated overnight.

Paper strip chromatography showed approximately equal amounts of substrate and a more polar product $(\Delta^{1,4}\text{-}\text{pregnadiene-}9\alpha\text{-}\text{fluoro-}11\beta,16\alpha,17\alpha,21\text{-}\text{tetrol-}3,20\text{-}\text{dione }16,21\text{-}\text{diacetate})$ together with very small amounts of two less polar products. Partition chromatography of 0.25 gram of the residue (diatomaceous earth column; system: 2 parts ethyl acetate, 3 parts petroleum ether (90° to 100°C), 3 parts methanol and 2 parts water) separated the less polar products and the substrate. The desired most polar product remained on the column and was eluted with 500 ml of methanol. The residue (90 mg) from the evaporated methanol was repartitioned on diatomaceous earth [system: 3 parts ethyl acetate, 2 parts petroleum ether (90° to 100°C), 3 parts methanol, and 2 parts water] and the cut containing the desired product (determined by ultraviolet absorption spectrum) was evaporated under reduced pressure to afford 18 mg of solid.

Crystallization from acetone-petroleum ether gave 13 mg of colorless needles of $\Delta^{1,4}$ -pregnadiene- 9α -fluoro- 11β , 16α , 17α , 21-tetrol-3, 20-dione 16, 21-diacetate; melting point (Köfler block) about 150° to 240°C with apparent loss of solvent at 150°C. Recrystallization from acetone-petroleum ether did not alter the melting point.

Preparation of $\Delta^{1,4}$ -Pregnadiene- 9α -Fluoro- 11β , 16α , 17α , 21-Tetrol-3, 20-Dione: A solution of 100 mg of $\Delta^{1,4}$ -pregnadiene- 9α -fluoro- 11β , 16α , 17α , 21-tetrol-3, 20-dione 16, 21-diacetate was dissolved in 10 ml of methanol and cooled to 0°C. After flushing with nitrogen, a solution of 35 mg of potassium hydroxide in 2 ml of methanol was added to the steroid solution. After standing at room temperature for 1 hour, the solution was neutralized

with glacial acetic acid and evaporated under a nitrogen atmosphere to a white solid. Water was added, and after cooling, the product was filtered and washed with water to afford 52 mg of $\Delta^{1,4}$ -pregnadiene- 9α -fluoro- 11β , 16α , 17α , 21-tetrol-3, 20-dione, melting point 246° to 249°C. Three crystallizations from acetone petroleum ether gave 29 mg of the tetrol, melting point 260° to 262.5°C, according to U.S. Patent 2,789,118.

References

Merck Index 9412 Kieeman & Engel p. 911 PDR pp. 830, 998, 1606 OCDS Vol. 1 p. 201 (1977) & 2, 185 (1980) I.N.p. 971 REM p. 970

Bernstein, S., Lenhard, R.H. and Allen, W.S.; U.S. Patent 2,789,118; April 16, 1957; assigned to American Cyanamid Company

Allen, G.R., Marx, M. and Weiss, M.J.; U.S. Patent 3,021,347; February 13, 1962; assigned to American Cyanamid Company

TRIAMCINOLONE ACETONIDE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-fluoro- 11β ,21-dihydroxy- 16α ,17[1-methylethylidenebis(oxy)] pregna-

1.4-diene-3.20-dione

Common Name: 9α -fluoro- 16α , 17-isopropylidenedioxyprednisolone

Structural Formula:

Chemical Abstracts Registry No.: 76-25-5

Trade Name	Manufacturer	Country	Year Introduced
Kenalog	Squibb	U.S.	1958
Aristocort A	Lederle	U.S.	1958
Aristoderm	Lederle	U.S.	1960
Aristogel	Lederle	U.S.	1975
Triacort	Rowel	U.S.	1981
Trymex	Savage	U.S.	1982
Kenai	N.M.C.	U.S.	1982
Triaget	Lemmon	U.S.	1983
Acetospan	Reid Provident	U.S.	-
Adcortyl	Squibb	U.K.	
Azmacort	Rorer	U.S.	
Azobicina Triamcin	Maggioni	Italy	_
Cinonide	Legere	U.S.	-

Trade Name	Manufacturer	Country	Year Introduced
Cremocort	Rougier	Canada	_
Cutinolone	Labaz	France	
Extracort	Basotherm	W. Germany	_
Flogicort	Francia	Italy	_
Ftorocort	Kobanyai	Hungary	_
Kenacort	Squibb	France	_
Kenacort-A	Squibb-Sankyo	Japan	-
Kortikoid	Ratiopharm	W. Germany	_
Ledercort N	Lederle	Japan	_
Lederspan	Lederle	U.K.	
Mycolog	Squibb	U.S.	
Myco-Triacet	Lemmon	U.S.	-
Mytrex	Savage	U.S.	_
Neo-Cort	Italchimici	Italy	_
Nyst-Olone	Schein	U.S.	_
Paralen	Heyden	W. Germany	
Rineton	Sanwa	Japan	_
Sterocutan	lfisa	Italy	
Tedarol	Specia	Italy	-
Tramycin	Johnson & Johnson	U.S.	_
Triaderm	K-Line	Canada	_
Trialona	Alter	Spain	_
Triamalone	Trans-Canada Derm.	Canada	
Triam-Injekt	Nattermann	W. Germany	_
Tricilone	Vangard	U.S.	
Tricinolon	Kakenyaku	Japan	_
Volon	Heyden	W. Germany	

Triamcinolone Acetone

Manufacturing Process

A solution of 250 mg of 9α -fluoro- 11β , 16α , 17α , 21-tetrahydroxy-1, 4-pregnadiene-3, 20dione in 70 ml of hot acetone and 7 drops of concentrated hydrochloric acid is boiled for 3 minutes. After standing at room temperature for 17 hours, the reaction mixture is poured into dilute sodium bicarbonate and extracted with ethyl acetate. The extract is washed with saturated saline solution, dried and evaporated to a colorless glass. The residue is crystallized from acetone-petroleum ether to afford 166 mg of the acetonide, MP 270° to 274°C, decomposition, (with previous softening and browning). Three recrystallizations from acetone-petroleum ether give 113 mg of 9α -fluoro- 11β ,21-dihydroxy- 16α ,17 α isopropylidenedioxy-1,4-pregnadiene-3,20-dione, MP 274° to 279°C, decomposition, (with previous softening and browning).

References

Merck Index 9413 Kleeman & Engel p. 912 PDR pp. 888, 999, 1003, 1033, 1429, 1535, 1604, 1746, 1750 OCDS Vol. 1 p. 201 (1977) I.N. p. 971 REM p. 971

Bernstein, S. and Allen, G.R. Jr.; U.S. Patent 2,990,401; June 27, 1961; assigned to American Cyanamid Company

Hydorn, A.E.; U.S. Patent 3,035,050; May 15, 1962; assigned to Olin Mathieson Chemical Corporation

TRIAMCINOLONE DIACETATE

Therapeutic Function: Glucocorticoid

Chemical Name: 9-Fluoro-11 β ,16 α ,17,21-tetrahydroxypregna-1,4-diene-3,20-dione-17,21-

diacetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 67-78-7

Trade Name	Manufacturer	Country	Year Introduced
Aristocort	Lederle	U.S.	1959
Cenocort	Central	U.S.	1975
Cino-40	Tutag	U.S.	1976
Tracilon	Savage	U.S.	1978
Cinalone	Legere	U.S.	
Delphicort	Lederle	W. Germany	_
Kenacort	Squibb	Italy	_
Ledercort	Lederle	Italy	
Tedarol	Specia	France	_
Triam Forte	Hyrex	U.S.	
Triamcin	Johnson & Johnson	U.S.	

Raw Materials

 $16\alpha,21$ -Diacetoxy- $11\beta,17\alpha$ -dihydroxy- 9α -fluoro-4-pregnene-3,20-dione Selenium dioxide

Manufacturing Process

To a solution of 16α , 21-diacetoxy- 11β , 17α -dihydroxy- 9α -fluoro-4-pregnene-3, 20-dione (1.0 g) in tertiary-butanol (160 ml) and glacial acetic acid (1.6 ml) was added 600 mg of selenium dioxide, the mixture swept with nitrogen and kept at 70°C for 24 hours, selenium dioxide (350 mg) added, and the mixture swept with nitrogen and allowed to stand for another 24 hours. The reaction mixture was filtered, and the filtrate was evaporated to dryness under reduced pressure. The material so obtained was dissolved in ethyl acetate, washed with saturated sodium bicarbonate, water, cold freshly prepared ammonium sulfide solution, cold dilute ammonia water, cold dilute hydrochloric acid, and finally with water. After treatment with anhydrous sodium sulfate and activated charcoal, filtration through diatomaceous earth and evaporation to dryness under reduced pressure, 850 mg of a tan glass was obtained. Paper strip chromatographic analysis showed predominantly product plus a small amount of starting material. The 850 mg was chromatographed on 320 g of diatomaceous earth containing 160 ml of stationary phase of a solvent system composed of 3,4,3,2-ethyl acetate-petroleum ether (boiling point 90°C to 100°C), methanol, and water, respectively. The column dimensions were 3.8 cm x 78 cm with 460 ml hold back volume. The fifth and sixth hold back volumes were combined and evaporated under reduced pressure to 250 mg of product which, after a single crystallization from acetone-petroleum ether, gave 173 mg, melting point 150°C to 190°C. Paper strip chromatography showed a single spot having the same polarity as an authentic sample of 16α , 21-diacetoxy- 11β , 17α -dihydroxy- 9α -fluoro-1, 4-pregnadiene-3, 20-dione. A further crystallization from the same solvent pair gave 134 mg, melting point 185°C to 189°C. bubbles to 230°C.

References

Kleeman & Engel p. 913 PDR pp. 998, 1000, 1033

I.N. p. 971 REM p. 971

American Cyanamid Co.; British Patent 835,836; May 25, 1960

TRIAMTERENE

Therapeutic Function: Diuretic

Chemical Name: 6-phenyl-2,4,7-pteridinetriamine

Common Name: Ademine; pterophene

Structural Formula:

Chemical Abstracts Registry No.: 396-01-0

Trade Name	Manufacturer	Country	Year Introduced
Jatropur	Rohm	W. Germany	1962
Dytac	SKF	U.K.	1962
Teriam	Roussel	France	1963
Triamteril	Farmitalia	Italy	1963
Dyrenium	SKF	U.S.	1964
Diurene	Medix	Spain	-
Dyazide	SKF	Ú.S.	_
Kalistat	Disco	Israel	_
Maxzide	Lederle	U.S.	
Triamthiazid	Henning	W. Germany	
Urocaudal	Jorha	Spain	_

Raw Materials

5-Nitroso-2,4,6-triaminopyrimidine Phenylacetonitrile

Manufacturing Process

To a solution of 9 grams of 5-nitroso-2,4,6-triaminopyrimidine in 500 ml of refluxing dimethylformamide is added 9 grams of phenylacetonitrile and the refluxing is stopped. The 3 grams of anhydrous sodium methoxide is added and the mixture is refluxed for 15 minutes. The mixture is chilled and the solid is filtered and washed several times with warm water until the washings are neutral. Drying gives yellow crystals which are recrystallized with a Darco treatment from formamide-water heating the solution no hotter than 125°C. This product is then suspended in filtered deionized water and warmed for 15 minutes. This yields the 2,4,7-triamino-6-phenylpteridine as yellow crystals with a MP of 314° to 317°C.

References

Merck Index 9415

Kleeman & Engel p. 915 PDR pp. 1014, 1713 OCDS Vol. 1 p. 427 (1977)

I.N.p. 972 REM p. 942

Weinstock, J. and Wiebelhaus, V.D.; U.S. Patent 3,081,230; March 12, 1963; assigned to Smith Kline & French Laboratories

TRIAZOLAM

Therapeutic Function: Hypnotic

Chemical Name: 8-Chloro-1-methyl-6-(o-chlorophenyl)-4H-s-triazolo[4,3-a] [1,4] -benzo-

diazepine

Common Name: Clorazolam

Structural Formula:

Chemical Abstracts Registry No.: 28911-01-5

Trade Name	Manufacturer	Country	Year Introduced
Halcion	Upjohn	Switz.	1978
Halcion	Upjohn	Italy	1978
Halcion	Upjohn	U.K.	1979
Halcion	Upjohn	W. Germany	1980
Halcion	Upjohn	U.S.	1982
Halcion	Sumitomo	Japan	1983
Halcion	Upjohn	Japan	1983
Songar	Valeas	Italy	1983
Novidorm	Sintyal	Argentina	_

Raw Materials

7-Chloro-1,3-dihydro-5-(o-chlorophenyl)-2H-1,4-benzodiazepine-2-thione Acetic acid hydrazide

Manufacturing Process

A mixture of 1.0 g (0.0031 mol) of 7-chloro-1,3-dihydro-5-(o-chlorophenyl)-2H-1,4-benzodiazepine-2-thione, 0.8 g (0.0108 mol) of acetic acid hydrazide and 40 ml of 1-butanol was heated at reflux temperature under nitrogen for 24 hours. During the first 5 hours the nitrogen was slowly bubbled through the solution. After cooling and removing the solvent in vacuo, the product was well mixed with water and collected on a filter, giving 0.9 g of orange solid, melting point 210°C to 212°C. This was heated under nitrogen in an oil bath at 250°C and then cooled. The solid was crystallized from ethyl acetate, giving 0.5 g of tan solid of melting point 215°C to 216°C (decomposition). This was dissolved in 25 ml of 2-propanol,

filtered, concentrated to 10 ml and cooled, yielding 0.46 g (43%) of tan, crystalline 8-chloro-1-methyl-6-(o-chlorophenyl)-4H-s-triazolo[4,3-a] [1,4]-benzodiazepine of melting point 223°C to 225°C.

References

REM p. 1064

Merck Index 9418 DFU 1 (8) 393 (1976) Kleeman & Engel p. 916 PDR p. 1843 OCDS Vol. 1 p. 368 (1977) DOT 11 (5) 20 (1975) & 15 (1) 30 (1979) I.N. p. 972

Hester, J.B. Jr.; U.S. Patents 3,741,957; June 26, 1973; 3,980,790; September 14, 1976; and 3,987,052; October 19, 1976; all assigned to The Upjohn Company

TRIBENOSIDE

Therapeutic Function: Treatment of venous disorders

Chemical Name: Ethyl-3,5,6-tris-O-(phenylmethyl)-D-glucofuranoside

Common Name: -

Structural Formula:

$$H_5C_6-CH_2-O-CH_2$$
 $H_5C_6-CH_2-O-CH_0$
 $H_5C_6-CH_2$
 $H_5C_6-CH_2$
 H_5

Chemical Abstracts Registry No.: 10310-32-4

Trade Name	Manufacturer	Country	Year Introduced
Glyvenol	Ciba	W. Germany	1967
Glyvenol	Ciba Geigy	France	1968
Glyvenol	Ciba	Italy	1968
Hemocuron	Takeda	Japan	1978
Alven	Firma	Italy	-
Flebosan	Dukron	!taly	- ·
Venalisin	A.G.I.P.S.	italy	
Venex	Oti	Italy	
Venodin	Tosi-Novara	Italy	<u>-</u>

Raw Materials

1,2-Isopropylidene glucofuranose Benzyl chloride

Manufacturing Process

4.9 g of 3,5,6-tribenzyl-1,2-isopropylidene glucofuranose are kept overnight at room temperature with 100 cc of N-ethanolic hydrochloric acid. Evaporation under vacuum at below 50°C is then carried out and the residue taken up in 150 cc of chloroform. The chloroform solution is thoroughly washed with sodium bicarbonate solution, dried with calcined sodium sulfate and evaporated under vacuum. The oily residue is then distilled under vacuum with a free flame. In this manner there is obtained the ethyl-3,5,6-tribenzyl-D-glucofuranoside of boiling point 270°C to 275°C under 1 mm pressure.

The glucofuranose used as starting material is obtained as follows: 8.8 g of 1,2-isopropylidene-D-glucofuranose and 50.6 g of benzyl chloride are treated with a total of 28 g of potassium hydroxide in portions with cooling and stirring. The mixture is then stirred for 3 hours at 80°C to 90°C. Working up from chloroform solution and distillation at 250°C to 260°C under 0.1 mm pressure give 8.9 g of 1,2-isopropylidene-3,5,6-tribenzyl-D-glucofuranose.

References

Merck Index 9420 Kleeman & Engel p. 917 I.N. p. 973

Druey, J. and Huber, G.L.; U.S. Patent 3,157,634; November 17, 1964; assigned to Ciba Corp.

TRICHLORMETHIAZIDE

Therapeutic Function: Diuretic

Chemical Name: 6-chloro-3-(dichloromethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-

sulfonamide-1,1-dioxide

Common Name: Hydrotrichlorothiazide

Structural Formula:

Chemical Abstracts Registry No.: 133-67-5

Trade Name	Manufacturer	Country	Year Introduced
Nagua	Schering	U.S.	1960
Metahydrin	Merrell National	U.S.	1960
Esmarin	Merck	W. Germany	1960
Fluitran	Essex	Italy	1962
Trichlorex	Lannett	U.S.	1980
Achietin	Toyama	Japan	
Aitruran	Horita	Japan	-
Anatran	Tobishi	Japan	
Anistadin	Maruko	Japan	_
Aponorin	Kodama	Japan	-
Carvacron	Taiyo	Japan	
Chlopolidine	Tsuruhara	Japan	
Cretonin	Hokuriku	Japan	~
Diu-Hydrin	Darby	U.S.	~
Diurese	Amer, Urologicals	U.S.	
Flutoria	Towa	Japan	~
Hidroalogen	Bicsa	Spain	~
Intromene	Teikoku	Japan	-

Trade Name	Manufacturer	Country	Year Introduced
Naquival	Schering	U.S.	_
Nydor	Taro	Israel	_
Pluvex	Firma	Italy	_
Polynease	Sawai	Japan	_
Sanamiron	Zen s ei	Japan	
Schebitran	Nichiiko	Japan	
Tachionin	San-A	Japan	-
Tolcasone	Toho	Japan	-
Trametol	Green Cross	Japan	
Triazide	Legere	U.S.	_
Trichlordiuride	Formenti	Italy	_
Tricloretic	Irfi	Italy	_
Triflumen	Serono	Italy	_

5-Chloro-2,4-disulfamylaniline Dichloroacetaldehyde

Manufacturing Process

A mixture of 5.7 grams (0.02 mol) of 5-chloro-2,4-disulfamylaniline and 4.9 grams (0.04 mol) of dichloroacetaldehyde in 25 ml of dimethyl formamide was heated at the boiling temperature and under reflux for 30 minutes. The reaction mixture was thereafter poured into a mixture of ice and water to precipitate the desired 6-chloro-7-sulfamyl-3-dichloromethyl-3,4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide as a crystalline solid melting at 250° to 270°C with decomposition.

References

Merck Index 9437 Kleeman & Engel p. 917 PDR pp. 1033, 1230, 1605, 1634 OCDS Vol. 1 p. 359 (1977) I.N. p. 974 REM p. 941

Close, W.J.; U.S. Patent 3,264,292; August 2, 1966; assigned to Abbott Laboratories

TRICLOBISONIUM CHLORIDE

Therapeutic Function: Topical antiseptic (vaginal)

Chemical Name: N,N,N',N'-tetramethyl-N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)-

propyl]-1,6-hexanediaminium dichloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 79-90-3

Trade Name	Manufacturer	Country	Year Introduced
Triburon	Roche	U.S.	1959
Materials			

Raw

1,6-Hexanediamine cis-Tetrahydroionone Formic acid Hydrogen Formaldehyde Methyl chloride

Manufacturing Process

To a solution of 49 grams (0.25 mol) of cis-tetrahydroionone and 14.1 grams (0.12 mol) of 1,6-hexanediamine in 150 ml of ethanol was added 1 teaspoon of Raney nickel. The volume was adjusted to 300 ml with ethanol and the mixture was hydrogenated at 50°C and a pressure of 200 psi. The catalyst was filtered off, the filtrate was concentrated and the residual oil fractionated in vacuo to obtain N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)propyl]-1,6-hexanediamine; BP 192° to 202°C at 0.02 mm.

To 217 grams (0.456 mol) of N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)propyl]-1.6hexanediamine were added 182 ml (3.04 mols) of formic acid (90%). The resulting colorless solution was cooled, then 91.3 ml (1.043 mols) of formaldehyde (37%) were added. The solution was heated at steam temperature with occasional shaking for 2 hours and then refluxed for 8 hours. The volatiles were distilled off at steam temperature under water vacuum and the residual oil was made strongly alkaline with 50% potassium hydroxide. The reaction product was extracted with ether. The ether extract was washed with water, dried and concentrated in vacuo. The residual oil was fractionated in vacuo to obtain N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)propyl]-N,N'-dimethyl-1,6-hexanediamine, BP_{0.4} 230° to 240°C, $n_0^{26} = 1.4833$. An aliquot, when treated with an ethanolic hydrogen chloride, gave the crystalline dihydrochloride, MP 183° to 185°C (recrystallized from ethanolacetonitrile).

To 5 grams of N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)propyl]-N,N'-dimethyl-1,6hexanediamine dissolved in 100 ml of methanol, at 4°C, were added 100 ml methanol containing 10 grams of methyl chloride. The solution was heated in a closed vessel at 60°C for 15 hours. The colorless solution was concentrated and the resulting white solid crystallized from ethanol-acetonitrile-ether to obtain N,N'-bis[1-methyl-3-(2,2,6-trimethylcyclohexyl)propyl]-N,N'-dimethyl-1,6-hexanediamine bis(methochloride) hemihydrate.

References

Merck Index 9465 I.N. p. 975

Goldberg, M.W. and Teitel, S.; U.S. Patent 3,064,052; November 13, 1962; assigned to Hoffmann-La Roche Inc.

TRICLOCARBAN

Therapeutic Function: Disinfectant

Chemical Name: N-(4-Chlorophenyl)-N'-(3,4-dichlorophenyl)urea

Common Name: Trichlorocarbanilid

Chemical Abstracts Registry No.: 101-20-2

Trade Name	Manufacturer	Country	Year Introduced
Cutisan	Innothera	France	1960
Procutene	Bouty	Italy	1968
Nobacter	Innothera	France	_
Septivon-Lavril	Clin Midy	France	
Solubacter	Innothera	France	_
Trilocarban	Armour-Montagu	France	_

Raw Materials

- 3,4-Dichloroaniline
- 4-Chlorophenyl isocyanate

Manufacturing Process

To a suitable reaction vessel equipped with a thermometer, agitator and reflux condenser and containing 8.1 parts by weight (substantially 0.05 mol) of 3,4-dichloroaniline in approximately 57 parts by weight of diethyl ether is added dropwise a solution of 7.7 parts by weight (substantially 0.05 mol) of 4-chlorophenyl isocyanate in approximately 15 parts by weight of diethyl ether at such a rate so as to maintain gentle reflux. Upon completion of the isocyanate addition the reaction mass is agitated for about one hour. The mass is filtered and the residue washed with diethyl ether. The dried product is a white fluffy solid which on recrystallization from ethanol gives fine white plates of 4,3',4'-trichlorocarbanilide, melting point 255.2°C to 256.0°C (88.0% yield).

References

Merck Index 9466 Kleeman & Engel p. 918 I.N. p. 975

Beaver, D.J. and Stoffel, P.J.; U.S. Patent 2.818,390; December 31, 1957; assigned to Monsanto Chemical Co.

TRICLOFOS SODIUM

Therapeutic Function: Sedative, hypnotic

Chemical Name: 2,2,2-trichloroethanol dihydrogen phosphate monosodium salt

Common Name: Trichloroethyl phosphate monosodium salt

Structural Formula:

Chemical Abstracts Registry No.: 7246-20-6; 306-52-5 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Triclos	Merrell National	U.S.	1972
Tricloran	C.T .S .	Israel	_
Tricloryl	Glaxo	U.K.	

Trichloroethanol Phosphorus oxychloride Sodium carbonate

Manufacturing Process

Trichloroethanol (500 grams) and phosphorus oxychloride (510 grams) were added to dry diethyl ether (3.5 liters) and stirred at 10°C with ice/water cooling. Dry pyridine (270 ml) was added dropwise over 1 hour, maintaining the temperature below 25°C. The resulting suspension was stirred for a further 1 hour and then stood at 0°C overnight. The pyridine hydrochloride was removed by filtration and washed with diethyl ether (2 x 300 ml) and dried in vacuo over P2O5 to give 380 grams.

The ether filtrate and washings were evaporated at room temperature under reduced pressure to give a clear liquid residue (801 grams). This residue was distilled under high vacuum to give trichloroethyl phosphorodichloridate (556 grams, 62.4% of theory), boiling point 75°C/0.8 mm.

The phosphorodichloridate was hydrolyzed by adding to a stirred solution of sodium carbonate (253 grams) in water (2.9 liters). After 1 hour the solution was cooled and acidified with a solution of concentrated sulfuric acid (30 ml) in water (150 ml) and then extracted with a mixture of tetrahydrofuran and chloroform $(2.3/1; 3 \times 1 \text{ liter})$. The tetrahydrofuran/chloroform liquors were bulked and evaporated to dryness to give a light brown oil. This was dissolved in water (1 liter) and titrated with 2 N sodium hydroxide solution to a pH of 4.05 (volume required 930 ml). The aqueous solution was clarified by filtration through kieselguhr and then evaporated under reduced pressure to a syrup (737 grams).

Hot acetone (4.5 liters) was added to this syrup and the clear solution stood at room temperature for 2 hours and then at 0°C overnight. The white crystalline solid was filtered off, washed with acetone (2 x 400 ml) and dried at 60°C in vacuo to give sodium trichloroethyl hydrogen phosphate (414 grams, 49.3% of theory from trichloroethanol).

References

Merck Index 9469 Kleeman & Engel p. 918 I.N. p. 975

Hems, B.A., Arkley, V., Gregory, G.I., Webb, G.B., Elks, J. and Tomich, E.G.; U.S. Patent 3,236,920; February 22, 1966; assigned to Glaxo Laboratories Limited, England

TRIDIHEXETHYL IODIDE

Therapeutic Function: Anticholinergic

Chemical Name: γ-Cyclohexyl-N,N,N-triethyl-γ-hydroxybenzene-propanaminium iodide

Common Name: Propethonium iodide; tridihexethide

Structural Formula:

Chemical Abstracts Registry No.: 125-99-5

Trade Name	Manufacturer	Country	Year Introduced
Pathilon	Burroughs Wellcome	U.S.	1955
Duosetil	Dessy	Italy	_

Acetophenone Paraformaldehyde Diethylamine Magnesium Cyclohexyl bromide Ethyl iodide

Manufacturing Process

Acetophenone, paraformaldehyde and diethylamine are first reacted to give ωdiethylaminopropiophenone. That is reacted with cyclohexylmagnesium bromide to give 3-diethylamino-1-cyclohexyl-1-phenyipropanoi-1.

To 1,320 parts of methyl isobutyl ketone is added 570 parts of 3-diethylamino-1-cyclohexyl-1-phenylpropanol-1 (2 mols) and the mixture is stirred until solution is complete. Then 500 parts (3.2 mols or 60% excess) of ethyl iodide are added. After filtration, the filtrate is diluted with an additional 300 parts of methyl isobutyl ketone and the solution is then heated at the reflux temperature (108°C to 110°C) for 9 hours. After cooling to 0°C, the precipitated solid material is removed by filtration, washed with isopropyl acetate and dried. Approximately 777 parts of product is obtained or a yield of 88.6% based on as-is starting material or 92.5% based on real starting material.

References

Merck Index 9474 Kleeman & Engel p. 918 I.N. p. 976 REM p. 919

Lobby, J.; U.S. Patent 2,913,494; November 17, 1959; assigned to American Cyanamid Co.

TRIETHYLENEMELAMINE

Therapeutic Function: Antineoplastic

Chemical Name: 2,4,6-Tris(1-aziridinyl)-s-triazine

Common Name: Tretamine

Structural Formula:

Chemical Abstracts Registry No.: 51-18-3

Trade Name	Manufacturer	Country	Year Introduced
Triethylene	Lederle	U.S.	1954
Triameline	1.C.1.		_

Cyanuric chloride Ethylene imine

Manufacturing Process

Cyanuric chloride (which may or may not contain the usual commercial impurities) is dispersed into ice water by stirring in a ratio of 18.8 g of cyanuric chloride to a mixture of 100 g of ice and 100 g of water. The slurry may conveniently be prepared directly in a 3-necked flask equipped with an agitator, dropping funnel, and thermometer. The temperature of the flask and contents is maintained within the range of 2°C to 5°C, with an ice-salt mixture. A solution of ethylenimine in an aqueous solution of potassium carbonate prepared in the proportions of 14 g ethylenimine, 44.5 g potassium carbonate, and 150 g of water, is added dropwise to the cyanuric chloride slurry. The reaction solution is then clarified with a little activated charcoal, filtered, and extracted with chloroform. Despite the fact that triethylene-melamine is more soluble in water than in chloroform, in a two-phase system (water-chloroform) nearly 75% of the triethylenemelamine is distributed in the chloroform, and hence a few extractions with that solvent suffice to separate the material from the original reaction medium. Five extractions with 50 ml portions of chloroform gave 19 g of product, and an additional 3 extractions with 25 ml portions gave 0.5 g, a total yield of 95.7%. The product obtained by evaporating such an extract is a white microcrystalline powder.

References

Merck Index 9481

1.N.p. 970

Wystrach, V.P. and Kaiser, D.W.; U.S. Patent 2,520,619; August 29, 1950; assigned to American Cyanamid Co.

TRIFLUOPERAZINE

Therapeutic Function: Tranquilizer

Chemical Name: 10-[3-(4-methylpiperazin-1-yl)propyl] -2-trifluoromethylphenothiazine

Common Name: Triftazin; triphthasine

Structural Formula:

Chemical Abstracts Registry No.: 117-89-5; 440-17-5 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Stelazine	SKF	U.S.	1958
Terfluzine	Theraplix	France	1962
Triazine	Cord	U.S.	1981
Calmazine	Protea	Australia	_
Chemflurazine	Chemo-Drug	Canada	_
Dymoperazine	Dymond	Canada	_
Flurazine	Taro	israel	

Trade Name	Manufacturer	Country	Year Introduced
Jatroneural	Rohm	W. Germany	_
Modalina	Maggioni	Italy	
Normain P	Sawai	Japan	_
Novoflurazine	Novopharm	Canada	_
Pentazine	Pentagone	Canada	_
Sedizine	Trima	Israel	_
Solazine	Horner	Canada	_
Telazin	Dincel	Turkey	_
Terflurazine	Lennon	S. Africa	
Tranquis	Sumitomo	Japan	_
Trifluoper-Ez-Ets	Barlow Cote	Canada	_
Triflurin	Paul Maney	Canada	_

2-Trifluoromethylphenothiazine Sodium amide 1-(3'-Chloropropyl)-4-methylpiperazine

Manufacturing Process

A mixture of 17.2 grams of 2-trifluoromethylphenothiazine, 3.1 grams of sodamide and 14 grams of 1-(3'-chloropropyl)-4-methylpiperazine in 200 ml of xylene is heated at reflux for 2 hours. The salts are extracted into 150 ml of water. The xylene layer is then extracted with several portions of dilute hydrochloric acid. The acid extracts are combined and neutralized with ammonium hydroxide solution. The product, 10-[3'-(4"-methyl-1"piperaziny!)-propy!]-2-trifluoromethylphenothiazine, is taken into benzene and purified by vacuum distillation, BP 202° to 210°C at 0.6 mm.

References

Merck Index 9489 Kleeman & Engel p. 919 PDR pp. 1606, 1723, 1999 DOT 9 (6) 228 (1973) I.N. p. 976 REM p. 1091

Ullyot, G.E.; U.S. Patent 2,921,069; January 12, 1960; assigned to Smith Kline & French Laboratories

$\alpha.\alpha.\alpha$ -TRIFLUOROTHYMIDINE

Therapeutic Function: Antiviral (ophthalmic)

Chemical Name: 2'-Deoxy-5-(trifluoromethyl)uridine

Common Name: Trifluridine

Chemical Abstracts Registry No.: 70-00-8

Trade Name	Manufacturer	Country	Year Introduced
Trifluorothymidine	Mann	W. Germany	1975
Bephen	Thilo	W. Germany	_
Triherpine	Dispersa	Switz.	_
Viroptic	Burroughs-Wellcome	U.S.	_

Raw Materials

3',5'-Bis-O-(p-nitrobenzoyl)-2'-deoxy-5-(trifluoromethyl)uridine Diisopropylamine

Manufacturing Process

A suspension of 4.00 g (6.75 mmol) of 3',5'- bis-O-(p-nitrobenzoyl)-2'-deoxy-5-(trifluoromethyl)uridine in 250 ml of methanol was treated with 10 ml of diisopropylamine and refluxed until it had dissolved (about 18 minutes), and the solution was concentrated. The dry residue was partitioned between 50 ml of chloroform and 50 ml of water. The chloroform layer was washed with 20 ml of water, and the combined aqueous layers were concentrated. A low ultraviolet extinction (67200 and 262 mµ; pH 1) and the presence of isopropyl signals in the NMR spectrum (two singlets at $\gamma 8.73$ and 8.85) indicated the dry residue contained disopropylamine, probably as a salt with the relatively acidic heterocyclic N-H in 14.

A solution in 75 ml of water was treated with 8 ml (volume of resin) of Dowex 50 (H), prewashed with water and methanol. The resin was removed on a filter and washed with 25 ml of methanol and 50 ml of water. The combined filtrate was evaporated in vacuo to form 1.99 g of 2'-deoxy 4-(trifluoromethyl)uridine (100%), melting point 171°C to 175°C.

References

DFU 5 (11) 561 (1980) Kleeman & Engel p. 921 PDR p. 768 DOT 16 (12) 430 (1980) I.N. p. 977 REM p. 1232

Heidelberger, C.; U.S. Patent 3,201,387; August 17, 1965; assigned to the U.S. Secretary of Health, Education and Welfare

Ryan, K.J., Acton, E.M. and Goodman, L.; U.S. Patent 3,531,464; September 29, 1970; assigned to the U.S. Secretary of Health, Education and Welfare

TRIFLUPROMAZINE

Therapeutic Function: Tranquilizer

Chemical Name: N,N-Dimethyl-2-(trifluoromethyl)-10H-phenothiazine-10-propanamine

Common Name: Fluopromazine

Chemical Abstracts Registry No.: 146-54-3; 1098-60-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Vesprin	Squibb	U.S.	1957
Psyquil	Squibb	France	1970
Fluomazina	Firma	Italy	_
Fluorofen	Savio	Italy	
Nivoman	Heyden	W. Germany	
Siquil	Iquinosa	Spain	-

Raw Materials

2-Trifluoromethylphenothiazine

Sodium amide

3-Chloro-1-dimethylaminopropane

Manufacturing Process

Approximately 3.8 grams of sodamide is freshly prepared from 2.25 grams of sodium, 90 grams of liquid ammonia and a catalytic trace of ferric nitrate. The ammonia is allowed to evaporate. A solution of 19.1 grams of 2-trifluoromethylphenothiazine (prepared by the Bernthsen thionation of 3-trifluoromethyldiphenylamine) in 160 ml of dry benzene is added to the reaction flask followed by 18 grams of 3-chloro-1-dimethylaminopropane. The reaction mixture is heated at reflux for 20 hours. After washing the cooled mixture with 130 ml of water, the organic layer is extracted with several portions of dilute hydrochloric acid. The acid extracts are combined and neutralized with ammonium hydroxide solution. The oily free base is extracted into benzene and purified by distillation to give 19.6 grams of 10-(3'-dimethylaminopropyl)-2-trifluoromethylphenothiazine, boiling point 177° to 181°C at 1 mm. The free base (7 grams) is converted to the hydrochloride salt by reacting an alcoholic solution of the base with hydrogen chloride gas. Evaporation of the volatiles in vacuo leaves an amorphous solid which is recrystallized from ethanol/ether to pink crystals, MP 173° to 174°C, the hydrochloride salt of the free base prepared above.

References

Merck Index 9492 Kleeman & Engel p. 920 OCDS Vol. 1 p. 380 (1977) I.N. p. 977

REM p. 1092

Ullyot, G.E.; U.S. Patent 2,921,069; January 12, 1960; assigned to Smith Kline & French Laboratories

TRIHEXYPHENIDYL HYDROCHLORIDE

Therapeutic Function: Antiparkinsonian

Chemical Name: α-cyclohexyl-α-phenyl-1-piperidinepropanol hydrochloride

Common Name: Benzhexol chloride

Chemical Abstracts Registry No.: 52-49-3; 144-11-6 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Artane	Lederle	U.S.	1949
Pipanol	Winthrop	U.S.	1952
Tremin	Schering	U.S.	1964
Antitrem	Roerig	U.S.	1974
Anti-Spas	Protea	Australia	_
Aparkan	Chinoin	Hungary	_
Aparkane	I.C.N.	Canada	_
Broflex	Bio-Medical	U.K.	
Novohexidyl	Novopharm	Canada	_
Paralest	Pharmachemie	Neth.	_
Pargitan	Kabi Vitrum	Sweden	_
Parkinane	Lederle	France	_
Parkopan	Fahlberg-List	E. Germany	_
Partane	Taro	Israel	-
Peragit	Gea	Denmark	
Pyramistin	Yamanouchi	Japan	_
Rodenal	Abic	Israel	_
Sedrena	Daiichi	Japan	_
Trihexane	Darby	U.S.	_
Trihexy	Barlow Cote	Canada	-
Triphedinon	Toho	Japan	_

Raw Materials

Acetophenone
Piperidine
Magnesium

Paraformaldehyde Cyclohexyl bromide Hydrogen chloride

Manufacturing Process

Acetophenone, paraformaldehyde and piperidine are first reacted to give ω -(1-piperidyl)propiophenone.

To an absolute ethyl ether solution of cyclohexylmagnesium bromide (prepared from 261 parts of cyclohexyl bromide, 38.8 parts magnesium turnings and 700 parts by volume absolute ethyl ether) a dry solution of 174 parts omega-(1-piperidyl)-propiophenone in 600 parts by volume of ether is added, with stirring, at such a rate that gentle reflux is maintained with no external cooling or heating. The reaction mixture is stirred for about 5 hours and then allowed to stand at room temperature until reaction appears complete. While being cooled the reaction mixture is then decomposed by the dropwise addition of 500 parts by volume of 2.5 N hydrochloric acid, and finally is made strongly acidic to Congo red by the addition of concentrated hydrochloric acid.

The resulting white solid is collected on a filter, air dried, redissolved in 2,500 parts water at 95°C and the resulting solution treated with decolorizing charcoal and clarified by filtration. The cooled filtrate is made alkaline with ammonia and the product, crude 3-(1piperidyl)-1-cyclohexyl-1-phenyl-1-propanol is collected. The hydrochloride melts with decomposition in ten seconds in a bath held at 258.5°C. The alcohol melts at 114.3° to 115.0°C, according to U.S. Patent 2,716,121.

References

Merck Index 9501 Kleeman & Engel p. 921 PDR p. 830 OCDS Vol. 1 p. 47 (1977) DOT 9 (6) 247 (1973)

I.N. p. 978 REM p. 931

Adamson, D.W. and Wilkinson, S.; U.S. Patent 2,682,543; June 29, 1954; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Denton, J.J.; U.S. Patent 2,716,121; August 23, 1955; assigned to American Cyanamid Co.

TRILOSTANE

Therapeutic Function: Corticosteroid antagonist

Chemical Name: 2α -Cyano- 4α , 5α -epoxyandrostan- 17β -ol-3-one

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13647-35-3

Trade Name	Manufacturer	Country	Year Introduced
Modrenal	Sterling Winthrop	U.K.	1980
Winstan	Winthrop	W. Germany	1982

Raw Materials

 17β -Acetoxy-4-androsteno[2,3-d] isoxazole Maleic anhydride Hydrogen peroxide Sodium methoxide

Manufacturing Process

- (A) 17β -acetoxy- 4α , 5α -epoxyandrostano[2,3-d] isoxazole, melting point 228.6°C to 229.8°C (corrected) recrystallized from a benzene-methanol mixture, [α]_D²⁵ = +76.5°C (1% in chloroform), was prepared by treating 17β -acetoxy-4-androsteno[2,3-d] isoxazole with maleic anhydride and hydrogen peroxide in methylene dichloride solution.
- (B) 2α -cyano- 4α ,5 α -epoxandrostan- 17β -ol-3-one was prepared by treating 17β -acetoxy- 4α , 5α -epoxyandrostano [2,3-d] isoxazole with sodium methoxide, and was obtained in the form of tan crystals, melting point 257.8° C to 270.0° C (decomposition) (corrected) when recrystallized from a pyridine-dioxane mixture.

References

Merck Index 9505 DFU 6 (8) 494 (1981) OCDS Vol. 2 p. 158 (1980) DOT 17 (5) 203 (1981) I.N. p. 979

Clinton, R.O. and Manson, A.J.; U.S. Patent 3,296,255; January 3, 1967; assigned to Sterling Drug, Inc.

TRIMEPRAZINE

Therapeutic Function: Antipruritic

Chemical Name: N,N, β -Trimethyl-10H-phenothiazine-10-propanamine

Common Name: Alimemazine

Structural Formula:

Chemical Abstracts Registry No.: 84-96-8

Trade Name	Manufacturer	Country	Year Introduced
Temaril	SKF	U.S.	1958
Theralene	Theraplix	France	1958
Alimezine	Daiichi	Japan	_
Nedeltran	Bournonville	Belgium	
Panectyl	Rhone-Poulenc	Canada	_
Repeltin	Bayer	W. Germany	_
Vallergan	May & Baker	U.K.	_
Variargil	Rhodia Iberica	Spain	_

Raw Materials

Phenoth lazine Sodium amide

1-Chloro-2-methyl-3-dimethylaminopropane

Manufacturing Process

95% sodamide (2.77 grams) is added to a solution of phenthiazine (9.6 grams) in xylene (140 cc) at a temperature of 130°C and the mixture is heated with reflux for 2 hours.

A 0.61 N solution (90 cc) of 1-chloro-2-methyl-3-dimethylaminopropane in xylene is then added over 50 minutes and heating with reflux is continued for 20 hours. After cooling, the mixture is treated with water (40 cc) and N methanesulfonic acid (70 cc). The aqueous layer is washed with ether, treated with aqueous sodium hydroxide (density = 1.33; 10 cc) and extracted with ether.

The extract is dried over potassium carbonate and evaporated and the residue is distilled in vacuo. 3-(10-phenthiazinyl)-2-methyl-1-dimethylaminopropane (12.6 grams) is collected, distilling between 150° and 175°C under a pressure of about 0.3 mm Hg. By dissolving this base in acetone and adding ethereal hydrogen chloride, a hydrochloride is obtained, MP 216° to 217°C.

References

Merck Index 9510 Kleeman & Engel p. 25 PDR p. 1727 OCDS Vol. 1 p. 378 (1977) I.N. p. 55 REM p. 1130

Jacob, R.M. and Robert, J.G.; U.S. Patent 2,837,518; June 3, 1958; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

TRIMETAZIDINE

Therapeutic Function: Coronary vasodilator

Chemical Name: 1-[(2.3.4-Trimethoxyphenyl)methyl] piperazine

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 5011-34-7; 13171-25-0 (Dihydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Vastarel	Biopharma	France	1963
Cartoma	Ohta	Japan	_
Coronanyl	Toho	Japan	_
Hiwell	Toa Eiyo	Japan	
Lubomanil	Maruko	Japan	_
Sainosine	Nippon Chemiphar	Japan	_
Trimeperad	Kotobuki	Japan	_
Vassarin-F	Taiyo	Japan	_
Vastazin	Takeda	Japan	
Yosimilon	Kowa Yakuhin	Japan	_

Raw Materials

2,3,4-Trimethoxybenzyl chloride 1-Formy!piperazine

Sodium carbonate

Manufacturing Process

Monoformylpiperazine is reacted molecule for molecule with 2,3,4-trimethoxybenzyl chloride in the presence of 1½ molecules of sodium carbonate and in suspension in ethyl alcohol, during 2 to 3 hours.

The reaction product is filtered and the filtrate is evaporated in vacuo to remove the alcohol. There remains an oily product from which the excess formyl-ethylenediamine is removed by distillation under 1 mm Hg pressure up to 125°C. The dark yellow, residual product is treated with 10% hydrochloric acid at 100°C for 12 hours to eliminate the formyl group; it is evaporated to a syrupy consistency and taken up with ethyl alcohol at the boiling point until complete miscibility is attained; it is then discolored over carbon, filtered and stored at low temperature.

The (2,3,4-trimethoxyphenyl)methylpiperazine hydrochloride precipitates as white needles: the precipitate is drained and washed with anhydrous sulfuric ether. Melting point: 222°C to 226°C.

References

Merck Index 9511 Kleeman & Engel p. 922

I.N. p. 980

Servier, J.; U.S. Patent 3,262,852; July 26, 1966; assigned to Biofarma S.A. (France)

TRIMETHADIONE

Therapeutic Function: Anticonvulsant

Chemical Name: 3,5,5-trimethyl-2,4-oxazolidinedione

Common Name: Troxidone

Structural Formula:

Chemical Abstracts Registry No.: 127-48-0

Trade Name	Manufacturer	Country	Year Introduced
Tridione	Abbott	U.S.	1946
Trimethadione	Abbott	France	1960
Absentol	Nourypharma	Neth,	
Epidione	Roger Bellon	France	_
Mino-Aleviatin	Dainippon	Japan	_
Trioxanona	Bama-Geve	Spain	

Raw Materials

Ethyl α-hydroxyisobutyrate Urea Methyl iodide Sodium Ethanol

Manufacturing Process

To a cooled solution of 23 parts of sodium in 400 parts of dry ethanol are added 60 parts of dry urea and 132 parts of ethyl α -hydroxy-isobutyrate. The mixture is heated on a steam bath under reflux for about 16 hours and the liberated ammonia is removed from the solution by drawing a current of dry air through it at the boiling point. The solution of the sodium salt of 5,5-dimethyloxazolidine-2,4-dione so obtained is cooled and treated with 284 parts of methyl iodide. The mixture is allowed to stand at room temperature for 3 days, excess methyl iodide and ethanol are then removed by distillation under reduced pressure.

The residue is dissolved in ether and the solution is washed with sodium chloride solution and then with a little sodium thiosulfate solution. The ethereal solution is dried over sodium sulfate and ether removed by distillation. A yield of 108 parts of 3,5,5-trimethyloxazolidine-2,4-dione is obtained having a melting point of 45° to 46°C with slight softening at 43°C. This represents a 75% theory yield on the ethyl α -hydroxy-iso-butyrate taken. The product may be further purified by dissolving the minimum quantity of dry ether and cooling to -10°C. The product so obtained melts sharply at 45.5° to 46.5°C, according to U.S. Patent 2,559,011.

References

Merck Index 9512 Kleeman & Engel p. 922 PDR p. 554 OCDS Vol. 1 p. 232 (1977) I.N. p. 980 REM p. 1082

Davies, J.S.H. and Hook, W.H.; U.S. Patent 2,559,011; July 3, 1951; assigned to British Schering Research Laboratories Limited, England

Spielman, M.A.; U.S. Patent 2,575,692; November 20, 1951; assigned to Abbott Labora-

TRIMETHOBENZAMIDE HYDROCHLORIDE

Therapeutic Function: Antinauseant

Chemical Name: N-[(2-dimethylaminoethoxy)benzyl]-3,4,5-trimethoxybenzamide hydro-

chloride

Common Name: -

Structural Formula:

$$(\operatorname{CH}_3)_2\operatorname{NCH}_2\operatorname{CH}_2\operatorname{O} \longrightarrow \operatorname{CH}_2\operatorname{NHOC} \longrightarrow \operatorname{OCH}_3 \qquad \text{(base)}$$

Chemical Abstracts Registry No.: 554-92-7; 138-56-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Tigan	Beecham	U.S.	1973
Hymetic	Hyrex	U.S.	1983
Ticon	Hauck	U.S.	1983
Ametik	Lafar	Italy	_
Anaus	Molteni	Italy	-
Anti-Vomit	Deva	Turkey	_
Contrauto	Aterni	Italy	-
Emedur	Dif-Dogu	Turkey	
lbikin	1.B.P.	Italy	_
Kantem	Kansuk	Turkey	_
Poligerim	Biotifar	Portugal	_
Stemetic	Legere	U.S.	_
Xametina	Zambeletti	Italy	_

Raw Materials

p-Hydroxybenzaldehyde 2-Dimethylaminoethyl chloride 3.4.5-Trimethoxybenzoyl chloride Sodium methoxide Hydrogen

Manufacturing Process

To 122 grams (1 mol) of p-hydroxybenzaldehyde in 1 liter of chlorobenzene were added 66 grams (1.04 mols) of sodium methoxide (85%) and 108 grams (1 mol) of 2-dimethylaminoethyl chloride. The mixture was stirred and refluxed for 15 hours, then cooled and the precipitated sodium chloride filtered off. The filtrate was concentrated at steam temperature under water vacuum and the residual oil was fractionated in high vacuum, to give 4-(2-dimethylaminoethoxy)benzaldehyde, BP_{2,2} 145°C.

Two teaspoons of Raney nickel catalyst were added to a solution of 65.6 grams (0.34 mol) of 4-(2-dimethylaminoethoxy)benzaldehyde in 300 ml of 10% ammoniacal ethanol. The

mixture was hydrogenated at 80° C and a pressure of 1,000 psi. The catalyst was filtered off, the volatiles were distilled off and the residual oil was fractionated in high vacuum, to obtain 4-(2-dimethylaminoethoxy)benzylamine, $BP_{0.3}$ 120° to 123°C.

To 9.7 grams (0.05 mol) of 4-(2-dimethylaminoethoxy)benzylamine, dissolved in 100 ml of acetonitrile, was added all at once 12 grams (0.051 mol) of 3,4,5-trimethoxybenzoyl chloride, dissolved in 75 ml of acetonitrile. The mixture was stirred and refluxed for 8 hours, and then cooled. The crystalline solid, which had formed, was filtered off, washed with acetonitrile and recrystallized from acetonitrile, to give 4-(2-dimethylaminoethoxy)-N-(3,4,5-trimethoxybenzoyl)benzylamine hydrochloride, MP 185° to 186°C.

References

Merck Index 9515 Kleeman & Engel p. 923 PDR pp. 665, 1033, 1606 OCDS Vol. 1 p. 110 (1977) I.N. p. 980 REM p. 810

Goldberg, M.W. and Teitel, S.; U.S. Patent 2,879,293; March 24, 1959; assigned to Hoffmann-La Roche Inc.

TRIMETHOPRIM

Therapeutic Function: Antibacterial (urinary)

Chemical Name: 5-[(3,4,5-trimethoxyphenyl)methyl]-2,4-pyrimidinediamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 738-70-5

Trade Name	Manufacturer	Country	Year Introduced
Eusaprim	Wellcome	Italy	1970
Bactrim	Roche	Italy	1970
Baktar	Shionogi	Japan	1976
Ipral	Squibb	U.K.	1979
Trimopam	Berk	U.K.	1979
Trimanyl	Tosse	W. Germany	1980
Syraprim	Wellcome	U.K.	1980
Proloprim	Burroughs Wellcome	U.S.	1980
Trimpex	Roche	U.S.	1980
Wellcoprim	Wellcome	France	1981
Trimopan	Farmitalia	Italy	1982
Monotrim	Gea	Switz.	1983
Cistal	Gamir	Spain	
Comoxol	Squibb	U.S.	-
Cotrim	Lemmon	U.S.	_

Trade Name	Manufacturer	Country	Year Introduced
Idotrim	Ferrosan	Denmark	_
Oratrim	Medica	Finland	_
Proloprim	Calmic	Canada	
Septra	Burroughs Wellcome	U.S.	
Tiempe	D.D.S.A.	U.K.	_
Trimanyl	Gea	Denmark	_
Trimecur	Leiras	Finland	_
Trimfect	Neofarma	Finland	_
Trimpex	Roche	U.S.	_
Triprim	Berk	U.K.	_

B-Methoxypropionitrile Sodium 3,4,5-Trimethoxybenzaldehyde Guanidine

Manufacturing Process

6 grams (0.26 mol) sodium was dissolved in 300 ml methanol under stirring and refluxing. 47.5 grams (0.55 mol) β-methoxypropionitrile and 98 grams (0.5 mol) 3,4,5-trimethoxybenzaldehyde were added and the mixture refluxed gently for 4 hours. The mixture was then chilled and 150 ml of water was added. The product crystallized rapidly. Crystallization was allowed to proceed at 5° to 10°C under stirring for 1 hour. The product was filtered by suction and washed on the filter with 200 ml of 60% ice cold methanol. The crude material was air-dried and used for further steps without purification. It melted at 78° to 80°C. A pure sample, recrystallized from methanol, melted at 82°C. The yield of 3.4.5-trimethoxy-2'-methoxymethylcinnamonitrile was 92 grams, corresponding to 70% of the theory.

19 grams (0.83 mol) sodium was dissolved in 300 ml methanol, 106 grams of 3,4,5-trimethoxy-2'-methoxymethylcinnamonitrile was added and the mixture gently refluxed for 24 hours. The solution, which had turned brown, was poured into 1 liter of water and the precipitated oil extracted repeatedly with benzene. The combined benzene layers (500 to 700 ml) were washed 3 times with 500 ml of water, the benzene removed by evaporation in a vacuum from a water bath, and the brown residual oil distilled in vacuo, boiling point 215° to 225°C/11 mm. The clear, viscous oil, 3,4,5-trimethoxy-2'-cyano-dihydrocinnamaldehyde dimethyl acetal, weighed 83 grams (71% of the theory), and showed a n_0^{23} = 1.5230. It solidified upon standing. A sample recrystallized from methanol melted at 69° to 70°C and showed a strong melting point depression with the starting material; $n_D^{25} = 1.5190.$

31.5 grams (0.107 mol) 3.4.5-trimethoxy-2'-cyano-dihydrocinnamaldehyde dimethyl acetal was refluxed with methanolic quanidine solution (200 ml containing 0.25 mol of quanidine) for 2 hours. The methanol completely distilled off under stirring, finally from a bath of 110° to 120°C until the residue solidified completely to a yellowish crystalline mass. After allowing to cool, it was slurried with 100 ml of water and collected by vacuum filtration and dried. The yield of 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine amounted to 28 grams (91% of the theory). The material showed the correct melting point of 199° to 200°C and was, however, vellowish discolored.

20 grams of the above product was added to 30 ml of 3 N aqueous sulfuric acid at 60°C under stirring. The solution was chilled under stirring to 5° to 10°C. The crystalline sulfate was collected by vacuum filtration and washed on the filter twice with 10 ml of cold 3 N aqueous sulfuric acid each time. From the filtrate there was recovered 1,3 grams. (6.5%) of discolored material melting at 195° to 196°C and which can be added to subsequent purification batches.

The sulfate on the filter was dissolved in 200 ml of hot water, the solution charcoaled hot, and the product precipitated from the clear colorless filtrate by the gradual addition of a

solution of 20 grams of sodium hydroxide in 40 ml of water under chilling. The precipitate was filtered by suction and washed thoroughly with water on the filter. The white material, 17.5 grams (88%) showed the correct melting point of 200° to 201°C, according to U.S. Patent 3.341,541.

References

Merck Index 9516 Kleeman & Engel p. 923

PDR pp. 673, 759, 830, 993, 1034, 1474, 1505, 1606, 1738

OCDS Vol. 1 p. 262 (1977) & 2, 302 (1980)

DOT 5 (3) 113 (1969); 12 (9) 377 (1976) & 16 (4) 128 (1980)

I.N. p. 980

REM p. 1215

Stanbuck, P. and Hood, H.M.; U.S. Patent 3,049,544; August 14, 1962; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Hoffer, M.; U.S. Patent 3,341,541; September 12, 1967; assigned to Hoffmann-La Roche Inc.

TRIMETOZINE

Therapeutic Function: Sedative

Chemical Name: 4-(3,4,5-Trimethoxybenzoyl)morpholine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 635-41-6

Trade Name	Manufacturer	Country	Year Introduced
Opalene	Theraplix	France	1966
Trioxazine	Labatec	Italy	1971

Raw Materials

3,4,5-Trimethoxybenzoyl chloride Morpholine

Manufacturing Process

46 g 3,4,5-trimethoxybenzoyl chloride are dissolved in 300 ml anhydrous benzene and 25 g triethylamine and thereafter 19 g anhydrous morpholine are added in small portions with icecooling. The solution is boiled for 2 hours under reflux. The precipitate is filtered off, and the solution is washed with dilute sulfuric acid, then with sodium hydrogen carbonate solution and finally with water, and then evaporated. The residual yellow oil soon crystallizes; the crystalline mass of the desired material is taken up with ether, filtered and then recrystallized from 90% ethanol, from which it separates in prisms. It is slightly soluble in water. Yield: 80%, melting point 120°C to 122°C.

References

Merck Index 9527 Kleeman & Engel p. 927 OCDS Vol. 2 p. 94 (1980) DOT 3 (3) 106 (1967)

I.N. p. 981

Egyesult Gyogyszer és Tapszer Gyar; British Patent 872,350; July 5, 1961

TRIOXSALEN

Therapeutic Function: Pigmentation enhancer

Chemical Name: 2,5,9-trimethyl-7H-furo[3,2-g] benzopyran-7-one

Common Name: 2',4,8-trimethylpsoralen

Structural Formula:

Chemical Abstracts Registry No.: 3902-71-4

Trade Name	Manufacturer	Country	Year Introduced
Trisoralen	Elder	U.S.	1965
Trisoralen	Santen	Japan	1969
Trisoralen	Farmochimica	Italy	1970
Trisoralen	Panpharma	Switz.	1981
Levrison	Rovi	Spain	_

Raw Materials

Ethyl acetoacetate 2-Methyl resorcinol
Allyl bromide Acetic anhydride
Bromine Sodium
Hydrogen chloride

Manufacturing Process

(A) Preparation of 7-Hydroxy-4,8-Dimethylcoumarin: Chilled ethyl acetoacetate (157 ml, 1.20 mols) followed by 2-methyl-resorcinol (130 g, 1.04 mols) was dissolved in well-stirred concentrated sulfuric acid (600 ml) at such a rate as to keep the temperature below 10°C (ice bath). The stirred solution was allowed to warm gradually and after 3 hours was added to water (ca 8 liters) with mechanical stirring. The product was collected, washed twice with water, and dried at 70° to 80°C until the first sign of darkening. Yield 191.3 g (95.4%). Recrystallization from aqueous ethanol gave 7-hydroxy-4,8-dimethylcoumarin as colorless needles, MP 260.5° to 261°C. In dilute sodium hydroxide, the compound gives a yellow solution which exhibits blue fluorescence.

(B) Preparation of 7-Allyloxy-4,8-Dimethylcoumarin: 7-Hydroxy-4,8-dimethylcoumarin (191.3 g, 1.01 mols), anhydrous potassium carbonate (604 g, 4.37 mols), and allyl bromide (578 ml, 6.22 mols) were refluxed overnight in acetone (ca 3 liters) with mechanical stirring. The reaction mixture was concentrated nearly to dryness on a steam bath under re-

duced pressure, water (ca 8 liters) was added, and the product was collected by filtration. It was washed with 5% NaOH and water (ca 1.5-liter portions) and was dried in a vacuum desiccator. The dry solid was washed with petroleum ether (30° to 60°C) to remove excess allyl bromide. Removal of the petroleum ether under reduced pressure left 210.0 g (90.7% yield) of product. The 7-allyloxy-4,8-dimethylcoumarin was crystallized from aqueous ethanol as colorless needles, MP 108° to 109°C.

- (C) Preparation of 6-Allyl-7-Hydroxy-4.8-Dimethylcoumarin: 7-Allyloxy-4.8-dimethylcoumarin (195.0 g. 0.84 mol) was heated (oil bath) to 215±4°C (reaction mixture temperature) for 3 hours and was then poured into absolute alcohol (ca 1.5 liters). Activated carbon (Norite) (19.5 g) was added, and the solution was heated to boiling, filtered, and diluted with excess water (ca 12 liters). The product was collected by filtration and partially dried at 70°C for 6 hours. 6-Allyl-7-hydroxy-4,8-dimethylcoumarin was obtained as pale yellow microcrystalline prisms, MP 166° to 168°C, by two recrystallizations from aqueous ethanol of a portion of the partially dried solid. The remaining partially dried solid was used in the next step.
- (D) Preparation of 7-Acetoxy-6-Allyl-4,8-Dimethylcoumarin: A solution of the partially dried 6-allyl-7-hydroxy-4,8-dimethylcoumarin obtained in the previous step, acetic anhydride (915 ml, 9.7 mols) and fused sodium acetate (2 g) was refluxed for 4 hours and added to water (ca 8 liters) with mechanical stirring. After excess acetic anhydride had decomposed, the 7-acetoxy-6-allyl-4,8-dimethylcoumarin was collected by filtration, dried, and recrystallized from absolute alcohol, MP 144.5° to 145.5°C. Yield 145.4 g (63.8%, based on 7-allyloxy-4,8-dimethylcoumarin).
- (E) Preparation of 7-Acetoxy-6-(2',3'-Dibromopropyl)-4,8-Dimethylcoumarin: 7-Acetoxy-6-allyl-4,8-dimethylcoumarin (145.4 g, 0.534 mol) was dissolved in chloroform (ca 800 ml). The stirred solution was cooled in an ice bath and bromine (85.2 g, 0.534 mol) in chloroform (200 ml) was added at such a rate as to keep the temperature below 25°C. Evaporation of chloroform on the steam bath left an off-white residue of the crude dibromide. Yield 230.6 g (quantitative). 7-Acetoxy-6-(2',3'-dibromopropyl)-4,8-dimethylcoumarin was crystallized from ethanol as colorless prisms, MP 141.5° to 142.5°C.
- (F) Preparation of 2',4,8-Trimethylpsoralen: Crude 7-acetoxy-6-(2',3'-dibromopropyl)-4,8dimethylcoumarin (245.7 g, 0.57 mol) was refluxed for 1% hours with a stirred solution of sodium (65,4 q. 2,85 mols) in a magnesium-dried ethanol (2.1 liters). After standing at room temperature for 15 minutes, the reaction mixture was poured into a stirred mixture of ice (8,000 g) and a 3.5% HCI (8 liters). Twelve hours later, the precipitate had coagulated and was collected by filtration; it was thoroughly washed with successive 3-liter portions of 5% NaOH, water, 0.5% HCl, and water.

After partial drying at 60°C for 5 hours, the crude trimethylpsoralen material was thoroughly dried in a vacuum desiccator. Yield 110.1 g (85%). Fractional crystallization, using activated carbon (Norite) (30.8 g), from mixtures of chloroform and petroleum ether (30° to 60°C) and finally from chloroform alone gave colorless prisms of 2',4,8-trimethylpsoralen, MP 234.5° to 235°C. Yield 61.8 a (48%).

References

Merck Index 9538 PDR p. 871 OCDS Vol. 1 p. 334 (1977) I.N. p. 982 REM p. 790 Kaufman, K.D.; U.S. Patent 3,201,421; August 17, 1965

TRIPARANOL

Therapeutic Function: Antilipemic

Chemical Name: 4-Chloro- α -[4-[2-(diethylamino)ethoxy] phenyl] - α -(4-methylphenyl)benzene ethanol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 78-41-1

Trade Name	Manufacturer	Country	Year Introduced
Mer -29	Merrell National	U.S.	1960

Raw Materials

4-Hydroxy-4-methylbenzophenone β -Diethylaminoethyl chloride Magnesium

Sodium methoxide p-Chlorobenzyl chloride

Manufacturing Process

 $4-(\beta-diethylaminoethoxy)$ -4-methylbenzophenone was prepared as follows: a mixture of 200 g of 4-hydroxy-4-methylbenzophenone, 55 g of powdered sodium methoxide and 400 ml of ethanol was stirred for 30 minutes. A solution of 150 g of β -diethylaminoethyl chloride in 300 ml of toluene was added and the mixture was refluxed four hours. The solvent was removed, the residue was taken up in ether, extracted with 5% NaOH solution, twice with water, the ether was removed and the residue was distilled. The product was obtained as an oil boiling at 232°C at 0.6 mm.

1 liter of a 0.45 N ethereal solution of p-chlorobenzyl magnesium chloride was added in 30 minutes to a stirred solution of 104 g (0.35 mol) of 4- $(\beta$ -diethylaminoethoxy)-4-methylbenzophenone in 400 ml of dry ether. After stirring an additional hour, the mixture was decomposed by pouring onto 1 liter of cold 10% ammonium chloride solution, the ether solution was washed with water, and the ether was replaced with hot isopropanol containing a trace of ammonia. 1- $\{p-(\beta-d)\}$ diethylaminoethoxy)phenyl]-1-phenyl-2-p-tolyl-2-p-chloroethanol separated as white crystals, melting at 104°C to 106°C.

References

Merck Index 9541 I.N. p. 982

Allen, R.E., Palopoli, F.P., Schumann, E.L. and Van Campen, M.G. Jr.; U.S. Patent 2,914,562; November 24, 1959; assigned to Wm. S. Merrell Co.

TRIPELENNAMINE

Therapeutic Function: Antihistaminic

Chemical Name: N,N-dimethyl-N'-(phenylmethyl)-N'-2-pyridinyl-1,2-ethanediamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 91-81-6; 154-69-8 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Pyribenzamine	Ciba	U.S.	1946
PBZ-SR	Ciba Geigy	U.S.	1977
Anhistamin	Pharmach im	Bulgaria	_
Antamine	Teva	Israel	_
Antiallergicum Medivet	Medivet	Switz.	_
Sedilene	Montefarmaco	Italy	_

Raw Materials

Benzaldehyde α -Aminopyridine Dimethylaminochloroethane Sodium amide

Manufacturing Process

46 g of α -benzylaminopyridine in 50 cc of dry toluene are heated to 80°C [the α -benzylaminopyridine may be obtained either according to the method of Tchitchibabine and Knunjanz, Berichte, 64, 2839 (1931), which consists in warming α -aminopyridine with benzaldehyde in formic acid, or alternatively by the action of benzyl chloride on sodio-αaminopyridine]. To the toluene solution there are added gradually 9.5 g of 85% sodamide. After evolution of ammonia, the major part of the toluene is distilled off; into the pasty mass which remains there are poured 120 cc of an ethereal solution of 27 g of dimethylaminochloroethane.

The mixture is heated until the temperature reaches 140°C, the ether distilling out, then finally heated under reduced pressure (150 mm Hg) for ½ hour. The mass is taken up with dilute hydrochloric acid and ether, neutralized at pH 7, and α -benzylaminopyridine separates. After making alkaline, using excess of potash, it is extracted with benzene, dried and distilled. The product thereby obtained, dimethylamino-ethyl-N-benzyl-N-α-aminopyridine, boils at 135° to 190°C/1.7 mm, according to U.S. Patent 2,502,151.

References

Merck Index 9542 Kleeman & Engel p. 928 PDR pp. 830, 898 OCDS Vol. 1 p. 51 (1977) I.N. p. 983 REM p. 1130

Djerassi, C., Huttrer, C.P. and Scholz, C.R.; U.S. Patent 2,406,594; August 27, 1946; assigned to Ciba Pharmaceutical Products Incorporated

Horclois, R.J.; U.S. Patent 2,502,151; March 28, 1950; assigned to Societe des Usines Chimiques Rhone-Poulenc, France

TRIPROLIDINE

Therapeutic Function: Antihistaminic

Chemical Name: (E)-2-[1-(4-methylphenyl)-3-(1-pyrrolidinyl)-1-propenyl] pyridine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 486-12-4; 550-70-9 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Actidil	Burroughs Wellcome	U.S.	1958
Actidilon	Wellcome	France	1965
Bayidyl	Bay	U.S.	1983
Actifed	Burroughs Wellcome	U.S.	_
Actiphyll	Gayoso Wellcome	Spain	
Entra	Wellcome-Tanabe	Japan	_
Histradil	Trima	Israel	_
Pro-Actidil	Burroughs Wellcome	U.K.	_
Pro-Entra	Wellcome-Tanabe	Japan	_
Triafed	Schein	U.S.	_
Tripodrine	Danbury	U.S.	_
Venen	Tanabe	Japan	_

Raw Materials

4-Methylacetophenone Pyrrolidine

2-Bromopyridine

Paraformal dehy de Lithium

Manufacturing Process

4-Methylacetophenone is first reacted with paraformaldehyde and then with pyrrolidine to give p-methyl-ω-pyrrolidinopropiophenone.

Atomized lithium (26 g, 3.75 mols) and sodium-dried ether (200 cc) are placed in a 3liter, 3-necked flask fitted with a Herschberg stirrer, thermometer pocket and a water condenser closed by a calcium chloride tube. A slow stream of dry nitrogen is blown through the flask, which is cooled to -10°C and n-butyl chloride (138 g, 156 cc, 1.5 mols) is run in with rapid stirring; the mixture is stirred for a further 30 minutes, and then cooled to -60°C

2-Bromopyridine (193 g, 1.22 mols) is then added dropwise over 20 minutes, the temperature of the reaction mixture being maintained at -50±2°C. The mixture is stirred for 10 minutes at -50°C and p-methyl-\u03c4-pyrrolidinopropiophenone (112.5 g, 0.5 mol) in dry benzene is then added dropwise over ca 30 minutes, at a temperature of -50±2°C. The mixture is stirred for a further 2 hours, the temperature being allowed to rise to -30°C but no higher.

The mixture is poured onto excess ice, acidified with concentrated hydrochloric acid, the ether layer separated and extracted with water (1 x 200 cc). The combined aqueous extracts are washed with ether (1 x 200 cc) basified with 0.880 ammonia and extracted with chloroform (3 x 350 cc); the extract is washed with water (2 x 100 cc), dried over sodium sulfate, evaporated, and the residue extracted with boiling light petroleum (BP 60° to 80°C; 10 volumes), filtered hot and evaporated to dryness. The residue is recrystallized from alcohol to give a cream solid (119 g, 80%), MP 117° to 118°C. Recrystallization gives 1-(4methylphenyl)-1-(2-pyridyl)-3-pyrrolidonopropan-1-ol, MP 119° to 120°C.

1-(4-Methylphenyl)-1-(2-pyridyl)-3-pyrrolidinopropan-1-ol (10.0 g) is heated in a steam bath for 30 minutes with 85% aqueous sulfuric acid (30 cc). The solution is then poured onto crushed ice, excess of ammonia solution added and the liberated oil extracted with light petroleum (BP 60° to 80°C). The extract is dried over anhydrous sodium sulfate and the solvent evaporated to leave an amber syrup (8.8 g) consisting of the cis and trans isomers of 1-(4-methylphenyl)-1-(2-pyridyl)-3-pyrrolidinoprop-1-ene as described in U.S. Patent 2,712,023. The isomers may be separated by base exchange chromatography. The 4methyl-\omega-pyrrolidinopropiophenone required as the starting product for the preparation of the carbinol is prepared by the Mannich reaction (Blicke, Organic Reactions, 1942, vol 1, p 303; Adamson & Billinghurst, Journal of the Chemical Society, 1950, 1039) from 4-methylacetophenone and pyrrolidine. The hydrochloride has a MP of 170°C with decomposition.

References

Merck Index 9552 Kleeman & Engel p. 929 PDR pp. 731, 830, 993, 1569, 1606, 1999 OCDS Vol. 1 p. 78 (1977) I.N. p. 983 REM p. 1130

Adamson, D.W.; U.S. Patent 2,712,020; June 28, 1955; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

Adamson, D.W.; U.S. Patent 2,712,023; June 28, 1955; assigned to Burroughs Wellcome & Co. (U.S.A.) Inc.

TROFOSFAMIDE

Therapeutic Function: Cancer chemotherapy

Chemical Name: N,N,3-tris(2-chloroethyl)-tetrahydro-2H-1,3,2-oxaphosphorin-2-amine-2-

oxide

Common Name: Trophosphamide

Structural Formula:

Chemical Abstracts Registry No.: 22089-22-1

Trade Name	Manufacturer	Country	Year Introduced
lxoten	Asta	W. Germany	1973
Ixoten	Schering	Italy	1975

Raw Materials

N.N-bis-(2-chloroethy!)-phosphoric acid amide dichloride N-(2-Chloroethyl)-N-(3-hydroxypropyl)-amine hydrochloride Triethylamine

Manufacturing Process

259 g (1 mol) of N,N-bis-(2-chloroethyl)-phosphoric acid amide dichloride, 209 g (1.2 mols) of N-(2-chloroethyl)-N-(3-hydroxypropyl)-amine hydrochloride (crude), 1,000 cc of ethylene dichloride and 344 g (3.4 mols) of triethylamine are the reactants. N,N-bis-(2-chloroethyl)phosphoric acid amide dichloride is dissolved in the methylene dichloride. N-(2-chloroethyl)-N-(3-hydroxypropyl)-amine hydrochloride is suspended in this solution and triethylamine is added thereto dropwise with stirring. The temperature of the solution rises to boiling. After the termination of the addition, the mixture is heated to boiling for another 6 hours. Thereafter, the reaction mixture is cooled down and allowed to stand overnight at about 0°C. The precipitated triethylamine hydrochloride is filtered off with suction. The resulting solution is evaporated, the residue (about 370 g) is triturated with about 3.2 liters of ether and is heated to boiling for a short period of time.

The ethereal solution is decanted from the insolubles (about 90 g). The solution is rendered to pH 6.5 to 7 by the addition of ethereal hydrochloric acid and then is filtered over charcoal and thereafter is evaporated. During evaporation, the temperature should not rise above 40°C. The residue is dissolved in ether and in an amount corresponding to half of its weight (240 g of residue, dissolved in 120 cc of ether), the ethereal solution is cooled to -5°C and is inoculated. After standing for 25 hours, 140 g have been separated by crystallization. After separation by filtration with suction, the mother liquor is diluted with ether to 5 times its volume, the solution is filtered over charcoal, is again evaporated and the residue is again dissolved in a volume corresponding to half of the weight of the residue. Another cooling to -5°C and inoculation produces further 18 g of the desired compound. MP: 50° to 51°C. Total yield: 161 g (50% of the theoretical).

References

Merck Index 9571 Kleeman & Engel p. 930 OCDS Vol. 3 p. 161 (1984) DOT 9 (12) 502 (1973) & 13 (3) 118 (1977) I.N. p. 985

Asta-Werke AG Chemische Fabrik, Germany; British Patent 1,188,159; April 15, 1970 Arnold, H., Brock, N., Bourseaux, F. and Bekel, H.; U.S. Patent 3,732,340; May 8, 1973; assigned to Asta-Werke AG Chemische Fabrik

TROMANTIDINE HYDROCHLORIDE

Therapeutic Function: Antiviral

Chemical Name: N-(2-Dimethylamino-ethoxy)-acetyl-aminoadamantane(1) hydrochloride

Common Name: -

Structural Formula:

(base)

Chemical Abstracts Registry No.: 41544-24-5: 53783-83-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Viru-Merz	Merz	W. Germany	1973
Viruserol	Zyma	italy	1972

Chloroacetyl chloride

Adamantane

Dimethylaminoethanol

Manufacturing Process

Adamantane is first reacted with chloroacetyl chloride to give chloroacetylaminoadamantane.

Sodium

2.3 g Na (0.1 g-atom) were dissolved in 75 ml dimethylamino-ethanol. Then the excess alcohol was distilled off completely and the sodium salt developed was dried in a vacuum. After drying, the salt was dissolved in about 200 ml xylene. To this solution, 22.8 g (0.1 mol) chloroacetylaminoadamantane were added, heated for 10 hours under reflux in a 250-ml round-bottomed flask with a reflux cooler, and the sodium chloride developed subsequently filtered off.

Next the xylene was distilled away, the liquid residue dissolved in about 80 ml carbon tetrachloride and the hydrochloride precipitated through introduction of hydrochloric acid gas. The hydrochloride was dissolved in about 100 ml acetone and the solvent subsequently distilled away, whereby excess hydrochloric acid passed over with it. This operation was repeated until no excess acid was present.

A large excess of petroleum ether was added in a 500-ml three-necked flask provided with a stirrer and reflux cooler, to a concentrated acetonic solution of the hydrochloride and stirred for at least 1 hour, whereby the desired substance was deposited in a crystalline form. Finally, the substance was filtered away and dried in a desiccator. 14 g of the substance (15% of theory) were obtained.

References

Merck Index 9574 Kleeman & Engel p. 930 DOT 10 (3) 105 (1974) I.N. p. 985

Scherm, A. and Peteri, D.; U.S. Patent 3,705,194; December 5, 1972; assigned to Merz and Co., Chemische Fabrik

TROMETHAMINE

Therapeutic Function: Antacid

Chemical Name: 2-Amino-2-hydroxymethyl-1,3-propanediol

Common Name: Trometamol

.

Structural Formula:

носи₂сси₂он си₂он

Chemical Abstracts Registry No.: 77-86-1

Trade Name	Manufacturer	Country	Year Introduced
Trisaminol	Bellon	France	1964
In Tham-E	Abbott	U.S.	1965

Trade Name	Manufacturer	Country	Year Introduced
Tham	Otsuka	Japan	1969
Thamesol	Baxter	Italy	1970
Addex-Tham	Pharmacia	Sweden	_
Alcaphor	Bellon	France	_
Apiroserum	lbys	Spain	
Basionic	Smith Kline-R.I.T.	Belgium	_
Buffer	Pages Maruny	Spain	_
Thamacetat	Bellon	France	-
Trizma	Sigma	U.S.	_

Nitromethane Formaldehyde Hydrogen

Manufacturing Process

Nitromethane is reacted with formaldehyde to give tris(hydroxymethyl) nitromethane in an initial step. This intermediate may be reduced by catalytic hydrogenation (U.S. Patent 2,174,242) or by electrolytic reduction (U.S. Patent 2,485,982).

References

Merck Index 9575

DOT 1 (4) 139 (1965)

I.N. p. 986

REM p. 836

Hass, H.B. and Vanderbilt, B.M.; U.S. Patent 2,174,242; September 26, 1939; assigned to Purdue Research Foundation

McMillan, G.W.; U.S. Patent 2,485,982; October 25, 1949; assigned to Commercial Solvents Corporation

TROPICAMIDE

Therapeutic Function: Anticholinergic (ophthalmic)

Chemical Name: N-ethyl- α -(hydroxymethyl)-N-(4-pyridinylmethyl)benzeneacetamide

Common Name: N-ethyl-N-(γ-picolyl)tropamide

Structural Formula:

Chemical Abstracts Registry No.: 1508-75-4

Trade Name	Manufacturer	Country	Year Introduced
Mydriacyl	Alcon	U.S.	1959
Mydriaticum	MSD-Chibret	France	1960
Mydrin	Santen	Japan	-
Mydrum	Ankerwerk	E. Germany	-
Tropimil	Farmigea	Italy	
Tryptar	Armour	U.S.	
Visumidriatic	I.S.F.	Italy	

Ethyl amine γ-Chloromethyl pyridine hydrochloride

Acetyltropic acid chloride Hydrogen chloride

Manufacturing Process

A solution of 82 parts by weight of γ -chloromethyl-pyridine-hydrochloride in 60 parts of water is added dropwise, at 0° to 5°C, to 250 parts by weight of a 50% aqueous ethyl amine solution. The mixture is stirred for 1 hour at 60°C, whereupon it is cooled down and separated in the cold with solid potassium hydroxide. The oil formed is separated off, dried over potassium hydroxide and distilled. The ethyl-(γ -picolyl)-amine formed boils over at 103° to 104°C under a pressure of 13 mm Hg. Its dihydrochloride melts at 198° to 200°C.

To a mixture of 48.7 parts by weight of ethyl- $(\gamma$ -picolyl)-amine and 36 parts by weight of dry pyridine in 220 parts by weight of dry chloroform is slowly added, while stirring and cooling with ice water, crude acetyltropic acid chloride prepared from 60 parts by weight of tropic acid. To complete the reaction, the mixture is stirred for one additional hour at 23°C. Thereupon the chloroform solution is diluted with 200 parts by weight of ether and agitated with 3 N hydrochloric acid. The weakly Congo acid solution is heated for 1 hour in a steam bath, the acetyl group of the reaction product being thereby split off, and the mixture is filtered over charcoal.

Upon adding concentrated ammonia in excess, the condensation product separates and is taken up in chloroform. The chloroform solution is dried and distilled, the tropic acid N-ethyl-N- $\{\gamma$ -picolyl $\}$ -amide being thereby obtained in the form of a thick oil, which crystallizes after prolonged time and which then melts at 96° to 97°C.

References

Merck Index 9585 Kleeman & Engel p. 932 DOT 16 (3) 89 (1980) I.N. p. 986 REM p. 918

Rey-Bellet, G. and Spiegelberg, H.; U.S. Patent 2,726,245; December 6, 1955; assigned to Hoffmann-LaRoche Inc.

TUBOCURARINE CHLORIDE

Therapeutic Function: Skeletal muscle relaxant

Chemical Name: 7',12'-Dihydroxy-6,6'-dimethoxy-2,2',2'-trimethyl-tubocuraranium

chloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 6533-76-2

Trade Name	Manufacturer	Country	Year Introduced
Mecostrin	Squibb	U.S.	1946
Amelizol	Yoshitomi	Japan	-
Curarin	Asta	W. Germany	
Introcortin T	Squibb	Italy	_
Jexin	Duncan Flockhart	U.K.	_
Metubine	Lilly	U.S.	
Relvene	Pharmascience	U.S.	_
Tubadil	Endo	U.S.	_
Tubocuran	N.D. & K.	Denmark	_

Raw Materials

Chondrodendron tomentosum plant Picric acid Hydrogen chloride

Manufacturing Process

The initial step involves extraction of the stems and bark of the plant Chondrodendron tomentosum with water as the solvent.

Producing substantially pure d-tubocurarine chloride essentially comprises treating with picric acid the quaternary-base fraction of a crude curare of the curarine type, hydrolyzing the resulting picrate in an emulsion of hydrochloric acid and a water-immiscible organic solvent for picric acid, recovering crystalline d-tubocurarine chloride from the aqueous phase, dissolving the d-tubocurarine chloride in a minimum of hot water, allowing the solution to stand at room temperature until the bulk of the d-tubocurarine chloride precipitates, adding sufficient concentrated hydrochloric acid to bring the HCI content up to about 6%, and refrigerating the solution.

References

Merck Index 9608 Kleeman & Engel p. 934 I.N. 988 REM p. 924

Bashour, J.T.; U.S. Patent 2,409,241; October 15, 1946; assigned to E.R. Squibb & Sons

TYBAMATE

Therapeutic Function: Tranquilizer

Chemical Name: Butylcarbamic acid 2-[[(aminocarbonyl)oxy] methyl] -2-methylpentyl

ester

Common Name: -

Structural Formula:

сн₃сн₂сн₂ссн₂осинсн₂сн₂сн₂сн₃ CH20CNH2

Chemical Abstracts Registry No.: 4268-36-4

Trade Name	Manufacturer	Country	Year Introduced
Solacen	Wallace	U.S.	1965
Tybatran	Robins	U.S.	1967
Effisax	Maggioni	Italy	_
Nospan	Johnsons	Sweden	_

Raw Materials

Diethylmethyl propylmalonate	Lithium aluminum hydride
Sulfuric acid	Phosgene
Butylamine	Urethane

Manufacturing Process

Diethylmethyl propylmalonate is reacted with LiAlH₄, then H₂SO₄ to give 2-methyl-2propyl-1,3-propanediol. That is reacted with phosgene in toluene to give the chlorocarbonate which is in turn reacted with butylamine to give N-butyl-2-methyl-2-propyl-3-hydroxy-propyl carbamate.

22.1 parts of N-butyl-2-methyl-2-propyl-3-hydroxy-propyl carbamate and 9.8 parts of urethane are dissolved in 300 parts of anhydrous xylene in a suitable vessel equipped with an efficient distillation column. Xylene is distilled to remove traces of water from the mixture. 2.3 parts of aluminum isopropylate are added and distillation is continued until substantially the theoretical quantity of ethanol has been distilled at about 78°C. The reaction mixture is then freed from xylene by distillation under reduced pressure. Approximately 100 parts of water are added and the mixture again freed of solvent by distillation under reduced pressure. 100 parts of trichloroethylene are added, the solution filtered to remove insoluble matter and the solution freed of solvent by evaporation. The residual oil is purified by molecular distillation at a pressure of about 0.01 mm. 8.7 parts (35% of theoretical yield) of purified N-butyl-2-methyl-2-propyl-1,3-propanediol dicarbamate are obtained.

References

Merck Index 9628 Kleeman & Engel p. 935 OCDS Vol. 2 p. 22 (1980) DOT 3 (3) 101 (1967) I.N. p. 989 REM p. 1074

Berger, F.M. and Ludwig, B.J.; U.S. Patent 2,937,119; May 17, 1960; assigned to Carter Products, Inc.

TYLOXAPOL

Therapeutic Function: Bronchodilator

Chemical Name: 4-(1,1,3,3-tetramethylbutyl)phenol polymer with formaldehyde and

ethylene oxide

Common Name: -

Structural Formula: See chemical name

Chemical Abstracts Registry No.: 25301-02-4

Trade Name	Manufacturer	Country	Year Introduced
Superinone	Winthrop	U.S.	1953
Alevaire	Breon	U.S.	1953
Lacermucin	Lacer	Spain	_
Tacholiquin	Benechemie	W. Germany	_
Triton WR	Rohm & Haas	U.S.	_

Raw Materials

 $\alpha, \alpha, \gamma, \gamma$ -Tetramethylbutylphenol Formaldehyde Ethylene oxide

Manufacturing Process

Step 1: Into a 3-necked flask equipped with thermometer, mechanical agitator, and reflux condenser was charged the following: 412 g of $\alpha, \alpha, \gamma, \gamma$ -tetramethylbutylphenol, 162 g of a 37% aqueous solution of formaldehyde, and 27.6 g of water. The mixture was agitated and heated to a temperature of 90°C. At this point, 246 g of oxalic acid and 0.92 g of Twitchell's reagent dissolved in 10 g of water were added. While being agitated, the reaction mixture was refluxed for 6 hours. 200 g of water and 384 g of toluene were added, and refluxing was continued for an hour.

Agitation was stopped and the contents of the flask were removed to a separatory funnel. The aqueous and resinous layers were separated and the solvent was removed from the resinous layer by vacuum distillation. After the removal of the solvent, heating at a reduced pressure of 1.5 to 2.5 mm and at a temperature of 245° to 250°C was continued for 4½ hours. The condensate then had a viscosity of 4.0 poises when measured as a 60% solution in toluene and, on cooling, solidified to a brittle mass.

Step 2: A mixture of 118 parts of the product of Step 1, having hydroxyl number of 260, 2 parts of solid NaH, and 100 parts of toluene was heated to 125° to 150°C in an autoclave. Ethylene oxide was added slowly over a period of 21/2 hours until 261 parts of ethylene oxide were absorbed. This corresponds to 11 mols of ethylene oxide per mol of phenol in the product of Step 1. The toluene was then removed by steam distillation and the water by vacuum distillation at 10°C. The product was obtained as a viscous paste having a corrected hydroxyl number of 97. It was readily soluble in water and had marked detergent properties.

References

Merck Index 9632 I.N. p. 990 REM p. 869 Bock, L.H. and Rainey, J.L.; U.S. Patent 2,454,541; assigned to Rohm & Haas Company

TYROPANOATE SODIUM

Therapeutic Function: Diagnostic aid (radiopaque medium)

Chemical Name: α-ethyl-2,4,6-triiodo-3-[(1-oxobutyl)amino] benzenepropanoic acid monosodium salt

Common Name: -

Chemical Abstracts Registry No.: 7246-21-1

Trade Name	Manufacturer	Country	Year Introduced
Bilopaque	Winthrop	U.S.	1972
Bilopaque	Winthrop	W. Germany	1977
Tyropaque	Torii	Japan	1979

Raw Materials

α -Ethyl- β -(aminophenyl)propionic acid	Butyric anhydride
lodine monochloride	Sodium hydroxide

Manufacturing Process

A solution of 5.0 g of α -ethyl- β -(aminophenyl)propionic acid in 100 ml of water containing 5 ml of concentrated hydrochloric acid was added over a period of ½ hour to a stirred solution of 3.2 ml of iodine monochloride in 25 ml of water and 25 ml of concentrated hydrochloric acid heated to 60°C. After addition was complete, the heating was continued for ½ hour longer at 60° to 70°C. A black oil separated which gradually solidified. The mixture was then cooled and sodium bisulfite was added to decolorize. Recrystallization of the product from methanol gave about 8 g of α -ethyl- β -(2,4,6-triiodo-3-aminophenyl-propionic acid, MP 147° to 150°C. The product could be further purified by precipitation of its morpholine salt from ether solution and regeneration of the free amino acid by treatment of a methanol solution of the morpholine salt with sulfur dioxide. The pure amino acid had the MP 155° to 156.5°C (corr).

A mixture of 57.1 g (0.1 mol) of α -ethyl- β -(3-amino-2,4,6-triiodophenyl)propionic acid, 250 ml of butyric anhydride and 1 ml of 70% perchloric acid was heated at 105°C for 5 hours. After cooling, the reaction mixture was poured onto ice, diluted to a volume of 3 liters with water, and heated on a steam bath with addition of solid sodium carbonate to keep the mixture basic. After all the excess butyric anhydride had been hydrolyzed, the mixture was made acid with dilute hydrochloric acid, the aqueous layer decanted from the resulting gummy solid, and the latter was then washed several times with water. The product was dissolved in acetic acid, decolorized with activated charcoal, and the solution while hot diluted with water to the point of turbidity. The product was collected by filtration and dried, giving 40 g of α -ethyl- β -(3-dibutyramido-2,4,6-triiodophenyl)propionic acid, MP 166° to 169.5°C (corr) when recrystallized from acetic acid. Reaction with so-dium hydroxide gives the final product.

References

Merck Index 9636 I.N. p. 991 REM p. 1270

Archer, S. and Hoppe, J.O.; U.S. Patent 2,895,988; assigned to Sterling Drug, Inc.

U

UBIDECARENONE

Therapeutic Function: Cardiovascular Agent

Chemical Name: 2-(3,7,11,15,19,23,27,31,35,39-decamethyl-2,6,10,14,18,22,26,30,34,38-

tetracontadecaenyl)-5,6-dimethoxy-3-methyl-p-benzoquinone

Common Name: Ubiquinone

Structrual Formula:

$$\begin{array}{c|c} & & & \text{CH}_3 \\ \text{CH}_3 \text{O} & & & \text{CH}_2 \text{CH} = \text{CCH}_2 \xrightarrow{\uparrow}_n \text{H} \\ \text{CH}_3 \text{O} & & \text{CH}_3 \end{array}$$

Chemical Abstracts Registry No.: 303-98-0

Trade Name	Manufacturer	Country	Year Introduced
Neuguinon	Eisai	Japan	1974
Adelir	Teikoku Kagaku	Japan	_
Emitolon	Tatsumi	Japan	_
Heartcin	Ohta	Jap a n	
Hiruton	Taisho	Japan	_
Inokiten	Nippon Chemiphar	Japan	_
Justauinon	Horita	Japan	_
Kaitron	Sawai	Japan	_
Parbinon	Santen	Japan	_
Terekol	Daigo	Japan	
Ube-Q	Tsuruhara	Japan	_
Udekinon	Tobishi	Japan	_
Yubekinon	Hishiyama	Japan	_

Raw Materials

Bacterium *Sporidiobolus ruinenii* Nutrient medium

Manufacturing Process

A small fermentation tank (5,000 parts by volume capacity) was charged with 3,000 parts by volume of a culture medium (pH 6.0) comprising 3% glucose, 1% polypepton, 0.5% yeast extract and 0.5% malt extract. The medium was sterilized by heating in a conventional manner and cooled. This medium was inoculated with 150 parts by volume of a pre-culture of *Spo-ridiobolus ruinenii* CBS-5001, which had been prepared by growing the same strain on a medium of the same composition as above at 28°C for one day. The inoculated medium was in-

cubated at 28°C and under agitation at 800 rpm with sparging at a rate of 3,000 parts by volume per minute for 24 hours. During this fermentation period, the medium was maintained at pH 6.0 with ammonia and sulfuric acid.

The resultant fermentation broth was centrifuged to harvest the microbial cells, and they were washed with water and centrifuged a second time, whereupon a living cell paste was obtained. (There was obtained an amount of cells equivalent to 54 parts on a dry basis, which contained 920 μ g of ubiquinone-10 per gram of dry cells.)

The moist cells were suspended in 750 parts of volume of ethanol and extracted by warming at 60°C for 1 hour. A total of 3 extractions were carried out in a similar manner and the extracts were pooled, diluted with water and further extracted three times with 1,000 parts of volume portions of n-hexane. The n-hexane layer was concentrated to dryness under reduced pressure to recover 4.12 parts of a yellow oil. This oily residue was dissolved in 6 parts by volume of benzene and passed through a column (500 parts by volume capacity) packed with Floridi! (100 to 200 meshes), Elution was carried out using benzene and the eluate was collected in 10 parts by volume fractions. Each fraction was analyzed by thin-layer chromatography and color reaction and the fractions rich in ubiquinone-10 were pooled and concentrated under reduced pressure. By this procedure was obtained 0.562 part of a yellow oil. This product was dissolved in 5 parts by volume of chloroform, coated onto a thin layer plate of silica gel GF254 (silica gel with calcium sulfate) and developed with benzene. The fractions corresponding to ubiquinone-10 were extracted, whereby 0.054 part of a yellow oil was obtained. This oil was dissolved in 10 parts by volume of ethanol and allowed to cool, whereupon 0.029 part of yellow crystals of ubiquinone-10 were obtained, its melting point 48° to 50°C.

There are also synthetic routes to the ubiquinones as described in U.S. Patents 3,068,295; 3,896,153 and 4,062,879.

References

Merck Index 9641 Kleeman & Engel p. 936 DOT 13 (4) 159 (1977) I.N. p. 992

Folkers, K.A., Hoffman, C.H. and Wolf, D.E.; U.S. Patent 3,068,295; Dec. 11, 1962; assigned to Merck & Co., Inc.

Sato, K., Inoue, S., Kijima, S. and Hamamura, K.; U.S. Patent 3,896,153; July 22, 1975; assigned to Eisai Co., Ltd. (Japan).

Kijima, S., Yamatsu, I., Minami, N. and Inai, Y.; U.S. Patent 4,062,879; Dec. 13, 1977; assigned to Eisai Co., Ltd. (Japan).

Nakao, Y., Kitano, K., Imada, I. and Morimoto, H.; U.S. Patent 4,070,244; Jan. 24, 1978; assigned to Takeda Chemical Industries Ltd. (Japan).

URACIL MUSTARD

Therapeutic Function: Cancer chemotherapy

Chemical Name: 5-[bis(2-chloroethyl)amino] -2,4(1H,3H)-pyrimidinedione

Common Name: Uramustine; demethyldopan; chloroethaminacil

Structural Formula:

Chemical Abstracts Registry No.: 66-75-1

Trade Name	Manufacturer	Country	Year Introduced
Uracil Mustard	Upjohn	U.S.	1962

Raw Materials

5-Aminouracil Thionyl chloride Ethylene oxide

Manufacturing Process:

Preparation of 5-[bis(2-Hydroxyethyl)Amino] Uracil: 20 grams (0.157 mol) of 5-amino-uracil was mixed with 350 ml of water, 23 ml of glacial acetic acid, and 160 ml of ethylene oxide in a one-liter flask immersed in an ice bath. The reaction mixture was stirred and allowed to come to room temperature slowly (as the ice melted), and stirring was continued for two days. A clear solution resulted to which was added 250 ml of water and 60 grams of Dowex-50 in the acid form. The mixture was stirred for 15 minutes, and the resin was collected on a filter. It was washed with water and the crude 5-[bis(2-hydroxyethyl)amino] uracil was eluted with a 10% aqueous solution of ammonium hydroxide. This eluate was evaporated to dryness, and the solid that remained was heated with 350 milliliters of isopropyl alcohol.

Undissolved substances were removed by filtration and the filtrate was concentrated on a steam bath to a volume of about 125 ml and cooled to effect crystallization. After 20 hours at room temperature the crystals that had formed were recovered, washed with isopropyl alcohol, and dried, yielding 15.61 grams (46.2%) of crystalline 5-[bis(2-hydroxyethyl)amino] uracil having a MP of 157° to 163°C. An analytical sample, obtained by several recrystallizations from isopropyl alcohol, melted at 166° to 168°C.

Preparation of 5-[bis(2-ChloroethyI)Amino] Uracil: 13 ml of thionyl chloride was added to 52 ml of diethylene glycol dimethyl ether accompanied by stirring. Heat was generated, and sulfur dioxide and hydrogen chloride were liberated. The mixture was cooled and 5.58 grams of 5-{bis(2-hydroxyethyl)amino} uracil was added, followed by 8 ml of thionyl chloride. No evidence of reaction was noted, and the reaction mixture was heated to about 40°C, gas then being evolved. After one hour at 40°C, 5 ml of thionyl chloride was added, and after 30 minutes, another 3 ml was added. The mixture was then heated to 55°C, whereupon it darkened and all of the solid dissolved. After cooling and storage at room temperature for 20 hours, three volumes of benzene was added and a dark solid precipitated. After one hour, the dark solid was collected on a filter, washed with benzene, and dissolved in a minimum of boiling methanol. Crystals formed upon cooling; and after 18 hours in the refrigerator, they were recovered on a filter, washed with cold methanol, and dried under reduced pressure, yielding 2.96 grams of 5-[bis(2-chloroethy!)amino]uracil. The product was recrystallized by dissolving in a minimum of hot methanol and adding water until the solution became cloudy; 2.25 grams of 5-[bis(2-chloroethyl)amino] uracil was recovered after cooling the mixture to 4°C for 16 hours (MP 200° to 205°C). A small sample was recrystallized again, and it melted at 198° to 204°C.

References:

Merck Index 9652 Kleeman & Engel p. 936 I.N. p. 995 REM p. 1157

Lyttle, D.A.; U.S. Patent 2,969,364; January 24, 1961; assigned to Upjohn Company.

URAPIDIL

Therapeutic Function: Hypotensive

Chemical Name: 1,3-Dimethyl-4-[γ-[4-(o-methoxyphenyl)piperazinyl-(1)] -propyl-amino] -

uracil

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 34661-75-1

Trade Names	Manufacturer	Country	Year Introduced
Ebrantil	Byk Gulden	W. Germany	1978
Ebrantil	Byk Gulden	Switzerland	1983

Raw Materials:

N-(o-methoxyphenyl)-N'-(3-aminopropyl)piperazine 1.3-Dimethyl-4-chlorouracil

Manufacturing Process:

20.6 g (0.083 mol) of N-(o-methoxyphenyl)-N'-(3-aminopropyl)-piperazine and 15.7 g (0.09 mol) of 1,3 dimethyl 4-chlorouracil were boiled for 15 hours in 100 ml triethylamine. The excess triethylamine was then distilled off in vacuo and the residue was dissolved in 300 ml 1 N hydrochloric acid with subsequent filtration. The filtrate thus obtained was cooled with ice and 2 N aqueous ammonic solution was slowly added with stirring. As soon as the first precipitation appeared, a few crystals of the desired product were added to the solution. The ammoniacal suspension was stirred for one more hour, the precipitate filtered off by suction and washed with 200 ml water.

The material was purified by recrystallization from ethanol with the addition of activated carbon. In this manner 24.2 g 1,3-dimethyl 4-[γ-[4-(o-methoxyphenyl]-piperizinyl-(1)] propylamino] -uracil having a melting point of 156°C were obtained corresponding to a yield of 75%. The purification may also be effected by boiling the material in acetone to result in similar yields.

References

Merck Index 9669 DFU 3 (5) 397 (1978) Kleeman & Engel p. 937 DOT 10 (2) 72 & (10) 551 (1982) I.N. p. 995

Klemm, K., Schoetensack, W. and Prusse, W.; U.S. Patent 3,957,786; May 18, 1976; assigned to Byk Gulden

UROKINASE

Therapeutic Function: Anticoagulant

Chemical Name: A complex enzyme

Common Name: -

Chemical Abstracts Registry No.: 9039-53-6

Trade Names	Manufacturer	Country	Year Introduced
Abbofinase	A bbott	U.K.	1962
Uronase	Mochida	Japan	1970
Urokinase	Choay	France	1973
Urokinase	Choay	Italy	1975
Urokinase	Serono	W. Germany	1978
Abbokinase	Abbott	U.S.	1978
Breokinase	Breon	U.S.	1979
Abbokinase	Abbott	W. Germany	1980
Abbokinase	Abbott	France	1980
Ukidan	Serono	Sweden	1983
Abbokinase	Abbott	Sweden	1983
Actosolv	Behring Werke	W. Germany	<u>-</u>

Raw Materials

Human urine Sodium benzoate Hydrogen chloride

Manufacturing Process

In 20 liters of human urine is dissolved 1,200 grams of sodium benzoate (6% weight by volume). The solution is acidified with aqueous hydrochloric acid (assay about 7.5% HCl) to a pH of 4.5 resulting in a heavy precipitation. This requires 10% of the original urine volume, or about 2 liters of aqueous hydrochloric acid. The suspension is stirred 20 minutes and is then allowed to stand for about 30 minutes. The mixture so obtained is filtered on a Buchner funnel that has been prepared with a precoat of benzoic acid crystals over filter paper. The filter cake is washed with a saturated benzoic acid solution, then sucked dry. The benzoic acid cake with the adsorbed urokinase weighs 2,060 grams.

The filter cake is stirred with 3.1 liters of acetone. The volume of acetone used is about 1.5 times the weight of the cake resulting in about a 65% acetone concentration. The benzoic acid dissolves in the acetone and the urokinase flocculates out. Sodium benzoate, about 1% of the weight of the cake, or 21 grams, is added to speed up the formation of the precipitate. The suspension of crude urokinase in acetone is filtered on a Buchner funnel using filter paper precoated with a diatomaceous silica product (Celite 505). The precipitate is washed with acetone until the filtrate is water clear. The precipitate is then washed with ether and air dried. The yield of powder so obtained is 2.3 grams.

Four batches of urokinase, obtained in this manner from 202 liters of urine, is pooled, amounting to 23.5 grams. The combined urokinase is suspended in 750 ml of 0.1 M phosphate-saline buffer at pH 6.2, stirred to dissolve the urokinase and centrifuged to remove the Celite. The residue is extracted two more times with 500 ml portions of 0.1 M phosphate-saline buffer. The combined extracts are filtered and labelled Extract 1. The residue is extracted three more times with 600 ml portions of buffer, the combined extracts are filtered and labelled Extract 2.

The clarified solution of the first phosphate-saline buffer extract, 1,320 ml, is passed through 110 cm of Amberlite XE-64 ion exchange resin contained in a column 10 cm in diameter. The resin exchange column has a hold-up volume of about 2.8 liters. The second extract (Extract 2) of the Celite residue, 1,720 ml, is then passed through the same exchange column. The column is washed with 11.4 liters of the phosphate-saline buffer. Then the adsorbate is eluted with 9 liters of 0.5 M sodium chloride. The eluate is dialyzed through a viscose regenerated cellulose membrane against distilled water. The active fractions within the dialysis sacs, totaling 4,940 ml, are pooled and lyophilized. The yield is 2.5 grams having an activity of 415,000 units or 166 units per milligram.

References

Merck Index 9693 Kleeman & Engel p. 937 PDR p. 502 I.N. p. 997 REM p. 1038

Singher, H.O. and Zuckerman, L.; U.S. Patent 2,961,382; November 22, 1960; assigned to Ortho Pharmaceutical Corporation

Kjeldgaard, N.O. and Herlev, J.P.; U.S. Patent 2,983,647; May 9, 1961; assigned to Løvens kemiske Fabrik ved A. Kongsted, Denmark

Singher, H.O. and Zuckerman, L.; U.S. Patent 2,989,440; June 20, 1961; assigned to Ortho Pharmaceutical Corporation

Doczi, J.; U.S. Patent 3,081,236; March 12, 1963; assigned to Warner-Lambert Pharmaceutical Company

V

VALETHAMATE BROMIDE

Therapeutic Function: Anticholinergic

Chemical Name: N,N-Diethyl-N-methyl-2-[{3-methyl-1-oxo-2-phenylpentyl}oxy] ethanamin-

ium bromide

Common Name: -

Structural Formula:

$$\begin{bmatrix} c_{6}^{H_{5}} & c_{H_{3}} \\ c_{H_{3}}^{C_{1}} c_{2}^{C_{1}} c_{1}^{C_{1}} c_{2}^{C_{2}} c_{2}^{C_{2}} \\ c_{H_{3}} & c_{2}^{C_{2}} c_{1}^{C_{2}} \end{bmatrix} \text{ Br}^{-1}$$

Chemical Abstracts Registry No.: 90-22-2

Trade Names	Manufacturer	Country	Year Introduced
Murel	Ayerst	U.S.	1958
Barespan	Hishiyama	Japan	_
Baretaval	Shin Fuso	Japan	-
Beruhgen	Nissin	Japan	
Elist	Sana-Torii	Japan	-
Epidosin	Kali-Chemie	W. Germany	
Funapan	Funai	Japan	_
Kaichyl	Samoa	Japan	_
Letamate	Mohan	Japan	_
Narest	Isei	Japan	_
Pastan	Maruro	Japan	_
Release V	Mochida	Japan	-
Resitan	Grelan	Japan	-
Shikitan	Shiki	Japan	_
Shinmetane	Towa	Japan	_
Study	Toyo	Japan	_
Ulban-Q	Toho	Japan	-
Valate	Morishita	Japan	_
Valemate	Taiho	Japan	_
Valemeton	Sanko	Japan	
Valethalin	Hokuriku	Japan	_
Valethamin	Sawai	Japan	_

Raw Materials

Benzyl cyanide 2-Butyl bromide Sodium amide Sulfuric acid 2-Diethylaminoethanol Methyl bromide

Manufacturing Process

Benzyl cyanide is first reacted with 2-butylbromide in the presence of sodium amide to give 2-phenyl-3-methylvaleronitrile which is hydrolyzed by sulfuric acid to give 3-methyl-2-phenylpentanoic acid. 24 g of 2-phenyl-3-methyl-pentanoic acid are heated for one hour at 175° to 185°C with 30 g of 2-diethylaminoethanol and 0.5 g of sodium methylate. The excess diethylaminoethanol is removed in vacuo, the residue is dissolved in 300 cc of 2 N-acetic acid, the acid solution is shaken with ether and made alkaline with concentrated potassium carbonate solution and ice. The ether solution is washed with water, dried with sodium sulfate and evaporated. The residue is distilled under high vacuum, yielding 20 to 21 g of the basic ester (60% of the theoretical) is obtained, the ester boiling at 98° to 100°C at a pressure of 0.03 mm. The hydrochloride of the ester melts at 112° to 113°C and the methobromide at 100° to 101°C.

References

Merck Index 9711 Kleeman & Engel p. 939 I.N. p. 999

Martin, H. and Habicht, E.; U.S. Patent 2,987,517; June 6, 1961; assigned to Cilag Chemie Ltd., Switzerland.

VANCOMYCIN

Therapeutic Function: Antibacterial

Chemical Name: See structural formula

Common Name: -

Structural Formula: Not definitely known; has a molecular weight of about 3,300, a nitrogen content of about 7% and a carbohydrate content of 16 to 17%.

Chemical Abstracts Registry No.: 1404-90-6

Trade Name	Manufacturer	Country	Year Introduced
Vancocin	Lilly	U.S.	1958
Vancomycin	Shionogi	Japan	1981
Vancomycin	Lilly	W. Germany	1981

Raw Materiels

Bacterium Streptomyces orientalis Nutrient medium

Manufacturing Process

An agar slant is prepared containing the following ingredients: 20 grams starch, 1 gram asparagine, 3 grams beef extract, 20 grams agar, and 1 liter water. The slant is inoculated with spores of S. orientalis, Strain M43-05865, and is incubated for about 10 days at 30°C. The medium is then covered with sterile distilled water and scraped to loosen the spores. The resulting suspension of spores is preserved for further use in the process.

A liquid nutrient culture medium is prepared containing the following ingredients: 15 grams glucose, 15 grams soybean meal, 5 grams corn steep solids, 2 grams sodium chloride, 2 grams calcium carbonate, and 1 liter water. The medium is sterilized at 120°C for about 30 minutes in a suitable flask and cooled. 10 ml of a spore suspension prepared as set forth above are used to inoculate the medium. The inoculated medium is shaken for 48 hours at 26°C on a reciprocating shaker having a 2-inch stroke, at 110 rpm.

The fermented culture medium which comprises a vegetative inoculum is used to inoculate a nutrient culture medium containing the following ingredients: 20 grams blackstrap molasses, 5 grams soybean peptone, 10 grams glucose, 20 grams sucrose, 2.5 grams calcium carbonate, and 1 liter water.

The medium is placed in a container having a suitable excess capacity in order to insure the presence of sufficient oxygen and is sterilized by heating at 120°C for about 30 minutes. When cool, the medium is inoculated with about 25 ml of a vegetative inoculum as described above, and the culture is then shaken for about 80 hours at 26°C. The pH of the medium at the beginning of fermentation ranges from about 6.5 to about 7.0 and the final pH is about 7.0 to about 8.0. A fermentation broth thus obtained contained about 180 μ g of vancomycin per ml.

References

Merck Index 9731 PDR p. 1070 I.N. p. 1000 REM p. 1211

McCormick, M.H. and McGuire, J.M.; U.S. Patent 3,067,099; December 4, 1962; assigned to Eli Lilly and Company

VERALIPRIDE

Therapeutic Function: Menopause treatment

Chemical Name: N-(1'-Allyl-2'-pyrrolidylmethyl)-2,3-dimethoxy-5-sulfamoylbenzamide

Common Name:

Structural Formula:

Chemical Abstracts Registry No.: 66644-81-3

Trade Name	Manufacturer	Country	Year Introduced
Agreal	Delagrange	France	1980
Agradil	Vita	Italy	1982
Veralipral	Finadiet	Argentina	_

Raw Materials

2,3-Dimethoxy-5-sulfamoylbenzoic acid Carbondiimidazole
1-Allyl-2-aminomethylpyrrolidine

Manufacturing Process

7.8 g (0.03 mol) of 2,3-dimethoxy-5-sulfamoylbenzoic acid, 200 ml of tetrahydrofuran and

7.3 g (0.045 mol) of carbonyldimidazole are placed in a 500 ml flask fitted with an agitator, a thermometer and a condenser.

The mixture is agitated for 30 minutes at normal temperature, then 6.7 g (0.948 mol) of 1-allyl-2-aminomethylpyrrolidine is added. The mixture is left under agitation for 5 hours at 20°C, then the solvent is evaporated under vacuum and the residue treated with 150 ml of water. The crystals are washed and dried.

6.9 g of N-(1'-allyl-2'-pyrrolidyl-methyl)-2,3-dimethoxy-5-sulfamoyl-benzamide is obtained. Yield is 60%; melting point 113°C to 114°C.

References

Merck Index 9745 DFU 6 (1) 46 (1981) DOT 17 (3) 96 (1981) I.N. p. 1003

Thominet, M.L. and Perrot, J.; British Patent 1,539,319; January 31, 1979; assigned to Societe d'Etudes Scientifiques et Industrielles de l'Ile-de-France

VERAPAMIL

Therapeutic Function: Coronary vasodilator; antiarrythmic

Chemical Name: α -[3-[[2-(3,4-Dimethoxyphenyl)ethyl]methylamino]propyl]-3,4-dimethoxy- α -(1-methylethyl)benzeneacetonitrile

Common Name: |proveratril

Structural Formula:

Chemical Abstracts Registry No.: 52-53-9; 152-11-4 (Hydrochloride)

Trade Name	Manufacturer	Country	Year Introduced
Isoptin	Knoll	W. Germany	1963
Isoptin	Knoll	Italy	1965
Isoptin	Knoll	Switz.	1965
Cordilox	Abbott	U.K.	1967
Isopine	Biosedra	France	1969
Calan	Searle	U.S.	1981
Isoptin	Knoll	U.S.	1981
Cardibeltin	Pharma-Schwarz	W. Germany	_
Dilacoran	Knoll	W. Germany	_
lkacor	lkapharm	Israel	_
Manidon	Medinsa	Spain	•••
Vasolan	Eisai	Japan	_
Veramil	Yurtoglu	Turkey	_
Verpamil	Erco	Denmark	

Raw Materials

Veratryl cyanide

Sodium amide
(N-Methyl-N-homoveratryl)-y-aminochloropropane
Isopropyl bromide

Manufacturing Process

177.2 g (1 mol) of veratryl cyanide are dissolved in 1 liter of toluene in a three-neck flask. 42.9 g (1.1 mols) of pulverized sodium amide are added. The mixture is heated to boiling under reflux for one hour while stirring and excluding moisture. A solution of the base (N-methyl-N-homoveratryl)- γ -aminochloropropane, freshly prepared from 339.2 g (1.1 mols) of the hydrochloride, in 1.2 liters of toluene is added drop by drop into this boiling mixture within two hours while stirring vigorously. Heating and stirring are continued for four more hours. After cooling, the reaction mixture is poured into 3 liters of ice water while stirring. The mixture is acidified with 20% hydrochloric acid. The acidified aqueous layer is separated, neutralized by the addition of sodium hydroxide solution, and rendered alkaline by the addition of concentrated potassium carbonate solution. The precipitated oily base is taken up in benzene. On evaporating the solvent, 402 g of the crude base are obtained in the form of a reddish-brown, viscous oil.

The crude base is dissolved in a mixture of 550 ml of isopropanol and 650 ml of ethyl acetate; Gaseous hydrogen chloride is introduced into the solution until it is of weakly acidic reaction. On allowing the mixture to stand at 0°C, 365 g of α -[(N-methyl-N-homoveratryl)- γ -aminopropyl]-3,4-dimethoxyphenolacetonitrile hydrochloride precipitate as a slightly yellowish crystal powder of the melting point 136°C to 139°C (corr.). Yield: 81% of the theoretical yield. The pure, white hydrochloride melting at 140°C to 142°C (corr.) is obtained on recrystallizing the crude salt twice from isopropanol with the addition of decolorizing carbon. The salt is very soluble in water. The base prepared from the hydrochloride in the form of an almost colorless, very viscous oil boils at 233°C to 235°C/0.01 mm Hg; n_D^{25} = 1.5532. Dioxalate, melting point: 123°C to 125°C (corr.), on recrystallization from acetone and isopropanol.

61.9 g (0.15 mol) of α -[{N-methyl-N-homoveratryl}- γ -aminopropyl]-3,4-dimethoxyphenyl acetonitrile are dissolved in 300 ml of toluene. The solution is heated to boiling under reflux with 8.5 g (1.45 x 0.15 mols) of pulverized sodium amide for one hour while stirring. Thereafter, a solution of 31.4 g (1.7 x 0.15 mols) of isopropyl bromide in 50 ml of toluene is added drop by drop thereto within 90 minutes and the mixture is kept boiling for four more hours while stirring. The cooled reaction mixture is allowed to run into 1.5 liters of ice water and the mixture is acidified with 20% hydrochloric acid. The aqueous layer is separated and is rendered alkaline by the addition of a solution of potassium carbonate. The base is taken up in warm benzene. The solvent is evaporated and the residue is distilled in a vacuum. 62.6 g of α -isopropyl- α -[(N-methyl-N-homoveratryl)- γ -aminopropyl]-3,4-dimethoxyphenyl acetonitrile are obtained in the form of a light yellow, very viscous oil. Boiling point: 232°C to 235°C/0.01 mm Hg; nD 25 = 1.5460. Yield: 91.8% of the theoretical yield. Hydrochloride: melting point: 139.5°C to 140.5°C (corr.), on recrystallization from a mixture of isopropanol and ethyl acetate.

References

Merck Index 9747 Kleeman & Engel p. 940 PDR pp. 979, 1664, 1678 I.N. p. 1003 REM p. 862

Dengel, F.; U.S. Patent 3,261,859; July 19, 1966; assigned to Knoll A.G. Chemische Fabriken (Germany)

VIDARABINE

Therapeutic Function: Antiviral

Chemical Name: 9-B-D-arabinofuranosyl-9H-purine-6-amine monohydrate

Common Name: Adenine arabinoside; spongoadenosine

Structural Formula:

Chemical Abstracts Registry No.: 5536-17-4

Trade Name	Manufacturer	Country	Year Introduced
Vidarabin	Thilo	W. Germany	1975
Vira-A	Parke Davis	U.K.	1977
Vira-A	Parke Davis	U.S.	1977
Vira-A	Substantia	France	1981

Raw Materials

Bacterium Streptomyces antibioticus Nutrient medium

Manufacturing Process

Sterile agar slants are prepared using the Streptomyces sporulation medium of Hickey and Tresner, J. Bact., vol. 64, pages 891-892 (1952). Four of these slants are inoculated with lyophilized spores of Streptomyces antibioticus NRRL 3238, incubated at 28°C for 7 days or until aerial spore growth is well-advanced, and then stored at 5°C. The spores from the four slants are suspended in 40 ml of 0.1% sterile sodium heptadecyl sulfate solution. A nutrient medium having the following composition is then prepared: 2.0% glucose monohydrate; 1.0% soybean meal, solvent extracted, 44% protein; 0.5% animal peptone (Wilson's protopeptone 159); 0.2% ammonium chloride; 0.5% sodium chloride; 0.25% calcium carbonate; and water to make 100%.

The pH of the medium is adjusted with 10-normal sodium hydroxide solution to pH 7.5. 12 liters of this medium is placed in a 30-liter stainless steel fermentor. The medium is sterilized by heating it at 121°C for 90 minutes, allowed to cool, inoculated with the 40 ml spore suspension described above, and incubated at 25° to 27°C for 32 hours while being agitated at 200 rpm with air being supplied at the rate of 12 liters per minute. About 38 grams of a mixture of lard and mineral oils containing mono- and diglycerides is added in portions during this time to prevent excessive foaming.

16 liters of a nutrient medium having the composition described above is placed in each of four 30-liter stainless steel fermentors. The pH of the medium in each fermentor is adjusted with 10-normal sodium hydroxide solution to pH 7.5, and each is sterilized by heating at 121°C for 90 minutes. Upon cooling, the medium in each fermentor is inoculated with 800 ml of the fermentation mixture described above, and each is incubated at 25° to 27°C for 96 hours while being agitated at 200 rpm with air being supplied at the rate of 16 liters per minute. About 170 grams of the antifoam mixture described above is added in portions during this time to the medium in each fermentor.

The fermentation mixtures from the four fermentors are combined and filtered with the

aid of diatomaceous earth. A material such as Celite 545 can be used. The filtrate is concentrated under reduced pressure to a volume of 10 liters, and the concentrate is treated with 200 grams of activated charcoal (for example, Darco G-60), stirred at room temperature for one hour, and filtered. The charcoal cake is washed with 7.5 liters of water, and then extracted with three 10-liter portions of 50% aqueous acetone. The three aqueous acetone extracts are combined, concentrated under reduced pressure to approximately one liter, and chilled at 5°C for 48 hours. The solid 9-(β-D-arabinofuranosyl)adenine that precipitates is isolated and purified by successive crystallizations from boiling methanol and from boiling water; MP 262° to 263°C.

In the foregoing procedure, when the temperature of incubation in the two fermentation stages is raised from 25° to 27°C to 36° to 38°C, the same 9-(β-D-arabinofuranosyl)adenine product is obtained in higher yields.

References

Merck Index 9779 DFU 7 (8) 588 (1982) PDR p. 1395 DOT 13 (9) 387 (1977) I.N. p. 1006 REM p. 1232

Parke, Davis & Company; British Patent 1,159,290; July 23, 1969

VILOXAZINE HYDROCHLORIDE

Therapeutic Function: Psychotropic

Chemical Name: 2-[(2-ethoxyphenoxy)methyl] morpholine hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 35604-67-2; 46817-91-8 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Vivalan	1.C.1.	U.K.	1974
Vivalan	I.C.I.	France	1977
Vivalan	I.C. Pharma	Italy	1977
Vivalan	I.C.I.	W. Germany	1978
Emovit	Farmakhim	Bulgaria	_
Vicilan	I.C.I.	Japan	_
Viloksan	Dif-Dogu	Turkey	_

Raw Materials

- 2-Ethoxyphenol
- Epichlorohydrin 2-Aminoethyl hydrogen sulfate

Manufacturing Process

2-Ethoxyphenol is first reacted with epichlorohydrin to give 1,2-epoxy-3-(o-ethoxyphenoxy)propane.

A mixture of crude (83%) 1,2-epoxy 3-(o-ethoxyphenoxy)propane (19.4 grams), 70.5 grams 2-aminoethyl hydrogen sulfate, 40.0 grams sodium hydroxide, 400 ml ethanol and 200 ml water is stirred at 60°C for 18 hours and is then evaporated to dryness. The residue is dissolved in 200 ml water and the mixture is extracted three times with 150 ml of diethyl ether each time. The combined extracts are dried over magnesium sulfate and evaporated to dryness. The crude product (21.5 grams) is dissolved in isopropanol (20 ml), 10.5 ml concentrated aqueous hydrochloric acid and 75 ml ethyl acetate are added and the mixture is cooled. The mixture is filtered and there is thus obtained as solid product 2-(o-ethoxyphenoxymethyl)morpholine hydrochloride, MP 179° to 182°C (8.6 grams; 38% yield based on total epoxide used), according to U.S. Patent 3,712,890.

References

Merck Index 9781 Kleeman & Engel p. 941 OCDS Vol. 2 p. 306 (1980) & 3, 32 (1984) DOT 11 (2) 72 (1975) I.N. p. 1007

Lee, S.A.; U.S. Patent 3,712,890; January 23, 1973; assigned to Imperial Chemical Industries Limited, England

Mallion, K.B., Turner, R.W. and Todd, A.H.; U.S. Patent 3,714,161; January 30, 1973; assigned to Imperial Chemical Industries Limited, England

VIMINOL

Therapeutic Function: Analgesic

Chemical Name: α -[[Bis(1-methylpropyl)amino] methyl] -1-[(2-chlorophenyl)methyl] -1H-

pyrrole-2-methanol

Common Name: Diviminol

Structural Formula:

Chemical Abstracts Registry No.: 21363-18-8

Trade Name	Manufacturer	Country	Year Introduced
Dividol	Zambon	Italy	1974
Lenigesial	Inpharzam	W. Germany	1978

Raw Materials

1-(o-Chloro)-benzyl-2-di-sec-butylaminoacetyl-pyrrole Lithium aluminum hydride

Manufacturing Process

10 g (0.0278 mol) of 1-(o-chloro)-benzyl-2-di-sec-butylaminoacetyl-pyrrole and 300 ml of anhydrous diethyl ether are placed in a 500 ml four-necked flask with a mercury-sealed stirrer, a thermometer, a dropping funnel and a reflux condenser topped with a tube containing anhydrous calcium chloride. The solution is stirred and a mixture of 1 g (0.0264 mol) of lithium aluminum hydride in 20 ml of diethyl ether is added slowly through the dropping funnel at such a rate that the solvent refluxes gently without external heating. When the addition is complete and the initial reaction subsides, the mixture is stirred and heated at gentle reflux for two hours.

The mixture is cooled and the excess of lithium aluminum hydride is decomposed with cracked ice. The water layer is separated and washed with diethyl ether. The combined ether extracts are dried over anhydrous magnesium sulfate and the solvent is removed by distillation under reduced pressure. Yield, 8.8 g; boiling point, 160°C to 165°C/0.1 mm Hg.

References

Merck Index 9782 Kleeman & Engel p. 942 DOT 10 (3) 101 (1974) I.N. p. 1007

Teotino, U.M. and Della Bella, D.; U.S. Patent 3,539,589; November 10, 1970; assigned to Whitefin Holding S.A. (Switz.)

VINBARBITAL SODIUM

Therapeutic Function: Sedative

Chemical Name: 5-Ethyl-5-(1-methyl-1-butenyl)-2,4,6-(1H,3H,5H)-pyrimidinetrione sodium

salt

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 125-44-0

Trade Name	Manufacturer	Country	Year Introduced
Delvinal	MSD	U.S.	1943

Raw Materials

Ethyl (1-methyl- Δ_1 -butenyl)cyanoacetic acid ethyl ester Sodium Ethanol Urea

Manufacturing Process

6.9 parts of sodium are dissolved in 100 parts of absolute ethyl alcohol in a vessel provided with a reflux condenser. After the sodium is dissolved, 9.6 parts of urea and 20.9 parts of

the ethyl ester of ethyl (1-methyl- Δ_1 -butenyl) cyanoacetic acid are added. The mixture is refluxed for twelve hours, after which the alcohol is removed by vacuum distillation and the residue is dissolved in 100 parts of water. The resulting solution is extracted with ether in three successive 25 part portions. The nitrile which is formed as a by-product from the cyanoacetate used is recovered from the ether extract by washing with water, evaporating the ether and distilling. The combined water solutions containing 5-ethyl-5-(1-methyl- Δ_1 -butenyl)-4-imino barbituric acid, are acidified until acid to Congo red with concentrated hydrochloric acid, after which the mixture is transferred, if necessary, to another vessel, and an equal volume of concentrated hydrochloric acid is added. The solution is then refluxed for one hour to hydrolyze the imino compound. The 5-ethyl-5-(1-methyl- Δ_1 butenyl) barbituric acid crystallizes out on cooling. It is filtered and washed with two 25 part portions of ice water. By this process, 8 parts of the crude product (35% yield) have been obtained. After two crystallizations from 50% alcohol, the yield of the purified product is 6.5 parts (29%). The product melts at 160°C to 162°C.

The sodium salt of 5-ethyl-5-(1-methyl- Δ_1 -butenyl)barbituric acid is prepared by dissolving 23 parts of sodium in 350 parts of absolute alcohol in a vessel provided with a reflux condenser containing a drying tube, and adding the resulting solution to a solution of 224 parts of 5-ethyl-5-(1-methyl- Δ_1 -butenyl)barbituric acid dissolved in 300 to 400 parts of absolute alcohol. The resulting solution is concentrated in vacuo, with heating on a warm water bath. About 200 parts of dry benzene are then added and the mixture is again concentrated. If this evaporation is carried out to an extent such that all of the solvent is removed, no further washing is required. If all of the solvent is not removed by evaporation, the residue is washed with dry ether. The resulting sodium salt is then dried in an oven at 90°C and then is dried in vacuo (2 mm) at 78°C . The yield is 97% to 99%.

References

Merck Index 9783 OCDS Vol. 1 p. 269 (1977) I.N. p. 1007

Cope, A.C.; U.S. Patent 2,187,703; January 16, 1940; assigned to Sharp & Dohme, Inc.

VINBLASTINE SULFATE

Therapeutic Function: Cancer chemotherapy

Chemical Name: Vincaleukoblastine sulfate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 143-67-9; 865-21-4 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Velban	Lilly	U.S.	1961
Velbe	Lilly	U.K.	1961
Velbe	Lilly	France	1963
Velbe	Lilly	Italy	1965
Blastovin	Teva	Israel	
Exal	S hionogi	Japan	_
Periblastine	Petersen	S. Africa	_

Raw Materials

Vinca rosea plants Benzene Sulfuric acid

Manufacturing Process

According to U.S. Patent 3,225,030, 1,500 grams of dried ground plant of Vinca rosea were intimately mixed with 1,000 ml of a 2% tartaric acid solution, and the mixture was extracted with three 9-liter portions of benzene. The benzene extracts were combined and were concentrated in vacuo to about 1,500 ml. The concentrate was mixed with 1 liter of 2% tartaric acid and the mixture was steam-distilled under reduced pressure until all of the benzene had distilled over. The insoluble residue was dissolved in hot methanol, a second 1-liter portion of 2% tartaric acid solution was added, and the mixture was steam-distilled under reduced pressure until all of the methanol had distilled.

The undistilled agueous tartaric acid solution was extracted with three 1-liter portions of ethylene dichloride, and was then brought to a pH of about 8.5 to 9.5 by the addition of 28% aqueous ammonium hydroxide. The ammoniacal solution was extracted with three 1-liter portions of ethylene dichloride; the ethylene dichloride extracts were combined. were dried, and were evaporated in vacuo, yielding a residue of 3.35 grams of a light-brown powder.

11/2 grams of the residue were dissolved in 10 ml of benzene, and the solution was passed over a chromatographic adsorption column containing 50 grams of alumina (Alcoa activated alumina, Grade F-20) which had previously been shaken for about 20 minutes with a mixture of 100 ml of benzene containing 1.5 ml of 10% acetic acid.

The column was developed by washing it with 2,100 ml of benzene. The column was then washed sequentially with 300 ml of benzene-chloroform solvent (95:5 by volume) and 800 milliliters of benzene-chloroform solvent (75:25) to remove indeterminate impurities. The leurosine was eluted from the alumina by passing over the column 900 ml of benzenechloroform solvent (50:50).

The eluate was evaporated to dryness in vacuo, leaving an amorphous residue of 113 mg of leurosine. The residue was treated with a few ml of methanol in which it quickly dissolved, but from which leurosine quickly precipitated in crystalline form. Because of the affinity of leurosine for water, and the presence of traces of water in the solvents, the leurosine was obtained in the form of its octahydrate. Although the material as obtained was substantially pure, it was further purified by recrystallizing it from hot methanol solution. The hydrated leurosine obtained decomposed at about 200° to 205°C.

Further elution of the above chromatographic column with a 50:50 benzene-chloroform solvent mixture or with a 25:75 benzene-chloroform solvent mixture serves to elute vincaleukob!astine. Vincaleukoblastine also occurs in the latter fractions containing leurosine. Vincaleukoblastine is obtained from vincaleukoblastine-containing fractions by evaporation to dryness, either of a filtrate from which leurosine has previously been isolated, or from a chromatographic eluate fraction. The resulting residue is dissolved in ethanol and 2% ethanolic sulfuric acid is added until the pH is lowered to about 4. The solution is seeded with crystals of vincaleukoblastine sulfate and is chilled for about 24 hours. Vincaleukoblastine sulfate, if present, precipitates during this period and can be separated by filtration. Vincaleukoblastine sulfate melts at about 284° to 285°C.

References

Merck Index 9784 Kleeman & Engel p. 943 PDR p. 1072 DOT 16 (5) 169 (1980) I.N. p. 1007 REM p. 1154

Beer, C.T., Cutts, J.H. and Noble, R.L.; U.S. Patent 3,097,137; July 9, 1963; assigned to Canadian Patents and Development, Ltd., Canada

Svoboda, G.H.; U.S. Patent 3,225,030; December 21, 1965; assigned to Eli Lilly and Co.

VINCAMINE

Therapeutic Function: Vasodilator

Chemical Name: 14,15-Dihydro-14-hydroxyeburnamenine-14-carboxylic acid methyl ester

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1617-90-9

Trade Name	Manufacturer	Country	Year Introduced
Pervancamine	Dausse	France	1969
Vincadar	Roussel-Maestretti	Italy	1974
Vincadil	Richter	Italy	1974
Vincapront	Mack	W. Germany	1976
Vincamin	A.G.M.	W. Germany	1976
Aethroma	Mepha	Switz,	_
Alfavinca	Alfar	Spain	_
Anascleroi	Far d eco	Italy	_
Artensen	Cusi	Spain	_
Arteriovinca	Farma-Lepori	Spain	-
Asnai	Durban	Spain	_
Ausomina	Ausonia	İtaly	_
Branex	Galepharma Iberica	Spain	
Centractiva	Larma	Spain	•••
Cetal	Parke Davis	W. Germany	_
Cincuental	Nemi	Argentina	
Equipur	Fresenius	W. Germany	_

Trade Name	Manufacturer	Country	Year Introduced
Esberidin	Schaper & Brunner	W. Germany	_
Horusvin	Horus	Spain	_
Novicet	Schwarzhaupt	W. Germany	_
Oxygeron	Syntex-Pharm	Switz.	-
Perphal	Laphal	France	
Pervone	Millot	France	_
Tripervan	Roger Bellon	France	_
Vasculogene	Negma	France	_
Vascumine	Pharma	France	_
Vinca	Millot	France	-
Vincabiomar	Biologia Marina	Spain	_
Vincabrain	Bouchara	France	_
Vincachron	Eurand	Italy	_
Vinca-Ecobi	Ecobi	Italy	_
Vincafarm	Radiumfarma	Italy	_
Vincafolina	Lampugnani	Italy	_
Vincafor	Clin-Comar-Byla	France	_
Vincagalup	Galup	Spain	_
Vincagil	Sarsa	Brazil	-
Vincahexal	Durachemie	W. Germany	_
Vincalen	Firma	Italy	
Vincamidol	Magis	Italy	_
Vincanor	Theranol	France	_
Vinca-Tablinen	Sanorania	W. Germany	-

Vincadiformine Sodium hydride Trimethylphosphite Oxygen

Manufacturing Process

The following route is described in U.S. Patent 4,145,552: At ambient temperature, over a period of thirty minutes, a solution of 33.8 g (0.1 mol) of (—)-vincadiformine in a mixture of 140 ml of anhydrous dimethylformamide and 140 ml of anhydrous toluene is added to a suspension of 2.64 g (0.11 mol) of sodium hydride in a mixture of 200 ml of anhydrous tetrahydrofuran, 20 ml of anhydrous hexamethylphosphotriamide (EMPT) and 18.7 ml (0.14 mol) of trimethyl phosphite. When the release of hydrogen has finished (about two hours later), the solution is cooled to -10°C and then stirred under an oxygen atmosphere until absorption ceases (duration: 3 hours). Still at -10°C, 136 ml of glacial acetic acid are added, and the mixture is then left at ambient temperature for two hours. After the addition of 500 ml of 1 N sulfuric acid, the aqueous phase is isolated, reextracted with 150 ml of isopropyl ether, made alkaline with 350 ml of 11 N ammonia, then extracted 3 times with 300 ml aliquots of methylene chloride. After drying over calcium chloride and evaporating the solvent, 30.2 g of crude product are obtained which, when chromatographed on a column of silica gel (1.5 kg) yield, 9.9 g of vincamine (yield: 28%) melting point (decomp.): 250°C.

References

Merck Index 9785 Kleeman & Engel p. 944

I.N. p. 1008

Kuehne, M.E.; U.S. Patent 3,454,583; July 8, 1969; assigned to U.S. Secretary of Health, Education and Welfare

Heymes, A.; U.S. Patent 4,145,552; March 20, 1979; assigned to Parcor (France)

VINCRISTINE SULFATE

Therapeutic Function: Cancer chemotherapy

Chemical Name: Leurocristine sulfate

Common Name: -

Structural Formula: The N-methyl group in vinblastine (which see) is replaced by N-CHO.

Chemical Abstracts Registry No.: 2068-78-2; 57-22-7 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Oncovin	Lilly	U.S.	1963
Oncovin	Lilly	France	1964
Vincristin	Lifly	W. Germany	1965
Vincristina	Lilly	Italy	1966
Oncovin	Lilly	U.K.	1966
Cristovin	Teva	Israel	-
Kyocristine	Kyorin	Japan	
Leucid	Leo	Sweden	_
Pericristine	Petersen	S. Africa	-
Vincosid	Leo	Sweden	_

Raw Materials

Vinca rosea plants Benzene Sulfuric acid

Manufacturing Process

The alkaloid mixture from the extraction of Vinca rosea plants (as in vinblastine extraction) was chromatographed to give vincristine which was then converted to the sulfate, according to U.S. Patent 3,205,220.

Vincristine may also be prepared in a semisynthetic process starting from vinblastine. Vinblastine or a salt thereof, preferably the sulfate, is oxidized with chromic acid or with one of its salts at a low temperature, the reaction mixture is neutralized or rendered alkaline and the product is separated therefrom by extraction, the extract is evaporated to dryness, the dry residue is optionally formylated, vincristine, and optionally N-demethylvinblastine also, are isolated from the product, and the product(s) are optionally converted into their salts; preferably into the sulfates, according to U.S. Patent 3,899,493.

References

Merck Index 9788 Kleeman & Engel p. 948 PDR p. 1066 DOT 16 (5) 173 (1980) I.N. p. 1009 REM p. 1154

Svoboda, G.H., Barnes, A.J. Jr. and Armstrong, R.J.; U.S. Patent 3,205,220; September 7, 1965; assigned to Eli Lilly & Co.

Jovanovics, K., Szasz, K., Fekete, G., Bittner, E., Dezseri, E. and Eles, J.; U.S. Patent 3.899.493; August 12, 1975; assigned to Richter Gedeon Vegyeszeti Gyar R.T.

VINDESINE

Therapeutic Function: Antineoplastic

Chemical Name: 4-Desacetyl-vinblastine-C-3-carboxamide

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 53643-48-4

Trade Name	Manufacturer	Country	Year Introduced
Eldisine	Lilly	France	1980
Eldisine	Lilly	U.K.	1980
Eldisine	Lilly	W. Germany	1980
Eldisin	Serum Impfinst.	Switz.	1982

Raw Materials

Vinblastine Ammonia

Manufacturing Process

About 10 g of VLB (vincaleucoblastine or simply vinblastine) sulfate were converted by standard procedures to VLB free base. The free base, obtained as a residue after evaporation of the dried ethereal solvent, was dissolved in about 200 ml of anhydrous methanol. Anhydrous liquid ammonia (300 ml) was added, and the reaction mixture sealed and maintained at about 100°C for 60 hours. The reaction vessel was opened, and the contents removed and evaporated to dryness in vacuo. The resulting residue, containing 4-desacetyl VLB C-3 carboxamide, as shown by thin layer chromatography, were combined and the solvent evaporated therefrom in vacuo, yielding as a residue purified 4-desacetyl VLB C-3 carboxamide free base. The NMR and IR spectra of the solid free base confirmed the structure indicated. The free base showed a band in the infrared at 1,687 cm⁻¹, characteristic of the amide function. The molecular weight of the free base determined by mass spectroscopy was 753 which is in agreement with theoretical value calculated for C₄₃H₅₅N₅O₇.

References

Merck Index 9789 DFU 3 (5) 401 (1978) Kleeman & Engel p. 948 DOT 16 (5) 173 & (6) 198 (1980) I.N. p. 1009 REM p. 1157

Cullinan, G.J. and Gerzon, K.; U.S. Patent 4,203,898; May 20, 1980; assigned to Eli Lilly and Company

VIOMYCIN

Therapeutic Function: Antitubercular

Chemical Name: See structural formula

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 32988-50-4; 37883-00-4 (Sulfate)

Trade Name	Manufacturer	Country	Year Introduced
Vinactane	Ciba	U.S.	1953
Viocin	Pfizer	U.S.	1953
Panto-Viocine	Pfizer	France	
Viomicin	Parke Davis Sankyo	Japan	
Viomycin	Parke Davis	U.S.	-
Viomycin Pfizer	Taito Pfizer	Japan	-

Raw Materials

Bacterium Actinomyces vinaceus Nutrient medium

Manufacturing Process

Viomycin is produced by inoculating a nutrient medium with a viable strain of the organism Actinomyces vinaceus. A method for the production of viomycin is set forth in U.S. Patent 2,663,445 comprising inoculating a medium containing soy peptone, beef extract, dextrose, sodium chloride and a silicone antifoaming agent with a spore suspension of Actinomyces vinaceus and incubating the inoculated medium for 120 hours at a temperature of 26°C while passing sterile air through the medium at a rate of 500 ml per liter of medium per minute.

References

Merck Index 9805 Kleeman & Engel p. 949 I.N. p. 1010 REM p. 1212

Marsh, W.S., Mayer, R.L., Mull, R.P., Scholz, C.R. and Townley, R.W.; U.S. Patent 2,633,445; March 31, 1953; assigned to Ciba Pharmaceutical Products, Inc.

Freaney, T.E.; U.S. Patent 2,828,245; March 25, 1958; assigned to Commercial Solvents Corporation

VIQUIDIL

Therapeutic Function: Vasodilator; antiarrhythmic

Chemical Name: 3-(3-Ethenyl-4-piperidinyl)-1-(6-methoxy-4-quinolinyl)-1-propanone

Common Name: Quinotoxine; mequiverine; chinicine; quinotoxol

Structural Formula:

Chemical Abstracts Registry No.: 84-55-9

Trade Name	Manufacturer	Country	Year Introduced
Desclidium	Spret	France	1972
Desclidium	Rorer	Italy	1973
Desclidium	Badische	W. Germany	1979
Chinotoxin	Badische	W. Germany	_
Permiran	Lab. Franc. Therap.	France	_

Raw Materials

N-Benzoylhomomeroquinene ethyl ester Ethyl quininate
Sodium ethoxide Hydrogen chloride

Manufacturing Process

2.70 g of N-benzoylhomomeroquinene ethyl ester (0.0086 mol) are mixed with 4.0 g of ethyl quininate (0.0173 mol = 100% excess). 1.4 g of absolutely dry pulverulent sodium ethoxide (0.0207 mol - 140% excess, based on N-benzoylhomomeroquinene ethyl ester) is added, and the reaction mixture is heated to about 80°C with continuous stirring. As the ethyl quininate melts, and the materials become thoroughly mixed, the initial yellow color changes to brown and then gradually to deep red. The reaction mixture is maintained at about 82°C for fourteen hours with continuous stirring. It is then cooled, and the resulting very hard, dark red mass is decomposed with ice water and benzene. The (not entirely clear) combined aqueous layers are extracted with a small amount of ether. The clear, deep red, aqueous layer is then made just acid to litmus. The precipitated oil is taken up in ether. Evaporation of solvent, finally in vacuo, gives 2.56 g of a red glass. The combined benzene and ether extracts from above, containing largely neutral material, are extracted with 10% aqueous sodium hydroxide. The alkaline extract is made just acid to litmus, and extraction with ether followed by removal of solvent gives a further small quantity of β -ketoester, 0.16 g.

Total weight of N-benzoylquinotoxine carboxylic acid ethyl ester thus obtained was 2.72 g, equivalent to 63.4% of the theoretical.

2,72 g of N-benzoy|quinotoxine carboxylic acid ethyl ester are dissolved in 30 cc of 1:1 aqueous hydrochloric acid (from 15 cc concentrated hydrochloric acid and 15 cc water). The clear, reddish-orange solution is then boiled under reflux for four hours. The very dark reddishbrown solution is extracted with ether (from this extract 0.50 g of benzoic acid is obtained on evaporation). The aqueous solution is then made strongly alkaline and extracted with ether. 0.23 g of ether-insoluble interface material is dissolved in benzene and set aside. Removal of solvent from the above ether extract gives 1.39 g of crude quinotoxine as a dark red viscous oil.

References

Merck Index 9808 DOT 8 (4) 156 (1972) I.N. p. 1010

Woodward, R.B. and Doering, W.V.; U.S. Patent 2,500,444; March 14, 1950; assigned to Polaroid Corp.

VISNADINE

Therapeutic Function: Coronary vasodilator

Chemical Name: 2-Methylbutyric acid 9-ester with 9,10-dihydro-9,10-dihydroxy-8,8-di-

methyl-2H,8H-benzo [1,2-b:3,4-b'] dipyran-2-one acetate

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 477-32-7

Trade Name	Manufacturer	Country	Year Introduced
Vibeline	Bellon	France	1960
Carduben	Madaus	W. Germany	1968
Provismine	Bellon	France	-
Visnamine	Chinoin	Japan	-

Raw Materials

Ammi visnaga plants

Manufacturing Process

Ammi visnaga is a plant of the Umbelliferae family, which has been known and used for its therapeutic properties by the peoples of the Mediterranean basin since time immemorial.

Visnadine may be extracted from the umbels of Ammi visnaga by an organic solvent having a boiling point less than 110°C. The resulting solution is concentrated first by heating in a water bath and then is allowed to stand some time at a temperature of about 20°C and if necessary is treated for separation of gummy constituents therefrom, after which the solution is concentrated under reduced pressure. Finally, the crude product is crystallized and separated by retaining it on a filter.

This crude product may then, according to the process, be purified by mixing it with petroleum ether and allowing it to stand at ordinary temperature, then filtering it to obtain the pure visnadine.

References

Merck Index 9815
Kleeman & Engel p. 950
I.N. p. 1011
Le Men, J.G.; U.S. Patent 2,995,574; August 8, 1961; assigned to Laboratoire Roger Bellon S.A. (France)

WARFARIN SODIUM

Therapeutic Function: Anticoagulant

Chemical Name: 3-(\alpha-acetonylbenzyl)-4-hydroxycoumarin sodium salt

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 129-06-6; 81-81-2 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Coumadin	Endo	U.S.	1954
Prothromadin	Harvey	U.S.	1956
Athrombin	Purdue Frederick	U.S.	1959
Coumadine	Merrell	France	1959
Panwarfin	Abbott	U.S.	1960
Adoisine	Delalande	France	_
Aldocumar	Aldo Union	Spain	-
Dicusat	Ferrosan	Denmark	_
Marevan	Orion	Finland	_
Tintorane	A.C.F.	Neth.	_
Waran	Nyegaard	Norway	
Warcoumin	Harvey	Australia	_
Warfilone	Merck-Frosst	Canada	_

Raw Materials

4-Hydroxycoumarin Benzalacetone Sodium hydroxide

Manufacturing Process

About 0.1 mol each of 4-hydroxycoumarin and benzalacetone are dissolved, in any desired order, in about three times their combined weight of pyridine. The solution is refluxed for about 24 hours, and then allowed to cool; after which it is poured into about 15 volumes of water, and acidified to about pH 2 by the addition of hydrochloric acid. An oil separates, and on cooling and standing overnight solidifies. The solid product is recovered, as by filtration, and recrystallized from ethanol, according to U.S. Patent 2,427,578.

The base melts at about 161°C. It is a white crystalline solid, soluble in hot ethyl alcohol

and substantially insoluble in cold water; it dissolves in alkali solutions with formation of the salt. The yield is about 40%.

Then, as described in U.S. Patent 2,777,859, warfarin may be reacted with NaOH to give a sodium salt solution. Crystalline warfarin sodium may be prepared as described in U.S. Patent 2,765,321.

References

Merck Index 9852 Kleeman & Engel p. 950 PDR pp. 545, 852, 1606 OCDS Vol. 1 p. 331 (1977) I.N. p. 1015 REM p. 827

Stahmann, M.A., Ikawa, M. and Link, K.P.; U.S. Patent 2,427,578; September 16, 1947; assigned to Wisconsin Alumni Research Foundation

Schroeder, C.H. and Link, K.P.; U.S. Patent 2,765,321; October 2, 1956; assigned to Wisconsin Alumni Research Foundation

Link, K.P.; U.S. Patent 2,777,859; January 15, 1957; assigned to Wisconsin Alumni Research Foundation

XANTHINOL NIACINATE

Therapeutic Function: Peripheral vasodilator

Chemical Name: 3-Pyridine carboxylic acid compounded with 3,7-dihydro-7-[2-hydroxy-3-[(2-hydroxymethyl)methylamino] propyl] -1,3-dimethyl-1H-purine-2,6-dione(1:1)

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 437-74-1

Trade Name	Manufacturer	Country	Year Introduced
Complamex	Calder	U.K.	1971
Adrogeron	Adroka	Switz.	_
Angioamin	Dompe	Italy	-
Circulan	Unipharm	Israel	_
Complamin	Riker	U.S.	_
Digi-Complamin	Beecham-Wulfing	W. Germany	-
Emodinamin	Sigurta	Italy	_
Jupal	Arzneimittelwerk Dresden	E. Germany	_
Landrina	Landerlan	Spain	
Niconicol	Farmos	Finland	
Retilian	Kwizda	Austria	
Sadamin	Polfa	Poland	_
Teonicol	Farmos	Finland	
Vasoprin	Alfa	Italy	_
Vedrin	Polifarma	Italy	_
Xanidil	Spofa	Czechoslovakia	_
Xavin	Chinoin	Hungary	_

Raw Materials

Epichlorohydrin Theophylline Methylaminoethanol Nicotinic acid

Manufacturing Process

To a well-stirred solution of 740 parts by weight of epichlorohydrin in 200 parts by volume of isopropyl alcohol are added 600 parts by weight of methylaminoethanol during about 3

hours at 15°C to 20°C. The heat generated by the condensation is removed by means of a cooling bath. After the addition of the total quantity of methylaminoethanol, stirring is continued for 1 hour at 25°C. The condensation reaction is completed when development of heat reaction can no longer be observed. The solution thus produced of the raw 1-chloro-3-(methylhydroxyethylamino)-propanol-2 in isopropyl alcohol is a colorless viscous liquid which is used without further purification for the subsequent condensation with theophylline.

320 parts by weight of caustic soda are dissolved in 200 parts by weight of water and diluted with 6,000 parts by weight of isopropyl alcohol. 1,584 parts by weight of theophylline-hydrate are added to the well-stirred alcoholic caustic soda solution having a temperature between 50°C to 60°C. As a result, most of the theophylline sodium salt is precipitated and a doughy or pasty white reaction product is formed. While being stirred and heated to the boiling point of alcohol, the solution of the afore-described 1-chloro-3-(methylhydroxyethylamino)-propanol-2 is added dropwise into the reaction vessel during about 3 hours. After further cooking for 2 hours, the alcoholic solution of deposited sodium chloride is filtered off. By vaporizing the alcohol, the 3-(methylhydroxyethylamino)-2-hydroxypropyltheophylline can be obtained as a very viscous oil which contains impurities in the form of by-products.

For purpose of purification, the hot alcoholic solution is mixed with 975 parts by weight of nicotinic acid while being stirred and heated until the nicotinic acid is completely dissolved.

The 3-(methylhydroxyethylamino)-2-hydroxypropyltheophylline-nicotinate separates, while still being warm, in the form of shiny, thin, small sheets. After cooling, the crystallization product is sucked off from the mother liquor and recrystallized from 85% isopropyl alcohol.

The melting point of the pure nicotinic acid salt is 180°C and the yield is 75% to 80% related to the used theophylline. The substance has a nearly neutral reaction and is very readily soluble in water.

References

Merck Index 9871 Kleeman & Engel p. 951 I.N. p. 1018

Bestian, A.H.W.; U.S. Patent 2,924,598; February 9, 1960; assigned to Firma Johann A. Wulfing (Germany)

XIBORNOL

Therapeutic Function: Antibacterial

Chemical Name: 6-Isobornyl-3,4-xylenol

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 13741-18-9

Trade Name	Manufacturer	Country	Year Introduced
Nanbacine	Fournier	France	1976
Xibol	Reig Jofre	Spain	_

Raw Materials

3,4-Xylenol Camphene

Manufacturing Process

100 g of 3,4-xylenol and 150 g of camphene are melted in a two-necked flask equipped with a reflux condenser and a thermometer. 10 g of stannic chloride are added in small quantities; the temperature is kept between 70°C and 80°C for 4 hours. The mass is then allowed to cool and 300 ml of benzene and 300 ml of water are added. The aqueous layer is decanted off, and the supernatant organic layer is washed, first with 1,200 ml of 10% potassium hydroxide and then with water until neutral. The benzene is driven off and the mass is distilled. The fraction which passes between 203°C and 223°C/200 mm Hg is collected and recrystallized in petroleum ether.

100 mg of the recrystallized product is dissolved in 10 ml of hexane.

This solution is then slowly passed through a chromatographic alumina column, 20 cm in length and 16 mm in diameter, containing 20 g of alumina (Prolabo®).

The column is then eluted with benzene and 2 ml fractions of the eluent are collected as soon as the product appears in the eluent. The presence of the product is detected by means of the color change in the collected eluent after adding 1 drop of 2% ferric chloride and 2 drops of 5% potassium ferricvanide solution.

18 ml of a first fraction are collected, the next 2 ml of eluent are discarded and then a second fraction of 20 ml is collected. Removal of the solvent from the first fraction by distillation leaves a product having a melting point of between 94°C and 96°C and removal of the solvent from the second fraction leaves a product having a melting point between 86°C and 88°C.

The product remaining from the first fraction is 6-isobornyl-3,4-xylenol while that from the second fraction is its isomer 6-exo-isocamphenyl-3,4-xylenol.

References

Merck Index 9887 Kleeman & Engel p. 952 DOT 8 (6) 235 (1972) I.N. p. 1019

Mar-Pha, Societe d'Etude et d'Exploitation de Marques; British Patent 1,206,774; Sept. 30. 1970

XIPAMID

Therapeutic Function: Diuretic; antihypertensive

Chemical Name: 4-chloro-5-sulfamoyl-2',6'-salicyloxylidide

Common Name: -

Chemical Abstracts Registry No.: 14293-44-8 ·

Trade Name	Manufacturer	Country	Year Introduced
Aquaphor	Beiersdorf	W. Germany	1971
Diurexan	Merck	U.K.	1979
Aquaphor	Farmades	Italy	1980
Aquaphoril	Homburg	W. Germany	_
Diurex	Lacer	Spain	_

Raw Materials

4-Chlorosalicylic acid	Chlorosulfonic acid
Ammonia	2,6-Dimethylaniline
Phoenharus trichlaride	

Manufacturing Process

The 4-chloro-5-sulfamyl salicylic acid used as starting point was prepared in the following way:

(a) 4-Chloro-5-Chlorosulfonyl Salicylic Acid: 100 grams 4-chloro salicylic acid was added portionwise with stirring at about -5°C to 275 ml chlorosulfonic acid. The temperature was not allowed to rise above +3°C. At the end of the addition, the solution formed was stirred for 1 hour in an ice bath, then for 1 hour at 20°C and finally for 2½ hours at 80°C oil bath temperature. Then the dark brown solution, after ensuing slow cooling with vigorous stirring, was poured onto ice; the precipitate was vacuum filtered, washed with water and dried. After recrystallization from toluene the compound formed had a melting point of 181° to 183°C.

(b) 4-Chloro-5-Sulfamyl Salicylic Acid: 40 grams 4-chloro-5-chlorosulfonyl salicylic acid obtained from (a) was added portionwise with stirring to 250 ml liquid ammonia. This was allowed to stand for 2 hours, then the precipitate was vacuum filtered and dissolved in 500 ml water. The solution was filtered and the filtrate was treated with 2 N hydrochloric acid until no more precipitation occurred. The 4-chloro-5-sulfamyl salicylic acid obtained as the precipitate was filtered off and finally recrystallized from water, MP 258° to 260°C.

5.0 grams 4-chloro-5-sulfamyl salicylic acid was suspended in 100 ml water-free chloro-benzene and then 2.44 grams of 2,6-dimethylaniline and 0.9 ml phosphorus trichloride were added to the suspension in turn. The reaction mixture was heated under reflux for 5 hours. After cooling, the chlorobenzene was separated from the precipitate by decantation. The latter was finally collected on a filter and washed, first with chlorobenzene and, after drying, with 2 N hydrochloric acid and water. The compound obtained by recrystallization from methanol had a melting point of 256°C.

References

Merck Index 9888 Kleeman & Engel p. 952 OCDS Vol. 2 p. 93 (1980) DOT 7 (6) 227 (1971) I.N. p. 1019

Liebenow, W.; U.S. Patent 3,567,777; March 2, 1971; assigned to P. Beiersdorf & Co., AG, Germany

XYLOMETAZOLINE HYDROCHLORIDE

Therapeutic Function: Adrenergic (vasoconstrictor)

Chemical Name: 2-[[4-(1,1-Dimethylethyl)-2,6-dimethylphenyl] methyl] -4,5-dihydro-1H-

imidazole hydrochloride

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 1218-35-5; 526-36-3 (Base)

Trade Name	Manufacturer	Country	Year Introduced
Otrivin	Geigy	U.S.	1959
Coryzin	Star	Finland	
Hidropid	Pliva	Yugoslavia	-
Ilvanol	Siegfried	W. Germany	
Novorin	Polfa	Poland	
Olynth	Goedecke	W. Germany	_
Servilaryn	Servipharm	Switz.	-
Sinutab	Parke Davis	U.S.	_

Raw Materials

p-tert-Butyl-o,o'-dimethylphenylacetonitrile Ethylenediamine Hydrogen chloride

Manufacturing Process

62 grams of para-tertiary-butyl-ortho,ortho'-dimethyl-phenyl-acetonitrile (obtainable, for example, by the method of Buu-Hoi and P. Cagniant, Bulletin de la Societe Chimique de France, volume 9, page 891 (1942)], 20.6 grams of ethylenediamine of 96% purity and 1.55 cc of carbon disulfide are heated together in a distillation flask with the exclusion of moisture for 48 hours on a boiling water bath. Ammonia is evolved. Upon cooling the reaction product solidifies and is then dissolved in benzene, the solution is filtered while hot with the addition of animal charcoal and petroleum ether is added. The mixture is filtered to remove the impurities that are first precipitated and by the further addition of petroleum ether 2-(para-tertiary-butyl-ortho, ortho dimethyl-phenyl-methyl)-imidazoline is caused to crystallize out.

The product melts at 131° to 133°C after being recrystallized from a mixture of benzene and petroleum ether. It can be converted into its hydrochloride as follows:

189 grams of 2-(para-tertiary-butyl-ortho, ortho'-dimethyl-phenyl-methyl)-imidazoline are dissolved in 400 cc of absolute ethanol, the solution is rendered acid by the addition of 104 cc of an ethanolic solution of hydrochloric acid of 30% strength, the mixture is filtered with the addition of animal charcoal, and dry ethyl acetate and absolute ether are added until crystallization sets in. After cooling the mixture, the salt is filtered off with suction and crystallized several times from absolute ethanol with the use of animal charcoal and the addition of dry mixture of ethyl acetate and ether. The hydrochloride so obtained melts at 327° to 329°C (with decomposition).

References

Merck Index 9895 Kleeman & Engel p. 953 PDR p. 898 OCDS Vol. 1 p. 242 (1977) I.N. p. 1020 REM p. 891

Hueni, A.; U.S. Patent 2,868,802; January 13, 1959; assigned to Ciba Pharmaceutical Products Inc.

ZERANOL

Therapeutic Function: Estrogen

Chemical Name: 3,4,5,6,7,8,9,10,11,12-Decahydro-7,14,16-trihydroxy-3-methyl-1H-2-

benzoxacvclotetradecin-1-one

Common Name: Zearalanol, tetrahydro F.E.S. (fermentation estrogenic substance)

Structural Formula:

Chemical Abstracts Registry No.: 26538-44-3

Trade Name	Manufacturer	Country	Year Introduced
Ralone	I.C.I.	Italy	1975
Frideron	Sandoz	Italy	-
Ralgro	Comm. Solvents	Italy	-

Raw Materials

Bacterium *Gibberella zeae* Nutrient medium Hydrogen

Manufacturing Process

A spore sand culture containing *Gibberella zeae* (Gordon) NRRL-2830 was aseptically placed in a sterile tube containing 15 ml of Czapek's-Dox solution and a small amount of agar. This medium was then incubated for about 168 hours at approximately 25°C. At the end of the incubation period, the medium was washed with 5 ml of sterile deionized water and transferred to a sterile tube containing 45 ml of Czapek's-Dox solution. The contents of the tube were then incubated for about 96 hours at about 25°C after which the material was available for use in inoculation of a fermentation medium.

To a 2-liter flask were added 300 g of finely divided corn. The flask and its contents were then sterilized and after sterilization 150 ml of sterile deionized water were added. To the mixture in the flask were then added 45 ml of the inoculum prepared by the process and the material was thoroughly mixed. The mixed material was then incubated for about 20 days at 25° C in a dark room in a water-saturated atmosphere. The following illustrates the recovery of the anabolic substance from the fermentation medium.

A 300-g portion of fermented material was placed in 500 ml of deionized water and slurried.

The slurry was then heated for about 15 minutes at 75°C, 300 g of filter aid were then added and the material was filtered. The solid filtered material containing the anabolic substance was then air dried, and 333 q of the dried cake were then extracted with 500 ml of ethanol. This procedure was repeated three more times. The ethanol extract was then dried under vacuum to give 6.84 g of solid material. This solid material was then dissolved in 20 ml of chloroform and extracted with 30 ml of an aqueous solution containing 5% by weight of sodium carbonate having an adjusted pH of about 11.2. The extraction process was repeated seven more times. The pH of the sodium carbonate extract was then adjusted to 6.2 with hydrochloric acid, to yield an anabolic substance-containing precipitate. The precipitate and the aqueous sodium carbonate extract were then each in turn extracted with 75 ml of ethyl ether. This procedure was repeated three more times to yield a light yellow ethereal solution, which was then dried to yield 116 mg of solid anabolic substance. This material was then subjected to multiple transfer countercurrent distribution using 100 tubes and a solvent system consisting of two parts chloroform and two parts methanol and one part water as the upper phase, all parts by volume. The solid material obtained from the multiple transfer countercurrent distribution was then tested for physiological activity according to the well-known mouse-uterine test. The fermentation estrogenic substance produced has the formula:

Tetrahydro F.E.S. was produced by dissolving 0.5 g F.E.S. in 200 ml of ethanol. The F.E.S. was reduced by contacting the solution with hydrogen for 3 hours at 30°C and 1,000 psi using 2 g of Raney nickel as a catalyst. After filtering and concentrating the reaction mixture, the product was washed with 2 to 3 ml of 2-nitropropane and crystallized. It was found to have a melting point from 143°C to 160°C.

References

Merck Index 9923 Kleeman & Engel p. 953 DOT 12 (6) 243 (1976) I.N. p. 1023

Hodge, E.B., Hidy, P.H. and Wehrmeiser, H.L.; U.S. Patent 3,239,345; March 8, 1966; assigned to Commercial Solvents Corp.

Andrews, F.N. and Stob, M.; U.S. Patent 3,196,019; July 20, 1965; assigned to Purdue Research Foundation

ZIMELIDINE

Therapeutic Function: Antidepressant

Chemical Name: 3-(4-Bromophenyl)-N,N-dimethyl-3-(3-pyridinyl)-2-propen-1-amine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 56775-88-3

Trade Name	Manufacturer	Country	Year Introduced
Normud	Astra	W. Germany	1981
Zelmid	Astra	U.K.	1982
Normud	Astra	Switz.	1982
Zelmid	Astra	Sweden	1983

Raw Materials

ω-Dimethylamino-4'-bromopropiophenone 3-Bromopyridine n-Butvllithium Sulfuric acid

Manufacturing Process

To 9 g of n-butyllithium in 200 ml of dry ether 20 g of 3-bromopyridine is added as quickly as possible at -40°C without raising the temperature. When the addition is finished the mixture is stirred for another 30 minutes. Thereafter 32.5 g of ω -dimethylamino-4'-bromopropiophenone is added in such a way that the temperature does not exceed -40°C. The cooling is discontinued and the mixture is stirred during the night whereupon the reaction mixture is poured onto ice and diluted HCI, which is washed with ether and is extracted with 20 ml of methylene dichloride. The methylene dichloride is dried and evaporated. The crystals are dissolved in water, which then is made alkaline with a solution of Na₂CO₃, is extracted with ether, dried, and evaporated and recrystallized from isopropyl ether, petroleum ether 1:1. Yield 4 g of 1-(4'-bromophenyl)-3-(N,N-dimethylamino)-1-(3"-pyridyl)-propanol. Melting point 67°C.

3.6 g of 1-(4'-bromopheny!)-3 (N,N-dimethylamino)-1-(3"-pyridy!)-propanol are dissolved in 15 ml of 85% H₂SO₄ and heated at 170°C for 10 minutes. The reaction mixture is poured into 60 ml of water, which is then made alkaline with 10N NaOH, and is extracted with 2 X 25 ml of ether. The ether is dried with Na₂SO₄, treated with active carbon and evaporated. The residue is dissolved in 25 ml of acetone and an equivalent amount of oxalic acid dissolved in 25 ml of acetone is added. The precipitate obtained is filtered off, is dissolved in 50 ml of water, which is made alkaline with 10N NaOH and is extracted with 2 X 25 ml of ether. The ether solution is dried with Na₂SO₄ and is filtered, whereupon dry HCl is introduced. The precipitate obtained is filtered off. Yield 1.2 g of 3-(4'-bromophenyl)-3-(3"-pyridyl)-dimethylallylamine dihydrochloride (H 102/09). Melting point 193°C.

References

Merck Index 9924 DFU 3 (1) 71 (1978) OCDS Vol. 3 p. 49 (1984) DOT 18 (9) 449 (1982) I.N. p. 1023

Berntsson, P.B., Carlsson, P.A.E. and Corrodi, H.R.; U.S. Patent 3,928,369; December 23, 1975; assigned to A.B. Hassle (Sweden)

ZIPEPROL

Therapeutic Function: Bronchodilator

Chemical Name: 4-(2-methoxy-2-phenylethyl)-α-(methoxyphenylmethyl)-1-piperazineethanol

Common Name: -

Structural Formula:

$$\begin{array}{c} \operatorname{och}_3 \\ \operatorname{chch}_2 \\ \operatorname{n} \\ \operatorname{och}_2 \\ \operatorname{oh} \\ \operatorname{c}_6 \\ \operatorname{h}_5 \end{array}$$

Chemical Abstracts Registry No.: 34758-83-3; 34758-84-4 (Dihydrochloride).

Trade Name	Manufacturer	Country	Year Introduced
Respilene	Winthrop	France	1973
Respilene	Sigma Tau	Italy	1979
Antituxil	Ghimas	Italy	_
Bronx	Lisapharma	Italy	
Citizeta	C.T.	Italy	_
Mirsol	Mepha .	Switz.	_
Respirase	Gibipharma	Italy	-
Respirex	Inibsa	Spain	_
Sanotus	Krka	Yugoslavia	_
Talasa	Andromaco	Argentina	_
Zitoxil	Farmochimica	Italy	_

Raw Materials

1-(2-Phenyl-2-methoxy)ethyl piperazine

3-Phenyl-3-methoxy propylene oxide

Manufacturing Process

In a reactor provided with a mechanical stirrer, a reflux refrigerant and a thermometer, there is introduced: 393 grams 1-[2-phenyl, 2-methoxy] ethyl piperazine and 22 grams 3-phenyl-3-methoxy propylene oxide in 750 ml of absolute ethanol.

When the slightly exothermic reaction (rise in temperature of about 20°C) has ceased, heating is effected for 1.5 hours at 60°C. The product is then cooled to 4°C and left to crystallize for about 12 hours. The precipitate is centrifugated then recrystallized in 500 ml of absolute ethanol.

420 grams of the desired compound is thus obtained in the form of a white, crystalline powder, melting point 83°C.

References

Merck Index 9976 Kleeman & Engel p. 953 DOT 10 (3) 104 (1974) I.N. p. 1024

Mauvernay, R.Y., Busch, N., Moleyre, J. and Simond, J.; U.S. Patent 3,718,650; February 27, 1973; assigned to Societe Anonyme Centre Europeen de Recherches Mauvernay, France

ZOLIMIDINE

Therapeutic Function: Antiulcerative

Chemical Name: 2-[4-(Methylsulfonyl)phenyl] imidazo[1,2-a] pyridine

Common Name: Zoliridine

Structural Formula:

Chemical Abstracts Registry No.: 1222-57-7

Trade Name	Manufacturer	Country	Year Introduced
Solimidin	Selvi	Italy	1974
Gastronilo	Aristegui	Spain	_
Mutil	Lakeside	U.S.	-

Raw Materials

2-Aminopyridine p-Methylsulfonyl-ω-bromoacetophenone

Manufacturing Process

190 g of 2-aminopyridine were dissolved in 350 ml of dioxane and the solution was reacted with 277 g of p-methylsulfonyl-\omega-bromoacetophenone. After two hours at room temperature the 2-(4'-methylsulfonylphenyl) [1,2-a] imidazopyridine was filtered, washed and recrystallized by alcohol.

References

Merck Index 9992 Kleeman & Engel p. 954 DOT 10 (6) 210 (1974) I.N. p. 1024

Almirante, L., Murmann, W. and Friz, L.P.; U.S. Patent 3,318,880; May 9, 1967; assigned to Laboratorio Bioterapico Milanese Selvi & Co. S.a.S. (Italy)

ZOMEPIRAC

Therapeutic Function: Analgesic, antiinflammatory

Chemical Name: 5-(p-Chlorobenzoyl)-1,4-dimethylpyrrole-2-acetic acid

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: 33369-31-2

Trade Name	Manufacturer	Country	Year Introduced
Zomex	Cilag	Switz.	1979
Zomax	McNeil	U.S.	1980

Trade Name	Manufacturer	Country	Year Introduced
Zomax	Cilag	France	1981
Zomax	Cilag	W. Germany	1981
Zomax	Ortho	U.K.	1981
Zomaxin	Cilag	Italy	1982
Calmador	Finadiet	Argentina	_
Dolgenal	Exa	Argentina	_
Dolwas	Wassermann	Spain	
Zopirac	Sintyal	Argentina	_

Raw Materials

Ethyl 5-(p-chlorobenzoyl)-1,4-dimethyl-3-ethoxypyrrole-2-acetate Sodium hydroxide Hydrogen chloride

Manufacturing Process

5-(p-Chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetic acid: A suspension of 17.3 g (0.0435 mol) of ethyl 5-(p-chlorobenzoyl)-1,4-dimethyl-3-ethoxypyrrole-2-acetate in 170 g of 25% hydroxide is heated under reflux for 3 hours. The suspension is poured into ice and the resulting yellow solution is added to ice-hydrochloric acid with stirring. The precipitated solid is collected by filtration, air dried and recrystallized from acetone containing 10% water to give 5-(p-chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetic acid as a white solid; melting point 253°C to 254°C.

Ethyl 5-(p-chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetate: A suspension of 2.0 g of 5-(p-chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetic acid in 20 ml of 0.5% ethanolic hydrogen chloride is heated under reflux. The solid gradually dissolves. After 40 minutes a white crystalline solid precipitates. The solution is cooled and the solid product, ethyl 5-(p-chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetate, is filtered and dried, melting point 197°C to 198°C.

Ethyl 5-(p-chlorobenzoyl)-1,4-dimethylpyrrole-2-acetate: A 9.0 g (0.0255 mol) sample of ethyl 5-(p-chlorobenzoyl)-3-carboxy-1,4-dimethylpyrrole-2-acetate is heated under nitrogen at 210°C to 230°C for 2 hours. Gas is evolved. The residue is molecularly distilled in a sublimator at 195°C, 0.05 mm/Hg. The sublimate is recrystallized from cyclohexane to give ethyl 5-(p-chlorobenzoyl)-1,4-dimethylpyrrole-2-acetate as a white solid, melting point 107°C to 109°C.

5-(p-Chlorobenzoyl)-1,4-dimethylpyrrole-2-acetic acid: A suspension of 4.0 g (0.0125 mol) of ethyl 5-(p-chlorobenzoyl)-1,4-dimethylpyrrole-2-acetate in 26 ml of 0.5 N sodium hydroxide (0.013 mol) is heated under reflux for 30 minutes. The resulting solution is acidified with dilute hydrochloric acid, and the precipitated solid is collected by filtration, air dried and recrystallized from 2-propanol to give 5-(p-chlorobenzoyl)-1,4-dimethylpyrrole-2-acetic acid as a white crystalline solid, melting point 178°C to 179°C.

References

Merck Index 9993 DFU 2 (10) 698 (1977) Kleeman & Engel p. 955 OCDS Vol. 3 p. 128 (1984) DOT 16 (12) 434 (1980) I.N. p. 1025

Carson, J.R.; U.S. Patents 3,752,826; August 14, 1973 and 3,865,840; February 11, 1975; both assigned to McNeil Laboratories, Inc.

ZOTEPINE

Therapeutic Function: Tranquilizer (major)

Chemical Name: 2-[(8-Chlorodibenzo[b,f] thiepin-10-yl)oxy]-N,N-dimethylethanamine

Common Name: --

Structural Formula:

Chemical Abstracts Registry No.: 26615-21-4

Trade Name	Manufacturer	Country	Year Introduced
Lodopin	Fujisawa	Japan	1982

Raw Materials

8-Chlorodibenzo[b,f] thiepin-10(11H)one

2-Dimethylaminoethyl chloride

Manufacturing Process

A suspension of 30 g of sodium hydride in benzene (30 ml) was added dropwise to 52 g of 8chlorodibenzo [b,f] thiepin-10(11H)-one dissolved in dimethylformamide (800 ml), and the mixture was heated at 100°C for 2 hours. To this, there were added 68 g of 2-dimethylaminoethyl chloride, and the mixture was heated at 60°C for 39 hours. The reaction mixture, after cooled, was poured into ice-water, and the solution was extracted with ethyl acetate. The ethyl acetate layer, after washed with water, was extracted with 10% hydrochloric acid, when oil was precipitated. The aqueous layer, in which oil was precipitated, was washed with ether, made neutral with concentrated sodium hydroxide solution and then extracted with ethylacetate. The ethyl acetate layer was washed with water, dried over magnesium sulfate, and concentrated to give oil, which was allowed to stand to provide solid. The solid was washed with petroleum ether and recrystallized from cyclohexane to yield 42.5 g of 8-chloro-10-(2dimethylaminoethyl)-oxydibenzo[b,f] thiepin as crystals, melting point 90°C to 91°C. Maleate as colorless needle, melting point 204°C to 204.5°C.

References

Merck Index 9997 DOT 19 (3) 155 (1983) I.N. p. 1025 Umio, S., Uedo, I., Sato, Y. and Maeno, S.; U.S. Patent 3,704,245; November 28, 1972

ZOXAZOLAMINE

Therapeutic Function: Skeletal muscle relaxant: uricosuric

Chemical Name: 5-Chloro-2-benzoxazolamine

Common Name: -

Structural Formula:

Chemical Abstracts Registry No.: -

Trade Name	Manufacturer	Country	Year Introduced
Flexin	McNeil	U.S.	1956
Contrazole	Millot	France	_
Deflexol	Millot	France	_
Zoxine	Millot	France	_

Raw Materials

2-Amino-4-chlorophenol Ammonium thiocyanate
Hydrogen chloride Ferric chloride
Ammonium hydroxide

Manufacturing Process

To a solution of 106 g (0.74 mol) of 2-amino-4-chlorophenol in 500 ml of water containing 69 ml of concentrated hydrochloric acid (29.2 g, 0.8 mol) are added 60.8 g (0.8 mol) of ammonium thiocyanate. The solution is placed in an evaporating dish and heated on a steam bath for 5 hours. The solid which results is then removed from the concentrated solution by filtration, washed with a small amount of water and dried. The filtrate is placed in an evaporating dish and heated on a water bath for 2 hours. At the end of this time, the mixture is cooled, and the solid which precipitates out is removed by filtration. Both solid products are 5-chloro-2-hydroxyphenylthiourea melting at 157°C, and may be combined. The calculated N content for $C_7H_7CIN_2OS$ is 13.8; that found is 13.6.

To a solution of 10 g (0.05 mol) of 2-hydroxy-5-chlorophenylthiourea in 50 ml of methanol is added a solution of 11 g (0.04 mol) of ferric chloride hexahydrate in 50 ml of methanol. The initial purple-red color changes in a few minutes to amber. After stirring for one-half hour, the solution is treated with 16.5 ml of 57% ammonium hydroxide solution (0.24 mol). A brown, flocculent precipitate of ferric sulfide appears. The mixture is then refluxed with stirring for one hour, cooled and centrifuged. The centrifugate is evaporated to dryness, and the residue is shaken with ether and water to separate the organic material from the ammonium chloride. The ether layer is extracted three times with 25 ml portions of 1N hydrochloric acid. The acid solution is then poured into excess ammonium hydroxide, and the resulting solid collected, washed with water and dried. This gives a light tan solid melting at 183°C to 185°C. The material is then dissolved in 25 ml of acetone and 50 ml of benzene are added. After treatment of the solution with activated charcoal, the light yellow solution is evaporated to 25 ml and cooled. The white crystals of 2-amino-5-chlorobenzoxazole which separate melt at 185°C to 186°C.

References

Merck Index 9998 I.N. p. 1025

Sam, J.; U.S. Patent 2,780,633; February 5, 1957; assigned to McNeil Laboratories, Inc.

Raw Materials Index

These volumes have been cross indexed by raw material. The only exceptions are those few materials which are extracted from plant or animal sources or which are produced by fermentation. These are listed separately. Each raw material is followed by the name(s) of the pharmaceutical(s) produced from it.

The question arises of course of how far back to go in the raw material chain. It has been the attempt, where information was available, to go back to reasonably simple raw materials such as benzene.

FERMENTATION OR EXTRACTION

Aceituno meal, by extraction

Glaucarubin

Ammi visnaga plants, by extraction

Visnadine

Amphomycin, by fermentation

Amphomycin calcium

Beef blood, by extraction

Orgotein

Beef intestine, by extraction

Heparin

Beef pancreas glands, by extraction

Insulin

Carbohydrates, by fermentation or

extraction Aclarubicin

Acetyl digitoxin

Amphomycin calcium

Amphotericin B

Asparaginase

Bacitracin

Bekanamycin sulfate

Candicidin

Capreomycin sulfate

Carbomycin

Chlortetracycline

Citicoline

Clavulanic acid

Cycloserine

Cyclosporin

Dactinomycin

Daunorubicin

Demeclocycline HCI

Desoximetasone

Dextran 40

Doxorubicin

Enviomycin

Erythromycin

Floxuridine

Flunisolide

Fructose

Fumagillin

Fusafungine

Gentamicin sulfate

Gramicidin

Griseofulvin

Inositol

Kanamycin sulfate

Lincomycin

Mannitol

Methandrostenolone

Methylprednisolone

Micronomicin

Midecamycin

Mitomycin

Natamycin

Neomycin

Novobiocin

Nystatin Oleandomycin

Corvnebacterium simplex Oxamniquine Fluocortolone Oxytetracycline Paromomycin Prednisolone Prednisone Penicillin O Triamcinolone Phytate sodium Curvularia lunata Polymyxin Desoximetasone Ribostamicin Fluocortolone Salicylic acid Cunninghamella blakesleeana Sisomicin Spectinomycin Hydrocortisone Cylindrocarpon lucidum fungus, Spiramycin (NRRL 5760) Stallimycin HCl Streptokinase Cyclosporin Cylindrocarpon radicola Streptomycin Testolactone Streptozocin Testolactone Didymella lycopersici Tetracycline Methandrostenolone Triamcinolone Erwinia bacteria Tubocurarine chloride Asparaginase Viomycin Fusarium lateritium Fusafungine Ubidecarenone Vancomycin Gibberella zeae Zeranol Vidarabine Leuconostoc mesenteroides Viomycin Zeranol Dextran 40 Chondrodendron tomentosum Fructose plant, by extraction Micromonospora inyoensis Tubocurarine chloride Sisomicin Cytidine-5'-monophosphate, by Micromonospora purpurea fermentation Gentamicin sulfate Citicoline Micromonospora sagamiensis Digitalis ferruginee leaves, by extraction Micronomicin Penicillium bacterium Acetyldigitoxin Hog ovaries, by extraction Penicillin O Relaxin Penicillium patulum Human pituitary glands, by extraction Griseofulvin Pseudomonas bacterium Somatotropin Kidneys, animal, by fermentation Salicylic acid Semliki Forest arborvirus Interferon Microorganisms, by fermentation Interferon Actinomyces antibioticus Septomyxa affinis Dactinomycin Fluprednisolone Methylprednisolone Actinomyces vinaceus Viomycin Sporidiobolus ruinenii Aspergillus fumigatus Ubidecarenone Streptococcus fecalis Fumaqillin Aspergillus sclerotiorum Huber Floxuridine Oxamniquine Streptococcus haemolyticus Bacillus lentus Streptokinase Desoximetasone Streptomyces achromogenes Diflucortolone valerate Streptozocin Bacillus polymyxa Streptomyces ambofaciens Polymyxin Spiramycin Bacillus sphaericus var fusifermis Streptomyces antibioticus Meprednisone Oleandomycin Bacillus subtilis Vidarabine Streptomyces aureofaciens Bacitracin Brevibacterium ammoniagens Chlortetracycline Demeclocycline HCl Citicoline

Tetracycline

1608 Milorganite, by extraction Microorganisms, by fermentation (cont'd) Streptomyces caespitosus Cvanocobatamin Pancreatic gland material, by Mitomycin Streptomyces capreolus extraction Capreomycin sulfate Glucagon Papaya fruit, by extraction Streptomyces clavuligerus Clavulanic acid Streptomyces distallicus Pineapple juice, by extraction Stallimycin HCl Bromelain Streptomyces erythreus Rauwolfia plants, by extraction Deserpidine Erythromycin Streptomyces fradiae Rescinnamine Neomycin Reserpine Streptomyces gilvosporeus Silybum marianum fruit, by extrac-Natamycin tion Silvmarin Streptomyces griseoverticillatus var, tuberacticus Soybean meal, by fermentation Enviomycin Bacitracin Streptomyces griseus No. 3570 Clavulanic acid Candicidin Cycloserine Erythromycin Streptomyces griseus Gentamicin sulfate Streptomycin Streptomyces halstedii Kanamycin sulfate Carbomycin Micronomicin Streptomyces kanamycetius Novobiocin Bekanamycin sulfate Oleandom vcin Kanamycin sulfate Oxamniquine Streptomyces lavendulae Oxytetracycline Cycloserine Paromomycin Streptomyces lincolnensis Ribostamicin Lincomycin Sisomicin Streptomyces mycarofaciens Soy broth, by fermentation Midecamycin Triamcinolone Streptomyces nodosus Squill, by extraction Amphotericin B Proscillaridin Streptomyces noursei Thyroid gland carcinoma, by ex-Nystatin traction

Streptomyces orientalis

Vancomycin

Streptomyces peucetius

Daunorubicin

Streptomyces peucetius var.

caesius Doxorubicin

Streptomyces rimosus

Oxytetracycline

Streptomyces rimosus forma paromomycinus

Paromomycin

Streptomyces roseochromogenus

Flunisolide

Streptomyces spectabilis Spectinomycin

Streptomyces spheroides

Novobiocin

Streptomyces thermoflavus

Ribostamicin

Calcitonon

Tyrothricin fermentation liquor, by fermentation

Gramicidin

Urine, mammalian, by isolation

Urokinase

Vegetable protein, by fermentation

Midecamycin

Velvet beans, by extraction

Levodopa

Venom of Bothrops Atrox

Batro xobin

Veratrum viride, by extraction

Cryptenamine tannates

Vinca rosea plants, by extrac-

tion

Vinblastine sulfate

Vincristine sulfate

CHEMICALS

Amcinonide Acetaldehyde Fosfomycin Ancitabine HCI Methohexital sodium Aspirin

Mitopodozide Azapetine phosphate

Netilmicin Betamethasone acetate Acetaldehyde dimethylacetal Bisacodyl

Ambuside Bromazepam Bromopride A cetaldehyde thiosemicarbazone Chloramphenicol Sulfamethizole Acetamidobenzene sodium sulfonate Cortivazol

Dapsone Cyclofenii 4-Acetamidophenol Cyproheptadine Practolol Desoximetasone

Diatrizoate sodium Acetanilide Chlorambucil Diazoxide Acetic acid Dienestrol Difluprednate Ancitabine HCI

Betamethazone dipropionate Diltiazem HCI Carbidopa Diosmin

Clotiazepam Ethynodiol diacetate Cortisone acetate Etidronate disodium

Fluctoronide Cyproterone acetate Danazol Fluocinolone acetonide

Demegestone Fluocinonide Desmopressin Fluocortolone Difenoxine Fluprednidene acetate

Dimethisterone Fluprednisolone Diosmin Idoxuridine Dobutamine Iodamide

Felypressin lothelmate meglumine

Fentiazac lothiouracil Fluprednisolone Ketoconazole Gemeprost Lorazepam Glutethimide Medazepam Hydroxypropyi cellulose Medrogestone

Idoxuridine Medroxyprogesterone acetate

Iodoalphionic acid Melphalan

Mesoridazine besylate Levodopa Levothyroxine sodium Methoqualone

Mepazine Metoclopramide HCI Nordazepam Metolazone Norethynodrel Midazolam maleate

Pheniprazine Moxisvlyte Rosoxacin Nadolol Sulprostone Naloxone Trenbolone acetate Norethindrone acetate

Triacetin Oxaceprol

Acetic acid hydrazide Oxazepam

Triazolam Oxyphenisatin acetate Acetic anhydride Pancuronium bromide Prednisolone acetate Acetaminophen Acetazolamide Quingestanol acetate Acetrizoate sodium Sulfacetamide

Testosterone 17β-cypionate Acetyl cysteine

Trenbolone acetate Acetyl sulfisoxazole

Afloquatione Trioxsalen

17α-Acetoxy-3β-hydroxy-6-methyl-Acetoacetic acid N-benzyl-N-methylpregn-5-ene-20-one amino ethyl ester Megestrol acetate Nicardioine 3-Acetoxymethyl-7-[2-(2-amino-4-Acetoacetic acid methyl ester thiazolyl)-2-methoxyimino-Nifedipine acetamido] -ceph-3-em-4-Acetoacetic ester carboxylic acid (cefotaxime) Dipyridamole Cefotaxime sodium Acetoin DL-2-Acetoxypropionyl chloride Sulfaguanol lopamidol Acetone 1-(2-Acetoxy propyl)-2-methylimidazole Alprenolol HCI Bromelain Secnidazole p-Acetylaminobenzenesulfonyl chloride Ciprofibrate Sulfado xine Clortermine HCl Sulfaethiodole Desonide Sulfalene Fenofibrate Sulfamerazine Fluctoronide Flunisolide Sulfamethizole Sulfamoxole Fluocinonide Flurandrenolide Sulfiso xazole p-Acetylaminobenzoic acid Glucagon Deanol acetamidobenzoate Gramicidin 3-Acetylaminomethyl-4-chloro-5-Hetacillin potassium nitrobenzoic acid Iproniazid Kebuzone Iodamide 2-Acetylamino-1-(4-methylmercapto-Methyltestosterone phenyl)-1,3-propanediol Niaprazine Probucol Thiamphenicol Relaxin N-Acetyl-p-aminophenol Somatotropin Benorvlate Triamcinolone acetonide 3-Acetylamino-2,4,6-triiodophenol lopronic acid Acetonitrile Chlophedianol Acetylbenzylamine Mafenide acetate Clindamycin HCl Acetyl chloride Memantine Acetophenone Acebutolol Benfurodil hemisuccinate Algestone acetophenide Biperiden Chlorprothixene Dienestrol Eprozinol Fendiline HCI Ibuprofen Phenindamine tartrate Phensuximide N-Acetyl-L-dijodo tyrosinamide Procyclidine HCI Levothyroxine Pyrrobutamine 4-Acetyl diphenylsulfide Tridihexethyl iodide Tibenzonium iodide Trihexyphenidyl HCI m-Acetoxyacetophenone Acetylene Ethchlorvynol Norfenefrine 17β-Acetoxy-4-androsteno [2,3-d] Ethinylestradiol iso xa zole Fluroxene Hydroquinone Trilostane 3-Acetoxy-7-chloro-1,3-dihydro-5-Mestranol Moxestrol (o-chlorophenyl)-2H-1,4-Norethindrone benzodiazepin-2-one Lormetazepam Norethynodrel 3-Acetyl-2-fluorobiphenyl 3-Acetoxy-7-chloro-1-methyl-5phenyl-1,3-dihydro-2H-1,4-Flurbiprofen N-Acetyl-L-glutamine benzodiazepin-2-one Temazepam Aceglutamide aluminum

1-Allyl-2-aminomethyl pyrrolidine 3-Acetyl-18ß-glycerrhetinic acid Alizapride Acetoxolone aluminum salt Veralipride 2-(2-Acetylhydrazino)pyridine Fazidinium bromide Allyl bromide Azapetine phosphate 3-Acetyl-4-hydroxyaniline Methohexital sodium Celiprolol Nalorphine 2-Acetyl-7-hydroxy benzofuran Naloxone Befunolol Praimaline bitartrate 5-Acetylimino-4-methyl-2-benzylmercapto Δ^2 -1,3,4-thiadi-Secobarbital sodium Trioxsalen azoline Methazolamide Allyl carbamide 7-Acetyl-12-ketochenodeoxycholic Meralluride dl-N-Allylcamphoramic acid acid Mercaptomerin sodium Chenodiol o-Allylepoxypropoxybenzene Acetyl methionine Citiolone Alprenoiol HCI 2-Acetyl phenothiazine 2-Allylsulfamyl-5-chloro-4-sulfamylan-Acetophenazine dimaleate iline 3-Acetyl pyridine Ambuside Allyl-2-{7'-trifluoromethyl-4'-Metyrapone quinolinyl-amino)benzoate Acetylsalicylic acid Caraspirin calcium Antrafenine Allvi urea Acetylsalicylic acid chloride Benorvlate Chlormerodrin Phenprocoumon Aluminum alcoholate Acetoxolone aluminum salt N-Acetylsulfanilyl chloride Aluminum amalgam Sulfacytine Sulfamethoxazaole Dinoprostone 3-Acetylthiomethyl propanoic acid Aluminum tert-butoxide Captopril Megestrol acetate Aluminum chloride Acetyltropic acid chloride Tropicamide Acebutolol Renfurodil hemisuccinate Acrolein Diclofenac sodium Benzoctamine HCI Chlorthenoxazine Ethacrynic acid Fenbufen Hydroxytryptophan Letosteine Flavoxate HCI Flubendazole Methionine Magaldrate Acrylonitrile Membutone Fenproporex Mo xalactam disodium Acryloyl chloride Atracurium besylate Perlapine Adamantane Aluminum dihydroxy chloride Sucralfate Amantidine HCI Tromantidine HCI Aluminum hydroxide Aluminum nicotinate Adenosine Inosine Aluminum isopropoxide Adenosine-5'-monophosphoric acid Acequitamide aluminum Papaverine monophosadenine Tioclomarol Adipic acid dichloride Aminoacetonitrile lodipamide Octopamine HCI Adrenalin p-Aminoacetophenone Carbazochrome Acetohexamide N-Amino-3-azabicyclo(3.3.0)octane Ajmaline Praimaline bitartrate Gliclazide Allyl acetate p-Aminobenzene sulfinic acid

Alkafanone

Triacetin

4-Aminobenzene sulfonamide Sulfacetamide

p-Aminobenzene sulfonamidoguanidine Sulfamethazine

α-(p-Aminobenzene sulfonamido)pyridine

Sulfasalazine

N1 -(p-Aminobenzene sulfonyl)-N3 cyanoguanidine

Sulfaquanol

p-Aminobenzoic acid

Bentiromide

2-Aminobenzophenone

Nitrazepam

p-Aminobenzoyl glutamic acid Folic acid

2-(2-AminobenzoyI) pyridine Bromazepam

3-Amino-4-benzyloxyacetophenone Carbuterol

α-Aminobenzyl penicillin Hetacillin potassium

2-Amino-1-butanol

Etambutol HCI d-2-Aminobutanol-1

Methylergonovine maleate

2-Amino-5-tert-butyl-1,3,4thiadiazole

Glybuzole

(6R,7R)-7-Amino-3-carbamoyloxymethyl-ceph-3-em-4-carboxylic acid

Cefuroxime

3-Amino-2-carbomethoxy-4-methylthiophene

Carticaine

7-Aminocephalosporanic acid

Cefazolin sodium

Ceftizoxime

Cephacetrile sodium

Cephaloglycin

Cephaloridine

Cephalothin sodium

Cephapirin sodium

2-Amino-5-chlorobenzonitrile Clorazepate dipotassium

2-Amino-5-chlorobenzophenone

Chlordiazepoxide HCI

Pinazepam

Prazepam

2-Amino-5-chlorobenzophenone-B-oxime

Diazepam

2-Amino-5-chlorobenzoxazole Chlorzoxazone

2-Amino-4-chlorodiphenylamine-2'carboxylic (4"-methyl)piperazide Clozapine

2-Amino-5-chloro-2'-fluorobenzophenone

Loflazepate ethyl

4-Amino-2-chloro-5-(methylsulfamyl)benzenesulfonamide

Polythiazide

4-Amino-6-chloro-5-nitropyrimidine Mercaptopurine

2-Amino-4-chlorophenol

Zoxazolamine

 β -Aminocrotonic acid methyl ester Nicardipine

 $D-\alpha$ -Amino- α -(1,4-cyclohexadienyl) acetic acid

Cefroxadine

1-Amino-1-cyclohexane carboxylic acid chloride

Cyclacillin

2-Amino-2',5-dichlorobenzophenone Lorazepam

2-Amino-4,5-dimethyloxazole Sulfamoxole

6-Amino-2,4-dimethylpyrimidine Sulfisomidine

o-Aminodiphenylmethane Perlapine

β-Amino-β-ethoxyacrylic acid ethyl ester

Muzolimine

 $p-(\beta-Aminoethyl)$ benzene sulfonamide Glipizide

4-(β-Aminoethyl)benzenesulfonamide HCl Gliso xepid

2-Aminoethyl hydrogen sulfate Viloxazine HCI

N-(2-Aminoethyl)morpholine Minaprine

2-Amino-5-ethyl-1,3,4-thiazole Sulfaethiodole

N-Aminohexamethylene imine Glisoxepid

Aminoquanidine bicarbonate Guanabenz

1-Aminohydantoin

Nitrofurantoin

1-Aminohydantoin HCI Dantrolene sodium

L-(-)- γ -Amino- α -hydroxybutyric acid Amikacin

7-[D-(-)-α-Amino-p-hydroxyphenyl acetamido] -3-[5-(1-methyl-1,2,3,4tetrazolyl)-thiomethyl]- Δ^3 -cephem-4-carbo xvlic acid

Cefoperazone

4-Amino-5-imidazolecarboxamide Orazamide

Aminomalononitrile tosylate Methotrexate

7β-Amino-3-methoxy-3-cephem-4-Epicillin Floxacillin carboxylic acid hydrochloride Methicillin sodium dioxanate Nafcillin sodium Cefro xadine 2-(2-Amino-N-methylacetamido)-5-Oxacillin sodium Penicillin V chlorobenzophenone Phenethicillin potassium Ketazolam Sulbenicillin p-Aminomethylbenzoic acid Ticarcillin disodium Tranexamic acid 7-Amino-3-methyl-3-cephem-4m-Aminophenol Amino salicylic acid carboxylic acid Cefadroxil p-Aminophenol HCI 2-Aminomethyl-7-chloro-2,3-dihydro-Amodiaquin 6-[D(-)-α-(Aminophenylacetamido)] 5-(2-fluorophenyl)-1H-1,4benzodiazepine penicillanic acid (Ampicillin) Midazolam maleate Metampicillin sodium Piperacillin sodium N-Amino-2-methyl indoline α-Aminophenyl acetic acid Indapamide Ampicillin 3-Amino-5-methyliso xazole 1-(4'-Aminophenyl)-2-tert-butylamino-Isoxicam 2-Aminomethyl-1-methyl-5-chloroethanol-(1) HCI Clenbutero! 3-(o-fluorophenyl) indole HCI β -(p-Aminophenyl) ethyl chloride Fludiazepam HCI 1-Amino-4-methylpiperazine Anileridine dihydrochloride 3-Amino-2-phenylpyrazole Rifampin 2-Aminomethylpiperidine Sulfaphenazole 2-Amino-5-phenylthiomethoxyacetanilide Flecainide 2-Amino-2-methyl-1-propanol Febantel 2-Amino-1,3-propanediol Ambuphylline 2-Amino-6-methylpyridine lopamidol Nalidixic acid 2-Aminopyrazine 2-Amino-4-methylpyrimidine Sulfalene 2-Aminopyridine Azanidazole 2-Amino-6-methylpyrimidine Diphenpyramide Sulfamerazine Methapyrilene HCI 7-Amino-3-(1-methyl-7H-tetrazol-Phenyramidol 5-yl-thiomethyl)-3-cephem-Pyrilamine 4-carboxylic acid Sulfadiazine Cefamandole nafate sodium salt Tripelennamine 6-Amino-2-methylthiopyrimidine Zolimidine Pipemidic acid 4-Aminosalicylic acid Piromidic acid Bromopride 2-Amino-2'-nitrobenzophenone 4-Aminosulfonyl-phenyl-(2)-ethylamine Clonazepam Gliquidone N-(2-Amino-5-nitrobenzyl)-o-toluidine 2-Aminothiophenol Afloquatone Diltiazem HCI 2-Aminooxyethylamine dihydrochloride 3-Amino-2.4.6-trilodo benzoic acid Fluvo xamine maleate Acetrizoate sodium 6-Aminopenicillanic acid lotroxic acid Amoxicillin 5-Amino-2,4,6-triiodo isophthalic acid Ampicillin lopamidol Azidocillin 5-Amino-2,4,6-triiodo-N-methyliso-Azlocillin phthalamic acid Carbenicillin disodium iothalmate meglumine Carbenicillin indanyl sodium 5-Aminouracii Uracil mustard Cloxacillin

 β -Aminoxyalanine ethyl ester

Cycloserine

Cyclacillin

Dicloxacillin sodium

Acetazolamide Acetohexamide Acyclovir Alprazolam Alprenolol HCI Amiloride HCI Ancitabine HCi Azapetine phosphate Bendroflumethiazide Bethanechol chloride

Bromazepam Buthiazide Captopril Carbamazepine Carbuterol Caroxazone Cephradine

Chlorothiazide

Chlorphenesin carbamate

Chlorthalidone Cimetide Citiolone Clonazepam Clorexolone Cytarabine HCI Demegestone Desmopressin Diazoxide Dibekacin

Dichlorphenamide Dioxyline phosphate

Epicillin Ethinamate Ethinylestradiol Ethionamide Ethosuximide Ethoxzolamide Felypressin Flubendazole Flucytosine Fludiazepam HCI Flumethiazide Flunitrazepam Haloperidol

Hydroflumethiazide

Hydroxychloroquine sulfate

Hydroxy phenamate

Hydroxystilbamidine isethionate

Mafenide acetate Mebendazole Mephenesin carbamate Meprobamate

Mesna Methazolamide

Methocarbamol Methysergide maleate

Metolazone

Minoxidil Nabilone Nifedipine Norethindrone Ornipressin Oxytocin Phentermine HCI Piracetam Prazosin

Protionamide Pyrithyldione Pyritinol

Quingestanol acetate

Stanzolol Tegafur Tiopronin Tocainide Vindesine Xipamid Zoxazolamine Ammonium acetate

Cyclopentamine HCI Ammonium carbonate Aminosalicylic acid

Phenytoin

Phethenylate sodium Ammonium chloride Cyclofenil Methionine Ammonium sulfate Aminobenzoic acid Fibrinolysin

Cyclamate calcium Ammonium thiocyanate Acetazolamide Clonidine HCI

Ammonium sulfamate

Tolonidine nitrate Zoxazolamine d-Amphetamine Tanphetamin

Ampicillin Mezlocillin Talampicillin

Ampicillin beta naphthalene sulfonate

Ampicillin trihydrate 3.17-Androstandione Stanolone

 Δ^{1} , Androstatrien - 17 β -ol - 3-one - 17-

acetate

Methenolone acetate Androtardyl-oestradiol

Estradiol valerate

Aniline Fentanyl Salicylanilide Anisovi chloride Benzobromarone

Anthracene	Gramicidin
Benzoctamine HCI	Lindane
Anthranilic acid	Phentermine HCl
Methaqualone	Vinblastine sulfate
L-Arginine	Vincristine sulfate
Arginine glutamate	Benzene sulfonyl chloride
L-Asparaginyl-L-arginyl-L-valyl-L-tyrosyl-	Glybuzole
L-valyI-L-histidyI-L-prolyI-L-	Glymidine
phenylalanine methyl ester	Tranilast
trihydrochloride	Benzhydryl bromide
Angiotensin amide	Diphenyl pyraline
Atropic acid ethyl ester	Benzhydryl-3-carbamyloxymethyl-7 α -
Tilidine HCI	hydroxy-7 β -(2-thienylacetamido)-
Atropine	decephalosporanate
Sultroponium	Cefoxitin sodium
1-Azabicyclo[2.2.2] -3-octanol	Benzhydryl piperazine
Clidinium bromide	Cinnarizine
4-Aza-10,11-dihydro-5H-dibenzo[a,d] -	Cyclizine
cycloheptene-5-one	Benzilic acid
Azatadine maleate	Mepenzolate bromide
1-Azaphenothiazine	Pipenzolate bromide
Prothipendyl HCI	Pipoxolan HCI
1-Azaphenothiazine carbo xylic acid	Benzoic anhydride
chloride	Flavoxate HCI
Pipazethate	Benzonitrile
α-Azidophenylacetic acid	Fentiazac
Azidocillin	Benzophenone
Aziridine	Diphenidol
Carboquone	Phenytoin
Carboduone	1,4-Benzoaquinone
Barbituric acid	Dobesilate calcium
Minoxidil	Ethamsylate
Barium hydroxide	Megestrol acetate
Cyclobutyrol	Benzotetronic acid
Barium nitrite	Ethyl biscoumacetate
Inosine	p-Benzoxy-α-bromopropiophenone
Rendatac chloride	Nylidrin
Bendacort	2-Benzoylbenzoic acid
Benzalacetone	Nefopan HCI
Warfarin sodium	Benzoyl chloride
Benzal acetophenone	Benfluorex hydrochloride
Alkofanone	Bentiromide
Benzaldehyde	Dienestrol
Butalamine HCl	Endralazine
	Hexylcaine HCI
Chloramphenicol Fenipentol	Tiaprofenic acid
•	(2-Benzoyi-4-chlorophenylcarbamoyi-
Isocarbo xazid	methyl)carbamic acid benzyl ester
Oxacillin sodium	Nordazepam .
Penicillin G benzathine	Benzoylethylene
Phenylpropanolamine HCI	
Tripelennamine	Phenoperidine HCI Benzoylformic acid
Benzaldehyde cyanohydrin	
Ethotoin	Oxyphencyclimine
4-Benzamido-1-[2-(3-indolyl)ethyl]	N-Benzoylhomomeroquinene ethyl
pyridinium bromide	ester
Indoramin	Viquidil
Benzene	4-Benzoyl-N-methylpiperidine
Cryptenamine tannates	Diphemanil methyl sulfate

(3-Benzoylphenyl)acetonitrile	eta-Benzylmercaptopropionyl-L-tyrosyl-L-
Ketoprofen	phenylalanyl-L-glutaminyl-L-
N-Benzoyl-D-L-tyrosil-di-n-propylamine	asparaginyl-S-benzyl-L-cysteinyl-
Tiropramide	L-prolyl-N-tosyl-D-arginyl
Benzyl alcohol	glycinamide
Carbenicillin disodium	Desmopressin
N-Benzylamine	N-Benzyl-N-(1-methyl-3-phenyl propyl)
Antazoline HCl	amine
Beclamide	Labetalol HCl
Nialamide	4-Benzyloxyaniline HCl
Reproterol	Hydroxytryptophan
2-Benzylaniline	N-Benzyloxycarbonyl-L-aspartic acid-
Mianserin	lpha-nitrophenyl, eta -benzyl diester
N-Benzylaniline	Aspartame
Bepridil	Benzyloxycarbonyl chloride
α-Benzyl-L-aspartic acid-β-lower alkyl	Captopril
ester	4-Benzyloxy-2-dimethylamino methyl
Oxytocin	indole
Benzyl bromide	Mepindolol
Benzpyrinium bromide	2-Benzyloxyethanol
Phentermine HCI	Flupentixol
N-Benzyl-N-tert-butylamine	p-Benzyloxy hydrazobenzene
Carbuterol	Oxyphenbutazone
Terbutaline	1-Benzyl-3-oxyindazole
5-(N-Benzyl-N-tert-butylglycyl)	Bendazac
salicylic acid methyl ester HCI	β-(5-Benzyloxyindolyl-3)-α-acetyl-
Albuterol	amino-α-methylthiopropionic
Benzyl chloride	acid methanethiol ester
Benzethonium chloride	Oxitriptan
Benzphetamine HCI	p-Benzyloxyphenylacetic acid
Bephenium hydroxynaphthoate	Glaziovine
Bufeniode	1-(4'-Benzyloxyphenyl)-2-bromopropanone-1
Diazoxide	Isoxsuprine HCl 17β-Benzyloxy-4,5-seco-estra-9,11-diene-
Ifenprodil tartrate	3,5-dione
Phenoxybenzamine HCl	Trenbolone acetate
Propoxyphene HCI	o-Benzylphenol
Tiopronin Tribenoside	Phenyl toloxamine
Benzyl chlorocarbonate	o-Benzylphenoxy-β-chloropropane
Ampicillin	Benproperine
Benzyl cyanide	4-Benzylpiperidine
Meperidine HCI	Ifenprodil tartrate
Tolazoline	1-Benzyl-4-piperidone
Valethamate bromide	Fentanyl
dl-1-Benzyl-4-(1,3-dicyano-1-phenyl-	Pipamperone
propyl)piperidine HCl	Tinoridine
Dexetimide	Benzyl-L-proline hydrochloride
Benzylethanolamine	Oxytocin
Phenmetrazine	2-Benzylpyridine
N-(Benzylidene)-3-amino-2-o xazol-	Pheniramine maleate
idone	Betaine hydrate
Furazolidone	Chloral betaine
Benzyl levulinoyloxyacetate	Beta-ionol
Acemetacin	Tretinoin
Benzyl magnesium chloride	Betamethasone
Clomiphene dihydrogen citrate	Betamethasone benzoate
Benzylmercaptan	Betamethasone valerate
Benzthiazide	Betamethasone acetate

Betamethasone acetate Betamethasone

Betamethasone-21-methanesulfonate Ancitapine HCI Baclofen Clobetasol Benzbromarone Biphenyl Fenbufen Bromazepam 3.4-Bis-bromoethyl-4-hydroxy-5-Bromhexine methylpyridinium bromide Bromopride Bronopol Pyritinol Bufeniode Bis(B-chloroethyl)amine Estramustine phosphate Carbuterol p-{N-bis(β-chloroethyl)amino} phenyl-Clorprenaline Demegestone butyric acid Diosmin Prednimustine Diphenhydramine HCI N N'-Bis (β -chloroethyl) phosphoric Endralazine acid amide dichloride Cyclophosphamide **Etazalin** Fazidinium bromide Defosfamide Fenoterol hydrobromide Trofosfamide Folic acid Bis-chloroethyl toluene sulfonyl amide Halothane Phenoperidine HCI Ifenprodil tartrate Bis(choline) -naphthalene-1,5-disulfonate Ketamine HCI Aclatonium napadisylate 4.4-Bis(p-fluorophenyl)butyl chloride Memantine Metaproterenol Penfluridol Norfenefrine Bis(3-hydroxypropyl)ethylene diamine Oxaflozane HCI Dilazep HCI Phendimetrazine tartrate N N'-Bis-methoxycarbonyl isothiourea-S-methyl ether Phentermine HCI Procarbazine HCI Febantel Promegestone Bis(methoxy-2-ethoxy) sodium Pyrovalerone HCI aluminum hydride Sulfacytine Indalpine Sulfalene Bis(3-methylsulfonyloxypropyl) Trioxsalen amine HCl N-Bromoacetamide Improsulfan tosylate Bismuth oxide Fluazacort Bismuth sodium triglycollamate Fluocinolone acetonide 3' 5'-Bis-O-(p-nitrobenzoyl)-2'-deoxy-Fluocortolone S-(trifluoromethyl)uridine Fluoxymesterone Bromoacetic acid ethyl ester $\alpha \alpha \alpha$ -Trifluorothymidine Chromonar HCI Bis(phenyleneoxy) cyclohexane Bromoaceto! Clinofibrate Timolol maleate Bis-triethylammonium pyrophosphate Adenosine triphosphate \alpha - Bromoacetophenone Bis(trimethylsilyl) acetamide Nomifensine maleate Bromoacetyl bromide Cefacior Bromazepam Cefroxadine Cephapirin sodium Ceftizoxime 2,4-Bis(trimethylsilyl)-5-fluorouracil Clonazepam Flunitrazepam Tegafur 5-Bromoacetyl salicylamide Bleomycinic acid Labetalol HCI Peplomycin sulfate m-Bromoanisole Boric acid Epinephryl borate Tramadol HCI Boron trifluoride etherate p-Bromoanisole Cyclofenil Nimetazepam Bromobenzene **Bromine** Alphaprodine HCI Acetazolamide Ambroxol Cicloxilie acid

5-Bromonicotinyl chloride Bromobenzene (cont'd) Niceraoline Clorazepate dipotassium 3-Bromophthalide Cycrimine HCI Talampicillin Diphemanil methyl sulfate Talniflumate Fenoprofen 2-Bromopropane Medazepam Lorcainide HCI Procyclidine HCI 1-Bromo-2-propanol Tamo xifen Rociverine Tiemonium iodide 3-Bromopropanol 4-Bromobenzyl cyanide Brompheniramine maleate Flupentixol 2-Bromo-2',6'-propionoxylidide N-o-Bromobenzyl-N, N-dimethylamine Tocainide Bretylium tosylate α -Bromopropionyl bromide 2-Bromo-4'-benzyloxypropiophenone Prilocaine HCI Ritodrine 2-Bromobutyric acid 3-Bromopropionyl chloride Pipobroman Etidocaine HCI α-Bromopropiophenone α-Bromobutyric acid bromide Diethylpropion HCI Procaterol Phenmetrazine p-Bromochlorobenzene Carbino xamine maleate 2-Bromopropiophenone Fazidinium bromide 1-Bromo-2-chloroethane 3-Bromopropyl-homopiperazine Alfentanil HCl 7-Bromo-5-(o-chlorophenyl)-3H-[2,3e] -Homofenazine 2-Bromopyridine thieno-1,4-diazepin-2-one Disopyramide phosphate Bronopol Triprolidine 1-Bromo-3-chloropropane 3-Bromopyridine Acetophenazine dimaleate Oxaflumazine disuccinate Zimelidine β -Bromopyruvaldoxime Perphenazine Methotrexate Reproterol N-Bromosuccinimide ω-Bromo-2,4-dichloroacetophenone Betamethasone acetate Miconazole nitrate Bromocriptine 2-Bromo-2'-(3"-dimethylaminopropyl)amino-4'-chlorodiphenyl sulfide Medrogestone 2-Bromothiophene Chlorproethazine HCi Thihexinol 2-Bromoethanol 1-Bromo-3.7.11-trimethyl-2.6.10-Perphenazine dodecatriene β -Bromoethyl acetate Pifarnine Thiopropazate 4-Bromoveratrole Bromoethylamine hydrobromide Rimiterol Medazepam 1,4-Butanediol 2-Bromo-2-ethylbutyryl urea (Carbromai) Busulfan Ectylurea Butanol 7-(β-Bromoethyi)theophylline Benoxinate hydrochloride Pimefylline nicotinate Bumetanide 2-Bromo-6β-fluoro-17α,21-dihydroxy-9β,11β-oxido-pregna-1,4-diene-Fluocortin butyl Pentobarbitol sodium 3,20-dione-17,21 acetate p-n-Butoxy acetophenone Halopredone acetate Dyclonine HCI 1-Bromo-5-hexanone Butoxybenzyl bromide Pentoxifylline Butropium bromide α-Bromo-4-isopropylthiopropio-7-[D-α-tert-Butoxycarbonylamino-αphenone (p-hydroxyphenyl)acetamido] -3-Suloctidil

2-Bromo-6-methoxynaphthalene

Methallenestril

Naproxen

(1,2,3-triazol-5-ylthiomethyl)-3-

cephem-4-carboxylic acid

Cefatrizine

Butyl lithium (Z)-2-(2-tert-Butoxycarbonylprop-2oxyimino)-2-(2-tritylamino-Doxepin HCI thiazol-4-yl)acetic acid Gemfibrozil Thiothixene Ceftazidime 4-Butoxyphenoxyacetyl chloride Zimelidine n-Butyl malonic acid ethyl ester Fenoxedil tert-Butyl(6R,7R)-3-acetoxymethyl-Bumadizon 7-aminoceph-3-em-4-carboxylate Oxyphen butazone p-Butylmercaptobenzhydrył chloride Ceftazidime Captodiamine tert-Butylacetyl chloride Butyl nitrite Prednisolone tebutate Metaraminol tert-Butyl alcohol Indomethacin tert-Butyloxycarbonyl-L-aspartyl-Ltyrosyl-L-methionylglycyl-L-Butylamine tryptophyl-L-methionyl-L-Carbidopa aspartyl-L-phenylalanine amide Tybamate Sincalide tert-Butylamine N-tert-Butyloxycarbonyl-\(\beta\)-alanine-Bucumolol HCI 2.4.5 trichlorophenyl ester Bufetrol Pentagastrin Bunitrolol Bupranolol 3-Butyl-1-phenylamine Bufeniode Carteolol Celiprolol 1-Butyne Nadolol Methohexital sodium Butyramidophenol Penbutolol Timolol maleate Acebutolol n-Butylamine HCI Butyric anhydride Iopanoic acid **Buformin HCI** p-Butylaminobutyric acid ethyl ester Tyropanoate sodium Benzonatate n-Butvrvl chloride N-tert-Butyl-2-(5-benzyloxy-6-hydroxy-Ethacrynic acid methyl-2-pyridyl)-2-hydroxy Cadmium chloride acetamide Pirbuterol Naproxen Butvl bromide Calcium bisulfite Bufexamac Dobesilate calcium Calcium carbonate Bupivacaine Caraspirin calcium Fenipento! sec-Butyl bromide Medazepam Calcium chloride Pentapiperide methosulfate Valethamate bromide Docusate calcium Fibrinolysin 3-Butyl-1-chloroisoguinoline Calcium ferricyanide Dimethisoquin 2-n-Butyl-3-(3,5-diiodo-4-hydroxy-Sulfamethizole benzoyi) benzofuran Calcium hydroxide Amiodarone HCI Cyclamate calcium p-tert-Butyl-o,o'-dimethylphenylaceto-Inositol Phentermine HCI Xvlometazoline HCI Camphene Isobornyl thiocyanoacetate n-Butylglycidyl ether Mecamylamine HCI Febuprol tert-Butyl hydroperoxide Xibornol d-10-Camphorsulfonic acid Fluprednidene acetate Levamisole HCI tert-Butyl hypobromite Amixtrine HCI Caproic acid anhydride Hydroxyprogesterone caproate Eprozinol tert-Butyl hypochlorite n-Butyl isocyanate Tolbutamide Fosfomycin

Salicylic acid
Carbon disulfide
Cimetide
Disulfiran
Tibezonium iodide
Tiocarlide
p-Carbo xybenzenesulfonyl chloride
Probenecid
17 $lpha$ -(2-Carboxyethyl)-17 eta -hydroxy-
androsta-4,6-dien-3-one lactone
Spironolactone
17α -Carbo xyethyl- 17β -hydro xyandros
4-ene-3-one lactone
Canrenoate potassium
Cerelose (glucose)
Oxytetracycline
Chloral
Mecillinam
Chloral harring
Chloral betaine
Chloramphenicol
Chloramphenicol palmitate
Chloranil
Canrenoate potassium
Carprofen
Cloprednol
Dydrogesterone
Chloride ion exchange resin
Alcuronium chloride
Chlorine
Acetazolamide
Bucloxic acid
Butalamine HCI
Chlorotrianisene
Chlorquinaldol
Clenbuterol
Diazoxide
Enflurane
Floxacillin
Flucioronide
Isoflurophate
Lindane
Methazolamide
Metoclopramide HCI
Oxacillin sodium
Chloroacetaldehyde
Benzthiazide
(6R,7R)-7-[2-[2-(2-Chloroacetamido)
4-thiazolyl] -2-(methoxyimino)
acetamido] -8-o xo-3-[[(1,4,5,6
tetrahydro-4-methyl-5,6-dioxo-
as-triazin-3-yl)thio] methyl] -5-
thia-1-azabicyclo [4.2.0] oct-2-
ene-2-carboxylic acid
Ceftriaxone sodium
Chloroacetic acid
Carbocysteine
Isohornyl thiocyanoacetate

4-Chlorobenzaldehyde Chloroacetic acid (cont'd) Chlormezanone Pixifenide Chlorobenzene Chloroacetic acid-N, N-diethylamide Methixene HCI Propanidid p-Chlorobenzene sulfonamide 2-Chloroacetic acid ethyl ester Chlorpropamide Cimetide 1-p-Chlorobenzhydryl-4-benzyl-piper-Chloroacetic anhydride Hydrocortamate HCI azine Medizine HCL Chloroacetone p-Chlorobenzhydryl bromide Benfurodil hemisuccinate Cloperastine Benzbromarone Mexiletine HCI 4-Chlorobenzhydryl chloride Chlorcyclizine Chloroacetonitrile **Etodro** xizine Bendazac o-Chlorobenzohydroxamic chloride o-Chloroacetophenone Cloxacillin Clorprenaline N-p-Chlorobenzohydryl piperazine p-Chloroacetophenone Hydroxyzine HCI Phenaglycodol o-Chlorobenzonitrile **Tioclomarol** Ketamine HCI Chloroaceto pyrocatechol o-Chlorobenzophenone Hexoprenaline Chloroacetylcatechol Chlophedianol 4-Chlorobenzophenone Protokylol Chlorphenoxamine HCI Chloroacetyl chloride p-Chlorobenzoyl chloride Chlordiazepoxide HCl Benoxaprofen Clemizole 1-(p-Chlorobenzoyl)-5-methoxy-2-Diazepam methyl-3-indoleacetic acid Lidocaine Proglumetacin maleate Lorazepam 1-(p-Chlorobenzoyl)-2-methyl-5-methoxy-Mianserin 3-indoleacetic acid Tromantidine HCI N-(2-Chloroacetyl)-2,6-dimethylaniline Oxametacine Lidoflazine p-Chlorobenzylamine Clemizole Chloroacetyl guanide 2-Chlorobenzyl chloride Guanethidine sulfate N-Chloroacetyl-N-phenyl-2,6-dichloro-Ambenonium chloride Ticlopidine HCI aniline Diclofenac sodium p-Chlorobenzyl chloride 3-Chloro-4-allyloxyphenyl acetonitrile Clobutinol Echonazole nitrate Alcofenac 6-Chloro-4-aminobenzene-1,3-disulfon-Indomethacin Pyrrobutamine amide Cyclothiazide Triparanol 2-Chloro-4-eminobenzoic acid 4-Chlorobenzyl cyanide Chlorpheniramine maleate Chloroprocaine HCI 1-(o-Chloro)-benzyl-2-di-sec-butyl-4-Chloro-3-aminobenzophenone-2'aminoacetyl-pyrrole carbo xylic acid Viminol Chlorthalidone 5-Chloro-2-bromoacetylamino-o-5-Chloro-2-amino-α-methyl-α-phenylbenzyl chlorobenzophenone alcohol Etifoxine Cloxazolam 1.3-Chlorobromopropane m-Chloroaniline Buthiazide Dilazep HCI Chlorothiazide 4-Chlorobutyronitrile Buflomedil o-Chloroaniline

8-Chlorocaffeine

Cafaminol

Flunitrazepam

p-Chloroaniline HCl Chlorhexidine

2-Chloro-4,5-diphenyl oxazole 5-Chloro-2-chloroacetylaminobenzo-Ditazol phenone 5-Chloro-2.4-disulfamylaniline Oxazolam Ethiazide 2-Chloro-3-chloromethylthiophene Tioconazole Hydrochlorothiazide 3-Chloro-5-(3-chloropropyl)-10,11-di-Trichlormethiazide hvdro-5H-dibenz(b.f)azepine 2-Chloroethanol Homofenazine Clocapramine 2-Chloro-10-(γ-chloropropyl)phenothi-Tofenacin HCI 2-(2-Chloroethoxy) ethanol azine Pipamazine Etofenamate Thiopropazate N-(2-Chloroethyl)amine HCi 7-Chloro-5-cyclohexyl-2-oxo-2,3-dihydro-Ifosfamide β-Chloroethyl-di-n-butylcarbamate 1H-benzo(f)diazepine-1,4 Tetrazepam Dibutoline sulfate 8-Chlorodibenzo [b,f] thiepin-10(11H)β-Chloroethyl-N-diethylamine Nafronyl oxalate one β -Chloroethyldimethylamine Zotepine 6-Chloro-2-dibenzoylaminobenzyl Cyclopentolate HCI Ethoheptazine bromide 7-Chloro-1-ethyl-6-fluoro-4-oxo-1,4-di-Fominoben HCI 3-Chloro-10-[3-(di-N-2-chloroethyl) hydroquinoline-3-carboxylic acid aminopropyl] phenthiazine hy-Norfloxacin N-(2-Chloroethyl)-N-(3-hydroxypropyl) drochloride amine hydrochloride Prochlorperazine 2-Chloro-1-diethylaminopropane Trofosfamide 1-(2-Chloroethyl)-3-[(2-methyl-4-amino-Ethopropazine HCI α-Chlorodiethyl carbonate pyridin-5-yl) methyl] urea Nimustine Bacamoicillin 7-Chloro-1.3-dihydro-5-(o-chlorophenyl)- β -Chloroethylmorpholine 2H-1,4-benzodiazepine-2-thione Nimorazole Triazolam N-(2-Chloroethyl)-N.O-propylene phosphoric acid ester amide HCI 5-Chloro-10,11-dihydro-5H-dibenzo-(a,d)cycloheptene Ifosfamide 7-Chloro-2-ethyl-6-sulfamyl-4-quin-Amineptine HCI 7-Chloro-1,3-dihydro-5-phenyl-2H-1,4 azolinone Quinet hazone benzodiazepine-2-one 7-(β-Chloroethyl)theophylline Halazepam 7-Chloro-1.3-dihydro-5-phenyl-2H-1.4-Fenethylline HCI 1-(2-Chloroethyl)hexahydro-1H-azepine benzodiazepine-2-one-4-oxide Oxazepam Cetiedil 7-Chloro-1,3-dihydro-5-phenyl-2H-1,4-2-Chloroethylvinyl ether benzodiazepine-2-thione Oxaflozane HCI 2-Chloro-6-fluorobenzaldoxime 5-Chloro-1,3-dihydro-1-(4-piperidinyl)-Floxacillin 2H-benzimidazol-2-one γ -Chloro-p-fluorobutyrophenone Benperidol Domperidone α-Chloro-3',4'-dihydroxyacetophenone Droperidol Dipivefrin Melitracen Pipamperone 1-Chloro-2,3-dihydroxypropane Dyphylline Spiperone 4-Chloro-2-fluoro-5-sulfamoyl benzo-2-Chloro-1-dimethylamino propane nitrile Methadone HCI 1-Chloro-3-dimethylamino propane Azosemide Chloroform Dimetacrine tartrate Triflupromazine Ciprofibrate

Fenofibrate

Heparin

Orgotein

2-Chloro-9-(3'-dimethylaminopropyl-

idene)thiaxanthene

Clopenthixol

7-Chloro-5-phenyl-1-methyl-3-hydroxy-

2-one Camazepam

1,3-dihydro-2H-1,4-benzodiazepine-

2-Chloro-4-nitroaniline Chloroformic acid methyl ester Niclosamide Fenbendazole p-Chloronitrobenzene Glisoxepid Dapsone 2-Chlorofuranidin 4-Chloro-3-nitrobenzophenone Tegafur Mebendazole 6α-Chlorohydrocortisone-21 acetate 4-Chloro-3-nitrobenzoyl chloride Cloprednoi 1-Chloro-2-hydroxy-3-tert-butylamino-Flubendazole 4-Chloro-3-nitro-5-sulfamyl benzoic propane acid Butofilolol Bumetanide 2-Chloro-9-(2-hydroxy ethoxy methyl) 5-Chloro-2-norbornene adenine Biperiden Acyclovir 1-Chloro-4-pentanone 1-Chloro-2-(2-hydroxyethyl)ethane Hydroxychloroquine sulfate Hydroxyzine HCI 3-Chloroiminodibenzyl m-Chloroperbenzoic acid Alfacalcidol Clomipramine Minoxidil 2-Chloro-4-methylaniline Pancuronium bromide Tolonidine nitrate 5-Chloro-2-methylaniline Chlorophenazine Metolazone Chlorpromazine HCI 5-Chloro-N-methylanthranilic acid o-Chlorophenol Dichlorphenamide Medazepam Picosulfate sodium 1-Chloro-2-methyl-3-bromopropane p-Chlorophenol Dixvrazine 1-Chloro-2-methyl-3-dimethylamino-Chlorphenesin carbamate 2-Chlorophenothiazine propane Perphenazine Trimeprazine 3-Chlorophenothiazine Chloromethyl ethyl ether Cyamemazine Terofenamate p-Chlorophenoxy acetic acid diethyl-2-Chloromethylimidazole HCI amino ethylamide Antazoline HCI Phentolamine HCI Clofezone 2-Chloro-5-methylphenol o-(p-Chlorophenoxy)aniline Loxipine Buoranolol Chloro-N-methyl-N-\operatorname{\operatornam o-(p-Chlorophenoxy) aniline HCl Amoxapine butylacetamide Chloro-2-phenoxyethane Oxethazine y-(4-Chloromethylphenyl) propyl chloride Bephenium hydroxy naphthoate α-(p-Chlorophenoxy) isobutyric acid 3-Chioro-4-methyl-6-phenylpyridazine Clofibrate Etofylline clofibrate Minaprine 4-Chloro-1-methylpiperidine Simfibrate Cyproheptadine 2-(p-Chlorophenoxy)-2-methyl propionic acid Ketotifen Chloromethyl pivalate Etofibrate p-Chlorophenyl acetonitrile Pivampicillin Pyrimethamine y-Chloromethylpyridine hydrochloride o-Chlorophenyl diphenyl methyl chloride Tropicamide Clotrimazole 3-Chloromethyl quinuclidine HCl β -(p-Chlorophenyl)glutaric acid imide Mequitazine 6-Chloro-α-methyl-1,2,3,4-Tetrahydro Baclofen carbazole-2-acetic acid ethyl ester 4-Chlorophenyl isocyanate Carprofen Triclocarban

1-Chloro-2-morpholinoethane HCl

Floredil HCI 3-Chloro-6-nitroacetanilide

Albendazole

Clidanac

Clomiphene dihydrogen citrate

Dichlorisone acetate

4-Chloro-3-sulfamylbenzene sulfo-3-(p-Chlorophenyl)phthalimide chloride Mazindol Mefruside 4-(p-Chlorophenyl) 4-piperidinol Chlorosulfonic acid Loperamide HCI 4-(4-Chlorophenyl)piperidin-4-ol HCl Bendroflumethiazide Haloperidol Buthiazide N-(4-Chlorophenyl)-N-(piperidinyl)-Chlorothiazide benzeneacetamide Dichlorphenamide Flumethiazide Lorcainide HCI 4-Chlorophthalimide Hydroflumethiazide Clorexolone Mafenide acetate Metolazone β-Chloropropionaldehyde Mefenorex HCI Picosulfate sodium β-Chloropropionaldehyde diethyl acetal Sulisobenzone Thiothixene Pipoxolan HCl α-Chloropropionyl chloride Xipamid 8-Chlorotheophylline Carticaine **B-Chloropropionyl** chloride Dimenhydrinate 2-Chlorothiaxanthone Beclamide Proxazole citrate Chlorprothixene 1-(3-Chloropropyl)-2H-benzimidazol-5-Chlorothiophene-2-aldehyde Tioclomarol 2-one Oxatomide 1-Chloro-2,2,2-trifluoroethyl dichloro-1-(3-Chloropropyl) 4-m-chlorophenylmethyl ether Isoflurane piperazine 4-(4-Chloro-α,α,α-trifluoro-m-tolyi)-Trazodone HCI α-Chloropropyldiethylamine 4-piperidinol Penflurido! Aprindine HCl 1-(3-Chloropropyl)-1.3-dihydro-2H-Chlortetracycline benzimidazol-2-one Tetracycline Domperidone Cholesta-5,7-diene-3\beta,25-diol 5-(3-Chloropropylidene)dibenzo[a,d] Calcifediol Cholesta-1,5,7-trien-3β-ol cyclohepta[1,4]diene Alfacalcidol Nortriptyline N-(3-Chloropropyl)-N-methyl-Choline benzamine Citicoline Desipramine HCl Choline bicarbonate 1-(3'-Chloropropyl)-4-methylpiperazine Choline theophyllinate Trifluoperazine Choline chloride N-[1-Chloropropyl-(3)] piperidine Carbachol Diphenidol Choline salicylate Choline dihydrogen citrate 2-Chloropyridine Brompheniramine maleate Ferrocholinate Chlorpheniramine maleate Chromic acid Cortisone acetate Methyl phenidate HCl Tranzodone HCI Demegestone 2-Chloropyrimidine Fluocortolone Piribedil Medrogestone 4-Chlorosalicylic acid Norethindrone Xipamid Chromic anhydride 5-Chlorosalicylic acid Fludiazepam HCI Niclosamide Nimetazepam N-Chlorosuccinimide Sulprostone Beclomethasone dipropionate Cinchonidine

Melphalan

CinnamovI chloride

Cinnarizine

1-Cyclohexyl-2-methylaminopropane HCl

Barbexaclone

1-Cinnamylpiperazine 2-Cyanophenol Bunitrolol Flunarizine HCI 2-Cyanopyridine Citric acid Butamirate citrate Rimiterol 3-Cyanopyridine Choline dihydrogen citrate Clomiphone dihydrogen citrate Nicotinyl alcohol 4-Cyanopyridine Orphenadrine citrate Perisoxal citrate Isoniazid Cvanuric chloride Proxazole citrate Copper (powder) Triethylene melamine Chlorproethazine HCI Cyclic polypeptide Fenoprofen Cargutocin Cyclobutane carboxylic acid chloride Cortisone Prednisone Nalbuphine N-Cyclobutylmethyl-14-hydroxy-3-Cotton linters Hydroxypropyl cellulose methoxymorphinan Butorphanol Creatinol phosphate 3-Cycloethylenedioxy-10-cyano-17α-Creatinolfosfate ethynyl-19-nor- Δ^5 -androstenem-Cresol Mephenesin Crotonaldehyde Quingestanol acetate Cycloheptanone Tilidine HCI Crotonyl chloride Heptabarbitol Crotamiton Cyclohexan-1,3-dione Molindone Cupric acetate Fluocortin butyl Cyclohexanone Cupric cyanide Cyclobutyrol Hydroxyprogesterone caproate Cvamemazine Cuprous chloride Cyclohexylacetone Droprenilamine HCI Haloprogin Cuprous cyanide Propylhexedrine Cyclohexylamine Methallenestril Curare Clorexolone Dimethyl tubocurarine lodide Cyclamate calcium 1-Cyclohexylamino-2-propanol Cvanacetamid Ethionamide Hexylcaine HCI Protionamide Cyclohexyl bromide Cetiedil Cvanamide Cyclomethycaine Albendazole Butalamine HCl Oxyphencyclimine Cimetide Tridihexethyl iodide Trihexyphenidyl HCI Cyanoacetamide 2-Cyclohexylcarbonyl-4-oxo-2.3.6.7-Allopurinol Cyanoacetic acid tetrahydro-4H-pyrazino [2,1-a] Aminometradine isoquinoline Amisometradine Praziquantel 5-Cyclohexyl-1-indanecarboxylic acid Cyclopentamine HCl Sulindac Clidanac Cyanoacetic acid methyl ester Cyclohexyl isocyanate Heptabarbitol Acetohexamide Glipizide Cyanoacetyl chloride Cephacetrile sodium Gliquidone 4-Cyano benzaldehyde Cyclohexylmagnesium bromide Hydroxystilbamidine isethionate Perhexiline sulfate Cvanocobalamin Cyclohexylmethylamine Hydroxocobalamin Bromhexine

Cyanogen bromide

Naloxone

6-Demethyl tetracycline Cyclopentanepropionyl chloride Estradiol cypionate Minocycline Desoxycorticosterone Cyclopentanol Hydro xydione sodium succinate Quingestanol acetate d-Desoxyephedrine HCl Cyclopentanone Benzphetamine HCI Cyclopentamine HCI Cyclopentolate HCI 11-Desoxy-17-hydroxycorticosterone Hydrocortisone Cyclopentyl bromide 3,5-Diacetoxyacetophenone Ketamine HCI Quinestrol Fenoterol hydrobromide 16α,17α-Cyclopentylidenedioxy-9α-Metaproterenol sulfate 3,17-Diacetoxy-5α-androstane-2,16fluoro-11 β ,21-dihydroxy-1,4diene pregnadiene-3,20-dione Pancuronium bromide Amcinonide 16α.21-Diacetoxy-11β.17α-dihydroxy-2-Cyclopentylphenol 9α-fluoro-4-pregnene-3,20-dione Penbutoloi Triamcinolone diacetate Cyclopentyl-\(\beta\)-(N-piperidyl)ethyl ketone 1α25-Diaceto xyprecholecalciferol Cycrimine HCI β -Cyclopentyl propionic acid Calcitriol Testosterone 17 β -cypionate Diallybarbituric acid Cyclopentyl (\alpha-thienyl) hydroxy Proxibarbal 3.3'-Diallyl-4.4'-biphenol acetic acid Bialamicol Penthienate bromide Cyclopropanecarboxylic acid chloride DiallyInortoxiferine diiodide Alcuronium chloride 1.3-Diaminobutane Cyclopropyl-dl-(4-fluorophenyl)carbinol Oxyphencyclimine Fluspirilene Diaminodiphenylsulfone 4-[2-(Cyclopropylmethoxy)ethyi] phenol Sulfoxone sodium 3,4-Diaminodiphenylthio ether Betaxolol HCI Fenbendazole Cysteamine Cimetide 1,2-Diaminopropanetetraacetic acid Cysteine Razoxane 1,4:3,6-Dianhydro-D-glucitol Carbocysteine Isosorbide dinitrate Timonacic sodium Diatrizoic acid Cysteine HCI Acetylcysteine Metrizoic acid Diazomet hane Letosteine Diazepam 3-Deactoxy-7-aminocephalosporanic Epirizole Methoxsalen acid Cephradine Pyrimethamine Dibenzo (a,e) cycloheptadiene Decamethylene bromide Butriptyline Tiadenol Decanoic acid chloride Dibenzo [a,d] cyclohepta-1,4-diene-5-one Amitriptylin oxide Nandrolone decanoate Dibenzo [a,e] cycloheptatrien-5-one Dehydroabietylamine Cyproheptadine Penicillin G hydrabamine 5H-Dibenzo [a,d] cycloheptene Dehydroabietyl ethylene diamine Penicillin V hydrabamine Protriptyline 1-Dehydro- 6α -methyl- 9α -fluorohydro-Dibenzo [a,d] cycloheptene-5-one Cyclobenzaprine cortisone Dibenzylazodicarboxylate Fluorometholone 6-Dehydro-17-methyltestosterone Minocycline N,N'-Dibenzylhexamethylenediamine Calusterone 4'-Demethyl epipodophyllotoxin \$\beta\$-Hexoprenaline

D-alucoside Teniposide

3,5-Dibenzyloxy-\omega-bromoacetophenone

Terbutaline

O,N-Dibenzyloxycarbonyl-p-oxy-di-αaminophenylacetic acid

Amoxicillin

Diborane

Mianserin

Pirbuterol

1.4-Dibromo-2-butene

Pirprofen

1,2-Dibromoethane

Levamisole HCI

1.3-Dibromopropane

Doxepin HCI

Dibutylaminoethyl chloride

Butalamine HCI

Di-n-butylethyl-1-methyl-n-butyl-

malonate

Pentobarbital sodium

2,6-Di-tert-butyl-4-mercaptophenol

Probucol

Dichloroacetaldehyde

Trichlormethiazide

2.6-Dichloroaniline

Clonidine HC1

3.4-Dichloroaniline

Triclocarban

2.3-Dichloroanisole Ticrynafen

2.6-Dichlorobenzaldehyde

Guanabenz

Guanoxabenz HCi

2,4-Dichlorobenzoyl chloride Miconazole nitrate

2.4-Dichlorobenzyl chloride

Clofoctol

Oxiconazole nitrate

2.6-Dichlorobenzyl chloride

Isoconazole nitrate

p-(2,2-Dichlorocyclopropyl)phenol

Ciprofibrate

Dichlorodiethyl ether

Benzethonium chloride

Oxeladin

1,1-Dichloro-2,2-difluoroethylene

Methoxyflurane

2.4-Dichloro-6.7-dimethoxyquinazoline

Prazosin

5.8-Dichloro-10-dioxo-11-methyldibenzo [c,f] thiazepine (1,2)

Tianeptine

2,6-Dichloro-3-methylaniline

Meclofenamic acid

2.4-Dichloronitrobenzene

Diazoxide

2,3-Dichlorophenoxyacetic acid

Ethacrynic acid

α-2.6-Dichlorophenoxypropionitrile

Lofexidine HCI

2.6-Dichlorophenylacetic acid chloride

Guanfacine

α-(2.4-Dichlorophenyl)-imidazole-1-

Econazole nitrate

Isoconazole nitrate

Tioconazole

1-(2.4-Dichlorophenyl)-2-(1H-imidazol-

1-yl)ethanone oxime

Oxiconazole nitrate

cis-2-(2,4-Dichlorophenyl)-2-(1H-

imidazol-1-ylmethyl)-1,3-dioxolan-

4-yimethyl methanesulfonate

Ketoconazole

3-(2',6'-Dichlorophenyl)-5-methylisoxazole-

4-carbonyl chloride

Dicloxacillin sodium

2,6-Dichloro-4-phenylquinoline

Alprazolam

3.6-Dichloropyridazine

Sulfachlorpyridazine

4.7-Dichloroquinoline

Amodiaquin

Chloroquine phosphate

Glafenine

Hydroxychloroquine sulfate

o α-Dichlorotoluene

Ciortermine HCI

N-2,6-Dichloro-m-tolylanthranilic

acid

Terofenamate

Dicyandiamide

Buformin HCI Phenformin

Dicyclohexylcarbodiimide

Bumadizon

Indomethacin

Proglumetacin maleate

1.3-Dicyclohexylguanidium adenosine

5'-phosphoramidate

Adenosine triphosphate

Diethanolamine

Dipyridamole

Ditazol

Diethanolmethylamine

Meperidine HCI

2.5-Diethoxyaniline

Fenoxedil

3.5-Diethoxyphenol Floredil HCI

Diethylacetylamino malonate

Hydroxytryptophan

Diethylallyl-(1-methylbutyl)maionate

Thiamylal

Diethylamine

Amodiaquin

Benzquinamide

Bialamicol

Diethylpropion HCl

Disulfiram

Ethamiyan

Diethylchlorophosphate

Echothiopate iodide a.a'-Diethyl-4,4'-dihydroxystilbene

Diethylstilbestrol diphosphate

Diethylamine (cont'd) N.N-Diethylenediamine Metoclopramide HCI Hydrocortamate HCI Diethylene glycol Lidocaine Etodroxizine Oxeladin Diethylethoxymethylene malonate Proxazole citrate Flomeauine Rociverine Oxolinic acid Tilidine HCI N.N-Diethylethylenediamine Trapidil Tiapride Tridihexethyl iodide Diethylamine bisulfite Diethyl ketone Molindone Ethamsylate Diethyl maleate 1-Diethylamino-4-aminopentane Malathion Chloroquine phosphate Diethyl malonate 4-Diethylamino-2-butynyl acetate Oxybutynin chloride Bupivacaine 2-Diethylamino-1-chloroethane Kebuzone Methohexital sodium Bietaserpine Diethyl-p-methylaminobenzoyl-L-Fenoxedil glutamate Gallamine triethiodide 2-Diethylaminoethanethiol Methotrexate Thiphenamil HCI Diethyl-3-methyl-2-butenyl malonate Feprazone β-Diethylaminoethanol Diethylmethylpropyl malonate Benactyzine hydrochloride Tybamate Benoxinate hydrochloride Diethyl oxalate Caramiphen edisylate Chloroprocaine HCI Cromolyn sodium Mianserin Dicyclomine HCI Valethamate bromide Piperacillin sodium 4-(β-Diethylaminoethoxy) benzophenone Diethyl-(1'-phenylpropyl) malonate Clomiphene dihydrogen citrate Phenprocoumon 2-(2-Diethylaminoethyl) acetic acid Diethylpropyl malonate Apazone ethyl ester Diethyl sodium phthalidomalonate Chromonar HCI 2-Diethylaminoethylamine Melphalan Diethyl sulfate Ambenonium chloride Aminometradine Chlorisondamine chloride Diethylaminoethyl chloride Etidocaine HCI Fluorouracil Captodiamine Pipemidic acid Diltiazem HCI Piprozolin Flurazepam Penthienate bromide Piromidic acid Tiropramide 1-[4,4-Di-(4-fluorophenyl)butyl piper-Triparanol azine Diethyl-n-butyl malonate Lidoflazine Di-(p-fluorophenyl)chloromethane Phenylbutazone Flunarizine HCI Diethyl-sec-butyl methyl malonate 4-(2',4'-Difluorophenyl)phenol Mebutamate Diflunisal Diethylcarbamyl chloride 6α.9α-Difluoroprednisolone Diethylcarbamazine citrate Diethyl carbonate Difluprednate Fenspiride Diglycolic acid dichloride Flurbiprofen loglycamic acid Furaltadone Digoxin Nifuratel Medigoxin Protizinic acid 6.11-Dihydrodibenz(b,e)oxepin-11-one

Doxepin HCI

Norgestrel

(±)-1.4-Dihvdro-17α-ethvnvl-18-homo-

oestradiol 3-methyl ether

2,3-Dihydrofuran Tegafur

5.8-Dihydro-1-naphthol Nadoloi

Dihydrotestosterone

Dromostanolone propionate

2.6-Dihydroxy acetophenone Cromolyn sodium

2.5-Dihydroxy benzene sulfonic acid Sultosilic acid piperazine salt

3,4-Dihydroxy-W-bromoacetophenone Reproterol

3.4-Dihydroxy-\omega-chloroacetophenone Isoproterenol sulfate

 $N.N'-Di-(\beta-hydroxyethyl)$ piperazine Nafiverine

2,3-Dihydroxyimino-17α-methyl-5αandrostan-178-of

Furazabol

Dihydroxy-11β,17α-iodo-21-dioxo-3,20-pregnene-4

Tixocortol pivalate

2.6-Dihydroxymethylpyridine hydrochloride

Pyridinol carbamate

 $16\alpha.17\alpha$ -Dihydroxyprogesterone Algestone acetophenide

L-Diiodo thyronine

Liothyronine p-Diisobutylphenol

Benzethonium chloride

Diisopropylamine

 α,α,α -Trifluorothymidine

 γ -Diisopropylamino- $\alpha \alpha$ -diphenylbutyronitrile

Isopropamide iodide

Dijsopropylaminoethy! chloride Disopyramide phosphate

Propantheline bromide

Diketene

Ketazolam Pyrithyldione

1.3-Dimethoxybenzene

Mexenone

2.6-Dimethoxybenzoic acid Methicillin sodium

3.4-Dimethoxybenzoic acid

Mebeverine HCI

3.5-Dimethoxy-4'-chloro-4-hydroxybenzophenone

Morclofone

3.4-Dimethoxycinnamic acid

Tranilast

1,1-Dimethoxy-1-(4-fluorophenyl)-4chlorobutane

Haloperidol

1-(2',5'-Dimethoxyphenyl)-2-aminoethanol-(1)

Midodrine

1-(3',4'-Dimethoxyphenyl)-2-propanone Dioxyline phosphate

2.5-Dimethoxypropiophenone Methoxamine HCI

2.3-Dimethoxy-5-sulfamoyl benzoic acid Veralipride

5.5-Dimethylacridan

Dimetacrine tartrate

1.3-Dimethyladamantane Memantine

Dimethylamine

Benzethonium chloride

Bephenium hydroxynaphthoate

Camazepam

Dibutoline sulfate

Doxenin HCI

Furtrethonium iodide

Loperamide HCI

Thiothixene

Dimethylamine hydrochloride

Ethacrynic acid

3-Dimethylamino-1,2,4-benzotriazine oxide

ω-Dimethylamino-4'-bromopropiophenone Zimelidine

1-Dimethylamino-2-chloroethane Pyrilamine

Tripelennamine

1-Dimethylamino-2-chloropropane Fonazine mesylate

Promethazine HCI

2-Dimethylamino-1-chloropropane Isoaminile

3-Dimethylamino-1-chloro propane Chlorpromazine HCl Promazine HCI

3-Dimethylamino-(1,2-dihydro-1,2,4benzotriazine)

Apazone

2-Dimethylaminoethanol

Deanol acetamido benzoate Dimethisoquin

Diphenhydramine HCl

lodoalphionic acid

Orphenadrine citrate

Tromantidine HCI

Dimethylaminoethoxy ethanol

Butamirate citrate

Dimetho xanate

4-(β-Dimethylaminoethoxy)-α-ethyldesoxy benzoin

Tamoxifen

 β -Dimethylamino ethyl benzhydryl ether Dimenhydrinate

Dimethyl amino ethyl chloride

Amiodarone HCI

Brompheniramine maleate

Carbinoxamine maleate

Chloroheniramine maleate

Pyridostigmine bromide Dimethylamino ethyl chloride (cont'd) N,N-Dimethyl β -chloroethylamine Chlorohenoxamine HCI Methapyrilene HCI Dibenzepin HCI 1,3-Dimethyl-4-chlorouracil Moxisvlyte Urapidil Noxiptilin 3,8-Dimethyl-3,5,7-decatriene-1,9-diyne Pheniramine maleate **B**-Carotene Phenyltoloxamine Dimethyldiethoxy silane Thonzylamine HCI Dimethicone Tibezonium iodide Trimethobenzamide HCI Simethicone N,N'-Dimethylethylenediamine Zotepine Hexobendine 2-(2-Dimethylaminoethyl)-indan-1-Dimethylformamide one Glymidine Dimethindene maleate dl-3-(1',1'-Dimethylheptyl)-6,6a,7,8-B-Dimethylaminoethyl mercaptan HCi tetrahydro-1-hydroxy-6,6-di-Echothiopate iodide methyl-9H-dibenzo[b,d] pyran-Dimethylaminoisopropyl chloride 9-one Isothipendyl HCI 3.4-Dimethyl-5-amino isoxazole Nabilone 2.2-Dimethyl-4-hydroxymethyl-1,3-Sulfisoxazole dioxolane 1-Dimethylamino-2-methyl-3-chioro-Floctafenine propane Glafenine Cyamemazine 1,1-Dimethylol cyclopentane Methotrimeprazine 2-Dimethylaminomethyl-cyclohexanone Cyclarbamate N N'-Dimethyloxaldiamide Tramadol HCI Azathioprine 2-[[[5-(Dimethylamino)methyl-2-Dimethylphenol furany! | methyl | thio | ethanamine Mexiletine HCI 3-(3',5'-Dimethylphenoxy)-1,2-propane-Ranitidine 3-Dimethylamino-2-methylpropyl chloride Metaxalone Dimethyl-p-phenylene diamine Oxomemazine Tolonium chloride m-Dimethylaminophenol O,O-Dimethylphosphorodithioic acid Demecarium bromide Malathion Edrophonium chloride 3-Dimethylaminopropanol magnesium Dimethyl phthalate Diphenadione chloride 1.3-Dimethyl-4-piperidone Amitriptylin oxide 3-(Dimethylamino) propyl chloride Alphaprodine HCI Dimethylsulfamoylphenthiazime Amitriptyline HCl Chlorprothixene Fonazine mesylate Thioproperazine Clomipramine Dimethyl sulfate Cyclobenzaprine Imipramine HCI Amezinium methyl sulfate Bromopride Oxetorone fumarate Cefoxitin sodium Prothipendy! HCI Cimetide 2.3-Dimethylanile Diphemanil methyl sulfate Mefenamic acid 2.6-Dimethylaniline Flurbiprofen Hexamethonium bromide Bupivacaine Hexocyclium methyl sulfate Mepivacaine Ipronidazole Xipamid Mefruside 2,4-Dimethyl-6-tert-butylphenol Metoclopramide HCI Oxymetazoline HCI Metrizoic acid Dimethylcarbamyl chloride

Benzpyrinium bromide

Celiprolol

Paramethadione

Pentapiperide methosulfate

Prenylamine Pralidoxime chloride Di-n-propylacetyl chloride Timeoidium bromide Anistropine methyl bromide Dimethyl sulfide Di-n-propylamine Dimethyl sulfoxide Probenecid 1.2-Dimethyl-1,4,5,6-tetrahydro-Dipyridamole pyrimidine Mopidamol Pyrantel pamoate 2,4-DisulfamyI-5-chloroaniline 3.5-Dinitrobenzoic acid Benzthiazide Diatrizoate sodium 3.5-Di-p-toluyl-desoxy-D-ribofuranosyl Dioctyl sodium sulfosuccinate chloride Docusate calcium Idoxuridine N-[2-(3,1-Dioxanyl)ethyl] piperazine S,N-Ditrityl-L-cysteine diethylamine salt Oxaflumazine disuccinate 1,4-Dioxaspiro[4.5] decane-2-methyl-Oxytocin Dodecyl bromide amine Domiphen bromide Guanadrel sulfate 2.4-Dioxo-3,3-diethylpiperidine 3-Endoamineborneol HCI Methypryion Glibornuride Diphenic acid 2,5-Endomethylene- Δ^3 -tetrahydro Azapetine phosphate benzaldehyde Dipheno!isatin Cyclothiazide Oxyphenisatin acetate Epibromohydrin Diphenylacetic acid chloride Carteolol Diphenpyramide Epichlorohydrin Thiphenami! HCI Acebutoloi Diphenyl acetone Atenolol Diphenadione Befunolol Diphenylacetonitrile Betaxolol HCI Doxapram HCl Bufetrol Methadone HCI Diphenylacetyl chloride Bunitrolol Bupranolol Piperidolate Carazolol 2.2-Diphenyl-4-bromo butyronitrile Carnitine Diphenoxylate HCl Celiprolol Diphenyl chloroacetyl chloride Colestipol Clidinium bromide Cromolyn sodium Parapenzolate bromide Indenolol 3,3-Diphenyl-3-cyanopropyl bromide Mazindol Piritramide 4,4-Diphenylcyclohexen-2-one Mepindolol Metoproloi tartrate Pramiverin Nadolol Diphenyl diazomethane Nifuratel Benztropine mesylate Oxprenolol $\alpha \alpha$ -Diphenyl- γ -dimethylamino Penbutolol valeronitrile Practolol Aminopentamide Propafenone HCI Diphenylmethane Propranolol HCI Diphenhydramine HCI Viloxazine HCI Diphenylmethyl-7 β -amino-7 α -methoxy-Xanthinol niacinate 3-(1-methyltetrazol-5-yl)-thio-Epinephrine methyl-1-oxadethia-3-cephem-Epinephryl borate 4-carboxylate $2\alpha.3\alpha$ -Epithio- 5α -androstan- 17β -ol Moxalactam disodium Mepitiostane 1-(Diphenylmethyl)piperazine 9β ,11 β -Epoxy-17 α -hydroxy-21-acetoxy-Oxatomide 16α -methyl- Δ^{1} , pregnadiene-3,20-

Dexamethasone acetate

3,3-Diphenylpropylamine Droprenilamine HCI

Fendiline HCI

Tetrabenazine

Tolazoline

1-(2.3-Epoxypropyl)-2-methyl-5-Trimethadione nitroimidazole Vinbarbitol sodium Ethanolamine Ornidazole Alibenol Ergocryptine Bromocriptine Ciclopiroxolamine Cloxazolam Erythromycin Erythromycin gluceptate Oxethazine Erythromycin lactobionate Phenoxy benzamine HCI 1-Ethinyl-1-cyclohexanol Erythromycin stearate Δ^4 ,9 -Estradiene-11 β -01-3,17-dione Ethinamate 6-Ethoxybenzothiazole-2-thiol Moxestrol Ethoxzolamide Estradiol N-Ethoxycarbonylpiperazine Estradiol valerate Flupentixol Estramustine phosphate Ethoxymethyleneethyl malonate Estriol succinate Floctafenine Polyestradiol phosphate Nalidixic acid Estradiol-17 β Estradiol cypionate Pipemidic acid Piromidic acid Estrone Rosoxacin Ethinylestradiol 2-Ethoxy-1-naphthoyl chloride Ethanedisulfonic acid Nafcillin sodium Caramiphen edisylate Ethanol 2-Ethoxyphenol Viloxazine HCI Alibenol Benoxinate HCI ω-Ethoxystyrene Bendroflumethiazide Bufexamac Clobazam Ethyl acetate Silvmarin Clofibrate Dicyclomine HCI Ethyl acetoacetate Cloxacillin Ethionamide Epirizole Ethoheptazine Oxacillin sodium Etiro xate Trio xsalen Exalamide Ethyl acetylene (1-butyne) Feprazone Methohexital sodium Floredil HCI Ethylamine Flurbiprofen Ethylestrenol Gramicidin Mebeverine HCI Heptabarbitol Motretinide Ibuprofen **Piperidolate** Ibupro xam Tropicamide Insulin Ketoprofen Ethyl p-aminobenzoate Thihexinol Lofexidine HCI Mebeverine HCI Ethyl 7-aminoheptanoate Meperidine HCI Amineptine HCI Tianeptine Methitural Ethylamino malonate HCI Methohexital sodium Moxisylyte Loflazepate ethyl 1-Ethyl-2-aminomethyl pyrrolidine Naphazoline Nicotinvi alcohol Sulpiride Nifurzide Sultopride HCI Ethyl α-(4-aminophenyl)propionate Oraotein Phenagiycodol Indoprofen α -Ethyl- β -(aminophenyl)propionic Phenylbutazone Protizinic acid acid Tyropanoate sodium Sulfinpyrazone

3-(Ethylamino)propionitrile

Sulfacytine

Ethyl benzamidoxime	Ethyl 4'-chlorophenoxy isobutyrate
Proxazole citrate	Clofibride
Ethyl benzilate	N-Ethyl-3-chloropiperidine
Benactyzine hydrochloride	Pipenzolate bromide
Ethyl bromide	1-Ethyl-3-chloropyrrolidine
Azatadine maleate	Doxapram HCI
Chlorprothixene	Ethyl β-chlorovinyl ketone
Cyproheptadine	Ethchlorvynol
Diphenidol	Ethyl cyanoacetate
Flupentixol	Ethosuximide
Heptabarbitol	Piprozolin Tinoridine
Mepivacaine	Ethyl 2-cyano-2-(5H-[1] benzopyrano
Methadone HCI	[2,3b] -pyridin-7-yl) propionate
Methallenestril Methohexital sodium	Pranoprofen
Oxitropium bromide	Ethyl-1-(3-cyano-3,3-diphenylpropyl)-4-
· · · · · · · · · · · · · · · · · · ·	phenylisonipecotate HCl
Pipethanate ethobromide Pyrithyldione	Difenoxime
Ethyl bromoacetate	Ethyl diazoacetate
Aceclidine	Tranylcypromine sulfate
Ethyl α-bromobutyrate	Ethyl dichloroacetate
Cyclobutyrol	Thiamphenicol
Ethyl bromoisobutyrate	1-Ethyl-1,4-dihydro-5H-tetrazol-5-one
Methallenestril	Alfentanil HCI
Ethyl-2-bromopropionate	4-Ethyl-2,3-dioxo-1-piperazino
Naproxen	carbonyl chloride
Ethyl carbonate	Cefoperazone
Ibuprofen	Ethylene chlorohydrin (2-chloroethanol)
Ethyl chloride	Cloperastine
Oxeladin	Defosfamide
Ethyl chiorimidoacetate	Metronidazole
Oxyphencyclimine	Oxypendyl
Ethyl chloroacetate	Ethylenediamine
Diltiazem HCI	Clonidine HCl
Etomidate HCI	Edetate disodium
Piracetam	Indanazoline
Ticrynafen	Lofexidine HCI
Ethyl α-(3-chloro-4-aminophenyl)	Naphazoline
propionate hydrochloride	Oxymetazoline HCl
Pirprofen	Penicillin G Benzathine
Ethyl 5-(p-chlorobenzoyl)-1,4-dimethyl-	Tetrahydrozoline HCI
3-ethoxypyrrole-2-acetate	Tolazoline
Zomepirac	Tolonidine nitrate
Ethyl chlorocarbonate	Xylometazoline HCl
A mo xapine	Ethylene dibromide
Amoxicillin	Penicillin G Hydrabamine
Ampicillin	Ethylene dichloride
Cefadroxil	Ethambutol HCI
Ethyl chloroformate	Ethyl 3,5-diiodo-4-(4'-hydroxyphenoxy)-
Azidocillin	phenyl acetate
Fominoben HCl	Tiratricol
Hydroxyphenamate	3,3-Ethylene dioxy-6α-methylandrost-
Loxapine	4-ene-3,17-dione
Ethyl 2-chloromethyl benzoate	Dimethisterone
Indoprofen	Ethylene glycol
Ethyl 5-chloro-2-oxobenzothiazoline	Formocortel acetate
acetate	Furazabol
Tiaramide	Kebuzone
	Medro xyprogesterone acetate

Tridihexethyl iodide

Ethyl 4-iodobutyrate

Meptazinol

Mebutamate

Quinestrol

17α-Ethynyl estradiol

1-(4-Fluorophenyl) piperazine dihydro-17α-Ethynyl-2-hydroxymethylene-4androsten-178-ol-3-one chloride Niaprazine Danazol 17α-Ethynyl-19-norandrost-4-ene-3β,17β-6α-Fluoroprednisolone Flunisolide diol (ethynodiol) 9α -Fluoro-4-pregnene- 11β , 16α , 17α ,21-Ethynodiol diacetate tetrol-3,20-dione-21-acetate-16 α ,17 α acetonide Ferric chloride Formocortal acetate Zoxazolamine 5-Fluorosalicylaldehyde Ferric citrate Butofilolol Ferrocholinate 6α-Fluoro-triamcinolone Ferric hydroxide Ferrocholinate Fluocinonide 9α -Fluoro-11 β ,17,21-trihydroxy-16 α -Ferrous sulfate Ferroalycine sulfate methylpregna-1.4-diene-3.20dione Ferrous fumarate Dexamethasone-21-linoleate Fluoranthene Fluprednidene acetate Florantyrone 9α -Fluoro-11 β ,17 α ,21-trihydroxy-16 α -Fluoroacetyl chloride methyl-1,4-pregnadiene-3,20-dione-Afloquatione p-Fluorobenzaldehyde 21-methane sulfonate Dexamethasone phosphate Sulindac 5-Fluorouracil Fluorobenzene Carmofur Flubendazole o-Fluorobenzoyl chloride Floxuridine Flunitrazepam Flucytosine 6α -Fluoro- 9α -bromo- 11β , 17α , 21-trihy-5-Fluoro uracil mercury droxy-16α-methyl-1,4-pregnadiene-Tegafur 3,20-dione-21-acetate Formaldehyde Diflorasone diacetate Biperiden 6α -Fluoro-9 β ,11 β -epoxy-16 α -methyl-Bronopol 17α 21-dihydroxy-1,4-pregnadiene-Cortivazol 3.20-dione-21-acetate Edetate disodium Flumethasone Glaziovine 6α -Fluoro-11 β .21-dihydroxy-16 α -methyl-Hexetidine 1.4-pregnadiene-3,20-dione Meptazinol Fluocortin butyl Metampicillin sodium 6α-Fluoro-16α-hydroxycortisol Methylol riboflavin Flurandrenolide Nifurfoline 6α-Fluoro-16α-hydroxy cortisone-21-Nifurtoinol acetate Noxytiolin Flucloronide Oxymetazoline HCI 6α-Fluoro-16α-hydroxy hydrocortisone Phenindamine tartrate Fluocinolone acetonide Pipebuzone 9α -Fluoro-11 β -hydroxy-16 β -methyl-Thihexinol $17\alpha_21-(1'-\text{ethyl-1'-ethoxymethyl-}$ Timonacic sodium enedioxy) pregna-1,4-diene-3,20-Triclobisonium chloride Tromethamine Betamethasone dipropionate Tyloxapol 6-Fluoro-2-methyl tetrahydroquinoline Formamide Flumequine Cimetide 5-(2-Fluorophenyl)-7-chloro-2,3-dihydro-Primidone 1H-benzodiazepinone (2) Protriptyline Flurazepam Razoxane 1-[(4-Fluorophenyl)methyl]-N-(4-Spiperone piperidinyl) -1 H -benzimidazol-2-Formic acid

Bupivacaine

amino dihydrobromide

Astemizole

Trade Name Index

Each trade name listed below is followed by the generic name of the pharmaceutical to which it pertains.

Aacidexam - Dexamethasone phosphate

Aarane - Cromolyn sodium

AAS - Aspirin

Abacil - Chlorhexidine

Abapresin - Guanethidine sulfate Abbocillin - Penicillin G procaine

Abbofinase - Urokinase Abbokinase - Urokinase

Abboticine - Erythromycin stearate

Abbutol - Ethambutol HCI
Abcid - Sulfadimethoxine
Abedine - Carnitine
Abeformin T - Tolbutamide
Abehol - Chlophedianol
Abemide - Chlopropamide

Aberel - Tretinoin Abesta - Reserpine

Abetol - Labetalol HCI

Abilit - Sulpiride Abiocine - Dihydrostreptomycin sulfate

Abirol - Methandrostenolone Abirrexate - Methotrexate Abminthic - Dithiazanine iodide Abomacetin - Erythromycin

Aboren - Midecamycin Abovis - Aclatonium napadisylate AB-PC - Ampicillin trihydrate Abricycline - Tetracycline Abrol - Acetaminophen Abrolet - Acetaminophen Abronquil - Fenspiride Absentol - Trimethadione

Abstenil - Disulfiram Abstinyl - Disulfiram Acamol - Acetaminophen Acantex - Ceftriaxone sodium Acaporina - Cephaloridine Acaxina - Cephalexin

Accent - Furosemide
Accu-Tap - Acetaminophen
Ace - Methscopolamine bromide

Acecor - Acebutolol Acef - Cefazolin sodium Acelat - Spironolactone Ace-Line - Iopanoic acid Acemin - Chlorpromazine HCI

Acenol - Nicomol

Accenon - Ethotoin

Acephen - Acetaminophen Acerum - Pivampicillin

Acesal - Aspirin

Acetalax - Oxyphenisatin acetate Acetalgin - Acetaminophen Acetamide - Acetazolamide Acetamox - Acetazolamide Acetanol - Acebutolol Acetard - Aspirin

Acetazolam · Acetazolamide

Acetazolamide chibret - Acetazolamide

Acetein - Acetyl cysteine Aceterol forte - Nimorazole

Acetical - Aspirin Acetisal - Aspirin

Acetisone - Cortisone acetate

Acetophen - Aspirin

Acetospan - Triamcinolone acetonide

Acetylin - Aspirin Acetylo - Aspirin Acetylsal - Aspirin Acetyl-Sal - Aspirin Acetysal - Aspirin Acfol - Folic acid

Achletin - Trichlormethiazide Achromycin - Tetracycline Acibilin - Cimetide

Acidex - Ranitidine Acignost - Pentagastrin

Acikaprin - Aminocaproic acid Acillin - Ampicillin trihydrate Aciloc - Cimetide

Acimetion - Methionine Acimetten - Aspirin

Acimexan - Hydroxocobalamin

Acinipan - Cephalexin Acisal - Aspirin

Aclacinomycine - Aclarubicin Aclacinon - Aclarubicin Acnelyse - Tretinoin

Acnestrol - Diethylstilbestrol Acodeen - Butamirate citrate Acodfen - Butamirate citrate Acrizeal - Phenyl butazone Actaciclina - Demeclocycline HCI Actamin - Acetaminophen

Actamin - Cyanocobalamin Actasal - Choline salicylate Actase - Fibrinolysin Actiderm - Desoximetasone

Actidil - Triprolidine Actidilon - Triprolidine Actifed - Triprolidine Actiphyll - Triprolidine Actin-N - Nitrofurazone Actinophtyl - Naphazoline Actithiol - Carbocysteine

Activin - Nandrolone phenpropionate

Actocortin - Hydrocortisone sodium phosphate Actol - Niflumic acid

Actosoly - Urokinase 'Actrapid - Insulin

Actuapen - Metampicillin sodium Acucillin - Ampicillin

Acucillin - Cloxacillin ACU-Dyne - Povidone-iodine Acupan - Nefopam HCI

Acutrim - Phenylpropanolamine HCI

Acylanid - Acetyldigitoxin Acylanide - Acetyldigitoxin Acylanil - Acetyldigitoxin Acyclin - Cyclandelate Acygoxine - Acetyldigitoxin Aczen NS - Isothipendyl HCI

Adalat - Nifedipine Adalate - Nifedipine Adalgur - Glafenine Adamycin - Erythromycin Adanon - Methadone HCI Adapin - Doxepin HCI Adasone - Prednisone Adcortin - Halcinonide

Adcortyl - Triamcinolone acetonide

Addex-Tham - Tromethamine Adebit - Buformin HCl Adefuranic - Diclofenac sodium Adelir - Piromidic acid

Adelir - Ubidecarenone Ademol - Flumethiazide Adenock - Allopurinol Adepress - Amitriptyline HCI Adepril - Amitriptyline HCI Adestan - Isoconazole nitrate Adiaben - Chlorpropamide Adiabetin - Phenformin

Adiazin - Sulfadiazine Adiazine - Sulfadiazine

Adiparthrol - Dextroamphetamine sulfate

Adipex-P - Phentermine HCI Adipo II - Phendimetrazine tartrate Adiposan - Diethylpropion HCI Adipost - Phendimetrazine tartrate

Adiro - Aspirin

Adjuratin - Desmopressin Adnisolone - Prednisolone Adobacillin - Amoicillin Adobiol - Bufetrol Adoisine - Warfarin sodium Adolan - Methadone HCI Adomal - Diflunisal Adopal - Methyldopa

Adphen - Phendimetrazine tartrate Adramycin - Methacycline Adrenoxyl - Carbazochrome Adrenosem - Carbazochrome Adrestat - Carbazochrome Adrevil - Butalamine HCI Adriacin - Doxorubicin Adriamycin - Doxorubicin Adrianol - Phenylephrine HCI Adriblastina - Doxorubicin

Adriblastine - Doxorubicin

Adrucil - Fluorouracil Adumbran - Oxazepam Adventan - Fursultiamine Adversuten - Prazosin Advil - Ibuprofen Aero Bid - Flunisolide Aeropax - Dimethicone Aeroseb - Hydrocortisone Aerosporin - Polymyxin

Aerrane - Enflurane Aerrane - Isoflurane

Aerugipen - Ticarcillin disodium

Aethroma - Vincamine

AFI-Ftalyl - Phthalylsulfathiazole Afimocil - Ethambutol HCI AFI-Phyllin - Dyphylline Aflodac - Sulindac Aflorix - Miconazole nitrate Afloxan - Proglumetacin maleate Afluteston - Fluoxymesterone Afrin - Oxymetazoline HCl Aftate - Tolnaftate Afungyl - Chlorquinaldol Agalacto-Quilea - Quinestrol

Agapurin - Pentoxifylline Agasten - Clemastine fumarate Agedal - Noxiptilin Ageroplas - Ditazol Agerpen - Amoxicillin Agilease - Dipyridamole Aglicem - Tolbutamide Aglumin - Ethamsylate Aglycid - Tolbutamide Agostiben - Diethylstilbestrol

Agaldog - Dienestrol

Agozol - Prenylamine Agradil - Veralipride A-Gram - Amoxicillin Agreal - Veralipride

Agrippol - Dextromethorphan hydrobromide

Ahiston - Chlorpheniramine maleate

Aholit - Chenodial AHP - 2000 - Oxaceprol Aicamin - Orazamide Aicamine - Orazamide Aicurat - Orazamide Airbron - Acetylcysteine

Airol - Tretinoin Airolactone - Spironolactone Airum - Fenoterol hydrobromide Aiselazine - Hydralazine HCI Aisemide - Furosemide Aitruran - Trichlormethiazide Aian - Nefopam HCI

Akatinol - Memantine Akineton HCI - Biperiden Akinophyl - Biperiden Akiten - Benztropine mesylate Aknemycin - Erythromycin Aknoten - Tretinoin Ala-Cort - Hydrocortisone

Alagyl - Clemastine fumarate

Alamon - Hydroxyzine HCI

Alarzin - Tolnaftate

Alaspan - Chlorpheniramine maleate

Alaspine - Aspirin Alaton - Citicoline Alaxa - Bisacodyl Albacort - Triamcinolone Albaion - Naphazoline

Albamycin - Novobiocin

Albatussin - Dextromethorphan hydrobromide

Albatussin - Pyrilamine Albego - Camazepam Albiocin - Novobiocin Albiotic - Lincomycin Albipen - Ampicillin Albon - Sulfadimethoxine Albox - Acetazolamide

Albyl - Aspirin

Alcaphor - Tromethamine

Alcopar - Bephenium hydroxynaphthoate Alcopara - Bephenium hydroxynaphthoate

Aldactazide - Hydrochlorothiazide Aldactazide - Spironolactone Aldactone - Canrenoate potassium Aldactone - Spironolactone Aldatense - Canrenoate potassium

Aldatense - Rescinnamine

Aldesin - Beclomethasone dipropionate

Aldinamide - Pyrazinamide Aldoclor - Chlorothiazide Aldocumar - Warfarin sodium Aldolor - Acetaminophen Aldomet - Methyldopa Aldometil - Methyldopa Aldomin - Methyldopa Aldopur - Spironolactone Aldoril - Hydrochlorothiazide

Aldoril - Methyldopa

Aldospirone - Spironolactone

Alene - Epimestrol

Alercrom - Cromolyn sodium

Alermine - Chlorpheniramine maleate Aleryl - Diphenhydramine HCI Aletor - Bromhexine Aleudrin - isoproterenoi sulfate

Alevaire - Tyloxapol Aleviatin - Phenytoin Alexan - Cytarabine HCI Alexan - Spironolactone

Alfabios - Fluocinolone acetonide

Alfadat - Nifedipine Alfadion - Alfaxalone

Alfa-Fluorone - Fludrocortisone acetate

Alfames E - Ethynodiol diacetate

Alfamox - Amoxicillin

Alfanonidrone - Fludrocortisone acetate Alfarol - Alfacalcidol

Alfasilin - Ampicillin Alfathesin - Alfaxalone Alfatil - Cefaclor Alfavinca - Vincamine Alfida - Amoxicillin Alfimid - Glutethimide

Alflorone acetate - Fludrocortisone acetate

Alfone - Alkofanone Alfospas - Tiropramide Alfoxil - Amoxicillin Alfuran - Nitrofurantoin Algeril - Propiram fumarate Algicortis - Hydrocortisone Algil - Meperidine HCI

Algo - Aspirin Algocetil - Sulindac Algofen - Ibuprofen

Algometacin - Indomethacin Alimezine - Trimeprazine Alinam - Chlormezanone

Alinamin F - Fursultiamine Aliporina - Cephaloridine Aliseum - Diazepam Alius - Fonazine mesylate Alival - Nomifensine maleate Alkabutazona - Phenyl butazone

Alka-Seltzer - Aspirin Alkeran - Melphalan

Alledryl - Diphenhydramine HCl Allerbid - Chlorpheniramine maleate

Allercur - Clemizole

Allerdryl - Diphenhydramine HCl Allerest - Methapyrilene HCI Allergan - Diphenhydramine HCl

Allergan - Pyrilamine

Allergefon - Carbinoxamine maleate Allergex - Chlorpheniramine maleate Allergin - Chlorpheniramine maleate Allergin - Diphenhydramine HCl Allergin - Methapyrilene HCI Allergina - Diphenhydramine HCI Allergisan - Chlorpheniramine maleate

Allergron - Nortriptyline Allerpant - Clemizole

Allersan - Chlorpheniramine maleate

Allersone - Hydrocortisone

Allertab - Chlorpheniramine maleate Allerton - Chlorpheniramine maleate Allerzin - Diphenylpyraline HCI Alloferin - Alcuronium chloride Alloferine - Alcuronium chloride

Allomaron - Allopurinol Allomaron - Benzbromarone Allopin - Allopurinol Alloprim - Allopurinol Alloprin - Allopurinol Allopur - Allopurinol

Allopydin - Alcofenac Allorin - Allopurinol Allozym - Allopurinol Allural - Allopurinol Allurit - Allopurinol Almatol - Spironolactone Almopen - Ampicillin Aloc - Allopurinol Alodan - Meperidine HCI

Aloginan - Clemastine fumarate Alositol - Allopurinol Alotec - Metaproterenol sulfate

Alpamed - Spironolactone

Alpen - Ampicillin

Alpen - Ampicillin trihydrate Alpen - Phenethicillin potassium Alphacortison - Hydrocortisone Alphaderm - Hydrocortisone Alphadrol - Fluprednisolone Alphamex - Methyldopa Alphamin - Clemastine fumarate

Alphamine - Midodrine

Alpha-Redisol - Hydroxocobalamin Alphatrex - Betamethasone dipropionate

Alphpress - Hydralazine HCI Alpiny - Acetaminophen Alpolasnon - Spironolactone Airheumat - Ketoprofen Alrheumin - Ketoprofen Alrin - Oxymetazoline HCI Altabactina - Furaltadone

Altacel - Cefuroxime

Altafur - Furaltadone Altex - Spironolactone Althesin - Alfaxalone Altiley - Nortriptyline Altim - Cortivazol

Altocillin - Phenethicillin potassium Altodor - Ethamsylate Alto-Pred - Prednisolone acetate

Alto-Pred - Prednisolone phosphate sodium

Alto-Pred - Prednisone Altramet - Cimetide

Aludrin - Isoproterenol sulfate Alunitine - Aluminum nicotinate Alupent - Metaproterenol sulfate Alvadermo - Fluocinolone acetonide

Alvedon - Acetaminophen Alven - Tribenoside Alyrane - Enflurane Am-73 - Amoxicillin

Amalmare - Dimenhydrinate Amantadin - Amantidine HCI Amantan - Amantidine HCI Amavil - Amitriptyline HCl Amazolon - Amantidine HCI Ambacamp - Bacampicillin

Ambal - Cephalexin Ambaxin - Bacampicillin Ambenyl - Guaifenesin

Ambenyl-D - Dextromethorphan hydrobromide

Ambin - Aminobenzoic acid Ambivalon - Amitriptylin oxide Ambloclorin - Chlorambucil Amblosen - Ampicillin Amblosin - Ampicillin trihydrate Amboken - Chloramphenicol Ambra-Vena - Mepicycline Ambrunate - Metiazinic acid Amcacid - Tranexamic acid

Amcap - Ampicillin trihydrate

Amchafibrin - Tranexamic acid

Amcill - Ampicillin Amcill - Ampicillin trihydrate Amcinonid - Amcinonide Amdil - Acetaminophen Amedel - Pipobroman

Amelizol - Tubocurarine chloride Amen - Medroxyprogesterone acetate Amepromamat - Meprobamate

A-Methapred - Methylprednisolone Ametik - Trimethobenzamide HCI

Ametil - Dicyclomine HCI Ametycine - Mitomycin

Amfe-Dyn - Dextroamphetamine sulfate

Amfeta - Pyrilamine

d-Amfetasul - Dextroamphetamine sulfate

Amfipen - Ampicillin

Ami-Anelun - Amitriptyline HCI Amicar - Aminocaproic acid Amidate - Etomidate HCI Amidoline - Etomidoline Amidonal - Aprindine HCI Amidoxal - Sulfisoxazole Amifur - Nitrofurazone Amiglyde-V - Amikacin

Amikapron - Tranexamic acid

Amikin - Amikacin

Amilent - Amitriptyline HCI Aminacyl - Aminosalicylic acid Amino-Ceru - Inositol Aminofen - Acetaminophen

Amino-Plex - Methionine Amino-Serv - Methionine Aminosidine - Paromomycin Aminoxidin - Paromomycin Amiodacore - Amiodarone HCI Amipenix - Ampicillin Amiprin - Amitriptyline HCl Amiprol - Diazepam Amiptanol - Amitriptyline HCl Amisin - Amikacin

Amitid - Amitriptyline HCI Amitril - Amitriptyline HCI Amitrip - Amitriptyline HCI Amitriptol - Amitriptyline HCI Amixyl - Tiocarlide

Ammonil - Methionine Amocilline - Amoxicillin Amoclen - Amoxicillin Amodex - Amoxicillin Amo-Flamisan - Amoxicillin

Amoglandin - Dinoprost tromethamine

Amaksilin - Amaxicillin Amoksina - Amoxicillin Amolin - Amoxicillin Amorion - Amoxicillin Amosene - Meprobamate

Amosin - Amoxicillin Amosyt - Dimenhydrinate Amotril - Clofibrate Amox - Amoxicillin Amoxamil - Amoxicillin Amoxan - Amoxapine Amoxaren - Amoxicillin Amoxi-Basileos - Amoxicillin Amoxibiotic - Amoxicillin Amoxicil - Amoxicillin Amoxidal - Amoxicillin

Amoxidin - Amoxicillin

Amoxi-Gobens - Amoxicillin

Amoxil - Amoxicillin Amoxillin - Amoxicillin Amoximedical - Amoxicillin Amoxipen - Amoxicillin Amoxipenil - Amoxicillin Amoxiroger - Amoxicillin Amoxi-Tabs - Amoxicillin Amoxypen - Amoxicillin Ampen - Ampicillin Ampensaar - Ampicillin Amperil - Ampicillin trihydrate

Ampexin - Ampicillin trihydrate Amphasub - Phendimetrazine tartrate Amphate - Amphetamine phosphate

Amphibeta - Ampicillin Amphicol - Chloramphenicol

Amphocortin CR - Amphomycin calcium

Amphocycline - Amphotericin B Amphodyn - Etilefrine pivalate HCI Ampho-Moronal - Amphotericin B Amphozone - Amphotericin B Ampibiotic - Ampicillin Ampical - Ampicillin trihydrate

Ampichelle - Ampicillin trihydrate

Ampicil - Ampicillin Ampicil - Ampicillin trihydrate

Ampicillina pharmax - Ampicillin Ampicillina pierrel - Ampicillin Ampiciman - Ampicillin trihydrate

Ampicina - Ampicillin Ampiclox - Cloxacillin Ampi-Co - Ampicillin trihydrate

Ampicyn - Ampicillin

Ampifar - Ampicillin trihydrate Ampifen - Ampicillin

Ampikel - Ampicillin

Ampikel - Ampicillin trihydrate Ampilag - Ampicillin trihydrate

Ampilan - Ampicillin Ampiland - Ampicillin

Ampileta - Ampicillin trihydrate

Ampilisa - Ampicillin Ampilux · Ampicillin Ampimed - Ampicillin Ampinebiot - Ampicillin Ampinova - Ampicillin

Ampinoxi - Ampicillin

Ampin-Penicillin - Penicillin G procaine

Ampiopen - Ampicillin

Ampi-Oral - Ampicillin trihydrate Ampiorus - Ampicillin trihydrate Ampi-Plena Simple - Ampicillin Ampiscel - Ampicillin trihydrate

Ampisil - Ampicillin Ampisina - Ampicillin Ampisint - Ampicillin Ampi-Tablinen - Ampicillin Ampitex - Ampicillin Ampivax - Ampicillin

Ampixyl - Ampicillin Ampixyl - Ampicillin trihydrate

Ampi-Zoja - Ampicillin trihydrate Amplenil - Ampicillin

Amplibios - Ampicillin Amplicefal - Cephalexin Amplicerina - Cephaloridine Amplicid - Ampicillin Ampligram - Cephalexin Ampligram - Cephaloridine Amplimox - Amoxicillin Amplin - Ampicillin trihydrate Amplipen - Ampicillin Amplipenyl · Ampicillin

Ampliprats - Metampicillin sodium

Ampliscocil - Ampicillin Amplisom - Ampicillin Amplital - Ampicillin Amplium - Tinidazole Amplizer - Ampicillin Ampy-Penyl - Amoxicillin

Amsusatain - Dextroamphetamine sulfate

Amuno - Indomethacin Amynoral - Cinnarizine

Anabactyl - Carbenicillin disodium

Anabloc - Phenyramidol Anabolex - Stanolone Anabolin - Methandrostenolone Anacobin - Cyanocobalamin Anaerobex - Metronidazole Anaflon - Acetaminophen

Anafranil - Clomipramine Anahist - Thonzylamine HCI Analexin - Phenyramidol

Analock - Epirizole

Analogue - Menadiol sodium phosphate

Analpram - Pramoxine HCI Analud - Feprazone Anan - Bisacod vl

Ananase - Bromelain Ananda - Metoclopramide HCI Anaphyl - Chlorpheniramine maleate

Anaprel - Rescinnamine Anaprotin - Stanolone Anarel - Guanadrel sulfate Anarexol - Cyproheptadine Anaroxyl - Carbazochrome Anasclerol - Vincamine Anaspasmin - Hydralazine HCI Anaspat - Cyclandelate

Anasten - Antazoline HCI Anasynth - Stanozolol Anatensol - Fluphenazine HCI Anatran - Trichlormethiazide Anatrophill - Oxandrolone Anaus - Trimethobenzamide HCI

Anavar - Oxandrolone Anavok - Chlophedianol

Ancasal - Aspirin Ancef - Cefazolin sodium

Anceron - Beclomethasone dipropionate

Ancobon - Flucytosine Ancolan - Meclizine HCI Ancosul - Sulfadimethoxine Ancotil - Flucytosine Andantol - Isothipendyl HCI Andanton - Isothipendyl HCI Andapsin - Sucralfate Andere - Buformin HCI Andergin - Miconazole nitrate

Anderm - Bufexamac Andes - Citicoline Andiamine - Hexobendine Andran - Ibuprofen

Androcur - Cyproterone acetate

Andro-Cyp - Testosterone 17β -Cypionate Androgeron - Xanthinol niacinate

Android-F - Fluoxymesterone Android-S - Methyltestosterone Androlone - Stanolone

Andronate - Testosterone 17β-Cypionate Androsterolo - Fluoxymesterone Androtardyl - Testosterone enanthate

Andrumin - Dimenhydrinate Andryl - Testosterone enanthate Anecotan - Methoxyflurane Anemisol - Hydroxocobalamin Anemixin - Benoxinate hydrochloride Anergomycil - Rolitetracycline

Anestacain - Lidocaine Anestacon - Lidocaine Anestecidan - Lidocaine Aneural - Meprobamate Anexate - Mefenorex HCI Anfamon - Diethylpropion Anflagen - Ibuprofen Angilol - Propranolol HCI Anginal - Dipyridamole

Anginin - Lidoflazine Anginin - Pyridinol carbamate Angioamin - Xanthinol niacinate Angio-Conray - Iothalmate meglumine

Angiomiron - Iodamide Angiotrofin - Ifenprodil tartrate Angiovigor - Prenylamine Angiovital - Pyridinol carbamate Angioxil - Pyridinol carbamate Angioxine - Pyridinol carbamate Angiperl - Pyridinol carbamate

Angopril - Bepridil Angorsan - Prenylamine Anhiba - Acetaminophen Anidropen - Ampicillin Anifed - Nifedipine

Animing - Chloroheniramine maleate

Anisene - Chlorotrianisene Anistadin - Trichlormethiazide Anistine - Antazoline HCI Ankebin - Fenofibrate Anksivolin - Diazepam Annarizine - Cinnarizine Annolytin - Amitriptyline HCI Anoprocin - Allopurinol Anoredan - Methandrostenolone Anorex - Phenmetrazine

Anoxine T - Phendimetrazine tartrate

Anguil - Benperidol Ansadol - Salicylanilide Ansaid - Flurbiprofen Ansietan - Meprobamate Ansietin - Ketazolam Ansiolin - Diazepam Ansiolisina - Diazepam Ansiopax - Dibenzepin HCI Ansiowas - Meprobamate Anspor - Cephradine

Ansumin - Diphenidol Antabus - Disulfiram Antabuse - Disulfiram Antabuse D - Disulfiram Antacin - Chloramphenicol Antadine - Amantidine HCI

Antagonate - Chlorpheniramine maleate

Antalvic - Propoxyphene HCI Antamine · Tripelennamine Antamon P.E.D. - Methionine Antazone - Sulfinpyrazone Anteben - Isoniazid Antegan - Cyproheptadine Antelepsin - Clonazepam Antemin - Dimenhydrinate Antepsin - Sucralfate Anthisan - Pyrilamine

Anthistamin-Sigletten - Chlorpheniramine maleate Antiagor - Chromonar HCI

Antial - Brompheniramine maleate Antiallergicum Medivet - Tripelennamine Anticatabolin - Nandrolone phenpropionate

Anticen - Cyclandelate Anticyl - Ampicillin Antidol - Aspirin

Antidrasi - Dichlorphenamide Anti-Em - Dimenhydrinate Antietil - Disulfirarn Antigeron - Cinnarizine

Anti-H 10 - Diphenylpyraline HCl Antime - Pentaerythritol tetranitrate

Antimeran - Pemoline

Antigot - Allopurinol

Antiminth - Pyrantel pamoate Antinal - Diphenylpyraline HCI Antinal - Nifuroxazide

Anti-Naus - Prochlorperazine Antioxur - Pyrvinium pamoate Antipernicin - Cyanocobalamin Antipond - Phenformin

Antipres - Guanethidine sulfate Antirex - Edrophonium chloride Anti-Sept - 4-Chloro-3,5-xylenol Anti-Spas - Trihexyphenidyl HCl Antistine HCL - Antazoline HCL Anti-Tenia - Niclosamide Antitrem - Trihexyphenidyl HCI

Antituxil - Zipeprol Antiul - Diphenidol Antivert - Meclizine HCI Antivitium - Disulfiram

Anti-Vomit - Trimethobenzamide HCI

Antivomit - Dimenhydrinate Antoral - Tibezonium iodide Antoxol - Dimercaprol Antriptin - Clemastine fumarate Anturan - Sulfinpyrazone Anturane - Sulfinpyrazone Anuphen - Acetaminophen Anusol - Pramoxine HCI Anuspiramin - Phenylbutazone Anvital - Ethambutol HCI Anvitoff - Tranexamic acid

Anxidin - Clorazepate dipotassium Anxiolit - Oxazepam Anxium-5 - Diazepam Anxon - Ketazolam Anzepam - Diazepam

Anzief - Allopurinol APA/Aparacet - Acetaminophen Apamide - Acetaminophen Aparkan - Trihexyphenidyl HCI Aparkane - Trihexyphenidyl HCI

Apaurin - Diazepam

Apavit B 12 - Cyanocobalamin Apegmone - Tioclomarol A-Pen - Ampicillin Apernyl - Aspirin Apifor - Moxisylyte Apihepar - Silymarin Apiretal - Acetaminophen Apirogen - Chlortheno xazine Apiroserum - Tromethamine Apitart - Amoxicillin Aplactan - Cinnarizine

Aplakil - Oxazepam Aplexal - Cinnarizine Apliopenil - Metampicillin sodium Apilobal - Alprenolol HCI Aplodan - Creatinolfosfate

Apocerpin - Proscillaridin Apodol tabs - Anileridine dihydrochloride

Apodorm - Nitrazepam Apogen - Gentamicin sulfate Apokalin - Neomycin Apolar - Desonide Apolon - Rescinnamine Apomiter I - Cinnarizine

Aponal - Doxepin HCI Aponorin - Trichlormethiazide Apopant - Propantheline bromide Apprasnon - Spironolactone Aporecin - Rescinnamine Aporesin - Rescinnamine Aposelebin - Cyclandelate Apotension - Rescinnamine Apoterin - Rescinnamine Apoterin A - Clofibrate Apotomin - Cinnarizine

A-Poxide - Chlordiazepoxide HCI

Apozepam - Diazepam Appedrine - Phenylpropanolamine HCI

Aprednision - Prednisolone Aprelazine - Hydralazine HCI Apresazide - Hydralazine HCI Apresazide - Hydrochlorothiazide Apresoline - Hydrochlorothiazide Apresoline HCI - Hydralazine HCI

Apriclina - Methacycline Aprinol - Allopurinol Aprinox - Bendroflumethiazide Aprobal - Alprenolol HCI Apsatan - Cinnarizine Aptin - Alprenoiol HCI Aptina - Alprenolol HCI Aptine - Alprenolo! HCI Aptol - Alprenolol HCI

Aptol-Duriles - Alprenolol HCI

Apurin - Allopurinol Apurol - Allopurinol Apurone - Flumequine

Apyrectol Spiramycine - Spiramycin

Apyron - Aspirin

Aquacaine - Penicillin G Procaine Aquadon - Chlorthalidone Aquaion · Methaquaione Aquamephyton - Phytonadione Aquamox - Quinethazone Aguamycin - Chloramphenicol Aquaphor - Xipamid

Aquaphoril - Xipamid Aquastat - Benzthiazide

Aquasuspen - Penicillin G Procaine

Aquatag - Benzthiazide Aquazone - Bumetanide Aqueilina - Penicillin G Procaine Aquo-B - Hydroxocobalamin Aquo-Cytobion - Hydroxocobalamin

Arabitin - Cytarabine HCI Aracytin - Cytarabine HCI Aracytine - Cytarabine HCI Aralen - Chloroquine phosphate

Aramidol - Phenyramidol Aramine - Metaraminol Araminium - Metaraminol Araminon - Metaraminol Arasemide - Furosemide Arasol - Acetaminophen A.R.B. - Acetylcysteine Arcablock - Propranolol HCI Arcation - Thiamine disulfide Arcanax - Hydroxyzine HCI

Arcental - Ketoprofen Archidyn - Rifampin

Arcocillin - Ampicillin trihydrate Arcored - Cyanocobalamin

Arcavit B 12 - Cyanocobalamin

Arcosterone - Methyltestosterone Arcotrol - Phendimetrazine tartrate Ardefem - Estradiol valerate Arderone - Testosterone enanthate

Ardine - Amoxicillin Arelix - Piretanide Arem - Nitrazepam Aremans - Clorprenaline Areuzolin - Cefazolin sodium

Arficin - Rifampin Argocillina - Ampicillin Argun - Indomethacin Arifon - Indapamide Arilin - Metronidazole Aristamid - Sulfisomidine Aristocort - Triamcinolone

Aristocort - Triamcinolone diacetate Aristocort A - Triamcinolone acetonide Aristoderm - Triamcinolone acetonide

Aristogel - Triamcinolone

Aristogel - Triamcinolone acetonide Aristophyllin - Dyphylline

Aristoserina - Cycloserine Arithmin - Antazoline HCI Arlibide - Nylidrin Arlidin - Nylidrin Arlitene - Moxisylyte Armazide - Isoniazid Armonil - Diazepam Arodoc-C - Chlorpropamide Arofuto - Afloqualone Arphos - Cyanocobalamin

Arquel - Meclofenamic acid Arrest - Clemastine fumarate Artacin - Indomethacin Artamin - Penicillamine Artane - Trihexyphenidyl HCl

Arpicolin - Procyclidine HCI

Artate - Cinnarizine

Artegodan - Papaverine monophosadenine

Artensen - Vincamine Arterioflexin - Clofibrate

Arteriolangal - Pyridinol carbamate

Arteriovinca - Vincamine Artes - Clofibrate

Artevil - Clofibrate Arthrexin - Indomethacin

Arthrochin - Chloroquine phosphate

Arthrocine - Sulindac

Arthropan - Choline salicylate Artinova - Indomethacin Artivia - Indomethacin Artofen - Ibuprofen Artolon - Meprobamate Artomey - Bromopride Artosin - Tolbutamide

Artri - Chloroquine phosphate Artril - Ibuprofen

Artril 300 - Ibuprofen Artrobase - Indomethacin Artrocid - Indomethacin Artroflog - Oxyphenbutazone Artropan - Phenylbutazone Artzone - Oxyphenbutazone Arubendol - Terbutaline Arumel - Fluorouracil Arumil - Amiloride HCI Arvynol - Ethclorvynol Asahydrin - Chlormerodrin

Asamid - Ethosuximide Asart - Aspirin Asatard - Aspirin Asbron G - Guaifenesin Ascarvi - Levamisole HCI

Ascumar - Acenocoumarol (Acenocoumarin)

Asdol - Aspirin

Asecryl - Glycopyrrolate Asellacrin - Somatotropin Asendin - Amoxapine Aseptigel - Chlorhexidine

Aseptilex - Sulfamethoxypyridazine Aseptil-Guanadina - Sulfaguanidine Asey-Sulfa - Sulfamethoxypyridazine

Askacef - Cephradine Aslapax - Oxazepam

Asmadren - Isoproterenol sulfate

Asmaten - Rimiterol Asmaterol - Reproterol Asmetil - Protokylol Asnai - Vincamine Asnormal - Clorprenaline Aspalgin - Aspirin

A-Spas - Dicyclomine HCI

Aspec - Aspirin Aspegic - Aspirin Aspenil - Amoxicillin Aspercin - Aspirin Aspermin - Aspirin

Aspiguinol - Chloroquine phosphate

Aspirtab - Aspirin Aspirvess - Aspirin Aspisol - Aspirin Aspro - Aspirin Asrivo - Aspirin Assival - Diazepam Astamasit - Dyphylline Asthmolysin - Dyphylline Asthone - Clorprenaline Asthoxin - Sulfadimethoxine Asthpul - Isoproterenol sulfate

Astmopent - Metaproterenol sulfate Astonin - Fludrocortisone acetate Astop - Metaproterenol sulfate

Astracilina - Azidocillin

Astrin - Aspirin

Astroderm - Dichlorisone acetate

Astrophyllin - Dyphylline Asuzol - Metronidazole A.T. 10 - Dihydrotachysterol

Atalis-D - Chlorpheniramine maleate Atanal - Nifedipine

Atarax - Hydroxyzine HCI Atarin - Amantidine HCI Atarzine - Promazine HCI Ataspin - Aspirin Atazina - Hydroxyzine HCI

Ateben - Nortriptyline Atecen - Dihydrotachysterol

Ateculon - Clofibrate

Ateles - Clofibrate

Atem - Ipratropium bromide Atemarol - Clofibrate Atempol - Nitrazepam

Atenase - Niclosamide Atenezol - Acetazolamide Atenol - Atenolol Atensine - Diazepam

Atension - Rescinnamine

Atepodin - Adenosine triphosphate

Aterian - Sulfaguanidine Aterin - Pyridinol carbamate

Ateriosan - Clofibrate Aterofal - Pyridinol carbamate Atero-Flavin - Pyridinol carbamate Aterollano - Pyridinol carbamate Ateronova - Pyridinol carbamate

Aterosol - Clofibrate Athebrate - Clofibrate Atherolate - Clofibrate Atherolip - Clofibrate Atheromide - Clofibrate Atheropront - Clofibrate Athrombin - Warfarin sodium

Athymil - Mianserin

Atilen - Choline salicylate

Atirin - Cefazolin sodium Ativan - Lorazepam Atladiol - Estradiol valerate Atlansil - Amiodarone HCI

Atlantin - Dipyridamole

Atlatest - Testosterone Enanthate

Atma-Sanol - Protokylol Atmol - Clofibrate

Atomol - Oxymetazoline HCl

Atonin-O - Oxytocin Atonyl - Carbachl Atosil - Methixene HCI Atosil - Promethazine HCI Atosterine - Clofibrate Atover - Pyridinol carbamate Atraxin - Meprobamate

Atriphos - Adenosine triphosphate

Atrobis - Clofibrate Atrofort - Clofibrate

Atrohist - Phenylephrine HCI Atrolen - Clofibrate

Atromidin - Clofibrate Atromid-S - Clofibrate

Atronist - Brompheniramine maleate Atrovent - I pratropium bromide A/T/S - Erythromycin

Atumin - Dicyclomine HCI Atuss - Dimetho xanate Audax - Choline salicylate Aufofac - Chlortetracycline Augmentan - Clavulanic acid Augmentin - Amoxicillin Augmentin - Clavulanic acid Auparton - Clofibrate

Aurantex - Alfaxalone Aureomycin - Chlortetracycline Aureum - Chlortetracycline

Aurugopin - Syrosingopine Ausocef - Cephalexin Ausomina - Vincamine Austrapen - Ampicillin Austrastaph - Cloxacillin

Austrastaph - Tetracycline phosphate complex

Auxit - Bromhexine Aveenobar - Salicylic acid Avenon - Cephalothin sodium Avenon-I - Cephalothin sodium

Aventyl - Nortriptyline Aversan - Disulfiram Avex - Diazepam

Avil - Pheniramine maleate Aviomarine - Dimenhydrinate A vlane - Loprazolam

Aviocardyl - Propranolol HCI

Aviocior - Chloroquine phosphate Aviosulfon - Dansone

Avocin - Piperacillin sodium

Avomine - Promethazine HCI

Avomol - Diphenidol Avosyl - Mephenesin Awelysin - Streptokinase Ax-1000 - Amoxicillin Axbiot - Amoxicillin Axeen - Proxibarbal

Axion - Hydroxocobalamin Axiten - Mebutamate

Aygestrin - Norethindrone acetate

Azacortid - Fluazacort Azalone - Antazoline HCI Azamun - Azathioprine

Azanin - Azathio prine Azapen - Methicillin sodium Azapress - Azathio prine

Azene - Chlora zepate dipotassium

Azepamid - Medazepam Azide - Chlorothia zide

Azlin - Azlocillin

Azmacort - Triamcinolone acetonide

Azobicina Triamcin - Triamcinolone acetonide

Azo Gantanol - Sulfamethoxazole Azo-Gantrisin - Sulfisoxazole Azolid - Phenylbutazone Azolin - Tetrahydrozoline HCI Azubromaron - Benzbromarone

Azulfidine - Sulfasalazine

B 12 Mille - Cyanocobalamin B 12 Vicotrat - Cyanocobalamin

Babypyrin - Aspirin

Babyspasmil - Dicyclomine HCI Bacacil - Bacampicillin Bacampicin - Bacampicillin

Bacarate - Phendimetrazine tartrate

Baciguent - Bacitracin

Bacillotox - 4-Chloro-3,5-xylenol

Bacitracine - Bacitracin Bacion - Baciofen Baclyn - Methicillin sodium Bactidol - Hexetidine Bactigras - Chlorhexidine Bactio-Rhin - Naphazoline Bactocill - Oxacillin sodium Bactopen - Cloxacillin Bactramyl - Piromidic acid

Bactrim - Sulfamethoxazole Bactrim - Trimethoprim Bafameriten - Mefenamic acid Bajaten - Indapamide Baktar - Trimethoprim Baktogram - Nalidixic acid

Baktol - 4-Chloro-3.5-xvlenol Bal - Dimercaprol

Balance - Chlordiazepoxide HCI

Balminil - Guaifenesin

Balminil-DM - Dextromethorphan hydrobromide

Balneol-HC - Hydrocortisone Baltix - Chlophedianol Bamaxin - Bacampicillin Banasil - Reserpine

Banflex - Orphenadrine citrate Banistyl - Fonazine mesylate Banlin · Propantheline bromide

Banocide - Diethylcarbamazine citrate

Bapresan - Clonidine HCI Barastonin - Dichlorphenamide Baratol - Indoramin

Barespan - Valethamate bromide Baretaval - Valethamate bromide

Barnetil - Sultopride HCI Baronorm - Cyclothiazide Barseb - Salicylic acid Barseb-HC - Hydrocortisone Basal-H - Insulin Basaquines - Quinestrol Bas-Bil - Cyclobutyrol

Basedock D - Hydralazine HCI Basionic - Tromethamine Basporidina - Cephaloridine Basporin - Cephalexin Batomu - Clemastine fumarate Batrafen - Ciclopiroxolamine Batrax - Bacitracin Batticon - Povidone-iodine

B-Aureo - Chlortetracycline Bax - Diphenhydramine HCI Baxan - Cefadro xil

Baxarytmon - Propafenone HCI

Baycaron - Mefruside Baycipen - Mezlocillin Baycuten - Clotrimazole Bayidyl - Triprolidine Baylaril - Thioridazine Baylocaine - Lidocaine

Baymethazine - Promethazine HCI

Baymicina - Sisomicin Baymicine - Sisomicin Baypen - Mezlocillin Bayrena - Sulfameter Bayrogel - Etofenamate BB-K8 - Amikacin

B-CP - Chloramphenicol palmitate

Beatryl - Fentanyl

Bebaspin - Aspirin

Bebate - Betamethasone benzoate Beben - Betamethasone benzoate

Becabil - Amoxicillin Becamedic - Medazepam Becanta - Methyldopa

Beclacin - Beclomethasone dipropionate Beclamet - Beclomethasone dipropionate

Beclamid - Beclamide

Beclo-Asma - Beclomethasone dipropionate Becloforte - Beclomethasone dipropionate Beclosona - Beclomethasone dipropionate Beclotide Nasal - Beclomethasone dipropionate Beclovent - Beclomethasone dipropionate

Beconase - Beclomethasone dipropionate Becort - Betamethasone

Becotide - Beclomethasone dipropionate Bedoce - Cyanocobalamin

Bedocefarm - Cyanocobalamin Be-Dodec - Cyanocobalamin Bedodeka - Cyanocobalamin Bedranol - Propranoloi HCI Beducene - Dexpanthenol Beduzin - Cyanocobalamin Behepan - Cyanocobalamin Behepan - Hydroxocobalamin Belfene - Diphenylpyraline HCl

Bellasthman Medihaler - Isoproterenol sulfate

Beloc - Metoprolol tartrate

Beloderm - Betamethasone dipropionate

Belomet - Cimetide

Belseren - Clorazepate dipotassium 8emacol - Chloramphenicol Bemperil - Suloctidil

Benaciclin - Demeclocycline HCI Benacol - Dicyclomine HCl

Benadol - Diphenhydramine HCI Benadozol - Diphenhydramine HCI Benadryl - Diphenhydramine HCl Benamizol - Fluocinolone acetonide Benanzyl - Clemastine fumarate Benapon - Diphenhydramine HCI Benasin - Diphenhydramine HCI Benciclina - Methacycline Bendigon - Inositol niacinate

Bendigon - Mefruside Bendogen - Bromhexine

Bendopa - Levodopa

Bendralan - Phenethicillin potassium

Benecid - Probenecid Beneficat - Trazodone HCI

Benemicin - Rifampin Benemid - Probenecid Benemide - Probenecid

Benezrial - Guanoxabenz HCI Benhydramil - Diphenhydramine HCI

Benicil - Cloxacillin

Benisone - Betamethasone benzoate

Benlipoid - Fursultiamine Benmyo - Acetaminophen Benocten - Diphenhydramine HC!

Benodil - Flurazepam Benoral - Benorylate Benorile - Benorylate Benortan - Benorylate

Benoxil - Benoxinate Hydrochloride

Benozil - Flurazepam Bensamin - Pivampicillin Bensedin - Diazepam Benson - Medazepam Bensulfa - Sulfadimethoxine Bensylate - Benztropine mesylate Bent - Chlordiazepoxide HCI

Bentelan - Betamethasone dipropionate

Bentomine - Dicyclomine HCI

Benton - Fluorouracil Bentos - Befunoloi Bentum - Benorvlate Bentyl - Dicyclomine HCI Bentylol - Dicyclomine HCI Ben-U-Ron - Acetaminophen Benuron - Bendroflumethiazide Benuryl - Probenecid

Benusel - Ampicillin

Benusel - Ampicillin trihydrate

Benylin - Dextromethorphan hydrobromide Benylin - Diphenhydramine HCI

Benzalcan - Benzethionium chloride

Benzalin - Nitrazepam Benzamycin - Erythromycin Benzantine - Diphenhydramine HCI Benzedrex - Propythexedrine Benzehist - Diphenhydramine HCI Benzetacil-Simple · Pencillin G benzathine

Benzide - Bendroflumethiazide Benzimidon - Tolazoline Benzodiapin - Chlordiazepoxide HCI

Benzoflex - Chlorzoxazone Benzolin - Tolazoline Benzoral - Amoxicillin Benzotran - Oxazepam Bepanthene - Dexpanthenol

Bephen - α,α,α -Trifluorothymidine Beres - Protokyloi Berkfurin - Nitrofurantoin Berkolol - Propranolol HCI Berkomine - Imipramine HCI Berkozide - Bendroflumethiazide Berlicetin - Chloramphenicol Berlicetin - Chloramphenicol palmitate

Berocillin - Pivampicillin Beronald - Furosemide

Berotec - Fenoterol hydrobromide Berubi - Cyanocobalamin Berubi - Hydro xocobalamin Berubigen - Cyanocobalamin Beruhgen - Valethamate bromide Besacolin - Bethanechol chloride

Bestasone - Fluocinonide Bestcall - Cefmenoxime Betacard - Alprenolol HC! Beta-chlor - Chloral betaine Betacort - Betamethasone valerate Betacorten - Betamethasone valerate Betacortil - Betamethasone

Beta Corton - Halcinonide

Betaderm - Betamethasone valerate Betadine - Povidone-iodine

Betadine ginecologico - Povidone-iodine Beta Dival - Betamethasone valerate

Betadol - Nadolol

Betadorm A-Dimenhydrinate Betadran - Bupranolol Betadrenol - Bupranolol

Betafluorene - Betamethasone acetate Beta-Intensain - Chromonar HCI Betaisodone - Povidone-iodine Betalin - Cyanocobalamin Betaloc - Metoproloi tartrate Betalone - Betamet hasone Betalone - Meprednisone Betamac - Sulpiride

Betamamallet - Betamethasone Betanamin - Pemoline Beta-Neg - Propranolol HCI Betapam - Diazepam Betapar - Meprednisone Betapin - Alprenolol HCI Betapred - Betamethasone

Betapred - Meprednisone Betapressin - Penbutolol Betasolon - Betamethasone Beta-Tablinen - Propranolol HCI Betatrex - Betamethasone valerate Beta Val - Betamethasone valerate

Betavel - Cloxazolam Betaxina - Nalidixic acid Betazol - Betazole

Bethachorol - Bethanechol chloride

Betim - Timolol maleate Betix - Chlorthenoxazine Betnelan - Betamethasone Betnesail - Betamethasone Betnesol - Betamethasone

Betnesol - Betamethasone dipropionate Betnesol - Betamethasone valerate Betnevate - Betamethasone valerate Betnovate - Betamethasone dipropionate Betolvex - Cyanocobalamin

Betozon - Beclomethasone dipropionate Betrilol - Bunitrolol

Retriol - Bunitrolol Bevatine - Cyanocobalamin Bevidox - Cyanocobalamin Bevitol Lipophil - Fursultiamine Bexibee - Cyanocobalamin Bexil - Cvanocobalamin Bexopron - Benoxaprofen

Biadibe - Chlorpropamide Biarison - Proquazone Biazolina - Cefazolin sodium Bibocit - Cyanocobalamin

Bicarnesine - Carnitine Bicide - Lindane

Bicillin - Penicillin G benzathine

Bicol - Bisacodyl Bicolun - Dimethicone Bidocef - Cefadroxil

Bidramine - Diphenhydramine HCI

Bifiteral - Lactulose Biforon - Buformin HCl Bigunal - Buformin HCI Biklin - Amikacin Bilatox - Cephalexin Biligrafin - Iodipamide

Biligram-Meglumine salt - loglycamic acid

Bilimiro - lopronic acid Bilimiru - lopronic acid Biliopaco - Iopanoic acid Biliscopin - lotroxic acid

Bilivistan-Meglumine Salt - loglycamic acid

Billicol - Fenipentol Bilo - Chenodiol

Bilopaque - Tyropanoate sodium Bilopsyl - Iodoalphionic acid Biltricide - Praziquantel Bilyn - Florantyrone

Bimanol - Deanol acetamidobenzoate Bimaran - Trazodone HCI

Binicap - Tetracycline phosphate complex

Binograc - Clofibrate

Binomil - Chlordiazepoxide HCI

Binotal - Ampicillin

Binotal - Ampicillin trihydrate

Bio-Ampi - Ampicillin Biocefalin - Pyritinol Biocellina - Ampicillin Biocetin - Chloramphenicol

Biocheclina - Tetracycline phosphate complex

Biociclin - Cefuroxime Biocin - Fosfomycin Bio-Cortex - Hydrocortisone Biodopa - Levodopa

Biofanal - Nystatin

Bio-Flex - Orphenadrine citrate

Biofradin - Neomycin Biogan - Naphazoline Biogastron - Carbenoxolone Biogastrone - Carbenoxolone Biogen - Gentamicin sulfate Bioglumin - Chlorpropamide Biomag - Cimetide

Biomargen - Gentamicin sulfate Biomicron - Erythromycin estolate

Biomioran - Chlorzoxazone Biomit - Bisacodyl Bionacillin - Ampicillin Bionacillin-C - Cyclacillin Bioperidolo - Haloperidol Biophenicol - Chloramphenicol Bioporina - Cephalexin

Bioral - Carbenoxolone

Bioscleran - Clofibrate Bioselenium - Selenium sulfide Biosuppressin - Hydroxy urea **Biotensid** - Chlorhexidine

Bioterciclin - Demeclocycline HCI

Biotertussin - Clobutinol Biotetra - Tetracycline Bioxidona - Amoxicillin Bioxima - Cefuroxime Biphenabid - Probucol Bi-Prin - Aspirin Bisacolax - Bisacodyl

Biscolax - Bisacodyl

Biscosal - Fluocinolone acetonide Biscouron - Ethyl biscoumacetate Bisco-Zitron - Oxyphenisatin acetate Bismag-Lac - Magaldrate

Bismilla - Chlorpheniramine maleate

Bisolvanat - Erythromycin Bisolvon - Bromhexine Bi-Star - Dienestrol

Bistermin - Fonazine mesylate Bistin - Hydroxocobalamin Biston - Carbamazepine

Bistrimate - Bismuth sodium triglycollamate

Bistrium - Hexamethonium bromide

Biturix - Protokylol

Black & White - Hydroquinone Bladderon - Flavoxate HCI Blascorid - Benproperine Blastovin - Vinblastine sulfate

Bled - Ciclonicate Bleminol - Allopurinol

Blephaseptyl - Fludrocortisone acetate

Blesin - Diclofenac sodium Blocadren - Timoloł maleate Blocan - Methscopolamine bromide

Blokium - Atenolol Blox - Loperamide HCI Blutene - Tolonium chloride Bluton - Ibuprofen Bolvidon - Mianserin Bonabol - Mefenamic acid Bonafer - Ferroglycine sulfate

Bonamine - Meclizine HCI Bonapar - Phenyramidol Bonapicillin - Ampicillin Boncefin - Cefoxitin sodium Boniciclina - Mepicycline

Boniderma - Fluocinolone acetonide

Bonidon - Indomethacin Bonipress - Debrisoquin Bonjela - Choline salicylate Bonol - Pyritinol

Bonton - Lorazepam Bontourist - Dimenhydrinate Bontril - Phendimetrazine tartrate Bonumin - Diethyl propion HCI

Bon Voyage - Cyclizine Bonzol - Danazol

Bor-Cefazol - Cefazolin sodium Bornate - Isobornyl thiocyanoacetate

Boscillina - Methacycline Botrophase - Batroxobin Boutycin - Indomethacin B-Pas - Aminosalicylic acid

Bradex-Vioform - Domiphen bromide

Bradiruba - Hydroxocobalamin Brado - Domiphen bromide Bradoral - Domiphen bromide Bradosol - Domiphen bromide

Branex - Vincamine Brassel - Citicoline Braunol - Povidone-iodine Braxan - Tiadenol Brek - Loperamide HCI

Brendalit - Diethylpropion HCI Breakinase - Urokinase Breonesin - Guaifenesin Breoprin - Aspirin Bresit - Clofibrate Brethaire - Terbutaline Brethine - Terbutaline

Bretylate - Bretylium tosylate Bretylol - Bretylium tosylate Breva - Ipratropium bromide

Brevicillina - Methacycline

Brevicilina-Simple - Penicillin G Benzathine

Brevicon - Norethindrone

Brevicon - Norethindrone acetate Brevimytal - Methohexital sodium Brevital - Methohexital sodium Brexin - Methapyrilene HCI

Bricalin - Terbutaline Brican - Terbutaline Bricanyl - Terbutaline Bricex - Cefatrizine

Brietal - Methohexital sodium Brisalin - Phenyltoloxamine Brisfirina - Cephapirin sodium

Brisoral - Cephalexin

Briclin - Amikacin

Bristaciclina Retard - Tetracycline phosphate

complex

Bristacin - Rolitetracycline Bristagen - Gentamicin sulfate Bristamine - Phenyltoloxamine Bristamox - Amoxicillin Bristocef - Cephapirin sodium Bristophen - Oxacillin sodium Bristuric - Bendroflumethiazide Bristurin - Terbutaline

Bristuron - Bendroflumethiazide

Britai - Clidanac

Britagen Oral - Ampicillin

Britcin - Ampicillin

Brizin - Benapryzine hydrochloride Brizolina - Cefazolin sodium Brocadopa - Levodopa

Brocolax - Bisacodyl

Broflex - Trihexyphenidyl HCl Bromanil - Diphenhydramine HCI Brombay - Brompheniramine maleate

Bromeksin - Bromhexine Bromergon - Bromocriptine Bromethacon - Promethazine HCI Bromfed - Brompheniramine maleate Bromphen - Brompheniramine maleate

Bromphen - Guaifenesin

Bromphen - Phenylephrine HCl

Bromphen - Phenylpropanolamine HCI Bromrun - Brompheniramine mateate

Bronalide - Flunisolide Bronalin - Hexoprenaline Bronchette - Carbocysteine Bronchipect - Carbocysteine Bronchodil - Reproterol

Broncho-Grippol - Dextromethorphan

hydrobromide Bronchol - Guaifenesin

Broncholysin - Acetylcysteine Broncho-Rivo - Diphenhydramine HCI

Bronchospasmin - Reproterol Broncodeterge - Carbocysteine Broncokin - Bromhexine Broncokod - Carbocysteine Broncollenas - Albuterol

Bronco-Turbinal - Beclomethasone dipropionate

Broncovanil - Guaifenesin

Brondaxin - Choline theophyllinate

Brondecon - Guaifenesin Bronkese - Bromhexine Bronkolixir - Guaifenesin Bronkotuss - Guaifenesin Bronocon - Clorprenaline Bronosol - Bronopol

Bronsecur - Carbuterol Bronx - Zipeprol Bropicilina - Ampicillin Broserpine - Reserpine Brotacilina - Pivampicillin Brotazona - Feprazone Brotopon - Haloperidol Brovel - Eprozinol

Broxil - Phenethicillin potassium

Brufamic - Ibuprofen Brufen - Ibuprofen Brumetidina - Cimetide Brunac - Acetyl cysteine

Brunocillin - Penicillin G benzathine B-Sulfamethoxy - Sulfamethoxypyridazine

B-Twelvora - Cvanocobalamin Buburone - Ibuprofen Bucohydral - Chlormerodrin Bucosept - Hexetidine Bucumarol - Bucumolol HCI

Bufacyl - Aspirin Bufedil - Buflomedil Bufedon - Nylidrin Bufemid - Fenbufen Bufeniod - Bufeniode Buffaprin - Aspirin Buffasal - Aspirin Buffer - Tromethamine Bufonamin - Buformin HCI Bulbonin - Buformin HCI

Bumex - Bumetanide Bunosquin - Proscillaridin Buphedrin - Nylidrin Burinex - Bumetanide

Bulentin - Phenylbutazone

Burnil - Tetrahydrozoline HCI Buronil - Melitracen Butacal - Phenylbutazone

Butacote - Phenylbutazone Butadion - Phenyibutazone Butadiona - Phenylbutazone Butadyne - Phenylbutazone Butaflogin - Oxyphenbutazone

Butalan - Phenylbutazone Butalgin - Phenylbutazone Butalgina - Phenylbutazone Butaluy - Phenylbutazone Butaphen - Phenylbutazone Butaphyllamine - Ambuphylline Butapirazol - Phenylbutazone Butapirone - Oxyphenbutazone

Butarex - Phenylbutazone Butartril - Phenylbutazone Butatensin - Mebutamate Butazina - Phenylbutazone Butazolin - Phenylbutazone Butazone - Phenylbutazone Buterazine - Budralazine

Buteril - Oxyphenbutazone Buthoid - Ambuphylline Butilene - Oxyphenbutazone

Butinat - Bumetanide

Butiwas Simple - Phenylbutazone

Buto-Asma - Albuterol Butoroid - Phenylbutazone Butrex - Phenylbutazone Butylenin - Ibuprofen

Butylone - Pentobarbitol sodium Bydolax - Oxyphenisatin acetate Bykomycetin - Spiramycin

Bykomycin - Neomycin

Cabadon M - Cyanocobalamin Caberdelta - Methylprednisolone

Caberdelta - Prednisolone

Caberdelta - Prednisolone phosphate sodium

Cabermox - Amoxicillin Cabral - Phenyramidol Cacholitin - Carbachol Cactiran - Piperidolate Cafenolo - Chloramphenicol Cafide - Butofilolol Cafilon - Phenmetrazine Calan - Verapamil

Calcamine - Dihydrotachysterol

Calcimar - Calcitonin Calcipen - Penicillin V Calcitar - Calcitonin

Calcitonin-Sandoz - Calcitonin

Calcolise - Chenodiol Calderol - Calcifediol Calmador - Zomepirac

Calmansial - Fluphenazine HCI

Calmasan - Dextromethorphan hydrobromide

Calmazine - Trifluoperazine

Calmerphan-L - Dextromethorphan hydrobromide

Calmocin - Indomethacin Calmonal - Meclizine HCI Calmotal - Promazine HCI Calmo Yer - Aspirin Calmpose - Diazepam Calm-X - Dimenhydrinate Calodal - Mesoridazine besylate

Calpol - Acetaminophen Calsekin - Fonazine mesylate Calsyn - Calcitonin

Calsynar - Calcitonin Calthor - Cyclacillin Calurin - Carbaspirin calcium Camaldin - Clobutinol Cambiex - Bumetanide Camoform HCI - Bialamicol Camoquin - Amodiaquin Camoquin HCI - Amodiaquin Campain - Acetaminophen Canazepam - Diazepam Cancycline - Tetracycline Candeptin - Candicidin Canderel - Aspartame Candex - Nystatin

Candio-Hermal - Fluprednidene acetate

Candio-Hermal - Nystatin Canesten - Clotrimazole Caniramine - Rescinnamine Canquil - Meprobamate Cantharone - Salicylic acid Cantil - Mepenzolate bromide Cantilon - Mepenzolate bromide

Candimon - Candicidin

Cantor - Minaprine

Capastat - Capreomycin sulfate

Capen - Tiopronin Capilan - Cyclandelate Capistar - Cyclandelate Capisten - Ketoprofen Capla - Mebutamate Caplenal - Allopurinol Capoten - Captopril

Capracid - Aminocaproic acid Capralense - Aminocaproic acid Capramol - Aminocaproic acid

Caprin - Aspirin Caprinol - Mefruside Caprinol - Methyldopa Caprodat - Carisoprodol

Caprogen Depot - Hydroxyprogesterone caproate Caprolisin - Aminocaproic acid

Caprysin - Clonidine HCI Captagon - Fenethylline HCI Captol - Oxprenolol Captoril - Captopril Capurate - Allopurinol

Capusumine - Aminocaproic acid

Caradrin - Proscillaridin Carafate - Sucralfate Carbacel - Carbachol Carb-A-Med - Meprobamate Carbametin - Methocarbamol Carbamiotin - Carbachol Carbapen - Carbenicillin disodium

Carbatona - Pyridinol carbamate Carbecin - Carbenicillin disodium Carbilcolina - Chenodiol

Carbocaina - Menadiol sodium phosphate

Carbocit - Carbocysteine Carboraine - Mepivacaine Carbostesin - Bupivacaine Carbuten - Mebutamate Carbyl - Carbachol Carcholin - Carbachol

Cardec - Carbinoxamine maleate

Cardec - Dextromethorphan hydrobromide Cardiacap - Pentaerythritol tetranitrate Cardibeltin - Verapamil

Cardilan - Isoxsuprine HCI Cardimarin - Proscillaridin Cardina - Timolol maleate Cardinol - Propranolol HCI Cardio-10 - Isosorbide dinitrate Cardiocap - Chromonar HCI Cardiol - Practolol Cardiolan - Medigoxin Cardiolidin - Proscillaridin Cardiolipol - Niceritrol Cardion - Proscillaridin

Cardional - Prenylamine

Cardioquin - Quinidine polygalacturonate Cardioquine - Quinidine polygalacturonate Cardioserpine - Reserpine

Cardis - Isosorbide dinitrate Cardizem - Diltiazem HCI Cardomerin - Silymarin Cardon - Proscillaridin Cardopax - Isosorbide dinitrate Cardoxin - Dipyridamole Cardrase - Ethoxzolamide Carduben - Visnadine Carecin - Cinnarizine Carfonal - Floredil HCI Caricef - Cefazolin sodium Caridan - Oxyphencyclimine

Caridolol - Propranolol HCI Carindapen - Carbenicillin disodium Carindapen - Carbenicillin indanyl sodium

Carisol - Carisoprodol Carisoma - Carisoprodol Carloxan - Cyclophosphamide Carlytene - Moxisylyte Carmol - Hydrocortisone Carn - Carnitine

Carnetina - Carnitine Carnitan - Carnitine Carnitene - Carnitine Carnitolo - Carnitine Carotaben - \(\beta\)-Carotene

Carphenamine - Diphenhydramine HCI

Cartagyl - Clofibrate

Cartoma - Trimetazidine Cartric - Rescinnamine Carudol - Phenylbutazone Carvacron - Trichlormethiazide Carvanil - Isosorbide dinitrate Carvasin - Isosorbide dinitrate Carxamin - Tranexamic acid Carxin - Methocarbamol Carzonal - Fluorouracil Casmalon - Cyclarbamate Caspapride - Bromopride

Caspiselenio - Selenium sulfide Casprium - Aspirin Castilium - Clobazam Catalgine - Aspirin Catanil - Chlorpropamide Catapres - Clonidine HCI Catapresan - Clonidine HCI Cateudyl - Methaqualone

Cathalin - Bisacodyl

Cathejell - Diphenhydramine HCl Cathomycin - Novobiocin Cathomycine - Novobiocin Catiazide - Hydrochlorothiazide

Catilan - Chloramphenicol Catron - Pheniprazine Catroniazide - Pheniprazine Caudaline - Ticlopidine HCI Caytine - Protok vlo! CDP-Choline - Citicoline Ceaclan - Cyclandelate

Cebedex - Dexamethasone phosphate Cebefrasone - Dexamethasone phosphate

Cebenicol - Chloramphenicol

Cebera - Alibendol

Cebesine - Benoxinate hydrochloride Cebrum - Chlordiazepoxide HCI

Cebutid · Flurbiprofen Cecior - Cefacior

Cedad - Benacty zine hydrochloride

Cedin - Isoniazid Cedocard - Isosorbide dinitrate

Cedo! - Cefamandole nafate sodium salt

Cedrox - Aspirin Ceduran - Nitrofurantoin Ceetamol - Acetaminophen Cefabena - Cephaloridine Cefabiot - Cephaloridine Cefabiot oral - Cephalexin Cefacene - Cefazolin sodium Cefacidal - Cefazolin sodium Cefaclox - Cephaloridine

Cefadina - Cephalexin Cefadros - Cephalexin Cefadyl - Cephapirin sodium Cefa-Iskia - Cephalexin Cefa-Lak - Cephapirin sodium Cefaleh Ina - Cephalexin Cefalekey - Cephalexin Cefalescord - Cephaloridine Cefalex-Gobens - Cephalexin Cefalisan - Cephaloridine

Cefalival - Cephalexin

Cefalobiotic - Cephaloridine Cefalogen - Pyritinol Cefalogobens - Cephaloridine Cefalomicina - Cefazolin sodium Cefalomiso - Cephaloridine

Cefaloto - Cephalexin

Cefam - Cefamandole nafate sodium salt

Cefamar - Cefuroxime Cefamedin - Cefazolin sodium Cefamezin - Cefazolin sodium Cefamid - Cephradine Cefamusel - Cephaloridine Cefa-Reder - Cephalexin Cefaresan - Cephaloridine Cefatrex - Cephapirin sodium Cefatrexil - Cephapirin sodium Cefatrexyl - Cephapirin sodium Cefatrix - Cefatrizine Cefaxicina - Cefoxitin sodium

Cefaxin - Cephalexin Cefazina - Cefazolin sodium Cefibacter - Cephalexin Cefizox - Ceftizoxime Ceflon - Cephalexin Ceflor - Cephalexin Ceflorin - Cephaloridine

Cefman - Cefamandole nafate sodium salt

Cefobid - Cefoperazone Cefobine - Cefoperazone Cefobis - Cefoperazone Cefoctin - Cefoxitin sodium

Cefol - Folic acid

Cefoperazin - Cefoperazone Cefoprim - Cefuroxime Ceforal - Cephalexin Cefos - Cefadroxil Cefosan - Cephradine Cefotax - Cefotaxime sodium Cefradex - Cephradine Cefrag - Cephradine Cefro - Cephradine Cefrum - Cephradine Ceftix - Ceftizoxime

Cefumax - Cefuroxime Cefur - Cefuroxime Cefurex - Cefuroxime Cefurin - Cefuroxime Cefurox - Cefuroxime Celbenin - Methicillin sodium

Celestamine - Dexchlorpheniramine maleate

Celestan - Betamethasone Celestan - Betamethasone valerate Celestene - Betamethasone

Celestoderm - Betamethasone valerate

Celestone - Betamethasone

Celestone Cronodose - Betamethasone acetate Celestone Soluspan - Betamethasone acetate

Celex - Cephradine Celfuron - Mecillinam Cellidrin - Allopurinol Celluzyme - Simethicone Celmetin - Cefazolin sodium Celontin - Methsuximide Celospor - Cephacetrile sodium Celpillina - Methicillin sodium

Celtol - Cephacetrile sodium

Cemado - Cefamandole nafate sodium salt Cemandil - Cefamandole nafate sodium salt

Cemerit - Aspirin Cemidon - Isoniazid Cen-Apap - Acetaminophen Cenaride - Praziquantel

Cendex - Dextroamphetamine sulfate Cenocort - Triamcinolone diacetate Cenomicin - Cefoxitin sodium Censtim - Imipramine HCI Centractiva - Vincamine Centralgin - Meperidine HCI

Centralgol - Proxibarbal Centrax - Prazepam

Centrine - Aminopentamide Centrolyse - Butriptyline Centyl - Bendroflumethiazide

Ceolat - Dimethicone Ceosunin - Ceruletide

Cepacilina - Penicillin G benzathine Cepaloridin - Cephaloridine

Cepatorin - Cephaloridine Cepaverin - Papaverine monophosadenine

Cepexin - Cephalexin Cephadol - Diphenidol Cephalmin - Thioproperazine Cephaloject - Cephapirin sodium Cephalomax - Cephalexin Cephalotin - Cephalothin sodium Cephamox - Cefadroxil Cephation - Cephalothin sodium

Cephazal - Cephalexin Cephulac - Lactulose Cepidan - Cyclandelate Cepol - Cephalexin

Ceporacin - Cephalothin sodium Ceporan - Cephaloridine Ceporex - Cephalexin Ceporin - Cephaloridine

Cepoven - Cephalexin Cepovenin - Cephalothin sodium Ceproduc - Cephaloridine Ceprorexine - Cephalexin Cepticol - Cefatrizine CER - Cephaloridine Cerachidol - Diphenidol

Cerase - Medazepam Cercine - Diazepam Cereb - Citicoline Cerebolan - Cinnarizine Cerebro - Suloctidil Cerebropirina - Pyritinol Cerebrotrofina - Pyritinol Ceredopa - Levodopa Ceregulart - Diazepam Ceregut - Citicoline

Cerepar - Cinnarizine Cerespan - Papaverine monophosadenine

Cero-Aterin - Cinnarizine Cerocral - Ifenprodil tartrate Cero-O-Cillin - Penicillin O Ceroxime - Cefuroxime Cerrosa - Diphenidol Cerson - Flumethasone Cerson - Nitrazepam

Certomycin · Netilmicin Cerubidin - Daunorubicin Cerubidine - Daunorubicin Cerucal - Metoclopramide HCI

Cerulex - Ceruletide Cervilaxin - Relaxin Cervitalin - Pyritinol

Cervoxan - Deanol acetamidobenzoate

Cesal - Isometheptene

Cesamet - Nabilone Cesametic - Nabilone Cesol - Praziquantel Cesporan - Cephradine CET - Cephalothin sodium Cetadol - Acetaminophen Cetal - Chlorhexidine Cetal - Vincamine

Cetampin - Ampicillin trihydrate Cevanol - Benactyzine hydrochloride

Cevi-Fer - Folic acid CEX - Cephalexin C-Film - Nonoxynol Chamionil - Sulpiride Chebutan - Kebuzone Cheladrate - Edetate disodium

Chel-Iron - Ferrocholinate Chelobil - Chenodiol Chembutamide - Tolbutamide Chembuzone - Phenylbutazone Chemcetaphen - Acetaminophen Chemdipoxide - Chlordiazepoxide HCI Chemflurazine - Trifluoperazine

Chemhydrazide - Hydrochlorothiazide Chemicetina - Chloramphenicol Chemicoline - Chenodiol Chemiofuran - Nitrofurantoin Chemiofurin - Nitrofurantoin Chemiosalfa - Sulfadimethoxine Chemiphen - Phenethicillin potassium Chemipramine - Imipramine HCI Chemiurin - Nalidixic acid

Chemochin - Chloroquine phosphate Chem-O-Dine - Povidone-iodine Chemolase - Chymopapain Chemoreptin - Imipramine HCI Chemosporal - Cephalexin

Chemthromycin - Erythromycin estolate

Chemyparin - Heparin Chemyzin - Chloramphenicol Chenar - Chenodiol Chendal - Chenodiol

Chendix - Chenodiol Chendol - Chenodiol Chenix - Chenodiol Chenoacid - Chenodiol Chenocol - Chenodiol Chenodecil - Chenodiol Chenodex - Chenodiol Chenofalk - Chenodiol Chenomas - Chenodiol Chenossil - Chenodiol Chenotar - Chenodiol Cheratil - Idoxuridine Chetazolidine - Kebuzone Chetopir - Kebuzone

Chevita C-10 - Chlortetracycline

Chibro-Cardon - Dexamethasone phosphate

Chibro-Timoptol - Timolol maleate

Chiclida - Meclizine HCI Chinofungin - Tolnaftate Chinosicc - Chlorquinaldol Chinotiol - Chlorquinaldol Chinotoxin - Viquidil Chioeban - Pyritinol

Chetosol - Kebuzone

Chionaryl - Clemastine fumarate

Chitacillin - Amoxicillin

Chlo-Amine - Chlorpheniramine maleate Chlodamine - Chlorpheniramine maleate Chlomedinon - Chlormezanone Chlomic J - Thiamphenicol Chlomin - Chloramphenicol

Chlopolidine - Trichlormethiazide Chloractil - Chlorpromazine HCI

Chloramate - Chlorpheniramine maleate Chlorambon - Chloramphenicol palmitate

Chloramex - Chloramphenicol Chloramidane - Chloramphenicol Chloramin - Chlorpheniramine maleate Chloraminophene - Chlorambucil

Chloramol - Chloramphenicol

Chloramphenicol-POS - Chloramphenicol

Chlorasol - Chloramphenicol Chlora-Tabs - Chloramphenicol Chlorazin - Chlorpromazine HCI Chlordiazachel - Chlordiazepoxide HCI Chlor-Hab - Chlorpheniramine maleate

Chlorhexamed - Chlorhexidine Chloricol - Chloramphenicol

Chlor-Mal - Chlorpheniramine maleate Chlormene - Chlorpheniramine maleate

Chlornitromycin - Chloramphenicol Chlorocain - Menivacaine

Chlorocid - Chloramphenicol Chlorohex - Chlorhexidine

Chloromisol - Chloramphenicol palmitate

Chloromycetin - Chloramphenicol

Chloromycetin - Chloramphenicol palmitate

Chloronase - Chlorpropamide Chloronitrin - Chloramphenicol Chloroptic - Chloramphenicol Chlorosal - Chlorothiazide Chloroserpine - Chlorothiazide Chloroserpine - Reserpine

Chloroton - Chlorpheniramine maleate Chlorphen - Chlorpheniramine maleate Chlorpromados - Chlorpromazine HCI Chlor-Promanyl - Chlorpromazine HCl Chlorprom-Ez-Ets - Chlorpromazine HCI

Chlor-PZ - Chlorpromazine HCI Chlorsig - Chloramphenicol

Chlor-Tel - Chlorpheniramine maleate

Chlortet - Chlortetracycline

Chlor-Trimeton - Chlorpheniramine maleate

Chlortrone - Chlorpheniramine maleate Chlorzide - Hydrochlorothiazide

Chlotride - Chlorothiazide Chlozoxine - Chlorzoxazone

Cholasa - Chenodiol

Chole-Contrast - Iopanoic acid Cholecyl - Choline theophyllinate Choledyl - Choline theophyllinate Cholegyl - Choline theophyllinate

Cholenal - Clofibrate Cholesolvin - Simfibrate Cholesorbin - Simfibrate Cholesrun - Clofibrate Cholestex - Chenodiol Cholestol - Clofibrate

Choletrast - Iodoalphionic acid Cholexamine - Nicomol Cholibil - Trepibutone Cholinfall - Methixene HCI Cholipin - Fenipentol Cholografin - Iodipamide Chologram - lotroxic acid Cholonorm - Chenodiol

Chophyllin - Choline theophyllinate Chothyn - Choline dihydrogen citrate Chronogyn - Danazol Chronulac - Lactulose Chroxin - Chlorzoxazone Chrysocin - Oxytetracycline Chrysomycin - Chlortetracycline Chrytemin - Imipramine HCI Chymex - Bentiromide Chymodiactin - Chymogapain

Ciatyl - Clopenthixol Cibacalcin - Calcitonin

Cibelon - Carbinoxamine maleate

Cicatrex - Bacitracin Ciclobiotic - Methacycline

Cicloblastina - Cyclophosphamide

Ciclocetam - Piracetam

Cicloestradiolo - Estradiol cypionate

Ciclofalina - Piracetam Ciclolux - Cyclopentolate HCI Cicloplegic - Cyclopentolate HCI

Ciclosterone - Testosterone 17β -cypionate

Ciclovalidin - Cycloserine Cicloven - Pyridinol carbamate Ciclum - Methacycline Cidalgon - Indomethacin Cidanamox - Amoxicillin Cidanbutol - Ethambutol HCI Cidançaina - Lidocaine Cidan-Cef - Cephaloridine

Cidanchin - Chloroquine phosphate

Cidandopa - Levodopa Cidan-Est - Streptomycin Cidifos - Citicoline

Cidomycin - Gentamicin sulfate Cilicaine - Penicillin G procaine

Cilicef - Cephaloridine Cilicef Oral - Cephalexin Cilleral - Ampicillin Cillimicina - Lincomycin Cillimycin - Lincomycin Cimetag - Cimetide

Cimetrin - Erythromycin estolate Cimetrin - Erythromycin stearate

Cimetum - Cimetide

Cimexillin - Ampicillin trihydrate Cinalone - Triamcinolone diacetate

Cinamet - Cimetide Cinaperazine - Cinnarizine Cinazin - Cinnarizine Cinazyn - Cinnarizine Cinco-Fu - Fluorouracil

Cincomil Bedoce - Cyanocobalamin

Cincuental - Vincamine Cinnabene - Cinnarizine Cinnacet - Cinnarizine Cinnageron - Cinnarizine Cinnaloid - Rescinnamine Cinnamin - Apazone Cinnipirine - Cinnarizine

Cino-40 - Triamcinolone diacetate

Cinobac - Cinoxacin Cinobact - Cinoxacin Cinobactin - Cinoxacin Cinolone - Triamcinolone

Cinonide - Triamcinolone acetonide

Cinopal - Fenbufen Cinulcus - Cimetide Cin Vis - Isoniazid Ciponium - Cephalexin Cipractin - Cyproheptadine Cipro - Cyproheptadine

Circle-One - Cyclandelate Circleton - Suloctidil

Circulan - Xanthinol niacinate

Circularina - Piribedil Circulat - Cyclandelate

Circupon - Etilefrine pivalate HCI

Cisordinol - Clopenthixol Cistal - Trimethoprim Cistobil - Iopanoic acid Cistofuran - Nitrofurantoin Cistoplex - Florantyrone Citanest - Prilocaine HCI Citatrin - Bacitracin Citexal - Methaqualone Citicel - Cephradine

Citicil - Ampicillin trihydrate

Citicil - Ampicillin

Citidol - Diflunisal Citiflus - Clofibrate Citilat - Nifedipine Citiolase - Citiolone Citireuma - Sulindac Citius - Cimetide Citizeta - Zipeprol Citocilina - Cyclacillin Citofur - Tegafur Citoliver - Cyclobutyro! Cito-Optadren - Lidocaine Citosarin - Cyclacillin

Citosol - Thiamylal Citoxid - Nafronyl oxalate Citra - Methapyrilene HCI

Citra Forte - Pheniramine maleate

Citra Forte - Pyrilamine

Citrocholine - Choline dihydrogen citrate

Citrullamon - Phenytoin Civent - Cimetide Clafanone - Airofanone Clafanone - Erythromycin Claforan - Cefotaxime sodium

Clamox - Amoxicillin Clamoxyl - Amoxicillin Claradin - Aspirin Claragine - Aspirin Claresan - Clofibrate Clarex - Cyanocobalamin Claripex - Clofibrate Clariprin - Aspirin Clarmyl - Clobazam Clarol - Clofibrate

Classen - Mercaptopurine

Clavidene - Lidoflazine Cleamine - Cyclizine Clear-Aid - Hydrocortisone Clearane - Heparin Cleiton - Hydrocortisone

Clemanil - Clemastine fumarate

Cleniderm - Beclomethasone dipropionate Clenil - Beclomethasone dipropionate

Cleocin - Clindamycin HCI Clera - Naphazoline Cleridium - Dipyridamole Clevamin - Inositol niacinate Climaterine - Methyltestosterone Climatone - Methyltestosterone

Climinon - Clofibrate Clinicaine - Lidocaine Clinidine - Povidone-iodine Clinimycin - Oxytetracycline Clinium - Lidoflazine

Clinodilat - Benfurodil hemisuccinate

Clinoril - Sulindac

Clistin - Carbino xamine maleate

Cloberat - Clafibrate Clobesol - Clobetasol Clobrat - Clofibrate Clobrate - Clofibrate Clobren - Clofibrate Clocil - Dicloxacillin sodium Clodil-Ion - Metoclopramide HCI

Clof - Clofibrate Clofbate - Clofibrate Clofekton - Clocapramine Clofibral - Clofibrate Clofinit - Clofibrate Clofipront - Clofibrate Clofirem - Clofibrate

Clomid - Clomiphene dihydrogen citrate

Clomin - Dicyclomine HCI

Clomivid - Clomiphene dihydrogen citrate

Clonex - Clonazepam Clonilou - Clonidine HCI Clonisin - Clonidine HCl Clonnirit - Clonidine HCI Clonopin - Clonazepam Clont - Metronidazole

Clopamon - Metoclopramide HCI Clopan - Metoclopramide HCI Clopane - Cyclopentamine HCI Clopax - Clobazam

Clopinerin - Clorprenaline Clopixol - Clopenthixol Clorbiotina - Chioramphenicol Clordiabet - Chlorpropamide Clordiasan - Chlorpropamide Clorevan - Chlorpheno xamine HCI Clorochina - Chloroquine phosphate Clorofenicina - Chloramphenicol Cloro-Hipoglucine - Chlorpropamide Clorosintex - Chloramphenicol Clorotrisin - Chlorotrianisene Clorten - Chlorpheniramine maleate Clorteta - Chlortetracycline

Clortetrin - Demeclocycline HCl

Clospor - Cephacetrile sodium Clostilbegyt - Clomiphene dihydrogen citrate

Clothia - Hydrochlorothiazide Clothixen - Chlorprothixene Clotride - Chlorothiazide Cloxan - Chlorprothixene Cloxypen - Cloxacillin Clozaril - Clozapine

Clupen - Floxacillin C-Meton - Chlorpheniramine maleate Coaxin - Cephalothin sodium Cobadex - Hydrocortisone Cobalamin H - Hydroxocobalamin Cobalcina - Cephaloridine Cobalidrina - Hydroxocobalamin Cobalomin - Cyanocobalamin Cobalparen - Cyanocobalamin

Cobalvit - Hydroxocobalamin Cobantrin - Pyrantel pamoate Cobavite - Cyanocobalamin Coben - Picoperine

Cobione - Cyanocobalamin Cocavitan - Cyanocobalamin Coco-Diazine - Sulfadiazine

Codalgina - Aspirin

Codelcortone TBA - Prednisolone tebutate

Codelsol - Prednisolone phosphate sodium

Coderma - Fluocinolone acetonide

Codesin-F - Butamirate citrate

Codilax - Bisacodyl

Codimal - Dextromethorphan hydrobromide

Codimal - Phenylephrine HCI

Codimal - Phenylpropanolamine HCI

Codimal - Pyrilamine

Codipront - Phenyltoloxamine Coeurophylline - Dyphylline

Co-Fluosin - Fluocinolone acetonide

Cogentin - Benztropine mesylate Cogentine - Benztropine mesylate

Cogentinol - Benztropine mesylate Colbenemid - Probenecid

Coldan - Naphazoline Coldrin - Cinnarizine Coleb - Prenalterol Colectril - Amiloride HCI Coleflux - Piprozolin

Colegraf - Iopanoic acid Colesterinex - Pyridinol carbamate

Colestid - Colestipol

Colfarit - Aspirin

Colibantil - Megenzolate bromide Colicitina - PhthalyIsulfathiazole Colifossim - Cefuroxime Colimone - Cromolyn sodium

Colimycin - Chloramphenicol palmitate

Coliopan - Butropium bromide

Colircusi Aureomicina - Chlortetracycline

Colircusi Ciclopejico - Cyclopentolate HCI

Colircusi Virucida - Idoxuridine

Colirio Anestesico - Benoxinate hydrochloride

Colisone - Prednisone

Colistatin - SuccinyIsulfathiazole

Colite - Citicoline Colivan - Furazolidone

Collu-Blache - Benoxinate hydrochloride

Collu-Hextril - Hexetidine

Collyrium - Tetrahydrozoline HCI

Colofac - Mebeverine HCI Colo-Pleon - Sulfasalazine Colorin - Chlophedianol Colpro - Medrogestone Colpron - Medrogestone Colprone - Medrogestone Colsamine - Hydroxocobalamin

Colstamin - Rescinnamine Coltericin - Bekanamycin sulfate

Coltix - Piromidic acid Colum - Mepenzolate bromide

Colupressine - Felypressin

Colvasone - Dexamethasone phosphate

Combantrin - Pyrantel pamoate Combid - Isopropamide iodide Combid - Prochlorperazine Combinenix - Ampicillin

Combinenix - Dicloxacillin sodium Combo Pen - Pralidoxime chloride

Comelian - Dilazeo HCI

Co-Metampicil - Metampicillin sodium

Comhist - Phenylephrine HCI Comoxol - Sulfamethoxazole Comoxol - Trimethoprim Compazine - Prochlorperazine Compedium - Bromazepam Complamex - Xanthinol niacinate Complamin - Xanthinol niacinate Compleciclin - Demeclocycline HCI Compocillin - Penicillin G hydrabamine Compocillin-V - Penicillin V hydrabamine Compound W - Salicylic acid

Comtrex - Dextromethorphan hydrobromide

Comtrex - Phenylpropanolamine HCI Conceplan - Mestranoi

Conceplan - Norethindrone

Conciclina - Tetracycline phosphate complex

Concordin - Protriptyline Concordine - Protriptyline Condition - Diazepam Conducton - Carazolol Conflictan - Oxaflozane HCI Confortid - Indomethacin

Congespirin - Dextromethorphan hydrobromide

Congespirin - Phenylephrine HCI Congespirin - Phenylpropanolamine HCI

Congess - Guaifenesin Congex - Naproxen

Conjuncain - Benoxinate hydrochloride

Conofite - Miconazole nitrate Conova - Ethynodiol diacetate Conovid - Mestranol Conray - lothalmate meglumine Conselt - Clorprenaline

Constaphyl - Dicloxacillin sodium Constrilia - Tetrahydrozoline HCI Consulid - Sulfachlorpyridazine Contac - Methapyrilene HCI

Contalax - Bisacodyl Contamex - Ketazolam

Contenton - Amantidine HCI Contomin - Chlorpromazine HCI Contrathion - Pralidoxime chloride

Contratuss - Dextromethorphan hydrobromide

Contrauto - Trimethobenzamide HCI

Contraxin - Jodamide Contrazole - Zoxazolamine Contrheuma-Retard - Aspirin

Contristamine - Chlorphenoxamine HCI

Contrix - lothalmate meglumine Control - Chlordiazepoxide HCI

Control - Lorazepam

Control - Phenylpropanolamine HCI Control-Om - Mephenoxalone Contromet - Metoclopramide HCI Contumax - Picosulfate sodium

Convertal - Oxazolam Convuline - Carbamazepine Coolspan - Sulpiride

Coopaphene - Hexachlorophene

Coparogin - Tegafur Copharcilin - Ampicillin Copharian - Tetracycline Copharoxy - Oxytetracycline Copharvit - Cyanocobalamin Copirene - Kebuzone

Co-Pivam - Pivampicillin Copormin - Chlorpromazine HCI Coprobate - Meprobamate

Copsamine - Pyrilamine Co-Pyronil - Methapyrilene HCI Co-Pyronil - Pyrrobutamine

Coral - Nifedipine Corathiem - Cinnarizine

Corbutyl - Amodiaguin Cordarexne - Amiodarone HCI Cordarone - Amiodarone HCI Cordarone X - Amiodarone HCI

Cordel - Betamethasone valerate

Cordes F - Fluocinolone acetonide

Cordes-Vas - Tretinoin Cordexol - Oxyprenoiol Cordil - Isosorbide dinitrate Cordilox - Verapamil

Corditin-Same - Prenylamine Cordium - Bepridil Cordol - Prednisolone Cordran - Flurandrenolide Coredamin - Prenylamine Corenalin - Citicoline Coretal - Oxprenolol Corflazine - Lidoflazine

Corgard - Nadolol Coribon - Dipyridamole

Corigast - Propantheline bromide Corindolan - Mepindolol

Corinfar - Nifedipine Coritat - Norfenefrine Corivanil - Ethamivan Corizone-5 - Hydrocortisone

Corluton Depot - Hydroxyprogesterone caproate

Cormelian - Dilazeo HCI

Cornilat - Isosorbide dinitrate Coronamole - Dipyridamole Coronanyl - Trimetazidine Coronarine - Dipyridamole Corosan - Dipyridamole Corotrend - Propranolol HCI Corovliss - Isosorbide dinitrate

Coroxin - Dipyridamole Corphos - Hydrocortisone sodium phosphate

Corphyllin - Dyphylline Corpormon - Somatotropin Corsodyl - Chlorhexidine Cortalar - Fluocinolone acetonide Cortalfa - Methylprednisolone Cortalone - Prednisolone Cortan - Prednisone Cortanal - Hydrocortisone

Cortancyl - Prednisone

Cortcetine - Dexamethasone phosphate

Cort-Dome - Hydrocortisone Cortef - Hydrocortisone Cortenema - Hydrocortisone Cortes - Hydrocortisone Cortesal - Hydrocortisone Cortialper - Prednisone Corti-Bi - Meprednisone Corticaine - Hydrocortisone

Corticoderm - Fluprednidene acetate Cortidene - Paramethasone acetate Cortiderma - Fluocinolone acetonide Cortide Tape - Flurandrenolide

Cortiespec - Fluocinolone acetonide Cortifair - Hydrocortisone

Cortifan - Hydrocortisone Cortilet - Fluorometholone Cortiment - Hydrocortisone Cortineff - Fludrocortisone acetate Cortinovus - Triamcinolone

Cortiphate - Fluocinolone acetonide

Cortiphate - Hydrocortisone

Cortiphate - Hydrocortisone sodium phosphate

Cortipred - Prednisolone acetate Cortisdin - Fluorometholone Cortisolone - Prednisolone Cortisporin - Hydrocortisone Cortisporin - Neomycin Cartisparin - Polymyxin

Cortispray - Hydrocortisone Cortoderm - Fluocinolone acetonide

Cortofludan - Ciclonicate Cortolotion - Hydrocortisone Cortone acetate - Cortisone acetate

Cortril - Hydrocortisone Cortussin - Guaifenesin Corutrol - Guaifenesin

Coryban-D - Phenylpropanolamine HCI Coryban - Guaifenesin

Coryban - Phenylephrine HCI

Coryban D - Dextromethorphan hydrobromide

Coryphen - Aspirin

Cosilone - Prednisolone

Cosmegen - Dactinomycin

Corvzin - Xvlometazoline HCI Corzepin - Perhexiline sulfate Corzide - Bendroflumethiazide Corzide - Nadolol

Cosmoline - Clorprenaline Cosulfa - Sulfachlorpyridazine Cosuric - Allopurinol Cothera - Dimethoxanate Cotinazin - Isoniazid Cotolone - Prednisolone Cotrane - Dimethoxanate Cotrim - Sulfamethoxazole Cotrim - Trimethoprim

Cotuxinf - Chlorpheniramine maleate

Co-Tylenol - Dextromethorphan hydrobromide Co-Tylenol - Phenylpropanolamine HCl

Coughcon - Dextromethorphan hydrobromide Coumadin - Warfarin sodium Coumadine - Warfarin sodium

Covantine - Captodiamine Covatix - Captodiamine Coxigon - Benoxaprofen Cozyme - Dexpanthenol Crapinon - Piperidolate Crastnitin - Asparaginase

Cremacoat - Dextromethorphan hydrobromide

Cremacoat - Guaifenesin

Cremacoat - Phenylpropanolamine HCI

Cremesone - Hydrocortisone Cremocort - Triamcinolone acetonide

Cremomethazine - Sulfamethazine Cremosuxidine - Succinyl sulfathiazole Creosidin - Bromazepam

Crepasin - Prenylamine Crescormon - Somatotropin Cretonin - Trichlormethiazide Critin - Pentapiperide methosulfate Crino-Hermal - Fluprednidene acetate

Crinuryl - Ethacrynic acid Crisamicin - Oxytetracycline Crisbiotic - Pivampicillin Crispin - Tramadol HCI Cristovin - Vincristine sulfate Critichol - Fenipentol Critifib - Bretylium tosylate

Cromedazine - Chlorpromazine HCI Cromene - Chromomar HCI Cromezin - Cefazolin sodium Cromo-Asma - Cromolyn sodium Cromosil - Carbazochrome Cromoxin - Carbazochrome Cronil - Ectylurea

Cronoformin - Phenformin Cronol - Silymarin Crotamitex - Crotamiton

Crotan - Crotamiton

Crozinal - Sulfadimethoxine Cruex - 4-Chloro-3.5-xylenol

Crylene - Pentapiperide methosulfate

Cryptocillin - Oxacillin sodium Crystamin - Cyano cobalamin Crystoserpine - Reserpine C-Quens - Mestranol

CTC Solube - Chlortetracycline

Cuantin - Betamethasone Cuprenil - Penicillamine Cuprimine - Penicillamine Cupripen - Penicillamine Curantyl - Dipyridamole Curaresin - Mephenesin

Curarin - Tubocurarine chloride Curban - Dextroamphetamine sulfate

Cur-Men - Methallenestril Curocef - Cefuroxime Curoxime - Cefuroxime

Curretab - Medroxyprogesterone acetate

Cusicrom - Cromolyn sodium Cusigel - Flucinonide Cusimolol - Timolol maleate Cusisporina - Cephaloridine

Cutinolone - Triamcinolone acetonide

Cutisan - Triclocarban

Cyanabin - Cyanocobalamin Cvano-Gel - Cvanocobalamin Cyanovit - Cyanocobalamin Cyantin - Nitrofurantoin Cyasorb - Sulisobenzone Cybis - Nalidixic acid Cycladiene - Dienestrol Cyclaine - Hexylcaine HCI

Cyclan - Cyclandelate Cyclan-Cap - Cyclandelate Cyclansato - Cyclandelate Cyclapen - Cyclacillin Cycleat Cap - Cyclandelate Cyclidox - Doxycycline Cyclobec - Dicyclomine HCI

Cyclobral - Cyclandelate Cyclo-C - Amcitabine HCI Cyclocide - Cytarabine HCI Cyclocort - Amcinonide

Cycloestrol - Hexestrol Cyclogyl - Cyclopentolate HCl

Cyclolyt - Cyclandelate Cyclomen - Danazol

Cyclomydrin - Cyclopentolate HCl Cyclonaranol - Cyclopentamine HCl

Cyclopen - Cyclopentolate Cyclopentol - Cyclopentolate HCI Cyclospasmol - Cyclandelate Cyclostin - Cyclophosphamide Cycloteriam - Cyclothiazide

Cycmin - Oxyphencyclimine Cycnate - Inositol niacinate

Cyfos - Ifosfamide

Cyklokapron - Tranexamic acid Cykobemin - Cyanocobatamin Cylert - Pemoline

Cylphenicol - Chloramphenicol

Cymbi - Ampicillin trihydrate Cyplegin - Cyclopentolate HCI Cypromin - Cyproheptadine

Cyprostat - Cyproterone acetate

Cyral - Primidone

Cyredin - Cyanocobalamin

Cyren A - Diethylstilbestrol Cyrpon - Meprobamate Cyscholin - Citicoline Cysten - Cinnarizine

Cystit - Nitrofurantoin

Cysto-Conray - Iothalmate meglumine Cystokon - Acetrizoate sodium Cytadren - Aminoglutethimide Cytakon - Cyanocobalamin Cytamen - Cyanocobalamin Cytinium - Cyclobutyrol

Cytobin - Liothyronine Cytobion - Cyanocobalamin

Cytofol - Folic acid Cytomel - Liothyronine Cytomine - Liothyronine

Cytonal - Diethylstilbestrol diphosphate Cytophosphan - Cyclophosphamide

Cytosar - Cytarabine HCI

Cytoxan - Cyclophosphamide

Dabrobamat - Meprobamate Dabroson - Allopurinol

Dabylen - Diphenhydramine HCI

Dacala - Amoxicillin

Dacomid - Methenolone acetate

Dacortin - Prednisolone Dacortin - Prednisone Dacrine - Chlorhexidine Dactil - Piperidolate Dactylate - Piperidolate Daicoline - Citicoline Daicon - Epirizole

Daipin - Methscopolamine bromide

Daiprophen - Ibuprofen Dairopeal - Spironolactone Daisaloid - Rescinnamine Daiyalose - Tegafur Dakryo - Bromhexine

Daktar - Miconazole nitrate Daktarin - Miconazole nitrate Dalacin - Clindamycin HCI Dalacin-C - Clindamycin HCl Dalalone - Dexamethasone acetate

Dalaron - Dexamethasone phosphate

Dalfon - Diosmin

Dalidyne - Benzethonium chloride Dallergy - Chlorpheniramine maleate

Dallergy - Phenylephrine HCI Dalmadorm - Flurazepam Dalmane - Flurazepam Dalmate - Flurazepam Dalpan - Methixene HCI

Dalzic - Practolol

Damoxicil - Amoxicillin D-Amp - Ampicillin trihydrate

Damul - Dimethyl sulfoxide Danaden - Nicotinyl alcohol

Danatrol - Danazol Dancilin - Pivampicillin

Daneral - Pheniramine maleate

Danfenona - Feprazone

Daniven - Metampicillin sodium

Danocrine - Danazol Danol - Danazol

Dansul - Methyldopa Dantafur - Nitrofurantoin

Dantamacrin - Dantrolene sodium Dantrium - Dantrolene sodium

Dantrix - Dantrolene sodium

Dapa - Acetaminophen Dapaz - Meprobamate Dapotum - Fluphenazine HCI Daprin - Perhexiline sulfate Daranide - Dichlorphenamide Daraprim - Pyrimethamine Darbid - Isopropamide iodide Darcil - Phenethicillin potassium

Dardex - Isoniazid

Darenthin - Bretylium tosylate Daricon - Oxyphencyclimine Darifur - Furaltadone Darkeyfenac - Alcofenac

Darmoletten - Bisacodyl

Darmoletten - Oxyphenisatin acetate

Darostrep - Streptomycin Dartal - Thiopropazate Dartalan - Thiopropazate Darvocet-N - Propoxyphene HCi Darvon - Propoxyphene HCI D-Ate - Dextroamphetamine sulfate

Datril - Acetaminophen Daunoblastin - Daunorubicin Daunomycin - Daunorubicin

DAV - Desmopressin

Dayosin - Sulfamethoxypyridazine

Daxauten - Prenylamine Daxipen - Amoxicillin Daxolin - Loxapine Dayto Anase - Bromelain DB! - Phenformin D-Cillin - Ampicillin trihydrate D-Cycloserin - Cycloserine DDAVP - Desmopressin

Deaner - Deanol acetamidobenzoate Deanol - Deanol acetamidobenzoate

Deanosari - Diphenidol De Be J - Phenformin Debekacyl - Dibekacin Debeone - Phenformin Deblaston - Pipemidic acid

Decabicin - Dibekacin Decaderm - Dexamethasone phosphate Decadron - Dexamethasone phosphate Decadron-La - Dexamethasone acetate

Decadron phosphate - Dexamethasone phosphate

Decadroxate - Algestone acetophenide Decadroxone - Algestone acetophenide Deca-Durabolin - Nandrolone decanoate Deca-Hybolin - Nandrolone decanoate Decalibour - Dexamethasone phosphate Deca-Noralone - Nandrolone decanoate

Decantan - Perphenazine Decaprednil - Prednisolone Decaserpyl - Benzthiazide Decaspir - Fenspiride

Decasterolone - Dexamethasone acetate

Declinax - Debrisoquin

Declomycin - Demeclocycline HCI Decme - Oxolinic acid Decoderm - Dexamethasone acetate

Decoderm · Fluprednidene acetate Decoderme - Fluprednidene acetate Decoderme - Fluprednisolone

Decolan - Desoximetasone

Decongestant Elixir - Chlorpheniramine maleate

Deconsal - Guaifenesin Deconsal - Phenylephrine HCI Decontabs - Phenylephrine HCI Decontabs - Phenylpropanolamine HCI Decontra

Decontractyl - Mephenesin Decortasmyl - Prednisolone Decortin - Prednisone Decortisyl - Prednisone Decorton - Prednisone Dedrogyl - Calcifediol Defencin - Isoxsuprine HCl Defibrase - Batroxobin Deficol - Bisacodyl Defiltran - Acetazolamide Defirin - Desmopressin

Deflamene - Formocortal acetate Deflamon - Metronidazole Deflexol - Zoxazolamine Deflogin - Oxyphenbutazone Degest - Phenylephrine HCI Degest-2 - Naphazoline Degidole - Diphenidol Degonan - Mazindol

Dehdopa - Levodopa Dehydrobenzperidol - Droperidol Deidral - Formocortal acetate Deidran - Hydrochlorothiazide Deidrocortisone - Prednisone

Dekinet - Biperiden

Dekort - Dexamethasone phosphate Dektarin - Miconazole nitrate Delacillin - Amoxicillin

Deladine - Sulfamethazine

Deladumon - Testostorone enanthate Delagil - Chloroquine phosphate

Delakmin - Alfacalcidol Delakmin - Calcifediol

Delalutin - Hydroxyprogesterone caproate Delatest - Testosterone enanthate

Delatestryl - Testosterone enanthate

Delaxin - Methocarbamol Delcillin - Ampicillin trihydrate Delco-Lax - Bisacodyl Delco-Retic - Hydrochlorothiazide Delestrogen - Estradiol valerate Delgamer - Diethylpropion HCI

Delipid - Tiadenol Deliproct - Clemizole Deliva - Clofibrate

Delladec - Dexamethasone acetate Delladec - Dexamethasone phosphate Delmeson - Fluorometholone Delmofulvina - Griseofulvin Delovis - Quingestanol acetate Delphicort - Triamcinolone diacetate

Delsolone - Triamcinolone

Delsym - Dextromethorphan hydrobromide Delta-Cortef - Prednisolone

Deltacortene - Prednisone Deltacortilen - Prednisolone acetate Delta Dome - Prednisone Delta-Hycortol - Prednisolone Delta-Larma - Prednisolone Deltalone - Prednisolone Deltamine - Pemoline Deltan - Dimethyl sulfoxide Delta Prenovis - Prednisone

Deltapyrin - Chlorzoxazone Deltasolone - Prednisolone Deltasone - Prednisone Deltidrosol - Prednisolone Deltin - Sulfadimethoxine Deltisolon - Prednisolone Deltison - Prednisone

Deltra - Prednisone

Delvex - Dithiazanine iodide Delvinal - Vinbarbital sodium Demasorb - Dimethyl sulfoxide

Demax - Chlophedianol

Demazin - Chlorpheniramine maleate

Demebronc - Demeclocycline HCI Demeplus - Demeclocycline HCI Deme-Proter - Demeclocycline HCI Demer-Idine - Meperidine HCI

Demerol - Meperidine HCI Demesco - Dimethyl sulfoxide Demetetra - Demeclocycline HCI

Demetetraciclin - Demeclocycline HCI Demethotiazine - Fonazine mesylate Demetraciclina - Demeclocycline HCI Demetraclin - Demeclocycline HCl

Demetrin - Prazepam

Demi-Regroton - Reserpine

Demo-Cined - Dextromethorphan hydrobromide

Demoksil - Amoxicillin Demolox - Amoxapine Demoplas - Phenylbutazone

Demotil - Diphemanil methyl sulfate

Demovis - Quingestanol acetate

Demser - Metyrosine

Demsodrox - Dimethyl sulfoxide Demulen - Ethinylestradiol

Demulen - Ethynodiol diacetate Denapol - Cinnarizine

Dencyl - Chlophedianol Dendrid - Idoxuride Dendrit - Idoxuridine Dentocaine - Butethamine Dentosmin - Chlorhexidine Depamine - Penicillamine Deparon - Demexiptiline HCI

Deportutin - Medroxyprogesterone acetate

Depen - Penicillamine D-Epifrin - Dipivefrin Depixol - Flupentixol

Depo-Clinovir - Medroxyprogesterone acetate

Depoestra - Estradiol cypionate Depo-Estradiol - Estradiol cypionate

Depogen - Estradiol cypionate Depogen - Estradiol valerate

Depolut - Hydroxyprogesterone caproate Depo-Medrate - Methylprednisolone

Depo-Progevera - Medroxyprogesterone acetate Depo-Provera - Medroxyprogesterone acetate

Deposol - Sulfadimethoxine

Depostomead - Testosterone 17 β -cypionate Depotest - Testosterone 17 β -cypionate

Depo-Testosterone - Testosterone 17β -cypionate

Depot-Norphen - Octopamine HCI Depotpen - Penicillin G benzathine

Depot-Progen - Hydroxyprogesterone caproate

Deprenil - Opipramol Deprenyl - Selegiline Depress - Imipramine HCI Deprestat - Amitriptyline HCI Deprex - Dibenzepin HCI

Deprexan - Desipramine HCI

Deprinol - Imipramine HCI

Deprol - Benactyzine hydrochloride

Deprol - Meprobamate

Depronal SA - Propoxyphene HCI Dep-Test - Testosterone 17β -cypionate

Dep-Testosterone - Testosterone 17β -cyprionate

Deralbine - Miconazole nitrate

Deralin - Propranolol HCI Derantel - Cephalexin Derbac - Malathion

Derfon - Diethylpropion HCI Deripen - Ampicillin

Derizene - Phenylephrine HCI Dermabeta - Fluocinolone acetonide

Dermacort - Fluocinolone acetonide Dermacort - Hydrocortisone

Dermadex - Clobetasol Dermadex - Hexachlorophene Dermaisom - Fluocinolone acetonide

Dermalar - Fluocinolone acetonide Dermaplus - Fluocinolone acetonide Dermaren - Dichlorisone acetate Dermialgida - Dimethyl sulfoxide

Dermil - Fluocinolone acetonide

Dermisone beclo - Beclomethasone dipropionate Dermistina - Diphenhydramine HCI

Dermizol - Betamethasone benzoate Dermobiomar - Fluocinolone acetonide Dermodrin - Diphenhydramine HCI Dermofil - Fluocinolone acetonide

Dermo Framan - Fluocinolone acetonide

Dermohex - Hexachlorophene Dermo-Hidrol - Desoximetasone Dermojuventus - Tretinoin Dermolate - Hydrocortisone Dermolin - Fluocinolone acetonide Dermomagis - Fluocinolone acetonide Dermonistat - Miconazole nitrate Dermo-Nydol - Prednisolone acetate Dermophyl - Fluocinolone acetonide Dermosol - Betamethasone valerate

Dermotergol - Fluocinolone acetonide Dermoval - Clobetasol

Dermovaleas - Betamethasone

Dermovaleas - Betamethasone valerate

Dermovate - Clobetasol Dermoxin - Clobetasol

Deronil - Dexomethasone acetate Deronyl - Fominoben HCI DES - Diethylstilbestrol

Desacort-Beta - Betamethasone

Desal - Furosemide

Desalark - Dexamethasone phosphate Desamon - Benzethonium chloride

Desclidium - Viquidil Descocin - Thiamphenicol Desdemin - Furosemide Deselazine D - Hydralazine HCI

Desens - Methyldopa

Desentol - Diphenhydramine HCI Deseril - Methysergide maleate Desernil - Methysergide maleate

Desinflam - Alcofenac Desma - Diethylstilbestrol Desmanol - Chlorhexidine Desobesi - Fenproporex Desocort - Chlorhexidine Desphen - Chloramphenicol Des-Plex - Diethvistilbestrol

Destral - Dexchlorpheniramine maleate

Desuric - Benzbromarone Desurin - Desmopressin Desyrel - Trazodone HCI Detensol - Propranolol HCI Detigon - Chlophedianol Detracin - Demeclocycline HCI Detravis - Demeclocycline HCI

Detreomine - Chloromphenicol

Detreopal - Chloramphenicol palmitate Dettoi - 4-Chloro-3,5-xylenol

Deturgylone - Prednisolone stearoylglycolate

Detussin - Guaifenesin

Devacyclin - Oxytetracycline

Devacyclin - Tetracycline phosphate complex Devaguanil - Sulfaguanidine

Devaleksin - Cephalexin Devamycetin - Chloramphenicol Develin - Propoxyphene HCI Deverol - Spironolactone

Devonian - Pivampicillin

Dexacen - Dexamethasone acetate

Dexacen 4 - Dexamethasone phosphate

Dexacillin - Epicillin Dexacilline - Epicillin

Dexacort - Dexamethasone phosphate Dexacortisyl - Dexamethasone acetate Dexaderme - Dexamethasone phosphate Dexa-Helvacort - Dexamethasone phosphate

Dexal - Ketoprofen

Dexalme - Dextroamphetamine sulfate

Dexambutol - Ethambutol HCI

Dexamed - Dexamethasone phosphate Dexamine - Dextroamphetamine sulfate Dexamplex - Dextroamphetamine sulfate Dexa Sequels - Dextroamphetamine sulfate

Dexasone - Dexamethasone phosphate Dexaspan - Dextroamphetamine sulfate Dexatrim - Phenylpropanolamine HCI

Dexatrim Extra - Phenylpropanolamine HCI Dexbrom - Dexbrompheniramine maleate Dexchlor - Dexchlorpheniramine maleate

Dexedrine sulfate - Dextroamphetamine sulfate

Dexium - Dobesilate calcium

Dexmy - Neomycin Dexol - Dexpanthenol

Dexotepa - Timonacic sodium

Dextphan - Dextromethorphan hydrobromide

Dextromycin - Chloramphenicol

D.F.P. - Isoflurophate

D.H.T. - Dihydrotachysterol Diabemide - Chlorpropamide Diabet - Chlorpropamide

Diabetabs - Chlorpropamide

Diabetasi - Chlorpropamide Diabetol - Tolbutamide

Diabeton - Cephalexin Diabeton - Tolbutamide

Diabetoral - Chlorpropamide

Diabewas - Tolazamide Diabexan - Chlorpropamide

Diabex-T - Tolbutamide Diabinese · Chlorpropamide

Diabis - Phenformin

Diabitex - Chlorpropamide

Diabutos - Tolazamide Diaceplex - Diazepam Dia-Colon - Lactulose

Di-Ademil - Hydroflumethiazide

Diadril - Meclizine HCl

Diafen - Diphenylpyraline HCI

Diaforil - Aspirin

Diafuron - Furazolidone Diaginol - Acetrizoate sodium

Dialag - Diazepam

Dial-Agesic - Acetaminophen Dialens - Chlorhexidine

Dialferin - Alcuronium chloride

Dialidene - Furazolidone Diamel-Ex - Chlorpropamide Diamicron - Gliclazide Diamide - Chlorpropamide

Diaminocillina - Penicillin G benzathine

Diamox - Acetazolamide Dianabol - Methandrostenolone Diancina - Pivampicillin

Diane - Cyproterone acetate Diapam - Diazepam

Diapax - Chlordiazepoxide HCI

Diagressin - Diazoxide

Di-Ap-Trol - Phendimetrazine tartrate

Diarsed - Diphenoxylate HCI

Diasectral - Acebutolol

Diasone sodium - Sulfoxone sodium Diastal - Bufeniode

Diaster - Cortivazol Diasthmol - Dyphylline Diasulfa - Sulfadimethoxine Diatensec - Spironolactone Diatol - Tolbutamide Diatron - Diazepam Diaz - Diazepam

Diazem - Diazepam

Diazachel - Chlordiazepoxide HCl

Diazemuls - Diazepam Diazid - Isoniazid Diazinol - Sulfadimethoxine Diazomid - Acetazolamide Di-Azu-Mul - Sulfadiazine

Dibein - Phenformin Dibenzyline - Phenoxybenzamine HCI Dibenzyran - Phenoxybenzamine HCI

Dibetos - Buformin HCI Dibilan - Bumadizon Dibilene - Cyclobutyrol Dibondrin - Diphenhydramine HCl

Dibophen - Phenformin Dibutil - Ethopropazine HCI

Dicasten - Fentonium bromide Dicefalin - Cephradine

Dicen - Dicyclomine HCI

Dichinalex - Chloroquine phosphate Dichlor-Stapenor - Dicloxacillin sodium Dichlotride - Hydrochlorothiazide Dichronic - Diclofenac sodium

Diclasone - Dichlorisone acetate Diclex - Dicloxacillin sodium Diclo - Dicloxacillin sodium Diclocef - Cephaloridine Diclocil - Dicloxacillin sodium

Diclofenamid - Dichlorphenamide Diclomax - Dicloxacillin sodium Dicloxapen - Dicloxacillin sodium

Dicoferin - Nifuroxazide Dicopac - Cyanocobalamin Dicorvin - Diethylstilbestrol Dicromil - Desogestrel Dicusat - Warfarin sodium Dicycol - Dicyclomine HCI

Dicynene - Ethamsylate Dicynone - Ethamsylate Didan - Phenytoin Didandin - Diphenadione

Dideral - Propranolol HCI Didoc - Acetazolamide Didral - Hydrochlorothiazide

Didrex - Benzphetamine HCl Didrogyl - Calcifediol

Didromycin - Dihydrostreptomycin sulfate Dilydrin - Nylidrin Didronel - Etidronate disodium Dilzem - Diltiazem HCI Didrothenat - Dihydrostreptomycin sulfate D.I.M. - Dithiazanine iodide Diempax - Diazepam Dimacef - Cephradine Diepin - Medazepam Dimal - Methyldopa Diestreptopab - Dihydrostreptomycin sulfate Dimapres - Cyclothiazide Dietac - Phenylpropanolamine HCI Dimate - Dimenhydrinate Dietec - Diethylpropion HCI Dimaten - Tinoridine Dietil-Retard - Diethylpropion HCl Dimegan - Brompheniramine maleate Dietrim - Phenylpropanolamine HCl Dimelin - Acetohexamide Difenax - Diphenpyramide Dimelor - Acetohexamide Difenidolin - Diphenidol Dimenest - Dimenhydrinate Difexon - Povidone-iodine Dimeral - Demeclocycline HCI Difhydan - Phenytoin Dimetane - Brompheniramine maleate Difil - Diethylcarbamazine citrate Dimetane-D.C. - Phenylpropanolamine HCl Difilina - Dyphylline Dimetapp - Brompheniramine maleate Diflonid - Diflunisal Dimetossilina - Sulfadimethoxine Diflunil - Diflunisal Dimetossin - Sulfadimethoxine Dimetoxan - Sulfadimethoxine Diflupyl - Isoflurophate Diflurex - Ticrynafen Dimetoxin - Sulfadimethoxine Difmecor - Fendiline HCI Dimexin - Sulfadimethoxine Diforene - Deanol acetamidobenzoate Dimidril - Diphenhydramine HCI Difosfen - Etidronate disodium Dimipressin - Imipramine HC1 Dimocillin - Methicillin sodium Difosfocin - Citicoline Difutrat - Isosorbide dinitrate Dimotane - Brompheniramine maleate Digetres - Metoclopramide HCI Dimyril - Isoaminile Digibutina - Phenylbutazone Dinacrin - Isonazid Digi-Complamin - Xanthinol niacinate Dinaplex - Flunarizine HCI Digicor - Medigoxin Dinasint - Cephaloridine Digton - Sulpiride Dinestrol - Dienestrol Dintoina - Phenytoin Dihalog - Halcinonide Dioctocal - Docusate calcium Dihydan - Phenytoin Dihydantoin - Phenytoin Dinulcid - Oxametacine Dihydral - Dihydrotachysterol Dioderm - Hydrocortisone Diogenal - Methitural Dihydral - Diphenhydramine HCl Dihydran - Hydrochlorothiazide Diogyn-E - Ethinylestradiol Dihydrex - Benzthiazide Diol-20 - Estradiol valerate Dihydro-Cidan Sulfato - Dihydrostreptomycin Diolene - Carisoprodol Diopine - Dipivefrin sulfate Diosmil - Diosmin Dihydromycine - Dihydrostreptomycin sulfate Dihydrophylline - Dyphylline Diosminil - Diosmin Diossidone - Phenylbutazone Dihydrostrepto - Dihydrostreptomycin sulfate Dihydrostreptofor - Dihydrostreptomycin Dioval - Estradiol valerate sulfate Diovenor - Diosmin D.I.P. - Diethylpropion HCI Dihydrostreptomycin-Rafa - Dihydrostreptomycin sulfate Dipam - Diazepam Di-Hydrotic - Hydrocortisone Di-Paralene - Chlorcyclizine Diidrotiazide - Hydrochlorothiazide Dipaxin - Diphenadione Dipect - Pipazethate Dilabar - Captopril Dilabron - Carbuterol Dipendrate - Dimenhydrinate Dilacoran - Verapamil Diphentyn - Phenytoin Dilantin - Phenytoin Diphergan - Promethazine HCI Dilar - Paramethasone acetate Diphos - Etidronate disodium Diphosphonat - Etidronate disodium Dilaster - Cortivazol Dilatol - Nylidrin Dipidolor - Piritramide Dipiperon - Pipamperone Dilatol - Tolazoline Dilatrate - Isosorbide dinitrate Dipirartril - Dimethyl sulfoxide Dipramat Infantil - Acetaminophen Dilatropon - Nylidrin Dilaudid - Guaifenesin Dipramid - Isopropamide iodide Diproderm - Betamethasone dipropionate Dilaver - Nylidrin Dilazol - Tolazoline Diprogenta - Betamethasone dipropionate Dilcoran - Pentaerythritol tetranitrate Diprolene - Betamethasone dipropionate

Dilosyn - Methdilazine HCI Diluran - Acetazolamide Dilur G - Guaifenesin Dilvax - Ifenprodil tartrate

Dilor - Dyphylline

Dilexpal - Inositol niacinate

Diloderm - Dichlorisone acetate

Dilombrin - Dithiazanine iodide

Diprosalic - Betamethasone dipropionate Diprosone - Betamethasone Diprosone - Betamethasone dipropionate Diprostene - Betamethasone

Diprostene - Betamethasone dipropionate

Dipyrida - Dipyridamole Dira - Spironolactone

Diprophyline - Dyphylline

Diram - Propiram fumarate Dirastan - Tolbutamide Direma - Hydrochlorothiazide Diretan - Isosorbide dinitrate Dirox - Acetaminophen

Dirureticom-Holzinger - Acetazolamine Dirytmin - Disopyramide phosphate

Disadine - Povidone-iodine

Disal - Furosemide

Disaloc - Disopyramide phosphate

Discase - Chymopapain Disebrin - Heparin Dismaren - Cinnarizine

Disoderm - Dichlorisone acetate

Disomer - Dexbrompheniramine maleate Disophrol - Dexbrompheniramine maleate

Diso-Tate - Edetate disodium Disoxyl - Tiocarlide Disron - Hydroxyzine HCI Dissenten - Loperamide HCI Distaclor - Cefacior Distamine - Penicillamine

Distaquaine - Penicillin G procaine

Distasol - Ectylurea

Distilbene - Diethylstilbestrol

Disulone - Dapsone

Disyncran - Methdilazine HCI

Ditan - Phenytoin Ditate - Estradiol valerate Diteriam - Benzthiazide

Dithiazid - Hydrochlorothiazide Ditrizin - Triamcinolone

Ditropan - Oxybutynin chloride

Ditubin - Isoniazid Diubram - Chlorothiazide Diucardin - Hydroflumethiazide Diucardyn - Mercaptomerin sodium Diuchlor H - Hydrochlorothiazide Diucholin - Hydralazine HCI

Diu-Hydrin - Trichlormethiazide Diulo - Metolazone Diumide - Eurosemide Diupres - Chlorothiazide Diupres - Reserpine Diural - Furosemide Diuramid - Acetazolamide Diurapid - Azosemide Diurene - Triamterene Diuresal - Eurosemide

Diurese - Trichloromethiazide

Diuret - Chlorothiazide Diurex - Xipamid Diurexan - Xipamid Diuril - Chlorothiazide Diurilix - Chlorothiazide Diuriwas - Acetazolamide Diurix - Furosemide

Diurnal penicillin - Penicillin G procaine

Diurogen - Hydrochlorothiazide Diurolasa - Furosemide Diurone - Chlorothiazide Diurophylline - Dyphylline Diursana H - Hydrochlorothiazide

Diusemide - Furosemide Diutensin - Reserpine Diuzol - Furosemide

Divalvon - Pyritinol

Divercillin - Ampicillin trihydrate

Dividol - Viminol Divinoctal - Methaqualone

Dixarit - Clonidine HCI Dixiben - Nalidixic acid Dixidrasi - Hydrochlorothiazide Dixurol - Nalidixic acid

Dobacen - Diphenhydramine HCI Dobesin - Diethylpropion HCI Dobesiphar - Dobesilate calcium Dobetin - Cvanocobalamin Dobevitina - Cyanocobalamin

Dizam - Diazepam

Dobren - Sulpiride Dobuject - Dobutamine Doburil - Cyclothiazide Dobutrex - Dobutamine Docell - Diclofenac sodium Docetasan - Cyanocobalamin Docevita - Hydroxocobalamin Docibin - Cyanocobalamin

Dociton - Propranolol HCI Docivit - Cyanocobalamin Doctamicina - Chloramphenicol Doctamicina - Metampicillin sodium Dodecabee - Cyanocobalamin

Dodecavite - Cvanocobalamin Dodex - Cyanocobalamin Dogmatil - Sulpiride

Doimazin - Chlorpromazine HCI Dokasapan - Doxepin HCI Doksilin - Amoxicillin Doktacillin - Ampicillin

Dolamin - Acetaminophen Dolanex - Acetaminophen Dolanquifa - Meperidine HCI Dolantin - Meperidine HCI Dolat - Doxepin HCI Dolcol - Pipermidic acid

Dolcontral - Meperidine HCI Dolene-65 - Propoxyphene HCI Dolestan - Diphenhydramine HCI Dolestine - Meperidine HCI Dolevern - Hydroxocobalamin

Dolgenal - Zomepirac Dolibrax - Chlordiazepoxide HCI

Dolibrax - Clidinium bromide Dolicaine - Lidocaine Dolipoi - Tolbutamide Doliprane - Acetaminophen Dolobid - Diflunisal

Dolobis - Diflunisal

Doloneurin - Meperidine HCI Dolopethin - Meperidine HCI Dolophine - Methadone HCI Dolosal - Meperidine HCl Doloxene - Propoxyphene HCI Dolprone - Acetaminophen Dolwas - Zomepirac Domalium - Diazepam

Domar - Pinazepam Domecin - Methyldopa Domical - Amitriptyline HCI Domicillin - Ampicillin Dominal - Prothipendyl HCl Domion - Sulfisomidine Domnamid - Estazolam

Domofate - Dextroamphetamine sulfate

Domolene-HCI - Hydrocortisone Dompil - Metampicillin sodium Domucortone - Prednisolone Domupirina - Aspirin Domureuma - Fentiazac

Donatussin - Chlorpheniramine maleate

Donatussin - Guaifenesin Donatussin - Phenylephrine HCI Donjust-B - Ibuprofen

Donjust-B - Ibuprofen
Donmox - Acetazolamide

Donopon-GP - Metoclopramide HCI

Donorest - Fentiazac Dopacin - Levodopa Dopaflex - Levodopa Dopaidan - Levodopa Dopamet - Methyldopa Dopamet - Methyldopa

Dopamin - Methyldopa Dopar - Levodopa Doparkin - Levodopa Doparkine - Levodopa Doparl - Levodopa

Dopasol - Levodopa Dopason - Levodopa Dopaston - Levodopa Dopatec - Methyldopa Dopegyt - Methyldopa Dopom - Guanethidine sulfate

Dopram - Doxapram HCl Doracil - Mefenorex HCl Dorcol - Guaifenesin Dorex - Oxeladin

Doricum - Fluocinolone acetonide

Doriden - Glutethimide Doridene - Glutethimide Dormabrol - Meprobamate Dormate - Mebutamate

Dormatylan - Secobarbital sodium

Dorme - Promethazine HCI

Dormethan - Dextromethorphan hydrobromide

Dormicum - Midazolam maleate Dormicum - Nitrazepam

Dormigoa - Methaqualone Dormir - Methaqualone Dormona - Secobarbital sodium

Dormonid - Midazolam maleate Dormonoct - Loprazolam Dormo-Puren - Nitrazepam Dormutil - Methagualone

Dorsacaine HCI - Benoxinate hydrochloride

Dorsiflex - Mephenoxalone

Doryl - Carbachol

Dosalupent - Metaproterenoi sulfate Dosberotec - Fenoterol hydrobromide

Dosulfin - Sulfamerazine

Doval - Diazepam

Dow-Chlorpheniramine - Chlorpheniramine

maleate

Dow-Isoniazid - Isoniazid Dowmycin - Erythromycin Dow-Sulfisoxazole - Sulfisoxazole

Doxal - Doxepin HCI
Doxapril - Doxapram HCI
Doxedyn - Doxepin HCI
Doxergan - Oxomemazine
Doxidan - Docusate calcium
Doxi-OM - Dobesilate calcium
Doxitard - Doxycycline

Doxium - Dobesilate calcium Doxy - Doxycycline Doxy 200 - Doxycycline Doxylin - Doxycycline Doxy-Puren - Doxycycline

Doxyremed - Doxycycline Doxytrex - Dobesilate calcium Dozar - Methapyrilene HCI
Dragosil - Creatinolfosfate
Dralzine - Hydralazine HCI
Dramaban - Dimenhydrinate
Drama Ject - Diphenhydramine HCI
Dramamine - Dimenhydrinate
Dramarr - Dimenhydrinate

Dramavir - Dimenhydrinate Dramavol - Dimenhydrinate

Dramcillin-S - Phenethicillin potassium Draminol - Diphenhydramine HCI

Dramion - Gliclazide
Dramocen - Dimenhydrinate
Drauxin - Brompheniramine maleate
Draximox - Amoxicillin
Dreimicina - Erythromycin estolate

Drenian - Diazepam Drenison - Flurandrenolide Drenusil - Polythiazide Dridol - Droperidol Drimyl - Etodroxizine Drisentin - Dipryridamole

Drislin - Ampicillin Dristan - Oxymetazoline HCI

Dristan - Pheniramine maleate Dristan - Phenylephrine HCI Dristan - Propylhexedrine

Drixoral - Dexbrompheniramine maleate Drize - Chlorpheniramine maleate

Drocort - Flurandrenolide Droctil - Exiproben Drogenil - Flutamide

Drolban - Dromostanolone propionate

Droleptan - Droperidol

Dromisol - Dimethyl sulfoxide Dromyl - Dimenhydrinate Droncit - Praziquantel Drossadin - Hexetidine Droxacepam - Oxazepam Droxan - Bufexamac Droxarol - Bufexamac Droxicef - Cefadroxil Droxine La - Dyphylline

Droxone - Algestone acetophenide Drylistan - Diphenhydramine HCl

Dryptal - Furosemide

D-Siklin - Demeclocycline HCl Dual-Xol - Pyridinol carbamate

Duanox - Chenodiol

Duaxol - Pyridinol carbamate

Ducene - Diazepam Ducobee - Cyanocobalamin

Ducobee-Hy - Hydroxocobalamin

Duecap - Methacycline Dufaston - Dydrosgesterone Dugodol - Diflunisal

Dugson - Diazepam
Dulasi - Suloctidil
Dulcolax - Bisacodyl
Dulicaine - Lidocaine
Duloctil - Suloctidil
Dumolid - Nitrazepam
Dumone - Methyltestosterone

Dumopen - Ampicillin trihydrate
Dumoxin - Doxycycline

Duna - Pinazepam Duncaine - Lidocaine Duofilm - Salicylic acid Duogastrone - Carbenoxolone Duolip - Etofylline clofibrate **Duoluton - Norgestrel**

Duosetil - Tridihexethyl iodide

Duotrate - Pentaerythritol tetranitrate

Duphalac - Lactulose

Duphaston - Dydrogesterone Duplaciclina - Methacycline Durabiotic - Penicillin G benzathine

Durabolin - Ethylestrenol

Durabolin - Nandrolone phenpropionate

Duracef - Cefadroxil

Duracillin - Penicillin G procaine

Dura Doxal - Doxycycline

Dura Erythromycin - Erythromycin stearate

Dura-Estate - Estradiol valerate Dura-Estradiol - Estradiol valerate Duramen - Ethinylestradiol Durametacin - Indomethacin Duramicina - Methacycline Duramid - Sulfadimethoxine

Dur Ampicillin - Ampicillin trihydrate Duramycin - Demeclocycline HCI

Duramycin - Dibekacin

Duramycin - Gentamicin sulfate

Durandro - Testosterone 17β-cypionate

Duranest - Etidocaine HCI Duranitrate - Isosorbide dinitrate Durapred - Prednisolone acetate Dura Silymarin - Silymarin Duraspiron - Spironolactone Durasul - Sulfamethoxypyridazine Durasulf - Sulfachlorpyridazine Dura-Tap - Brompheniramine maleate Dura-Testate - Testosterone enanthate

Duratesterone - Testosterone enanthate Dura-Tetracyclin - Oxytetracycline Duration - Oxymetazoline HCI Duratrad - Estradiol valerate

Dura-Vent - Guaifenesin

Dura-Vent - Phenylephrine HCI

Dura Vent - Phenylpropanolamine HCI

Durazepam - Oxazepam Durel-Cort - Hydrocortisone Duremesan - Meclizine HCI Durenat - Sulfameter Durenate - Sulfameter Duricef - Cefadroxil

Durmetan - Metampicillin sodium

Durolax - Bisacodyl Duromine - Phentermine HCI Durrax - Hydroxyzine HCI Dusodril - Nafronyl oxalate Duspatal - Mebeverine HCI Duspatalin - Mebeverine HCI Duvadilan - Isoxsuprine HCI Duvaline - Pyridinol carbamate

Duvoid - Bethanechol chloride

Duxima - Cefuroxime DV - Dienestrol

Dyazide - Hydrochlorothiazide

Dyazide - Triamterene Dycill - Dicloxacillin sodium Dyclone - Dyclonine HCI Dyflex - Dyphylline

Dygratyl - Dihydrotachysterol

Dylate - Papaverine monophosadenine

Dymadon - Acetaminophen Dymelor - Acetohexamide Dymenol - Dimenhydrinate Dymoperazine - Trifluoperazine Dynalase - Chlorpropamide

Dynalert - Pemoline Dynamicin - Methacycline Dynapen - Dicloxacillin sodium

Dynaprin - Imipramine HCI

Dyneric - Clomiphene dihydrogen citrate

Dynese - Magaldrate Dyprin - Methionine Dyrenium - Triamterene

Dyrexan - Phendimetrazine tartrate

Dysedon - Oxomemazine Dyspas - Dicyclomine HCI

Dyspnoesan - Isoproterenol sulfate

Dystoid - Meprobamate Dytac - Triamterene Dytide - Benzthiazide

EACA - Aminocaproic acid

Easpin - Aspirin Eatan-N - Nitrazepam

Ebalin - Brompheniramine maleate

Ebalin - Dexbrompheniramine maleate

Ebelin - Inositol niacinate Ebrantil - Urapidil

Ebufac - Ibuprofen Ebutol - Ethambutol HCI

Ecasil - Aspirin Ecatril - Dibenzepin HCl EC-Doparyl - Benserazide

Echnatol - Cyclizine

Echoiodide - Echothiopate iodide Ecobutazone - Phenyibutazone

Ecolid chloride - Chlorisondamine chloride

Econapred - Prednisdone acetate Econochior sol - Chloramphenicol Economycin - Tetracycline

Ecoprin - Aspirin

Ecosone - Hydrocortisone Ecosporina - Cephradine Ecostatin - Econazole nitrate

Ecotrin - Aspirin

Ecoval - Betamethasone valerate

Ecuanil - Meprobamate

E-Cypionate - Estradiol cypionate

Eczil - Triamcinolone Edecril - Ethacrynic acid Edecrin - Ethacrynic acid Edecrine - Ethacrynic acid Edelel - Diperidolate Edemax - Benzthiazide Edemox - Acetozolamide Edenal - Meprobamate Ederal - Cinnarizine

Edoxana - Cyclophosphamide Edrol - Ethinylestradiol Edrul - Muzolimine

Efcortelan - Hydrocortisone

Efcortesol - Hydrocortisone sodium phosphate

Effederm - Tretinoin Efferalgan - Acetaminophen Effisax - Tybamate Efflumidex - Fluorometholone Effortil - Etilefrine pivalate HCI

Efloran - Metronidazole Efnicol - Thiamphenicol Efodine - Povidone-iodine Efpenix - Amoxicillin Efrane - Enflurane Eftapan - Eprazinone HCI

Eftoron - Mepenzolate bromide Efudex - Fluorouracil

Efudix - Fluorouracil Eggobesin - Propylhexedrine

Eglen - Cinnarizine Eglonyl - Sulpiride

Egocappol - Salicylic acid Egocin - Oxytetracycline Egocort - Hydrocortisone Ehrtolan - Fluorometholone Einalon S - Haloperidol

Eins-Alpha - Alfacalcidol E-Ionate - Estradiol cypionate

Eior - Kebuzone

Ekaprol - Aminocaproic acid Ekaton - Fluocinolone acetonide

Ektebin - Protionamide Ektyl - Ectylurea Ekvacilline - Cloxacillin Elaciclina - Oxytetracycline Elamol - Tofenacin HCI Elarzone - Pipebuzone Elase - Fibrinolysin Elasten 200 - Ciclonicate Elasterin - Fenofibrate

Elatrol - Amitriptyline HCI Elatrolet - Amitriptyline HCI Elavil - Amitriptyline HCI

Elavil HCI - Amitriptyline HCI Elcitonin - Calcitonin

Eldec - Ferrous fumarate Eldec - Folic acid Eldepryl - Selegiline Eldercaps - Folic acid Eldia - Cephaloridine Eldisin - Vindesine Eldisine - Vindesine

Eldopaque - Hydroquinone Eldopar - Levodopa Eldopatec - Levodopa Eldoquin - Hydroquinone

Elenium - Chlordiazepoxide HCI Elestol - Chloroquine phosphate

Eletuss - Chlophedianol Eleven-K - Phytonadione Elietin - Metoclopramine HCI Eliranol - Promazine HCI Elist - Valethamate bromide

Elkamicina - Demeclocycline HCI

Elkapin - Etozolin Elkosin - Sulfisomidine Ellecid - Cloxacillin

Ellecillina - Methicillin sodium Ellepibina - I proniazid

Ellipten - Aminoglutethimide Elmarine - Chlorpromazine HCI Elmedal - Phenylbutazone

Elmizin - Dithiazanine iodide Elosine - Sulfisomidine Elperi - Alprenoloi HCI Elrodorm - Glutethimide

Elronon - Noxiptilin Elspar - Asparaginase

Eltroxin - Levothyroxine sodium Eludril - Chlorhexidine

Elumonon - Syrosingopine Elyzol - Metronidazole Elzogram - Cefazolin sodium Embarin - Allopurinol EMB-Fatol - Ethambutol HCI

Embolex - Heparin

Embutol - Ethambutol HCI

Emcortina - Fluprednidene acetate Emcyt - Estramustine phosphate Emedur - Trimethobenzamide HCI

Emepride - Bromopride Emerazina - Sulfadimethoxine Emerail - Flupentixol Emesa - Metoclopramide HCI Emeside - Ethosuximide

Emedyl - Dimenhydrinate

Emete-Con - Benzquinamide Emetisan - Metoclopramide HCI Emichloline - Citicoline

Emil - Silvmarin Emilian - Citicoline

Emisin - Erythromycin stearate

Emitolon - Ubidecarenone

Emiyan - Ethamiyan Emko - Nonoxynol

Emmetip - Methylprednisolone Emodinamin - Xanthinol niacinate

Emoren - Oxethazine Emorhalt - Tranexamic acid Emoril - Bromopride Emotion - Lorazepam Emotival - Lorazepam Emovit - Viloxazine HCI Empecid - Clotrimazole

Emperal - Metoclopramide HCI Empirin - Aspirin

Emtexate - Methotrexate Emthexate - Methotrexate E-Mycin - Erythromycin

E-Mycin - Erythromycin stearate

Emyrenil - Oxolinic acid Enadel - Cloxazolam

Enadine - Clorazepate dipotassium Enarmon - Testosterone enanthate

Enavid - Mestranol Enbol - Pyritinol Encare Oval - Nonoxynol Encebrovit - Pyritinol Encefabol - Pyritinol

Encefalux - Piracetam **Encefort - Pyritinol**

Encephan - Methandrostenolone

Encerebron - Pyritinol Encortolone - Prednisolone Endak - Carteolol Endep - Amitriptyline HCI Endequil - Chlordiazepoxide HCl Endocistobil - Iodipamide

Endoeritrin - Erythromycin

Endoeritrin - Erythromycin estolate Endografin - Iodipamide Endokolat - Bisacodyi Endol - Indomethacin Endomet - Indomethacin Endomixin - Neomycin Endo-Paractol - Dimethicone Endopituitrina - Oxytocin Endoprin - Heparin Endospirin - Aspirin

Endosporol - Cephaloridine Endoxan - Cyclophosphamide Endrate disodium - Edetate disodium

Endsetin - Indomethacin Enduronyl - Deserpidine Endyol - Aspirin Enebiotico - Cephaloridine Enelfa - Acetaminophen

Enerbol - Pyritinol Energer - Isocarbo xazid Enexina - Nalidixic acid Enidrel - Oxazepam

Enjit - Hydroflumethiazide Enkefal - Phenytoin Enobrin - Medazepam Enovid - Mestranol

Enovid - Norethynodrel Enovid-E - Mestranol Enovil - Amitriptyline HCI Enseals - Aminosalicylic acid Ensidon - Opipramol

Ensign - Citicoline

E.N.T. - Phenylephrine HCI E.N.T. - Phenylpropanolamine HCI

Entab - Aspirin

Entamidine - Sulfisomidine Entelohl - Protionamide

Entera-Strept - Dihydrostreptomycin sulfate

Entericin - Aspirin

Enterocura - Sulfaguanol

Enterokanacin - Kanamycin sulfate

Enterokod - Nifuroxazide Enterosarine - Aspirin

Enterosteril - Phthalylsulfathiazole

Enterostop - Bacitracin Enteroxon - Furazolidone Entex - Guaifenesin Entex - Phenylephrine HCI Entex - Phenylpropanolamine HCI

Entizol - Metronidazole Entolon - Nalidixic acid Entomin - Carnitine Entoquel - Thihexinol Entra - Triprolidine Entrophen - Aspirin

E.N.T. Syrup - Brompheniramine maleate

Enturen - Sulfinovrazone Entuss - Guaifenesin Entusul - Sulfisoxazole

Entyderma - Beclomethasone dipropionate

Envarese - Polythiazide Enviro-Stress - Folic acid Enzactin - Triacetin

Enzaprost - Dinoprost tromethamine

Eocill B12 - Cyanocobalamin

Epalfen - Lactulose E-Pam - Diazepam Epanutin - Phenytoin Eparfit - Silymarin Eparina - Heparin Eparinoral - Heparin Eparinovis - Heparin Epatiol - Tiopronin Epatolark - Fenipentol Epha - Dimenhydrinate

Ephed-Organidin - Methapyrilene HCl Ephemet - Phendimetrazine tartrate

Ephepect - Phenyltoloxamine

Epi-Aberel - Tretinoin Epicain Ace - Dyclonine HCI Epidione - Trimethadione Epidosin - Valethamate bromide

Epidropal - Allopurinol Epikur - Meprobamate

Epileo-Petitmal - Ethosuximide Epi-Monistat - Miconazole nitrate Epinal - Alcofenac Epinal - Epinephryl borate

Epinal - Ibuprofen Epinat - Phenytoin

Epi-Pevaryl - Echonazole nitrate Epirocain - Dyclonine HCI Epitopic - Difluprednate E.P. Mycin - Oxytetracycline Epo-Bon - Cyclobutyrol Epobron - Ibuprofen Epocol - Prenylamine

Epokuhi - Chlorpromazine HCI

Epontoi - Propanidid Eposelin - Ceftizoxime Eppy - Epinephryl borate Eprazin - Pyrazinamide Eprox - Fenipentol

Epsikapron - Aminocaproic acid Epsilon - Aminocaproic acid

Epsilon-Aminoca - Aminocaproic acid

Epsyl - Piprozolin Eptadone - Methadone HCi Eputes - Ibuprofen Equagesic - Ethoheptazine Equagesic - Meprobamate Equal - Aspartame Equanil - Meprobamate Equibar - Methyldopa Equibral - Chlordiazepoxide HCI Equ Bute - Phenylbutazone Equilibrin - Amitriptylin oxide

Equilid - Sulpiride Equipur - Vincamine Eracine - Rosoxacin Eradacil - Rosoxacin Eradacin - Rosoxacin Eraldin - Practolol Eraldine - Practolol

Erantin - Propoxyphene HCI Eratrex - Erythromycin stearate

Erbacort - Prednisolone stearoylglycolate

Erbaprelina - Pyrimethamine Erbasoma - Carisoprodol Erbocain - Fomocaine Ercefuryl - Nifuroxazide Ercofer · Ferrous fumarate Ercolax - Bisacodyl

Ercoquin - Hydroxychloroquine sulfate Ercoril - Propantheline bromide

Ercostrol - Methallenestril Erftamin - Cyanocobalamin Erftopred - Prednisone Ergamisol - Levamisole HCl

Ergotrate - Methylergonovine maleate

Erholen - Citicoline

Eributazone - Phenylbutazone Ericol - Thiamphenicol Eridan - Diazepam Erifalecin - Cephalexin

Erimec - Erythromycin estolate

Erimin - Nimetazepam Erina - Meprobamate

Eriscel - Erythromycin estolate Erispan - Fludiazepam HCI Erisul - Erythromycin stearate Erital - Diazepam

Eritonormo - Erythromycin

Erito-Wolf - Erythromycin Estolate Eritral - Erythromycin stearate Eritrazon - Erythromycin estolate Eritro - Erythromycin stearate Eritrobios - Erythromycin

Eritrobiotic - Erythromycin estolate Eritrocin - Erythromycin estolate Eritrodes - Erythromycin estolate Eritrolag - Erythromycin stearate Eritron - Cyanocobalamin

Eritroveinte - Erythromycin estolate Eritrovit B12 - Cyanocobalamin Ermysin - Erythromycin estolate Ermysin S - Erythromycin stearate

Erocetin - Cephalexin

Erostin - Erythromycin stearate Erpalfa · Cytarabine HCI Errolon - Furosemide

Ertonyl - Ethinylestradiol Eryc - Erythromycin Erycinum - Erythromycin Erycinum - Erythromycin gluceptate

Erycytol - Cyanocobalamin Ervevtol - Hydroxocobalamin Ery derm - Erythromycin

Erymax - Erythromycin Ery-Max - Erythromycin

Erymycin - Erythromycin stearate Eryprim - Erythromycin stearate Ery-Tab - Erythromycin

Erythran - Erythromycin stearate

Erythrocin - Erythromycin Erythrocin - Erythromycin stearate

Erythrocin Piggyback - Erythromycin lactobionate

Erythromyctine - Erythromycin estolate Erythro-S - Erythromycin stearate

Erythro ST - Erythromycin Erythro-Teva - Erythromycin stearate Ery-Toxinal - Erythromycin estolate Erytrarco - Erythromycin estolate Ervtro-Prot - Ervthromycin estolate

Esacinone - Fluocinolone acetonide Esametone - Methylprednisolone Esanbutol - Ethambutol HCI Esapenil B.G. - Methicillin sodium

Esarondil - Methacycline Esberidin - Vincamine Esbufon - Norfenefrine Escabiol - Lindane Escarmine - Silymarin Esclama - Nimorazole Escoflex - Chiorzoxazone Escofuron - Nitrofurazone Eselin - Ethamsvlate Esentil - Dicyclomine HCI

Esfar - Bucloxic acid

Esidrex - Hydrochlorothiazide Esidrix - Hydrochlorothiazide

Esilgan - Estazolam

Esilon - Fluocinolone acetonide Esimil - Hydrochlorothiazide Eskacef - Cephradine

Eskaserp - Reserpine Eskotrin - Aspirin Esmail - Medazepam

Esmarin - Trichlormethiazide Esmezin - Cephalexin Esmind - Chlorpromazine HCI

Esocalm - Dixyrazine

Esoidrina - Hydrochlorothiazide Espectrosina - Gentamicin sulfate Espectrosira - Ampicillin

Esperal - Disulfiram Esperson - Desoximetasone

Espimin-Cilin - Ampicillin trihydrate

Espiran - Fenspiride Esquilin - Methacycline Esquinon - Carboquone Esracain - Lidocaine Estalor - Mestranol Estan - Dienestrol

Estan - Methyltestosterone Estate - Estradiol valerate Estigyn - Ethinyl estradiol Estilbin - Diethylstilbestrol

Estilsona - Prednisolone stearoylglycolate

Estinyl - Ethinylestradiol

Estracyt - Estramustine phosphate Estradurin - Polyestradiol phosphate

Estraguard - Dienestrol Estral-L - Estradiol valerate Estra Plex - Hexestrol Estraval PA - Estradiol valerate Estrene - Hexestrol Estrepto E - Streptomycin Estrepto Level - Streptomycin

Estreptoluy - Dihydrostreptomycin sulfate

Estreptomade - Streptomycin Estreptomicina - Streptomycin

Estreptomicina Norman - Streptomycin Estrepto Wolner - Streptomycin Estriadin - Adenosine triphosphate Estro-Cyp - Estradiol cypionate Estrofem - Estradiol cypionate Estromed-PA - Estradiol cypionate Estromycin - Erythromycin Estrosyn - Diethylstilbestrol

Estrovis - Quinestrol Estulic - Guanfacine Esucos - Dixyrazine Etacort - Hydrocortamate HCI

Eta-Cortilen - Dexamethasone phosphate

Etacortin - Fluprednidene acetate Etadrol - Fluprednisolone Etalpha - Alfacalcidol

Etambrin - Ethambutol HCI Etambutol Beta - Ethambutol HCI Etambutyl - Ethambutol HCl Etapiam - Ethambutol HCI Etbutol - Ethambutol HCl Ethamide - Ethoxzolamide Ethanis - Bisacodyl Ethimide - Ethionamide Ethinamin - Ethionamide

Ethinyl Oestradioi - Ethinylestradioi

Ethiocidan - Ethionamide Ethiodan - Jophendylate Ethochlon - Oxeladin Ethrane - Enflurane

Ethryn - Erythromycin stearate Ethyfron - Etilefrine pivalate HCI Ethymal - Ethosuximide Etibi - Ethambutol HCI Eticyclol - Ethinylestradiol Etidron - Etidronate disodium Etifollin - Ethinylestradiol Eti-Puren - Etilefrine pivalate HCI

Etivex - Ethinylestradiol Etofen Ilfi - Terofenamate Etomal - Ethosuximide Etopalin - Exiproben Etopinil - Etozolin Etoscol - Hexoprenaline Etrafon - Perphenazine Eucardion - Prenylamine

Eucilat - Benfurodil hemisuccinate

Eucistin - Nalidixic acid Euciton - Domperidone Eucol - Arginine glutamate Euctan - Tolonidine nitrate Eudemine - Diazoxide Eudyna - Tretinoin Eufusol - Mannitol

Eugynon - Norgestrei Euhypnos - Temazepam Eukystol - Haloperidol

Eulaxan - Bisacodyl

Eulaxin - Oxyphenisatin acetate

Eulip - Tiadenol Eumental - Piracetam Eumotol - Bumadizon Eunephran - Buthlazide Eunerpan - Melitracen Eupen - Amoxicillin Euphorin - Diazepam Eupneron - Eprozinol

Eupramin - Imipramine HCI Euralan - Fenipentol Eurax - Crotamiton Euraxil - Crotamiton Euroceptor - Cimetide Eurocillin - Ampicillin Euro-Cir - Norfenefrine Eurodin - Estazolam

Eurodopa - Levodopa Eurosan - Diazepam Eusaprim - Trimethoprim

Euspirax - Choline theophyllinate

Eusulpid - Sulpiride Euteberol - Spironolactone

Eutensin - Furosemide Euthyrox - Levothyroxine sodium Eutimox - Fluphenazine HCl Eutirox - Levothyroxine sodium Eutisone - Methylprednisolone

Eutizon - Isoniazid

Eutonyl - Pargyline HCl Eutus - Chlophedianol

Euvaderm - Betamethasone benzoate

Euvasal - Suloctidil Evacalm - Diazepam Evac-Q-Kwik - Bisacodyl Evacuol - Picosulfate sodium Evadene - Butriptyline Evadyne - Butriptyline Evaprine - Phenyramidol Evasidol - Butriptyline Eventin - Propylhexedrine

Everone - Testosterone enanthate Evimot - Clofibride

Evolubran - Pyritinol

Evrodex - Dextroamphetamine sulfate

Exacyl - Tranexamic acid Ex-Adipos - Phentermine HCI Exal - Vinblastine sulfate Exazol - Sulfamethoxypyridazine Excedrin P.M. - Methapyrilene HCi Excerate - Hydrocortisone

Excolicin - Penicillin G Procaine Exdol - Acetaminophen

Exirel - Pirbuterol Exna - Benzthiazide Exonal - Tegafur Exosalt - Benzthiazide

Expectoryn - Diphenhydramine HCI

Exsel - Selenium sulfide

Extencilline - Penicillin G benzathine Extendryl - Phenylephrine HCI Extracort - Triamcinolone acetonide

Extramycin - Sisomicin Extranase - Bromelain Extren - Aspirin

Extuson - Dextromethorphan hydrobromide

Exurate - Benzbromarone

Fabil-Valeas - Fenipentol Fabontal - Propanidid Fabrol - Acetyl cysteine

Fado - Cefamandole nafate sodium salt

Falecina - Cephalexin Falicor - Prenylamine Falithrom - Phenprocoumon Famet - Sulfamethizole Fanasil - Sulfadoxine Fansidar - Pyrimethamine Fansidar - Sulfado xine Faredina - Cephaloridine Faremicin - Fosfomycin Farexin - Cephalexin Fargan - Promethazine HCI Farial - Indanazoline Faril - Nalidixic acid

Farlutal - Medroxyprogesterone acetate Farmabutol - Ethambutol HCI

Farmaciclina - Rolitetracycline Farmacyrol - Dienestrol Farmacyrol - Ethinylestradiol

Farmadiuril - Bumetanide Farmampil - Ampicillin

Farmaproina - Penicillin G procaine Farmatox - Chlophedianol

Farmicetina - Chloramphenicol Farmiserina - Cycloserine Farmoxin - Cefoxitin sodium Fasigyn - Tinidazole

Fasigyne - Tinidazole Fastin - Phentermine HCI Fastum - Ketoprofen Faustan - Diazepam

Fazadon - Fazidinium bromide Fazol - Isoconazole nitrate

F-Cortef Acetate - Fludrocortisone acetate

Febrica - Brompheniramine maleate

Febrilix - Acetaminophen Febrogesic - Acetaminophen Febrolin - Acetaminophen Fe-Cap - Ferroglycine sulfate Fedacilina - Metampicillin sodium

Fedahist - Guaifenesin Fefol - Folic acid Feinalmin - Imipramine Felison - Flurazepam Felixyn - Phenaglycodol

Fellin - Fluocinolone acetonide Fellozine - Promethazine HCI Feminone - Ethinylestradiol Femirogen - Hexestrol Fem-Iron - Ferrous Fumarate

Femogen - Estradiol valerate Femogex - Estradiol valerate Femovirin - Estradiol cypionate Femulen - Ethynodiol diacetate Fenactil - Chlorpromazine HCl Fenamide - Dichlorphenamide

Fenamin - Mefenamic acid

Fenamine - Pheniramine maleate Fenampicin - Rifampin Fenantoin - Phenytoin Fenazil - Promethazine HCI Fenazolo - Sulfaphenazole Fencumar - Phenprocoumon Fendel - Fenspiride Fendilar - Fendiline HCI

Fendon - Acetaminophen Fenergan - Promethazine HCI Fenibutasan - Phenylbutazone Fenibutol - Phenylbutazone Fenilfar - Phenylephrine HCI

Fenil-PAS - Phenyl aminosalicylate Fenint - Indoprofen

Fenisan - Oxyphenisatin acetate Fenistil - Dimethindene maleate Fenobrate - Fenofibrate Fenocin - Penicillin V Fenolibs - Fenofibrate Fenoprex - Fenoprofen Fenopron - Fenoprofen

Fenorex - Fenoroporex

Fenospen - Penicillin V

Fenostil - Dimethindene maleate

Fenorin - Phenyramidol Fental - Tegafur Fentanest - Fentanyl Fentanyi LeBrun - Fentanyi Fentazin - Perphenazine Fenuril - Chlorothiazide

Fenylhist - Diphenhydramine HCl

Feosol - Ferrous Fumarate

Feosol - Folic acid

Feostat - Ferrous fumarate Feostim · Ferrous fumarate FEP - Hydrocortisone F.E.P. - Pramoxine HCI Fepron - Fenoprofen Feprona - Fenoprofen

Fercasulf - Sulfamethoxypyridazine

Fergon - Cephalexin Ferion - Ferrous fumarate Fernisolon - Prednisolone Fernisone - Prednisone Fero-Folic - Ferrous fumarate Fero-Folic - Folic acid Fero-Grad - Ferrous fumarate

Feronia - Rifampin

Feroton - Ferrous fumarate Ferrocap - Folic acid

Ferrochel - Ferroglycine sulfate Ferrocontin - Ferroglycine sulfate Ferro-Delalande - Ferrous fumarate Ferrofume - Ferrous fumarate

Ferrograd - Folic acid

Ferrolina - Ferrous fumarate Ferrolip - Ferrocholinate Ferromyn - Folic acid Ferronat - Ferrous fumarate Ferrone - Ferrous fumarate Ferronord - Ferroglycine sulfate

Ferrosanol - Ferroglycine sulfate Ferrum Hausmann - Ferrous fumarate Fersaday - Ferrous fumarate

Fersamal - Ferrous fumarate Fertodur - Cyclofenil Ferumat - Ferrous fumarate Fervi - Cyanocobalamin

Festamoxin - Moxalactam disodium

Feximac cream - Bufexamac

F.H. - Tegafur Fiblaferon - Interferon

Fibocil - Aprindine HCI Fiboran - Aprindine HC! Fibutox - Oxyphenbutazone Ficoid - Fluocortolone Fidesbiotic - Ampicillin

Fidesporin - Cefazolin sodium Fidocin - Demeclocycline HCI

Filacul - Tegafur Filair - Terbutaline

Filarcidin - Diethylcarbamazine citrate Filaribits - Diethylcarbamazine citrate

Filibon - Folic acid

Filoklin - Cephaloridine Filtrax - Pipemidic acid Fimazid - Isoniazid Fimbutol - Ethambutol HCI Finacillin - Azidocillin Finaject - Trenbolone acetate Finaplix - Trenbolone acetate Finaten - Fominoben HCl Finimal - Acetaminophen

Finlepsin - Carbamazepine Finsedyl - Oxatomide Fiobrol - Chlorthenoxazine Figgesic - Carbaspirin calcium Figgesic - Pheniramine maleate

Figgesic - Phenylpropanolamine HCI Fiogesic - Pyrilamine

Fioricet - Heparin

Firmacel - Cefazolin sodium Firmacort - Methylprednisolone

Firmalgil - Phenyramidol Firon - Ferrous fumarate Fitociclina - Methacycline Fitton - Fenethylline HCI Fiviton B12 - Cyanocobalamin Flabelline - Methicillin sodium

Flacule - Fluorouracil Flagemona - Metronidazole Flagentyl - Secnidazole Flagyl - Metronidazole Flamanil - Pixifenide Flamazine - Sulfadiazine Flaminon - Niflumic acid Flanaril - Oxyphenbutazone Flatistine - Carnitine Flaveric - Benproperine Flavisco - Suloctidil

Flavopen - Penicillin V hydrabamine

Flavoquine - Amodiaquin

Flavobion - Silymarin

Flaxedil - Gallamine triethiodide

Flebocortid - Hydrocortisone sodium phosphate

Flebosan - Tribenoside Flebotropin - Diosmin Flectadol - Aspirin Fleet Relief - Pramoxine HCI

Flemex - Carbocysteine Flemoxin - Amoxicillin Flexartal - Carisoprodol

Flexazone - Phenylbutazone Flexen - Ketoprofen Flexeril - Cyclobenzaprine

Flexicort - Hydrocortisone Flexin - Orphenadrine citrate Flexin - Zoxazolamine

Flo-Cillin - Penicillin G procaine

Flogar - Oxametacine Flogene - Fentiazac

Floghene - Oxyphenbutazone Flogicort - Triamcinolone

Flogicort - Trimcinolone acetonide

Floginax - Naproxen Flogistin - Oxyphenbutazone Flogitolo - Oxyphenbutazone Flogocid - Bufexamac

Flogodin - Oxyphenbutazone Flogorex - Allopurinol Flogprofen - Etofenamate Floktin - Floctafenine Flonatril - Clorexolone

Flopen - Floxacillin Flopholin - Togafur Florid - Miconazole nitrate Floridin - Cephaloridine

Florinef Acetate - Fludrocortisone acetate

Florispec - Epicillin Florobil - Fenipentol

Florone - Diflorasone diacetate Floropryl - Isoflurophate Florotic - Fludrocortisone acetate

Flosin - Indoprofen Flosint - Indoprofen Flou - Proxazole citrate Flovacil - Diflunisal

Floxamine - Phenyl toloxamine

Floxapen - Floxacillin

Floxyfral - Fluvoxamine maleate

Flu 21 - Fluocinonide Fluanxol - Flupentixol Fluaton - Fluorometholone Flu-Base - Fluorometholone Flubason - Desoximetasone Flubenol - Flubendazole

Flucinar - Fluccinolone acetonide Fluciox - Floxacillin Flucon - Fluorometholone Flucort - Fluocinolone acetonide Fluderma - Formocortal acetate

Fludestrin - Testolactone Fludex - Fluocinonide Fludex - Indapamide

Fludrocortone - Fludrocortisone acetate

Flugalin - Flurbiprofen Flugeral - Flunarizine HCI Flugerel - Flutamide Fluibil - Chenodioi Fluibron - Ambroxol Fluiden - Fenspiride Fluidil - Cyclothiazide Fluidol - Phenyltoloxamine Fluifort - Carbocysteine Fluimucetin - Acetylcysteine Fluimucil - Acetyl cysteine Fluitran - Trichlormethiazide

Fluixol - Ambroxol Flumerol - Fluorometholone

Flumetol - Fluorometholone Flumetholon - Fluorometholone Flumezine - Fluphenazine HCI Flumo xane - Flubendazole Flumural - Flumequine Flunagen - Flunarizine HCI

Flunicef - Cephacetrile sodium Fluniget - Diflunisal Flunox - Flurazepam

Fluocinil - Fluocinolone acetonide

Fluocinone - Fluocinolone acetonide Fluocit - Fluocinolone acetonide Fluoderm - Fluocinolone acetonide Fluoderm - Fluorometholone Fluodermol - Fluocinolone acetonide Fluogisol - Fluocinolone acetonide Fluolar - Fluocinolone acetonide Fluoion - Fluorometholone Fluomazina - Triflupromazine Fluomix - Fluocinolone acetonide Fluonid - Fluocinolone acetonide

Fluonide Dermica - Fluocinolone acetonide

Fluopan - Halothane Fluopryl - Isoflurophate

Fluordima - Fluocinolone acetonide Fluoroblastin - Fluorouracil Fluorodiuvis · Hydroflumethiazide Fluorofen - Triflupromazine

Fluoromar - Fluroxene Fluoroplex - Fluorouracil Fluorotop - Fluorouracil Fluoskin - Fluocinolone acetonide Fluothane - Halothane

Fluotrex - Fluocinolone acetonide Fluovitef - Fluocinolone acetonide

Flupen - Floxacillin Flupidol - Penfluridol

Flupollon - Fluocinolone acetonide

Flurazine - Trifluoperazine

Flurobate Gel - Betamethasone benzoate

Flussicor - Hexobendine Flustar - Diflunisal

Flutoria - Trichlormethiazide Fluvean - Fluocinolone acetonide Fluvermal - Flubendazoie Fluversin - Suloctidil Fluxarten - Flunarizine HCI Fluzepam - Flurazepam Fluzon - Fluocinonide

Flutone - Diflorasone diacetate

Fluzon - Fluocinolone acetonide FML Liquifilm - Fluorometholone

F-Mon - Perphenazine Focus - Ibuprofen Folacid - Folic acid Folacin - Folic acid Folgemin - Folic acid Folamin - Folic acid Folan - Folic acid Folasic - Folic acid Folbiol - Folic acid Folcodal - Cinnarizine Foldine - Folic acid Folettes - Folic acid

Folex - Folic acid Folex - Methotrexate Foliamin - Folic acid Folical - Folic acid Folicet - Folic acid Folico - Folic acid Folina - Folic acid Folirivo - Folic acid Folicet - Folic acid Follidene - Dienestrol Follikoral - Ethinylestradiol Folliplex - Hexestrol

Folvite - Folic acid Fomac - Salicylic acid Fonlipol - Tiadenol Fonofos - Fosfomycin Fontego - Bumetanide Fonzylane - Buflomedil Forane - Isoflurane Fordex - Tolbutamide Fordiuran - Bumetanide Foreart - Inosine

Forenol - Niflumic acid Forhistal - Dimethindene maleate Foristal - Dimethindene maleate Formaftil - Formocortal acetate Formulex - Dicyclomine HCI Fortabol - Methenolone acetate Fortabolin - Nandrolone decanoate

Fortagen - Ampicillin

Fortasec - Loperamide HCI

Fortecortin - Dexamethasone acetate

Fortesul - Sulfameter

Forthane - Methyl hexaneamine carbonate

Forticef - Cephradine Fortombrin - Acetrizoate sodium Fortracin - Bacitracin

Fortravel - Cyclizine Fortum - Ceftazidime Fortunan - Haloperidol Fosfocin - Fosfomycin Fosfocine - Fosfomycin Fosfogram - Fosfomycin Fosfotricina - Fosfomycin Fossyol - Metronidazole Fostex - Salicylic Acid Fovane - Benzthiazide Fradio - Neomycin

Fradyl - Neomycin Framenco - Chiorzo xazone

Francacilline - Penicillin G procaine Franciclina - Methacycline

Francital - Fosfomycin Francomicina - Methacycline

Franocide - Diethylcarbamazine citrate

Francoze - Tegafur Franyl - Furosemide

Fravit B-12 - Hydro xocobalamin Frekentine - Diethylpropion HCl

Frekven - Propranoloi HCI Fremet - Cimetide Frenactil - Benperidol Frenal - Cromolyn sodium Frenasma - Cromolyn sodium Frenil - Promazine HCI Frenolyse - Tranexamic acid Frenoton - Azacyclonol Frenquel - Azacyclonol

Fresmin S - Hydroxocobalamin

Frideron - Zeranol

Fringanor - Phendimetrazine tartrate

Frisium - Clobazam Froben - Flurbiprofen Frolid P - Miconazole nitrate Fructosteril - Fructose Fruidex - Dextran 40 Frusemin - Furosemide Frusetic - Eurosemide Frusid - Furosemide

Ftalysept - Phthalyisulfathiazole

Ftorafur - Tegafur Ftoral - Tegafur

Ftorocort - Triamcinolone acetonide

F.T.R. - Tegafur

Fua Med - Nitrofurantoin FUDR - Floxuridine

Fuerpen - Ampicillin trihydrate Fugacillin - Carbenicillin disodium

Fugatox - Chlophedianol Fugillin - Fumagillin Fulaid - Tegafur Fulcin - Griseofulvin Fulcine Forte - Griseofulvin

Fulfeel - Tegafur Fulgram - Norfloxacin Fuligan - Allopurinol Fullcilina - Amoxici!lin Fulneurina - Pyritinol Fulpen - Bromhexine Fulsix - Furosemide

Fultamid - Sulfadimethoxine Fuluminol - Clemastine fumarate Fuluvamide - Furosemide Fulvicin - Griseofulvin

Fumafer - Ferrous fumarate Fumalestine - Clemastine fumarate Fumaresutin - Clemastine fumarate Fumasorb - Ferrous fumarate Fumidil - Fumaqillin

Fumiron - Ferrous fumarate Funacomin-F - Hydroxocobalamin Funapan - Valethamate bromide Functiocardon - Dipyridamole Fungacetin - Triacetin

Fungata - Tioconazole Fungifos - Tolciclate Fungilin - Amphotericin B Fungi-Nail - Salicylic acid Fungisdin - Miconazole nitrate Fungivin - Griseofulvin

Fungizone - Amphotericin 8 Fungold - 4-Chloro-3.5-xvlenol Furachel - Nitrofurantoin Furacin - Nitrofurazone Furacin-E - Diethylstilbestrol Furadantin - Nitrofurantoin Furadoine - Nitrofurantoin Furalan - Nitrofurantoin Furall - Furazolidone Furaloid - Nitrofurantoin Furanex - Nitrofurantoin

Furanite - Nitrofurantoin Furantral - Furosemide Furantril - Furosemide Furasoi - Furaltadone Furatin - Nitrofurantoin Furazon - Furazolidone Furedan - Nitrofurantoin Furesis - Furosemide Furesol - Nitrofurazone Furetic - Furosemide Furex - Cefuroxime Furex - Furosemide Furfan - Furosemide

Furix - Furosemide Furmethide - Furtrethonium iodide

Furobactil - Nifurfoline Furobactina - Nitrofurantoin

Furil - Nitrofurantoin

Furofluor - Tegatur Furofutran - Tegafur Furomex - Furosemide Furophen - Nitrofurantoin Furopuren - Furosemide Furosedon - Furosemide Furoside - Furosemide

Furoxane - Furazolidone Furoxone - Furazolidone Fusalovos - Fusafungine Fusarine - Fusafungine Fusca - Clorprenaline

Fusfosiklin - Tetracycline phosphate complex

Fusid - Furosemide Fusten - Cetiedil Fustopanox - Oxeladin Futraful - Tegafur Futraful Zupo - Tegafur

G-11 - Hexachlorophene Gabacet - Piracetam Gabalon - Baclofen

Gabbromycin - Paromomycin Gabbroral - Paromomycin Gabilin - Tolonium chloride

Gaiapect - Guaifenesin Galactoquin - Quinidine polygalacturonate Galatturil-Chinidina - Quinidine poly-

galacturonate Galenomycin - Oxytetracycline Gamadiabet - Acetohexamide

Gambex - Lindane Gamene - Lindane Gamiquenol - Chenodiol Gammaciclina - Methacycline

Gammistin - Brompheniramine maleate

Gamophen - Hexachlorophene Ganatone - Dimethicone Ganda - Guanethidine sulfate Ganidan - Sulfaquanidine Ganphen - Promethazine HCI Gansol - Sulfisoxazole Gantanoi - Sulfamethoxazole

Gantaprim - Sulfamethoxazole Gantrisin - Sulfiso xazole

Gantrisin Acetyl - Acetyl sulfisoxazole

Garamycin - Gentamicin sulfate

Garasin - Cephalexin Gasace - Dimethicone Gascon - Dimethicone Gasless - Dimethicone Gaspanon - Dimethicone Gasparol - Pyridinol carbamate Gasteel - Dimethicone Gastrausil - Carbenoxolone

Gastrix - Oxyphencyclimine

Gastro-Conray - lothalmate meglumine

Gastrodiagnost - Pentagastrin Gastrodyn - Glycopyrrolate Gastrofrenal - Cromolyn sodium

Gastromet - Cimetide

Gastronerton - Metoclopramine HCI

Gastronilo - Zolimidine Gastropodil - Mepenzolate bromide

Gastrurol - Pipemidic acid Gaszeron - Dimethicone Gatinar - Lactulose Geapur · Allopurinol Geen - Tegafur

Gelargin - Fluocinolone acetonide Gelidina - Fluocinolone acetonide Gelocatil - Acetaminophen Gelosedine - Fenethylline HCl Gelotamide - Phthalyisulfathiazole

Gelstaph - Cloxacillin Gelusil - Simethicone Gel "V" - Idoxuridine Genasprin - Aspirin Gencefal - Cephaloridine Gene-Bamate - Meprobamate Gene-Poxide - Chlordiazepoxide HCI

Genogris - Piracetam

Genoptic - Gentamicin sulfate Genoxal - Cyclophosphamide Gensumycin - Gentamicin sulfate Genta - Gentamicin sulfate Gentabac - Gentamicin sulfate Gentacin - Gentamicin sulfate Gentadavur - Gentamicin sulfate Gentafair - Gentamicin sulfate Genta-Gobens - Gentamicin sulfate Gentalline - Gentamicin sulfate Gentalyn - Gentamicin sulfate Gentamedical - Gentamicin sulfate Gentamin - Gentamicin sulfate Gentamina - Gentamicin sulfate

Gentamival - Gentamicin sulfate Gentamorgens - Gentamicin sulfate Gentamycin-Pos - Gentamicin sulfate Gentamytrex - Gentamicin sulfate Gentaroger - Gentamicin sulfate Gentasillin - Gentamicin sulfate Gentibioptal - Gentamicin sulfate Genticina - Gentamicin sulfate Genticol - Gentamicin sulfate Gento - Gentamicin sulfate Gentona - Gentamicin sulfate

Gent-Ophtal - Gentamicin sulfate Gen-Tos - Chlophedianol Gentran 40 - Dextran 40 Genurin - Flavoxate HCI Geobiotico - Doxycycline

Geocillin - Carbenicillin indanyl sodium

Geocycline - Oxytetracycline Geomycin - Oxytetracycline Geopen - Carbenicillin disodium Geopen - Carbenicillin indanyl sodium Geopen-U - Carbenicillin indanyl sodium

Gerex - Diethylstilbestrol Gericetam - Piracetam

Germa-Medica - Hexachlorophene

Germex - Nitrofurazone Germibon - Hexachlorophene Gerodyl - Penicillamine Gerofuran - Nitrofurantoin Geromid - Clofibrate Gersmin - Dimethicone Gestamestrol - Mestranol Gesta-Plan - Norethindrone

Gestapuran - Medroxyprogesterone acetate

Getamisin - Gentamicin sulfate Gevramycin - Gentamicin sulfate

Geycillina - Ampicillin G G Cen - Guaifenesin Giarlam - Furazolidone Gibicef - Cefuroxime Gibixen - Naproxen Gichtex - Allopurinol Giganten - Cinnarizine Gilex - Doxepin HCI Gilutensin - Etifelmine

Gineflavir - Metronidazole Ginvel - Furazolidone Gipsydol - Diphenidol

Giquel - Propantheline bromide

Githitan - Diazepam Glacostat - Aceclidine

Furoxane - Furazolidone Furoxone - Furazolidone Fusalovos - Fusafungine Fusarine - Fusafungine Fusca - Clorprenaline

Fusfosiklin - Tetracycline phosphate complex

Fusid - Furosemide Fusten - Cetiedil Fustopanox - Oxeladin Futraful - Tegafur Futraful Zupo - Tegafur

G-11 - Hexachlorophene Gabacet - Piracetam Gabalon - Baclofen

Gabbromycin - Paromomycin Gabbroral - Paromomycin Gabilin - Tolonium chloride Gaiapect - Guaifenesin

Galactoquin - Quinidine polygalacturonate Galatturil-Chinidina - Quinidine poly-

galacturonate Galenomycin - Oxytetracycline Gamadiabet - Acetohexamide

Gambex - Lindane Gamene - Lindane Gamiquenol - Chenodiol Gammaciclina - Methacycline

Gammistin - Brompheniramine maleate

Gamophen - Hexachlorophene Ganatone - Dimethicone Ganda - Guanethidine sulfate Ganidan - Sulfaquanidine Ganphen - Promethazine HCI Gansol - Sulfisoxazole Gantanoi - Sulfamethoxazole Gantaprim - Sulfamethoxazole Gantrisin - Sulfiso xazole

Gantrisin Acetyl - Acetyl sulfisoxazole

Garamycin - Gentamicin sulfate

Garasin - Cephalexin Gasace - Dimethicone Gascon - Dimethicone Gasless - Dimethicone Gaspanon - Dimethicone Gasparol - Pyridinol carbamate Gasteel - Dimethicone Gastrausil - Carbenoxolone Gastrix - Oxyphencyclimine

Gastro-Conray - lothalmate meglumine

Gastrodiagnost - Pentagastrin Gastrodyn - Glycopyrrolate Gastrofrenal - Cromolyn sodium Gastromet - Cimetide

Gastronerton - Metoclopramine HCI Gastronilo - Zolimidine Gastropodil · Mepenzolate bromide

Gastrurol - Pipemidic acid Gaszeron - Dimethicone Gatinar - Lactulose Geapur - Allopurinol Geen - Tegafur

Gelargin - Fluocinolone acetonide Gelidina - Fluocinolone acetonide Gelocatil - Acetaminophen Gelosedine - Fenethylline HCl Gelotamide - Phthalyisulfathiazole

Gelstaph - Cloxacillin Gelusil - Simethicone Gel "V" - Idoxuridine Genasprin - Aspirin Gencefal - Cephaloridine Gene-Bamate - Meprobamate Gene-Poxide - Chlordiazepoxide HCI

Genogris - Piracetam

Genoptic - Gentamicin sulfate Genoxal - Cyclophosphamide Gensumycin - Gentamicin sulfate Genta - Gentamicin sulfate Gentabac - Gentamicin sulfate Gentacin - Gentamicin sulfate Gentadavur - Gentamicin sulfate Gentafair - Gentamicin sulfate Genta-Gobens - Gentamicin sulfate Gentalline - Gentamicin sulfate Gentalyn - Gentamicin sulfate Gentamedical - Gentamicin sulfate Gentamin - Gentamicin sulfate Gentamina - Gentamicin sulfate Gentamival - Gentamicin sulfate Gentamorgens - Gentamicin sulfate Gentamycin-Pos - Gentamicin sulfate Gentamytrex - Gentamicin sulfate Gentaroger - Gentamicin sulfate

Gentasillin - Gentamicin sulfate Gentibioptal - Gentamicin sulfate Genticina - Gentamicin sulfate Genticol - Gentamicin sulfate Gento - Gentamicin sulfate Gentona - Gentamicin sulfate Gent-Ophtal - Gentamicin sulfate

Gen-Tos - Chlophedianol Gentran 40 - Dextran 40 Genurin - Flavoxate HCI Geobiotico - Doxycycline

Geocillin - Carbenicillin indanyi sodium

Geocycline - Oxytetracycline Geomycin - Oxytetracycline Geopen · Carbenicillin disodium Geopen - Carbenicillin indanyl sodium Geopen-U - Carbenicillin indanyl sodium

Gerex - Diethylstilbestrol Gericetam - Piracetam

Germa-Medica - Hexachlorophene

Germex - Nitrofurazone Germibon - Hexachlorophene Gerodyl - Penicillamine Gerofuran - Nitrofurantoin Geromid - Clofibrate Gersmin - Dimethicone Gestamestrol - Mestranol Gesta-Plan - Norethindrone

Gestapuran - Medroxyprogesterone acetate

Getamisin - Gentamicin sulfate Gevramycin - Gentamicin sulfate

Geycillina - Ampicillin G G Cen - Guaifenesin Giarlam - Furazolidone Gibicef - Cefuroxime Gibixen - Naproxen Gichtex - Allopurinol Giganten - Cinnarizine Gilex - Doxepin HCI Gilutensin - Etifelmine

Gineflavir - Metronidazole Ginvel - Furazolidone Gipsydol - Diphenidol

Giquel - Propantheline bromide

Githitan - Diazepam Glacostat - Aceclidine

Gladius - Pyritinol

Glajust - Dichlorophenamide

Glanil - Cinnarizine

Glarubin - Glaucarubin

Glauconox - Acetazolamide

Glaucol - Dichlorphenamide

Glauconide - Dichlorphenamide Glaucotensil - Ethoxzolamide

Glaucothil - Dipivefrin

Glaudin - Aceclidine

Glaumid - Dichlorphenamide

Glaunorm - Aceclidine

Glaupax - Acetazolamide

Glaxoridin - Cephaloridine

Gleiton - Hydrocortisone sodium phosphate

Glevomicina - Gentamicin sulfate

Glianimon - Benperidol Glibenese - Glipizide

Gliconorm - Chlorpropamide

Glifan - Glafenine Glifanan - Glafenine

Glimid - Glutethimide Gliporai - Buformin HCI

Glistelone - Prednisolone stearoylglycolate

Glitisol Orale - Thiamphenicol

Glitisone - Prednisolone stearovlolycolate

Glitrim - Glibornuride

Globenicol - Chloramphenicol

Globociclina - Methacycline

Globoid - Aspirin

Globucid - Sulfaethidole

Glomax - Choline theophyllinate

Glorium - Medazepam

Glorous - Chloramphenicol

Glovan - Nonoxynol

Gluborid - Glibornuride

Glucagon Novo - Glucagon

Glucamide - Chlorpropamide

Glucetyl - Aspirin

Glucoben - Gliso xepid

Glucosulfina - Chlorpropamide

Glucotrol - Glipizide

Gludease - Glybuzole

Glumal - Aceglutamide aluminum

Glurenor - Gliquidone

Glurenorm - Gliquidone

Glutril - Glibornuride

Glycanol - Glymidine

Glycifer - Ferroglycine sulfate

Glyconon - Tolbutamide

Glyconormal - Glymidine

Glyotol - Mephenesin

Glypesin - Hexetidine

Glysepin - Glisoxepid

Glytril - Glibornuride

Glyvenol - Tribenoside

G-Mycin - Gentamicin sulfate

Gnadion - Beclomethasone dipropionate

Gocce Euchessina - Picosulfate sodium

Gocce Lassative Aicardi - Picosulfate sodium

Godalax - Bisacodyl

Godamed - Aspirin

Gondafon - Glymidine

Gotinal - Naphazoline

Gradient Polifarma - Flunarizine HCI Grafalex - Cephalexin

Gramaderm - Gramicidin

Gramcillina - Ampicillin

Grammaxin - Cefazolin sodium

Grampenil - Ampicillin

Gramurin - Oxolinic acid

Grandaxine - Tofisopam Gravol - Dimenhydrinate

Gravosan - Clomiphene dihydrogen citrate

Grewcalm - Diazepam

Gricin - Griseofulvin

Grifulvin - Griseofulvin

Grinsil - Amoxicillin

Grisactin - Griseofulvin Grisefuline - Griseofulvin

Grisetin - Griseofulvin

Grisona - Feprazone Grisovin - Griseofulvin

Gris-Peg - Griseofulvin

Grorm - Somatotropin

Grospisk - Methyldopa

Guabeta - Sulfaguanidine Guabeta N - Tolbutamide

Guajacuran - Guaifenesin

Guajasyl - Guaifenesin

Guanimycin - Dihydrostreptomycin sulfate

Guasept - Sulfaguanidine

Guastil - Sulpiride

Gubernal - Alprenolol HCI

Guiatuss - Guaifenesin Guicitrina - Ampicillin

Gulliostin - Dipyridamole

Guservin - Griseofulvin

Gutabex - Chlophedianol

Gutanit - Fluctoronide Gutron - Midodrine

Guttalax - Picosulfate sodium

Gvaja - Guaifenesin

Gynaflex - Noxytiolin Gynamousse - Oxytetracycline

Gynelan - Chlordantoin

Gyne-Lotrimin - Clotrimazole

Gynetone - Ethinylestradiol

Gynipal - Hexoprenaline Gyno-Cortisone - Hydrocortisone

Gyno-Daktarin - Miconazole nitrate Gynol - Nonoxynol

Gynolett - Ethinylestradiol

Gyno-Monistat - Miconazole nitrate

Gyno-Pevaryl - Echonazole nitrate

Gynoral - Ethinylestradiol

Gynorest - Dydrogesterone

Gynosterone - Methyltestosterone Gyno-Sterosan - Chlorquinaldol

Gynotherax - Chlorquinaldol

Gyno-Travogen - Isoconazole nitrate

Hachemina - Aminobenzoic acid

Hachimetoxin - Sulfadimethoxine

Hacosan - Cyclandelate Haelan - Flurandrenolide

Haemiton - Clonidine HCI

Hagedabletten - Aspirin

Haibrain - Citicoline

Halan - Halothane

Halciderm - Halcinonide Halcimat - Halcinonide

Halcion - Triazolam

Halcort - Halcinonide

Haldid - Fentanyl Haldol - Haloperidol

Haldrone - Paramethasone acetate

Halenol - Acetaminophen

Halestyn - Chloroprocaine HCI

Halgon - Aspirin

Halidol - Haloperidol Halkan - Droperidol Halodren - Silymarin Halog - Halcinonide Halo Just - Haloperidol Halomycetin - Chloramphenicol

Halosten - Haloperidol Halotestin - Fluoxymesterone

Halotex - Haloprogin

Halothan Hoechst - Halothane Halovis - Halothane Hammovenad - Inosito! niacinate

Hamocura - Heparin Haocolin - Citicoline Happy Trip - Cyclizine Harmonin - Meprobamate Harmonyl - Deserpidine Harnway - Sulfamethizole Harop - Dimethicone

Hasethrol - Pentaerythritol tetranitrate

Hautosone - Hydrocortisone HC-Cream - Hydrocortisone HCH-Salbe - Lindane H-Cort - Hydrocortisone Head & Chest - Guaifenesin

Head & Chest - Phenylpropanolamine HCI

Healthstyle - Clofibrate Heartcin - Ubidecarenone Heb-Cort - Hydrocortisone Hebucol - Cyclobutyrol Hedex - Acetaminophen Hekbilin - Chenodiol

Heksaden - Hexachlorophene

Helenil - Ketoprofen

Heliopar - Chloroquine phosphate Helmex - Pyrantel pamoate Help - Phenylpropanolamine HCI Helpa - Tegafur

Helvecillin - Ampicillin trihydrate Helvemycin - Erythromycin stearate Hematon - Ferrous fumarate Hemocaprol - Aminocaproic acid Hemocuron - Tribenoside

Hemocyte - Folic acid Hemomin - Cyanocobalamin Hemosalus - Cyanocobalamin Hemostyl - Folic acid

Hemostyptanon - Estriol succinate Hemotin - Aminocaproic acid

Henohol - Chenodiol

Hepacon B12 - Cyanocobalamin

Hepacort Plus - Heparin Hepadestal - Silymarin Hepa Gel - Heparin Hepagerina - Silymarin Hepalande - Menbutone Hepalar - Silvmarin

Hepaldine - Timonacic sodium

Hepallolina - Silvmarin

Hepa-Obaton - Nandrolone phenpropionate

Heparegene - Timonacic sodium

Heparinin - Heparin Heparin-Pos - Heparin Heparin sodium - Heparin Hepathromb - Heparin Hepato-Framan - Silymarin Hepcovite - Cyanocobalamin

Hep-Lock - Heparin Heprinar - Heparin Hepsal - Heparin

Heptadon - Methadone HCI Heptanal - Methadone HCI Heptanon - Methadone HCI Heptuna - Ferrous fumarate Heracillin - Floxacillin Herbesser - Diltiazem HCI Hermolepsin - Carbamazepine Herniocid - Nystatin Herperal - Stallimycin HCI

Herpetil - Idoxuridine Herpid - Idoxuridine Herpidu - Idoxuridine Herplex - Idoxuridine Herzbase - Propranolol HCI Herzcon - Prenylamine Herzo - Proscillaridin Herzul - Propranolol HCl Hetabiotic - Hetacillin potassium Hetacin-K - Hetacillin potassium

Hexacorton - Prednisolone acetate Hexacycline - Tetracycline phosphate complex

Hetrazan - Diethylcarbamazine citrate

Hexabolan - Trenbolone acetate

Hexadol - Chlorhexidine

Hexadrol Phosphate - Dexamethasone phosphate

Hexakapron - Tranexamic acid Hexainosineat - Inositol niacinate Hexal - Hexachlorophene Hexalmin - Inositol niacinate Hexanate - Inositol niacinate Hexanicit - Inositol niacinate Hexanicotol - Inositol niacinate

Hexanium - Hexamethonium bromide Hexapneumine - Chlorpheniramine maleate Hexapromin - Tranexamic acid Hexascrub - Hexachlorophene Hexastat - Altretamine Hexate - Inositol niacinate

Hexatin - Inositol niacinate Hexatron - Tranexamic acid Hexit - Inositol niacinate Hexoral - Hexetidine Hexron - Hexestrol Hextril - Hexetidine HHR - Hydrochlorothiazide HHR - Reserpine

Hializan - Oxazolam

Hibanil - Chlorpromazine HCI Hiberna - Promethazine HCI Hibernal - Chlorpromazine HCl Hibiclens - Chlorhexidine Hibiscrub - Chlorhexidine Hibistat - Chlorhexidine

Hibisterin - Beclomethasone dipropionate

Hibitane - Chlorhexidine Hichillos - Kebuzone Hicobala- Hydroxocobalamin Hicobalan - Hydroxocobalamin Hiconcil - Amoxicillin

Hi-Cyclane Cap - Cyclandelate

Hidrafasa - Isoniazid Hidranic - Isoniazid Hidrazinda - Isoniazid

Hidroalogen - Trichlormethiazide Hidroaltesona - Hydrocortisone Hidroferol - Calcifediol Hidroks - Hydroxyurea Hidropid - Xylometazoline HCl Hidrosaluretil - Hydrochlorothiazide

Hihustan - Oxeladin

Hilactan - Cinnarizine Hillcolax - Bisacodyl Hilong - Oxazepam Himinomax - Amoxicillin

Hipeksal - Methenamine hippurate

Hiperazida - Isoniazid Hipertensal - Guanfacine Hipnosedon - Flunitrazepam

Hipotensor Oftalmico - Dichlorphenamide Hipotensor Zambe - Syrosingopine Hippuran - Methenamine hippurate

Hiprex - Methenamine hippurate

Hipsal - Nitrazepam Hipuric - Benzbromarone Hiramicin - Doxycycline Hirdsyn - Cinnarizine

Hirnamin - Methotrimeprazine

Hiruton - Ubidecarenone

Hishiherin-S - Etilefrine pivalate HCI

Hislosine - Carbino xamine maleate

Hismanal - Astemizok

Hispril - Diphenylpyraline HCI

Histachlor - Chlorpheniramine maleate Histadur - Chlorpheniramine maleate

Histadyl - Methapyrilene HCI Histaids - Chlorpheniramine maleate

Histalen - Chlorpheniramine maleate Histalet - Guaifenesin

Histalet - Phenylephrine HCI

Histalet - Pyrilamine

Histalet DM - Dextromethorphan hydrobromide

Histalog - Betazole

Histamic - Chlorpheniramine maleate

Histamic - Phenylephrine HCI

Histaminic - Phenylpropanolamine HCI

Histanin - Chlorcyclizine

Histapen - Chlorpheniramine maleate Histaspan - Chlorpheniramine maleate

Histaspan - Phenylephrine HCI

Histavet-P - Pyrilamine

Histaxin - Diphenhydramine HCI Histex - Carbino xamine maleate

Histimin - Betazole

Histionex - Phenyltoloxamine

Histofax - Chlorcyclizine

Histol - Chlorpheniramine maleate

Histor - Phenylephrine HCI Histotab - Antazoline HCI Histradil - Triprolidine Hityl - Hexobendine Hiwell - Trimetazidine

HMS - Medrysone

Hoelcesium - Fentonium bromide Hokulaton - Spironolactone Holevid - lopanoic acid Holoxan - ifosfamide Homoolan - Acetaminophen Homoton - Hydralazine HCI

Honvan - Diethylstilbestrol diphosphate

Horizon - Diazepam

Hormale - Methyltestosterone Hormazone - Betamethasone Hormobin - Methyltestosterone Hormoestrol - Hexestrol

Hormofemin - Dienestrol

Hormofort - Hydroxyprogesterone caproate

Hornbest - Citicoline

Hortfenicol - Chloramphenicol

Hortfenicol - Chloramphenicol palmitate

Horusona - Methylprednisolone

Horusvin - Vincamine Hosboral - Amoxicillin Hostacortin - Prednisone

Hostacyclin-PRM - Rolitetracycline Hostes Pedriatico - Ampicillin

Huberdasen - Piracetam Huberdilat - Cetiedil Huberlexina - Cephalexin Huberlexina - Cephaloridine Huberplex - Chlordiazepoxide HCI

Hubersil - Bendazac Humagel - Paromomycin Humatin - Paromomycln Humibid - Guaifenesin Huminsulin - Insulin

Humorsol - Demecarium bromide

Humulin - Insulin

Humulin-I - Insulin isophane

Husmedin - Dextromethorphan hydrobromide

Hustazoi - Cloperastine

Hustenstiller - Dextromethorphan hydrobromide

Husten - Dextromethorphan hydrobromide

Hustopan - Oxeladin Hustosil - Guaifenesin Hyadur - Dimethyl sulfoxide Hyanilid - Salicylanilide Hyarom - Benzethonium chloride Hybasedock - Chlorthalidone

Hybolin Improved - Nandrolone phenpropionate

Hyclorate - Clofibrate

Hyclosid - Hydrochlorothiazide Hycobal-12 - Hydro xo cobalamin Hycomine - Phenylephrine HCI Hycomine - Phenylpropanolamine HCI

Hycor - Hydrocortisone Hycoral - Guanadrel sulfate Hycort - Hydrocortisone Hycortole - Hydrocortisone Hycotuss - Guaifenesin Hycozid - Isoniazid Hydantin - Phenytoin Hydantol - Phenytoin Hydeltra - Prednisolone

Hydeltrasol - Prednisolone phosphate sodium

Hydeltra TBA - Prednisolone tebutate

Hydiphen - Clomipramine Hydoban - Chlorthalidone Hydocomin - Hydroxocobalamin Hydoril - Hydrochlorothiazide

Hydra - Isoniazid

Hydrapres - Hydralazine HCI Hydrapress - Hydralazine HCI Hydrate - Dimenhydrinate Hydrazide - Hydrochlorothiazide Hydrazole - Acetazolamide Hydrea - Hydroxyurea

Hydrenox - Hydroflumethiazide Hydrex - Benzthiazide Hydrex - Hydrochlorothiazide Hy-Drine - Benzthiazide Hydrion - Ambuside Hydrisalic - Salicylic acid Hydrite - Hydrochlorothiazide Hydrocobamin - Hydroxocobalamin Hydrocort - Hydrocortisone

Hydrocortex - Hydrocortisone Hydrocortone - Hydrocortisone

Hydrocortone phosphate - Hydrocortisone

sodium phosphate

Hydro-D - Hydrochlorothiazide

Hydroderm - Bacitracin Hydrodiuretex - Hydrochlorothiazide Hydrodiuril - Hydrochlorothiazide Hydro-Fluserpine - Reserpine Hydrofoam - Hydrocortisone Hydro-Long - Chlorthalidone Hydromedin - Ethacrynic acid Hydromet - Methyldopa Hydromox - Quinethazone Hydromox - Reserpine Hydropres - Hydrochlorothiazide Hydropres - Reserpine Hydro-Rapid - Furosemide Hydroserpine - Hydralazine HCI Hydroserpine - Hydrochiorothiazide Hydroserpine - Reserpine Hydrosol - Prednisolone phosphate sodium Hydrotisona - Hydrocortisone Hydro B-12 - Hydroxocobalamin Hydroxo 5000 - Hydroxocobalamin Hydroxomin - Hydroxocobalamin Hydroxystilbamide - Hydroxystilbamidine iset hio nate Hydroxystilbamidin Isethionate - Hydroxystilbamidine isethionate Hydrozide - Hydrochlorothiazide Hyflavin - Methylol riboflavin Hygroton - Chlorthalidone Hylorel - Guanadrel sulfate Hymeron - Phytonadione Hymetic - Trimethobenzamide HCI Hyminal - Methaqualone Hypaque sodium - Diatrizoate sodium Hypatol - Hydralazine HCI Hyperan - Exalamide Hyperazine - Hydralazine HCI Hypercillin - Penicillin G procaine Hyperstat - Diazoxide Hypertane - Ethiazide Hyperten - Methyldopa Hypertension - Angiotensin amide Hypertol - Chlorthalidone

Hypertonalum - Diazoxide Hypnodin - Perlapine Hypnodorm - Flunitrazepam Hypnol - Pentobarbitol sodium Hypnomidate - Etomidate HCl Hypnotin - Nitrazepam

Hypnovel - Midazolam maleate Hypocerol - Clofibrate

Hypolag - Methyldopa Hypos - Hydralazine HC!

Hypothurol - Pentaerythritol tetranitrate

Hy-Po-Tone - Methyldopa Hypovase - Prazosin Hyprenan - Prenalteroi

Hypropen - Penicillin G procaine

Hyproval - Hydroxyprogesterone caproate Hyptor - Methagualone Hyrazin - Thiamphenicol Hyrexin - Diphenhydramine HCI Hyrex-105 - Phendimetrazine tartrate Hysron - Medroxy progesterone acetate Hytakerol - Dihydrotachysterol

Hyton - Pemoline Hytone - Hydrocortisone

Hytrid - Hydrochlorothiazide Hytuss - Guaifenesin Hyurina - Etilefrine divalate HCI Hyzine - Hydroxyzine HC!

Hyzyd - Isoniazid

IA-But - Phenylbutazone I.A.-Loxin - Oxytetracycline lambeta - Indenolo! I.A.-Pram - Imipramine HCI IB-100 - Ibuprofen Ibaden - Penicillin V Iharil - Desoximetasone Iberet - Ferrous fumarate Iberet - Folic acid Ibiamox - Amoxicillin Ibilex - Cephalexin

Ibinolo - Atenolol Ibistacin - Ribostamicin Ibisterolon - Prednisolone

Ibisterolon-Pommada - Prednisolone acetate

Ibisul - Suloctidil Iborufen - Ibuprofen Ibo-Sio - Ibuprofen Ibucasen - Ibuprofen Ibudros - Ibuproxam Ibulay - Ibuprofen Ibumetin - Ibuprofen Ibuprocin - Ibuprofen Icaden - Isoconazole nitrate Icalus - Tegafur

Ice-O-Derm - 4-Chloro-3,5-xylenol

Icopal B - Metaraminol Icramin - Dicyclomine HCI Idalon - Floctafenine Idalprem - Lorazepam Idaltim - Cortivazol Idamix - Indapamide Idarac - Floctafenine Idasal - Methoxamine HCI Ideaxan - Piracetam

Idotrim - Trimethoprim Idotyl - Aspirin Idoviran - Idoxuridine Idoxene - Idoxuridine

Idoxo B12 - Hydroxocobalamin Idracemi - Hydrocortisone

Idranal - Edetate disodium

Idrazil - Isoniazid

Idro-Apavit - Hydroxocobalamin Idrobamina - Hydroxocobalamin Idrocobalmin - Hydroxocobalamin Idrodiuvis - Hydrochlorothiazide Idroepar - Florantyrone

Idrogestene - Hydroxyprogesterone caproate

Idrolattone - Spironolactone Idrospes B12 - Hydroxocobalamin Idrossimicina - Methacycline Idrozima - Hydroxocobalamin

IDU - Idoxuridine Iducher - Idoxuridine Idulian - Azatadine maleate IDU Ophthalmic - Idoxoridine Iduridin - Idoxuridine

Idustatin - Idoxuridine lebolan - Nandrolone decanoate Ifenac - Echonazole nitrate Ifrasarl - Cyproheptadine Igepal - Nonoxynol Igralin - Thiamphenicol Igrolina - Chlorthalidone

Igroton - Chlorthalidone Ikaclomine - Clomiphene dihydrogen citrate

Ikacor - Verapamil

Ikapen - Ampicillin Iktorivil - Clonazepam Ildamen - Oxyfedrine Ildamol - Acetaminophen

lletin - Insulin

Iletin I - Insulin zinc suspension Iliadine - Oxymetazoline HCI I-Liberty - Chlordiazepoxide HCI Ilidar - Azapetine phosphate Iliso - Phytate sodium Ilopan - Dexpanthenol

Hopan - Dexpanthenol Hosone - Erythromycin Hosone - Erythromycin estolate

Hotycin - Erythromycin Hotycin gluceptate - Erythromycin

gluceptate

Hotycin Otic - Erythromycin gluceptate

Iltazon - Oxyphenbutazone Ilvanol - Xylometazoline HCl Ilvico - Brompheniramine maleate Ilvin - Brompheniramine maleate

Imacillin - Amoxicillin Imadorm - Nitrazepam Imadyl - Carprofen Imafen - Carprofen

Imagon - Chloroquine phosphate

Imakol - Oxomemazine
Imap - Fluspirilene
Imavate - Imipramine HCI
Imbaral - Sulindac
Imbrilon - Indomethacin
Imbun - Oxyphenbutazone
Imeson - Nitrazepam
Imet - Indomethacin
Imidalin - Tolazoline
Imidazyl - Naphazoline
Imidin - Naphazoline
Imidiol - Imipramine HCI
Imilanyle - Imipramine HCI
Imipramine Imipramil - HCI

Immenoctal - Secobarbital sodium Imodium - Loperamide HCI Imperacin - Oxytetracycline Imperan - Metoclopramide HCI Impril - Impramine HCI

Imprian - Nietociopramio Impria - Imipramine HCI Impugan - Furosemide Imuran - Azathioprine Inacilin - Pivampicillin Imurek - Azathioprine Inagen - Ethambutol HCI

Imizol - Naphazoline

Inalone - Beclomethasone dipropionate

Inamycin - Novobiocin Inapetyl - Benzphetamine HCI Inapsine - Droperidol Inbestan - Clemastine fumarate Incoran - Prenylamine Incron - Dicyclomine HCI Indacin - Indomethacin Indanal - Clidanac

Inderal - Propranolol HCI
Inderapollon - Indomethacin
Inderide - Hydrochlorothiazide
Inderide - Propranolol HCI
Indetrit - Indomethacin
Indium - Indomethacin
Indo - Indomethacin
Indobloc - Propranolol HCI

Indocid - Indomethacin Indocin - Indomethacin Indodur - Indomethacin Indoklon - Flurothyl Indolag - Indomethacin Indolene - Indomethacin Indomed - Indomethacin Indomet - Indomethacin Indomethine - Indometacin Indometin - Indomethacin Indone RC - Indomethacin Indorektal - Indomethacin Indoremed - Indomethacin Indo-Tablinen - Indomethacin Indotard - Indomethacin Indren - Indomethacin Indunox - Etodroxizine Infectomycin - Amoxicillin

Inflam - Ibuprofen

Inflamase - Prednisolone phosphate sodium

Inflamefran - Prednisolone acetate

Infiltrina - Dimethyl sulfoxide

Inflamen - Bromelain Inflamid - Benoxaprofen Inflamil - Oxyphenbutazone Inflazon - Indomethacin Infler - Ketoprofen Influenol - Amantidine HCI

Ingelan - Isoproterenol sulfate INH - Isoniazid INH-Burgthal - Isoniazid Inheltran - Enflurane Inhiston - Pheniramine maleate

Inidrase - Acetazolamide Inimur - Nifuratel

Injectapap - Acetaminophen Inmecin - Indomethacin Inmetocin - Indomethacin Inmetsin - Indomethacin Innovar - Fentanyl Innovalon - Nalidixic acid Inoball - Methixene HCI Inochinate - Inositol niacinate Inocor - Amrinone

Inokiten - Ubidecarenone
Inomaru S - Oxyphencyclimine
Inosinit - Inositol niacinate
Inositine - Inositol
Inotrex - Dobutamine
Insidon - Opipramol
Insidange D - Tolbutamide
Insomin - Nitrazepam

Inocortyl - Prednisone

Insomnal - Diphenhydramine HCI

Insoral - Phenformin
Inspir - Acetylcysteine
Instenon - Hexobendine
Instotal - Mequitazine
Insulamin - Buformin HCI
Insulase - Chlorpropamide
Insulatard - Insulin
Insulatard - Insulin isophane
Insumin - Flurazepam
Insuven - Diosmin

Intal - Cromolyn sodium
Intalbut - Phenylbutazone
Intalpen - Penicillin V
Intalpran - Imipramine HCI
Inteban - Indomethacin
Intefuran - Furazolidone
Intelon - Citicoline

Intenkordin - Chromonar HCI

Intensacrom - Chromonar HCI Intensain - Buthiazide Intensain - Chromonar HCI Intensain-Lanitop - Medigoxin Intensol - Chiorquinaldol Intercept - Nonoxynol In Tham-E - Tromethamine Intradermo - Fluocinolone acetonide

Intradine - Sulfamethazine Intralibix - lodipamide Intran - Dimethyl sulfoxide Intrapan - Dexpanthenol Intrasept - Penicillin G procaine Intrasporin - Cephaloridine

Introcortin T - Tubocurarine chloride Intromene - Trichloromethiazide Intussin - Butamirate citrate Inulon - Fructose

Inversine - Mecamylamine HCI

Ioacine - Dibekacin

Iodopaque - Acetrizoate sodium Ional sodium - Secobarbital sodium

Ionamin - Phentermine HCI lopamiro - lopamidol losel - Selenium sulfide Ipebutona - Oxyphenbutazone Ipercortis - Triamcinolone Ipersed - Nitrazepam Ipersulfa - Sulfadimethoxine

Ipnozem - Nitrazepam Ipoflogin - Medrysone Ipolina - Hydralazine HCI Ipolipid - Clofibrate Inoral - Guanethidine sulfate

Ipotensium - Clonidine HCI Ipotensivo - Mebutamate Ipotidina - Guanethidine sulfate Ipradol - Hexoprenaline Ipral - Trimethoprim Iprogen - Imipramine HCI

Ipronal - Proxibarbal Ipronid - Iproniazid Ipropran - Ipronidazole Ipsatol - Biperiden Ipsilon - Aminocaproic acid

Iramil - Imipramine HCI Iranil - Oxazepam Ircon - Ferrous fumarate Ircon - Folic acid

Iretin - Cytarabine HCI Iricoline - Carbachol Iridil - Oxyphenbutazone Iridocin - Ethionamide Irinatolon - Diclofenac sodium

Irofol - Folic acid

Iromin - Carbaspirin calcium

Iromin - Folic acid

Irospan - Ferrous fumarate Irriten - Lonazolac Irritren - Lonazolac Irrorin - Prenylamine

Isalax - Oxyphenisatin acetate Ischemol - Tetrahydrozoline HCI

Iscotin - Isoniazid ISDN - Isosorbide dinitrate Isephanine - Dipyridamole Ishitomin - Chlorpromazine HCI Isimoxin - Amoxicillin Ismelin - Guanethidine sulfate Ismeline - Guanethidine sulfate

Ismicetina - Chloramphenicol Ismipur - Mercaptopurine Isnaderm - Fluocinolone acetonide

Isnamide - Sulpiride

Isobicini - Isoniazid Isobid - Isosorbide dinitrate Iso-Bid - Isosorbide dinitrate Isobutil - Oxyphenbutazone Isocaine - Mepivacaine Isocalsin - Rescinnamine Isocardide - Isosorbide dinitrate

Isochin - Oxazepam Isochinol - Dimethisoguin Isocillin - Ampicillin

Isoclor - Chlorpheniramine maleate Iso-D - Isosorbide dinitrate Isodemetil - Demeclocycline HCI Isoderma - Fluocinolone acetonide

Iso-Dexter - Isoniazid Isodine - Povidone-Iodine Isoglaucon - Clonidine HCI Iso-K - Ketoprofen

Isoket - Isosorbide dinitrate Isokulin - Isoxsuprine HCI Isolait - Isoxsuprine HCI Isomack - Isosorbide dinitrate

Isomenyi - Isoproterenoi sulfate Isometa - Methacycline Isomotic - Isosorbide dinitrate Isonefrine - Phenylephrine HCI Isonorin - Isoproterenol sulfate Isopaque - Metrizoic acid Isoperin - Choline theophyllinate Isophenicol - Chloramphenicol Isophrine - Phenylephrine HCI

Isopine - Verapamil Isopredon - Fluprednisolone Isopresol - Captopril Isoptin - Verapamil

Isopto-Carbachol - Carbachol Isopuren - Isosorbide dinitrate Isopyratsin - Pyrazinamide Isordil - Isosorbide dinitrate Isosulf - Sulfisomidine Isotamine - Isoniazid Isotol - Mannitol Isotonil - Dimetacrine tartrate

Isotrate - Isosorbide dinitrate Isotropina - Phenylephrine HCI Isovue - Iopamidol

Isuxal - Perisoxal citrate Isoxamin - Sulfisoxazole Isoxyl - Tiocarlide Isozide - Isoniazid Isozol - Thiamylal Issium - Flunarizine HCI Isteropac - lodamide Isvitrol - Pivampicillin Itacem - Cimetide Italorid - Tiapride Itinerol - Meclizine HCI Itiocide - Ethionamide Itorex - Cefuroxime

Itrop - Ipratropium bromide Itrumil - Iothiouracil

I/T/S Hotycin - Erythromycin Ituran - Nitrofurantoin

Ivaugan - Hydrochlorothiazide Ivax - Neomycin

Ivilax - Bisacodyl

Iwacillin - Ampicillin Iwalexin - Cephalexin Ixoten - Trofosfamide Izaberizin - Cinnarizine Izobarin - Guanethidine sulfate

Jabon salicilico - Salicylic acid

Jacutin - Lindane

Janimine - Imipramine HCI Janocilin - Cephalexin Janopen - Metampicillin sodium Janosina - Cephaloridine Jatroneural - Trifluoperazine Jatropur - Triamterene

Jatsulph - Sulfadimethoxide Jectatest - Testosterone 178-cypionate

Jellin - Fluocinolone acetonide Jenamicin - Gentamicin sulfate Jen-Diril - Hydrochlorothiazide

Jestryl - Carbachol

Jexin - Tubocurarine chloride Jicsron - Nalidixic acid Jodobac - Povidone-lodine Jodocur - Povidone-Iodine Jonakraft - Phentermine HCI Jonctum - Oxaceprol Judolor - Fursultiamine Jumex - Selegiline

Jupal - Xanthinol niacinate Justamil - Sulfamoxole Justpertin - Dipyridamole Justquinon - Ubidecarenone Juvabe - Cyanocobalamin Juvallax - Cyclobutyrol Juveprine - Aspirin

Kabikinase - Streptokinase Kabolin - Nandrolone decanoate Kadol - Phenylbutazone Kafocin - Cephaloglycin Kaichyl - Valethamate bromide Kaitron - Ubidecarenone

Kalistat - Triamterene Kalutein - Clorprenaline

Kalymin - Pyridostigmine bromide

Kamaver - Chloramphenicol Kaminax - Amikacin Kamycine - Kanamycin sulfate Kanabiol - Kanamycin sulfate Kanabiot - Kanamycin sulfate Kanabristol - Kanamycin sulfate Kanacet - Kanamycin sulfate Kanacillin - Kanamycin sulfate Kanacyclin - Kanamycin sulfate Kanacyn - Kanamycin sulfate Kanafil - Kanamycin sulfate Kanafuracin - Kanamycin sulfate

Kanahidro - Kanamycin sulfate Kanamicina Normon - Kanamycin sulfate

Kanamycin - Kanamycin sulfate Kanamycine - Kanamycin sulfate Kanamytrex - Kanamycin sulfate Kanapiam - Kanamycin sulfate Kanagua - Kanamycin sulfate Kanasig - Kanamycin sulfate Kanetroi - Kanamycin sulfate Kanavit - Phytonadione

Kanendomicina - Bekanamycin sulfate Kanendomycin - Bekanamycin sulfate Kanendos - Bekanamycin sulfate

Kanescin - Kanamycin sulfate Kano - Kanamycin sulfate Kantor - Minaprine Kantrex - Kanamycin sulfate Kapiride - Sulpiride

Kapoxi - Amoxicillin Kappabi - Dibekacin

Kappadione - Menadiol sodium phosphate Kaprogest - Hydroxyprogesterone caproate

Karbeno! - Carbenoxolone Karidium - Clobazam Kataglicina - Phenformin

Katij - Menadiol sodium phosphate

Kativ-N - Phytonadione Katlex - Furosemide Katoseran - Cinnarizine Kayeine - Phytonadione Kaywan - Phytonadione Kebilis - Chenodiol Kebuzon - Kebuzone Kecimeton - Fluorouracil Kedacillina - Sulbenicillin

Kefadol - Cefamandole nafate sodium salt Kefandol - Cefamandole nafate sodium salt

Kefenid - Ketoprofen Kefglycin - Cephaloglycin Keflex - Cephalexin Keflin - Cephalothin sodium Keflodin - Cephaloridine Kefolor - Cefaclor Keforal - Cephalexin Kefox - Cefuroxime Kefral - Cefaclor Kefspor - Cephaloridine Kefzoi - Cefazolin sodium Keimicina - Kanamycin sulfate K-Eine - Phytonadione Keipole - Phytonadione Kelfison - Cephalexin Kelfison - Cephaloridine

Kelfizina - Sulfalene Kelfizine - Sulfalene

Kemadren - Procyclidine HCI Kemadrin - Procyclidine HCI Kemadrine - Procyclidine HCI Kemi - Propranolol HCI Kemicetin - Chloramphenicol Kemicetine - Chloramphenicol Kemicotine - Chloramphenicol Kempi - Spectinamycin Kemsol - Dimethyl sulfoxide Kenacort - Triamcinolone

Kenacort - Triamcinolone acetonide Kenacort - Triamcinolone diacetate Kenacort-A - Triamcinolone acetonide Kenal - Triamcinolone acetonide Kenalog - Triamcinolone acetonide

Kendiphen - Diphenhydramine HCI Kennegin - Phytonadione

Kenolite - Chenodiol Kentan-S - Kebuzone Kephton - Phytonadione Keralyt - Salicylic acid Kerecid - Ido xuridine Kerlon - Betaxolol HCI Kerlone - Betaxolol HCI Keselan - Haloperidol Kesint - Cefuroxime Kesmicina - Pivampicillin Kesso-Bamate - Meprobamate Kesso-Mycin - Erythromycin Kestomatine - Dimethicone Ketaject - Ketamine HCI Ketalar - Ketamine HCI

Ketalgin - Ketoprofen Ketalgin - Methadone HCI

Ketaman - Propantheline bromide

Ketanest - Ketamine HCI Ketawrift - Allopurinol Ketazol - Ketoconazole Ketazon - Kebuzone Ketazone - Kebuzone Keteocort - Prednisone Keteocort-H - Prednisolone Kethamed - Pemoline

Keto - Ketoprofen Ketobun A - Allopurino! Ketobutan - Kebuzone Ketobutane - Kebuzone Ketobutazone - Kebuzone Ketocef - Cefuroxime

Ketofen - Kebuzone Ketofen - Ketoprofen Keton - Ketoprofen Ketonal - Ketoprofen Ketophezon - Kebuzone Ketopron - Ketoprofen

Ketoprosil - Ketoprofen Ketoscillium - Fentonium bromide

Ketoval - Ketoprofen Kevadon - Ketoprofen

Key-Pred - Prednisolone acetate Key-Pred S.P. - Prednisolone phosphate

sodium

Key-Serpine - Reserpine Keysone - Prednisone

Kibon S - Dextromethorphan hydrobromide

Kidrolase - Asparaginase Kilios - Aspirin Kilmicen - Tolciclate

Kilocyde - Cytarabine HCI Kilozim - Metoclopramide HC! Kinadione - Phytonadione Kinavosyl - Mephenesin carbamate Kinder-Finiweh - Acetaminophen

Kinevac - Sincalide

Kinotomin - Clemastine fumarate

Kinteto - Rolitetracycline Kinupril - Quinupramine Kiricoron - Chlorzoxazone Kirocid - Sulfameter

Kiron - Sulfameter Kisikonon - Phytonadione Kitadol - Tilidine HCI Klaricina - Penicillin G procaine Klebcil - Kanamycin sulfate

Klinium - Lidoflazine Klinomycin - Minocycline Klintab - Lidoflazine Klion - Metronidazole Klobamicina - Dibekacin Klofenil - Cyclofenil Klofiran - Clofibrate

Klometil - Prochlorperazine Klorazin - Chlorpromazine HCI Kloromin - Chlorpheniramine maleate Kloromisin - Chloramphenicol

Klorproman - Chlorpromazine HCI Klorpromex - Chlorpromazine HCI

Klort - Meprobamate

Kloxerate - Cloxacillin Knavon - Ketoprofen Kobazepam - Medazepam

Koffex - Dextromethorphan hydrobromide

Kol - Fenipentol

Kolantyi - Dicyclomine HCI

Kolpicid - Ornidazole

Kolpicortin - Chlorphenesin carbamate Kolpi Gynaedron - Ethinylestradiol Kolton Gelee - Diphenylpyraline HCl Komed - Salicylic acid Komplexon III - Edetate disodium

Konakion - Phytonadione Kontristin - Pyrilamine Koptin - Kanamycin sulfate

Korbutone - Beclomethasone dipropionate

Korigesic - Phenylephrine HCI Korigesic - Phenylpropanolamine HCI

Korostatin - Nystatin Koro-Sulf - Sulfisoxazole

Kortikoid - Triamcinolone acetonide

Korum - Acetaminophen Kotanicit - Inositol niacinate Kratofin - Acetaminophen Kreucosan - Metronidazole Kridan - Isoniazid Kriplex - Diclofenac sodium Kriptin - Pyrilamine

Kromolin - Cromolyn sodium

Kronohist - Phenylpropanolamine HCI

Kronohist - Pyrilamine K-Top Wan - Phytonadione Kurgan - Cefazolin sodium Kusnarin - Nalidixic acid Kutrix - Furosemide

Kwell - Lindane Kynex - Sulfamethoxypyridazine Kyocristine - Vincristine sulfate

Labamicol - Chloramphenicol

Labamol - Acetaminophen Labelol - Labetalol HCI Labican - Chlordiazepoxide HCI Lacalmin - Spironolactone Lacdene - Spironolactone Lacermucin - Tyloxapol

Laco - Bisacodyl

Lacretin - Clemastine fumarate Lacrimin - Benoxinate hydrochloride Lacrisert - Hydroxypropyl cellulose

Lactamine - Prenylamine Lacumin - Mepazine Ladogal - Danazol Ladogar - Danazol Laevilac - Lactulose Laevolac - Lactulose Laevoral - Fructose Laevuflex - Fructose

Lagaquin - Chloroquine phosphate

Lagazepam - Nitrazepam Laksodil - Bisacodyl Lamar - Tegafur Lambral - Tolazoline Lamidon - Ibuprofen Lamitol - Labetalol HCI Lamoryl - Griseofulvin

Lampocillina Orale - Ampicillin

Lampomanol - Cefamandole nafate sodium salt

Lamposporin - Cefuroxime

Lamra - Diazepam

Lanabolin - Methandrostenolone Lancabiotic - Pivampicillin

Lancetina - Fosfomycin Landamycin - Ribostamicin

Landelun - Ibuprofen Lan Dol - Meprobamate

Landrina - Xanthinol niacinate Landruma - Niflumic acid Landsen - Clonazepam Langesic - Acetaminophen

Lanirapid - Medigoxin Lanitop - Medigoxin Lantanon - Mianserin

Lantron - Amitriptyline HCI

Lanvis - Thioguanine Laragon - Silymarin

Largactil - Chlorpromazine HCI Largiven - Isoxsuprine HCI Largomicina - Methacycline Largopen - Amoxicillin

Larixin - Cephalexin Larmicin - Neomycin Larodopa - Levodopa Larotid - Amoxicillin Laroxyl - Amitriptyline HCl Larylin - Chlorhexidine

Laser - Naproxen Laseramin - Hydroxocobalamin Laserdil - Isosorbide dinitrate

Lasilix - Furosemide Lasiv - Eurosemide Lastrogen - Estradiol valerate

Lati 2 - Metoprolol tartrate Latocef - Cefatrizine

Latomicina - Demeclocycline HCI Latoral - Cephalexin

Latorex - Cephaloridine Lauridin - Cephaloridine

Laurilin - Erythromycin estolate Lauromicina - Erythromycin estolate

Lauron - Aurothioglycanide

Laurylin - Erythromycin lactobionate

Lausit - Indomethacin Lavema - Oxyphenisatin acetate

Lavodina - Sulpiride Lax - Bisacodyl Laxadin - Bisacodyl Laxagetten - Bisacodyl Laxanin N - Bisacodyl

Laxanormai - Oxyphenisatin acetate Laxante Azoxico - Picosulfate sodium

Laxatan - Oxyphenisatin acetate Laxbene - Bisacodyl

Laxematic - Bisacodyl Laxidogol - Picosulfate sodium

Laxoberal - Picosulfate sodium Laxoberon - Picosulfate sodium L-Customed - Bromhexine Leabar - Iopanoic acid

Lealgin - Phenoperidine HCI Leanol - Hexoprenaline Lebelon - Bromhexine

Lebershutz - Timonacic sodium Lecasol - Clemastine fumarate Lectopam - Bromazepam Ledercillin - Penicillin G procaine Ledercort - Triamcinolone

Ledercort - Triamcinolone diacetate Ledercort N - Triamcinolone acetonide

Lederfen - Fenbufen

Lederkyn - Sulfamethoxypyridazine Ledermicina - Demeclocycline HCI Ledermycine - Demeclocycline HCI Lederspan - Triamcinolone acetonide Ledertrexate - Methotrexate

Lefax - Dimethicone Lefos - Isoniazid Lefosporina - Cephalexin Legalon - Silymarin Legemzolina - Cefazolin sodium

Lehydan - Phenytoin Lekrica - Chlorpheniramine maleate

Lemazide - Renzthiazide Lembrol - Diazepam Lemiserp - Reserpine

Lempay Ty-Med - Papaverine monophosadenine

Lemprometh - Promethazine HCI Lenasma - Metaproterenol sulfate Lenazine - Promethazine HCI Lendorm - Brotizolam Lendormin - Brotizolam Lenetran - Mephenoxalone Lenigesial - Viminol Lenipan - Nefopan HCI Lenitin - Bromazepam Lenopect - Pipazethate

Lensen - Diphenhydramine HCI Lensulpha - Sulfadimethoxine Lente Insulin - Insulin zinc suspension

Lentin - Carbachol Lentivasan - Carbachol Lentizol - Amitriptyline HCI

Lentosulfa - Sulfamethoxypyridazine Lentotran - Chlordiazepoxide HCI Lentrat - Pentaerythritol tetranitrate Leodrine - Hydroflumethiazide

Leonar - Pyritinol Leotesin-N - Lidocaine Leponex - Clozapine

Leptamine - Amphetamine phosphate

Leptanal - Fentanyi Leptofen - Droperidol Leptryl - Perimethazine

Lergefin - Carbinoxamine maleate Lergigan - Promethazine HCI Lergoban - Diphenylpyraline HCl Lerisum - Medazepam

Leritine - Anileridine dihydrochloride Leritine HCI - Anileridine dihydrochloride

Lertus - Ketoprofen

Lescopine - Methscopolamine bromide

Lesmit - Medazepam Lesterol - Probucol Lestid - Colestipol

Letamate - Valethamate bromide Letamol - Acetaminophen

Letaquine - Chloroquine phosphate

Lethidrone - Nalorphine Letter - Levothyroxine sodium Leucid - Vincristine sulfate Leucogen - Asparaginase Leukeran - Chlorambuci) Leukerin - Mercaptopurine

Leukomycin - Chloramphenicol Leunase - Asparaginase Levanil - Ectylurea

Levantin - Nifurtoinol Levanxol - Temazepam Levaru - Methotrimeprazine Levate - Amitriptyline HCI

Levatrom - Clofibrate

Levaxin - Levothyroxine sodium

Levicor - Metaraminol Levisul - Sulfadimethoxine

Levium - Diazepam Levius - Aspirin

Levomezine - Methotrimeprazine

Levomicetina - Chloramphenicol palmitate

Levomycetin - Chloramphenicol

Levopa - Levodopa

Levoprome - Methotrimeprazine Levospan - Methylergonovine maleate Levothym - Hydroxytryptophan

Levothym - Oxitriptan Levothyrox - Levothyroxine sodium

Levotiron - Levothyroxine sodium

Levotomin - Methotrimeprazine

Levotonine - Oxitriptan Levrison - Trioxsalen Levugen - Fructose Levulose - Fructose Levupan - Fructose

Lexaurin - Bromazepam Lexibiotico - Cephalexin Lexibiotico - Cephaloridine

Lexilium - Bromazepam Lexin - Carbamazepine Lexocort - Hydrocortisone Lexomil - Bromazepam

Lexotan - Bromazepam Lexotanil - Bromazepam Lexxor - Hydrochlorothiazide Liberen - Propoxyphene HCI

Liberetas - Diazepam Libesporal - Cephalexin Libesporina - Cephaloridine Librax - Clidinium bromide

Librium - Chlordiazepoxide HCl

Licyl - Aspirin

Lida-Mantal - Lidocaine Lidanil - Mesoridazine besylate

Lidex - Fluocinonide Lidocain - Lidocaine Lidocar - Lidocaine Lidocard - Lidocaine Lidocaton - Lidocaine Lidone - Molindone Lido Pen - Lidocaine

Liexina - Cephaloridine Lifaton B12 - Cyanocobalamin

Life - Pyritinol

Lifeampil - Ampicillin

Lifeampil - Ampicillin trihydrate

Lifene - Phensuximide Lifezolina - Cefazolin sodium

Lifril - Fluorouracil Lifril - Tegafur Lignane - Lidocaine Likacin - Amikacin Likuden - Griseofulvin Lillacillin - Sulbenicillin Limbial - Oxazepam

Limbitrol - Amitriptyline HCl Limpidon - Camazepam Lincocin - Lincomycin

Lincocine - Lincomycin Lincolcina - Lincomycin Lineal - Fenproporex

Lineal-Rivo - Diethylpropion HCI Linea Valeas - Diethylpropion HCl Linfolysin - Chlorambucil Linosal - Betamethasone

Linostil - Dimetacrine tartrate Linton - Haloperidol

Linyl - Phentermine HCI Lioresal - Bactofen Licanor - Ciprofibrate Lipanthyl - Fenofibrate

Lipantyl - Fenofibrate Lipavil - Clofibrate Lipaylon - Clofibrate Lipenan - Clofibride Lipidax - Fenofibrate

Lipidicon - Clofibrate Lipidil - Fenofibrate Lipo - Folic acid Lipo-BC - Inositol

Lipocholin - Choline dihydrogen citrate

Lipoclar - Fenofibrate Lipocrin - Clinofibrate Lipocyclin - Clinofibrate Lipo-Diazine - Sulfadiazine Lipofene - Fenofibrate

Lipo-Gantrisin acetyl - Acetyl sulfisoxazole

Lipolin - Fenproporex Lipo-Merz - Etofibrate Lipomin - Diethylpropion HCI Lipopil - Phentermine HCl Liposid - Clofibrate Liposit - Fenofibrate

Liposlim - Diethylpropion HCI Liposolvin - Simfibrate Lipotrin - Cyclobutyrol

Liprinal - Clofibrate Liptan - Ibuprofen Liquaemin - Heparin Liquamar - Phenprocoumon Liquid Pred - Prednisone

Lisacef - Cephradine Lisacort - Prednisone Liserdol - Metergoline Lisium - Chlorhexidine Liskantin - Primidone

Lisogerm - Methenamine hippurate

Lisomucil - Carbocysteine Lisospasm - Cyclandelate Listica - Hydroxyphenamate

Litalir - Hydroxyurea Liverpen - Fenipentol Liviatin - Doxycycline Liviclina - Cefazolin sodium Lixil - Bumetanide

Lixin - Chlordiazepo xide HCI Lizan - Diazepam Lizik - Furosemide Llenas Biotic - Cephalexin Llenas Biotic - Cephaloridine Lioncefal - Cephaloridine LMD 10% - Dextran 40 Lobamine - Methionine Lobilan Nasal - Flunisolide Locabiosol - Fusafungine Locabiotal - Fusafungine

Locacorten - Flumethasone Localyn - Fluocinolone acetonide

Locapred - Desonide

Loccalline - Cephalothin sodium Locorten - Flumethasone

Locton - Suloctidil Lodopin - Zotepine Lodosyn - Carbidopa Lofetensin - Lofexidine HCI

Lofoxin - Fosfomycin Loftran - Ketazolam Loftvl - Buflomedil Logiston - Glibornuride Lokilan Nasal - Flunisolide Lolum - Labetaloi HCi Lomarin - Dimenhydrinate Lombriareu - Pyrantei pamoate

Lomecitina - Chloramphenicol Lomine - Dicyclomine HCI Lomisat - Clobutinol Lomodex 40 - Dextran 40 Lomotil - Diphenoxylate HCI Lompar - Mebendazole Lomudal - Cromolyn sodium Lomupren - Cromolyn sodium Lonavar - Oxandrolone

Longacillin - Penicillin G benzathine

Longamid - Sulfamethoxypyridazine Longasa - Aspirin Longasteril - Dextran 40

Longatren - Azidocillin Longicobal - Hydroxocobalamin

Longisul Jarabe - Sulfamethoxypyridazine

Longoran - Penfluridol Longum - Sulfalene Loniten - Minoxidil Lonjee - Chlorquinaldol Lonolox - Minoxidil Looser (Lucer) - Bupranolo! Lopemid - Loperamide HCI Loperamid - Loperamide HCI Loperyl - Loperamide HCI

Lophakomb B12 - Cyanocobalamin Lopid - Gemfibrozil Lopirin - Captopril Lopres - Hydralazine HCI

Lopresol - Metoprolol tartrate Lopress - Hydralazine HCI Lopressor - Hydrochlorothiazide Lopressor - Metoprolol tartrate Loprox - Ciclopiroxolamine Lopurin - Allopurino!

Loqua - Hydrochlorothiazide Loramet - Lormetazepam Loramid - Lormetazepam Lorans - Lorazepam

Lorcet - Propoxyphene HCi

Loreico - Probucol Lorexina - Cephalexin Loriden - Flumethasone Loridine - Cephaloridine Lorivan - Lorazepam Loromisin - Chloramphenicol

Lorphen - Chlorpheniramine maleate

Lorsilan - Lorazepam

Lortisone - Betamethasone dipropionate Lospoven - Cephalothin sodium

Loticort - Fluorometholone Lotrimin - Clotrimazole Loviscol - Carbocysteine Lowpston - Furosemide Loxapac - Loxapine Loxitane - Loxapine

Loxuran - Diethylcarbamazine citrate

Lozide - Indapamide Lozo! - Indapamide

LPG - Penicillin G benzathine

Lubacida - Isoniazid Lubalix - Cloxazolam Lubomanil - Trimetazidine

Lubomycine - Erythromycin estolate

Lubomycine L - Erythromycin lactobionate

Lubricort - Hydrocortisone

Lucer - Bupranolo!

Lucidil - Benactyzine hydrochloride

Lucidon - Dienestrol

Luf-Iso - Isoproterenol sulfate

Lufyllin - Dyphylline Lufyllin - Guaifenesin

Lullamin - Methapyrilene HCI Lumbaxol - Chlormezanone Lumirelax - Methocarbamol Lumota - Apalcillin sodium

Lunacin - Tegafur Lunetoron - Bumetanide Lunipax - Flurazepam Lunis - Flunisolide Lurselle - Probucol Lusap - Malathion Lusedan - Sulpiride

Lutalyse - Dinoprost tromethamine

Lutedione - Mestranol

Luteocrin - Medroxyprogesterone acetate Luteodione - Medroxyprogesterone acetate

Luteonorm - Ethynodiol diacetate Luteos - Medro xyprogesterone acetate

Lutionex - Demegestone

Lutometrodiol · Ethynodiol diacetate Lutopolar - Medro xyprogesterone acetate Lutopron - Hydroxyprogesterone caproate

Lutoral - Medro xyprogesterone acetate Lyantil - Phthalysulfathiazole

Lycanol - Glymidine

Lyesipoll - Diphenylpyraline HCI

Lyladorm - Nitrazepam Lvndak - Sulindac Lyndiol - Mestranol Lynoral - Ethinylestradiol Lyogen - Fluphenazine HCI Lyorodin - Fluphenazine HCI Lyovac - Chlorothiazide Lyovac - Dactinomycin Lyovac - Fibrinolysin Lysalgo - Mefenamic acid

Lysanxia - Prazepam Lysivane - Ethopropazine HCI

Lysmucol - Sobrerol Lyspafen - Difenoxine Lyspafena - Difenoxine Lysuron - Allopurinol Lyteca - Acetaminophen

Mabertin - Temazepam Mablin - Busulfan Macasirool - Furosemide Macmiror - Nifuratel Macocyn - Oxytetracycline Macphenicol - Thiamphenicol Macrodantin - Nitrofurantoin Macro-Dil - Midecamycin Madaprox - Naproxen Madar - Nordazepam

Madecilina - Metampicillin sodium

Madelen - Ornidazole Madlexin - Cephalexin Madopar - Benserazide Madopark - Benserazide Madribon - Sulfadimethoxine Madrigid - Sulfadimethoxine Madroxin - Sulfadimethoxine

Maeva - Temazepam

Mafatate - Mafenide acetate Mafylon - Mafenide acetate Magis-Ciclina - Demeclocycline HCl

Magmilor - Nifuratel

Magmoid sulfadiazine - Sulfadiazine Magnacort - Hydrocortamate HCI Magnamycin - Carbomycin

Magnecyl - Aspirin

Magnipen - Metampicillin sodium

Magnyl - Aspirin

Magrene - Diethylpropion HCl

Magrilan - Mazindol

Maikohis - Clemastine fumarate

Maind - Pyritinol Majorad - Tiropramide

Mainedopa - Levodopa Maipen - Metampicillin sodium Majeptil - Thioproperazine Majoral Infantil - Aspirin Majorpen - Amoxicillin Maisolin - Primidone Makarol - Diethylstilbestrol Makrosilin - Ampicillin

Maksipor - Cefazolin sodium Maksipor - Cephalexin

Malarex - Chloroquine phosphate

Maliasin - Barbexaclone Malice Shampoo - Lindane Malipuran - Bufexamac

Mallermin-F - Clemastine fumarate

Mallisol - Povidone-Iodine Malocide - Pyrimethamine Malogen - Methyltestosterone

Malogen Cyp - Testosterone 17β-cypionate Malogen LA - Testosterone enanthate

Malogex - Testosterone enanthate

Maloprim - Dapsone Maitos-10 - Maitose Mamalexin - Cephalexin Mamiesan - Dicyclomine HCl Mandelic - Cyclandelate

Mandokef - Cefamandole nafate sodium salt Mandol - Cefamandole nafate sodium salt Mandolsan - Cefamandole nafate sodium salt

Mandrax - Diphenhydramine HCl

Mandrax - Methaqualone Manegan - Trazodone HCI Maneon - Amineptine HCI Manidon - Verapamil

Manilina - Erythromycin estolate

Maniol - Diphenidol Manir - Oxyphencyclimine Manit - Mannitol Mannidex - Mannitol Mannitol I.V. - Mannitol Mansal - Cimetide Mantadan - Amantidine HCI Mantadil - Chlorcyclizine Mantadix - Amantidine HCl Manuril - Hydrochlorothiazide

Manypren - Ibuprofen Maolate - Chlorphenesin carbamate

Marax - Hydroxyzine HCI Marbate - Meprobamate Marcain - Bupivacaine Marcaina - Bupivacaine

Marcaine - Bupivacaine Marcumar - Phenprocoumon Mareline - Amitriptyline HCI Maremal - Cyclizine Mareosan - Dimenhydrinate Marevan - Warfarin sodium Marezine - Cyclizine Margarte - Dimethicone Marisilan - Ampicillin Marnisonal - Prednisone Marocid - Erythromycin

Marolin - Dimenhydrinate Marplan - Isocarbo xazid

Marrolingual - Isosorbide dinitrate Marsilid - Iproniazid

Marsin - Phenmetrazine

Marsthine - Clemastine fumarate Martigene - Brompheniramine maleate

Martimil - Nortriptyline Marucyclan - Cyclandelate Marukofon - Oxeladin Marunil - Clomipramine Marvelon - Desogestrel Marvidiene - Prednisone

Marygin M - Isopropamide iodide

Marzine - Cyclizine Masatirin - Thiamphenicol Masaton - Allopurinol Masblon H - Hydroxocobalamin Maschitt - Hydrochlorothiazide

Mase-Bestrol - Diethylstilbestrol Maskin - Chlorhexidine Masletine - Clemastine fumarate Masmoran - Hydroxyzine HCl

Masterid - Dromostanolone propionate Masteril - Dromostanolone propionate Masterone - Dromostanolone propionate Mastimyxin - Polymyxin

Mastisol - Dromostanolone propionate

Mastop - Tranexamic acid Matafa-Lind - Phenylephrine HCl Matromycin - Oleandomycin Matulane - Procarbazine HCI Maxeran - Metoclopramide HCI Maxibolin - Ethylestrenol Maxicam - Isoxicam Maxicilina - Ampicillin

Maxidex - Dexamethasone phosphate

Maxifen - Pivampicillin Maxiflor - Diflorasone diacetate

Maximed - Protriptyline Maxipen - Phenethicillin potassium Maxolon - Metoclopramide HCI Max-Uric - Benzbromarone Maxzide - Hydrochlorothiazide

Maxzide - Triamterene Maycor - Isosorbide dinitrate Mayeptil - Thioproperazine May-Vita - Dexpanthenol May-Vita - Folic acid Mazanor - Mazindol Mazepine - Carbamazepine

MCP-Ratiopharm - Metoclopramine HCI

MD-50 - Diatrizoate sodium Measurin - Aspirin Meaverin - Bupivacaine Meaverin - Mepivacaine Mebacid - Sulfamerazine

Mebron - Epirizole

Mazildene - Mazindol

Mebutar - Mebendazole Mebutina - Mebutamate Mecazine - Meclizine HCI

Mechothane - Bethanechol chloride

Meciclin - Demeclocycline HCI Mecloderm - Fluocinolone acetonide Meclomen - Meclofenamic acid Meclopran - Metoclopramide HCI

Mecostrin - Dimethyl tubocurarine iodide Mecostrin - Tubocurarine chloride

Medaron - Furazolidone Medaurin - Medazepam Medazol - Metronidazole Medemycin - Midecamycin Medesone - Methylprednisolone Medfina - Meperidine HCI

Mediator - Benfluorex hydrochloride Mediaxal - Benfluorex hydrochloride

Medicef - Cephradine

Medichol - Chloramphenicol Medicil - Morclofone Medicort - Triamcinolone Medicrucin - Bacitracin Medidopa - Levodopa

Medidryl - Diphenhydramine HCl

Medifenac - Alcofenac

Medifuran - Furaltadone

Medihaler-Iso - Isoproterenol sulfate Medilium - Chlordiazepoxide HCI

Medimet - Methyldopa Medisyl - Aspirin Meditran - Meprobamate Med-Laxan - Bisacodyl

Med-Laxan - Oxyphenisatin acetate

Medomet - Methyldopa Medomin - Heptabarbitol Medomine - Heptabarbital Medomycin - Doxycycline Medomycin - Methacycline Medopa - Methyldopa Medopal - Methyldopa

Medopren - Methyldopa Medoxin - Cefuroxime Medrifar - Medrysone Medritonic - Medrysone

Medrol - Methylprednisolone Medroptil - Medrysone Medrysone Faure - Medrysone Meduxal - Pyridinol carbamate

Mefacen - Indomethacin Mefacit - Mefenamic acid Mefedolo - Mefenamic acid Mefoxin - Cefoxitin sodium Mefoxitin - Cefoxitin sodium

Mefrusal - Mefruside Mega-B - Folic acid Mega-B - Inositol

Megace - Megestrol acetate Megacef - Cephradine Megacillin - Amoxicillin

Megacillin - Penicillin G benzathine Megacort - Dexamethasone phosphate

Megadose - Folic acid Megadose - Inositol

Megamycine - Methacycline Megaphen - Chlorpromazine HCI Megasedan - Medazepam

Mega-Star - Methylprednisolone Megeron - Megestrol acetate Megestat - Megestrol acetate

Mealum - Levamisole HCI Megrin - Hepronicate Meibis - Citicoline Me-Korti - Prednisone Meladinine - Methoxsalen Melanek - Hydroguinone Meldian - Chlorpropamide Melfa - Sulfadimethoxine

Melfiat - Phendimetrazine tartrate Melianin - Allopurinol

Melipramin - Imipramine HCI Melisar - Chlorpropamide Melitase - Chlorpropamide

Melizid - Glipizide Mellarii - Thioridazine Mellerette - Thioridazine Melleretten - Thioridazine Mellitas - Chlorpropamide Mellitos D - Tolbutamide Melormin - Chlorpropamide Meloxine - Methoxsalen Meltrol - Phenformin Melvsin - Pivmecillinam Memento - Pipemidic acid Mempil - Metampicillin sodium Menavai - Estradioi valerate

Mendalgesia - Acetaminophen Mendon - Clorazepate dipotassium Mendozal - Proxazole citrate

Menesit - Carbidopa

Menopax - Diethylstilbestrol Mensiso - Sisomicin Menusan - Chlorhexidine Menutil - Diethylpropion HCI

Meonine - Methionine Mepavion - Meprobamate Mephanol - Allopurinol Mephenon - Methadone HCI Mephyton - Phytonadione Mepidum - Timepidium bromide

Mepilacin - Cephalexin Mepiral - Epirizole

Mepivastesin - Mepivacaine

Meporamin - Methscopolamine bromide

Meprate - Meprobamate

Mepred - Medroxyprogesterone acetate

Mepriam - Meprobamate Mepro - Ethoheptazine Mepro - Meprobamate Meproban - Meprobamate Meprocon - Meprobamate Meprocon CMC - Meprobamate Meprodat - Carisoprodol

Meprodil - Meprobamate Meprodiol - Meprobamate Meprofen - Ketoprofen Meprol - Meprobamate Mepron - Meprobamate Mepronel - Meprobamate Meprosa - Meprobamate Meprospan - Meprobamate Meprotabs - Meprobamate Meprotil - Meprobamate Meptid - Meptazinol Meptin - Procaterol Mequelon - Methaqualone

Mer-29 - Triparanol Meranom - Diphenidol Merapiran - Piracetam Meravil - Amitriptyline HCI

Merbantal - Dicyclomine HCI Merbentul - Chlorotrianisene Merbenyl - Dicyclomine HCl Mercadac - Meralluride Mercadon - Meralluride Mercaleukin - Mercaptopurine Mercaptopropionylglycin - Tiopronin

Mercioran - Chlormerodrin Mercuhydrin - Meralluride Meresa - Sulpiride Merian - Sulfaphenazole Merilid - Chlormerodrin Meripramin - Imipramine HCI Meriprobate - Meprobamate Merital - Nomifensine maleate Merizone - Phenylbutazone Merkicin - Cefoxitin sodium Mern - Mercaptopurine Meroctan - Methaqualone Meronidal - Metronidazole Meronyl - Carbazochrome

Mervacycline - Tetracycline Mervan, Mirvan - Alcofenac Mesin - Chlorzoxazone Mesonex - Inosito! niacinate Mespatin - Doxycycline

Mestinon - Pyridostigmine bromide

Mestoran - Mesterolone Metabacter - Metampicillin sodium Metabiotic - Methacycline Metabioticon BG - Methacycline Metabolina - Methandrostenolone

Metac - Methacycline Metacen - Indomethacin Metacidan - Metampicillin sodium

Metacil - Methacycline Metaclin - Methacycline Metaclor - Methacycline

Metaderm - Betamethasone valerate Metadomus - Methacycline Meta-Ferran - Metampicillin sodium Metaglucina - Acetohexamide

Metagram - Methacycline Metahydrin - Trichlormethiazide Metakes - Metampicillin sodium

Metalax - Bisacodyl Metalcapase - Penicillamine Metalid - Acetaminophen

Metambac - Metampicillin sodium Metamide - Metoclopramide HCI Metamin - Flupentixol

Metampicef - Metampicillin sodium Metamplimedix - Metampicillin sodium Metanabol - Methandrostenolone Metandren - Methyltestosterone Metaplexan - Mequitazine Metaprel - Metaproterenol sulfate

Metartril - Indomethacin Metasedil - Methaqualone Metasep - 4-Chioro-3,5-xylenol Metastenol - Methandrostenolone

Metatensin - Reserpine

Metazina - Sulfamethoxypyridazine Metenarin - Methylergonovine maleate

Metenix - Metolazone

Meterdos-Iso - Isoproterenol sulfate

Methabid - Indomethacin Methadorm - Methaqualone Methazine - Indomethacin

Methergin - Methylergonovine maleate

Methergine - Methylergonovine maleate

Methiofoline - Folic acid Methixart - Methixene HCI Methnine - Methionine

Methobromin - Hexamethonium bromide

Methocabal - Methocarbamol Methocal - Methocarbamol Methocillin - Methicillin sodium Methocillin-S - Cloxacillin Methofane - Methoxyflurane Metholes - Methyldopa Methoplain - Methyldopa

Methorate - Dextromethorphan hydrobromide Methorcon - Dextromethorphan hydrobromide

Methosarb - Calusterone Methrazone - Feprazone

Methylbol - Nandrolone decanoate

Methyl Curarin - Dimethyl tubocurarine iodine Methylergobrevin - Methylergonovine maleate

Methyloxan - Methixene HCI Metian - Metiazinic acid Meticortelone - Prednisolone Meticortelone - Prednisolone acetate

Meticorten - Prednisone Metifarma - Amoxicillin

Metigestene - Medroxyprogesterone acetate Metilar - Paramethasone acetate

Metilbetasone - Methylprednisolone Metilcort - Methylprednisolone Metilenbiotic - Methacycline Metiler - Methylergonovine maleate Metilpen - Phenethicillin potassium

Metilprednilone - Methylprednisolone Metilstendiolo - Methylprednisolone Metimyd - Prednisolone acetate Metin - Methicillin sodium

Metina - Carnitine Metindol - Indomethacin Metiskia - Metampicillin sodium Metociol - Metoclopramide HCI Metocobil - Metoclopramide HCI

Metonas - Medazepam Metonitron - Isosorbide dinitrate

Metopiron - Metyrapone Metopirone - Metyrapone Metopram - Metoclopramine HCI Metormon - Dromostanolone propionate

Metosyn - Fluocinonide Metox - Metoclopramide HCI Metoxal - Sulfamethoxazole Metpamid - Metoclopramide HCI

Metrajil - Metronidazole Metranii - Pentaerythritol tetranitrate

Metrazone - Feprazone

Metreton - Prednisolone phosphate sodium

Metrodial - Ethynodial diacetate Metro IV - Metronidazole Metrolag · Metronidazole Metrongil - Metronidazole Metroval - Ethinyl estradiol Metrulen - Ethynodiol diacetate

Metrulen - Mestranol Metryl - Metronidazole Metsapal - Chlormezanone Metubine - Tubocurarine chloride

Metubine Iodide - Dimethyl tubocurarine iodide

Meval - Diazepam Mevanin - Folic acid Mevanlin - Ferrous fumarate Mevasine - Mecamylamine HCI Mexan - Methoxamine HCI Mexase - Bromelain Mexate - Methotrexate Mexitil - Mexiletine HCI Mexocine - Demeclocycline HCI

Mezepan - Medazepam

Mezlin - Mezlocillin Mezolin - Indomethacin Miacalcic - Calcitonin Micatin - Miconazole nitrate Micefal - Penfluridol Michtone - Bethanechol chloride

Micochlorine - Chloramphenicol Micoespec - Echonazole nitrate Micofugal - Echonazole nitrate Micogyn - Echonazole nitrate Miconal - Miconazole nitrate Micoserina - Cycloserine

Micoserina - Cycloserine Micotef - Miconazole nitrate Micoter - Clotrimazole Micrest - Diethylstilbestrol Micristin - Aspirin

Microbamat - Meprobamate

Microcid - Sulfamethoxypyridazine Microcilina - Methacycline

Microcillin - Carbenicillin disodium

Microcort - Hydrocortisone Microdoine - Nitrofurantoin Microest - Diethylstilbestrol Micro-Guard - 4-Chloro-3,5-xylenol

Microlut - Norgestrel
Micromega - Sulfadimethoxine
Micronor - Norethindrone
Micronovum - Norethindrone
Micronovum - Sulfaphenazole
Mictine - Aminometradine
Mictorol - Bethanechol chloride
Micturol - Nitrofurantoin
Midamor - Amiloride HCI

Midantan - Amantidine HCl Midecacine - Midecamycin Midicacin - Midecamycin Midicaci - Sulfamethoxypyridazine

Midicel - Sulfamethoxypyridazine Micixin - Meprobamate

Midnighton - Diphenidol Midol PMS - Pyrilamine Midone - Primidone Midrin - Isometheptene Midrin - Isometheptene Midronal - Cinnarizine Mielucin - Busulfan Mifurol - Carmofur Migralam - Isometheptene

Migristen - Fonazine mesylate Migristene - Fonazine mesylate

Migwell - Cyclizine Mikelan - Carteolol

Miketorin - Amitriptyline HCl

Mikorten - Hydrochlorothiazide Milactan - Cinnarizine Milbedoc - Cyanocobalamin Millaterol - Tiadenol

Millevit - Cyanocobalamin Milliderm - Hydrocortisone

Milligynon - Norethindrone acetate

Milontin - Phensuximide Miltaun - Meprobamate Miltown - Meprobamate Milurit - Allopurino!

Mimedran - Sultosilic acid piperazine salt

Mincard - Aminometradine

Mindiab - Glipizide Minias - Lormetazepam Minibetic - Glipizide Minigest - Megestrol acetate

Minihep - Heparin

Minima Benoxinate - Benoxinate hydrochloride

Minipress - Prazosin
Minipress - Prazosin
Minirin - Desmopressin
Minirin DDAVP - Desmopressin
Minisone - Betamethasone
Minithixen - Chlorprothixene
Minizide - Polythiazide
Mino-Aleviatin - Trimethadione
Minobese - Phentermine HCI
Minocin - Minocycline

Minodiab - Glipizide
Minolip - Benfluorex hydrochloride
Minomycin - Minocycline
Minostate - Miconazole nitrate
Minotal - Acetaminophen
Minprostin - Dinoprostone

Minprostin F2A - Dinoprost tromethamine

Mintal - Pentobarbitol sodium Mintezol - Thiabendazole Minuric - Benzbromarone Minzolum - Thiabendazole Miodar - Phenyramidol Miodarone - Amiodarone HCI Mioflex - Orphenadrine citrate

Miolene - Ritodrine
Mioril - Carisoprodol
Miostat - Carbachol
Miotolon - Furazabol
Miowas - Methocarbamol
Mioxom - Carisoprodol
Miradol - Sulpiride
Miradon - Anisindione

Miramycin - Gentamicin sulfate Mirapront - Phentermine HCI Mirciclina - Demeclocycline HCI

Mircol - Mequitazine Miretilan - Endralazine Mirfat - Furosemide Miriplex - Pyritinol Miroservn - Cycloserine Mirsol - Zipeprol Miscleron - Clofibrate Misedant - Meprobamate Misetin - Chloramohenicol Mistabron - Mesna Mistabronco - Mesna Mistral - Erythromycin Mistura - Carbachol Misulban - Busulfan Misulvan - Sulpiride Mitalolo - Labetalol HCI

Mitalolo - Labetalol HCI
Mitalon - Cyclandelate
Mitaptyline - Amitriptyline HCI
Mitarson - Defosfamide
Mit-Ciclina - Methacycline
Mitdidin - Nitrazepam
Mitil - Prochlorperazine
Mition D - Sulfadimethoxine
Mitomycin C - Mitomycin
Mitoxana - Ifosfamide
Mitredin - Proscillaridin
Mixtard - Insulin
Miyadril - Oxyphenbutazone

Moban - Molindone Mobilan - Indomethacin

Mobilin - Sulindac Mobinol - Tolbutamide Modacor - Oxyfedrine

Modal - Sulpiride

Modalina - Trifluoperazine Modamate - Arginine glutamate Modamide - Amiloride HCI Modecate - Fluphenazine HCI Modenol - Buthiazide

Moderatan - Diethylpropion HCI Moderil - Rescinnamine Moderin - Methylprednisolone Modicon - Norethindrone Moditen - Fluphenazine HCI Modopar - Benserazide Modrenal - Trilostane Moducren - Amiloride HCI Moduretic - Amiloride HCI Moduretic - Hydrochlorothiazide

Mogadan - Nitrazepam Mogadon - Nitrazepam Moilarorin - Furosemide Molciclina - Methacycline Molevac - Pyrvinium pamoate Molipaxin - Trazodone HCI Mollinox - Methaqualone Molpaque - lopanoic acid Molycor R - Norfenefrine Momentum - Acetaminophen Monagen - Ticarcillin disodium

Monarch - Allopurinol Monase - Etryptamine Monasin - Metronidazole Monaspor - Cefsulodin Mondus - Flunarizine HCI Monilac - Lactulose Monile - Methionine

Monistat - Miconazole nitrate Mono-Attritin - Ibuprofen Monocaine - Butethamine Monocamin - Carnitine

Monocortin - Paramethasone acetate Monoderm - Fluocinolone acetonide

Monodion - Phytonadione Monodral - Penthienate bromide Monofillina - Choline theophyllinate Monofuracin - Nitrofurazone

Monogest - Norethindrone Mono-Kay - Phytonadione

Monophos - Amphetamine phosphate Monores - Clenbuterol

Monotard - Insulin Monotrim - Trimethoprim

Monydrin - Phenylpropanolamine HCI

Mopergan - Promethazine HCI Moperidone - Domperidone Moradol - Butorphanol

Morcain - Benactyzine hydrochloride

Morepen - Ampicillin trihydrate Morgenxil - Amoxicillin

Moriperan - Metoclopramide HCI

Mormalene - Bisacodyl Mornidine - Pipamazine Morvi - Carbachol Mosegor - Pizotyline HCl Mostarina - Prednimustine Motilium - Domperidone Motilyn - Dexpanthenol Motion Aid - Dimenhydrinate Motipress - Fluphenazine HCI Motolon - Methaqualone Motozina - Cyclizine Motrin - Ibuprofen

Movecil · Pyridinol carbamate Moxacin - Amoxicillin Moxadil - Amoxapine Moxal - Amoxicillin Moxalin - Amoxicillin

Moxam - Moxalactam disodium

Moxilean - Amoxicillin Moxinin - Amoxicillin Moxypen - Amoxicillin M.P. - Methapyrilene HCI 6-MP - Mercaptopurine M.P. Trantabs - Meprobamate Mucaine - Oxethazine Mucalan - Isoaminile

Muciclar - Ambroxol Muciclar - Carbocysteine Mucifural - Nifuroxazide Mucisol - Acetylcysteine Mucitux - Eprazinone HCI Mucocaps - Carbocysteine Mucocis - Carbocysteine Mucodyne - Carbocysteine Mucofilin - Acetyl cysteine Mucofluid - Mesna Mucolex - Carbocysteine Mucoliz - Carbocysteine Mucolysin - Tiopronin

Mucolyticum - Acetylcysteine Mucomist - Acetylcysteine Mucomyst - Acetylcysteine Mucopront - Carbocysteine Mucorex - Citiolone

Mucosirop - Carbocysteine Mucosolvan - Ambroxol Mucosolvin - Acetylcysteine Mucosolvon - Ambroxol Mucospect - Carbocysteine Mucostop - Guaifenesin Mucovin - Bromhexine Mudrane - Guaifenesin

Muhibeta - Betamethasone valerate Mukolen - Eprazinone HCI

Muldacin - Nitrofurazone Multilind - Nystatin Mundisal - Choline salicylate Murcil - Chlordiazepoxide HCI Murel - Valethamate bromide Murine - Naphazoline

Murine - Tetrahydrozoline HCI

Musa - Pyritinol

Musaril - Tetrazepam Muscotal - Chlormezanone Muskei - Chlormezanone Mutamycin - Mitomycin

Mutanxion - Amitriptyline HCl Mutaspline - Amitriptyline HCI

Mutesa - Oxethazine Mutil - Zolimidine Myacyne - Neomycin Myalgin - Acetaminophen Myambutol - Ethambutol HCI Myanesin - Mephenesin Myanoi - Mephenesin

Mycanden - Haloprogin Mycelex - Clotrimazole Mycetin - Chloramphenicol Mychel - Chloramphenicol

Mycholine - Bethanechol chloride

Mycifradin - Neomycin Myciguent - Neomycin Mycilan - Haloprogin Mycinol - Chloramphenicol Mycivin - Lincomycin Myclo - Clotrimazole Mycobutol - Ethambutol

Mycoderm - Amcinonide Mycolog - Nystatin

Mycolog - Triamcinolone acetonide Myconef - Fludrocortisone acetate Mycopevaryl - Echonazole nitrate

Mycospor - Bifonazole Mycosporin - Clotrimazole Mycostatin - Nystatin Mycostatine - Nystatin Myco-Triacet - Nystatin

Myco-Triacet - Triamcinolone acetonide

Myco-Ultralan - Fluocortolone Mydfrin - Phenylephrine HCI Mydocalm - Dicyclomine HCI Mydplegic - Cyclopentolate HCl Mydriacyl - Tropicamide Mydriaticum - Tropicamide Mydrilate - Cyclopentolate HCI Mydrin - Tropicamide

Mydrum - Tropicamide Myebrol - Mitobronitol Myeleukon - Busulfan Myelobromol - Mitobronitol Myfungar - Oxiconazole nitrate Mylanta - Simethicone Mylepsinum - Primidone Myleran - Busulfan Mylicon - Dimethicone

Mylicon - Simethicone Mynocine - Minocycline Mynosedin - Ibuprofen

Myoblock - Pancuronium bromide Myobutazolidin - Carisoprodol

Myocard - Atenolol Myocuran - Mephenesin Myodel - Cinnarizine Myofedrin - Oxyfedrine Myoflex - Chlorzoxazone Myoflexin - Chlorzoxazone

Myo Hermes - Bethanechol chloride

Myolastan - Tetrazepam Myolespan - Chlormezanone

Myomergin - Methylergonovine maleate

Myomethol - Methocarbamol Myonal - Eperisone HCI Myoserol - Mephenesin

Myotonachol - Bethanechol chloride Myotonine - Bethanechol chloride Myotrol - Orphenadrine citrate

Myoxane - Mephenesin Myprozine - Natamycin Mysedon - Primidone Mysoline - Primidone Mysteclin - Amphotericin B Mysteclin - Tetracycline

Mysuran - Ambenonium chloride Mytelase - Ambenonium chloride Mytelase CL - Ambenonium chloride

Mytomycin C - Mitomycin My-Trans - Meprobamate Mytrex - Gramicidin Mytrex - Neomycin

Mytrex - Nystatin

Mytrex - Triamcinolone acetonide

NAC - Acetylcysteine

Naclex - Hydroflumethiazide

Nacom - Carbidopa

Nadigest - Medroxyprogesterone acetate

Nadir - Metoclopramide HCI Nadostine - Nystatin Nafazair - Naphazoline Nafcil - Nafcillin sodium Naftazolina - Naphazoline Naftidan - Nafiverine Naftopen - Nafcillin sodium

Nagemid chronule - Brompheniramine maleate

Naixan - Naproxen Nalador - Sulprostone Nalcidin - Nalidixic acid Nalcrom - Cromolyn sodium Naldecon - Guaifenesin Naidecon - Phenylephrine HCl Naidecon - Phenylpropanolamine HCI

Nalfon - Fenonrofen Nalgesic - Fenoprofen Nali - Nalidixic acid Nalidicron - Nalidixic acid Nalidixico - Nalidixic acid Nalidixin - Nalidixic acid Nalidixique - Nalidixic acid Nalidixol - Nalidixic acid Naligen - Nalidixic acid Naligram - Nalidixic acid Naline - Naphazoline Nalissina - Nalidixic acid Nalitucsan - Nalidixic acid Nalix - Nalidixic acid Nalixan - Nalidixic acid Nalline - Nalorphine Nallpen - Nafcillin sodium Naloven - Feprazone Nalox - Metronidazole Nalpen - Azidocillin Naturin - Natidixic acid

Namicain - Thiamphenicol Nanbacine - Xibornol Nandrolin - Nandrolone phenpropionate

Nanormon - Somatotropin Nansius - Clorazepate dipotassium

Napacetin - Ibuprofen Napacil - Ampicillin Napalton - Mafenide acetate Napanol - Fenbufen Naphcon Forte - Naphazoline Napional - Acetaminophen Naposim - Methandrostenolone

Napoton - Chlordiazepoxide HCI Naprin - Sulfamoxole Napris - Naproxen Naprium - Naproxen Naprosyn - Naproxen Naprosyne - Naproxen Naprux - Naproxen Nap-Sival - Indapamide Nagua - Trichlormethiazide Naquival - Reserpine Naguival - Trichlormethiazide

Narbel - Tetrahydrozoline HCl Narcan - Naloxone

Narcanti - Naloxone Narcaricin - Benzbromarone

Narcotan - Halothane Narcozep - Flunitrazepam Nardelzine - Phenelzine sulfate Nardil - Phenelzine sulfate Narest - Valethamate bromide Narigix - Nalidixic acid Narsis - Medazepam

Nasafarma - Oxymetazoline HCI

Nazalide - Flunisolide Nasal Yer - Naphazoline Nasin - Tetrahydrozoline HCI Nasivin - Oxymetazoline HCI Nasky - Inositol niacinate Nasmil - Cromolyn sodium Nasophen - Phenylephrine HCI Natacillin - Hetacillin potassium

Natacyn - Natamycin Natam - Flurazepam

Naticardina - Quinidine polygalacturonate

Natira - Tegafur

Natrilix - Indapamide

Natrimax - Hydrochlorothiazide Natulan - Procarbazine HCI Natur B12 - Hydroxocobalamin Naturetin - Bendroflumethiazide Naturine Leo - Bendroflumethiazide

Natyl - Dipyridamole Nauseal - Dimenhydrinate Nauseatol - Dimenhydrinate Nauselin - Domperidone Nausido! - Pipamazine

Nautamine - Diphenhydramine HCI

Navane - Thiothixene Navicalur - Meclizine HCI Naxamide - Ifosfamide Naxofem - Nimorazole Naxogin - Nimorazole Naxuril - Nalidixic acid Naxvn - Naproxen

Nazett - Cyclopentamine HCi Nazona - Feprazone NC-Cillin - Ampicillin Nealgyl - Acetaminophen Nebacetin - Bacitracin Nebair - Isoproterenol sulfate

Neberk - Tegafur

Nebolan - Camazepam Nebralin - Pentobarbitol sodium Nebril - Desipramine HCl Nebs - Acetaminophen

Nebulasma - Cromolyn sodium Nectocyd - Dithiazanine iodide Nedeltran - Trimeprazine

Nedis - Propranolol HCI Nefrocarnit - Carnitine Nefrol - Hydrochlorothiazide Nefrolan - Clorexolone Nefrosul - Sulfachlorpyridazine

Nefurofan - Spironolactone Negabatt - Nalidixic acid Negaxid - Pivmecillinam Neggram - Nalidixic acid Negopen - Ampicillin

Nektronan - Allopurinol Nelbon - Nitrazepam Nelmat - Nitrazepam

Nemasol - Aminosalicylic acid Nembutal - Pentobarbitol sodium

Nene - Methaqualone

Neoallermin - Chlorpheniramine maleate

Neganabactyl - Ticarcillin disodium Neo-Antergan - Pyrilamine Neo-Aritmina - Praimaline bitartrate Neoasdrin - Oxeladin

Neo Avagal - Methscopolamine bromide Neobacrin - Bacitracin Neo-Banex - Propantheline bromide Neo-Betalin 12 - Hydroxocobalamin

Neobex - Oxeladin Neobiotic - Neomycin Neobloc - Metoprolol tartrate Neo-Bradoral - Domiphen bromide

Neobretin · Neomycin Neobrufen - Ibuprofen Neo-Caf - Bacitracin Neo-Calme - Diazepam

Neocefal - Cefamandole nafate sodium salt

Neocetin - Chloramphenicol

Neochinidin - Quinidine polygalacturonate

Neoclym - Cyclofenil Neo-Codema - Hydrochlorothiazide

Neocontrast - lopanoic acid

Neo-Corodil - Pentaerythritol tetranitrate

Neo-Corovas - Pentaerythritol tetranitrate

Neo-Cort - Triamcinolone

Neo-Cort - Triamcinolone acetonide Neo-Cromaciclin - Demeclocycline HCI Neo-Cytamen - Cyanocobalamin Neocyten - Orphenadrine citrate Neodecadron - Neomycin Neodelta - Prednisolone

Neo-Dexabine - Propantheline bromide

Neo-Dibetic - Tolbutamide

Neodiestostreptobap - Streptomycin

Neodit - Dibenzepin HCI

Neo-DM - Dextromethorphan hydrobromide

Neodopasol - Benserazide Neo-Dopaston - Carbidopa Neodrast - Bisacodyl Neodroì - Stanolone

Neodrom - Pentobarbitol sodium Neo-Erycinum - Erythromycin estolate

Neofazol - Cefazolin sodium Neo-Fer - Ferrous fumarate Neo-Flumen - Hydrochlorothiazide

Neogama - Sulpiride

Neo-Gastrosedan - Propantheline bromide

Neogest - Norgestrel

Neo-Gilurtymal - Prajmaline bitartrate Neoginon Depositum - Estradiol cypionate Neohetramine - Thonzylamine HCl Neo-Hombreol - Methyltestosterone Neohydrin - Chlormerodrin

Neo-Hotylin - Erythromycin estolate Neo-Insoral - Tolbutamide

Neointestin - Neomycin Neolodin - Providone-lodine Neolate - Neomycin Neolexina - Cephalexin

Neolin - Penicillin G benzathine

Neolutin Depo - Algestone acetophenide Neolutin Depositum - Algestone acetophenide Neo-Metantyl - Propantheline bromide

Neomicina Roger - Neomycin

Neomin - Neomycin Neo-Minzil - Hydrochlorothiazide

Neomyson - Thiamphenicol Neo-Naclex - Bendroflumethiazide Neo-Nilorex - Phendimetrazine tartrate

Neonitin - Inositol niacinate

Neo-Novutox - Lidocaine

Neo-Oxypaat - Pyrvinium pamoate

Neo-Panalgyl - Kebuzone Neopap - Acetaminophen Neopasalate - Aminosalicylic acid Neophyllin-M - Dyphylline Neo-Polycin - Bacitracin Neo-Polycin - Neomycin Neo-Polycin - Polymyxin

Neopt - Neomycin

Neoquess - Dicyclomine HCI Neoreserpan - Syrosingopine

Neorestamin - Chlorpheniramine maleate Neo-Rontyl - Bendroflumethiazide Neo-Saluretic - Hydrochlorothiazide

Neo-Salvilax - Bisacodyl Neosar - Cyclophosphamide Neo-Serp - Reserpine

Neosinefrina - Phenylephrine HCI

Neo-Sintrom - Acenocoumarol (Acenocoumarin)

Neo-Spec - Guaifenesin Neospect - Dyphylline Neospirine - Aspirin Neosporin - Bacitracin Neosporin - Gramicidin Neosporin - Neomycin Neosporin - Polymyxin Neoston - Alcofenac

Neostreptal - Sulfadimethoxine

Neosulf - Neomycin

Neosulfamyd - Sulfadimethoxide Neo-Synalar - Neomycin

Neosynephrine - Phenylephrine HCI Neoteben - Isoniazid Neothylline - Dyphylline Neo-Tizide - Isoniazid Neo-Tran - Meprobamate Neotrend - Acetaminophen Neo-Tric - Metronidazole Neo-Vasophylline - Dyphylline Neo-Vi-Twel - Hydroxocobalamin Neo-Zoline - Phenylbutazone Nephramid - Acetazolamide Nephril - Polythiazide Nephron - Furosemide

Neptal - Acebutoloi Neptall - Acebutolol

Neptazane - Methazolamide Neptusan - Dimenhydrinate

Nephronex - Nitrofurantoin

Neraval - Methitural

Nerfactor - Isaxonine phosphate Nergize - Creatino I fosfate Neriodin - Diclofenac sodium Nerisona - Diflucortolone valerate Nerisone - Diflucortolone valerate Nerobol - Methandrustenoione

Nervium - Diazepam Nervonus - Meprobamate Nesacaine - Chloroprocaine HCI Nesontil - Oxazepam

Netaf - Metoclopramide HCI Netex - Dichlorphenamide Netillin - Netilmicin Netromicine - Netilmicin Netromycin - Netilmicin Netromycine - Netilmicin Nettacin - Netilmicin

Netto-Longcaps - Phentermine HCI

Netux - Phenyltoloxamine

Neuacetyl - Aspirin

Neucalm - Hydroxyzine HCI Neuchlonic - Nitrazepam Neucolis - Citicoline Neufan - Allopurinol Neugel - Carbenoxolone Neuphenyl - Kebuzone Neuplus - Phenylbutazone Neuguinon - Ubidecarenone Neuracen - Beclamide Neuramate - Meprobamate Neurazine - Chlorpromazine HCi Neuriplege - Chlorproethazine HCI

Neuritol Carbamazepine

Neurobaltina - Cyanocobalamin Neuro-Fortabol - Methenolone acetate Neurolene - Nomifensine maleate

Neurolidol - Droperidol

Neuro Liser B 12 - Cyanocobalamin Neurolytril - Diazepam

Neuromyfar - Sulpiride Neuroplegil - Promazine HCI Neuropri - Tiapride Neuroprocin - Ectylurea Neurotin - Pyritinol Neurotol - Carbamazepine Neuroxin - Pyritinol Neurozina - Hydroxyzine HCI Neusedan - Oxeladin

Neutraphylline - Dyphylline Neutrogastrol Ulcus - Carbenoxolone

Nevadral - Norfenefrine Nevral - Acetaminophen Newcellan - Cyclandelate Newphrine - Phenylephrine HCI Newsantin - Prenylamine Newtolide - Hydrochlorothiazide Nezeril - Oxymetazoline HCl

Niadrin - Isoniazid Niagar - Chlorothiazide Niagestin - Megestrol acetate Niamid - Nialamide

Niamide - Nialamide Niazid - Isoniazid Nibol - Aspirin

Nibromin-A - Prochlorperazine Nicalex - Aluminum nicotinate

Nicazide - Isoniazid Nicelate - Nalidixic acid Nicergolyn - Nicergoline Nichicoba - Hydroxocobalamin Nichidopa - Methyldopa Nichiserpine-S - Syrosingopine Nichivita-K - Phytonadione Nicholin - Citicoline Niclocide Niclosamide Nicodel - Nicardipine

Nicolanta - Nicomol Niconicol - Xanthinol niacinate

Niconyl - Isoniazid Nicorol - Furosemide Nicosamin - Inositol niacinate Nicosinate - Inositol niacinate Nicosinit - Inositol niacinate Nicotbine - Isoniazid Nicotergoline - Nicergoline

Nicotibina - Isoniazid Nicotion - Ethionamide Nicotol - Inositol niacinate Nicotubin - Isoniazid

Nicoxatin - Inositol niacinate Nicozid - Isoniazid Nicozide - Isoniazid Nida - Metronidazole Nidantin - Oxolinic acid Nidran - Nimustine Nierofu - Nitrofurantoin Nifedicor - Nifedipine Nifedin - Nifedipine

Nifelat - Nifedipine Niferex - Folic acid Niflan - Ketoprofen Niflan - Pranoprofen Nifluran - Niflumic acid Nifluril - Niflumic acid

Niflux - Niflumic acid Nifolin - Folic acid Nifucin - Nitrofurazone Nifulidone - Furazolidone Nifuran - Furazolidone Nifuran - Nitrofurantoin Nifurantin - Nitrofurantoin

Nifuzon - Nitrofurazone Night-Cast - Salicylic acid Nigloid - Tolbutamide Nilatin - Feprazone

Nilergex - Isothipendyl HCI Nilevar - Norethandrolone Nilexina - Cephalexin Nilprin - Acetaminophen

Nilstat - Nystatin Nilurid - Amiloride HCI Ninol - Methionine Niopam - Iopamidol Niplen - Isoniazid Nipocin - Dibekacin

Nipolazin - Mequitazine Niramine - Diphenhydramine HCI Niratic-Pur-On - Levamisole HCI Niratron - Chlorpheniramine maleate Nirypan - Methylprednisolone Nisentil - Alphaprodine HCI Nisolone - Prednisolone acetate

Nisone - Prednisone Nitan - Pemoline Niticolin - Citicoline Nitobanil - Tegafur Nitoman - Tetrabenazine Nitorol R - Isosorbide dinitrate Nitrados - Nitrazepam

Nitrempax - Nitrazepam Nitrodex - Pentaerythritol tetranitrate

Nitrofur C - Nitrofurantoin

Nitropent - Pentaerythritol tetranitrate

Nitroret - Isosorbide dinitrate Nitrosit - Isosorbide dinitrate Nitrosorbide - Isosorbide dinitrate Nitro-Tablinen - Isosorbide dinitrate

Nitrozone - Nitrofurazone Nitux - Morclofone

Nivaquine - Chloroquine phosphate

Nivelton - Medazepam Nivoman - Triflupromazine Nixolan - Methylprednisolone Nizon - Prednisone

Nizoral - Ketoconazole Noan - Diazepam Nobacter - Triclocarban Nobadorm - Methaqualone

Nobese - Phenylpropanolamine HCI

Nobesine-25 - Diethylpropion HCI

Nobfelon - Ibuprofen Nobfen - Ibuprofen Nobgen - Ibuprofen Noblitina - Cephradine Nobral - Medazepam Nobraskin - Medazepam Nobrium - Medazepam Nocbin - Disulfiram

Nocertone - Oxetorone fumarate Noctamid - Lormetazepam Noctamine - Diphenhydramine HCI

Noctan - Methyprylon Noctazepam - Oxazepam Noctem - Nitrazepam Noctene - Nitrazepam

Noctran - Clorazepate dipotassium Noctynol - Mephenesin Nodapton - Glycopyrrolate Noflevan - Etofibrate Nogedal - Noxiptilin Nogermin - Nalidixic acid

Noiafren - Clobazam Nolahist - Phenindamine tartrate Notamine - Phenindamine tartrate Nolamine - Phenylpropanolamine HCI

Noleptan - Fominoben HCI Nolipax - Fenofibrate Noloten - Propranolol HCI Notudar - Methyprylon Nolurate - Methyprylon Nolvadex - Tamoxifen Nolvasan - Chlorhexidine Nomaze - Naphazoline Nomival - Nomifensine maleate

Nomocramp - Dicyclomine HCI Nonflamin - Tinoridine Nootron - Piracetam Nootrop - Piracetam Nootropicon - Piracetam Nootropil - Piracetam Nootropyl - Piracetam No-Press - Mebutamate Nopron - Niaprazine

Norabol - Nandrolone phenpropionate

Noracycline - Mestranol

Noralone - Nandrolone phenpropionate

Noranat - Indapamide

Norandrol - Nandrolone phenpropionate Norandras - Nandrolone phenpropionate Norbalin - Nandrolone phenpropionate Norcozine - Chlorpromazine HCl Nordecon - Nandrolone decanoate

Nordotol - Carbamazepine Norfemac - Bufexamac Norfen - Octopamine HCI Norfin - Nalorphine

Norflex - Orphenadrine citrate Norfor - Norethindrone Norgesic - Orphenadrine citrate Norgestin - Norethindrone Norglycin - Tolazamide No-Rheumar - Betamethasone Noriday - Mestranol Noriday - Norethindrone

Norinyl - Mestranol Norinyl - Norethindrone

Norlestrin - Ethinylestradiol

Norisodrine - Isoproterenol sulfate Noritren - Nortriptyline

Norlestrin - Norethindrone Norlestrin - Norethindrone acetate

Norluten - Mestranol Norlutin - Norethindrone

Norlutin-A - Norethindrone acetate

Norma - Oxyphencyclimine Normabrain - Piracetam

Normac - Bromazepam

Normalin - Guanethidine sulfate Normalmin - Prochlorperazine Normaln - Amitriptyline HCI Normain P - Trifluoperazine Normelin - Fonazine mesylate Normeran - Metolazone Normetolo - Norfenefrine Normide - Chlordiazepoxide HCI

Normi-Nox - Methaqualone Normison - Temazepam Normiten - Atenolol Normodyne - Labetolol HCI Normoglic - Chlorpropamide Normolipol - Clofibrate Normopresan - Clonidine HCl Normorest - Methaqualone Normorytmin - Propafenone HCI Normosona - Prednisolone Normud - Zimelidine

Normum - Sulpiride Normurat - Benzbromarone Norofren - Pimozide

Noromon - Nandrolone phenpropionate

Norotrop - Piracetam Noroxin - Norfloxacin

Norpace - Disopyramide phosphate Norphen - Octopamine HCI Norpolake - Desipramine HCI Norpramine - Desipramine HCI Norpramine - Imipramine HCI

Nor-Preds - Prednisolone phosphate sodium

Norpron - Niaprazine Nor-QD - Norethindrone Norquen - Mestranol

Norstenol - Nandrolone phenpropionate

Nortimil - Designamine HCI Nortrilen - Nortriptyline Nortylin - Nortriptyline Norval - Mianserin Norvedan - Fentiazac Norzepine - Nortriptyline Norzetam - Piracetam Nosim - Isosorbide dinitrate

Nospan - Tybamate Nostel - Ethclorvynol Nostril - Phenylephrine HCI Nostrilla - Oxymetazoline HCI

Nostvn - Ectylurea

Notens - Bendroflumethiazide

Notense - Diazepam

Notensyl - Dicyclomine HCI

Notezine - Diethylcarbamazine citrate

Notricel - Nalidixic acid

Nourilax - Oxyphenisatin acetate

Novacort - Cloprednol Novadral - Norfenefrine

Novahistine - Chlorpheniramine maleate

Novahistine - Guaifenesin Novamato - Meprobamate Novamin - Amikacin Novamin - Prochlorperazine Novamoxin - Amoxicillin

Novapen - Dicloxacillin sodium

Nova-phase - Aspirin

Novaphenicol - Chloramphenicol

Nova-Rubi - Cyanocobalamin

Novasen - Aspirin

Novasmasoi - Metaproterenoi sulfate

Novatril - Metiazinic acid Novazam - Diazepam Novedopa - Levodopa Novelciclina - Doxycycline

Noventabedoce - Cyanocobalamin Noveril - Dibenzepin HCI Novesin - Benoxinate hydrochloride Novesine - Benoxinate hydrochloride

Novicet - Vincamine Novidorm - Triazolam

Novobedouze - Hydroxocobalamin Novobetamet - Betamethasone valerate

Novobutamide - Tolbutamide Novobutazone - Phenylbutazone Novochlorcap - Chloramphenicol Novocillin - Penicillin G procaine Novocloxin - Cloxacillin

Novodimenate - Dimenhydrinate

Novodipam - Diazepam

Novodiurex - Hydrochlorothiazide Novodrin - Isoproterenol sulfate Novoexpectro - Ampicillin trihydrate

Novofibrate - Clofibrate Novoflupam - Flurazepam Novoflurazine - Trifluoperazine Novofolac - Folic acid

Novofumar - Ferrous fumarate Novofuran - Nitrofurantoin

Novohexidyl - Trihexyphenidyl HCI Novohydrazide - Hydrochlorothiazide

Novolax - Bisacodyl Novolin - Insulin

Novolin N - Insulin isophane Novomedopa - Methyldopa Novomepro - Meprobamate Novomethacin - Indomethacin Novomina - Dimenhydrinate Novonaprox - Naproxen Novonidazol - Metronidazole

Novopentobarb - Pentobarbitol sodium Novopheniram - Chlorpheniramine maleate

Novophenyl - Phenylbutazone Novophenytoin - Phenytoin Novophone - Dapsone Novopivam - Pivampicillin

Novopoxide - Chlordiazepoxide HCI Novopramine - Imipramine HCI Novopranoi - Propranolol HCI Novoprednisolone - Prednisolone Novoprednisone - Prednisone

Novopropamide - Chlorpropamide Novopurol - Allopurinol

Novopyrazone - Sulfinpyrazone Novoridazide - Thioridazine Novorin - Xvlometazoline HCI Novorythro - Erythromycin estolate Novosecobarb - Secobarbital sodium

Novoserpina - Syrosingopine Novosoxazole - Sulfisoxazole

Novosulfin - Sulfamethoxypyridazine Novosulfina - Phthalylsulfathiazole Novoter - Fluocinonide

Novotriphyl - Choline theophyllinate

Novothalidone - Chlorthalidone

Novotriptyn - Amitriptyline HCI

Novotussil - Morclofone Novoxapin - Doxepin HCI Noxybel - Methaqualone Noxyflex - Noxytiolin Nozinan - Methotrimeprazine NP 30 - Prenylamine NPH-Iletin - Insulin isophane N-Toin - Nitrofurantoin

Nubain - Nalbuphine Nucofed - Guaifenesin Nuctalon - Estazolam Nu-Iron - Folic acid

Nulobes - Diethylpropion HCl Nulogyl - Nimorazole

Numbon - Nitrazepam Numide - Naproxen

Numorphan - Oxymorphone Nuran - Cyproheptadine Nuredal - Nialamide Nuril - Pipemidic acid Nuriphasic - Mestranol Nurison - Prednisone Nurofen - Ibuprofen

Nutinal - Benactyzine hydrochloride

Nutradine - Povidone-iodine Nutrasweet - Aspartame Nuvapen - Ampicillin Nuvosyl - Amoxicillin Nvaderm - Nvstatin

Nycott - Dextromethorphan hydrobromide

Nyderal - Nylidrin Nydor - Trichlormethiazide Nydrane - Beclamide Nylin - Nylidrin Nyrazid - Isoniazid Nysert - Nystatin Nystacid - Nystatin Nysta-Dome - Nystatin Nystex - Nystatin

Nyst-Olone - Gramicidin Nyst-Olone - Nystatin

Nyst-Olone - Triamcinolone acetonide

Nyuple - Prenylamine

Oasil - Meprobamate Obaron - Benzbromarone

Obe-Del - Phendimetrazine tartrate Obepar - Phendimetrazine tartrate Obesan - Phendimetrazine tartrate Obestat - Phenylpropanolamine HCI

Obestin - Phentermine HCI

Obetrol - Dextroamphetamine sulfate Obex-LA - Phendimetrazine tartrate Obezine - Phendimetrazine tartrate

Obligser - Methagualone Obotan - Tanphetamin Obsidan - Propranolol HCI Obstilax - Bisacodyl

Obstilax - Oxyphenisatin acetate Oby-Trim - Phentermine HCI Occlusal - Salicylic acid Ocelina - Metampicillin sodium Oceral - Oxiconazole nitrate Octapressin - Felypressin Octicair - Hydrocortisone

Octicair - Neomycin Octicair - Polymyxin Octinum - Isometheptene Octocaine - Lidocaine

Octofene - Clofoctol

Ocu-Cort - Hydrocortisone sodium phosphate

Ocunasal - Naphazoline Oedemex - Furosemide Oedemin - Acetazolamide

Oestradiol-Retard - Estradiol cypionate

Oestrogen - Diethylstilbestrol Oestrogynal - Estradiol valerate Oestrol - Diethylstilbestrol Oestromon - Diethylstilbestrol Oestrovis - Dienestrol Oftakloram - Chloramphenicol Oftalent - Chloramphenicol Oftan-Idurin - Idoxuridine Oftan-Karbakol - Carbachol Oftan-Starine - Tetrahydrozoline HCI

Oftan-Syklo - Cyclopentolate HCl Ogostac - Capreomycin sulfate OH-BIZ - Hydroxocobalamin Ohlexin - Cephalexin Oikamid - Piracetam Okilon - Fluorometholone Oksaren - Oxolinic acid Oksisiklin - Oxytetracycline

Olamin - Cinnarizine Olbutam - Ethambutol Olcadil - Cloxazolam Oldagen - Homofenazine Oldren - Metolazone Oleandocyn - Oleandomycin Oleomycetin - Chloramphenicol Oleptan - Fominoben HCI Olmagran - Hydroflumethiazide Olmicina - Oleandomycin Olynth - Xylometazoline HCI Omca - Fluphenazine HCI

Omeogen - Cyanocobalamin Omifin - Clomiphene dihydrogen citrate

Omnalio - Chlordiazepoxide HCI

Omnes - Nifuratel

Omnibon - Sulfadimethoxine Omniderm - Fluocinolone acetonide

Omnipen - Ampicillin Omnipress - Amoxapine Omnisan - Epicillin

Omnopon - Papaverine monophosadenine

Omperan - Sulpiride Ona Mast - Phentermine HCI Onca-Tiotepa - Thiotepa Onco-Carbide - Hydroxyurea

Oncomercaptopurina - Mercaptopurine

Oncovin - Vincristine sulfate Ondena - Daunorubicin Ondogyne - Cyclofenil Ondonvid - Cyclofenil One-Alpha - Alfacalcidol One-Kay - Phytonadione Onlemin - Prenylamine Ontosein - Orgotein Opacist - Iodamide

Opalene - Trimetozine Opcon - Naphazoline Operidine - Phenoperidine HCI Ophidiase - Batroxobin Ophtagram - Gentamicin sulfate

Ophtaphenical - Chloramphenical Ophthalmadine - idoxuridine Ophthalmokalixan - Kanamycin sulfate

Ophthocort - Polymyxin Ophthocortin - Medrysone Ophthosol - Bromhexine
Ophthovitol - Stanolone
Ophtorenin - Bupranolol
Opilon - Moxisylyte
Opino - Nylidrin
Opiran - Pimozide
Oposim - Propranolol HCl
Opren - Benoxaprofen
Opridan - Bromopride
Oprimol - Opipramol
Optalgin - Methadone HCl
Optef - Hydrocortisone
Opticron - Cromolyn sodium
Optimal - Oxyphenbutazone

Optimil - Methaqualone
Optimine - Azatadine maleate
Optinoxan - Methaqualone

Optimicine - Methacycline

Optipen - Phenethicillin potassium

Optium - Amoxicillin

Optival - Prednisolone phosphate sodium Optocillin - Mezlocillin

Optone - Oxyphenbutazone
Optovite B 12 - Cyanocobalamin
Opturem - Ibuprofen
Orabet - Chlorpropamide
Orabines - Chlorpropamide
Orabolin - Ethylestrenol
Oracef - Cephalexin
Oracefal - Cefadroxil

Oracefal - Cefadroxil
Oracilline - Penicillin
Oracocin - Cephalexin
Oracon - Dimethisterone
Oracon - Ethinylestradiol
Oractine - Cyproheptadine
Oradash - Methionine
Oradiol - Ethinylestradiol
Oradol - Domiphen bromide

Oraflex - Benoxaprofen
Oragest - Medroxyprogesterone acetate
Orakanamicil - Kanamycin sulfate

Oraldene - Hexetidine
Oralep - Pimozide
Oralexine - Cephalexin
Oralmisetin - Chloramphenicol
Oralsterone - Fluoxymesterone
Oramide - Tolbutamide

Oramide - Tolbutamide Oramycin - Cycloserine Oranixon - Mephenesin Orap - Pimozide Oraseptic - Hexetidine Orasone - Prednisone Oraspor - Cefroxadine Orasthin - Oxytocin

Orastrep - Streptomycin
Ora-Testryf - Fluoxymesterone
Oratol - Dichlorphenamide
Oratrim - Trimethoprim
Orbenit - Cloxacillin
Orbenin - Cloxacillin
Orbicin - Dibekacin
Orbin - Chlorpropamide
Orbinamon - Thiothixene

Orchisterone - Methyltestosterone

Ordimel - Acetohexamide Orestralyn - Ethinylestradiol Oretic - Hydrochlorothiazide Oreticy! - Deserpidine

Orbisan - Prazosin

Oreton-M - Methyltestosterone Orferon - Ferroglycine sulfate

Orfidal - Lorazepam Orfilina - Cyclacillin Orgabolin - Ethylestrenol Orgaboline - Ethylestrenol

Orgadrone - Dexamethasone phosphate

Orgaluton - Mestranol
Organoderm - Malathion
Organolax - Bisacodyl
Organolipid - Gemfibrozil
Orgastyptin - Estriol succinate
Orgatrax - Hydroxyzine HCl
Oribetic - Tolbutamide
Oributol - Ethambutol HCl
Oricur - Chlormerodrin

Oriens - Acetoxolone aluminum salt Orientmycin - Cycloserine

Orimercur - Chlormerodrin
Orimeten - Aminoglutethimide
Orinase - Tolbutamide
Orisul - Sulfaphenazole
Orisulf - Sulfaphenazole
Orizina - Erythromycin
Orlex - 4-Chloro-3,5-xylenol
Ormerdan - Chlormerodrin
Ormodon - Nitrazepam
Ornade - Isopropamide i odide

Ornade - Phenylpropanolamine HCl Ornidal - Ornidazole Orobicin - Bacitracin Orocilin - Ampicillin

Oronine - Chlorhexidine Oroxin - Cephalexin

Oroxin - Sulfamethoxypyridazine

Orsanii - Thioridazine
Orsanoi - Tolbutamide
Ortho-Creme - Nonoxynol
Ortho-Delfen - Nonoxynol
Ortho-Novum - Mestranol
Ortho-Novum - Norethindrone
Ortisporina - Cephalexin
Ortodermine - Lidocaine

Ortodermine - Lidocaine Or-Tyl - Dicyclomine HCl Orudis - Ketoprofen Orvagil - Metronidazole Osmitrol - Mannitol Osmofundin - Mannitol Osmosol - Indomethacin Osmosol - Mannitol

Osnervan - Procyclidine HCI Ospanox - Amoxicillin Ospen - Penicillin V Ospexin - Cephalexin Ossazin - Chlorthenoxazine Ossazone - Chlorthenoxazine Ossian - Oxolinic acid Ossion - Oxolinic acid Ossipirina - Chlorthenoxazine Ossirondil - Methacycline Ossitetra - Oxytetracycline Ossiurene - Dithiazanine iodide Ostrin Depo - Estradiol valerate Osyrol - Canrenoate potassium Osyrol - Spironolactone Otachron - Chloramphenicol Otali - 4-Chloro-3,5-xylenol Oterben - Tolbutamide

Otesolut - Oxytetracycline

Otho - Choline salicylate

Otic-HC - Hydrocortisone Otic-HC - Pramoxine HCI Oticortrix - Triamcinolone Otobiotic - Hydrocortisone Otobiotic - Neomycin Otobiotic - Polymyxin Otocort - Hydrocortisone Otocort - Neomycin Otocort - Polymyxin

Otokalixan - Kanamycin suifate Otomycin - Chloramphenicol Otosone-F - Hydrocortisone Otrivin - Xylometazoline HCI Ottimal - Tiemonium iodide O.V. 28 - Mestrano! Ovahormon - Ethinylestradiol Ovamin - Ethynodiol discetate

Ovanon - Mestranol Ovarid - Megestrol acetate Ovastol - Mestranol Ovcon - Norethindrone Overcillina - Ampicillin Ovestin - Estriol succinate Ovex - Ethinylestradiol Ovrette - Norgestrel

Ovulen - Ethynodiol diacetete Ovulen - Mestranol Oxabel - Oxacillin sodium Oxacycline - Oxytetracycline Oxadilene - Butalamine HCi

Oxadol - Nefopan HCl Oxaflumine - Oxaflumazine disuccinate

Oxaine - Oxethazine Oxal - Chlorthenoxazine Oxalid - Oxyphenbutazone Oxandrolone Spa - Oxandrolone Oxasulfa - Sulfamoxole

Oxazina - Sulfadimethoxine Oxcord - Nifedipine

Oxedix - Oxetorone fumarate Oxeten - Oxytetracycline Oxialum - Pyrvinium pamoate Oxiamin - Inosine

Oxibutol - Oxyphenbutazone

Oxidermiol Fuerte - Fluocinolone acetonide

Oxidina - Pivampicillin

Oxiklorin - Hydroxychloroquine sulfate

Oximin - Oxyphencyclimine Oxinorm - Orgotein Oxitocin - Oxytocin Oxlopar - Oxytetracycline Oxobemin - Hydroxocobalamin Oxoboi - Oxolinic acid

Oxoinex - Oxolinic acid Oxol - Oxolinic acid Oxolin - Oxolinic acid Oxoralen - Methoxsalen Oxpam - Oxazepam Oxsoracen - Methoxsalen

Oxybutazone - Oxyphenbutazone Oxybuton - Oxyphenbutazone

Oxygeron - Vincamine

Oxytal - Oxytocin

Oxy-Kesso-Tetra - Oxytetracycline Oxylone - Fluorometholone Oxymeta - Oxymetazoline HCI Oxymycin - Oxytetracycline Oxyren - Chlorzoxazone Oxystat - Dyphylline Oxystin - Oxytocin

Pabacyd - Aminobenzoic acid Pabafilm - Aminobenzoic acid Pabagel - Aminobenzoic acid Pabalate - Aminobenzoic acid Pabaminol - Aminobenzoic acid Pabanol - Aminobenzoic acid Pabasin - Aminobenzoic acid

Pabenol - Deanol acetamidobenzoate Pabron - Chlorhexidine

Pacatal - Mepazine Pacedol - Haloperidol Pacemo - Acetaminophen Pacet - Acetaminophen Pacinol - Fluphenazine HCI Pacipam - Diazepam Pacisyn - Nitrazepam Pacitran - Diazepam Pacyl - Isoxicam Padicor - Dipyridamole Paduden - Ibuprofen

Pagitane - Cycrimine HCI

Paidomicetina - Chloramphenicol palmitate

Pain & Fever - Acetaminophen Painex - Acetaminophen Palafer - Ferrous fumarate Palison - Protokylol Palitrex - Cephalexin Pallace - Megestrol acetate Palmofen - Fosfomycin

Pameion - Papaverine monophosadenine

Pamelor - Nortriptyline Pamine - Methscopolamine bromide

Pamisyl - Aminosalicylic acid Pamocil - Amoxicillin Pamol - Acetaminophen Pamovin - Pyrvinium pamoate Pamoxan - Pyrvinium pamoate

Panacain - Fomocaine Panacef - Cefactor

Panacelan-F - Dinoprost tromethamine

Panacete - Acetaminophen Panacid - Piromidic acid Panacur - Fenbendazole Panadol - Acetaminophen Panadon - Acetaminophen Panafcort - Prednisone Panafcorteione - Prednisolone

Panafil - Papain

Panakiron - Dicyclomine HCI Panaldin - Ticlopidine HCI Panalgin - Ethoheptazine Panamax - Acetaminophen

Panas - Clofezone

Panasone - Dexamethasone acetate Panasorb - Acetaminophen Panazid - Isoniazid Panazone - Phenylbutazone Panbesy - Phentermine HCI

Pancid - Sulfisoxazole Pancoral - Fenipentol

Pancuronium - Pancuronium bromide

Pandiuren - Amiloride HCI Panectyl - Trimeprazine Panerco - Piromidic acid

Panergon - Papaverine monophosadenine

Panformin - Buformin HCI Panfugan - Mebendazole Panimit - Bupranolol Panimycin - Dibekacin Panmycin - Tetracycline

Otic-HC - Hydrocortisone Otic-HC - Pramoxine HCI Oticortrix - Triamcinolone Otobiotic - Hydrocortisone Otobiotic - Neomycin Otobiotic - Polymyxin Otocort - Hydrocortisone Otocort - Neomycin Otocort - Polymyxin

Otokalixan - Kanamycin suifate Otomycin - Chloramphenicol Otosone-F - Hydrocortisone Otrivin - Xylometazoline HCI Ottimal - Tiemonium iodide O.V. 28 - Mestrano! Ovahormon - Ethinylestradiol Ovamin - Ethynodiol discetate

Ovanon - Mestranol Ovarid - Megestrol acetate Ovastol - Mestranol Ovcon - Norethindrone Overcillina - Ampicillin Ovestin - Estriol succinate Ovex - Ethinylestradiol Ovrette - Norgestrel

Ovulen - Ethynodiol diacetete Ovulen - Mestranol Oxabel - Oxacillin sodium Oxacycline - Oxytetracycline Oxadilene - Butalamine HCi

Oxadol - Nefopan HCl Oxaflumine - Oxaflumazine disuccinate

Oxaine - Oxethazine Oxal - Chlorthenoxazine Oxalid - Oxyphenbutazone Oxandrolone Spa - Oxandrolone Oxasulfa - Sulfamoxole Oxazina - Sulfadimethoxine

Oxcord - Nifedipine

Oxedix - Oxetorone fumarate Oxeten - Oxytetracycline Oxialum - Pyrvinium pamoate Oxiamin - Inosine

Oxibutol - Oxyphenbutazone

Oxidermiol Fuerte - Fluocinolone acetonide

Oxidina - Pivampicillin

Oxiklorin - Hydroxychloroquine sulfate

Oximin - Oxyphencyclimine Oxinorm - Orgotein Oxitocin - Oxytocin Oxlopar - Oxytetracycline Oxobemin - Hydroxocobalamin Oxoboi - Oxolinic acid

Oxoinex - Oxolinic acid Oxol - Oxolinic acid Oxolin - Oxolinic acid Oxoralen - Methoxsalen Oxpam - Oxazepam Oxsoracen - Methoxsalen

Oxybutazone - Oxyphenbutazone Oxybuton - Oxyphenbutazone

Oxygeron - Vincamine

Oxytal - Oxytocin

Oxy-Kesso-Tetra - Oxytetracycline Oxylone - Fluorometholone Oxymeta - Oxymetazoline HCI Oxymycin - Oxytetracycline Oxyren - Chlorzoxazone Oxystat - Dyphylline Oxystin - Oxytocin

Pabacyd - Aminobenzoic acid Pabafilm - Aminobenzoic acid Pabagel - Aminobenzoic acid Pabalate - Aminobenzoic acid Pabaminol - Aminobenzoic acid Pabanol - Aminobenzoic acid Pabasin - Aminobenzoic acid

Pabenol - Deanol acetamidobenzoate Pabron - Chlorhexidine

Pacatal - Mepazine Pacedol - Haloperidol Pacemo - Acetaminophen Pacet - Acetaminophen Pacinol - Fluphenazine HCI Pacipam - Diazepam Pacisyn - Nitrazepam Pacitran - Diazepam Pacyl - Isoxicam

Padicor - Dipyridamole Paduden - Ibuprofen Pagitane - Cycrimine HCI

Paidomicetina - Chloramphenicol palmitate

Pain & Fever - Acetaminophen Painex - Acetaminophen Palafer - Ferrous fumarate Palison - Protokylol Palitrex - Cephalexin Pallace - Megestrol acetate Palmofen - Fosfomycin

Pameion - Papaverine monophosadenine

Pamelor - Nortriptyline

Pamine - Methscopolamine bromide Pamisyl - Aminosalicylic acid Pamocil - Amoxicillin Pamol - Acetaminophen Pamovin - Pyrvinium pamoate Pamoxan - Pyrvinium pamoate

Panacain - Fomocaine Panacef - Cefactor

Panacelan-F - Dinoprost tromethamine

Panacete - Acetaminophen Panacid - Piromidic acid Panacur - Fenbendazole Panadol - Acetaminophen Panadon - Acetaminophen Panafcort - Prednisone Panafcorteione - Prednisolone

Panafil - Papain

Panakiron - Dicyclomine HCI Panaldin - Ticlopidine HCI Panalgin - Ethoheptazine Panamax - Acetaminophen

Panas - Clofezone Panasone - Dexamethasone acetate

Panasorb - Acetaminophen Panazid - Isoniazid Panazone - Phenylbutazone Panbesy - Phentermine HCI

Pancid - Sulfisoxazole Pancoral - Fenipentol

Pancuronium - Pancuronium bromide

Pandiuren - Amiloride HCI Panectyl - Trimeprazine Panerco - Piromidic acid

Panergon - Papaverine monophosadenine

Panformin - Buformin HCI Panfugan - Mebendazole Panimit - Bupranolol Panimycin - Dibekacin Panmycin - Tetracycline

Panmycin Phos - Tetracycline phosphate complex

Panodil - Acetaminophen Panok - Acetaminophen

Panoral - Cefactor

Panotile - Fludrocortisone acetate Panparnit - Caramiphen edisylate Panpurol - Pipethanate ethobromide Pen-Rexin - Phendimetrazine tartrate

Panseman - Furosemide Panshade - Phentermine HCI Pantalgin - Acetaminophen Pantemon - Hydrochlorothiazide

Pantene - Dexpanthenol

Panteny! - Dexpanthenol

Pantheline - Propantheline bromide Panthene - Propantheline bromide Panthenol-Drobena - Daxpanthenol

Panthoderm - Daxpanthenol Pantol - Dexpanthenol Pantopaque - lophendylate Pantovernil - Chloramphenicol Panto-Viocine - Viomycin Pantrop - Ibuprofen Panuric - Probenecid

Panwarfin - Warfarin sodium

Papaverlumin - Papaverine monophosadenine Papaversan - Papaverine monophosadenine

Parabaxin - Methocarbamol Parabolan - Trenbolone acetate Paracet - Acetaminophen

Paracholin - Bethanechol chloride

Paracort - Prednisone Paracortol - Prednisolone Paraden - Biperiden Paraderm - Bufexamac Para-Dien - Dienestrol Paradione - Paramethadione Paradroxil - Amoxicillin

Paraflex - Chlorzoxazone Paralen - Triamcinolone acetonide Paralest - Trihexyphenidyl HCI Paralgin - Acetaminophen Paremantin - Amantidine HCI Paramesone - Paramethasone acetate Paramezone - Paramethasone acetate

Paramicina - Paromomycin

Paramid Supra - Sulfamethoxypyridazine

Paramisan - Aminosalicylic acid Paramol - Acetaminophen Paramolan - Acetaminophen

Parantin - Methscopolamine bromide Paranausine - Dimenhydrinate

Para-Pas - Aminosalicylic acid Parasal - Aminosalicylic acid

Parasan - Benactyzine hydrochloride Parasin - Acetaminophen

Paraspen - Acetaminophen Para-Suppo - Acetaminophen

Paratil - Sulpiride

Paravale - Echonazole nitrate Paraxin - Chloramphenicol

Parbetan - Betamethasone benzoate

Parbinon - Ubidecarenone Paresinan - Rescinnamine Parest - Methaqualone Parfenac - Bufexamac Parfuran - Nitrofurantoin Pargitan - Trihexyphenidyl HCl Pariodel - Bromocriptine

Parisolon - Prednisolone phosphate sodium

Paritrel - Amantidine HCI Parkemed - Mefenamic acid Parkidopa - Levodopa Parkin - Ethopropazine HCI Parkinane - Trihexyphenidyl HCI Parkopan - Trihexyphenidyl HCl

Parmedin - Levodopa Parmenison - Prednisone Parmilene - Methaqualone Parmine - Phentermine HCI

Parmodalin - Tranylcypromine sulfate Parmol - Acetaminophen

Parnate - Tranylcypromine sulfate

Parol - Acetaminophen

Parpon - Benactyzine hydrochloride Parsidol - Ethopropazine HCI Parsitan - Ethopropazine HCI Parsotil - Ethopropazine HCI Partane - Trihexyphenidyl HCI

Partel - Dithiazanine iodide Parten - Acetaminophen Partocon - Oxytocin Partolact - Oxytocin

Partusisten - Fenoterol hydrobromide

Parvolex - Acetyl cysteine Pas - Aminosalicylic acid Pasaden - Homofenazine Pasatocin - Amoxicillin Pasido - Aminosalicylic acid Pasolind - Acetaminophen Pasotomin - Prochlorperazine Paspertin - Metoclopramide HCI Pastan - Valethamate bromide Pastillas azules - Dimenhydrinate

Pathilon - Tridihexethyl iodide Pathocil - Dicloxacillin sodium Pathomycin - Sisomicin

Pathorysin - Chlorzoxazone Pavabid - Papaverine monophosadenine Pavacron - Papaverine monophosadenine Pavagrant - Papaverine monophosadenine Pavakey - Papaverine monophosadenine Pavalon - Pancuronium bromide

Pavatym - Papaverine monophosadenine

Paveciclina - Methacycline Paver - Papaverine monophosadenine Paveril - Dioxyline phosphate Paverone - Dioxyline phosphate Pavulon - Pancuronium bromide

Pax - Diazepam Paxet - Diazepam Paxeladine - Oxeladin Paxidorm - Methaqualone Paxin - Meprobamate Paxipam - Halazepam Paxisyn - Nitrazepam Paxvl - Chlorprothixene Pazital - Medazepam PBZ-SR - Tripelennamine PCM - Acetaminophen Peamezin - Cyclacillin

Peast C - Chlordiazepoxide HCi

Pecnon - Kebuzone Pectamol - Oxeladin

Pectipront - Benproperine Pectolex - Pentaerythritol tetranitrate

Pectolitan - Chlophedianol Pectox - Carbocysteine Pectussil - Oxeladin

Pedia Care - Dextromethorphan hydrobromide

Pediacof - Phenylephrine HCI Pediamycin - Erythromycin Pediaphen - Acetaminophen Pediatetracyclina - Tetracycline Pediazole - Acetyl sulfisoxazole Pediazole - Sulfisoxazole Pedicort - Hydrocortisone Pedimycetin - Chloramphenicol

Pedi-Pro Foot Powder - 4-Chloro-3,5-xylenol

Peganone - Ethotoin Pelanin - Estradiol valerate Pelestrol - Diethylstilbestrol Pellar - Pelargonic acid Pelpica - Promethazine HCI Pelson - Nitrazepam Pelucas - Haloperidol Pemina - Penicillamine

Pemix - Pirozadil Pen-200 - Phenethicillin potassium Pen-A - Ampicillin trihydrate Penacyl - Aminosalicylic acid Penamox - Amoxicillin Pen Ampil - Ampicillin Penantin - Spironolactone Penargyl - Clemizole

Penbon - Pentobarbitol sodium Panbristol - Ampicillin trihydrate

Penbritin - Ampicillin

Penbrock - Ampicillin Pen-Di-Ben - Penicillin G benzathine Pendramine - Penicillamine Pendysin - Panicillin G benzathina Penecort - Hydrocortisone Penglobe - Bacampicillin Penibrin - Ampicillin Penicline - Ampicillin Penidural - Penicillin G benzathine

Panifasa - Penicillin G procaina Penimaster - Ampicillin trihydrate

Penimenal - Pivampicillin Penimic - Ampicillin Penimox - Amoxicillin Peninovel - Ampicillin

Peninovel - Ampicillin trihydrate Peniplus - Phenethicillin potassium Peniroger procain - Penicillin G procaine Peniroger Retard - Penicillin G benzathine

Penisint B.G. - Ampicillin Penistafil - Oxacillin sodium Penitardon - Nylidrin

Penopen - Phenethicillin potassium

Penoral - Ampicillin

Penorale - Phenethicillin potassium

Penorline - Penicillin V Penorsin - Ampicillin

Penplenum - Metacillin potassium

Penplus - Floxacillin

Penritol - Pentaerythritol tetranitrate

Penselin - Dipyridamole Pensive - Meprobamate

Penstapho - Oxacillin sodium Penstapho-N - Cloxacillin Pensyn - Ampicillin trihydrate

Pentabil - Fenipentol Pentadoli - Ciorprenaline

Pentafin - Pentaerythritol tetranitrate Pentalong - Pentaerythritol tetranitrate Pentamycetin - Chloramphenicol

Pentanitrine - Pentaerythritol tetranitrate

Pentazine - Trifluoperazine

Pentcillin - Piperacillin sodium

Penthasone - Dexamethasone phosphate

Penthrane - Methoxyflurane Penticort - Amcinonide Pentocetine - Chloramphenicol Pentocillin - Piperacillin sodium Pentofuryl - Nifuroxazide Pantogen - Pentobarbitol sodium Pentolair - Cyclopentolate HCI Pentona - Mazaticol HCI Pentone - Pentobarbitol sodium

Pentraspan - Pentaerythritol tatranitrate

Pentrex - Ampicillin Pentrexyl - Ampicillin

Pentrexyl Oral - Ampicillin trihydrate Pentricine - Ampicillin trihydrate Pantritol - Pentaarythritol tetranitrate Pantryate - Pentaerythritol tetranitrate

Pen-Vee - Penicillin V Penysol - Methicillin sodium Pepleo - Peplomycin sulfate Peptavion - Pentagastrin Peptol - Cimetide Peracon - Isoaminik

Peragit - Trihexyphenidyl HCI Peralgon - Indomethacin Peraprin - Metoclopramide HCI Peratsin - Perphenazine Perazil - Chlorcyclizine Perbolin - Methandrostenolone

Percase - Heparin

Perciclina - Demeclocycline HCI

Perclusone - Clofezone Perclustop - Clofezone Percoccide - Sulfamerazine Percutacrine - Diethylstilbestrol Percutina - Fluocinolone acetonide Perdilat - Nylidrin

Perdilatal - Nylidrin Perdipin - Nicardipine Perdolat - Tilidine HCI Perduretas - Promethazine HCI Perdurine - Probenecid Perebral - Cyclandelate Peremesin - Meclizine HCI Pereguil - Meprobamate

Perfadex - Dextran 40 Perfectochol - Iodoalphionic acid

Perfenil - Perphenazine

Pergestron - Hydroxyprogesterone caproate

Periactin - Cyproheptadine Periactine - Cyproheptadine Periactol - Cyproheptadine Periblastine - Vinblastine sulfate Pericephal - Cinnarizine Pericristine - Vincristine sulfate Peridamol - Dipyridamole

Peridex - Pentaerythritol tetranitrate

Peridor - Haloperidol Perilax - Bisacodyl

Perispan - Pentaerythritol tetranitrate Perista - Bethanechol chloride Peritard - Nicotinyl alcohol Peritol - Cyproheptadine

Peritrate - Pentaerythritol tetranitrate Peritrine - Pentaerythritol tetranitrate Perium - Pentapiperide methosulfate Perke One - Dextroamphetamine sulfate

Perkod - Dipyridamole Perlatos - Dimethoxanate

Permapen - Penicillin G benzathine

Permastril - Dromostanolone propionate Permatrim - Phenylpropanolamine HC1

Permicipur - Cyanocobalamin Permilitin - Dipyridamole

Permiran - Viquidil

Permithyn - Benzethonium chloride

Permitil - Fluphenazine HCI Pernovin - Phenindamine tartrate

Pernox - Salicylic acid Peroxinorm - Orgotein Perphal - Vincamine Perphenan - Perphenazine Perphoxene - Fenproporex Persantin - Dipyridamole Persantine - Dipyridamole

Persedon - Pyrithyldione Persopir - Nitrazepam

Pertene Vita - Betamethasone

Pertestis Dep. - Testosterone 17β-cypionate

Pertix-Hommel - Butamirate citrate

Pertofran - Desipramine HCI Pertofrane - Designamine HCI

Pertoxil - Clobutinol

Pertradiol - Estradiol cypionate

Pervadil - Nylidrin

Pervagal - Propantheline bromide

Pervancamine - Vincamine Pervasol - Tetracycline Pervetral - Oxypendyl Pervone - Vincamine Perycit - Niceritrol

Perynitrate - Pentaerythritol tetranitrate

Pesomax - Stanolone

Peteha - Protionamide

Pethidine Roche - Meperidine HCI

Petimid - Phensuximide Petinamide - Ethosuximide Petinutin - Methsuximide Petnidan - Ethosuximide

Petogen - Medroxyprogesterone acetate

Petvivi - Desipramine HCI Pevaryl - Econazole nitrate Pevidine - Povidone-iodine Pexaqualone - Methaqualone Pexid - Perhexiline sulfate Pezatamid - Pyrazinamide PFD oral sol - Bentiromide PFT Roche - Bentiromide

Phanurane - Canrenoate potassium

Pharmacin - Aspirin Pharmadil - Nylidrin Pharmic - Tegafur Phazyme - Simethicone

Pharcillin - Ampicillin

Phebex - Benactyzine hydrochloride Phemerol - Benzethonium chloride Phenamin - Dexchlorpheniramine maleate

Phenaphen - Acetaminophen

Phenazine - Phendimetrazine tartrate

Phenazine - Perphenazine Phenazoline - Antazoline HCI Phenbutazol - Phenvibutazone Phencen - Promethazine HCI Phendex - Acetaminophen Phenergan - Phenylephrine HCI Phenergan - Promethazine HCI Phenhydan - Phenytoin Phenipirin - Acetaminophen

Pheniramidol - Phenyramidol

Phenoxene - Chlorohenoxamine HCI

Phenoxine - Pemoline

Phentamine - Diphenhydramine HCI Phentermyl - Phentermine HCI Phenurin - Nitrofurantoin

Phenyl Betazone - Phenylbutazone

Phenylone - Phenylbutazone

Phenyl-Pas-Teb-Amin - Phenyl aminosalicylate

Pheramin - Diphenhydramine HCI Phiaguin - Hydroguinone Phisohex - Hexachlorophene Phiogase - Oxyphenbutazone Phlogistol - Oxyphenbutazone Phlogont - Oxyphenbutazone Phloguran - Oxyphenbutazone

Phobex - Benactyzine hydrochlorite

Pholtex - Phenyltoloxamine

Phloguron - Kebuzone

Phospholine lodide - Echothiopate iodide

Phrenilin - Acetaminophen Phtalazol - Phthalylsulfathiazole Phyletten - Chlorquinaldol Physeptone - Methadone HCl Physiomycine - Methacycline Pibena - Pivampicillin Picolax - Picosulfate sodium Pielos - Nalidixic acid Pietil - Oxolinic acid Pifazin - Pifarnine

Pikorin - Oxymetazoline HCl Pilazon - Phenylbutazone Piloral - Clemastine fumarate Pimafucin - Natamycin Pimafucine - Natamycin Pimafucort - Natamycin Pimotid - Pimozide Pinase - Bromelain Pineroro - Diphenidol Pinex - Acetaminophen Piocaine - Chloroprocaine HCI Pioxol - Pemoline

Pipanol - Trihexyphenidyl HCI Pipedac - Pipemidic acid Pipedase - Pipemidic acid Pipemid - Pipemidic acid Piper - Pipenzolate bromide Piperallin - Piperacillin sodium Pipercilina - Penicillin G benzathine

Piperonil - Pipamperone Pipnodine - Perlapine Pipolphen · Promethazine HCl Pipracil - Piperacillin sodium Pipram - Pipemidic acid Pipril - Piperacillin sodium Piptal - Pipenzolate bromide Pipurin - Pipemidic acid Pirabutina - Oxyphenbutazone Piraflogin - Oxyphenbutazone Piraldina - Pyrazinamide Piralone - Lorazepam

Piramox - Amoxicillin Piranver - Pyrantel pamoate Pirarreumol - Phenylbutazone Pirasulfon - Sulfamethoxypyridazine Pirazimida - Pyrazinamide Pirazone - Diphenylpyraline HCl

Pirecin - Proxazole citrate Pirem - Carbuterol Pirexyl - Benproperine Piricef - Cephapirin sodium Piridolan - Piritramide Pirilene - Pyrazinamide

Pirimecidan - Pyrimethamine

Piritinol - Pyritinol

Piritiomin - Pyritinol Piriton - Chlorpheniramine maleate

Piroan - Dipyridamole Pirocrid - Protizinic acid Pirodal - Piromidic acid

Pirok - Pyrvinium pamoate Pirroxil - Piracetam Pitocin - Oxytocin Pitrex - Tolnaftate

Pituitan - Oxytocin Piva - Pivampicillin Pivabiot - Pivampicillin Pivadilon - Pivampicillin

Pivalone - Tixocortol pivalate Pivambol - Pivampicillin Pivamkey - Pivampicillin Pivanoi - Naphazoline Pivapen - Pivampicillin Pivastol - Pivampicillin Pivatil - Pivampicillin Piviotic - Pivampicillin Piziacina - Methacycline

PK-Mertz - Amantidine HCl Placidex - Mephenoxalone Placidia - Lorazepam Placidyl - Ethclorvynol Placitril - Metoclopramine HCI

Plac Out - Chlorhexidine Plactamin - Prenylamine Plak-Out - Chlorhexidine Plander R - Dextran 40 Planovar - Norgestrel

Planum - Temazepam Plaquenil - Hydroxychloroquine sulfate

Plasil - Metoclopramide HCI Platocillina - Ampicillin Plausitin - Morclofone Playolex - Pyridinol carbamate Plecton - Cicloxilic acid

Plegine - Phendimetrazine tartrate

Pleaitux - Cinnarizine Pleiatensin - Bietaserpine Pleiazim - Dimethicone Plentasal - Cyanocobalamin Plesium - Bromopride Plesmet - Ferroglycine sulfate

Pletil - Tinidazole

Plisulfan - Sulfaphenazole Plitican · Alizapride Plube - Citicoline Plumericin - Ampicillin Plurexid - Chlorhexidine

Pluriespec - Metampicillin sodium Plurigram - Metlacycline

Plurine - Hydroflumethiazide Plurisemina - Gentamicin sulfate Pluryl - Bendroflumethiazide Pluvex - Trichlormethiazide

PMB Ayerst - Meprobamate P-Medrate - Medroxyprogesterone acetate

Pneumopan - Chlorpheniramine maleate

Pneumorel - Fenspiride

Poenbiotico - Ampicillin trihydrate Poenglausil - Ethoxzolamide

Polagin - Sulfamerazine

Polaramin - Dexchloroheniramine maleate

Polaramine - Dexchlorpheniramine maleate

Polarmicina - Erythromycin

Polaronic - Chlorpheniramine maleate Polaronil - Dexchlorpheniramine maleate

Poleon - Nalidixic acid Policilin - Ampicillin Poliduril - Bendroflumethiazide

Polik - Haloprogin

Polinal - Methyldopa Polisilon - Dimethicone

Polistin - Carbinoxamine maleate Polistine - Carbino xamine maleate

Poliurene - Bumetanide Poliuron - Bendroflumethiazide

Polivasal - Suloctidil Polixima - Cefuroxime Polmiror - Nifuratel Polognost - lopanoic acid

Polomigran - Pizotyline HCI Polybactrin - Bacitracin Polycartin - Carnitine Polycin - Bacitracin Polycillin - Ampicillin

Polycillin - Ampicillin trihydrate Polycycline - Tetracycline Polydine - Povidone-iodine Polyfax - Bacitracin

Polyfax - Polymyxin

Poly Histine - Brompheniramine maleate Poly-Histine - Pheniramine maleate Poly-Histine - Phenylpropanolamine HCI

Poly-Histine - Pyrilamine Polykol - Poloxalkol Polymox · Amoxicillin Polynease - Trichlormethiazide Polyregulon - Polythiazide Polysilo - Dimethicone Polysporin - Bacitracin

Polysporin - Polymyxin Polysquall - Furosemide Ponalar - Mefenamic acid Pondex - Pemoline Pondinil - Mefenorex HCI

Pondocillin - Pivampicillin Pondocillina - Pivampicillin Ponstan - Mefenamic acid Ponstel - Mefenamic acid Ponstyle - Mefenamic acid Poquil - Pyrvinium pamoate

POR-8 - Ornipressin

Poracemin - Chlorpheniramine maleate

Poricefal - Cephaloridine Porinabis - Cephalexin Posedrine - Beclamide Postafen - Meclizine HCI Potaba - Aminobenzoic acid Povadyne - Povidone-iodine Povan - Pyrvinium pamoate Povanyl - Pyrvinium pamoate Pracefal - Cephalexin

Practon - Spironolactone Praecirheumin - Phenylbutazone Praecivenin - Heparin

Pragmazone - Trazodone HCI

Praiden - Bromopride Praion - Practoloi Pramet - Ferrous fumarate

Pramet - Folic acid Pramidex - Tolbutamide Pramiel - Metoclopramine HC! Pramilet - Folic acid

Pramin - Metoclopramine HCI

Pramolan - Opipramol Pramosone - Pramoxine HCI

Prandiol - Dipyridamole Pranoloi - Propranoloi HCI

Prantal - Diphemanii methylsulfate

Pratsiol - Prazosin Prax - Pramoxine HCI Praxilene - Nafronyl oxalate

Praxis - Indoprofen Praxiten - Oxazepam Prazac - Prazosin Prazene - Prazepam

Prazilene - Nafronyl oxalate

Prean - Mebutamate Precopen - Amoxicillin Prectolact - Prenylamine Predartrina - Prednisolone Predate - Prednisolone acetate

Predate S - Prednisolone phosphate sodium

Predate TBA - Prednisolone tebutate Pred Cor 100 - Prednisolone acetate Predicort - Prednisolone acetate

Predion - Hydroxydione sodium succinate

Pred Mild - Prednisolone acetate

Predneso! - Prednisolone phosphate sodium

Predniartrit - Prednisone Prednicen - Prednisolone Prednicen-M - Prednisone Predni-Coelin - Prednisolone Prednicort - Prednisolone Prednifor - Prednisolone acetate Prednifor - Prednisone

Predni-Helvacort - Prednisolone Predni-H-Tablinen - Prednisolone Prednilen - Methylprednisolone

Prednilonga - Prednisone Predniretard - Prednisolone Prednis - Prednisolone

Prednisol TBA - Prednisolone tebutate

Predni-Tablinen - Prednisone Predni-Wolner - Prednisone

Prednol - Desonide

Prednoi - Methylprednisolone Prednovister - Prednisone Pred-S - Prednisone Predsol - Prednisone Predsone - Prednisone

Prefamone - Diethylpropion HCI

Pregaday - Folic acid Preglandin - Gemeprost Prelin - Hexoprenaline Prelis - Metoproloi tartrate Prelone - Prednisolone

Prelu-2 - Phendimetrazine tartrate

Preludin - Phenmetrazine Premaspin - Aspirin Preminex - Mebutamate

Premocillin - Penicillin G procaine

Prempak - Norgestrel Prenacid - Desonide Prenate - Folic acid Prenazon - Feprazone

Prenema - Prednisolone acetate

Prenisol - Prednisolone stearoylglycolate

Prenomiser - Isoproterenol sulfate

Prent - Acebutolol

Prentol - Diphemanil methyl sulfate

Pre-Op - Hexachlorophene

Pre-Par - Ritodrine Prep-Cort - Hydrocortisone Presamine - Imipramine HCI

Prescaina - Benoxinate hydrochloride

Presdate - Labetalol HCi Presidon - Pyrithyldione Presone - Prednisone

Presotona - Etilefrine pivalate HCI Pressedin - Guanethidine sulfate Pressfall - Hydralazine HCI Pressionorm - Gepefrin Pressonex - Metaraminol

Pressoral - Metaraminol Pressural - Indapamide

Prestacilina - Ampicillin trihydrate Pre-Sun - Aminobenzoic acid Pretonine - Oxitriptan Pretor - Cefotaxime sodium

Prevenzy me - Papain Prexan - Naproxen Prexidil - Minoxidil

Prexion - Mecamylamine HCI Priamide - Isopropamide iodide Pricortin - Prednisolone acetate Primabalt - Cyanocobalamin Primafen - Cefotaxime sodium

Primalan - Mequitazine Primasin - Amoxicillin Primatene - Pyrilamine Primex - Bumetanide

Primobolan - Methenolone acetate Primogyn-Depot - Estradiol valerate

Primoline - Primidone

Primolut-Depot - Hydroxyprogesterone caproate

Primolut N - Norethindrone

Primolut-Nor - Norethindrone acetate

Primonil - Imigramine HCI

Primoteston - Testosterone enanthate

Primoxin - Norfloxacin

Primperan - Metoclopramide HCI Primperil - Metoclopramine Primron - Primidone

Prinalgin - Alcofenac Principen - Ampicillin Principen - Ampicillin trihydrate

Prindarl - Metoclopramine HCl Prinderin - Cephaloridine Prindex - Cephalexin Priodax - Iodoalphionic acid Prioderm - Malathion Priomicina - Fostomycin Priper - Pipemidic acid Priscol - Tolazoline Priscoline - Tolazoline Privin - Naphazoline Privine - Naphazoline

Privonium - Pyrvinium pamoate Pro-Actidil - Triprolidine

Proaqua - Benzthiazide

Probahist - Brompheniramine maleate Probahist - Chlorpheniramine maleate Probanthine - Propantheline bromide Pro-Banthine - Propantheline bromide

Probasan - Meprobamate Probemid - Probenecid Probenemid - Probenecid Probenicid - Probenecid Probilin - Piprozolin

Probital - Propantheline bromide Procalm - Chlorpromazine HCI

Procapen - Penicillin G procaine Procardia - Nifedipine Procardin - Proscillaridin Processine - Cinnarizine Procetoken - Fenofibrate Proche! - Chiorpromazine HCI Prochlor-Iso - Isopropamide iodide

Procid - Probenecid Procillan - Proscillaridin Proclival - Bufeniode Procor - Amiodarone HCI

Proctisone - Beclomethasone dipropionate Procto-Celestan - Betamethasone valerate

Proctocort - Hydrocortisone Proctofoam - Pramoxine HCI Proculin - Naphazoline Procutene - Triclocarban Procyclid - Procyclidine HCI Procytox - Cyclophosphamide Prodectin - Pyridinol carbamate Prodepress - Imigramine HCI Prodermin - Fluocinolone acetonide

Pro-Diaban - Glisoxepid Prodiaben - Chlorpropamide

Prodisan - Apazone

Prodixamon - Propantheline bromide

Prodopa - Levodopa Pro Dorm - Lorazepam Pro-Dorm - Methaqualone Prodormol - Pentobarbitol sodium Prodox - Hydroxyprogesterone caproate

Prodoxol - Oxolinic acid Prodryl - Diphenhydramine HCl Pro-Entra - Triprolidine

Profemin - Furosemide Profenid - Ketoprofen

Profetamine - Amphetamine phosphate

Profura - Nitrofurantoin Progan - Promethazine HCI

Proge - Hydroxyprogesterone caproate

Progesic - Fenoprofen

Progestron-Depo - Hydroxyprogesterone caproate

Progevera - Medroxyprogesterone acetate

Proglicem - Diazoxide Proglycem - Diazoxide Progout - Allopurinol Progynon - Ethinylestradiol Progynon Depot - Estradiol valerate Progynova - Estradiol valerate Proherz - Proscillaridin

Proinsul - Toibutamide Pro-Iso - Isopropamide iodide Prokapen - Penicillin G procaine Proketazine - Carphenazine maleate Proladyl - Pyrrobutamine

Prolamine - Phenylpropanolamine HCI

Prolax - Mephenesin

Prolifen - Clomiphene dihydrogen citrate

Prolix - Apazone Prolixan - Apazone Prolixano - Apazone Prolixin - Fluphenazine HCI Prolopa - Benserazide Proloprim - Trimethoprim

Promachlor - Chlorpromazine HCl Promacid - Chlorpromazine HCl Promactil - Chlorpromazine HCI Promanyl - Promazine HCI Promapar - Chlorpromazine HCl Promassolax - Oxyphenisatin acetate

Promecon - Benzquinamide Promedes - Furosemide Promet - Promethazine HCI Promethapar - Promethazine HCI Prometin - Metoclopramide HCI Promexin - Chlorpromazine HCI Promezerine - Promazine HCI Promid - Protionamide Promide - Chlorpropamide Promine - Promethazine HCl Promodor - Diphenido! Promosol - Chlorpromazine HCl

Promazettes - Promazine HCI

Prompt - Acetaminophen

Pronalgon F - Dinoprost tromethamine

Pronemia - Folic acid Pronison - Prednisone Pronoctan - Lormetazepam Pronovan - Propranolol HCi Prontoformin - Phenformin Prontolax - Bisacodyl. Prontomicina - Methacycline Prontosed - Chlophedianol

Propaderm - Beclomethasone dipropionate Propadrine - Phenylpropanolamine HCI Propafenin - Chlorpromazine HCl Propagest - Phenylpropanolamine HCI

Pro-Pam - Diazepam

Propanthel - Propantheline bromide Propasa - Aminosalicylic acid

Propavent - Beclomethasone dipropionate

Propax - Oxazepam

Prophen 65 - Propoxyphene HCI

Prophyllen - Dyphylline Propine - Dipivefrin

Propiocine - Erythromycin estolate

Propitan - Pipamperone

Propofan - Chlorphemiramine maleate Propoxychel - Propoxyphene HCl Propran - Clorprenaline Propranur - Propranoiol HCI

Propred - Prednisone Proptan - Tanphetamin

Propynalin - Isoproterenol sulfate Proquinal - Secobarbital sodium Proresid - Mitopodozide Prorex - Promethazine HCI Proscillan - Proscillaridin Proscillar - Proscillaridin

Proscomide - Methscopolamine bromide

Prosiladin - Proscillaridin Prosonno - Nitrazepam Prospectin - Hydralazine HCI

Prostalmon F - Dinoprost tromethamine

Prostaphlin - Oxacillin sodium Prostaphlin - Cloxacillin Prostarmon E - Dinoprostone Prostatin - Candicidin Prostetin - Oxendolone Prostin E2 - Dinoprostone

Prostin F2 Alpha - Dinoprost tromethamine Prostin F2A - Dinoprost tromethamine

Prostosin - Proscillaridin Prosyl - Prothipendyl HCl Proszin - Proscillaridin Protactyl - Promazine HCI Protagen - Furosemide

Protamine - Insulin zinc suspension Protangix - Dipyridamole

Protaphane - Insulin isophane

Protasin - Proscillaridin

Protecton - Improsulfan tosylate Protector - Diphenoxylate HCI Protensin - Chlordiazepoxide HCI

Proteolis - Bromelain

Proternol - Isoproterenol sulfate Proteroxyna - Oxytetracycline

Proterytrin - Erythromycin estolate

Proterytrin IV - Erythromycin lactobionate

Protexin - Amantidine HCI Prothazine - Promethazine HCI Prothia - Promethazine HCI

Prothiazine - Promethazine HCI

Prothil - Medrogestone

Prothionamide - Protionamide Prothromadin - Warfarin sodium Protid - Phenylephrine HCI

Protionizina - Protionamide

Protocef - Cephradine Protocide - Tinidazole Protogen - Dapsone Protolipan - Fenofibrate Protona - Stanolone

Protopam - Pralidoxime chloride

Protophenicol - Chloramphenical palmitate

Protophylline - Dyphylline Protostat - Metronidazole Protran - Chlorpromazine HCI Protylol - Dicyclomine HCI Proval - Acetaminophen Proventil - Albuterol

Provera - Medroxyprogesterone acetate

Provest - Ethinyl estradiol

Provest - Medroxyprogesterone acetate

Provigan - Promethazine HCI Provimicina - Demeclocycline HCI Proviodine - Povidone-iodine

Proviron - Mesterolone Pro-Viron - Mesterolone Provismine - Visnadine Proxen - Naproxen

Proxil - Proglumetacin maleate Prozil - Chlorpromazine HCI

Prozin - Chlorpromazine HCI P.R.T. - Protizinic acid

Prolet - Oxyphenisatin acetate Pruralgin - Dimethisoquin

Prurisedine - Chlorcyclizine Pryleugan - Imipramine HCI

Prysoline - Primidone Pseudocef - Cefsulodin Pseudomonil - Cefsulodin

Psicofar - Chlordiazepoxide HCI

Psicopax - Oxazepam Psicosen - Sulpiride

Psicoterine - Chlordiazepoxide HCl Psicronizer - Nomifensine maleate

Psiguium - Medazepam Psoritin - Methoxsalen

Psiquiwas - Oxazepam

PSP-IV - Prednisolone phosphate sodium

Psychoforin - Imipramine HCI Psychopax - Diazepam

Psychostyl - Nortriptyline Psychozine - Chlorpromazine HCI

Psylkatil - Chlorpromazine HCI Psyquil - Triflupromazine

Pularin - Heparin Pulmadil - Rimiterol

Puernol - Acetaminophen

Pulmex-DM - Dextromethorphan hydrobromide

Pulmoclase - Carbocysteine Pulsamin - Etilefrine pivalate HCI Puisan - Indenolol

Purata - Oxazepam Purazine - Cinnarizine Pur-Bloka - Propranolol HCI Puresis - Furosemide Puricos - Allopurino! Purim - Piromidic acid Purinethol - Mercaptopurine Puri-Nethol - Mercaptopurine

Purinol - Allopurinol Puritrid - Amiloride HCI Purosin-TC - Proscillaridin Putoprin - Metoclopramine HCI

Puvalen - Methoxsalen P.V. Carbachol - Carbachol PV-Tussin - Pyrilamine

PV-Tussin - Phenindamine tartrate PV-Tussin - Phenylephrine HCI

Pyassan - Cephalexin Pycazide - Isoniazid

Pyelokon-R - Acetrizoate sodium Pyknolepsinum - Ethosuximide Pylapron - Propranoiol HCI Pyocefalin - Cefsulodin

Pyocianil - Carbenicillin disodium Pyocidin - Hydrocortisone Pyocidin - Polymyxin

Pyopen - Carbenicillin disodium

Pyoredol - Phenytoin

Pyra - Pyrilamine Pyrafat - Pyrazinamide Pyramal - Pyrilamine Pyra-Maleate - Pyrilamine Pyramen - Piracetam

Pyramistin - Trihexyphenidyl HCl Pyrathyn - Methapyrilene HCI Pyrazide - Pyrazinamide Pyrcon - Pyrvinium pamoate Pyrethia - Promethazine HCl

Pyribenzamine - Tripelannamine Pyridamal - Chlorpheniramine maleate

Pyrikappi - Sulpiride Pyrilax - Bisacodyl

Pyrimethamin-Heyl - Pyrimethamine

Pyrinazin - Acetaminophen Pyrital - Acetaminophen Pyrizidin - Isoniazid Pyrocard - Sulfinpyrazone Pyrogastone - Carbeno xolone Pyronil - Pyrrobutamine

Pyronoval - Aspirin Pyrrolazote - Pyrathiazine

Pyrroxate - Chlorpheniramine maleate

Pyrvin - Pyrvinium pamoate P.Z.A. - Pyrazinamide

Q I Damp - Ampicillin trihydrate Quaalude - Methaqualone Quadnite - Promethazine HCI Quadraciclina - Rolitetracycline

Quadrahist - Chlorpheniramine maleate

Quadrahist - Phenyltoloxamine

Quait - Lorazepam Qualigens - Lidocaine Quanto - Metoclopramide HCI

Quantril - Benzquinamide Quarzan - Clidinium bromide Quelidrine - Dextromethorphan hydrobromide

Quelidrine - Phenylephrine HCl

Quellada - Lindane Quen - Oxazepam Quenobilan - Chenodiol

Quensyl - Hydroxychloroquine sulfate

Quesil - Chlorquinaldol Quetinil - Diazepam Quiadon - Oxazolam Quibron - Guaifenesin Quickmicina - Methacycline Quiess - Hydroxyzinc HCl Quietidon - Meprobamate Quietim - Hydroxytryptophan

Quietim - Oxitriptan Quievita - Diazepam

Quilene - Pentapiperide methosulfate

Quilibrex - Oxazepam Quill - Nitrazepam Quimetam - Ampicillin Quinachlor - Chloroquine phosphate

Quinbar - Secobarbital sodium Quinercil - Chloroquine phosphate Quinilon - Chloroquine phosphate

Quinnone - Hydroquinone Quiridil - Sulpiride Quitaxon - Doxepin HCI Quotane - Dimethisoquin

R-1406 - Phenoperidine HCI Racenicol - Thiamphenicol

Rachelamine - Chlorpheniramine maleate

Radenarcon - Etomidate HCI Radepur - Chlordiazepoxide HCI

Radeverm - Niclosamide Radiamin - Furosemide Radiocillina - Ampicillin

Radiocin - Fluocinolone acetonide Radiomicina - Methacycline Radio-Selectan Biliare - Iodipamide Radiosone - Methylprednisolone

Radonna - Furosemide Ralgro - Zeranol Ralicid - Indomethacin Ralone - Zeranoi

Ralopar - Cefotaxime sodium

Ran - Naphazoline

Rancedon - Clonazepam

Randum - Metoclopramide HCI

Rangozona - Feprazone Ranidil - Ranitidine Rankmin - Tolbutamide Rantudil - Acemetacin Rapenton - Mopidamol

Raphetamine - Amphetamine phosphate

Rapidocaine - Lidocaine Rapifen - Alfentanii HCI Rapostan - Oxyphenbutazone Rasedon - Hydroxocobalamin Raseltin - Clemastine fumarate Rasisemid - Furosemide Rastinon - Tolbutamide Rathimed N - Metronidazole Raudopen - Amoxicillin Raulen - Reserpine

Raunans - Methixene HCI Raunormine - Deserpidine Raunova - Syrosingopine Raurine D-Lay - Reserpine Rausaingle - Reserpine

Rausan - Reserpine Rau-Sed - Reserpine Rausedan - Reserpine Rausetin - Prenylamine Rauvilid - Reserpine Rauwita - Reserpine

Rauzide - Bendroflumethiazide

Ravenii - Mepazine

Ravenil - Pyridinol carbamate

Ravlina - Amoxicillin

Rayvist-Meglumine Salt - loglycamic acid

Razlin - Cinnarizine Razoxin - Razoxane

Reactenol - Methylprednisolone

Reactrol - Clemizole Reapam - Prazepam Reasec - Diphenoxylate HCI Rebugen - Ibuprofen Recenacillin - Ampicillin Recidol - Proxazole citrate Reciomycin - Erythromycin Recognan - Citicoline

Reconin - Clemastine fumarate

Recolip - Clofibrate Rectisol - Mannitol

Recto-Betnesol - Betamethasone valerate

Rectocenga - Cyanocobalamin Rectocort - Hydrocortisone Rectodelt - Prednisone Rectofasa - Phenylbutazone Rectoid - Hydrocortisone Rectoplexil - Oxomemazine Rectosalyl - Aspirin Red - Hydroxocobalamin

Redamin - Cyanocobalamin Red-B - Hydroxocobalamin Redeptin - Fluspirilene Redifal - Sulfadimethoxine Redisol - Cyanocobalamin Redisol H - Hydroxocobalamin

Redomex - Amitriptyline HCI Reducdyn - Citiolone Reducor - Propranolol HCI

Reducto - Phendimetrazine tartrate

Redul - Glymidine Redu-Pres - Debrisoquin Redupressin - Ethoxzolamide Reedvit - Cyanocobalamin Reelon - Piromidic acid Refobacin - Gentamicin sulfate Refugal - Chlophedianol Regal - Oxyphenisatin acetate

Regalen - Chenodiol

Regastrol - Metoclopramide HCI Regenon - Diethylpropion HCI Regibon - Diethylpropion HCI

Reginal - Dienestrol

Regitine - Phentolamine HCI Reglan - Metoclopramide HCI Regletin - Alprenolol HCI

Regonal - Pyridostigmine bromide Regresin - Fluorometholone Regretetron - Chlorthalidone Regulane - Loperamide HCI Regulin - Phentermine HCI Regulon - Benzthiazide

Regulton - Amezinium methyl sulfate

Regroton - Reserpine Regutol - Docusate calcium Reidamine - Dimenhydrinate Reis-Fit - Cyclizine
Rela - Carisoprodol
Relact - Nitrazepam
Relaksin - Meprobamate
Relasom - Carisoprodol
Relax - Methocarbamol
Relaxan - Gallamine triethiodide

Relaxar - Mephenesin Relaxo-Powel - Carisoprodol Release V - Valethamate bromide Releasin - Relaxin

Reliberan - Chlordiazepoxide HCl Relium - Chlordiazepoxide HCl

Reliv - Acetaminophen Relivan - Diazepam Reliveran - Metoclopramide HCI Relizon - Chlormezanone

Relvene - Tubocurarine chloride

Reloxyl - Amoxicillin

Remauric - Ketoprofen
Remdue - Flurazepam
Remivox - Lorcainide HCI
Remnos - Nitrezepam
Remoflex - Chlorzoxazone
Removine - Dimenhydrinate
Remoxil - Amoxicillin
Remsed - Promethazine HCI
Renamid - Acetazolamide
Renasul - Sulfamethizole
Renborin - Diazepam
Rencal - Phytate sodium
Renese - Polythiazide
Renese-R - Reserpine
Rengasil - Pirprofen

Renogram - Nalidixic acid Renon - Chlorthalidone Renoquid - Sulfacytine Rentenac - Alcofenac Reocorin - Prenylamine Reodyn - Carbocysteine Reohem - Dextran 40 Reomax - Ethacrynic acid Reomucil - Carbocysteine Reorganin - Guaifenesin

Reoxyl - Hexobendine

Repazine - Chlorpromazine HCl

Repeltin - Trimeprazine Repestrogen - Estradiol valerate Repocal - Pentobarbitol sodium Repo-Estra - Estradiol valerate Repos-E - Estradiol valerate

Reposo-TMD - Testosterone enanthate

Represil - Feprazone

Reprosteron - Testosterone enanthate Repro Testro Med - Testosterone enanthate

Reptilase - Batroxobin Resan - Ampicillin Rescamin - Rescinnamine Rescimin - Rescinnamine Rescinate - Rescinnamine Rescisan - Rescinnamine Rescitens - Rescinnamine Rescrit - Tegafur Rescrit - Reserpine

Resedril - Reserpine Reser-Lar - Reserpine Reser-Ar - Reserpine Resercen - Reserpine Resercrine - Reserpine Reserfia - Reserpine Reserpoid - Reserpine Reserpur - Reserpine

Resibion - Erythromycin stearate

Resiloid - Rescinnamine Resimatil - Primidone Resine - Reservine

Resistopen - Oxacillin sodium Resitan - Valethamate bromide Resochin - Chloroquine phosphate

Resolve - Dyclonine HCI Resolvit - Bromelain Resomine - Reserpine Respilene - Zipeprol Respirase - Zipeprol Respirax - Zipeprol Respiride - Fenspiride Respital - Reserpine

Resplamin - Aminocaproic acid Resplen - Eprazinone HCI

Restamin - Diphenhydramine HCI

Restanil - Meprobamate Restanolon - Clorprenaline Restelon - Nalidixic acid Restin - Cephalothin sodium Reston - Diphenhydramine HCl

Restoril - Temazepam Resulfon - Sulfaguanidine

Resyl - Guaifenesin
Retandros - Testosterone enanthate
Retardillin - Penicillin G proceine

Retardillin - Penicillin G procaine Retardin - Diphenoxylate HCl Retarpen - Penicillin G benzathine Retcin - Erythromycin

Retenema - Betamethasone valerate Retestrin - Estradiol valerate Reticus - Desonide Retidex B12 - Cyanocobalamin

Retilian - Xanthinol niacinate

Retin-A - Tretinoin

Reton - Phendimetrazine tartrate

Reuflos - Diflunisal
Reugarii - Chlorthenoxazine
Reulin - Chlorthenoxazine
Reumacillin - Penicillamine
Reumasyl - Phenylbutazone
Reumazin - Phenylbutazone
Reumital - Chlorthenoxazine
Reumo Campii - Kebuzone
Reumofii - Sulindac
Reumuzol - Phenylbutazone

Reumuzoi - Prienyibutazoni

Reunyl - Aspirin

Reupolar - Phenylbutazone Reutol - Tolmetin Reverin - Rolitetracycline Revibol - Pemoline Revonal Methaqualone Rexan - Chlormezanone

Rexicilina - Corbenicillin disodium

Rexipas - Aminosalicylic acid Rexitene - Guanabenz Rexort - Citicoline Rezamid - 4-Chloro-3,5-xylenol Rezipas - Aminosalicylic acid Rheomacrodex - Dextran 40 Rheoslander - Dextran 40 Rheotran - Dextran 40 Rheumacin - Indomethacin Rheumapax - Oxyphenbutazone Rheumaphen - Phenylbutazone

Rheumatol - Bumadizon Rheumavincin - Choline salicylate Rheumon - Etofenamate Rheumox - Apazone Rhex - Mephenesin Rhinalar - Flunisolide Rhinathiol - Carbocysteine

Rhindecon - Phenylpropanolamine HCI

Rhinex S - Naphazoline Rhino-Blache - Chlorhexidine

Rhinolar - Phenylpropanolamine HCI Rhinolitan - Oxymetazoline HCI

Rhinon - Naphazoline

Rhinetten - Cafaminol

Rhinopront - Tetrahydrozoline HCl

Rhinoptil - Cafaminol Rhodialothan - Halothane Rhodine - Aspirin

Rhonal - Aspirin

Rhumantin - Penicillamine Rhusal - Aspirin

Rhythmodan - Disopyramide phosphate

Rhyumapirine S - Hydroxychloroquine sulfate

Riasin - Rifampin Riball - Allopurinol

Ribomicin - Gentamicin sulfate Ribomycine - Ribostamicin Ribonosine - Inosine

Ribostamin - Ribostamicin Ribrain - Cinnarizine Richina - Tegafur Ricridene - Nifurzide Ridaura - Auranofin Ridazin - Thioridazine

Riedemil - Calusterone Rifa - Rifampin Rifadin - Rifampin Rifadine - Rifampin Rifagen - Rifampin Rifam - Rifampin Rifamate - Isoniazid Rifapiam - Rifampin Rifaprodin - Rifampin Rifarm - Rifampin Rifobac - Rifampin

Riforal - Rifampin Rigelon - Thiamphenicol Rigenicid - Ethionamide Rigenox - Glutethimide Rigesol - Sulfamethazine

Rifonilo - Rifampin

Rikaverin - Tranexamic acid Rikospray - Bacitracin Rilaquil - Chlormezanone

Rilaten - Rociverine Rilentol - Carbachol Rimactan - Rifampin Rimactane - Rifampin

Rimadyl - Carprofen Rimapen - Rifampin Rimetin - Metoclopramide HCI

Rimidol - Naphazoline

Rimifon - Isoniazid Rimso - Dimethyl sulfoxide Rincrol - Thiamphenicol Rindepres - Nitrazepam Rinderon - Betamethasone

Rinderon - Betamethasone valerate

Rinderon DP - Betamethosone dipropionate

Rindex - Methacycline Rinesal - Cephalexin

Rineton - Triamcinolone acetonide

Rinisol - Phenylephrine HCI

Riniaxer - Chlorphenesin carbamate Rino-Cienil - Beclomethasone dipropionate

Rinofluimucii - Acetylcysteine

Rinofug - Naphazoline

Rintal - Febantel

Rinurel - Phenyltoloxamine

Riol - Tegafur Riopan - Magaldrate Riopan-Plus - Simethicone Rioven - Diosmin

Ripamisin - Rifampin Riphen - Aspirin Riphole N - Cyclobutyroi Riself- Mephenoxalone

Risolid - Chlordiazepoxide HCI Risordan - Isosorbide dinitrate Rispan - Carbuterol

Risulpir - Sulfadimethoxine Ritalin - Methylphenidate HCl Ritarsulfa - Sulfadimethoxine Ritmocardyl - Amiodarone HCl

Ritmocor - Quinidine Polygalacturonate Ritmodan - Disopyramide phosphate

Ritmusin - Aprindine HCI Ritromin - Erythromycin estolate Rival - Diazepam

Rivalgyl - Acetaminophen Rivasin - Reserpine Rivivol - Iproniazid Rivocillin - Ampicillin Rivoclox - Cloxacillin

Rivodex - Dextromethorphan hydrobromide

Rivodine - Sulfamethazine Rivomycin - Chloramphenicol Rivopen V - Penicillin V Rivoquine - Chloroquine phosphate

Rivosil - Hydromethiazide Rivostatin - Nystatin Rivotril - Clonazepam Rivotrocin - Erythromycin Rivoxicillin - Amoxicillin Rivozine - Promethazine HCI

Rivozol - Metronidazole Rizaben - Tranilast

Rize - Clotiazepam Ro-Ampen - Ampicillin trihydrate

Robamol - Methocarbamol Robamox - Amoxicillin Robanul - Glycopyrrolate Robaxin - Methocarbamol Robaxisal - Methocarbamol Robezon - Hydroflomethiazide

Robidex - Dextromethorphan hydrobromide

Robigesic - Acetaminophen Robimycin - Erythromycin Robinul - Glycopyrrolate Robiocina - Novobiocin Robitussin - Guaifenesin Rocaltrol - Calcitriol

Rocapyol - 4-Chloro-3,5-xylenol Rocephin - Ceftriaxone sodium Ro-Chlorozide - Chlorothiazide Ro-Cillin - Phenethicillin potassium

Rocornal - Trapidil

Rodavan - Chlorphenoxamine HCI Rodelta TBA - Prednisolone tebutate Rodenal - Trihexyphenidyl HCl

Rodina - Aspirin

Rodipal - Ethopropazine HCI

Rofact - Rifampin Rogeridina - Cephalexin Rogeridina - Cephaloridine Rogitine - Phentolamine HCI

Rogorin - Bromelain

Ro-Hydrazide - Hydrochlorothiazide

Rohypnol - Flunitrazepam Roidenin - Ibuprofen Roimal - Metiazinic acid Roin - Cinnarizine Roinin - Prenylamine Roipnol - Flunitrazepam Rolan - Mefenamic acid

Rolazote - Betamethasone valerate

Rolexa - Cephaloridine Rolicton - Amisometradine

Romacid - Indomethacin

Roliderm - Fluocinolone acetonide Rollsone - Prednisolone stearoylglycolate

Romanit - Inositol niacinate Romecor - Ethamiyan Romethocarb - Methocarbamol Romezin - Sulfamerazine Romien - Clemastine fumarate

Romilar HBR - Dextromethorphan hydrobromide

Romin - Ketoprofen

Rominophyllin - Dyphylline Romiven - Dobesilate calcium Romophenii - Chloramphenicol Rondec - Carbinoxamine maleate Rondimen - Mefenorex HCI Rondomycin - Methacycline Ronexine - Methotrimeprazine Roniacol - Nicotinyl alcohol Ronicol - Nicotinyl alcohol Ronpacon - Metrizoic acid Rontyl - Hydroflumethiazide

Ronyl - Pemoline

Ro-Orphena - Orphenadrine citrate

Ropred - Prednisone Ropredione - Prednisolone Rorasul - Sulfasalazine

Rosampline - Ampicillin trihydrate

Roscal - Dixyrazine Rosemid - Furosemide Roseramin - Thiamphenicol Rosex - Rescinnamine Rosidil - Syrosingopine

Rossobivit - Hydro xocobalamin Rossomicina - Erythromycin stearate

Ro-Sulfiran - Disulfiram Rotacaps - Albuterol Rotersept - Chlorhexidine Ro-Thyronine - Liothyronine

Ro-Thyroxine - Levothyroxine sodium

Rotilen - Methacycline Roucol - Allopurinol Rounox - Acetaminophen

Rouphylline - Choline theophyllinate

Rouqualone - Methaqualone Rovamycina - Spiramycin Rovamycine - Spiramycin Rowapraxin - Pipoxolan HCI Roxadyl - Rosoxacin Roxenol - 4-Chloro-3,5-xylenol

Roxinoid - Reserpine Royalcor - Dipyridamole Royzolon - Tiaramide Rozex - Rescinnamine RP-Mycin - Erythromycin Rub-All T - Chlorquinaldol Rubesol - Cyanocobalamin Rubesol-LA - Hydroxocobalamin Rubifen - Methylphenidate HCI Rubitard B12 - Hydroxocobalamin Rubomycin - Daunorubicin Rubraluy - Cyanocobalamin Rubramin - Cyanocobalamin Rubramin-OH - Hydroxocobalamin

Rudilin - Nylidrin Rudotel - Medazepam Rufen - Ibuprofen Rufol - Sulfamethizole

Rumicine - Chlorpheniramine maleate

Runova - Hydroxocobalamin

Rupis - Citicoline

Rupton - Brompheniramine maleate Ruticina - Metampicillin sodium Ru-Tuss - Guaifenesin

Ru-Tuss - Pheniramine maleate Ru-Tuss - Phenylephrine HCI Ru-Tuss - Phenylpropanolamine HCI

Ru-Vert M - Meclizine HCI Ruvite - Cyanocobalamin

Rydrin - Nylidrin

Ryegonovin - Methylergonovine maleate

Rynacrom - Cromolyn sodium Rythmical - Disopyramide phosphate Rythmodan - Disopyramide phosphate Rythmodul - Disopyramide phosphate Rytmil - Bisacodyl

Rytmilen - Disopyramide phosphate Rytmonorm - Propafenone HCI

Sabidal S.R. - Choline theophyllinate Sachicoron - Mepenzolate bromide Sachol - Choline salicylate

Sadocort - Triamcinolone Sadoreum - Indomethacin Safitex - Tolmetin Sagamicin - Micronomicin Sagisal - Spironolactone Saicil - Ampicillin

Sadamin - Xanthinol niacinate

Saiclate - Cyclandelate Sainosine - Trimetazidine St. Joseph - Aspirin

St. Joseph Aspirin - Acetaminophen

St. Joseph Cough Syrup - Dextromethorphan

hydrobromide

Sakina - Chlordiazepoxide HCI

Sal Ac - Salicylic acid Salactic - Salicylic acid Sal Adult - Aspirin Salandol - Medronidazole Salarizine - Cinnarizine Salazopyrin - Sulfasalazine Salazopyrine - Sulfasalazine

Salbumol - Albuterol Salbuto! - Albuterol Salbuvent - Albuterol

Saldiuril - Hydrochlorothiazide

Salex - Inositol niacinate Salicol - Choline salicylate Salient - Ketoprofen Saligel - Salicylic acid Salimol - Sulfamethizole

Salinac - Indomethacin Sal Infant - Aspirin Salinidol - Salicylanilide Salinite - Inosine Salipran - Benoxylate Sali-Presinol - Mefruside Salisan - Chlorothiazide Salisulf - Sulfasalazine Salitex - Cephalexin Salpix - Acetrizoate sodium Saltucin - Buthiazide Salural - Bendroflumethiazide Saluren - Chlorothiazide Salures - Bendroflumethiazide Saluretil - Chlorothiazide Salurex - Burnetanide Saluric - Chlorothiazide

Salurin - Bumetanide Saluron - Hydroflumethiazide Salutensin - Reserpine Salutrid - Chlorothiazide Samedrin - Cephradine

Sanamiron - Trichlormethiazide Sanapert - Oxyphenisatin acetate

Sanasthmyl - Beclomethasone dipropionate

Sanatrichom - Metronidazole Sanbetason - Betamethasone Sanbiotetra - Tetracycline

Sanciline Procaina - Penicillin G procaine

Sancixomal - Amoxicillin Sancoba - Cyanocobalamin Sancyclan - Cyclandelate Sandimmun - Cyclosporin Sandimmune - Cyclosporin Sandolanid - Acetyldigitoxin Sandomigran - Pizotyline HCI Sandoscill - Proscillaridin Sandril - Reserpine

Sanestrepto - Dihydrostreptomycin sulfate

Sanguicillin - Pivampicillin Sanmigran - Pizotyline HCI Sannecit - Inositol niacinate Sanodin - Carbenoxolone Sanoma - Carisoprodol Sanomigran - Pizotyline HCl Sanorex - Mazindol Sanotus - Zipeprol

Sanpas - Aminosalicylic acid Sansert - Methysergide maleate Santadin - Rifampin

Santhimon - Dipyridamole Santotensin - Guanethidine sulfate

Sanvacual - Bisacodyl Saprato! - Cinnarizine Saprosan - Chlorquinaldol Saren - Ibuprofen Sargefal - Cephaloridine Sargepirine - Aspirin Sargetina - Cephalexin

Sarogesic - Prednisone Saromet - Diazepam Saroten - Amitriptyline HCI Sarotex - Amitriptyline HCI Sartosona - Cephalexin S.A.S.-500 - Sulfasalazine Sasperas - Cephalexin Saspryl - Aspirin

Satanolon - Diphenidol Satibon - Choline salicylate Satinasept - 4-Chloro-3,5-xylenol Sato - Sulpiride Satolax - Bisacodyl Satric - Metronidazole Sauran - Citicoline Savacort - Dexamethasone phosphate

Savacort - Prednisolone acetate Savacort - Prednisolone phosphate sodium

Savamine - Promazine HCI Sawacillin - Amoxicillin

Sawagyl - Metronidazole Sawamezin - Amoxicillin Sawatal - Propranolol HCI Sawaxin - Pyritinol Savamol - Promethazine HCI Sayra - Cephalexin

Scabene - Lindane Scandicain - Mepivacaine Scandisil - Sulfadimethoxine Scarlene - Benoxinate hydrochloride

Scarlene - Chlorhexidine Schebitran - Trichlormethiazide Schemergen - Phenylbutazone Scherisolon - Prednisolone

Schlerofluron - Fludrocortisone acetate Schokolax - Oxyphenisatin acetate Schuvel - Amitriptyline HCI Scillaridin - Proscillaridin Sciminan - Rescinnamine Scintidin - Pyritinol Sclane - Betamethasone Sclaventerol - Furazolidone

Sclerofillina - Choline theophyllinate

Sclerovasal - Clofibrate

Scopolate - Methscopolamine bromide Scordin - Methscopolamine bromide

Scot-Tussin - Dextromethorphan hydrobromide

Scot-Tussin - Guaifenesin Scriptopam - Diazepam Scrobin - Clofibrate S-Dimidine - Sulfamethazine S.D.M. - Sulfamethoxypyridazine

Seamicin - Rifampin Sebar - Secobarbital sodium Sebercim - Norfloxacin Sebucare - Salicylic acid Sebulex - Salicylic acid Sebusan - Selenium sulfide Secalan - Chlorhexidine Secaps - Secobarbitol sodium Seccidin - Prenylamine Seclar - Beclamide Seclopyrine - Aspirin

Secocaps - Secobarbital sodium Secogen - Secobarbital sodium Seconal - Secobarbital sodium Secotinen - Inositol niacinate Secradex - Acebutolol

Secrebil - Piprozolin Secretin - Carbachol Secrepan - Secretin Secretin-Boots - Secretin Secretine-Sinbio - Secretin Secretin-Kabi - Secretin Secretolin - Secretin Secrobil - Cyclobutyrol Secrosteron - Dimethisterone

Sectral - Acebutoloi Securit - Lorazepam Securopen - Azlocillin Sedalone - Methaqualone Sedanoct - Methapyrilene HC!

Sedansol "Iso" - Isoproterenoi sulfate

Sedanyl - Meprobamate

Sedapam · Diazepam

Seda-Repicin - Bendroflumethiazide

Sedaril - Diazepam Sedarkey - Lorazepam Sedatival - Lorazepam Sedatromin - Cinnarizine

Sedatuss - Dextromethorphen hydrobromide

Sedazole - Phenylbutazone Sedepam - Medazepam Sedestrol - Medrysone Sedicepan - Lorazepam Sedilene - Tripelennamine Sedipam - Diazepam Sedistal - Diphenoxylate HCI Seditin - Fluphenazine HCI

Sediston - Promazine HCI Sedizine - Trifluoperazine Sednafen - Ibuprofen

Sedodent - Lidocaine Sedo-Intensain - Chromonar HCi

Sedokin - Oxazepam

Sedomuco! - Oxyphencyclimine

Sedotosse - Isoaminile

Sedotus - Dextromethorphan hydrobromide

Sedozalona - Triamcinolone

Sedral - Cefadro xil

Sedrena - Trihexyphenidyl HCl

Sedufen - Fenofibrate Seduxen - Diazepam Seeglu - Sulpiride Sefal - Cinnarizine Sefaleksin - Cephalexin Seffin - Cephalothin sodium

Sefril - Cephradine Segontin - Prenylamine Segontine - Prenylamine Segoramin - Cephalexin Segurex - Burnetanide

Seki - Cloperastine Seksfort - Methyltestosterone

Selacryn - Ticrynafen

Seldiar - Loperamide HCI

Selecten - Fluphenazine HCl

Selectol - Celiproloi

Selectomycin - Spiramycin Selectren - Fluprednisolone Selemicina - Fostomycin Selene - Meprobamate Selenol - Selenium sulfide

Seles Beta - Atenolol Selexid - Pivmecillinam Selexidin - Mecillinam

Selezyme - Haloperidol

Seloken - Metoprolol tartrate Selomen - Metoproiol tartrate Sel-O-Rinse - Selenium sulfide

Selsorin - Selenium sulfide Selsun - Selenium sulfide Selsun Blue - Selenium sulfide Selukos - Selenium sulfide

Selvigon - Pipazethate Semap - Penfluridol Sematron - Silymarin Sembrina - Buthiazide Sembrina - Methyldopa

Semicid - Nonoxynol Semikon - Methapyrilene HCI Semilente - Insulin zinc suspension

Semopea - Phenethicillin potassium

Sencephalin - Cephalexin Sendoxan - Cyclophosphamide

Sensaval - Nortriptyline

Sensidyn - Dexchlorpheniramine maleate

Sensit - Fendiline HCI Sensit F - Fendiline HCI Sensival - Amitriptyline HCI Sensorcaine - Bupivacaine Sentapent - Ampicillin

Sentil - Clobazam Separin - Tolnaftate Sepazon - Cioxazolam Septaione - Chlorhexidine Septicol - Chloramphenicol Septiderm - 4-Chloro-3,5-xylenol

Septidron - Pipemidic acid Septilisin - Cephalexin Septivon-Lavril - Triclocarban Septosil - Sulfamerazine Septra - Sulfamethoxazole Septra - Trimethoprim Septural - Piromidic acid Sepyron - Cyclandelate Seral - Secobarbital sodium

Ser-Ap-Es - Hydrochlorothiazide Ser-Ap-Es - Hydralazine HCl

Ser-Ap-Es - Reserpine Serax - Bisacodyl

Serax - Oxazepam Sereen - Chlordiazepoxide HCI

Serenace - Haloperidol Serenack - Diazepam Serenal - Oxazolam Serenamin - Diazepam Serenase - Haloperidol Serenesil - Ethclorvynol Serenium - Medazepam

Serentil - Mesoridazine besylate

Serenzin - Diazepam Serepax - Oxazepam Sereprile - Tiapride Seresta - Oxazepam

Serevirol - Fonazine mesylate

Serfin - Reserpine Seriel - Tofisopam Serilone - Prednisolone Seripinin - Rescinnamine Sermaform - Flurandrenolide Sermaka - Flurandrenolide Sermion - Nicergoline Sernabiotic - Ampicillin Sernamicina - Methacycline Serolfia - Reserpine Seromycin - Cycloserine

Serophene - Clomiphene dihydrogen citrate

Serpalan - Reserpine Serpanray - Reserpine Serpasil - Hydralazine HCI Serpasil - Hydrochlorothiazide

Serpasil - Reserpine Serpate - Reserpine Serpax - Oxazepam Serpax - Reserpine Serpadin - Reserpine Serpena - Reserpine Serpene - Reserpine Serpentil - Reserpine Serpiloid - Reserpine Serpine - Reserpine Serpipur - Reserpine Serpivite - Reserpine Serpoid - Reserpine Serpone - Reserpine Serpresan - Reserpine Sertabs - Reserpine Sertan - Primidone Sertina - Reserpine Sertinon - Ethionamide

Sertofren - Desipramine HCI Serundal D - Diphenhydramine HCI Servicillin - Ampicillin trihydrate Serviclofen - Chloramphenicol Serviderm - Chlorquinaldol Servidone - Chlorthalidone

Servigesic - Acetaminophen Servilaryn - Xylometazoline HCl Servimazepine - Carbamazepine Servipramine - Imipramine HCI Serviprincol - Allopurinol Serviquin - Chloroquine phosphate

Servisone - Prednisone Servisprin - Aspirin Servistrep - Streptomycin

Servitamitone - Crotamiton Servitrocin - Erythromycin stearate Servizol - Medronidazole Servizolidin - Phenylbutazone Sesden - Timepidium bromide Sesquicillina - Ampicillin Setamol - Acetaminophen Setavax - Cycloserine Setol - Acetaminophen Setrol - Oxyphencyclimine

Sexovid - Cyclofenil Shatorn - Nylidrin Shignol - Diclofenac sodium Shigrodin - Phenylbutazone Shikioit - Inositol niacinate Shikitan - Valethamate bromide

Sevinol - Fluphenazine HCI

Sexadien - Dienestrol

Shinmetane - Valethamate bromide Shiomalin - Moxalactam disodium Shuabate - Chlorpropamide Shur-Seal - Nonoxynol Sibelium - Flunarizine HCl Sicmylon - Nalidixic acid Sicofrenol - Sulpiride Sidenar - Lorazepam

Sieromicin - Mepicycline Sieropresol - Methylprednisolone Sificetina - Chloramphenicol Sigacalm - Oxazepam Sigamopen - Amoxicillin Sigaperidol - Haloperidol

Sigasalur - Furosemide Sigloton - Cyproheptadine Sigmacort - Hydrocortisone Sigmadyn - Pemoline Sigmafon - Mebutamate

Sigmamycin - Oleandomycin Signef - Hydrocortisone Signopam - Temazepam Sigpred - Prednisolone acetate

Silain - Simethicone Silamarin A - Proscillaridin Silarine - Silymarin

Sigmal - Cinnarizine

Silbephylline - Dyphylline Silbesan - Chloroquine phosphate

Silepar - Silymarin Silgen - Silymarin Silian - Dimethicone Silibancol - Silvmarin Silicogamma - Dimethicone Silicote - Dimethicone Silies - Dimethicone Silimazu - Silymarin

Sili-Met-San S - Dimethicone

Silirex - Silvmarin Silliver - Silvmarin Silomat - Clobutinol Silopentol - Oxeladin Silubin - Buformin HCI Simatin - Ethosuximide Simeco - Simethicone

Simpamina - Dextroamphetamine sulfate

Simplamox - Amoxicillin Simplotan - Tinidazole Sinacilin - Amoxicillin Sinalgin - Benorvlate Sinalol - Alprenolol HCI Sincoden - Butamirate citrate Sincodix - Butamirate citrate Sincomen - Canrenoate potassium Sincomen - Spironolactone Sincurarina - Gallamine triethiodide Sindiatil - Buformin HCl

Sinecod - Butamirate citrate Sine-Fluor - Desonide Sinemet - Carbidopa Sineguan - Doxepin HCI Sinerol - Oxymetazoline HCl Sinesalin - Bendroflumethiazide

Sinetens - Prazosin

Singlet - Chlorpheniramine maleate Singlet - Phenylephrine HCI Singoserp - Syrosingopine Sinketol - Ketoprofen Sinkron - Citicoline Sinoflurol - Tegafur Sinogan - Methotrimeprazine

Sinomin - Sulfamethoxazole Sinselpin - Rescinnamine Sintabolin - Nandrolone phenpropionate

Sintecort - Paramethasone acetate

Sintedix - Amoxicillin Sintespen - Methicillin sodium Sintiabil - Cicloxilic acid

Sintisone - Prednisolone stearoyl glycolate

Sintobilina - Menbutone Sintoclar - Citicoline Sintodian - Droperidol Sintofillina - Dyphylline

Sintomicetina - Chloramphenici palmitate

Sintopenyl - Ampicillin Sintoplus - Amoxicillin Sintoridyn - Cephaloridine

Sintrom - Acenocoumarol (Acenocoumarin) Sinubid - Phenylpropanolamine HCI Sinufed - Guaifenesin Sinulin - Phenylpropanolamine HCI Sinutab - Xylometazoline HCl Siggene - Chlorquinaldol

Siogeno - Chlorquinaldol Siosteran - Chlorquinaldol Siparol - Flupentixol Sipcar - Noxiptilin

Sipraktin - Cyproheptadine Siprodin - Cyproheptadine Siptazin - Cinnarizine Sigualine - Fluphenazine HCI Sigualone - Fluphenazine HCI Siquent - Neomycin

Siguil - Triflupromazine

Siragon - Chloroquine phosphate

Sirben - Mebendazole Sirledi - Nimorazole Siroshuten - Syrosingopine SiroxvI - Carbocysteine

Sisaal - Dextromethorphan hydrobromide

Siseptin - Sisomicin Sisomin - Sisomicin Sissolline - Sisomicin Sistalgin - Pramiverin Sitilon - Citiolone SK-65 - Propoxyphene HCI SK-Ampicillin - Ampicillin SK-APAP - Acetaminophen

SK-Bamate - Meprobamate SK-Chlorothiazide - Chlorothiazide

Skelaxin - Metaxalone Skiacol - Cyclopentolate HCl Skilar - Econazole nitrate Skilax - Picosulfate sodium Skincort - Retamethasone benzoate

Skleromexe - Clofibrate

Skleronorm - Etiroxate Sklero-Tablinen - Clofibrate SK-Lygen - Chlordiazepoxide HCl Skopyl - Methscopolamine bromide SK-Petin - Pentaerythrito! tetranitrate SK-Pramine - Imipramine HCI

SK-Reserpine - Reserpine SK-Soxazole - Sulfisoxazole SK-Tetracycline - Tetracycline Sleepinal - Methaqualone Stim-Plus - Diethylpropion HCl Slyn-LL - Phendimetrazine tartrate Smail - Chlordiazepoxide HCI Smedolin - Etomidoline S-Methizole - Sulfamethizole Sno-Paenicol - Chloramphenicol Sobelin - Clindamycin HCl Sobile - Oxazepam

Sobrepin - Sobrerol Sodasone - Prednisolone phosphate sodium Sodelut G - Medroxyprogesterone acetate Sodium Cephalotin - Cephalothin sodium

Sodiuretic - Bendroflumethiazide

Sofalead - Diphenidol Sofarin - Diclofenac sodium Sofmin - Methotrimeprazine

Sofro - Pemoline Solacen - Tybamate Solacil - Proxazole citrate Solantal - Tiaramide Solantyl - Phenytoin Solaquin - Hydroquinone Solaskil - Levamisole HCI Solatene - β-Carotene Solatran - Ketazolam Solaxin - Chlorzoxazone Solazine - Trifluoperazine Solbrine - Dimenhydrinate Solcillin-C - Cloxacillin Solco H - Hydroxocobalamin

Soldactone - Canremoate potassium

Soldesam - Dexamethasone phosphate Soledoton M - Etilefrine pivalate HCI

Solesorin - Hydralazine HCl

Solgol - Nadolol Solimidin - Zolimidine Solis - Diazepam

Solium - Chlordiazepoxide HCI

Solnomin - Diphenidol

Solone - Dexamethasone phosphate

Soloxsalen - Methoxsalen Solpak - Dicloxacillin sodium

Solprin - Aspirin Solpurin - Probenecid

Solpyron - Aspirin

Solubacter - Triclocarban Solucetyl - Aspirin

Solu-Contenton - Amantidine HCI Solucort - Prednisolone phosphate sodium Soludactone - Canrenoate potassium Soludecadron - Dexamethasone phosphate

Soludeks - Dextran 40 Solufyllin - Dyphylline Solu-Heks - Hexachiorophene Solumedine - Sulfamerazine Solu-Medrol - Methylprednisolone

Solu-Pred - Prednisolone phosphate sodium

Solurex - Dexamethasone acetate Solurex - Dexamethasone phosphate

Solusal - Aspirin

Soluspan - Carbaspirin calcium

Soluston - Chenodiol Solutrast - lopamidol Solvay - Fluvoxamine maleate Solvex - Bromhexine

Solvocillin - Rolitetracycline Solvopect - Carbocysteine Solvo-Strep - Streptomycin

Solvo-Strept - Dihydrostreptomycin sulfate

Soma - Carisoprodol Somacton - Somatotropin Somadril - Carisoprodol Somagest - Amixtrine HCI Somalgen - Tainiflumate Somalgit - Carisoprodol Somaligit Simple - Carisoprodol

Somanil - Carisoprodol Somasedan - Diazepam Somatormone - Somatotropin Somatotrope - Somatotropin Somazina - Citicoline Sombrevin - Propanidid

Sombril - Iothalmate meglumine Sombutol - Pentobarbitol sodium Somenox - Diphenhydramine HCI Sominex - Diphenhydramine HCI Somipront - Dimethyl sulfoxide

Somitran - Nitrazepam Somlan - Flurazepam

Somnafac - Methaguaione Somnased - Nitrazepam Somnite - Nitrazepam Somnium - Methaqualone Somnothane - Halothane

Somnotol - Pentobarbitol sodium

Sompan - Flurazepam Sonacon - Diazepam Sone - Prednisone Songar - Triazolam

Sonilyn - Sulfachlorpyridazine Soni-Sto - Isosorbide dinitrate Sonnolin - Nitrazepam Sopamycetin - Chloramphenicol Sopanil - Meprobamate Soparon - Ferrous fumarate Sopental - Pentobarbitol sodium Sophiamin - Chlordiazepoxide HCI

Sopor - Methaqualone Soprodol - Carisoprodol Sorbangil - Isosorbide dinitrate Sorbevit B12 - Cvanocobalamin Sorbid - Isosorbide dinitrate Sorbigen B12 - Cyanocobalamin Sorbitrate - Isosorbide dinitrate

Sorboquel - Thihexinol

Sorbutuss - Dextromethorphan hydrobromide

Sorbutuss - Guaifenesin Sordenac - Clopenthixol Sordinol - Clopenthixol Sorelmon - Diclofenac sodium Sorenor - Midazolam maleate Sorgoa - Tolnaftate Soridermal - Metiazinic acid

Soripal - Metiazinic acid Soripan - Metiazinic acid Sorquad - Isosorbide dinitrate Sorquetan - Tinidazole Sosol - Sulfisoxazole

Sospitan - Pyridinol carbamate

Sostril - Ranitidine Souplens - Chlorhexidine Sovelin - Methaqualone Sovinal - Methaqualone Sowell - Meprobamate Soxo - Sulfisoxazole Soxomide - Sulfisoxazole Sov-Dome - Hexachlorophene Spacine - Parapenzolate bromide

Spadelate - Cyclandelate Spaderizine - Cinnarizine Spalilin - Dimethicone

Spametrin M - Methylergonovine maleate

Spanbolet - Sulfamerazine Span-Est - Estradiol valerate Span R/D - Phentermine HCI Spantac - Mefenamic acid Span-Test - Testosterone enanthate

Sparine - Promazine HCI Spascol - Dicyclomine HCI Spasmai - Flavoxate HCI Spasmenzyme - Methixene HCI Spasmione - Cyclandelate Spasmipront - Methaqualone Spasmoban - Dicyclomine HC! Spasmocyclon - Cyclandelate Spasmolyn - Mephenesin Spasmo-Urosulf - Sulfaethiodole

Spastin - Bactofen

Spastretten - Papaverine monophosadenine

Spasuret - Flavoxate HCI Spazamin - Oxyphen cyclimine Speciatensol - Clorexolone Specifin - Nalidixic acid Spectacillin - Epicillin Spectamedryn - Medrysone Spectanefran - Idoxuridine Spectazole - Echonazole nitrate Spectra-Sorb - Sulisobenzone Spectrobid - Bacampicillin Spendepiol - Estradiol cypionate Spersacarbachol - Carbachol

Spersadex - Dexamethasone phosphate

Spersanicol - Chloramphenicol Spiramin - Tranexamic acid Spiresis - Spironolactone Spiretic - Spironolactone Spiridon - Spironolactone Spirix - Spironolactone

Spiroctan - Canrenoate potassium Spiroctan-M - Canrenoate potassium Spirolong - Spironolactone Spironazide - Hydrochlorothiazide Spironazide - Spironolactone Spiropal - Spironolactone

Spiropent - Clenbuterol Spiroperidol - Spiperone Spiropitan - Spiperone Spiro-Tablinen - Spironolactone

Spirotone - Spironolactone Spondyril - Phenylbutazone Sporanicum - Cephaloridine Sporiderm - Tolnaftate Sporilene - Tolnaftate Sporostacin - Chlordantoin

Sprx 105 - Phendimetrazine tartrate ST 52 - Diethylstilbestrol diphosphate Stabilene - Ethyl biscoumacetate

Stabinol - Chlorpropamide Stablon - Tianeptine Stadalax - Bisacodyl

Stada-Reisedragees - Dimenhydrinate

Stadol - Butorphanol Staficyn - Methicillin sodium Stafilon - Methacycline Stagural - Norfenefrine Stakane - Antrafenine Stalleril - Thioridazine Stambutol - Ethambutol HCI Stamine - Pyrilamine Stanaprol - Stanolone

Standacillin - Ampicillin trihydrate

Stanilo - Spectinomycin Sta-Pas - Aminosalicylic acid Stapenor - Oxacillin sodium Staphcillin - Methicillin sodium Staphcillin V - Oxacillin sodium Staphicillin - Dicloxacillin sodium Staphybiotic - Cloxacillin

Staphylex - Floxacillin Staporos - Calcitonin Starazine - Promazine HCI Starisil - Sulfemethizole Startonyl - Citicoline Staticin - Erythromycin

Statobex - Phendimetrazine tartrate

Statocin - Cargutocin Statomin - Pyrilamine Stazepine - Carbamazepine Stecsolin - Oxytetracycline Stelazine - Trifluoperazine

Stellamicina - Erythromycin estolate

Stellarid - Proscillaridin Stemetil - Prochlorperazine Stemex - Paramethasone acetate Stenocor - Dipyridamole Stensolo - Meprobamate Sterane - Prednisolone

Sterane - Prednisolone acetate Sterapred - Prednisone Sterax - Desonide Sterecyt - Prednimustine

Stereocidin - Bekanamycin sulfate

Stereocyt - Prednimustine Stereomycin - Nystatin

Sterilette - Benzethonium chloride

Sterilone - Chlorhexidine Sterisil - Hexetidine Sterisol - Hexetidine Stermin - Prednisolone

Sterobolin - Nandrolone decanoate Sterocort - Hydrocortisone

Sterocort - Triamcinolone

Sterocutan - Triamcinolone acetonide

Steroderm - Desonide

Sterolone - Fluocinolone acetonide

Sterolone - Prednisolone Steronyl - Methyltestosterone

Sterosan - Chlorquinaldol Steroxin - Chlorquinaldol Ster-Zac - Hexachlorophene S.T. Forte - Pheniramine maleate S-T Forte - Phenylephrine HCl

Stibol - Diethylstilbestrol diphosphate

Stie Vaa - Tretingin

Stigmonene - Benzovrinium bromide

Stil-2 - Dextroamphetamine sulfate

Stilbetin - Diethylstilbestrol

Stilbetin - Diethylstilbestrol diphosphate

Stilbiocina - Novobiocin

Stilla - Tetrahydrozoline HCI

Stilphostrol - Diethylstilbestrol diphosphate

Stimate - Desmopressin

Stimolcardio - Dipyridamole Stimolomens - Oxitriptan Stimovul - Epimestrol Stimubral - Piracetam Stimucortex - Piracetam Stimul - Pemoline

Stimulexin - Doxapram HCI Stodex - Phendimetrazine tartrate

Stomacain - Oxethazine Stomakon - Cimetide Stoxil - Idoxuridine

Strabolene - Nandrolone phenpropionate

Straderm - Fluocinolone acetonide Stranoval - Betamethasone valerate

Stratene - Cetiedil

Streptaguaine - Streptomycin Streptase - Streptokinase Streptobretin - Streptomycin Streptomycine - Streptomycin Streptoral - Dihydrostreptomycin sulfate

Streptosol - Streptomycin Stresam - Etifoxine

Stresolid - Diazepam Stresson - Bunitrolol Stress-Pam - Diazepam

Striadyne - Adenosine triphosphate

Striatin - Emylcamate Strocain - Oxethazine Stromba - Stanozoloi Strombaject - Stanozolol Strycin - Streptomycin Stuartnatal - Folic acid Study - Valethamate bromide Stugeron - Cinnarizine Stunarone - Cinnarizine

Suavedol - Glaziovine

Suavitil - Benactyzine hydrochloride

Sublimaze - Fentanyl

Sucaryl calcium - Cyclamate calcium

Succitimal - Phensuximide Sucira N - Cephalothin sodium

Sudac - Sulindac Sudil - Suloctidil Sufenta - Sufentanil Sufortanon - Penicillamine Suiclisin - Fenipentol Suismycetin - Chloramphenicol

Sulamin - Sulfamethoxypyridazine

Sulamvd - Sulfacetamide

Sulc - Suloctidil

Sulcolon - Sulfasalazine Sulcrate - Sucralfate Sulene - Sulindac

Sulfabid - Sulfaphenazole Sulfabon - Sulfadimethoxine Sulfabon - Sulfamethoxypyridazine

Sulfabutin - Busulfan Sulfacidin - Sulfacetamide

Sulfactorazina - Sulfachtorpyridazine

Sulfactin - Dimercaprol

Sulfadazina - Sulfamethoxypyridazine Sulfadepot - Sulfamethoxypyridazine Sulfadets - Sulfadiazine Sulfadin - Sulfamethoxypyridazine Sulfadomus - Sulfadimethoxine

Sulfaduran - Sulfadimethoxine Sulfagan - Sulfisoxazole Sulfa Gram - Sulfamethizole

Sulfaintensa - Sulfamethoxypyridazine Sulfalar - Sulfisoxazole

Sulfalex - Sulfamethoxypyridazine Sulfalon - Sulfadimethoxine Sulfamethin - Sulfisomidine Sulfametin - Sulfamethizole

Sulfamizina - Sulfamethoxypyridazine Sulfamvd - Sulfamethoxypyridazine Sulfamylon - Mafenide acetate Sulfapadil - Sulfaphenazole Sulfa-Perlongit - Sulfaethiodole Sulfapolar - Sulfisoxazole

Sulfapyrazin - Sulfamethoxypyridazine

Sulfasol - Sulfamethizole Sulfastop - Sulfadimethoxine Sulfasuxidine - Succinvisulfathiazole Sulfataivi - Phthalylsulfathiazole Sulfatar - Sulfamethoxypyridazine Sulfathalidine - Phthalylsulfathiazole Sulfathox - Sulfadimethoxine Sulfatrim - Sulfamethoxazole Sulfazin - Sulfisoxazole Sulfazol - Sulfaphenazole Sulfazole - Sulfisoxazole Sulfenal - Sulfaphenazole Sulfizole - Sulfisoxozole

Sulfocidan - Sulfamethoxypyridazine

Sulfolex - Sulfadiazine Sulfona Oral - Dapsone Sulfoplan - Sulfadimethoxine Sulforal - Sulfaphenazole

Sulforetent - Sulfamethoxypyridazine Sulfo-Rit - Sulfamethoxypyridazine

Sulfostat - Sulfaphenazole Sulfoxol - Sulfisoxazole Sulf-Reten - Sulfadimethoxine Sulfuno - Sulfamoxole Sulfurine - Sulfamethizole Sulgemicin - Gentamicin sulfate

Sulic - Sulindac Sulinol - Sulindac Sulla - Sulfameter

Sulmethon - Sulfadimethoxine Sulmetoxyn - Sulfadimethoxine Sulmycin - Gentamicin sulfate

Sulocton - Suloctidil Sulodene - Suloctidil Suloktil - Suloctidil Sulphena - Sulfaphenazole Sulphix - Sulfamethazine Sulpiril - Sulpiride Sulpisidan - Sulpiride Sulsoxin - Sulfisoxazole Sul-Spansion - Sulfaethidole

Sultanol - Albuterol

Sultirene - Sulfamethoxypyridazine

Sultrin - Sulfacetamide Sultroponium-B - Sultroponium Sulxin - Sulfadimethoxine Sumetamin - Sulfadimethoxine

Sumifon - Isoniazid

Sumipanto Oral - Ampicillin trihydrate Summer's Eve - Povidone-iodine Summicort - Methylprednisolone

Sumox - Amoxicillin Sumycin - Tetracycline

Sumycin - Tetracycline phosphate complex

Sunbrella - Aminobenzoic acid

Suncholin - Citicoline Sunfural - Tegafur Sungard - Sulisobenzone Supacal - Trepibutone Supase - Aspirin

Superanbolon - Nandrolone phenpropionate Superbolin - Nandrolone phenpropionate

Superinone - Tyloxapol Supermesin - Meclizine HCl Supero - Cefuroxime Superpeni - Amoxicillin Suplexedil - Fenoxedil Supopred - Prednisone

Supotran - Chiormezanone Supplosal - Meperidine HCl Supracort - Fluocinonide Suprametil - Methylprednisolone

Supramol - Acetaminophen Suprantil - Propantheline bromide Supres - Hydralazine HCI

Suprilent - Isoxsuprine HCI Suprimal - Meclizine HCl Suprium - Sulpiride Suracton - Spironolactone Sural - Ethambutol HCI Surem - Butalamine HCI Surem - Nitrazepam Surestryl - Moxestrol

Surfacaine - Cyclomethycaine

Surfak - Docusate calcium Surgam - Tiaprofenic acid Surgamic - Tiaprofenic acid Surgestone - Promegestone Surgevit - Cyanocobalamin Surgex - Nialamide Surheme - Butalamine HCI Surimol - Metronidazole Surital - Thiamylal Surplix - Imipramine HCI Sursumid - Sulpiride Survector - Amineptine HCI

Suspendol - Allopurinol

Sustac - Carbenoxolone

Sustaverine - Papaverine monophosadenine

Sustwelve - Hydroxocobalamin

Sutidil - Suloctidil Sutilan - Tiopronin Suvren - Captodiamine Suxinutin - Ethosuximide Sween-Soft - 4-Chloro-3,5-xylenol

Syklandal - Cyclandelate

Symetra - Phendimetrazine tartrate

Symmetrel - Amantidine HCI Sympal - Moxisvivte Sympatosan - Norfenefrine

Symptom 1 - Dextromethorphan hydrobromide

Symptom 3 - Brompheniramine maleate Synacort - Hydrocortisone

Synadrin - Prenylamine Synalar - Fluocinolone acetonide Synandone - Fluocinolone acetonide Synandrets - Methyltestosterone Synapasa - Estriol succinate Synapause - Estriol succinate Synasal - Phenylephrine HCI Synatan - Tanphetamin

Syncel - Cephalexin Syncillin - Azidocillin

Syncillin - Phenethicillin potassium

Synclopred - Cloprednol Synclotin - Cephalothin sodium

Syncumar - Acenocoumarol (Acenocoumarin)

Syndopa - Levodopa Synemol - Fluctoronide

Synemol - Fluocinolone acetonide

Synestrol - Dienestrol Syngacillin - Cyclacillin

Synistamine - Chlorpheniramine maleate Synkayvite - Menadiol sodium diphosphate Synmiol - Idoxuridine

Syntaris - Flunisolide Syntaroid - Levothyroxine sodium

Syntarpen - Cloxacillin Syntestan - Cloprednol Syntetrin - Rolitetracycline

Syntex - Hexestrol

Synthecilline - Phenethicillin potassium Synthepen - Phenethicillin potassium Synthex P - Phytonadione

Synthomycetin - Chloramphenicol

Synthovo - Hexestrol

Synthrome - Acenocoumarol (Acenocoumarin)

Synticol - Thiamphenicol Syntocinon - Oxytocin Syntomen - Ethambutol HCl Synulox - Clavulanic acid Synzedrin - Isoxsuprine HCI Syracort - Fluocortolone Syrap - Choline salicylate Syraprim - Trimethoprim Syringia - Syrosingopine

Systral - Chlorphenoxamine HCI Sytobex-X - Hydroxocobalamin

Tabalgin - Acetaminophen Tabrien - Feprazone Tacarvi - Methdilazine HCI TACE - Chlorotrianisene Tacef - Cefmenoxime TACE FN - Chlorotrianisene Tachiciclina - Methacycline Tachionin - Trichlormethiazide Tachipirina - Acetaminophen

Tacholiquin - Tyloxapol Tachyrol - Dihydrotachysterol Tachystin - Dihydrotachysterol Tacitin - Benzoctamine HCI Tacitine - Benzoctamine HCI Tacodilydrin - Nylidrin Tacosal - Phenytoin Tacryl - Methdilazine HCI Tagamet - Cimetide Taicelexin - Cephalexin

Taizer - Meclizine HCI Takanarumin - Allopurinol Takas - Ceruletide Takazide - Tolbutamide Takesulin - Cefsulodin Takimetol - Metronidazole

Taimoxin-F - Erythromycin

Takimetrin M - Methylergonovine maleate

Takosashin S - Indomethacin

Takus - Ceruletide Taladren - Ethacrynic acid Talampicillina - Talampicillin Talasa - Zipeprol

Talat - Talampicillin

Talidine - Phthalylsulfathiazole Talinsul - Cephalexin

Talinsul - Cephaloridine

Talisulfazol - Phthalylsulfathiazole

Talmen - Talampicillin Talofen - Promazine HCI Talpen - Talampicillin Talusin - Proscillaridin Talwin - Naloxone Tambocor - Flecainide Tambutol - Ethambutol HCI Tam-Cilin - Pivampicillin

Tametin - Cimetide Tamid - Suloctidil Tamofen - Tamoxifen Tampovagan - Neomycin Tanafol - Chlormezanone Tandearil - Oxyphenbutazone Tanderil - Oxyphenbutazone Tannex - Indomethacin Tantal - Oxyphenbutazone

TAO - Oleandomycin Taocin-O - Oleandomycin Tapar - Acetaminophen Tapiola - Cephaloridine Taractan - Chlorprothixene Tardamide - Sulfamoxole

Tardocillin - Penicillin G benzathine Tardopenil - Penicillin G benzathine

Taroctyl - Chlorpromazine HCI Tarodyl - Glycopyrrolate Tarozole - Metronidazole Taskil - Malathion Tasmaderm - Motretinide Tasmolin - Biperiden Tasprin - Aspirin Tatimil - Diphenidol Tauliz - Piretanide

Taural - Ranitidine Tavegil - Clemastine fumarate

Tavegyl - Clemastine fumarate Tavist - Clemastine fumarate

Tavor - Lorazepam Tavor - Tofisopam TB-Phiogin - Isoniazid TCM - Meprobamate

Tear-Efrin - Phenylephrine HCI Tebacin acid - Aminosalicylic acid

Tebertin - Inosine Teberus - Ethionamide

Tebesium - Isoniazid Tebilon - Isoniazid Tebloc - Loperamide HCI Tebrazid - Pyrazinamide Techlon - PentoxifyIline

Teclinazets - Tetracycline

T-E Cypionate - Estradiol cypionate

Tedarol - Triamcinolone

Tedarol - Triamcinolone acetonide Tedarol - Triamcinolone diacetate

Teejel - Choline salicylate

Tefsiel - Tegafur

Tefunote - Fluocinolone acetonide Tega-Cort - Hydrocortisone

Tega-Flex - Orphenadrine citrate

Tegisec - Fenproporex Tegopen - Cloxacillin Tegretal - Carbamazepine Tegretoi - Carbamazepine Tegunor - Choline salicylate Teiuntivo - Oxaceprol Telazin - Trifluoperazine

Teldrin - Chlorpheniramine maleate

Telemin - Bisacodyl Telepaque · Iopanoic acid Telesmin - Carbamazepine Telesol - Oxitriptan Teletrast - lopanoic acid Telgin G - Clemastine fumarate Telmid - Dithiazanine iodide

Temagin - Aspirin Temaril - Trimeprazine Tementil - Prochlorperazine Temesta - Lorazepam Temet - Demeclocycline HCI Temetex - Diflucortolone valerate Temperal - Acetaminophen Tempodiazine - Sulfadimethoxine Temporol - Carbamazepine

Tendalin - Mepenzolate bromide Tendor - Debrisoguin Teneral - Oxyphenbutazone Teniarene - Niclosamide Tenisid - Niclosamide Tenlap - Acetaminophen Tenoretic - Atenolol Tenormin - Atenolol

Tempra - Acetaminophen

Tensibar - Bietaserpine Tensilan - Propantheline bromide Tensilon - Edrophonium chloride

Tensimic - Benthiazide Tensinase D - Etifelmine Tensinova - Clonidine HCI

Tensionorm - Bendroflumethiazide

Tensium - Diazepam

Tensodilen - Dichlorphenamide Tensodiural - Cyclothiazide Tensopam - Diazepam

Tenuate - Diethylpropion HCI

Tenuate-Dospan - Diethylpropion HCI

Tenutan - Doxycycline

Tenzide - Hydrochlorothiazide Teocolina - Choline theophyllinate

Teodelin - Fenspiride

Teofilcolina - Choline theophyllinate

Teonicol - Xanthinol niacinate Teonicon - Pimefylline nicotinate Teovent - Choline theophyllinate Tepanil - Diethylpropion HCl

Tepavil - Sulpiride

Teperin · Amitriptyline HCI Tepilta - Oxethazine Teramine - Phentermine HCI Terbasmin - Terbutaline Terckian - Cyamemazine Terekol - Ubidecarenone Terflurazine - Trifluoperazine

Terfluzine - Trifluoperazine Teriam - Triamterene Teril - Carbamazepine Terion - Fominoben HCI Terolut - Dydrogesterone

Teronac - Mazindol Terperan - Metoclopramide HCI Terramycin - Oxytetracycline Tertensil - Indapamide Tertroxin - Liothyronine Terulcon - Carbenoxolone Tesamurin - Syrosingopine Teslac - Testolactone

Tesone - Testosterone enanthate

Tespamin - Thiotepa Tessalon - Benzonatate Testadina - Cephaloridine

Testamin - Dextromethorphan hydrobromide

Testanate - Testosterone enanthate Testate - Testosterone enanthate Testaval - Estradiol valerate Testaxina - Cephalexin

Testinon - Testosterone enanthate Testipron - Methyltestosterone

Testisan Depo - Testosterone enanthate Testo-Enant - Testosterone enanthate Testomed P.A. - Testosterone 178-cypionate

Testomet - Methyltestosterone Testone - Testosterone enanthate Testonic B - Methyltestosterone Testora - Methyltostosterone

Testoral - Fluoxymesterone Testorit-Dep - Testosterone 17β-cypionate

Testostelets - Methyltestosterone Testostroval PA - Testosterone enanthate

Testoviron - Testosterone enanthate Testovis - Methyltestosterone

Testred - Methyltestosterone Testrin - Testosterone enanthate Testrone - Testosterone enanthate

Tetidis - Disulfiram Tetnor - Phenylbutazone Tetrabios - Methacycline Tetra-Co - Tetracycline Tetracyn - Tetracycline Tetradek - Demeclocycline HCl Tetrafarmed - Rolltetracycline

Tetrafen - Oxytetracycline

Tetraksilin - Tetracycline phosphate complex

Tetraldina - Rolitetracycline

Tetralet - Tetracycline phosphate complex

Tetramide - Mianserin Tetramig - Tetracycline

Tetramin - Tetracycline phosphate complex

Tetranovo - Methacycline Tetra-Proter - Tetracycline Tetrasoline - Hydralazine HCI Tetrasolvina - Mepicycline

Tetra-Tablinen - Oxytetracycline Tetraverin - Rolitetracycline

Tetrazetas Retard - Tetracycline phosphate complex

Tetrex - Tetracycline phosphate complex

Tevacaine - Mepivacaine Tevcodyne - Phenylbutazone Tevocin - Chloramphenicol Texacort - Hydrocortisone Texcillin - Ampicillin trihydrate Texmeten - Diflucortolone valerate

Thalamonal - Droperidol Thalamonal - Fentanyl Thalazole - Phthalylsulfathiazole Thalitone - Chlorthalidone Tham - Tromethamine Thamacetat - Tromethamine Thamesol - Tromethamine Thefylan - Dyphylline Thenalton - Dexpanthenol Thenylene - Methapyrilene HCI Theoral - Etilefrine pivalate HCI Theourin - Dyphylline Theozine - Hydroxyzine HCI

Thephorin - Phenindamine tartrate Therabloat - Poloxalkol

Theradia - Sulfadiazine Theradiazine - Sulfadiazine Theralax - Bisacodyl

Therelene - Trimeprazine

Therapen I.M. - Penicillin G procaine

Theratuss - Pipazethate Therazone - Phenylbutazone Theruhistin - (sothipendy) HCI Thevier - Levothyroxine sodium

THF-FU - Tegafur

Thiacyl - Succinylsulfathiazole Thiadril - Hydrochlorothiazide Thiamcetin - Thiamphenicol Thiamcol - Thiamphenicol Thiamyson - Thiamphenicol Thiancol - Thiamphenicol Thiantoin - Phethenylate sodium Thiapax - Clopenthixol

Thiasin - Sulfisoxazole Thicataren - Diclofenac sodium Thilocanfol - Chloramphenicol Thilocombin - Nicotinyl alcohol Thiobiline - Timonacic sodium Thiodantol - Isothipendyl HCI Thioderon - Mepitiostane

Thiaretic - Hydrochlorothiazide

Thiodrol - Epitiostanol Thiofact - Thiamphenicol Thiogenal - Methitural Thioguanin Wellcome - Thioguanine

Thioguanine Tabloid - Thioguanine Thioguanine Wellcome - Thioguanine

Thioinosie - Mercaptopurine

Thiola - Tiopronin

Thiomerin - Mercaptomerin sodium

Thiomid - Ethionamide Thioncycline - Citiolone Thionicol - Thiamphenicol Thioniden - Ethionamide

Thio-Novurit - Mercaptomerin sodium

Thioperkin - Methixene HCI Thiophenicol - Thiamphenicol Thioril - Thioridazine

Thiosal - Tiopronin Thiosulfil - Sulfamethizole Thiotal - Thiamphenicol Thio-Tepa - Thiotepa Thioxidrene - Citiolone

Thiuretic - Hydrochlorothiazide Thixokon - Acetrizoate sodium Thombren - Trazodone HCI

Thorazine - Chlorpromazine HCI

Thrombareduct - Heparin Thromboclase - Fibrinolysin Thrombolysin - Fibrinolysin Thrombophob - Heparin Thrombo-Vetren - Heparin Thybon - Liothyronine

Thylogen - Pyrilamine

Thylokay - Menadiol sodium phosphate

Thymergix - Pyrovalerone HCI

Thyradin-S - Levothyroxine sodium Thyrex - Levothyroxine sodium Thyronamin - Liothyronine Thyronine - Liothyronine

Tiactar - Tiadenol Tiaden - Tiadenol Tiapridal - Tiapride Tiapridex - Tiapride

Tiazolidin - Timonacic sodium

Tiberal - Ornidazole Tiberciclina - Methacycline Tibinide - Isoniazid Tibizina - Isoniazid

Tipizina - isoniaria
Ticalpenin - Ticarcillin disodium
Ticar - Ticarcillin disodium
Ticarpenin - Ticarcillin disodium
Ticillin - Ticarcillin disodium
Ticillin - Ticarcillin disodium
Ticinil - Phenylbutazone
Ticlid - Ticlopidine HCl
Ticlobran - Clofibrate
Ticlodone - Ticlopidine HCl
Ticomicina - Methacycline

Ticon - Trimethobenzamide HCl Tiempe - Trimethoprim

Tiffen - Reproterol

Tifomycine - Chloramphenicol

Tigan - Trimethobenzamide HCI Tigason - Etretinate

Tigason - Etretinate Tigonal - Chlophedianol Tiklid - Ticlopidine HCl Tiklidan - Ticlopidine HCl Tilazem - Diltiazem HCl Tildiem - Diltiazem HCl Tillitrate - Tilldine HCl Tilmapor - Cefsulodin Tilvis - Oxolinic acid

Timacor - Timolol maleate
Timadin - Fluorouracil
Timaxel - Metapramine

Timentin - Ticarcillin disodium Timolide - Hydrochlorothiazide Timonil - Carbamazepine

Timoptic - Timolol maleate Timoptol - Timolol maleate Timostenil - Caroxazone Timoval - Oxyfedrine

Timovan - Prothipendyl HCl Timserin - Timolol maleate Tinactin - Tolnaftate

Tinaderm - Tolnaftate
Tinarhinin - Tetrahydrozoline HCI
Tinaroc - Phenylpropanolamine HCI

Tinavet - Tolnaftate

Tindal - Acetophenazine dimaleate

Tindurin - Pyrimethamine Tinidil - Isosorbide dinitrate

Tinigyn - Tinidazole Tinol - Dipyridamole Tinset - Oxatomide Tintorane - Warfarin sodium Tinver - Salicylic acid

T-ionate P.A. - Testosterone 17β-cypionate

Tiozon - Thiamphenicol Tiqualone - Methaqualone Tiromel - Liothyronine Tisamid - Pyrazinamide Tisin - Isoniazid Tisiobutol - Ethambutol HCl

Tisomycin - Cycloserine

Tisquibron - Metampicillin sodium

Ti-Tre - Liothyronine
TL-Azole - Sulfisoxazole
Tocodrin - Nylidrin
Todalgil - Phenylbutazone
Today - Cephapirin sodium
Tofalin - Tofenacin HCl
Tofranil - Imipramine HCl

Togestal - Pentapiperide methosulfate Togiren - Erythromycin estolate

Togiren - Erythromycin estoli Togram - Ampicillin Toilax - Bisacodyl Toilex - Bisacodyl Tokiocillin - Ampicillin Tokiolexin - Cephalexin Tokugen - Phenylbutazone Tolanase - Tolazamide Tolapin - Pyrvinium pamoate

Tolavad - Tolazoline Tolbusai - Tolbutamide Tolbutol - Tolbutamide Tolcasone - Trichlormethiazide Tolectin - Tolmetin

Toleran - Ferrous fumarate
Toleran - Polythiazide
Tolesmin - Cinnarizine
Tolestan - Cloxazolam
Tolferain - Ferrous fumarate
Toliman - Cinnarizine
Tolimase - Tolazamide

Tollercin - Demeclocycline HCI

Tolmicen - Tolciclate Tolnate - Prothipendyl HCI Tolodina - Amoxicillin Tolosate - Mephenesin

Tolseram - Mephenesin carbamate

Tolserol - Mephenesin Tolubetin - Tolbutamide Tolulox - Mephenesin Toluvinid - Tolbutamide Toluvan - Tolbutamide Tolvin - Mianserin

Tolycar - Cefotaxime sodium
Tolycar - Cefotaxime sodium
Tolycaz - Mephenesin
Tonamil - Thonzylamine HCI
Toness - Proxazole citrate
Tonestat - Dexpanthenol
Tonilen - Demecarium bromide

Tonobrein - Pyritinol Tonocard - Tocainide Tonocholin - Carbachol Tonofit - Sulpiride Tonoftal - Tolnaftate Tonolift - Norfenefrine Tonomentis - Pyritinol Tonum - Propranolol HCI

Tonus-Forte - Etilefrine pivalate HCI

Topicain - Oxethazine

Topicon - Halopredone acetate Topicort - Desoximetasone Topicorte - Desoximetasone Topicorten - Flumethasone

Topifluor - Fluocinolone acetonide

Topifram - Desoximetasone Topilar - Fluctoronide Topionic - Povidone-iodine Topisolon - Desoximetasone Topisporin - Neomycin Topisporin - Polymyxin Topitracin - Bacitracin Toplexil - Oxomemazine Topocaine - Cyclomethycaine

Topolyn - Dexamethasone-21-linoleate

Topral - Sultopride HCI Topsym - Fluocinonide Topsyn - Fluocinonide Topsyne - Fluocinonide Torecan - Thiethylperazine

Toremonil - Hydroxychloroquine sulfate

Torental - Pentoxifylline Toresten - Thiethylperazine Toricelosin - Cephalothin sodium

Toriol - Ranitidine Torizin - Cinnarizine Torlasporin - Cephalexin Toruan - Doxepin HCI Toryn - Caramiphen edisylate

Toscara - Rescimetol

Tosmilen - Demecarium bromide Tossizid - Dimethoxanate Totacef - Cefazolin sodium

Totacillin - AmpicIllin

Totacillin - Ampicillin trihydrate

Totaclox - Ampicillin Totaclox - Cloxacillin Totalciclina - Ampicillin Totalmicina - Cephaloridine Totapen - Ampicillin

Totifen - Ketotifen

Totocillin - Dicloxacillin sodium Tovene - Diosmin

Toxiferin - Alcuronium chloride

Toyomelin - Chlorpropamide Trachitol - Chlorhexidine Tracilon - Triamcinolone diacetate

Tracium - Atracurium besylate Tractur - Pipemidic acid

Tradon - Pemoline

Trafacilina - Ampicillin trihydrate Trafarbior - Ampicillin trihydrate

Trafarbiot - Ampicillin

Trakipearl - Chlordiazepoxide HCl Tral - Hexocyclium methyl sulfate Tralanta - Mepenzolate bromide Trali - Picosulfate sodium

Traline - Hexocyclium methyl sulfate

Tramadol - Tramadol HCI Tramal - Tramadol HC! Tramensan - Trazodone HCI Trametol - Trichlormethiazide Tramisol - Levamisole HCI

Tramycin - Triamcinolone acetonide

Trancin - Fluphenazine HCI Trancocard - Dipyridamole

Trancolon - Mepenzolate bromide Trancopal - Chlormezanone Trancote - Chiormezanone Trancrol - Chlorzoxazone

Trandate - Labetalol HCI Tranex - Clorazepate dipotassium Tranex - Tranexamic acid Tranexan - Tranexamic acid

Trangorex - Amiodarone HCI

Tranite D-Lay - Pentaerythritol tetranitrate

Trankilin - Meprobamate Tranlisant - Meprobamate Tranoxa - Metronidazole Tranpoise - Mephenoxalone Tranquase - Diazepam Tranquazine - Promazine HCI Tranquis - Trifluoperazine Tranquit - Oxazolam Trangulax - Medazepam Tranquo-Puren - Diazepam

Tranquo-Tablinen - Diazepam Transamin - Tranexamic acid Transamion - Transexamic acid Transanate - Chlormezanone Transbilix - lodipamide Transbronchin - Carbocysteine

Transcycline - Rolitetracycline Transit - Furosemide

Trantoin - Nitrofurantoin

Tranxene - Clorazepate dipotassium Tranxilen - Clorazepate dipotassium Tranxilium - Clorazepate dipotassium

Tra-Quilan - Chlorprothixene Trasacor - Oxprenoloi Trasicor - Oxprenolol Tratul - Cimetide

Traumacut - Methocarbamol Traumanase - Bromelain Travamin - Dimenhydrinate Travamine - Dimenhydrinate Travel-Gum - Dimenhydrinate Travin - Dimenhydrinate

Travocort - Diflucortolone valerate Travogen - Isoconazole nitrate Travogyn - Isoconazole nitrate Trawell - Dimenhydrinate Trecalmo - Clotiazepam Trecator - Ethionamide Trecator-SC - Ethionamide Tredemine - Niclosamide Treis-Cícline - Methacycline Trelmar - Meprobamate Tremaril - Methixene HCI

Tremarit - Methixene HCl Tremblex - Dexetimide Tremin - Trihexyphenidyl HCI Tremonil - Methixene HCI Trenodin - Acetaminophen Trental - Pentoxifylline Trepidan - Prazepam Trepidone - Mephenoxalone Trepiline - Amitriptyline HCI Trescatyl - Ethionamide

Tresochin - Chloroquine phosphate

Tresortil - Methocarbamol Trest - Methixene HCI Tretin-M - Tretinoin Trevintix - Protionamide

Tri - Nitrazepam Triacana - Tiratricol Triacort - Triamcinolone acetonide Triaderm - Triamcinolone acetonide

Triadol - Benorylate Triafed - Triprolidine Triagen - Chlorotrianisene Triaget - Triamcinolone acetonide Trialona - Triamcinolone

Trialona - Triamcinolone acetonide Triamalone - Triamcinolone acetonide Triamcin - Triamcinolone diacetate

Triamcort - Triamcinolone Triameline - Triethylenemelamine

Triam Forte - Triamcinolone diacetate Triaminic - Pyrilamine

Triaminicol - Dextromethorphan hydrobromide

Triaminic - Guaifenesin

Triaminic - Pheniramine maleate Triaminic - Phenylpropanolamine HCI Triam-Injekt - Triamcinolone acetonide

Triam-Oral - Triamcinolone Triamoxil - Amoxicillin Triamteril - Triamterene Triamthiazid - Triamterene

Triaphen - Aspirin

Triavil - Amitriptyline HCl Triavil - Perphenazine Triazide - Trichlormethiazide Triazine - Trifluoperazine Tribil - Cyclobutyrol Tribilina - Cyclobutyrol

Triburon - Triclobisonium chloride

Tricanix - Tinidazole Trichazol - Metronidazole Trichex - Metronidazole

Trichlordiuride - Trichlormethiazide Trichlorex - Trichlormethiazide Trichocide - Metronidazole Tricho Cordes - Metronidazole

Trichogin - Tinidazole

Tricho-Gynaedron - Metronidazole

Trichomol - Metronidazole Trichostop - Metronidazole Trichozole - Metronidazole

Tricilone - Triamcinolone acetonide Tricinolon - Triamcinolone acetonide

Tricloran - Triclofos sodium Tricloretic - Trichlormethiazide Tricloryl - Triclofos sodium Triclos - Triclofos sodium Triclose - Azanidazole Tricofuron - Furazolidone Tri-Cone - Simethicone Tricortale - Triamcinolone Tricowas B - Metronidazole

Tricuran - Gallamine triethiodide Tridesilon - Desonide Tridesonit - Desonide Tridione - Trimethadione

Tri-Effortil - Etilefrine pivalate HCI Triethylene - Triethylenemelamine

Trifamox - Amoxicillin Triflumen - Trichlormethiazide Trifluoper-Ez-Ets - Trifluoperazine

Triflurin - Trifluoperazine Trifurox - Furazolidone Trigesic - Acetaminophen Trignost - Diatrizoate sodium Triherpine - α,α,α-Trifluorothymidine

Trihexane - Trihexyphenidy! HCI Trihexy - Trihexyphenidyl HCl

Trihistan - Chlorcyclizine Trijodthyronin - Liothyronine Trikamon - Metronidazole Trikozol - Metronidazole Trilafon - Perphenazine Trilan - Sulpiride Trilcin - Fluorometholone Trilifan - Perphenazine Trilisate - Choline salicylate

Trilocarban - Triclocarban Trilon - Triamcinolone Trimanyl - Trimethoprim Trimax - Dimethicone

Trimcaps - Phendimetrazine tartrate

Trimecur - Trimethoprim Trimeperad - Trimetazidine

Trimeton - Chlorpheniramine maleate Trimeton maleate - Pheniramine maleate

Trimfect - Trimethoprim Trimoksilin - Amoxicillin Trimol - Piroheotine Trimonase - Tinidazole Trimopam - Trimethoprim Trimopan - Trimethoprim Trimox - Amoxicillin Trimox - Ampicillin trihydrate

Trimpex - Trimethoprim

Trimpus - Dextromethorphan hydrobromide Trimstat - Phendimetrazine tartrate

Trimysten - Clotrimazole Trinalin - Azatadine maleate Trineral - Aspirin Triniol - Paramethasone acetate

Tri-Norinyl - Norethindrone Trinsicon - Folic acid Triolmicina - Oleandomycin Triomin - Perphenazine Trioxanona - Trimethadione Trioxazine - Trimetozine Tripervan - Vincamine

Tripheninon - Trihexyphenidyl HCI Triphosphodine - Adenosine triphosphate

Triple Sulfa - Sulfacetamide Tripodrine - Triprolidine Triprim - Trimethoprim Triptil - Protriptyline

Tript-Oh - Hydroxytryptophan Tript-OH - Oxitriptan Triptyl - Amitriptyline HCI Trisaminol - Tromethamine Trisoralen - Trioxsalen Triten - Dimethindene maleate Tri-Thalmic - Gramicidin Tri-Thalmic - Neomycin Tri-Thalmic - Polymyxin Trithyron - Liothyronine Triton WR - Tyloxapol

Trittico - Trazodone HCI Triurol - Acetrizoate sodium Trivaline - Amantidine HCI Trivastal - Piribedil Trivastan - Piribedil Trivazol - Metronidazole Trizma - Tromethamine Troberin - Clorprenaline Trobicin - Spectinomycin Trobicine - Spectinomycin Trocinate - Thiphenamil HCI

Trocurine - Nitrofurantoin Trofurit - Furosemide

Trolovol - Penicillamine Trombostaz - Dipyridamole Tromexan - Ethyl biscoumacetate Trommogallol - Cyclobutyrol Tronolane - Pramoxine HCI Tronothane - Pramoxine HCI

Trophenium - Phenactropinium chloride

Trophicardyl - Inosine

Trophodilan - Isoxsuprine HCI

Tropimil - Tropicamide

Tropium - Chlordiazepoxide HCI

Tropodil - Oxolinic acid Trosyd - Tioconazole Troversin - Dimenhydrinate Tru - Pyrvinium pamoate Truxal - Chlorprothixene Truxaletten - Chlorprothixene

Tryco - Pivampicillin

Trymegen - Chlorpheniramine maleate Trymex - Triamcinolone acetonide

Tryptal - Amitriptyline HCI Tryptanol - Amitriptyline HCI

Tryptar - Tropicamide Tryptizol - Amitriptyline HCI Trysul - Sulfacetamide

T Stat - Erythromycin

Tsudohmin - Diclofenac sodium Tsuerumin S - Hydroxocobalamin

Tualone - Methaqualone

Tubadil - Tubocurarine chloride

Tubanox - Isoniazid

Tubenamide - Ethionamide Tuberactin - Enviomycin Tuberamin - Protionamide Tuberex - Protionamide Tubermide - Protionamide Tubermin - Ethionamide Tuberoid - Ethionamide Tuberol - Ethambutol HCI Tuberon - Isoniazid

Tuberoson - Ethionamide Tubilysin - Isoniazid Tubocin - Rifampin

Tubocuran - Tubocurarine chloride Tuinal - Secobarbital sodium

TUM - Enviomycin

Turbinal - Beclomethasone dipropionate

Turgex - Hexachlorophene

Turinabol - Nandrolone phenpropionate Turinabol-Depot - Nandrolone decanoate

Turisteron - Ethinylestradiol

Tusasade - Dextromethorphan hydrobromide

Tuss-Ade - Caramiphen edisylate Tussafug - Benproperine Tussafugsaft - Benproperine Tussar - Guaifenesin

Tussar - Phenylephrine HCI

Tussar D.M. - Dextromethorphan hydrobromide

Tussend - Guaifenesin

Tussidyl - Dextromethorphan hydrobromide

Tussilisin - Oxeladin

Tussimol - Oxeladin

Tussionex - Phenyltoloxamine

Tussi-Organidin - Dextromethorphan

hydrobromide

Tussiplegyl - Chlophedianol Tussirama - Fominoben HCI Tussirex - Pheniramine maleate Tussirex - Phenylephrine HCI Tuss-Ornade - Caramiphen edisylate Tuss-Ornade - Phenylpropanolamine HCI

Tuxidin - Chlophedianol Tuxinil - Chlophedianol Twel-Be - Cyanocobalamin Twelvmin - Hydroxocobalamin

Tybatran - Tybamate Tydantil - Nifuratel

Tylciprine - Tranylcypromine sulfate

Tylenol - Acetaminophen Tylosterone - Diethylstilbestrol Tymol - Acetaminophen Tympagesic - Phenylephrine HCI

Tymtran - Ceruletide

Typinal - Tetrahydrozoline HCl Tyrimide - Isopropamide iodide Tyropaque - Tyropanoate sodium

Tyvid - Isoniazid

Tyzine - Tetrahydrozoline HCI

Ube-Q - Ubidecarenone Ubretid - Distigmine bromide Udekinon - Ubidecarenone Udicil - Cytarabine HCI

Udip - Papaverine monophosadenine

Udolac - Dapsone

U-Gencin - Gentamicin sulfate U-Gono - Fluoxymesterone Ugorol - Tranexamic acid Ukidan - Urokinase Ulacort - Prednisolone Ulacort - Prednisolone acetate

Ulban-Q - Valethamate bromide Ulcedin - Cimetide Ulcedine - Cimetide Ulcemet - Cimetide Ulcerfen - Cimetide Ulcerlmin - Sucralfate

Ulcesium - Fentonium bromide

Ulcestop - Cimetide Ulcex - Ranitidine

Ulcociclina - Oxyphencyclimine Ulcofer - Carbenoxolone

Ulcogant - Sucralfate Ulcolax - Bisacodyl

Ulcomin - Oxyphencyclimine Ulcus-Tablinen - Carbenoxolone

Ulhvs - Cimetide

Ulkon - Carbenoxolone Ulmenid - Chenodiol Ulo - Chlophedianol Ulogant - Sucralfate Ulone - Chlophedianol Ulosagen - Fluorouracil Ulpir - Sulpiride

Ulsanic - Sucralfate

Ultandren - Fluoxymesterone Ultrabil - Iodipamide

Ultrabion - Ampicillin Ultracain - Carticaine Ultracef - Cefadroxil Ultracillin - Cyclacillin

Ultracortenol - Prednisolone acetate Ultraderm - Fluocinolone acetonide

Ultradiazin - Sulfadiazine Ultralan - Clemizole Ultralan - Fluocortolone

Ultralente - Insulin zinc suspension

Ultramycin - Minocycline Ultran - Phenaglycodol Ultraproct - Clemizole

Ultrasaion - Fluocortoione Ultrasul - Sulfamethizole Ultrax - Sulfameter Ultroxim - Cefuroxime Ulup - Fluorouracil Umbrium - Diazepam Unakalm - Ketazolam Un-Alfa - Alfacalcidol Unanap - Methionine

Unaseran-D - Thiamphenicol Unaserus - Nalidixic acid Unazid - Hydrochlorothiazide Ungovac - Fluocinolone acetonide

Unicare - Dimethicone Unicillin - Amoxicillin Unicort - Betamethasone Unidone - Anisindione Unimide - Tolbutamide Uninorm - Benzbromarone

Unipen - Carbenicillin indanyl sodium

Unipres - Hydrochlorothiazide Unipres - Reserpine Unipress - Hydralazine HCI Unisal - Diflunisal

Unipen - Nafcillin sodium

Unisomnia - Nitrazepam

Unison - Medroxyprogesterone acetate Unisulf - Sulfisoxazole Unisulfa - Sulfamethoxypyridazine Unitensen - Cryptenamine tannates UniWash - Benzethonium chloride Uni Wash - Edetate disodium

Untensin - Chlordiazepoxide HCI

Upcyclin - Tetracycline phosphate complex

Upstene - Indalpine Uracid - Methionine Uractone - Spironolactone

Uralgin - Nalidixic acid Uramox - Acetazolamide Urantoin - Nitrofurantoin I Irazola - Sulfisovazola Urbac - Nifurfoline Urbadan - Clobazam Urbanil - Clobazam Urbanol - Clobazam Urbanul - Clobazam Urbanyi - Clobazam

Urbason - Methylprednisolone

Urbilat - Meprobamate Urbol - Allopurinol

Urecholine HCl - Bethanechol chloride

Urecid - Probenecid Uredimin - Allopurinol Uremide - Furosemide Urerubon - Tolbutamide Urese - Benzthiazide Uretoin - Nitrofurantoin Uretrene - Nalidixic acid Urex - Furosemide Urfadyn - Nifurtoinol Urfadyne - Nifurtoinol

Urfurine - Nifurtoinol Urgilan - Proscillaridin

Urfamycine - Thiamphenicol

U.R.I. - Chlorpheniramine maleate

Uribact - Flumequine Uriben - Nalidixic acid Uricemil - Allopurinol Uriclar - Nalidixic acid Uriclor - Piromidic acid Uriconorm - Allopurinol Uricovac - Benzbromarone Urid - Chlorthalidone Uridocid - Allopurinol Uridon - Chlorthalidone Uri-Flor - Nalidixic acid Urigram - Nalidixic acid Urimeth - Methionine Urinex - Chlorothiazide Urinox - Oxolinic acid Urirex - Hydrochlorothiazide Uriscel - Allopurinol Urisco - Nalidixic acid Urisept - Piromidic acid Urispan - Flavoxate HCI Urispas - Flavoxate HCI Uristeril - Nalidixic acid Urizid - Bendroflumethiazide

Urobac - Carbenicillin indanyl sodium

Uro-Alvar - Oxolinic acid

Urobak - Sulfamethoxazole Urobax - Sulfamethoxazole Uroben - Probenecid Urobenyl - Allopurinol Urobiotic - Sulfamethizole Urocarb - Bethanechol chloride Urocaudal - Triamterene Uro-Clamoxyl - Amoxicillin Urodiazin - Hydrochlorothiazide

Urodil - Nitrofurantoin Urodin - Nitrofurantoin Urodixin - Nalidixic acid Urofuran - Nitrofurantoin Urogan - Sulfisoxazole Urogram - Nalidixic acid Urokinon - Sulfamethizole Urokizol - Sulfamethizole

Urokon sodium - Acetrizoate sodium

Urolax - Bethanechol chloride Urolex - Nalidixic acid Urolex - Sulfamethizole Urolgin N - Nalidixic acid Urolisa - Nitrofurantoin Uroliz - Allopurinol Urolong - Nitrofurantoin Uromina - Nalidixic acid Uromiro - Iodamide Uromitexan - Mesna Uronase - Urokinase

Uroneg - Nalidixic acid Uropax - Oxolinic acid Uropen - Hetacillin potassium Uropheny! - Thiamphenicol Uropimid - Pipemidic acid Uro-Septra - Amiodarone HCI Urosin - Allopurinol

Urosol - Sulfamethizole Urosonin - Spironolactone Urosul - Sulfamethizole Urosulf - Sulfaethiodole Urosulfon - Sulfacetamide Uro-Tablinen - Nitrofurantoin Urotractan - Methenamine hippurate

Urotractin - Pipemidic acid Urotrate - Oxolinic acid Uroval - Pipemidic acid

Urozyl-SR - Allopurinol

Urovist sodium - Diatrizoate sodium Uroxol - Oxolinic acid Urozide - Hydrochlorothiazide

Ursinus - Carbaspirin calcium Ursnon - Fluorometholone Urtias - Allopurinol

Urtilone - Prednisone Urupan - Dexpanthenol U.S.-67 - Sulfisoxazole Uskan - Oxazepam

Ustimon - Hexobendine Utabon - Oxymetazoline HCl Utefos - Tegafur

Uteracon - Oxytocin

Uterin - Methylergonovine maleate

Utibid - Oxolinic acid

Uticort - Betamethasone benzoate Uticort Ge! - Betamethasone benzoate

Utimox - Amoxicillin Utopar - Ritodrine Utovlan - Norethindrone Utrasul - Sulfamethizole Uval - Sulisobenzone Uvamin - Nitrofurantoin Uvinul - Sulisobenzone Uvistat-L - Mexenone Uzone - Phenyibutazone

Vaben - Oxazepam

Vaderm - Beclomethasone dipropionate

Vagestrol - Diethylstilbestrol Vagidine - Povidone-iodine Vagilen - Metronidazole Vagimid - Metronidazole Vaginyl - Metronidazole

Vagogastrin - Oxyphencyclimine Vagopax - Parapenzolate bromide Vagos - Ipratropium bromide Vahodilan - Isoxsuprine HCI Valadol Tablets - Acetaminophen

Valamin - Ethinamate

Valate - Valethamate bromide

Val-Atux - Dextromethorphan hydrobromide

Valbil - Febuprol Valcin - Methacycline Valcor - Droprenilamine HCl Valdorm - Flurazepam

Valdrene - Diphenhydramine HCI Valemate - Valethamate bromide Valemeton · Valethamate bromide

Valemicino - Fosfomycin Valergen - Estradiol valerate Valetan - Diclofenac sodium Valethalin - Valethamate bromide Valethamin - Valethamate bromide

Valibrin - Diazepam

Validex - Ifenprodil tartrate Validil - Oxyphenbutazone Valisone - Betamethasone Valisone - Betamethasone valerate

Valitran - Diazepam Valium - Diazepam Vallene - Mebutamate Vallergan - Trimeprazine Vallestril - Methallenestril Valmid - Ethinamate Valmiran - Cyclothiazide Valodex - Tamoxifen Valoid - Cyclizine

Valontan - Dimenhydrinate Valopride - Bromopride Valorin - Acetaminophen Valoron - Tilidine HCI

Valpin - Anistropine methyl bromide Valpinax - Anistropine methyl bromide

Valsyn - Furaltadone Valtomicina - Mepicycline Valtorin - Chlorthenoxazine

Valuren - Nalidixic acid Valvanol - 4-Chloro-3,5-xylenol

Valyten - Moxisylyte Vampen - Ampicillin trihydrate Vampi-Framan - Pivampicillin Vanabol - Methandrostenolone

Vanadian - Alcofenac Vanay - Triacetin

Vancenase - Beclomethasone dipropionate Vanceril - Beclomethasone dipropionate Vanceril - Betamethasone dipropionate

Vancocin - Vancomycin Vandid - Ethamivan Vanobid - Candicidin Vanoxide - Hydrocortisone Vanguin - Pyrvinium pamoate Vansil - Oxamniquine

Vapo-N-Iso - Isoproterenol sulfate

Varbian - Prenalterol Variargil - Trimeprazine Varidase - Streptokinase Varinon - Diosmin Varson - Nicergoline

Vasagin - Pyridinol carbamate Vasalgin - Proxibarbal

Vasapril - Pyridinol carbamate Vascardin - Isosorbide dinitrate Vascoprin - Isoxsuprine HCI Vascoray - Iothalmate meglumine Vascoril - Cinepazet maleate Vasculogene - Vincamine Vascumine - Vincamine

Vasmol - Pyridinol carbamate

Vasiten - Nylidrin Vasocet - Cetiedil

Vasocil - Pyridinol carbamate Vasoclear - Naphazoline

Vasoconstrictor - Naphazoline Vasodex - Dexamethasone phosphate Vasodiatol - Pentaerythritol tetranitrate

Vasodilan - Isoxsuprine HCI Vaso-Dilatan - Tolazoline Vasodilene - Isoxsuprine HCI Vasodyl - Cyclandelate Vasoflex - Prazosin Vasoklin - Moxisylyte Vasolamin - Tranexamic acid Vasolan - Isoxsuprine HCI Vasolan - Verapamil Vasoplex - Isoxsuprine HCI

Vasoprin - Xanthinol niacinate Vasorome - Oxandrolone Vasospan - Nicergoline Vasosuprina - Isoxsuprine HCI Vasosyklan Cyclandelate Vasoverin - Pyridinol carbamate VasoxvI - Methoxamine HCI Vaspid - Fluocortin butyl Vaspit - Fluocortin butyl Vassarin-F - Trimetazidine Vastacyn - Ampicillin Vastarel - Trimetazidine

Vastazin - Trimetazidine Vasticillin - Cyclacillin Vastollin - Cyclacillin

Vasurix - Acetrizoate sodium Vasylox - Methoxamine HCI

Vatran - Diazepam V-Cillin - Penicillin V V-Cline - Meclizine HCI Vectrin - Minocycline Vedatan - Allopurinol Vedrin - Xanthinol niacinate

Vegatar - Medazepam Vegesan - Nordazepam

Vegolysen - Hexamethonium bromide

Vehem - Teniposide

Velacycline - Rolitetracycline Velamox - Amoxicillin Velbacil - Bacampicillin Velban - Vinblastine sulfate Velbe - Vinblastine sulfate Velocef - Cephradine Velosef - Cephradine

Velzane - Brompheniramine maleate

Velosulin - Insulin Vemas - Bisacodyl

Venactone - Canrenoate potassium

Venala - Cyclandelate Venalisin - Tribenoside Vencoll - Bisacodyl Ven-Detrex - Diosmin Venen - Triprolidine Venex - Diosmin Venex - Tribenoside Venodin - Tribenoside Venosmine - Diosmin Venotrex - Diosmin Ventaire - Protokylol

Ventaval - Tiaramide Ventilat - Oxitropium bromide

Ventolin - Albuterol Ventoline - Albuterol Ventroxol - Carbenoxolone Ventusasin - Benzonatate Venusmin - Diosmin

Venzoquimpe - Metampicillin sodium Veraciclina - Demeclocycline HCl Veracillin - Dicloxacillin sodium

Veractil - Methotrimeprazine

Veradol - Naproxen Veralipral - Veralipride Veralydon - Acetaminophen Veramil - Verapamil

Veranterol - Pyridinol carbamate Verben - Azatadine maleate Vercite - Pipobroman

Vercyte - Pipobroman Vergentan - Alizapride

Vergonil - Hydroflumethiazide

Vericordin - Atenolol Verin - Aspirin Verina - Nylidrin

Veripaque - Oxyphenisatin acetate Verisone - Prednisolone stearoylglycolate

Veritab - Meclizine HCI Vermirax - Mebendazole Vermisol - Levamisole HCI Vermitiber - Pyrvinium pamoate

Vermox - Mebendazole Verpamil - Verapamil Verpanil - Mebendazole Verrex - Salicylic acid Verrumal - Fluorouracil Verrusal - Salicylic acid Versacort - Bendacort

Versapen - Hetacillin potassium

Verstran - Prazepam

Versus - Bendazac

Vertigon - Prochlorperazine Vertirosan - Dimenhydrinate Vertizine - Meclizine HCI Vesadol - Haloperidol Vesitan - Thiopropazate Vesparax - Etodroxizine Vesprin - Triflupromazine Veteusan - Crotamiton Vetical - Chloramphenical Vexampil - Ampicillin

Viaben - Bromopride Viadril - Hydroxydione sodium succinate

Viafen - Bufexamac Vialidin - Mefenamic acid Via-Quil - Chlordiazepoxide HCI

V-Gan - Promethazine HCI

Viarespan - Fenspiride Viarex - Beclomethasone dipropionate

Viarox - Beclomethasone dipropionate

Vibalt - Cvanocobalamin Vibeline - Visnadine

Videcocan - Tegafur

Vibriomycin - Dihydrostreptomycin sulfate

Vicapenbiz - Cvanocobalamin Viccillin - Ampicillin Viceton - Chloramphenicol Vicilan - Viloxazine HCI Vicon - Folic acid Victan - Loflazepate ethyl Victoril - Dibenzepin HCI Vidarabin - Vidarabine

Vidil - Pemoline Vidopen - Ampicillin trihydrate Viemin 12 - Cyanocobalamin Vifazolin - Cefazolin sodium Vigigan - Mequitazine

Vigocina - Metampicillin sodium Vigolatin - Hydroxocobalamin Viklorin - Chloramphenicol Vilbin - Diphenhydramine HCI

Vilexin - Phenyramidol Viloksan - Viloxazine HCI Vimicon - Cyproheptadine Vi-Mycin - Chlortetracycline Vinactane - Viomycin

Vinca - Vincamine Vincabiomar - Vincamine Vincabrain - Vincamine Vincachron - Vincamine Vincadar - Vincamine Vincadil - Vincamine Vinca-Ecobi - Vincamine Vincafarm - Vincamine Vincafolina - Vincamine Vincafor - Vincamine

Vincagalup - Vincamine Vincagil - Vincamine Vincahexal - Vincamine Vincalen - Vincamine Vincamidol - Vincamine Vincamin - Vincamine Vincanor - Vincamine Vincapront - Vincamine

Vinca-Tablinen - Vincamine

Vinco - Bisacodyl Vincol - Tiopronin Vincosid - Vincristine sulfate Vincristin - Vincristine sulfate Vincristina - Vincristine sulfate

Vintop - Kebuzone

Viobamate - Meprobamate

Viocin - Viomycin

Vioform - Hydrocortisone Viofuragyn - Furazolidone Viomicin - Viomycin Viomycin Pfizer - Viomycin Vio-Serpine - Reserpine Viosol - Hydrocortisone

Vio-Thene - Oxyphencyclimine

Vipicil - Cyclacillin Vipral - Sulpiride Vira-A - Vidarabine Viranol - Salicylic acid Viregyt - Amantidine HCI Virexin - Idoxuridine Virilon - Methyltestosterone Virofral - Amantidine HCI

Viroptic - α.α.α-Trifluorothymidine

Virosol - Amantidine HCI

Viru-Merz - Tromantidine HCI Virunguent - Idoxuridine Virusan - Idoxuridine Viruserol - Tromantidine HCI Virusina - Inosine Viscal - Metoclopramide HCI

Visceralgina - Tiemonium iodide Visceralgine - Tiemonium iodide Viscerol - Dicyclomine HCl Viscolyt - Bromhexine

Viscor - Dipyridamole Viscotiol - Letosteine Visderm - Amcinonide

Visine - Tetrahydrozoline HCI Visiokan - Kanamycin sulfate

Visnamine - Visnadine

Visobutina - Oxyphenbutazone Visopt - Phenylephrine HCI Visotrast - Diatrizoate sodium Vistalbalon - Naphazoline Vistamycin - Ribostamicin Vistapin - Dipivefrin Vistaril - Hydroxyzine HCI Vistaspectran - Idoxuridine Vistimon - Mesterolone Visudrisone - Medrysone

Visumetazone antibiotica - Bekanamycin

sulfate

Visumicina - Bekanamycin sulfate Visumidriatic - Tropicamide Visutensil - Guanethidine sulfate Vitabiotic - Methacycline

Vitac - Chlorpheniramine maleate Vitacarotene - β -Carotene Vitacid-A - Tretinoin Vitacontact - Chlorhexidine Vitacort - Prednisolone Vitafol - Folic acid Vita-K - Phytonadione Vitaklorin - Chloramphenicol Vitamin-A-Saure - Tretinoin Vitamine K1 - Phytonadione Vitarubin - Cyanocobalamin Vi-Twel - Cyanocobalamin Vivactil - Protriptyline Vival - Diazepam

Vivalan - Viloxazine HCI

Vividyl - Nortriptyline Vivol - Diazepam Vizerul - Ranitidine Vodol - Miconazole nitrate Volog - Halcinonide Volon - Triamcinolone

Volon - Triamcinolone acetonide Volplan - Megestrol acetate Voltaren - Diclofenac sodium Voltarene - Diclofenac sodium Voltarol - Diclofenac sodium Vomex - Dimenhydrinate Vontil - Thioproperazine Vontrol - Diphenidol

Vopop - Eprazinone HCI Voranil - Clortermine HCl Voyal - Dimenhydrinate V-Serp - Reserpine V-Sul - Sulfisoxazole V-Tablopen - Penicillin V Vumon - Teniposide Vytone - Hydrocortisone

Wachtungshormon - Somatotropin

Wagitran - Metronidazole Wakazepam - Oxazepam Wansar - Diphenidol Waran - Warfarin sodium Warcoumin - Warfarin sodium Warfilone - Warfarin sodium Wart-Off - Salicylic acid Wasangor - Prenylamine Wasseridina - Cephaloridine Wassermicina - Methacycline Wassermox - Amoxicillin

Wasserporina - Cephalexin Wasserprofen - Ketoprofen WDD Tab - Imigramine HCI Wehdryl - Diphenhydramine HCI

Wehless - Phendimetrazine tartrate

Weifapenin - Penicillin V

Weightrol - Phendimetrazine tartrate

Weldopa - Levodopa Wellcoprim - Trimethoprim Wellferon - Interferon Wemid - Erythromycin stearate Wescohex - Hexachlorophene Wescomep - Meprobamate Wescopred - Prednisone Wescotol - Tolbutamide Wescozone - Phenylbutazone Westadone - Methadone HCI Westasept - Hexachlorophene

Whitfield's Ointment - Salicylic acid

Widecillin - Amoxicillin Wilpo - Phentermine HCI Wincoram - Amrinone Winobanin - Danazol Winorvlate - Benorvlate Winoxacin - Rosoxacin Winpred - Prednisone Winsprin - Aspírin Winstan - Trilostane Winstol - Stanozolol Winstrol - Stanozolol

Wintermin - Chlorpromazine HCI Wintomylon - Nalidixic acid Wintron - Nalidixic acid Winuron - Rosoxacin Wirnesin - Proscillaridin

Wyamine - Mephentermine

Wyamycin-S - Erythromycin stearate

Wybital - Cyclacillin

Woitab - Prednisone

Wycillin - Penicillin G procaine

Wydora - Indoramin

Wygesic - Propoxyphene HCI

Wypax - Lorazepam

Wytensin - Guanabenz

Xahl - Cephalexin

Xalogen - Meprobamate

Xamamina - Dimenhydrinate

Xanax - Alprazolam

Xani - Apazone

Xanidil - Xanthinol niacinate

Xanturat - Allopurinol

Xatolone - Inositol niacinate

Xavin - Xanthinol niacinate Xenalone - Spironolactone

Xenar - Naproxen

Xerene - Mephenoxalone

Xibol - Xibornol

Xolamin - Clemastine fumarate X-Otag - Orphenadrine citrate

X-Trozine - Phendimetrazine tartrate

Xuprin - Isoxsuprine HCI

Xvduril - Clofibrate

Xylanaest - Lidocaine

Xylesin - Lidocaine

Xvlestesin - Lidocaine

Xylocaine - Lidocaine

Xylocard - Lidocaine

Xylocitin - Lidocaine

Xylonest - Prilocaine HCI

Xvloneural - Lidocaine

Xvlonor - Lidocaine Xylotocan - Tocainide

Xylotox - Lidocaine

Yamacillin - Talampicillin

Yamafur - Carmofur

Yatrociclina - Methacycline

Yatrocin - Nitrofurazone

Yesdol - Diphenidol

Ylestrol - Ethinylestradiol

Yobir - Alprenoiol HCI

Yoclo - Clofibrate

Yomesan - Niclosamide

Yonomol - Inositol niacinate

Yophadol - Diphenidol

Yosimilon - Trimetazidine

Youfural - Tegafur

Ytrocin - Erythromycin

Yubekinon - Ubidecarenone

Yurinex - Bumetanide

Yutopar - Ritodrine

Yxin - Tetrahydrozoline HCl

Zactane - Ethoheptazine

Zactipar - Ethoheptazine

Zactirin - Ethoheptazine

Zaditen - Ketoprofen

Zaditen - Ketotifen

Zalbico - Indomethacin

Zambesil - Chlorthalidone

Zamocillin - Amoxicillin

Zanchoł - Florantyrone Zanosar - Streptozocin

Zantac - Ranitidine

Zantic - Ranitidine

Zaomeal - Piromidic acid

Zariviz - Cefotaxime sodium

Zarontin - Ethosuximide

Zaroxolyn - Metolazone Zasten - Ketotifen

Zelmid - Zimelidine

Zenate - Folic acid

Zentel - Albendazole

Zentropil - Phenytoin

Zepam - Diazepam

Zepelin - Feprazone

Zeph - Phenylephrine HCI

Zephrex - Guaifenesin

Zermicina - Methacycline

Zesulan - Meguitazine

Zetar - 4-Chloro-3,5-xylenol

Zetran - Chlordiazepoxide HCI

Ziavetine - Buformin HCI

Zidafimia - Isoniazid

Zide - Hydrochlorothiazide

Zideluy - Isoniazid

Zildasac - Bendazac

Zimox - Amoxicillin

Zinacef - Cefuroxime Zinamide - Pyrazinamide

Zinavit - Folic acid

Zinoprost - Dinoprost tromethamine

Zipan - Promethazine HCI

Ziradryl - Diphenhydramine HCI

Ziriton - Carbinoxamine maleate

Zirkulat - Cyclandelate

Zitoxil - Zipeprol Zohnox - Acetazolamide

Zolicef - Cefazolin sodium

Zolidinium - Phenylbutazone

Zoline - Tolazoline

Zomax - Zomepirac Zomaxin - Zomepirac

Zomex - Zomepirac

Zonase - Beclomethasone dipropionate

Zone-A - Pramoxine HCI

Zonide - Beclomethasone dipropionate

Zontal - Feprazone

Zoontal - Feprazone

Zopirac - Zomepirac Zordel - Norfenefrine

Zorpin - Aspirin

Zostrum - Idoxuridine

Zovirax - Acyclovir

Zoxine - Zoxazolamine

Zumaril - Alcofenac Zykolate - Cyclopentolate HCl

Zyloi - Allopurinol

Zyloprim - Allopurinol

Zyloric - Allopurinol

Zyno! - Sulfinpyrazone