CONCRETE ON THE FARM
AND
IN THE SHOP

CAMPBELL
CONCRETE ON THE FARM
AND
IN THE SHOP

A COMPLETE PRACTICAL TREATISE ON THE COMMONEST EVERY-DAY USES OF CONCRETE. WRITTEN IN PLAIN ENGLISH, SO THAT THE INEXPERIENCED PERSON DESIRING TO UNDERTAKE A PIECE OF CONCRETE CONSTRUCTION CAN, BY FOLLOWING THE DIRECTIONS GIVEN, SECURE SUCCESS.

THE CONSTRUCTION OF TANKS, TROUGHS, CISTERNS, FENCE POSTS, STABLE FLOORS, HOTBEDS, HOG WALLEWS, WALLS, FOUNDATIONS, PANEL FENCES, FEEDING FLOORS, AND ALL THE PURPOSES FOR WHICH CONCRETE IS AN INVALUABLE AID TO THE FARMER ARE INCLUDED

BY
H. COLIN CAMPBELL, C.E., E.M.
Contributing Editor, Cement World and American Carpenter and Builder Member, Editorial Staff, Farm Engineering

VERY FULLY ILLUSTRATED

NEW YORK
THE NORMAN W. HENLEY PUBLISHING CO.
132 NASSAU STREET
1916
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>GENERAL SUMMARY OF CONCRETE PRINCIPLES</td>
<td>9</td>
</tr>
<tr>
<td>AGGREGATES</td>
<td>12</td>
</tr>
<tr>
<td>PRINCIPLES OF PROPORTIONING</td>
<td>15</td>
</tr>
<tr>
<td>MIXING CONCRETE</td>
<td>18</td>
</tr>
<tr>
<td>PLACING CONCRETE</td>
<td>27</td>
</tr>
<tr>
<td>PROTECTION AFTER PLACING</td>
<td>29</td>
</tr>
<tr>
<td>COLD WEATHER CONCRETING</td>
<td>30</td>
</tr>
<tr>
<td>RECOMMENDED MIXTURES</td>
<td>33</td>
</tr>
<tr>
<td>FORMS</td>
<td>38</td>
</tr>
<tr>
<td>CONCRETING TOOLS</td>
<td>49</td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td>55</td>
</tr>
<tr>
<td>PRINCIPLES OF REINFORCING</td>
<td>66</td>
</tr>
<tr>
<td>MATERIALS FOR REINFORCING</td>
<td>66</td>
</tr>
<tr>
<td>WALLS AND FENCES</td>
<td>73</td>
</tr>
<tr>
<td>POSTS</td>
<td>81</td>
</tr>
<tr>
<td>RUBBLE CONCRETE</td>
<td>96</td>
</tr>
<tr>
<td>TANKS AND TROUGHS</td>
<td>101</td>
</tr>
<tr>
<td>CISTERNS</td>
<td>107</td>
</tr>
<tr>
<td>FORM REMOVAL</td>
<td>113</td>
</tr>
<tr>
<td>HOG WALLOW</td>
<td>113</td>
</tr>
<tr>
<td>MANURE PIT</td>
<td>115</td>
</tr>
<tr>
<td>REPAIRS OF LEAKS IN TANKS, ETC</td>
<td>117</td>
</tr>
<tr>
<td>HOTBEDS</td>
<td>121</td>
</tr>
<tr>
<td>ROOFS FOR SMALL BUILDINGS</td>
<td>125</td>
</tr>
<tr>
<td>PAVEMENTS, FEEDING FLOORS, AND WALKS</td>
<td>129</td>
</tr>
<tr>
<td>STEPS</td>
<td>136</td>
</tr>
<tr>
<td>WELL CURBS AND PLATFORMS</td>
<td>141</td>
</tr>
</tbody>
</table>
INTRODUCTORY

Within recent years there has been increasing attention given to the use of concrete as a building material. Nowhere has this interest been relatively greater than on the farm. The appeal of concrete is due largely to the fact that care and faithful observance of fundamental principles enable a large portion of the actual labor to be performed by those who are relatively unskilled. The increasing cost of lumber has made concrete not only a formidable competitor but successful rival. Not only is this true but those who have once used concrete have come to a realization that in the concrete structure expensive upkeep is eliminated. There is no longer the continual annual outlay for repairing, painting, straightening up, and rebuilding or patching the work to put it into condition equal to new, or to maintain it in serviceable condition.

Concrete is also fireproof. This is another strong appeal. On the farm fireproof construction is doubly advantageous since the country dweller is without the protection which his city friend enjoys; namely, the well-equipped and usually efficient fire department. But concrete in town is just as good as in the country. Another advantage comes from the sanitation resulting
where concrete construction is properly applied. Feeding floors, hog wallows, watering troughs, all do their share on the farm—and it is a large one—toward preventing the filthy conditions that in a large percentage of cases are responsible for the epidemic stock diseases which annually exact a costly toll from farmers throughout the country.

There are concrete books galore. No apology need be made for this one. The concrete worker who so far has met with scant success, will learn the "why" by carefully reading and following its message. The engineer or contractor thoroughly experienced in concrete work may find but little to interest him in this book. He will say that he has heard all of these subjects discussed before. Perhaps, however, he has not heeded many of the cautions which the writer has endeavored to put into plain language and which he knows are essential to success. In that respect the book may profit the engineer or contractor who heeds. It has, however, been primarily prepared with the beginner first in mind—the man who knows nothing of concrete but wants to learn.

Concrete ordinarily is a technical subject and most writers have described the methods of using it in high-sounding terms which are beyond the understanding of the average man without some engineering or construction experience. The writer has endeavored to translate technical expressions and technical terms into plain everyday English, that any one who can read can under-
stand. Simple drawings accompany the text. In some cases these are purposely exaggerated to better show what is meant. In many cases construction illustrated by drawings is shown in a reproduction of photograph illustrating the work in progress or completed.

In the limited space of this booklet not all of the possibilities of Concrete on the Farm and in the Shop could be dwelt upon. The fundamentals of concreting, however, have been presented at some length, and these apply regardless of the construction. The examples used for purpose of illustration, that is, the various types of construction described, are such as to give the beginner who follows all directions the necessary experience to undertake more pretentious uses of concrete.

THE AUTHOR.

March, 1916.
CONCRETE ON THE FARM AND IN THE SHOP

WHAT CONCRETE IS, HOW IT SHOULD BE MADE, AND SOME OF ITS USES

GENERAL

Increasing interest in the advantages of permanent, fireproof and sanitary construction has resulted in recognition of the adaptability of concrete for most buildings required upon the farm. Here its range of use is almost unlimited; barns, hog houses, poultry houses, dairy buildings, silos, watering troughs and tanks, feeding floors, barn floors, foundations—practically all types of farm building construction—seem to be best solved by proper application of concrete.

Notwithstanding the fact that there have been volumes written concerning the uses of concrete, a great deal of the so-called information scattered broadcast has been simply the recounting of individual practices and experiences, which have not by any means always represented what those best qualified to know would endorse as correct methods of using concrete. Too often those who attempt concrete construction act upon the impression that a little cement a little sand, gravel
and water, then a few turnings with the shovel, and presto! the trick is done. This is far from the truth.

WHAT CONCRETE IS

Concrete consists of a certain quantity of broken stone or gravel of properly graded sizes, firmly bound together by a mortar consisting of Portland cement, sand and water. It is, therefore, a composite product, a manufactured one, so to speak, therefore success in the use of concrete involves observance of certain established requirements of selection and mixing of ingredients, and proper placing.

Like the black man and the red man, Portland cement's identity was established through color. It looks like the Portland stone of England; but nowadays when Portland cement is spoken of, only the manufactured product is meant. Natural cements are not suited to the general run of concrete construction.

WHAT PORTLAND CEMENT IS

Portland cement is a carefully manufactured product, consisting principally of lime, silica and aluminum oxide. It is not necessary that the user should know the exact nature of its ingredients nor just how they are combined. There are so many reputable manufacturers of Port-
land cement in the country to-day that the person contemplating concrete construction need not concern himself with the process of manufacture. All he need do is to inform himself as to the known reliability of any particular brand he contemplates using. This can be done by corresponding with the United States Department of Agriculture or the United States Bureau of Standards, both of Washington, D. C., and if the reply received indicates that the particular brand conforms to established engineering requirements he will be safe in using that brand.

TESTING CEMENT

The testing of cement is a science in itself that requires experience and skill acquired only in laboratories with special equipment, and the user need not concern himself with tests if he has been properly assured that the particular brand is known to meet with the requirements mentioned.

If cement is properly stored before use by being protected against the possibility of absorbing moisture, it will keep a long time. It should be stored in a dry shed, piled on a tight board floor that is raised several inches above the ground. Any cement containing lumps that cannot be easily crushed between the fingers has probably been exposed to dampness. The lumps should always be discarded.

Portland cement is usually sold packed in cloth
or paper sacks, each containing 94 pounds net. Four such sacks constitute a barrel. A sack of cement is considered one cubic foot.

AGGREGATES DEFINED

Aggregates is the term used to refer in a general way to the sand, stone screenings, gravel, broken stone such as granite and slag, or whatever other rock material is used to mix with the cement to form concrete. Sand is usually referred to as the fine aggregate. For convenience, sand is described as a clean rock material free from clay, loam or other foreign substances and ranging in size from the fine particles up to those which will just pass a screen having \(\frac{1}{4} \)-inch square meshes. (Four meshes to the linear inch or 16 meshes to the square inch.)

Gravel, usually called coarse aggregate, is defined as clean rock material, such as pebbles, ranging in size from \(\frac{1}{4} \) inch up to 1, 1\(\frac{1}{2} \) or 2 inches, depending on which maximum size of particles would be allowable for the particular concrete work. As a rule, 1\(\frac{1}{2} \) inches is the maximum size specified for gravel or broken stone aggregate in most concrete construction.

IMPORTANCE OF CLEAN MATERIALS

Gravel or broken stone used as coarse aggregate also must be free from clay, loam or other foreign materials. The presence of these in any considerable quantity, usually fixed at from three
to not more than five per cent, is likely to be injurious in concrete mixtures. Such foreign materials not only affect the strength of the resulting concrete, but exert an influence on its tendency to harden, sometimes delaying hardening so that the mass will not acquire any considerable strength for perhaps a number of days.

BANK-RUN GRAVEL NOT SUITABLE

The fact that nature has been very lavish with its distribution of sand and gravel, has led many users of concrete to think that bank-run material, that is, combined sand and gravel as dug out of a so-called gravel bank or pit, makes suitable aggregate for concrete. This is not correct, and has been responsible for much unsatisfactory concrete construction, especially for the large amount of leaky and porous concrete.

Bank-run material almost invariably consists of too large a percentage of sand—usually twice as much sand as gravel—and for good concrete, the proportions should be practically the reverse. It is always economy to screen bank-run material (see Fig. 1), separating the fine material (sand) from the coarse (pebbles) by passing over a quarter-inch mesh screen so that the two volumes (sand and gravel) can be reproportioned suitably for the particular construction.

Many persons who have done concrete work will be inclined to question the truth of this state-
ment, but they should at once make a few experiments and convince themselves of its truth. A 1:2:4 mixture, for instance, which means 1 sack (1 cubic foot) of Portland cement, 2 cubic feet of well-graded sand and 4 cubic feet of well-graded gravel or broken stone, will, when prop-

![Screening Bank-run Gravel](image)

Fig. 1.—Screening Bank-run Gravel.

erly combined and mixed with water, form a bulk slightly exceeding 4 cubic feet. This proves that the sand has gone to fill up the voids (air spaces) between the particles of gravel and that the cement has gone to fill up the voids (air spaces) between the particles of sand. If instead of using a definitely proportioned 1:2:4 mixture the concrete worker were to take 1 sack of cement,
and mix it with 6 cubic feet of material as coming from the gravel bank, he would then have 6 cubic feet of concrete containing 1 sack of cement as against slightly over 4 cubic feet containing the same quantity of cement. It should require but a moment's thought to prove that the 1:2:4 mixture contained proportionately more cement, hence should be a stronger, denser mixture. This is true. It might require several sacks of cement to make the mixture containing 6 feet of natural bank-run material as strong as the 1:2:4 mixture. Therefore, it should be seen that true economy follows correct proportioning of materials.

PRINCIPLES OF PROPORTIONING CONCRETE MIXTURES

Correct proportioning is based on the following conditions: voids or air spaces must be filled; every particle of sand must be coated with cement and every pebble of gravel or particle of broken stone must be coated with sand-cement mortar. Both strength and density, consequently watertightness in finished concrete construction, are dependent largely upon careful proportioning of materials.

Several methods of proportioning are practiced, but all consist essentially of ascertaining the percentage or bulk of voids or air spaces in the coarse material (pebbles or broken stone) to be filled by the finer material (sand), then ascertain-
ing the percentage of voids or air spaces in the combined sand and pebbles to be filled by cement. Therefore, when definite mixtures are specified for any construction, best results cannot follow if instead of the separate and definite volumes of sand and gravel called for, a bank-run material of the same total volume is substituted.

HARD, DURABLE AGGREGATES NECESSARY

In addition to being free from the foreign substances mentioned, both sand and gravel or whatever aggregate is used, must be hard and durable. Flat, soft, shale-like pieces of stone cannot be combined in a concrete mixture so as to produce concrete of great density and strength, nor watertightness.

WASHING AGGREGATES

One of the simplest arrangements for washing sand and gravel is shown in Fig. 2. This consists merely of a trough into which water is introduced by a pipe or hose at the higher end, where the sand and gravel are shoveled in also. The action of the water upon them as they roll over and over while descending the trough is such that they become thoroughly washed and the sand passes through the screen at the lower end, while the gravel is deposited in a pile at the open end of the trough beyond the screen.
A washing platform or box like that shown in Fig. 3, can be arranged for by making a frame of 2

by 6-inch lumber around a tight bottom, then raising up this platform slightly at one end, shoveling the sand and gravel to be washed upon it at the
high end and turning against them a strong stream from a hose, stirring the materials about while the water is being applied. Any clay or loam will be carried away in suspension in the water and will overflow with it at the low end of the platform or box.

CLEAN, PURE WATER NECESSARY

Another requirement is that the water used to mix the several materials shall also be clean. The best specification for mixing water is to say that water which is good to drink is best for concrete. Any considerable amount of clay making the water "cloudy" is just as injurious to a concrete mixture as though this clay were on the particles of sand and gravel. Water containing an excess of alkali or any oil is also objectionable. Remember, therefore, to use clean, pure water in mixing the concrete—water that you would not be afraid to drink.

MIXING CONCRETE

Concrete may be mixed by hand, but by far the better way is to use a power-operated batch mixer, as this insures a more thorough and uniform combination of the several materials. Power-operated mixers that will meet the rural worker's needs can be purchased with self-contained gasoline engines for as little as $70 or $75, and for any
one contemplating a considerable amount of concrete construction, they represent a wise investment that will eliminate most of the labor where much concrete is to be mixed. Many farmers have found it advantageous to combine co-operatively in purchasing such an equipment, then to charge each person so much per day for the use of the outfit, thus eventually absorbing its cost among them.

HOME-MADE CONCRETE MIXER

Home-made concrete mixers have been constructed by attaching cubical boxes to a shaft of gas pipe, and revolving the box by a pulley attached to the shaft belt driven by a gasoline engine. To obtain best results from a cubical drum without placing interior vanes or deflectors inside the box, the shaft on which it is mounted should not extend exactly from corner to corner of the cube but so that the cube will be hung "off center," thus giving a sort of zigzag motion to the contents of the box while it is being revolved.

In mixing concrete in the proportion 1:2:3, 6 cubic feet of loose materials are required for a one-bag batch, while in a leaner mixture such as a 1:3:5, 9 cubic feet of loose materials are put into the mixer. Mixing batches as large as these in a box or drum operated by a gasoline engine requires that the construction be very rigid. The box should be 3 feet in each dimension, so will have a volume capacity of 1 cubic yard. Best
results in mixing are secured when the mixer cube or drum is not over ½ full. Gears should be arranged so that the drum may be revolved at a proper speed. If revolved too slowly, too long a time will be required for mixing, and if revolved too rapidly the materials will tend to cling to the sides of the box or drum and will therefore not be tumbled about enough to insure thorough mixing.

Two types of home-made mixers are shown in accompanying reproduction of photographs, Figs.
Fig. 5.—Another View of the Mixer Shown in Fig. 4.

Fig. 6.—Home-made Barrel Mixer. Hand or Power Operated.
4, 5, 6 and 7. One of these is cylindrical in shape and was made of two round board heads fitted into a drum frame which was composed of narrow boards of the desired length, bolted to two old wagon tires. The other home-made mixer consists of a barrel mounted on a suitable frame and fitted with a set of gear castings which are so connected to a shaft with pulley, as to be operated by a belt driven by gasoline engine. This mixer can be hand driven also. The frame, as will be seen, has been made so that the barrel can be tilted after mixing has been completed to
dump the concrete into a wheelbarrow for transferring to where it is to be used.

In machine mixing it is desirable to revolve the mixer at least one minute after all materials, including the mixing water, have been placed in the drum. One and one-half minutes would be better.

HAND MIXING

The greater portion of home-made concrete is mixed by hand. In such cases a watertight platform (Fig. 8) should be provided. This should be made of smooth 1\(\frac{1}{2}\) or 2-inch boards, preferably tongued and grooved so that the platform will be tight to prevent water carrying away cement by leaking through cracks during mixing of materials.

MEASURING MATERIALS

A practical method of measuring materials is to use a bottomless box. This box may be made to hold either 1 cubic foot or 4 cubic feet. In the latter case there should be marks on the interior indicating levels for 1, 2 and 3 cubic feet. (Cement need not be measured as 1 sack (94 pounds) is considered 1 cubic foot.) The measuring box is first set on the mixing platform, and when the required amount of sand has been measured, the sand is spread out in a layer on the mixing platform. Next the cement is spread over
Fig. 8.—Watertight Platform for Hand Mixing of Concrete.
the sand in a thin layer. Square-pointed shovels are used to turn the cement and sand several times until the mixture is of a uniform color, disappearance of brown and grey streaks indicating thorough mixing of the mass. Then the gravel or crushed stone, first thoroughly wet, is measured and spread in a layer on top of the cement and sand and all of the materials again turned with shovels. A depression is then shoveled in the center of the pile and water is added while preferably two men turn the mass thoroughly. If running water is available the water should be sprayed from a hose to avoid washing away the cement. At any rate it should be added gently, shoveling being carried on while water is added and continued until the entire batch is of a uniform consistency and color. This will generally require that at least three turnings be given the materials after the necessary amount of water has been added.

Thorough hand mixing will produce a good concrete mixture, but the labor involved is considerable if much concrete work is planned, and there is a tendency to slight mixing, so it quite often follows that improperly mixed concrete is used. For this reason the concrete worker should endeavor to provide means for mixing his concrete by a power-operated batch mixer.
AMOUNT OF WATER REQUIRED

The amount of water required in a concrete mixture varies to some extent, depending upon the construction in which used. For most classes of work, what is known as a "quaky" consistency best fills requirements. Such a mixture is one that is wet enough to settle in place with very little working or spading in the forms, or, if placed in a pile, as in building feeding floors or barnyard pavements and walks, it will slowly spread out or flatten of its own weight. Too much water will cause the mortar to separate from the pebbles or broken stone, and thus result in stone pockets in the finished mass. Where reinforcing steel is used, too wet a mixture would also result in pockets where the concrete had not bonded or united with the steel. Finally, after the concrete had hardened, the evaporation of the excess water would cause the mass to have a porous texture.

In making such concrete products as block, brick and tile, which are usually made in iron molds, these products being removed from the mold immediately after tamping, a drier mixture must be used. In that case the general rule is to use as much water as possible without interfering with the quick removal of the molds, yet enough so that with hard tamping free moisture will flush to the surface of the concrete.

In reinforced concrete fence posts, where den-
sity and compactness are secured not by tamping the concrete but rather by shaking or jarring the molds, the mixture must be quite wet—slightly wetter than described by "quaky"—as wet as possible without causing separation of mortar and gravel in handling and placing. Such products as fence posts are left in the molds for perhaps 24 hours, or until the concrete has hardened sufficiently to permit removing sides of the molds without injury to the concrete.

PLACING CONCRETE

All concrete should be placed where it is to be used within 30 minutes after water has been added to the mixed materials. This is important because concrete begins to harden within this time, and to disturb the mass after hardening has begun destroys the final strength of the concrete, and in the case of floors or pavements impairs the wearing quality.

Methods of placing must necessarily vary in accordance with the several types of construction. To mention a few simple examples:

Concrete for feeding floors or barnyard pavements is dumped from a wheelbarrow upon a previously prepared sub-grade or foundation and as rapidly as the forms for alternate slabs are filled, the concrete is struck off level by using a straightedge rested upon the top of forms. The surface is then finished by smoothing with a wood
float. Such a tool is preferable to a steel trowel as it gives an even surface yet one not smooth enough to be slippery. In the case of small troughs and watering tanks, that can be built without stopping concreting once it has begun, part of the concrete for the floor of the trough or tank is placed, then the reinforcing, then enough concrete to finish the floor, then the inside form is quickly set in place, concrete for side walls deposited immediately and spaded or tamped, so that every portion of the forms is filled. A tool like a garden spade or hoe flattened out, or a flat piece of wood with the edge protected by sheet iron, is used for this purpose. Spading next to the forms forces back the coarse aggregate and causes the mortar to flow against the form face, giving a smoother finish and a denser surface.

In constructing walls for buildings, forms are filled in a manner similar to that just described, particular attention being given to spading the coarse material away from the outside faces in order to give a smooth exterior surface when forms are removed, this, of course, assuming that the exterior surface is to be left in its natural condition. If, however, the surface is to be plastered finally, spading should be done only between form faces so that the exposed surface will be a little rough, making the plaster bond or "key" better to the wall face.
PROTECTION OF CONCRETE AFTER PLACING

Proper protection of concrete after placing is of utmost importance, because while concrete generally begins to harden noticeably within thirty minutes after mixed, the subsequent changes in the mass tending toward complete hardening take place somewhat slowly and can be brought about satisfactorily only in the presence of favorable moisture and temperature conditions. Concrete of "quaky" consistency generally has sufficient water in it to result in proper hardening, if, after placed, the concrete is protected from exposure to sun and drying winds. If not so protected, the concrete instead of really hardening will simply dry out.

Many persons believe that drying out is the natural and required process following the work of placing concrete. Nothing could be farther from the truth. The expression "curing" has been quite generally used, but the word suggests drying rather than hardening. In any concrete work the finished structure must be so protected that the concrete will retain the water already in it. To accomplish this, concrete floors, for instance, must be covered with wet straw or damp sand, and this covering sprinkled or otherwise kept moist for a period varying from one to two weeks according to weather conditions.

Concrete hardens much more rapidly in warm
than in cool weather. In the case of walls of buildings or vertical faces, which cannot be covered with straw, canvas or similar material is hung over them and kept thoroughly moist by sprinkling. The concrete surface also is sprinkled: Most concrete should not be subjected to its intended use until it has hardened under favorable conditions for a week or more, depending upon the nature of the construction. Longer time will be required in cold weather.

WINTER CONCRETING

A great deal of concrete work can be done as well in winter as in summer if simple precautions are taken to prevent the concrete from freezing during the periods of mixing, placing and hardening. No material containing frost or frozen lumps should ever be used in preparing a concrete mixture. Sand and gravel should be heated in winter or kept in a room where the temperature does not fall below 50 degrees Fahrenheit. Water used for mixing should not contain ice, and in very cold weather should be heated. The idea is to heat materials (except the cement) enough so that the concrete when placed will have a temperature not lower than 80 degrees Fahrenheit. This temperature, with proper precautions to protect the concrete immediately after placing, will be retained for some time, especially as it is supplemented by heat developed within the
CONCRETE ON THE FARM AND SHOP 31

Concrete during the early hardening process as a result of chemical action between the cement and water. Consequently, if concrete in this heated condition is protected from freezing during the first 48 hours after it has been placed, it will not usually be harmed by subsequent exposure to freezing temperatures.

Floors placed in the winter time should be covered with a foot of straw, or with tar paper with 6 inches of dry manure shoveled on top, which should be left in place from ten days to two weeks. Manure should not be placed immediately on or against the fresh concrete as it has been known to injure the surface previous to thorough hardening.

CONCRETE PRODUCTS EASILY MANUFACTURED IN WINTER

Fence posts and similar concrete products may be manufactured in winter just as well as in summer, provided they are made in a workroom where the temperature is kept above 50 degrees and the materials are heated as suggested. Such manufactured products should be kept indoors until they are two weeks old before exposure to the usual winter weather.

Permanent farm improvements of concrete are rapidly supplanting all other kinds of construction for the reason that concrete is, with the exception of the cement, made from materials which are obtainable on or near every farm.
With a little experience, ordinary farm structures may be built by home labor. Consequently the cost of these improvements is moderate, while their upkeep is nothing. They require neither painting nor repairs; on the contrary, the older they get the better they get if the concrete work has been properly done, because good concrete increases in strength with age.

No doubt the chief merit of concrete for buildings is its fire-resistance. Concrete will not burn, and insurance on a structure entirely of concrete is unnecessary, although insurance may be required upon its contents. To secure complete protection from fire, roofs as well as walls of buildings should be of concrete.

By no means least among the advantages of concrete on the farm is protection against the depredations of rats and mice. This brings us to the question of sanitation also, which has recently assumed such vast importance owing to the number of epidemic stock diseases which periodically take their toll in various sections of the country. Nothing is a better preventive of disease than cleanliness, and nothing is so conducive of cleanliness in farm buildings as concrete in all the surroundings of live stock.
RECOMMENDED MIXTURES FOR VARIOUS CLASSES OF CONCRETE CONSTRUCTION

The following table gives suggested mixtures for various classes of concrete work. In each case the first figure represents 1 sack, or 1 cubic foot, of Portland cement; the second figure represents the required number of cubic feet of clean, well-graded sand ranging from the finer particles to those that will just pass a $\frac{1}{4}$-inch mesh screen; the third figure represents the number of cubic feet of clean, well-graded pebbles or crushed stone ranging in size from $\frac{1}{4}$ to not more than $1\frac{1}{2}$ inches. Further limitations on the maximum size of coarse aggregate (pebbles or broken stone) will be given later when each particular class of construction is described more in detail.

TABLE OF CONCRETE MIXTURES

A 1:2:3 mixture for:
- Feeding floors and barnyard pavements
- One-course floors and walks
- Roofs
- Fence posts
- Water troughs and tanks

A 1:2:4 mixture for:
- Beams and columns
- Engine foundations
- Watertight basement walls
Reinforced concrete floors
Work subject to vibration
A 1:2\(\frac{1}{2}\):4 mixture for:
 Building walls above foundation
 Silo walls
 Base of two-course walks and floors
 Backing of concrete block and similar concrete products
A 1:3:5 mixture for:
 Basement walls where watertightness is not essential and foundations belowground
 Mass concrete footings, etc.

MORTAR

1:1\(\frac{1}{2}\) mixture for:
 Wearing course of two course floors
1:2 mixture for:
 Scratch coat of exterior plaster
 Facing blocks and similar cement products
 Wearing course of two course walks, feeding floors and barnyard pavements
1:2\(\frac{1}{2}\) mixture for:
 Finish coat of exterior plaster

Table I shows the cubic feet of sand and gravel (or crushed stone) to be mixed with one sack of cement to secure mixtures of the different proportions indicated in the first column. The last column gives the resulting volume in cubic feet of compacted mortar or concrete.
Table II gives the number of sacks of cement and cubic feet of sand and gravel (or broken stone) required to make 1 cubic yard (27 cubic feet) of compact concrete proportioned as indicated in first column.

Following are given a number of examples which will illustrate the method of using Tables I and II.

Example I. How much cement, sand and gravel will be required to build a feeding floor 30 by 24 feet, 5 inches thick?

Multiplying the area (30 by 24) by the thickness in feet gives 300 cubic feet, and dividing this by 27 gives $11\frac{1}{3}$ cubic yards as the required volume of concrete. A one-course floor should be of 1:2:3 mixture. Table II shows that each cubic yard of this mixture requires 7 sacks of cement,
14 cubic feet of sand and 21 cubic feet of gravel or stone. Multiplying these quantities by the number of cubic yards required \((11\frac{1}{3})\) gives the quantities of material required (eliminating fractions) as 78 sacks of cement, 156 cubic feet of sand and 233 cubic feet of gravel or stone. As there are 4 sacks of cement in a barrel, and 27 cubic feet of sand or gravel in a cubic yard, there will be needed a little less than 20 barrels of cement, 6 cubic yards of sand and 9 cubic yards of gravel or stone.

Example II. How many fence posts 3 by 3 inches at the top, 5 by 5 inches at the bottom and 7 feet long, can be made from 1 sack of cement? How much sand and gravel will be needed?

Fence posts should be of a 1:2:3 mixture.
Table I shows the volume of a 1-sack batch of this mixture to be 3\(\frac{2}{3}\) cubic feet. The volume of one concrete post, found by multiplying the length by the average width and breadth in feet \((7\times\frac{3}{4}\times\frac{4}{3})\) is \(\frac{7}{3}\) cubic foot. By dividing 3\(\frac{2}{3}\) by \(\frac{7}{3}\) we find that five posts can be made from 1 sack of cement when mixed with 2 cubic feet of sand and 3 cubic feet of gravel.

Example III. What quantities of cement, sand and gravel are necessary to make 100 unfaced concrete block, each 8 by 8 by 16 inches?

The product of height, width and thickness, all in feet \((\frac{8}{3}\times\frac{8}{3}\times\frac{16}{3})\) gives \(\frac{128}{9}\) cubic feet as the contents of a solid block. As the air space is usually estimated as 33\(\frac{1}{3}\) per cent, the volume of concrete in one hollow block will be \(\frac{5}{3}\) of \(\frac{128}{9}\), or \(\frac{200}{9}\) cubic feet; in 100 blocks, the volume of concrete will be \(\frac{2000}{9}\) or 39\(\frac{1}{2}\) cubic feet, which being divided by 27 gives a little less than 1\(\frac{1}{2}\) cubic yards. Unfaced concrete block should be of 1:2\(\frac{1}{2}\):4 mixture. Table II shows that each cubic yard of this mixture requires 5\(\frac{10}{7}\) sacks of cement, 14 cubic feet of sand and 22\(\frac{14}{7}\) cubic feet of gravel. Multiplying these quantities by the number of cubic yards required (1\(\frac{1}{2}\)) gives the quantities of material required as 8\(\frac{2}{3}\) sacks of cement, 21 cubic feet of sand and 33\(\frac{3}{7}\) cubic feet of gravel.

Example IV: How many 6-foot hog troughs, 12 inches wide and 10 inches high, can be made from 1 barrel of cement?
Use a 1:2:3 mixture. Table I shows the volume of a 1-sack batch of this mixture to be $3\frac{1}{10}$ cubic feet. As there are 4 sacks in 1 barrel, a barrel of cement would be sufficient for 4 times $3\frac{1}{10}$, or $15\frac{5}{10}$ cubic feet of concrete. The product of the three dimensions, all in feet, gives the volume of one trough as $15\frac{5}{10}$ cubic feet. However, approximately 30 per cent of this volume is in the open water basin or inside of the tank, leaving $3\frac{5}{10}$ cubic feet as the solid contents of concrete in one trough. Dividing $15\frac{5}{10}$ by $3\frac{5}{10}$, we find that 4 troughs (and a fraction over) can be made from 1 barrel of cement when mixed with 8 cubic feet of sand and 12 cubic feet of gravel.

FORMS FOR VARIOUS CLASSES OF CONCRETE CONSTRUCTION

Forms or molds are the receptacles in which concrete is placed so that it will have the desired shape or outlines when hardened. Forms are constructed of wood, cast iron or sheet steel, or of wood lined with sheet iron or steel, depending upon the nature of the work and the surface finish which it is desired to obtain. By far the greater portion of concrete is placed in wood forms. The character of the work and the cost of lumber generally determine the kind of lumber that shall be used for forms. For work where a very smooth surface finish is required, planed lumber is best, and if ornamental trim is to be
reproduced in concrete, then white pine is best. For ordinary work, however, white pine is too expensive, and too soft to be durable under repeated use. Therefore spruce, Norway pine, and southern pine are generally the most economical kinds of form lumber. California redwood will stain the concrete surface so should not be used where such staining would be objectionable. Where spruce can be readily obtained, it is perhaps the best material for form studs and posts. Hemlock is too coarse grained for sheathing and splits so easily as to be unsafe where forms must be strong and heavy to support a great load of concrete. Most of the hardwoods are too expensive and too difficult to work.

Form lumber should be free from defects that will affect its strength or cause the concrete to show a reproduction of the markings on the lumber, where surface markings on the concrete would be undesirable.

Air-seasoned lumber is better than kiln-dried; the latter will swell and bulge at the joints, while green lumber will shrink if not kept wet, thus opening cracks in the forms through which water carrying cement will leak out when the concrete is placed. Even for plain work, lumber that has been dressed at least on one side and on the edges is best, because the boards will fit closely together and the smooth surface will reduce the labor of removing and cleaning forms. Tongued and grooved lumber is often used for form
sheathing. This makes tight forms and prevents leakage of water through forms when wet concrete is being placed, hence, will prevent the loss of cement from the concrete mixture. But for most farm work, tongued and grooved lumber is unnecessarily expensive.

Form lumber should be uniform in thickness, as any inequalities of thickness cause unevenness on the concrete surface. Posts and studs for supporting forms must be sufficiently stiff and strong to hold forms in true line and to prevent bulging or sagging under the load of concrete.

Careful thought should be given to constructing forms so that if it is desired to use them again or to use the lumber of which they have been made for further concrete form work they can be knocked down with least injury to the lumber. It may often be found advantageous to assemble certain forms with screws instead of with nails. Forms should be so designed that they can be taken down with the least amount of hammering, thus preventing possible injury to the concrete before it has thoroughly hardened.

For some foundation work, especially where the earth is so firm that the sidewalls of the excavation will stand without caving, forms will not be necessary for portions of the construction underground; but when placing and tamping the concrete, care must be taken not to knock down earth into the concrete. This will cause weak porous spots in the wall.
Economy of lumber and consequently reduced cost of form construction will result from planning the forms in units so far as possible; that is, as panels or sections which can easily be removed and reset in other places on the same job without alteration. This is especially true of building-wall construction aboveground.

Depending upon the mass of concrete to be supported, form lumber may vary in thickness from 1 to 2 inches. Likewise studding to which the sheathing boards are nailed may be spaced from 18 inches to perhaps 2½ or 3 feet apart, depending upon the thickness of sheathing and the mass of the concrete to be placed, and, hence, upon its tendency to cause forms to bulge. Studs should be selected with this in view also, hence may vary from 2 by 4 to 2 by 8 stock.

If forms of planed lumber are to be used repeatedly on the same construction, it is advisable to give the form face against which the concrete is to be placed, several coats of shellac to render the lumber non-absorbent. This will prevent loss of water from the concrete and will also keep the concrete from sticking when hardening. This, however, applies rather to forms used in ornamental work and is not usually warranted in the average construction. The common practice is to oil or wet forms at each setting just before depositing the concrete. A mixture of equal parts of boiled linseed oil and kerosene is very effective for this purpose; and such a
mixture should be painted on by using a swab, or a brush like a whitewash brush. Thorough wetting down with water will also prevent concrete from sticking if before used the first time the forms have been thoroughly oil-soaked. All concrete adhering to forms from previous work should be carefully removed before placing new concrete.

While no high degree of skill is required to make forms for ordinary concrete construction, nevertheless, thoughtful care should be exercised when measuring and cutting lumber, so that the concrete placed in them will correspond in line and dimension to the plan intended. If properly planned, forms can be assembled in part by clamps and wedges, and only a few nails partly driven will be necessary. This will permit taking them down with least injury to the lumber and to the partly hardened concrete.

After forms are made they should be set up perfectly plumb, and well braced in position so as to withstand the pressure of the fresh concrete, also of tamping it into place. Wood spacers should be used to hold opposite form faces exactly the correct distance apart, then bolts or wire ties be passed through or around form studs and across the space between forms to tighten the forms against the spacers and thus hold them in true alignment so that in wall construction, for instance, the finished structure will have a uniform thickness throughout.
Bolts used as form ties should be greased before placed so that they may be readily knocked out of the concrete when taking down forms. Removing them of course leaves holes in the concrete, which must afterward be pointed up with a cement mortar, usually consisting of 1 part cement to 2 parts of clean, coarse sand. Generally wire ties are cheapest, as the wire can be cut and all except the projecting ends be left in the concrete. Wire ties are tightened by twisting between form faces. Spacers, of course, are removed as concreting progresses.

The length of time forms should be left in place cannot be definitely stated. This depends altogether upon the nature of the work and the weather conditions, which govern the rapidity with which the concrete will gain strength enough to be not only self-supporting but to carry any load which is placed upon it.

It is particularly important that column forms be left in position long enough to prevent failure of the concrete after form removal. The same applies to forms used for supporting roof and floor slabs. Where no particular pressure is brought against the concrete or no load other than its own weight must be carried, forms can sometimes be removed in from one-half to two days, or as soon as the concrete will withstand hard pressure of one's thumb without showing a mark. On massive walls without load one to three days are generally required; but where the wall must
withstand earth pressure, as in a retaining wall, the forms may have to be left in place three to four weeks. This depends largely upon the time of year, which influences the rapidity with which the concrete gains strength.

SIMPLE FORM SYSTEM

Although there are a number of form systems which considerably simplify concrete construction, most of these are subject to patent control, hence the user must pay a royalty to the patent owner for the privilege of using the systems; or where patented forms may be purchased outright, their cost is greater than usually warranted for the limited use made by the home concrete worker.

Probably no use of concrete shows the material to more advantage than does monolithic construction. But the unit system, in which various pre-cast members are ultimately set up in place, possesses its advantages also, because doing away largely with expensive form construction. Yet frequently members must for various reasons be cast of such size as to be unwieldy when necessary to assemble the structure.

A form system which combines simplicity with cheapness is illustrated in Fig. 9. This produces what in a way is a combination of unit and monolithic construction. Columns, piers or posts are formed of hollow blocks cast in simple molds,
then laid up as masonry. The core or hollow space is afterward filled with concrete, reinforcing rods being inserted if necessary or desirable,

thus resulting essentially in a reinforced monolithic column.

Blocks when cast are made in a mold that provides for ribs on each end against which planks may be clamped to serve as forms for placing
the concrete of intervening panels. By varying the relative position of these ribs on the block, as shown in Fig. 10, one can see the possibilities of constructing walls or panels of practically any desired thickness.

Most of the commercial block machines could be equipped with a mold that would permit manufacturing such blocks by machine, yet as they form but a small portion of the entire construction where this system is used, most home workers will find it quite as desirable to make a simple mold and manufacture the block by hand.

A 1:2:4 or 1:2\(\frac{1}{2} : 4\) mixture in which the coarse

Fig. 10.—Illustrating How the System Shown in Fig. 9 may be Readily Varied.
aggregate does not exceed 1 inch in greatest dimension should be used for the block and the concrete should be of a drier consistency than is expressed by the word "quaky," yet not so wet that the forms cannot be removed immediately after the concrete has been tamped in the mold. Just enough water should be used in the mixture to cause a slight flushing of free water to the surface when compacting the concrete.

In constructing columns or piers for building-walls, foundation walls aboveground, or for panel fences, these blocks should, after thoroughly hardened, be laid up in a 1:2 cement mortar. Blocks should be thoroughly wet before being laid up so that they will not absorb an excess of water from the cement mortar thus preventing the mortar from bonding them together. Piers or columns are built up 5 or 6 feet high before filling the hollow space with concrete. Whether reinforcing will be necessary or not can be determined only when it is known to what purpose the construction is ultimately to be put.

Forms used to place the monolithic panels between columns, posts or piers, consist simply of 12 or 14-inch planks 2 inches thick, bolted together with \(\frac{1}{2} \)-inch bolts. Holes for bolts should be so laid out in the planks that it will be possible to turn planks end for end if necessary to correct warping or twisting from previous use. Bolts should be well oiled before placing concrete so that when form removal is started
they can be readily driven out of the wall and again used. The holes left may be easily pointed up with a 1:2 cement mortar. In some wall construction holes will need to be closed only on the outside face of the wall, wood plugs being driven in the holes on the inside face to serve as nail holds for attaching furring strips if lathing and plastering is contemplated later.

Four planks are commonly used to a panel, and after being bolted in place the space between them is filled with concrete. When the concrete has sufficiently hardened, forms are reset for further use by removing the lower pair of planks first and placing them on top of and resting on the pair above where they are bolted against the projecting lugs of blocks. After concreting has been carried to the height at which piers were built in the first instance, more blocks are laid to extend the piers or columns to a higher point, and so on. Reinforcing of panels can be easily done where necessary.

This system of form construction practically eliminates carpenter work and requires no outlay of lumber that after concreting represents waste. In fact there is no waste of lumber where this system is used.

Blocks cast after the manner suggested yet without projecting lugs form convenient units for building porch piers and may be filled with concrete if such added strength is necessary, and may also be reinforced. On the other hand, if
it is desired to enclose the foundation with walls or panels between piers then naturally the blocks with projecting lugs will be used.

CONCRETING TOOLS

In addition to the advantage of being able to secure most of the concrete materials near the work, is the advantage that but few tools are required in ordinary concreting. A carpenter's square, hammer and saw, nails and screws to assemble lumber, a sand screen (Fig. 1) so that the fine and coarse materials may be separated for proper reproporportioning afterwards, perhaps a trough or washing box (Figs 2 and 3) in which dirty material can be freed from clay, loam and similar foreign matter, a mixing platform (Fig. 8), measuring box, water barrel, square-pointed shovels, strikeboard, spade, or similar tool already described, a tamper, and a hand float, similar to a trowel, are the essential tools.

A sand screen of convenient size can be made by nailing a frame of 2 by 6 lumber over wire mesh having quarter-inch openings; that is, 4 openings to the linear inch, or 16 openings to the square inch, or, a screen fabric consisting of 3⁄8-inch slotted screen wire with cross wires as braces from 4 to 6 inches apart. Legs should be attached to one end of the frame so that the screen when set up for use will stand at an angle of about 45 degrees with the horizontal.
A very serviceable type of mixing platform can be made by nailing 2-inch lumber planed on one side and the edges, to a frame of 2 by 6's. Tongued and grooved lumber is preferable, however, so that joints will be tight enough to prevent mixing water leaking through and carrying with it a quantity of cement. The 2 by 6 stringers to which the platform boards are nailed should be spaced not farther than 2 feet apart and if the outer two have holes bored at the ends, so that clevises can be attached to them, a horse can be used to drag the platform easily about wherever needed.

A bottomless box 3 feet long; 1 foot 4 inches wide and 1 foot deep, inside measurements, made of 1½-inch lumber, has been found of convenient size for measuring materials, because such a box holds exactly 4 cubic feet. It should be marked on the inside at 3-inch intervals so that the volume of sand and gravel may be easily measured in multiples of one cubic foot. In other words, the measuring box is really a frame with handles, and when in use is set on the mixing platform which serves as a bottom.

Suppose it is required to prepare a 1:2:4 mixture; sand is shoveled into the box until there are 2 cubic feet, which would fill the frame half full or 6 inches deep. Then the box is lifted and the sand spread level over the center of the platform. One sack of cement (which equals 1 cubic foot) is then dumped on top of the sand and
spread about evenly. The cement and sand are thoroughly mixed and leveled off. The measuring box is now set on top of the mixed sand and cement or on the platform beside them and filled level full of gravel or broken stone. The box is then lifted, leaving 4 cubic feet of gravel or broken stone to be mixed with the sand and cement. Mixtures made up of different proportions of sand, gravel and cement are prepared in a similar manner.

Although concrete should always be mixed as near to the place where it is to be used as possible, it is almost always necessary to handle it some distance from the mixing platform or mixer. For transferring concrete from the mixing machine or platform to the place where it is to be deposited, a wheelbarrow may be needed. One having a sheet-iron body is preferable, as less concrete is likely to adhere to the surface and after use it can more readily be cleansed than a wood one. A type should be chosen that has the front portion of the body higher than the back, so that when the handles are lifted to wheel it the concrete may lie level in the barrow without flowing over one end and thus being wasted.

Watertightness of concrete construction is largely dependent upon the proper proportioning of materials and suitable consistency; nevertheless, it is in part secured by spading the concrete in the form so as to force back from the form face the coarse particles and allow the sand-
cement mortar to flow next to the forms. In use the spading tool (Fig. 50) should be worked up and down, not only in the center of the mass, but next to the form face as concrete is deposited. Little or no tamping will be required if a "quaky" mixture is used.

Ordinarily concrete should be deposited in layers not more than 6 or 8 inches thick, never more than 12 inches, preferably 6 to 8, because if more than this is placed in the forms at one time, it will not be possible to tamp or spade it to maximum compactness and density.

In foundation work, especially where most of the concrete is placed below ground level and there is to be no basement within the foundation walls, hence watertightness is not essential, concrete is often mixed with slightly less water than is required to produce a "quaky" mixture, in which case the concrete is tamped into position rather than spaded. For this work a tamper may be made by fastening a piece of 1-inch gas pipe, 5 feet long, into a hardwood block 8 by 8 by 12 inches, by boring a hole into the end of the block and driving in the pipe. The durability of such a tamper may be increased somewhat, by "shoeing" it with a piece of sheet-iron; or, a steel tamper can be purchased, and will of course be more durable. For most work, however, the home-made tamper described will be sufficient. One of smaller square dimensions than mentioned may be needed where the dis-
tance between form faces will not permit using a tamper 8 inches square.

In building floors, walks, and barnyard pavements, a straightedge is used to level or strike off the concrete after it has been placed in the forms. The straightedge (see Fig. 46) is used by resting it upon the top edge of forms, and should be long enough to project beyond the forms so that it may be conveniently handled by working it back and forth with a saw-like motion. A piece of 1\(\frac{1}{2}\)-inch lumber, from 4 to 6 inches wide and 6 feet long, planed to a true face on the lower edge, makes a good straightedge to strike off a slab 5 feet wide. For a wider surface a longer one will be needed.

Although it is now common practice to lay concrete floors and pavements of one-course construction, that is, of the same mixture throughout, sometimes such work is laid in two courses; that is, the base is of a "leaner" mixture than the top (having less cement in it) and in such case a base gage or strikeboard is necessary which is similar to the ordinary straightedge but notched at the ends so that when resting upon the sides of the forms it will project into them 1 inch and consequently strike off the concrete at that depth below the top of the forms so there will be a 1-inch space remaining to be filled immediately with the richer concrete top or wearing course.

Most classes of concrete work such as pave-
ments, walks, barn floors, driveways, etc., are now finished by using a wooden finishing trowel, called a wood float, because of its similarity to the float used by plasterers. Such a tool should be from 4½ to 6 inches wide and from 10 to 12 inches long, and can very readily be made by fitting a wood handle to a piece of ½-inch board of the desired size. The edges which are to come in contact with the concrete should be very slightly rounded. The wood float gives to the surface of a concrete walk, feeding floor or pavement a texture which is even but not slippery, and one that is much preferable for stock to walk upon than a concrete surface finished with a steel trowel. Danger of slipping is entirely removed if the surface is wood floated in final finishing. Corrugations in walks, floors and pavements are not necessary then.

For most home concrete work, the tools described will be sufficient. It may be necessary to buy three small ones: a rectangular steel trowel, a groover and an edger. The steel trowel is not recommended for general use, but is of advantage in finishing the inside of mangers, water-troughs, and work where a particularly smooth surface is desired. Care should be taken not to overtrowel the surface, as this causes a separation of the cement from the sand, bringing the former to the surface as a fine film which is not at all durable under wear.

The groover, as indicated by its name, is for
making a groove at the joints of walk or pavement slabs, but is used only on two-course work, one-course work being laid in alternate slabs to secure perfect joints of separation. As one-course work is largely replacing two-course construction, the groover will seldom be required. The edger, however, is necessary to finish the edges of all slabs in walk, floor or pavement construction regardless of whether the work is one or two-course. These three small tools may be purchased from almost any hardware dealer, or can readily be obtained by him. They are not expensive and if kept clean and well oiled after laid away will last almost indefinitely.

FOUNDATIONS

No material lends itself more readily to the construction of foundations than does concrete. The very ease with which it may be made to fill irregular excavations simplifies foundation construction by comparison with brick or stone masonry. Furthermore, the rapidity with which the work can be carried on with unskilled labor is another advantage. Where the nature of the ground is such that the walls of the excavation are self-sustaining, it may not be necessary to use forms for that portion of a foundation wall below ground. But if the interior of the excavation is to form a basement or cellar, then inside forms at least will be necessary so that a smooth surface can be given to the concrete while placing.
LAYING OUT FOUNDATIONS

As most buildings are square or rectangular, laying out the foundation is a relatively simple matter. (See Fig. 11.) A stake should be driven where one corner of the proposed building is to come. From this stake a string should be stretched in the direction of one side of the building and to a point where another corner is to fall. For instance, suppose in Fig. 11 one corner of the building is to be located as indicated by the stake A, and another at the stake C. After these two points have been fixed, a string should be tightly stretched from stake A to stake C. Then measure off the required distance from A to B, stretching a string also between these points. When setting stake B, endeavor to locate it so that the string A-B will be nearly at right angles.

Fig. 11.—Method of Laying Out Foundation to Square Corners.
with the string \(A-C \). Now measure off on the string \(A-C \) 8 feet and drive a stake into the ground directly beneath the string at this point. Mark the 8-foot distance by a small brad or nail driven in the top of the stake at \(Z \). Measure off on the string \(A-B \) 6 feet and drive a stake at \(Y \), marking the 6-foot point also on the top of stake \(Y \). The stake \(Y \) may now be shifted slightly, either to the right or left as may be necessary, until the distance between the mark on the top of stake \(Y \) and stake \(Z \) is exactly 10 feet. When this has been fixed, the stake \(B \) can be moved to the right or left as necessary until the string \(A-B \) exactly crosses the mark on top of stake \(Y \). This will make the foundation corner as indicated by the strings \(B-A \) and \(A-C \) a right angle. Other corners can be then squared in the same manner.

Piers that are necessary within the foundation enclosure can be readily located by following similar methods. These strings serve as a guide for the exterior line of the foundation trench.

DEPTH OF EXCAVATION FOR FOUNDATIONS

Excavations for foundations should in all cases extend deep enough to reach firm bearing soil and to be below possible frost penetration. If not placed below the level to which frost may enter the ground, heaving may result and this may eventually cause cracking of the construction.
This may mean that the bottom of the foundation or footing must start at a point 3 or 4 feet below ground level.

For light structures, perhaps no footing will be needed, although it is best to provide a footing somewhat wider than the actual foundation wall thickness, as this insures a firm bearing for the load that is to be carried.

Ordinary footings may vary in width from 18 inches to 2 feet or more and from 6 to 12 inches in thickness. For most farm structures it will rarely be necessary to build a foundation wall more than 10 or 12 inches thick, probably the former will be sufficient, unless the building is to be a very heavy one or carry heavy loads. Building walls aboveground will vary from 6 to 10 inches thick, depending on the size of structure. Foundations ordinarily require no reinforcing.

Form construction for the portions of the foundation wall aboveground is simple, and consists merely of panels which are constructed by nailing sheathing boards to 2 by 4-inch studs spaced from 18 inches to 2 or 2½ feet apart, depending upon the thickness of the sheathing and the weight of the concrete. The forms should, of course, be well braced, so as to hold them in true line and enable them to resist the pressure or thrust from concrete while being placed and spaded in the forms.

Where the enclosure within foundation walls is not to be used as a basement or cellar, and hence
need not be thoroughly watertight, a somewhat drier mixture than is described by the word “quaky” may be used for foundation construction; and unless the load to be carried is an extremely heavy one, a 1:3:5 mixture will be suited to that portion of the foundation belowground. Just as soon as ground level is reached, however, the mixture used should be a richer one, preferably a 1:2:4 or 1:2½:4. Concrete should be placed continuously in layers not exceeding 6 or 8 inches thick, and carefully tamped or spaded as placed. A somewhat dry mixture needs thorough tamping; a “quaky” one needs thorough spading but little tamping. Spacers should be removed from inside the forms as fast as concrete is placed up to a level with them. In placing the concrete the layers should continue of uniform thickness all around the foundation enclosure and at a uniform level. This means that the work should not be finished all at once in one place until the forms are filled, unless a stop-board is fastened vertically in the forms to make a vertical joint, and then only for work belowground where such a joint would be no objection. Under no circumstances should more concrete be mixed at one time than can be placed within thirty minutes, and in case any of that which has been mixed commences to stiffen or harden before it can be used, it should not be softened up (“retempered”) by adding more water and remixing it, but should be thrown away.
Retempered concrete will not acquire the desired strength when finally hardened.

If a stop-board has been used to form a vertical joint in the construction, then when concreting is resumed in the adjoining section, this stop can be removed and the concrete previously placed will have so hardened that it will serve as an end form.

Where a certain piece of work cannot be finished in one day, the work at the close of a day should be left with a rough top surface in the forms. Preparatory to placing concrete the following day, the surface of the previous day's work should be well scrubbed and washed off with a broom and water and painted with a mixture of pure cement and water, mixed to the consistency of cream and applied with a whitewash brush. Fresh concrete should at once be placed and will practically unite with the old without leaving a construction seam or a joint. Such a precaution is not necessarily required in ordinary foundation work where the building is not to have a cellar or basement, but if watertightness is desired it is imperative that such a precaution be taken to join two days' concreting.

An admirable service is performed by concrete in the construction of foundations for gasoline engines, cream separators, and similar small machines. For such work excavation should be carried to a sufficient depth to insure a firm bearing and necessary provision must be made when
designing the forms to make a template with holes bored in it in the same relative position as the holes in the machine base, so that bolts can be embedded in the concrete to permit afterward bolting the machine to the foundation. Just how this work is provided for will be seen in an accompanying illustration (Fig. 12).

Fig. 12.—Simple Form for Machinery Foundations.

Some of the principles which must be observed to secure the best results will be briefly mentioned. Carrying capacity is a quality chiefly sought in any foundation, and permanence is a consideration secondary only to strength. The cost of a well-built concrete foundation is considerably less than that of one constructed of any other suitable building material when strength
and durability are considered. Under average conditions, the time required for building a concrete engine or machinery foundation is shorter than that required to build of brick or stone. Concrete is the only foundation material that may readily be adapted to slopes, change of grade or other irregularities in the subgrade on which the foundation is to be placed.

Where soil is reasonably firm, no form will be required for an engine foundation, except for the portion above ground level, as shown in Fig. 12. Consequently the excavation should be carefully made in a manner to prevent caving in of the sides and should not be larger than the size of foundation required satisfactorily to hold the engine or

Fig. 13.—Simple Form for Foundation Construction Belowground.
machine to be placed thereon. The size of the foundation and the corresponding size of the ex-

Fig. 14.—Form Construction for Concrete Wall Aboveground.

Fig. 15.—Method of Tying or Locking Wall and Column Form.

cavation will, of course, be determined by the type and size of engine or machine to be set, and will usually be indicated by instructions for set-
ting the engine, which are furnished by all engine manufacturers. Concrete meets all requirements of rigidity and appearance required in foundations for gasoline engines, cream separators and other stationary machinery.

It is seldom necessary to reinforce concrete engine foundations unless they are to be subjected to excessive side thrusts, vibration, or other unusual strain. Where they extend aboveground some distance, reinforcing is occasionally used in large foundations to counteract the effect of contraction and expansion from temperature changes, but this does not apply to small work.

The safe loading of concrete in foundation construction is as follows:

- 1:2:4 concrete, 47 tons per square foot,
- 1:2½:5 concrete, 41 tons per square foot,
- 1:3:6 concrete, 36 tons per square foot.

(A "factor of safety" of 4 was allowed in computing this loading.)

Engine foundations should be made with sufficient footing so that the allowable pressure upon the soil will not be exceeded. The bearing power of soils varies, and is usually considered to be as follows:

- Ledge Rock 36 tons per square foot,
- Hardpan 8 tons per square foot,
- Gravel 5 tons per square foot,
- Clean Sand 4 tons per square foot,
Dry Clay 3 tons per square foot,
Wet Clay 2 tons per square foot,
Loam 1 ton per square foot.

To avoid spreading, sand must be confined when wet.

Two-inch lumber is to be preferred for the form aboveground although 1-inch boards may be used for small foundations. Notice that the boards are shown extending beyond the form corners. This overreaching is merely to avoid cutting and thus save lumber, as by following this method the lumber may be cleaned, nails removed, and the boards again used for some other purpose.

Anchor bolts of the size specified by the engine manufacturer may be set by the method illustrated. A template should be constructed of straight-grained, 1-inch material, fastened together by screws. Holes slightly larger than the bolts should be bored in the template to conform to the location of the holes in the engine base. The bolts are suspended head downward, from the template, with threaded ends projecting above the template, a distance not less than the thickness of the engine base and nuts to be used. Anchor plates or large washers should be placed over bolt heads to prevent bolts from pulling out of the concrete. Bolt ends projecting above the template should be covered to prevent concrete from touching them when filling the forms. Care should be exercised to keep the bolts as nearly
perpendicular as possible while placing the concrete. When the concrete has partly hardened, the template may be removed and the foundation top finished to a level surface, care being taken not to strike the projecting bolt ends, as the fresh concrete offers but slight resistance. By making bolts 2 inches longer and threading them 2 inches farther from the end, the concrete may be allowed thoroughly to harden before removing the template, which in that case is supported by 2-inch blocks placed on top of the forms, allowing space for finishing the concrete surface under the template. The engine may be placed in position after the concrete has thoroughly hardened, which will require from ten days to two weeks, depending upon weather conditions. The same principles as are described in the foregoing paragraphs apply to setting any other machines.

PRINCIPLES OF REINFORCING AND THE MATERIALS USED

Concrete shows great strength in supporting loads that are placed directly upon it, but it is relatively weak when subjected to strains that tend to pull it apart (see Fig. 16). In some parts or types of construction it is therefore necessary to reinforce the concrete by embedding in it at the time of placing, wires, steel rods or some kind of metal fabric, to increase its ability to withstand pulling strains (tension) and at the
same time obtain full benefit of its compressive strength. Reinforcing also often results in economy of concrete required.

Common types of construction where reinforcing is necessary are fence posts, watering troughs and tanks, beams, columns, large floor slabs, roof slabs, etc.

It is not possible to give a fixed rule that will serve as an invariable guide for determining the

![Diagram](image)

Fig. 16.—Illustrating Beam Fracture where Concrete is not Reinforced, and when it is.
amount of reinforcing required for various structures, but as an illustration, it may be said the quantity of reinforcing metal required in beams and roof or floor slabs may vary from \(\frac{1}{2} \) to \(1\frac{1}{2} \) per cent of the cross-sectional area of the concrete section. More specific illustrations will be given later when describing particular types of construction.

The ratio of concrete's strength in resisting pulling strains (tension) as compared to its strength in supporting loads placed directly upon it (compression) is about 1 to 10. Steel is strong in tension, although rods and wire mesh, which are
the common forms of steel used for reinforcing, will bend easily, and therefore must be placed so as at once to take up the load of tension which may be brought upon the concrete. The ideal position for reinforcing steel is at the surface of the side or face of the concrete member that is to be subjected to tension. As this position is not practicable in practice, the steel must be embedded in the concrete just as near the outer surface where it is to resist tension as possible, and at the same time permit surrounding it with concrete to form a perfect bond or union between concrete and steel. The distance from the surface will sometimes vary in accordance with the size of pebbles or broken stone being used in the concrete mixture.

The side of any concrete member that may be exposed to pulling strains may not always be the same side as is true in a beam, where the lower side is always the one. As an example, take a concrete fence post (Fig. 17). As one cannot tell from which direction the strains may come, a fence post is reinforced at all four corners.

Sometimes a concrete structure may be of such shape and weight that it might crack on account of unstable foundation and unequal settlement; likewise a concrete trough full of water may freeze, therefore the strains of tension would be exerted on all sides of the structure by the expansion of the ice.

To be suitable for reinforcing concrete, steel
should possess certain particular qualities. This means that only steel manufactured to have certain chemical composition and other properties should be used. Generally speaking, the home worker had best confine his choice to some type of round or square twisted bars, or to some one of the woven mesh wire fabrics like those used for fencing, although the type of fabric made for reinforcing is not necessarily intended for fencing. Any attempt to substitute barbed wire, old scrap iron, pipes or similar odds and ends of scrap metal will not result in the same success.

Fig. 17.—Illustrating the Requirements of Fence Post Reinforcement.
and security of construction that will follow using proper reinforcing materials.

Round bars will be found easiest to obtain under most conditions and will be suited to the general run of home concrete work. One should remember that the steel or iron bars which he may be able to obtain from the local blacksmith shop may not have the desired qualities for concrete reinforcement. It will therefore be found best to purchase reinforcing steel from some dealer or manufacturer making a specialty of such material.

There are various types of so-called "deformed" bars used in reinforced concrete work. These are variously shaped in rolling, with the object of increasing the "mechanical bond" between concrete and steel. Most of these, however, are subject to some kind of patent-right control and therefore are higher priced than plain round or square twisted rods. If the concrete is mixed to the right consistency and properly placed there will be a good bond between the concrete and metal, so that there is really no advantage in using any of the deformed types of bars for ordinary concrete construction.

In a beam, floor slab or roof slab, steel must be near the bottom face of the beam or slab. In a wall that is to withstand earth pressure, it should be on the face farthest away from the earth. In a tank that is to withstand water pressure, it should in theory be near the outside (far-
concrete), but in practice it is more convenient in walls that are to withstand earth pressure and walls that are to resist the pressure of water to use a little larger reinforcing or more steel than might really be necessary if it were placed where it theoretically belongs, and to place it near the center of the wall. This makes placing of concrete easier. Whenever plans call for placing reinforcing in a certain position, the plans should be followed exactly. Sometimes walls are designed in which reinforcing is placed near both inner and outer faces.

One strain of tension which is brought upon concrete is the tension due to expansion of the mass under temperature changes, that is, when concrete rises in temperature corresponding to temperature changes of the air, the mass will expand as the temperature rises. Expansion is somewhere in the neighborhood of one inch per hundred feet. Fortunately steel expands at practically the same rate. Therefore, reinforcing steel not only resists the tendency for the concrete to crack, but in expanding with it at practically the same rate, the bond between the steel and concrete is not broken.

Reinforcing steel should be kept clean until used. Any coating of scaly rust or mill scale or a coating of oil will prevent the concrete from forming a good bond with it, hence will prevent the construction from having the strength that might be expected from incorporating the steel.
Whenever reinforcing bars have to be shaped, as in placing them around a corner of a tank, they should be very carefully bent so that the rods will lie in exactly the desired position in the concrete.

Any temporary block supports or stays that are to be used to hold reinforcing in correct position while concrete is being placed should be removed as rapidly as concrete is placed up to them. Both rods and mesh when lapped should be securely wired together. Soft black No. 16 or No. 18 gage wire is tough and pliable and is the common material used for binding or tying together rods and fabric when lapped or spliced.

CONCRETE WALLS AND FENCES

Concrete lends itself admirably to the construction of walls and fences, although in the latter class of construction there is a limit to the variety of work which can be produced by the average home worker. Form construction for anything like a fence having the appearance of a wood picket fence is very complicated and placing of the concrete is difficult. On the other hand fences which are essentially a post-and-rail combination are simple, as they represent unit construction; that is, the posts and rails are cast separately and the units afterward erected in just about the same manner as a wood post and rail fence would be set up (see Fig. 18). Considering the time element, however, such classes
of concrete fences would better be replaced by some one of several types of light panel wall construction. The form system shown by Figs. 9 and 10 is very adaptable to panel fence or wall construction.

In the post and rail fence (Fig. 18) posts are square and reinforced with $\frac{3}{8}$-inch rods, placed three-quarters of an inch from each corner. The "rails" are 2 inches thick and 6 inches wide, reinforced with two $\frac{1}{4}$-inch rods, running the entire length one inch distant from each edge. Posts should be made of a $1:2:3$ mixture, in which the large aggregate, that is, pebbles or broken stone, is not larger than $\frac{3}{4}$ inch in greatest di-

Fig. 18.—Post-and-Rail Type of Concrete Fence.
mension, while the rails should be made of a 1:2:3 mixture containing a uniformly graded aggregate ranging from the finer particles up to \(\frac{1}{2} \) inch in greatest dimension.

The particular disadvantage of a unit post and rail fence of this kind is that the different members must be thirty days old before they can be set in place, that is, they should be allowed to harden that length of time before being used, and as the "rails" should be left in the molds for a day or two before handling, this requires a large quantity of molds and considerable facilities for properly storing the units until used.

In the various types of panel wall or panel fence construction, the concrete is cast in place. Ordinary panel forms can be used and these may be removed usually within 24 hours after placing the concrete, thus not many forms are required. In Figs. 19, 20 and 21 the design represents a wall section 3 inches thick with triangular mesh fabric for reinforcement. The posts are cast in place and are of such shape (Fig. 19) that when
the panels are cast, they interlock with the posts. Concrete for such construction as this should be

![Image of concrete construction](image)

Fig. 20.—Construction Illustrated in Fig. 19 in Process.

a 1:2:3 mixture in which the coarse aggregate does not exceed ¾-inch in size.

In another design (Fig. 22) is shown a post and
Fig. 21.—Construction Illustrated in Fig. 19 in Process.
panel construction in which the posts are also cast in place, with a recess in two faces that will permit the wall panels to enter when they are subsequently cast. Wall panels rest on a foundation which is 10 inches wide and 18 inches deep, vertical rods being placed in this foundation (Fig. 23) so as to lap with the vertical rods in the wall panels. Posts may be of any desired dimension, but in this particular instance are supposed to be

10 inches square, reinforced with $\frac{1}{2}$-inch or $\frac{3}{8}$-inch rods, placed $1\frac{1}{2}$ inches from the outer face at each corner. The height may be varied as desired.

Panels are 16 feet long and 4 inches thick and reinforced with rods $\frac{1}{2}$ inch in diameter, placed 18 inches apart center to center, both vertically and horizontally, being assembled as a sort of lattice before being raised in position and well wired together where they intersect or cross (see Fig. 23). Enough forms should be provided for

![Diagram](https://example.com/diagram.png)
CONCRETE ON THE FARM AND SHOP 79

Fig. 23.—Various Details of the Construction Illustrated in Fig. 22.

Fig. 24.—Various Details of the Construction Illustrated in Fig. 22.
Fig. 25.—Various Details of the Construction Illustrated in Fig. 22.

Fig. 26.—Various Details of the Construction Illustrated in Fig. 22.
such construction to accommodate one day’s placing of concrete, then on the following day the forms first used the preceding day can be removed and placed ahead for commencing the day’s work, this operation continuing as concreting proceeds during the day. Figs. 24, 25 and 26 show details of the work.

A 1:3:5 mixture will be suited for the foundations for panels, although it may be just as convenient and in the end as economical if a 1:2:4 mixture is used throughout rather than go to the trouble of preparing and using two different concrete mixtures. Posts should be of a 1:2:4 mixture throughout.

FENCE, GATE, CLOTHES-LINE, AND GRAPE-ARBOR POSTS

Owing to the increasing scarcity in many sections of the country of wood suited to fence posts, one of the most timely uses of concrete on the farm is for fence posts. When one realizes the expenditure of time and labor necessary to keep a fence in which wood posts are used in proper repair, it is not surprising that concrete posts should have gained in popularity during recent years. Wood posts, especially those that are most desirable, have advanced in price until in most sections of the country they are just as expensive as concrete posts, with the latter in greater favor because being fireproof and rotproof. The
life of a cedar post under the most favorable conditions cannot be expected to exceed 15 years. Concrete posts properly made should have an almost unlimited life; and where good sand and gravel can be obtained on the farm or nearby, they can in some instances be made for less than a good cedar post now costs.

POST MOLDS

If a large quantity of fence posts is to be made it will well pay the home worker to purchase some one of the several types of commercial fence post molds. But it is very easy to make a home-made mold (see Fig. 27) that will answer admirably for concrete post making during spare hours.

![Fig. 27.—Home-made Gang Mold for Concrete Fence Posts.](image-url)
Commercial molds are usually of sheet steel and, taking all types into consideration, are manufactured so that concrete posts can be made of almost any shape desired—round, square, rectangular and semi-elliptical, and both straight and tapered. Choice of size and shape is largely a matter of individual preference, although for general line-fence purposes no post should be smaller than 3 by 3 inches at the top and 4½ by 4½ inches at the bottom, this for a length of 7 feet. In fact, it will be found perhaps easier to make a post 3½ or 4 inches square at the top and 5 inches square at the bottom, these dimensions being of advantage in facilitating the proper placing of reinforcing—one of the most important details of fence post manufacture.

MIXTURES FOR FENCE POSTS

Although concrete line fence posts have been made out of a mixture consisting of 1 part of cement and 3 parts of well-graded sand in which the particles ranged from the finest permissible up to ¼ inch, such a mixture will not ordinarily give a post of as great strength as a properly proportioned 1:2:3 mixture in which the coarse aggregate (pebbles or broken stone) consists of particles graded from ¼ up to ¾ inches. A 1:2:4 mixture for fence posts has often been recommended, but as the home worker is not always careful uniformly to grade his materials the
1:2:3 mixture compensates in a measure for possible neglect in this respect and therefore is a safer mixture to use.

COST OF CONCRETE POSTS

A rectangular post of average size may range in price from 20 to 35 cents, but will probably average around 24 or 25 cents. These figures are based on the assumption that all materials must be purchased, and that Portland cement will cost $2 per barrel, sand and gravel $1 per cubic yard, and reinforcing steel 2½ cents per pound. The farmer rarely need buy sand and gravel, and in many instances can obtain cement for less than $2 per barrel, so the cost can often be reduced. More than one farmer has found it possible to turn out standard size concrete fence posts for 19 cents each. Probably the cost may safely be estimated as never likely to exceed the highest figure previously mentioned and quite often may be below the lowest figure.

REQUIREMENTS OF REINFORCING

Many persons have a false impression of reinforcing requirements for concrete fence posts. Some have made posts with a single rod running through the center, thinking that if this one rod contained the same amount of steel as four smaller rods spaced near the surface at each corner, the result would be the same.
If a preceding explanation of the principles of reinforcing has been understood, one can see that the single rod at the center of the post does not accomplish the desired purpose. When set in place, a fence post may be subjected to strains or shocks from any direction. If the wires are tightly attached, it certainly may receive pulls from either direction along the line of the fence, as well as shocks or blows from inside or outside the enclosure, due to animals attempting to get into or out of the pasture lot. These possibilities must be anticipated, and the only way to do so successfully is to place suitable reinforcement near the face at each corner of a square or rectangular post, and in a circular post place the reinforcing at points corresponding to four corners of a square post and as near the surface at the circumference as possible, yet far enough away to permit surrounding the rods with concrete.

MATERIALS FOR REINFORCING

Another false impression often entertained is that almost any kind of scrap wire, even barbed fence wire, will serve as post reinforcing. While it is possible to place reinforcing in the form of wires in a fence post so that the amount of metal would correspond to that obtained by properly placing \(\frac{1}{4} \)-inch round rods, nevertheless, the inconvenience of handling wire makes it almost certain that when the post has been finished, the rein-
forcing metal will not be in proper position in the concrete, therefore will not accomplish the desired results. All of the kinds of wire commonly recommended or suggested for reinforcing are far more difficult to handle in placing than are straight rods. Reinforcing wire usually comes in coils and it is very difficult to straighten it so that it will lie in the proper plane while placing concrete. Greater economy of time and much more certainty of successful results follow the use of suitable steel rods.

An accompanying table will be of considerable assistance to the concrete worker in enabling him to choose suitable dimensions for his posts and the necessary reinforcing. This table also gives the volume of various size posts in cubic feet, the approximate weight each in pounds, and the quantity of materials required for ten posts of various dimensions, made of a 1:2:3 mixture.

Referring again to the desirability of making fence posts of a 1:3 cement-sand mixture, one can see by examining the table that for 7-foot posts 5 inches square at the bottom and 3 inches square at the top, one barrel of cement will be a little more than sufficient to make fourteen posts, while if a 1:2:3 mixture is used, the same quantity of cement will make twenty posts of the same size. Hence there is economy in the 1:2:3 mixture, equalling very nearly 33\(\frac{1}{3}\) per cent.

Most of the commercial fence post molds are relatively inexpensive, yet if a person does not
<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1-Cement, 3-Sand</td>
</tr>
<tr>
<td></td>
<td>No. Posts per Bbl. Cement</td>
</tr>
<tr>
<td></td>
<td>For 10 Posts</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>6' 6''</td>
<td>3'' x 3''</td>
</tr>
<tr>
<td>7' 0''</td>
<td>3'' x 3''</td>
</tr>
<tr>
<td>7' 6''</td>
<td>3'' x 3''</td>
</tr>
<tr>
<td>8' 0''</td>
<td>3'' x 3''</td>
</tr>
<tr>
<td>6' 6''</td>
<td>4'' x 4''</td>
</tr>
<tr>
<td>7' 0''</td>
<td>4'' x 4''</td>
</tr>
<tr>
<td>7' 6''</td>
<td>4'' x 4''</td>
</tr>
<tr>
<td>8' 0''</td>
<td>4'' x 4''</td>
</tr>
<tr>
<td>6' 6''</td>
<td>5'' x 5''</td>
</tr>
<tr>
<td>7' 0''</td>
<td>5'' x 5''</td>
</tr>
<tr>
<td>7' 6''</td>
<td>5'' x 5''</td>
</tr>
<tr>
<td>8' 0''</td>
<td>5'' x 5''</td>
</tr>
</tbody>
</table>
desire to make the expenditure necessary to secure such equipment, the home-made mold shown will answer all purposes admirably. Such a gang mold can be made to make a post of any desired dimensions, and of any capacity up to the limit of floor space or bottom board used to rest the mold on.

Sides and ends of molds are held in place by blocks and wedges. After the concrete has been in the mold 12 hours, wedges can be knocked out so that sides, ends and partitions may be removed, then the posts allowed to remain undisturbed on the pallet or bottom board until they have become strong enough to handle without possible injury. One-inch lumber will be suited for the ends and interior strips of such a mold, but 2-inch stock should be used for outside pieces. Before being used the entire mold must be protected from warping by painting with two coats of boiled linseed oil and kerosene, equal parts of each, which will also prevent the concrete from sticking to the mold. Molds should be well cleaned after use and oiled before each filling.

PLACING CONCRETE AND REINFORCING

After having placed three-quarters of an inch in the bottom of the mold the two reinforcing rods for that side are laid in proper position, then additional concrete placed until within about three-quarters of the top, when the two remaining re-
inforcing rods are pressed into proper position in the concrete and the mold filled level. Concrete for fence post manufacture should be mixed a little wetter than quaky consistency, so that it will settle to all parts of the mold with little stirring or puddling and completely surround and bond with the reinforcing. It is very important that concrete fence posts be dense, and added density is secured by jarring or rapping the mold in some manner so as to release air bubbles which may be in the concrete mixture and thus prevent resulting air pockets in the finished post. Some of the commercial fence post mold outfits are used in connection with a vibrating table to jar the concrete, thus making it dense and compact. If the home worker does not find it feasible to arrange his gang mold on some support so that the mold can be vibrated or shaken while the concrete is being placed, then it is well to take a stick or a rod and stir the concrete gently along the form faces to release air bubbles, and to tap the mold while placing concrete.

SPACERS FOR REINFORCING

To hold reinforcing rods in correct relative position when placing them in the concrete, it will be found advantageous to take some small pieces of No. 16 gage wire and twist it as shown in Fig. 28 so that loops are formed around the rods. They will thus be held at the desired separation in the mold while placing concrete.
If concrete is placed at proper consistency, jogging the mold will result in a smooth, dense surface on the post and cause a perfect bond or union between the concrete and the reinforcing. One must be careful not to use too much water for fence post mixtures. The concrete should not be slushy nor soupy, as that will cause the sand-cement mortar to separate from the pebbles, and when the post has thoroughly hardened there will be pockets in the concrete—possibly some of the reinforcing steel may be exposed.
HARDENING THE FINISHED POSTS

Posts must not be allowed to dry out quickly. They must be protected from drying wind and sunlight and should be covered with wet straw or chaff, which should be kept wet for a week or ten days before attempting to store them anywhere out of doors. If they have been made under usual summer weather conditions it will be safe to lift them from the floor or bottom support of the mold within 36 hours after placing the concrete. Extreme care, however, should be used in handling them, as cracks will affect the strength of the finished post. Posts may be carefully piled in some convenient shed (not corded up, however, in piles one on top of the other, but spread out on an even support so that the protective wet chaff covering may be kept over them) until hardening has progressed sufficiently to permit moving them out of doors to complete hardening naturally. Here they may be set up on end, resting against a building or a wall, and by the time they are 30 days old, they will be in good condition to set in the fence line.

FASTENING LINE WIRES

Numerous suggestions have been made as to the best way of fastening line wires to concrete fence posts. Some advocate inserting wood or metal pegs in the concrete at the time of placing,
then withdrawing these pegs when the concrete has stiffened, leaving a small hole entirely through the post to receive a tie wire, the ends of which are wrapped around the fence wires. Other methods have consisted of embedding eyelet fasteners in the concrete, or embedding small bolts with loops at one end in the same manner. Holes in the post, no matter how small they may be, tend to weaken it. Eyelet fasteners will eventually rust off. By far the simplest method that has been used consists of tying the fence wire to the post by means of a loop of wire passed around it on three sides using the ends which project at the back of the post to wrap around the line wire, exactly as telephone or telegraph wires are fastened to the glass insulators on poles.

CORNER POSTS

Concrete corner posts on account of the strains to which they are subjected must, of course, be larger than line posts (see Figs. 29 and 30). Depending upon the length of the fence stretched from them, the size required may vary within a considerable range. Corner posts may be from 6 inches square up to 10 or 12 inches square; and the amount of reinforcing required will depend upon the strain to which the posts are to be put and therefore upon their square dimensions. In a 6 by 6 or 7 by 7 post there should be four rods at least \(\frac{\sqrt{2}}{16} \) of an inch in diameter.
A 10 by 10 post should have four $\frac{3}{8}$-inch rods; a 12 by 12 post, four 1-inch rods.

On account of their weight and the consequent inconvenience of handling, corner posts larger than 8 inches square are usually cast in place; that is, a hole is dug in the ground, rods properly placed, concrete deposited to ground level, and the form set right up in position, properly braced where the post is to stand, and the concrete placed in the form from the end. Reinforcing rods should extend from the bottom of the foundation right up through the post. When the earth is firm there will be no need to use a form for the part that is to be underground; if not firm, it is best to build a form for the entire post,
that is, for both the portions below and above ground. The portion belowground had best be

of larger square dimensions than aboveground, for stability.

Fig. 30.—Corner Post with Brace Cast Monolithic with it.
BRACES FOR CORNER POSTS

Sometimes corner posts complete with braces are cast as one piece as in Fig. 30. Form construction will readily suggest itself. Of course, the brace also must be suitably reinforced with rods in each corner, of proper size.

GATE POSTS

Gate posts or entranceway posts are also massive and are cast in place the same as heavy corner posts. If subjected to strains of fence stretched from them they must be braced. Likewise, reinforcing rods must be chosen as regards size with reference to the size of post and the load or stains to which it is to be subjected, such as heavy, swinging iron gates, and fence stretched from them. The reason why reinforcing must extend down below ground level in corner and gate posts is to resist the possibility of their breaking at ground level under severe strains or load.

FORMS FOR GATE POSTS

Form construction for entranceway or gate posts is simple or complicated, depending upon the design which it is intended to execute. Usually such posts are made square or round. In the latter case a very convenient way of making the form is to use a section of old metal smoke-
stack of the required diameter, first cutting this down the entire length so that after concrete has been placed, the form can be removed. Wires or other fastenings will have to be wrapped around this form after it has been cut to prevent it from spreading open while concrete is being placed.

RUBBLE CONCRETE POSTS

Another and easy way to construct entrance-way or gateway posts consists of using rubble stones or field stones ranging from 3 to 5 inches in diameter. Such stones are selected so that they will form a pleasing arrangement on the exposed face of the work when forms are removed. They are laid around against the inside of the form as shown in an accompanying sketch, Fig. 31, a 1:3 cement mortar being used to bed them. Then a quaky 1:2:4 concrete mixture is used to fill in the center. Work should be done so that concrete is placed in layers no greater than 6 inches at a time. Proper reinforcing must be used and placed a little back of the stones. Rubble stones must be wet when placed so that the concrete will bond to them. A concrete cap can be cast separately and placed on the rubble construction later if desired, or the forms can be so built that this cap will be monolithic with (a part of) the remainder of the work.

After forms have been removed the surplus mortar in the joints between stones should be
picked back slightly and any mortar adhering to the face of the stones washed off with a stiff

![Diagram of Concrete Gate Post]

Fig. 31.—Sketch Showing Method of Constructing a Rubble Concrete Gate Post.

brush and water. The appearance should be as in Fig. 32.
Fig. 32.—Appearance of Finished Rubble Work.
Provision should be made while placing concrete to embed necessary fittings for hanging the gates. Hangers should be threaded on the end that is to be placed in the concrete and a nut be passed over the threads so as to prevent the hangers from pulling out when gates are hung.

Corner posts and gate posts must also be made of a quaky concrete. While the concrete is being placed in the forms, a long-handed spading tool should be used to spade the concrete next to the form face (except in rubble work) so that there will be a smooth, dense surface free from stone pockets when forms are removed.

CLOTHES-LINE POSTS

Concrete posts from 9 to 10 feet long make durable and practical grape arbor and clothes-line posts (see Fig. 33). They need reinforcing the same as do other concrete posts and the quantity of metal required depends upon the square dimensions of the posts and the loads or strains to which they are to be subjected. They should be of a 1:2:3 mixture. Wires upon which to train vines or hang clothes may be attached in the same manner as fence wires are attached to line fence posts, but usually short pieces of iron rod are embedded near the top of clothes-line posts and in grape-vine posts wood plugs are inserted in the soft concrete while placing and these plugs withdrawn when the concrete has
Fig. 33.—Clothes-line Posts of Concrete.
stiffened, thus forming holes through which wires may be strung, or if posts are to form an arbor, then the wood plugs may be left in the concrete and be used as nail holds when attaching wood slats. What has already been said as regards subjecting fence posts to pulls and strains until after they are a month old applies also to grape arbor and clothes line posts. They should be protected against too rapid drying by being covered with wet straw, hay, or similar covering, and sprinkled often enough to keep them moist.

CONCRETE TANKS

Among the various classes of concrete construction which may be considered as coming under the heading of tanks are hog wallows, watering troughs, feeding troughs, manure pits and cisterns. All these require that the construction be watertight. This makes a 1:2:3 mixture preferable, although if one can be certain that the materials are properly proportioned and uniformly graded throughout, a 1:2:4 mixture may accomplish the desired results. However, the first mentioned mixture is safer and is recommended. Small troughs or tanks such as are to be used for hog feeding or watering (see Fig. 34) can very readily be cast upside down (see Fig. 35) on some smooth level surface like a barn floor and when the concrete has properly hardened forms can be removed and the con-
Fig. 34.—Small Portable Hog Feeding Trough Cast Upside Down.

Fig. 34a.—Another Portable Type Trough also Cast Upside Down.
crete protected for a week or ten days by a moist covering. Then the trough may be set up where intended to use it.

REINFORCING SMALL TROUGHS

Poultry netting or similar fabric can often be used for reinforcing small troughs in place of rods. Sometimes a combination of both is used and desirable. Fig. 35 illustrates clearly how the forms for such construction are made and set up. No further explanation should be necessary.

STOCK TROUGHS

Large stock watering troughs on account of their bulk and weight must be constructed at the point where they are to be used. For the same reason it is quite essential that
a suitable foundation be provided for them, otherwise unequal settlement of the ground will most likely result in causing the concrete to crack, owing to the strains put upon it not only by the weight of the structure itself but also the weight of contents. Construction like that involved in large tanks, troughs, cisterns and manure pits makes it impossible to lay down invariable rules as to how such structures shall be reinforced.

![Diagram of Concrete Watering Trough or Tank](image)

Fig. 36. Concrete Watering Trough or Tank.

This depends entirely upon its size and consequently upon the weight of contents which it is to carry. Illustrations show a stock watering tank (Fig. 36), a small concrete trough (Fig. 35), cistern (Fig. 39), and hog wallow (Fig. 40) and manure pit (Fig. 41). All of these belong essentially to the same class of construction. Reinforcing required for the stock watering tank of the dimensions shown (Fig. 36) is specified in the drawing. For the other structures, reinforcing will depend on the size of the structure. For the
Fig. 37.—Finished Tank Similar to that Illustrated in Fig. 36.

Fig. 37a.—Concrete Cistern Built Partly Aboveground.
cistern, if 6 feet square and 8 feet deep, probably \(\frac{1}{4} \) or \(\frac{3}{8} \)-inch rods 12 inches center to center will be sufficient. For the small trough use \(\frac{1}{4} \)-inch rods and 1-inch poultry netting.

WATERTIGHTNESS. HOW SECURED

As tanks and cisterns must be watertight to accomplish the desired purpose, one should, before commencing work, have all materials on hand ready for use, forms properly constructed and in place, so that work may proceed continuously, if possible, thus preventing seams or construction joints that would later open up and cause leakage. If, however, it becomes necessary to suspend work after concreting has started, then the surface of concrete in the forms should be left
rough, and when concreting is to be resumed this surface should be well brushed and washed with water, painted with cement and water mixed to the consistency of thick cream and applied with a whitewash brush and concreting resumed immediately; that is, before the cement grout paint has had a chance to commence hardening.

In stock watering troughs, cisterns and similar structures where the floor is constructed monolithic with the sides, it is desirable that the reinforcing of the floor extend up into the sides, thus forming vertical reinforcing for those portions of the structure. So the rods must then be bent to the shape of three sides of a square or rectangle depending upon the shape of the structure. Horizontal rods must be tied to vertical rods with wires where the two intersect, so that all reinforcing will be held in correct relative position while concrete is being placed.

DETAILS OF PLACING CONCRETE FOR CISTERNs, ETC.

Concrete used for cisterns and similar construction, however, should be of quaky consistency, therefore it is sometimes difficult to construct the side walls and floors monolithic. Hence it is easier to build floor and walls separately. In such a case, the walls should start in a trench that has been excavated deep enough to be below possible frost penetration. After the walls are
finished and concrete has hardened sufficiently to permit removing the forms, then the bottom or floor of the structure can be placed. The earth should be excavated to a depth sufficient to secure a firm foundation and if necessary there should be placed a fill of clean gravel or cinders well tamped up to the bottom of the proposed floor level. On top of this concrete from 4 to 6 inches thick for the floor can be placed. If the area does not exceed 100 square feet or if no one dimension of the floor exceeds 10 feet, it is not likely that reinforcing will be needed in the floor when placed separate from the walls and in one continuous concreting operation.

Before commencing to lay the concrete floor, a $\frac{1}{2}$-inch board strip should be placed all around the inside of the walls, the top of this strip being at the top of the proposed floor and held away from the side walls by $\frac{1}{4}$-inch wedges. These wedges will when released after the concrete floor has hardened make it possible easily to withdraw the wood strips. Then the space so made should be filled with hot tar or asphalt effectively to seal the joint against leakage.

PROTECTION WHILE HARDENING

Like all other concrete construction, tanks, troughs and cisterns must be protected against too rapid drying out. They should not be put into use until they are at least a week or ten days
old, and during this time the structure should be kept covered with wet canvas, burlap or straw, so that sun and wind will not cause rapid evaporation of water from the concrete and thus result in a porous structure. If such protection is not afforded for a week or ten days, then no matter how well the materials may have been proportioned and placed, the resulting structure cannot be expected to give as good satisfaction as would result were all necessary precautions taken.

Cisterns are sometimes constructed either entirely or partly aboveground. The one shown in the accompanying drawing may be constructed entirely belowground or entirely aboveground or partly aboveground. In the first case the walls may be uniformly 8 inches thick throughout because protected below the ground the contents of the cistern are not likely to freeze, therefore there will be no pressure caused from ice. If, however, the structure is partly or wholly aboveground, then the walls must be battered or sloped on the inside so that the pressure resulting from water freezing will be counteracted. This precaution must also be taken with the stock tank described; reference to the drawing will show that this batter has been provided for in the design.

Where entirely belowground, the cistern floor may commence at the same level as do the side walls. Fig. 37A shows how one of these structures would appear if partly aboveground and intended to receive its supply of water from the
roof of an adjoining structure. If the structure is built entirely aboveground, of course, both inside and outside forms will be necessary. But any portion of the cistern structure belowground can be built with inside forms only, if the earth is carefully excavated and firm enough so as to be self-sustaining. Care must be taken, however, when placing the concrete in the trench not to

Fig. 39.—Sectional View of Concrete Cistern.
knock down any earth that would thus become partly mixed with the concrete and result in porous and consequently leaky pockets in the wall.

POSITION OF REINFORCING IN TANKS AND CISTERNS

Theoretically reinforcing should be near the outer face of the wall for an aboveground structure, but it will be effective if placed at the center, and in such position will make it easier to place the concrete and spade around it in the forms next to the form face so as to produce a smooth, non-porous surface.

In all tank and cistern construction, or similar construction, when it is necessary to lap horizontal rods, laps should be made at the center of a side, never near or at a corner. Rods should be lapped from 50 to 60 times their diameter. In the case of ⅛-inch rods, this means not less than 12 inches. In the case of ¼-inch rods, this would mean not less than 25 inches. When mesh fabric is lapped the ends and edges must be well wired together.

BUILDING COVER SLAB FOR CISTERN

In setting the vertical rods to reinforce the cistern walls they should be at least 2 feet longer than required so that the projecting ends may be bent over and finally become a part of the reinforcing for the roof or cover slab. After walls
and floor have been concreted and the concrete floor has sufficiently hardened, a wood floor can be constructed level with the top of side walls to serve as a form on which to lay the cover slab. This slab would be 6 inches thick. A frame should be placed at the proper place on this floor to provide for the manhole opening in the roof or cover slab. This frame is nothing but a bottomless box with its edges sloping inward so that the resulting manhole opening in the slab will have a beveled edge to receive a correspondingly shaped concrete manhole cover. This cover can be cast in the manhole opening in the concrete, by lining this opening with building or tar paper to prevent the concrete from adhering to that of the cover slab. An eyebolt fitted with a ring should be embedded in the cover slab at the time it is cast to permit removal of the cover as occasion requires.

WATER CONNECTIONS

In tank and cistern construction suitable provision must be made when setting up forms to arrange for the necessary inlet and outlet for water supply and overflow.
FORM REMOVAL

Forms supporting the roof or cover slab of the cistern should not be removed until the concrete is at least two weeks old. This applies if the work has been carried on under favorable weather conditions. In cold weather it may be necessary to leave forms in place even twice as long.

PAVEMENT AROUND WATERING TROUGHS

All stock watering troughs should have a concrete pavement laid around them so that the vicinity will not be worked up into a mudhole when stock go to water. Directions for laying pavements will be given later. (Circular tanks have not been described because form construction is somewhat difficult. Usually commercial silo forms are best for such structures.)

HOG WALLOWS

In constructing a concrete hog wallow (Figs. 40 and 40A) a trench should be excavated so that the side walls will extend below frost level, then bring the walls up to slightly above ground level. Afterward the interior of the enclosure should be excavated and the ground firmly compacted so as to make a good foundation for the floor, which should be laid in the same manner as described for the cistern floor, except that one
Fig. 40.—Section of Concrete Hog Wallow.

Fig. 40a.—Concrete Hog Wallow in Course of Construction.
end should slope upward so as to be at a level with the top of the wall, thus making an incline for animals to enter and leave the wallow easily. The surface of this incline should be corrugated with grooves so that hogs can readily secure a firm foothold.

REGULATING VALVE FOR CONTROLLING WATER SUPPLY

It is well to make provision for a separate but adjoining chamber in which there is some kind of valve mechanism similar to that used in flushing water closets so that by connecting a pipe line to a source of water supply the amount of water in the wallow can be automatically maintained at the level desired. There should be an outlet arranged in the wallow so that when occasion requires the wallow can be drained and cleaned out. This means that it will be preferable to select a slight elevation as a site for the wallow, so that the drain leading away from the trap in the bottom will readily draw off the contents.

MANURE PITS

Manure pit walls may be made straight or battered inside. Probably the battered wall is best, inasmuch as it permits compacting the manure more solidly in the pit. The batter should be at the rate of 1 inch for every 4 inches of height.
The top of the walls should extend at least 6 inches aboveground so that surface water will not wash into the pit during rains. The floor of the manure pit need not be more than 3\(\frac{1}{2}\) feet below the top of the side walls, as it is not advisable to store manure more than 3 feet deep. Six inches will be a suitable thickness for the floor and this should be laid so that an upward slope at one end will permit backing a wagon into the pit for loading. Floors for manure pits must be properly reinforced and the concrete placed continuously to prevent joints.

Every manure pit should have as an adjunct a small cistern connected to it by a pipe drain so that liquids from the manure may drain into the cistern. A 1:2:4 concrete will be suited for manure pit construction throughout, although the adjoining cistern should be of 1:2:3 concrete.

Manure pits should be planned in size to accommodate the herd of stock for which they are to provide manure storage. If ten head of stock are to be kept the manure pit should be about 32 by 19 feet and have an adjoining cistern 3 by 5 feet. For twenty head the pit should be 32 by 32, with a 5 by 5-foot cistern. For thirty head, 50 by 32 feet, with an 8 by 5-foot cistern. For forty head, 65 by 39 feet with a 9 by 6-foot cistern. For fifty head, 82 by 39 feet, with a 10 by 7-foot cistern. As flies find a convenient breeding place in manure piles it is always advisable to house a manure pit with studding (see Fig.
41) and attach fly screen wire to these studs to prevent flies from using the manure pile as breeding headquarters. The pit shown however, is not screened; and being built entirely aboveground cannot be loaded from so easily as if arranged for backing in a wagon.

REPAIRING CRACKS IN TANKS, CISTERNS, ETC.

If properly constructed, stock watering troughs, tanks, cisterns and similar receptacles will not crack. Sometimes, as a result of neglecting a requirement of construction, cracks appear in the
concrete. If these are simply due to omitting proper precautions when joining one day’s work to the next, they can often be satisfactorily repaired to prevent leakage by the following method:

The cracks should be cut out so as to form a V-shaped groove, say 1\(\frac{1}{2}\) inches deep and about an inch wide at the surface. After being thoroughly cleansed out by brushing and washing, then allowing to dry, this groove may be calked with oakum soaked in tar so that about one-half of the depth of the groove is thus filled. Then the remainder should be filled with a plastic mixture consisting of pine tar and Portland cement combined in proportions so as to make a paste as stiff as can be conveniently plastered into the groove. This mixture may harden slightly while being used but can be kept soft enough to work with by subjecting it to moderate heat in the metal receptacle in which mixed.

Where cracks are due to insufficient reinforcing or to lack of reinforcing, the repair method suggested will be of little or no avail. The only thing that can be done with the tank is to use it as an inner or outer form and deposit a new shell of concrete inside or outside of the old structure. This may be from 2 to 4 or more inches thick, depending upon a number of conditions; and to prevent a recurrence of the cracking this shell should be properly reinforced.
REMEDYING A POROUS SURFACE BY PLASTERING

If as a result of improper mixtures or improper handling, there are porous spots in the construction through which contents leak, the whole interior of the tank may be given a cement plaster coat that, if properly applied, may remedy the trouble. Preparatory to applying this plaster coat, the surface to be treated should be thoroughly cleansed by scrubbing with a good stiff brush and water, or better still, wash the surface with a solution of 1 part of commercial muriatic acid to 3 or 4 parts of water, allowing this to remain for a few moments and then thoroughly rinse off the surface with clean water. The acid treatment removes the cement coating from the particles of sand and gravel, thus exposing clean surfaces to which the cement plaster will more readily bond or adhere.

APPLYING THE PLASTER COAT

Immediately before applying the plaster, the cleansed surface should be painted with a paint of cement and water mixed to the consistency of cream. This can be applied with an ordinary whitewash brush, but should not be applied very far in advance of the plastering, otherwise it will have commenced to harden and the plaster will not unite with it.
Plastering mortar should be mixed in the proportion of 1 part cement to $1\frac{1}{2}$ or not more than 2 parts of sand. No more mortar should be mixed than can be used within thirty minutes as once it has commenced to harden it will be worthless. Mortar can be applied with a steel trowel and the surface should be subsequently worked thoroughly as soon as possible with a wood float to make a dense impervious coating. Final smoothing may be done with a steel trowel, but one should be very careful not to overtrowel, as this will impair the quality of the coating by drawing a film of cement to the surface with water, thus robbing the mortar coat of uniform distribution of cement throughout. After having finished plastering the surface must be protected from too rapid drying out by being kept wet for several days so that the plaster coating will thoroughly and uniformly harden. The foregoing methods apply also in practically all cases where cement mortar is to be used as plastering on an old surface.

APPLYING WATERPROOFING CHEMICALS

Sometimes the porous nature of concrete in tanks and cisterns due to improper protection while hardening, can be remedied by applying a coating of what is called "waterglass"; this is chemically known as sodium silicate. The chemical is dissolved in water in the proportion of 1 part silicate to 3 or 4 parts water, depending
upon the porosity of the concrete to be treated. Two or three coats of this solution applied at intervals of 24 hours may be necessary to fill up the pores. Effectiveness of this method depends upon a chemical combination between the silicate and the alkalies present in the concrete, resulting in the formation of an insoluble compound; that is, one that water will not dissolve.

CONCRETE HOTBEDS

An admirable use for concrete is in constructing hotbeds (see Figs. 42 and 43). In the past farmers and vegetable growers have been in the habit of building these structures of wood, which being always in contact with the soil is subjected to alternate dry and moist conditions that contribute most to rapid rot. Concrete solves the problem of permanence, and hotbed construction represents about as easy an application of concrete as can be made.

A $1:2\frac{1}{2}:4$ mixture of quaky consistency will be suitable. Forms will be necessary only for that portion of the walls aboveground provided the earth trench is in firm soil so that the sides do not cave. As soon as concrete has been placed to ground level the forms for the structure aboveground must at once be set in position and concreting continued so that there will be a perfect bond formed between the wall belowground and that aboveground.
Fig. 42.—Sectional View of Concrete Hotbed.

Fig. 42a.—Hotbed Form Construction for the Walls Aboveground.
If the bed is not larger than 5 or 6 feet wide and 10 or 12 feet long, no reinforcing will be needed except one \(\frac{3}{8} \)-inch rod bent at right angles in each corner at the lower (front) side of the bed and two rods in each corner bent

Fig. 43.—A Finished Concrete Hotbed.
similarly in the back corners of the bed. These rods should lie along the center line of the wall, two feet around corners. Four-foot rods are therefore necessary. This will prevent possible cracking at corners due to temperature changes.

Whenever hotbeds are to be built longer than 25 feet, it is advisable either to provide an expansion joint in the walls to prevent cracking due to temperature changes or to reinforce the wall throughout its entire length so as to counteract the strains of expansion.

When laying up the back walls of hotbeds, arrangement should be made to embed carriage bolts or some kind of fittings in the concrete so that the sash hinges may be readily attached. Hotbeds and cold frames are alike as regards concrete construction, the difference simply being in the manner in which the seed bed is prepared and whether the resulting structure is covered with glazed sash or with cheese cloth. It is a very easy matter to embed rods in the walls so that wires can be attached to these and cheese cloth coverings hung over the bed to counteract the effect of strong sunlight which under certain conditions is often injurious to tender plants under glass.
The subject of concrete roofs is a broad one and cannot be covered thoroughly in the limited space of this booklet. Flat slab roofs are the simplest type to construct. Inasmuch as slab thickness and the amount and spacing of reinforcing must vary in accordance with the span to be covered, the best method of suggesting requirements will be by presenting a number of tables.

Table I shows the thickness of roof slabs in inches for various spans between walls.

Table II shows the recommended spacing of reinforcing rods in inches for the spans listed.

Table III shows quantities of cement, sand and stone for various slabs.

TABLE I

THICKNESS OF ROOF SLABS IN INCHES

<table>
<thead>
<tr>
<th>Width in Feet Between Center Lines of Walls</th>
<th>Length of Roof in Feet Between Center Lines of Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 Ft.</td>
</tr>
<tr>
<td>4 ft.</td>
<td>2 in.</td>
</tr>
<tr>
<td>6 ft.</td>
<td>2½ in.</td>
</tr>
<tr>
<td>8 ft.</td>
<td>3 in.</td>
</tr>
<tr>
<td>10 ft.</td>
<td>3½ in.</td>
</tr>
<tr>
<td>12 ft.</td>
<td>4 in.</td>
</tr>
<tr>
<td>14 ft.</td>
<td>5 in.</td>
</tr>
<tr>
<td>16 ft.</td>
<td>6 in.</td>
</tr>
</tbody>
</table>
TABLE II

CEMENT, SAND AND STONE

Width of Slab in Feet (Between Eaves)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacks of Cement (1 sack = 1 cu.ft.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of rooft</td>
<td>4</td>
<td>0.7</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>8</td>
<td>1.7</td>
<td>2.6</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>3.3</td>
<td>6.1</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>12</td>
<td>2.6</td>
<td>4.7</td>
<td>7.3</td>
<td>10.4</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.0</td>
<td>5.5</td>
<td>8.5</td>
<td>13.7</td>
<td>16.4</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>16</td>
<td>3.5</td>
<td>6.2</td>
<td>10.1</td>
<td>14.4</td>
<td>20.8</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.3</td>
</tr>
<tr>
<td>Cu.ft. of Sand</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of rooft</td>
<td>6</td>
<td>2.1</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>8</td>
<td>3.4</td>
<td>5.2</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.3</td>
<td>6.5</td>
<td>12.1</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>12</td>
<td>5.2</td>
<td>9.4</td>
<td>14.6</td>
<td>20.8</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6.1</td>
<td>10.9</td>
<td>17.0</td>
<td>27.3</td>
<td>32.8</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>16</td>
<td>6.9</td>
<td>12.5</td>
<td>20.2</td>
<td>28.8</td>
<td>41.6</td>
<td>53.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.6</td>
</tr>
<tr>
<td>Cu.ft. of Stone</td>
<td>4</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of rooft</td>
<td>6</td>
<td>3.1</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>8</td>
<td>5.1</td>
<td>7.8</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>9.8</td>
<td>18.2</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>12</td>
<td>7.8</td>
<td>14.0</td>
<td>21.8</td>
<td>31.2</td>
<td>37.4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9.1</td>
<td>16.4</td>
<td>25.5</td>
<td>41.0</td>
<td>49.1</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>rooft</td>
<td>16</td>
<td>10.4</td>
<td>18.7</td>
<td>30.3</td>
<td>43.2</td>
<td>62.4</td>
<td>80.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.8</td>
</tr>
</tbody>
</table>
Forms for concrete roofs should be very carefully made so that the concrete will have rigid support until it has hardened sufficiently not only to support its own weight but the weight due to wind, snow and driving rain. They must be stout enough absolutely to prevent the least sagging under the load of concrete.

Of course roofs must be watertight. This suggests a 1:2:3 mixture. It is very essential that roof reinforcing be properly placed so that the
full effect of the steel in tension will be secured. Reinforcing may be blocked up from the forms in proper place by using small concrete cubes previously made or by using small blocks of wood. The latter should be withdrawn as fast as concreting proceeds.

To be on the safe side, roof forms should be left in place a little longer than may seem absolutely necessary. Under ordinary conditions two weeks is not too long. In cold weather double this time, or more, may be necessary.

As concrete roofs expose a large area to sun and air, it is very necessary that the concrete be covered with some protective covering to prevent too rapid drying out. This may be canvas or burlap, kept wet, or a layer of 2 inches of moist sand, kept moist by frequent sprinkling daily for a week or ten days. After this the covering may be removed and several wettings per day be given by means of a hose or otherwise and the concrete allowed to progress in hardening under natural conditions. Where the area to be covered does not permit finishing the work in one continuous operation, provision must be made for a construction joint in the work. This can afterward be filled with hot tar or asphalt to seal it against leakage.
PAVEMENTS, WALKS, STEPS AND FLOORS

Pavements, walks, and floors all belong to the same class of construction. Steps are included in this section simply because they often serve to provide a means of entering a building from a walk, where the building is above or below the walk level. Barnyard pavements and feeding floors (see Figs. 44 and 45) are true time savers and money makers. They do away with barnyard and feeding lot mudholes and provide comfort and cleanliness for the stock, which means greater sanitation. They make doubly sure that all feed will be eaten; none can be tramped into the mud and lost.

The first essential to floor, pavement or walk (see Fig. 46) construction is that the foundation be firm and well drained. All turf or vegetation should be removed from the site where the concrete is to be laid and any soft spots should be dug out and refilled with clean material, well
tamped. The whole foundation area should be compacted by rolling or ramming to uniform solidity. In some cases it may be necessary to make a gravel or cinder fill or subbase (Fig. 46) upon which to lay the concrete. This, however, should not be done unless absolutely necessary, as

in a location where the soil does not drain readily and water would be likely to remain under the pavement in freezing weather. If this happened the expansion resulting from freezing would cause the pavement to heave and possibly would crack some of the slabs.

Wherever a cinder or gravel subbase is pro-
vided, arrangement should be made to connect short lengths of tile to this subbase to insure drainage of water from beneath the floor or pavement.

FORMS FOR WALKS AND FLOORS

Forms for walks (Fig. 46) should be set up so that the walk will have either a slope of $\frac{1}{4}$ inch to the foot in one direction to make surface water drain from it readily, or else the forms may be set up to the same level and a slightly curved template or strikeboard be used to strike off the surface, thus giving it a slight crown which will also accomplish quick drainage. This refers particularly to walks; barnyard pavements and feed-

Fig. 46.—Detail of Concrete Sidewalk Construction, Two-course Work.
ing floors (Figs. 44 and 45) should be laid with a uniform grade or slope in one direction, toward a gutter formed in the concrete at the low side, which in turn should be connected to a tile line leading to a manure pit so that all of the liquid droppings on the floor can be conserved, as these represent money.

SIZE OF SLABS

Walk and pavement slabs should not be greater than 6 feet in any one dimension and forms should be placed so that alternate slabs may be concreted first, then after these have hardened the forms should be removed and concrete for the remaining slabs placed. This will guarantee perfect joints of separation between adjacent slabs, which is quite necessary to prevent destruction of the pavement in case of unequal settlement or upheaval as a result of faulty foundation or to freezing.

MIXTURES FOR FLOORS, PAVEMENTS, ETC.

Barnyard pavements and feeding floors are now almost universally of one-course construction. This means a mixture of uniform richness throughout; a 1:2:3 mixture is preferable, although a 1:2:4 mixture is sometimes used. In this class of work also concrete should be of quaky consistency. If it is desired to have a smooth finish to walks, then it is common to use
a leaner mixture, such as 1:3:5 for the foundation and apply a 1 or 1\(\frac{1}{2}\)-inch wearing course of a 1:2 sand-cement mortar. The top or wearing course of two-course construction should be placed immediately after the base (before the base has commenced to harden) so that there will be a perfect bond or union between the two courses.

FINISHING WALKS AND FLOORS

The consistency of the top course should be rather stiff so that when attempting to dump the mortar from a wheelbarrow it will have to be scraped out. If mixed to such stiffness the top can be troweled to the desired finish a few minutes after striking off. Then only one troweling will be necessary and the resulting surface will be more durable and wear-proof than if the top course is mixed wetter, thus making it necessary to trowel several times at intervals to secure the desired finish. Repeated trowelings break up the chemical action taking place between the cement and water during the process of hardening and considerably affect the wearing qualities of the surface.

PROTECTION OF WALKS, FLOORS AND PAVEMENTS

Just as soon as concrete in feeding floor, walk or pavement construction has hardened sufficiently to permit throwing upon it a protective
Fig. 47.—Forms for Concrete Curb Construction.
layer of moist sand or earth this should be applied to protect the concrete so it may acquire strength slowly under favorable conditions. This covering should be kept wet by frequent sprinkling for a week or ten days. At the end of this time the walk, floor or pavement can be put to its intended use.

CURB FOR FEEDING FLOORS

Feeding floors should be built with a curb all around them extending 18 or 20 inches below ground level and 3 or 4 inches above the floor level. Forms for curbs are shown in Fig. 47. This prevents the animals from pushing feed off the floor, thereby wasting it; while the extension of curb below ground level will keep them from rooting underneath the floor.

SANITATION SECURED

Feeding floors and barnyard pavements, next to concrete watering troughs, are the most effective of barnyard appointments toward securing sanitation. They are largely cleaned by sunlight and rain, but they must, of course, occasionally be washed off with broom and hose to keep them in sanitary condition. Barnyard pavements and feeding floors should never be finished with a steel trowel but with a wood float, as it is desirable to have a surface that will not be slip-
pery. The wood-float surface will be even, but gritty enough in texture to make a safe foothold for the animals.

INDOOR FLOORS

Floors inside buildings are laid in the same manner as feeding floors or barnyard pavements, with the exception that slabs may be larger, even up to 10 feet square, as temperature changes under cover are not so great as those out of doors, therefore it is less likely that the slabs will crack from expansion.

THICKNESS OF SLABS

Walks, pavements and floors should not be less than 5 inches thick and preferably 6 inches thick if subjected to heavy usage such as would prevail in horse barns where subjected to the impact of heavy horses shod with steel shoes. For ordinary walks, feeding floors and barnyard pavements, 5 inches will be sufficient.

STEPS

Most woods in contact with soil, especially when lying upon rather than buried in it, rot rapidly. This is especially true of woods that are commonly used for porch or step construction. Probably no home owner has escaped the necessity of frequently replacing the steps at the front
or back of the house. When wood is used for such a purpose it should be easy to see that one’s labors are soon lost.

Constructing for permanence by using concrete involves little if any greater expense than required to build impermanently of wood. Furthermore, construction such as required either for front or back porches is relatively simple. Forms are of the simplest. Take the back steps by way of illustration. Figs. 48 and 49 show the simplicity of forms required and the finished porch steps.

Before commencing the work, the ground should be leveled and any soft spots or vegetation such as sod, dug out and removed. Then the area where the steps are to be placed should be filled in with clean, well-compacted gravel. Arrangements should be made to mix and place the concrete so that construction can be continuous from the time started until finished. A small job like
the one illustrated will not require more than a few hours of work, so there need be no construction seams in the work.

Concrete mixed in the proportions of $1:2\frac{1}{2}:4$ will be well suited to this work, and pebbles larger than 1 inch, also field stones, may be used on the interior of the mass, but it will considerably reduce the labor of finishing the surface when spading if no pebbles or broken stone larger than 1 inch is used in the concrete placed against forms. Use enough water to form a concrete of quaky consistency and mix no more concrete at one time than can be placed within 30 minutes after mixing. Do not retemper, that is, add
water and attempt to remix a batch of concrete that has commenced to harden.

In placing concrete use a spade or similar tool (Fig. 50) to work up and down against the inner form face, so as to remove air bubbles and force back the coarse gravel from the form and permit

![Fig. 50.—Method of Spading Concrete Next to Form Face.](image)

the sand-cement mortar to come forward so that a smooth surface which will require little or no finishing after the forms are removed, will be secured. Under favorable summer weather conditions forms can be removed within 24 hours from such construction, so that if there are stone pockets or similar imperfections appearing on
the face of the exposed work, these can be readily filled with a 1:2 cement-sand mortar. Then the whole surface is floated, that is, wet down and rubbed with a brick, wood float or similar finishing tool while it is wet.

Nothing has so far been said about the surface finish of the tread of the steps and top of the porch area. If forms are filled to within an inch of the top with a 1:2:4 mixture, a top, or wearing coat, mixed 1:2 or not leaner than 1:2½ provided the sand is well graded, can be applied before the mass of concrete has commenced to harden. A little 1:2 mortar can be spread around on the surface, then worked with a wood float. This will give an even and non-slippery finish. Use the edger around the forms just at final finishing.

Some persons desire the smoothness obtained by using a steel trowel for final finishing.

After the forms have been removed, the steps should be protected by some kind of a covering that will prevent too rapid evaporation of moisture so that the concrete can properly harden. Old burlap sacks kept wet for a week, or a covering of moist earth sprinkled down frequently will accomplish the purpose. The steps may be used after the time mentioned.

Such work can be done during cold weather provided there is no frost in the ground; but certain precautions must be taken, such as heating the sand and gravel and mixing water and protecting the concrete just as soon as it has been
placed, so as to prevent the possibility of freezing for at least 48 hours. The forms can be covered with canvas, burlap or building paper, and on top of this there may be piled 6 or 8 inches of hay, straw or manure, which will protect the work sufficiently so that after 48 hours no damage from freezing need be feared. Concrete hardens more slowly in cold weather than in warm weather, and it would be well not to use the steps until two weeks or more after doing the concreting.

CONCLUSION

Concrete falls in for a great many uses on the farm that could not be enumerated in the limited space of this book. It forms very suitable material for curbing springs of water, that is, building a protective wall around them so that surface water may be prevented from polluting them. This construction falls within the same requirements as that described for tanks and cisterns. The same applies to concrete used for well casings or curbs. If the well is a circular one, of course a circular form will be required on the inside. After this has been placed the earth may be excavated around the outside of this form and it will be possible, if the earth is firm, to deposit concrete without any outside form, otherwise outside forms will be necessary.

The curb may be reinforced with $\frac{1}{4}$-inch round rods bent to the desired curve or with woven wire
fabric such as is used for wire fencing. If fabric is used it serves for both vertical and horizontal reinforcing. If rods are used, they must be placed both vertically and horizontally to accomplish the desired results. Horizontal rods should be spaced 6 inches center to center and vertical ones from 18 inches to 2 feet apart around the circumference of the well. Vertical and horizontal rods should be tied together where they intersect so as to hold them in correct position while concrete is being placed. Reinforcing can be assembled above-ground, then set in place. If the curb is 6 inches thick, which will be sufficient, the reinforcing
should be midway between the inner and outer surfaces of the concrete.

Excavation should be made 4 or 5 feet deep so that the curb will extend at least that depth below ground level. This will largely prevent seepage of surface water into the well. After this curb has been laid and has properly hardened a concrete slab for a well platform (Fig. 51) should be constructed. This should be not less than 4 inches thick and should be reinforced with ¼-inch rods placed 6 inches center to center in both directions 1 inch from the slab bottom, suitable opening being provided in the slab to permit the passage of pump pipe.
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregates defined</td>
<td>12</td>
</tr>
<tr>
<td>" Hard, durable ones necessary</td>
<td>16</td>
</tr>
<tr>
<td>" Importance of clean</td>
<td>12</td>
</tr>
<tr>
<td>" Washing</td>
<td>16</td>
</tr>
<tr>
<td>Beams, Mixture for</td>
<td>33</td>
</tr>
<tr>
<td>" Reinforcing of</td>
<td>67</td>
</tr>
<tr>
<td>Block, Simple Column</td>
<td>45</td>
</tr>
<tr>
<td>Box, Measuring</td>
<td>50</td>
</tr>
<tr>
<td>Cement, How to Store</td>
<td>11</td>
</tr>
<tr>
<td>" Lumps in.</td>
<td>11</td>
</tr>
<tr>
<td>" Portland, defined</td>
<td>10</td>
</tr>
<tr>
<td>" Size of sack.</td>
<td>12</td>
</tr>
<tr>
<td>" Testing</td>
<td>11</td>
</tr>
<tr>
<td>Cistern</td>
<td>107</td>
</tr>
<tr>
<td>" Building cover slab</td>
<td>111</td>
</tr>
<tr>
<td>" Form removal</td>
<td>113</td>
</tr>
<tr>
<td>" Repairing cracks</td>
<td>117</td>
</tr>
<tr>
<td>" Water connections</td>
<td>112</td>
</tr>
<tr>
<td>Column, Simple block for</td>
<td>46</td>
</tr>
<tr>
<td>Conclusion</td>
<td>141</td>
</tr>
<tr>
<td>Concrete, Amount of water required</td>
<td>26</td>
</tr>
<tr>
<td>" "Curing" of</td>
<td>29</td>
</tr>
<tr>
<td>" defined</td>
<td>10</td>
</tr>
<tr>
<td>" Examples of figuring quantities</td>
<td>35</td>
</tr>
<tr>
<td>" Hardening of</td>
<td>29</td>
</tr>
<tr>
<td>" Measuring materials for</td>
<td>23</td>
</tr>
<tr>
<td>" Mixer for</td>
<td>19</td>
</tr>
<tr>
<td>" Mixing</td>
<td>18</td>
</tr>
<tr>
<td>" Mixing by hand</td>
<td>23</td>
</tr>
<tr>
<td>" Placing</td>
<td>27, 52</td>
</tr>
<tr>
<td>" Principles of proportioning</td>
<td>15</td>
</tr>
<tr>
<td>" Protection after placing</td>
<td>29</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete, Retempering</td>
<td>59</td>
</tr>
<tr>
<td>Rubble</td>
<td>96</td>
</tr>
<tr>
<td>Safe loading for</td>
<td>64</td>
</tr>
<tr>
<td>Water for</td>
<td>18</td>
</tr>
<tr>
<td>Watertight, how secured</td>
<td>51</td>
</tr>
<tr>
<td>Concreting, Resuming work from day before</td>
<td>60</td>
</tr>
<tr>
<td>Stopping for the day</td>
<td>60</td>
</tr>
<tr>
<td>tools</td>
<td>49</td>
</tr>
<tr>
<td>Curb, Feeding floor</td>
<td>135</td>
</tr>
<tr>
<td>Well</td>
<td>142</td>
</tr>
<tr>
<td>Feeding floors</td>
<td>129</td>
</tr>
<tr>
<td>Fence, Panel</td>
<td>75</td>
</tr>
<tr>
<td>Post or rail</td>
<td>74</td>
</tr>
<tr>
<td>Fences</td>
<td>73</td>
</tr>
<tr>
<td>Floor, feeding, Curb for</td>
<td>135</td>
</tr>
<tr>
<td>Mixture for</td>
<td>33</td>
</tr>
<tr>
<td>Mixture for base of two-course</td>
<td>34</td>
</tr>
<tr>
<td>Wearing course for two-course</td>
<td>34</td>
</tr>
<tr>
<td>Feeding</td>
<td>129</td>
</tr>
<tr>
<td>Finishing</td>
<td>133</td>
</tr>
<tr>
<td>General</td>
<td>129</td>
</tr>
<tr>
<td>Protection of</td>
<td>133</td>
</tr>
<tr>
<td>reinforced, Mixture for</td>
<td>34</td>
</tr>
<tr>
<td>Size of slabs</td>
<td>132</td>
</tr>
<tr>
<td>Footing, Mixture for</td>
<td>34</td>
</tr>
<tr>
<td>Width and thickness of</td>
<td>58</td>
</tr>
<tr>
<td>Form, Engine foundation</td>
<td>61</td>
</tr>
<tr>
<td>Foundation</td>
<td>62</td>
</tr>
<tr>
<td>Forms, Care in setting up</td>
<td>42</td>
</tr>
<tr>
<td>Kind of lumber to use</td>
<td>39</td>
</tr>
<tr>
<td>Oiling or wetting</td>
<td>41</td>
</tr>
<tr>
<td>Studs for, Thickness of</td>
<td>41</td>
</tr>
<tr>
<td>System</td>
<td>44</td>
</tr>
<tr>
<td>Thickness of lumber</td>
<td>41</td>
</tr>
<tr>
<td>Time to leave in place</td>
<td>43</td>
</tr>
<tr>
<td>Wire ties and bolts for</td>
<td>43</td>
</tr>
<tr>
<td>Form, Wall, and column</td>
<td>63</td>
</tr>
<tr>
<td>Foundation, Depth for</td>
<td>57</td>
</tr>
<tr>
<td>Laying out, Method</td>
<td>56</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Foundations, Bearing power of soils.</td>
<td>64</td>
</tr>
<tr>
<td>" , Concrete for</td>
<td>55</td>
</tr>
<tr>
<td>" , Engine, Mixture for</td>
<td>33</td>
</tr>
<tr>
<td>" , ordinary, Mixture for</td>
<td>34</td>
</tr>
<tr>
<td>Gravel, Bank-run, not suitable</td>
<td>13</td>
</tr>
<tr>
<td>" Defined</td>
<td>12</td>
</tr>
<tr>
<td>" , Screening</td>
<td>13</td>
</tr>
<tr>
<td>" , Washing</td>
<td>16</td>
</tr>
<tr>
<td>" , Washing, Device for</td>
<td>17</td>
</tr>
<tr>
<td>Hardening, Time required</td>
<td>30</td>
</tr>
<tr>
<td>Hog Wallow</td>
<td>113</td>
</tr>
<tr>
<td>" ; Water supply for</td>
<td>115</td>
</tr>
<tr>
<td>Hotbed</td>
<td>121</td>
</tr>
<tr>
<td>Introductory</td>
<td>5</td>
</tr>
<tr>
<td>Manure Pit</td>
<td>115</td>
</tr>
<tr>
<td>Mixer, Home-made</td>
<td>19</td>
</tr>
<tr>
<td>Mixing Concrete</td>
<td>18</td>
</tr>
<tr>
<td>Mixtures, Recommended</td>
<td>33</td>
</tr>
<tr>
<td>Mortar, Mixtures for various uses</td>
<td>34</td>
</tr>
<tr>
<td>Pavements</td>
<td>129</td>
</tr>
<tr>
<td>" , Finishing</td>
<td>133</td>
</tr>
<tr>
<td>" , Protection</td>
<td>133</td>
</tr>
<tr>
<td>Plastering</td>
<td>119</td>
</tr>
<tr>
<td>Platform mixing</td>
<td>50</td>
</tr>
<tr>
<td>Posts, Braces for</td>
<td>95</td>
</tr>
<tr>
<td>" , Clothesline</td>
<td>99</td>
</tr>
<tr>
<td>" , Corner</td>
<td>92</td>
</tr>
<tr>
<td>" , Cost of</td>
<td>84</td>
</tr>
<tr>
<td>" , Fastening line wires</td>
<td>91</td>
</tr>
<tr>
<td>" , Forms for gate</td>
<td>95</td>
</tr>
<tr>
<td>" , Gate</td>
<td>95</td>
</tr>
<tr>
<td>" , Hardening</td>
<td>91</td>
</tr>
<tr>
<td>" , Mixtures for</td>
<td>33, 83</td>
</tr>
<tr>
<td>" , Molds for</td>
<td>82</td>
</tr>
<tr>
<td>Post, Principles of reinforcing</td>
<td>70</td>
</tr>
<tr>
<td>" " Reinforcing requirements</td>
<td>84</td>
</tr>
<tr>
<td>" " Rubble gate.</td>
<td>96</td>
</tr>
<tr>
<td>" " Sections of.</td>
<td>90</td>
</tr>
<tr>
<td>" " Spacers for reinforcing metal</td>
<td>89</td>
</tr>
<tr>
<td>" " Various types.</td>
<td>81</td>
</tr>
<tr>
<td>" " Winter manufacture of.</td>
<td>31</td>
</tr>
<tr>
<td>Reinforcing, Materials to use</td>
<td>70</td>
</tr>
<tr>
<td>" " Position of in beams</td>
<td>69, 71</td>
</tr>
<tr>
<td>" " " " tanks and cisterns</td>
<td>111</td>
</tr>
<tr>
<td>" " Principles described.</td>
<td>66</td>
</tr>
<tr>
<td>" " Rust or scale on.</td>
<td>72</td>
</tr>
<tr>
<td>Roofs, Mixtures for</td>
<td>33</td>
</tr>
<tr>
<td>" " Tables for</td>
<td>125, 126, 127</td>
</tr>
<tr>
<td>Sand, Defined</td>
<td>12</td>
</tr>
<tr>
<td>" " Washing.</td>
<td>16</td>
</tr>
<tr>
<td>" " Washing device for.</td>
<td>17</td>
</tr>
<tr>
<td>Screen, Home-made.</td>
<td>49</td>
</tr>
<tr>
<td>Silo, Mixture for walls.</td>
<td>34</td>
</tr>
<tr>
<td>Slabs, Floor, pavement, etc., Thickness of.</td>
<td>136</td>
</tr>
<tr>
<td>Soils, Bearing power of</td>
<td>64</td>
</tr>
<tr>
<td>Spading</td>
<td>139</td>
</tr>
<tr>
<td>Steps</td>
<td>129, 137, 138</td>
</tr>
<tr>
<td>System, Simple form.</td>
<td>44</td>
</tr>
<tr>
<td>Table. Fence post reinforcing and quantities.</td>
<td>87</td>
</tr>
<tr>
<td>Table of mixtures and quantities</td>
<td>35, 36</td>
</tr>
<tr>
<td>Tanks</td>
<td>101</td>
</tr>
<tr>
<td>" " and troughs, reinforcing</td>
<td>103</td>
</tr>
<tr>
<td>" " Mixtures for.</td>
<td>33</td>
</tr>
<tr>
<td>" " Repairing cracks.</td>
<td>117</td>
</tr>
<tr>
<td>Tools, Concreting</td>
<td>49</td>
</tr>
<tr>
<td>Trough, Design for stock watering</td>
<td>104</td>
</tr>
<tr>
<td>Troughs</td>
<td>103</td>
</tr>
<tr>
<td>" " and tanks, reinforcing</td>
<td>103</td>
</tr>
<tr>
<td>" " Mixture for.</td>
<td>33</td>
</tr>
<tr>
<td>" " Repairing cracks</td>
<td>117</td>
</tr>
<tr>
<td>" " Watertightness, how secured.</td>
<td>106</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Walk, Mixture for base of two-course</td>
<td>34</td>
</tr>
<tr>
<td>Walks</td>
<td>129</td>
</tr>
<tr>
<td>Wall, Panel type</td>
<td>78</td>
</tr>
<tr>
<td>Wall, Ordinary building, Mixtures for</td>
<td>34</td>
</tr>
<tr>
<td>Water, Amount required in concrete</td>
<td>26</td>
</tr>
<tr>
<td>Waterproofing porous surface</td>
<td>120</td>
</tr>
<tr>
<td>Watertightness, How secured</td>
<td>51</td>
</tr>
<tr>
<td>Winter Concreting</td>
<td>30</td>
</tr>
</tbody>
</table>
CATALOGUE

OF

Latest and Best

Mechanical, Scientific and Practical Books

PRACTICAL BOOKS FOR PRACTICAL MEN

Any of these books will be sent prepaid to any part of the world, on receipt of price. Remit by Draft, Postal Order, Express Order or Registered Letter.

PUBLISHED AND FOR SALE BY
The Norman W. Henley Publishing Co.
132 Nassau St., New York, U. S. A.
INDEX TO SUBJECTS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td>3</td>
</tr>
<tr>
<td>Balloons</td>
<td>4</td>
</tr>
<tr>
<td>Brazing and Soldering</td>
<td>4</td>
</tr>
<tr>
<td>Cams</td>
<td>15</td>
</tr>
<tr>
<td>Charts</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>26</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>6</td>
</tr>
<tr>
<td>Coke</td>
<td>6</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>6</td>
</tr>
<tr>
<td>Concrete</td>
<td>6, 7, 8</td>
</tr>
<tr>
<td>Dictionaries</td>
<td>9</td>
</tr>
<tr>
<td>Dies—Metal Work</td>
<td>8, 9</td>
</tr>
<tr>
<td>Drawing—Sketching Paper</td>
<td>9</td>
</tr>
<tr>
<td>Electricity</td>
<td>10, 11, 12, 13</td>
</tr>
<tr>
<td>Enameling</td>
<td>13</td>
</tr>
<tr>
<td>Factory Management, etc.</td>
<td>13</td>
</tr>
<tr>
<td>Fuel</td>
<td>13</td>
</tr>
<tr>
<td>Flying Machines</td>
<td>4</td>
</tr>
<tr>
<td>Gas Engines and Gas</td>
<td>14, 15</td>
</tr>
<tr>
<td>Gearing and Cams</td>
<td>15</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>16</td>
</tr>
<tr>
<td>Ice and Refrigeration</td>
<td>16</td>
</tr>
<tr>
<td>Inventions—Patents</td>
<td>16</td>
</tr>
<tr>
<td>Knots</td>
<td>16</td>
</tr>
<tr>
<td>Lathe Work</td>
<td>17</td>
</tr>
<tr>
<td>Liquid Air</td>
<td>17</td>
</tr>
<tr>
<td>Locomotive Engineering</td>
<td>18, 19, 20</td>
</tr>
<tr>
<td>Machine Shop Practice</td>
<td>20, 21, 22, 23</td>
</tr>
<tr>
<td>Manual Training</td>
<td>24</td>
</tr>
<tr>
<td>Marine Engineering</td>
<td>23, 24</td>
</tr>
<tr>
<td>Mechanical Movements</td>
<td>22</td>
</tr>
<tr>
<td>Metal Work—Dies</td>
<td>8, 9</td>
</tr>
<tr>
<td>Mining</td>
<td>24</td>
</tr>
<tr>
<td>Motor Cycles</td>
<td>3, 4</td>
</tr>
<tr>
<td>Patents and Inventions</td>
<td>16</td>
</tr>
<tr>
<td>Pattern Making</td>
<td>25</td>
</tr>
<tr>
<td>Perfumery</td>
<td>25</td>
</tr>
<tr>
<td>Plumbing</td>
<td>26</td>
</tr>
<tr>
<td>Receipt Book</td>
<td>26</td>
</tr>
<tr>
<td>Refrigeration and Ice</td>
<td>16</td>
</tr>
<tr>
<td>Rubber</td>
<td>27</td>
</tr>
<tr>
<td>Saws</td>
<td>27</td>
</tr>
<tr>
<td>Screw Cutting</td>
<td>28</td>
</tr>
<tr>
<td>Sheet Metal Work</td>
<td>8</td>
</tr>
<tr>
<td>Soldering</td>
<td>4</td>
</tr>
<tr>
<td>Steam Engineering</td>
<td>28, 29</td>
</tr>
<tr>
<td>Steam Heating and Ventilation</td>
<td>30</td>
</tr>
<tr>
<td>Steam Pipes</td>
<td>29</td>
</tr>
<tr>
<td>Steel</td>
<td>30</td>
</tr>
<tr>
<td>Tractor</td>
<td>30</td>
</tr>
<tr>
<td>Turbines</td>
<td>31</td>
</tr>
<tr>
<td>Watch Making</td>
<td>32</td>
</tr>
<tr>
<td>Wireless Telephones</td>
<td>13</td>
</tr>
</tbody>
</table>

Any of these books will be sent prepaid to any part of the world, on receipt of price.

REMIT by Draft, Postal Money Order, Express Money Order, or by Registered Mail.

2
GOOD, USEFUL BOOKS

AUTOMOBILES AND MOTORCYCLES

MODERN GASOLINE AUTOMOBILE, ITS DESIGN, CONSTRUCTION AND REPAIR By Victor W. Page. The most complete, practical and up-to-date treatise on gasoline automobiles, explaining fully all principles pertaining to gasoline automobiles and their component parts. It contains the latest and most reliable information on all phases of automobile construction, operation, maintenance and repair. Every part of the automobile, its equipment, accessories, tools, supplies, spare parts necessary, etc., are fully discussed. It is clearly and concisely written by an expert familiar with every branch of the automobile industry. It is not too technical for the layman nor too elementary for the more expert, and is right up-to-date and complete in every detail. New Edition just published. 5½ x 7¾. Cloth, 816 pages, 575 illustrations, 11 folding plates. Price, $2.50

QUESTIONS AND ANSWERS RELATING TO MODERN AUTOMOBILE CONSTRUCTION, DRIVING AND REPAIR. By Victor W. Page. A practical self-instructor for students, mechanics and motorists, consisting of thirty-six lessons in the form of questions and answers, written with special reference to the requirements of the non-technical reader desiring easily understood explanatory matter relating to all branches of automobiling. A popular work at a popular price. 5¾ x 7½. Cloth. 622 pages, 392 illustrations, 3 folding plates. Price. $1.50

THE MODEL T FORD CAR, ITS CONSTRUCTION, OPERATION AND REPAIR. By Victor W. Page. This is a complete instruction book. All parts of the Ford Model T Car are described and illustrated; the construction is fully described and operating principles made clear to everyone. Every Ford owner needs this practical book. New Edition. 75 illustrations, 200 pages. Large folding plate. Price, $1.00

MOTORCYCLES, SIDE CARS AND CYCLE-CARS, THEIR CONSTRUCTION, MANAGEMENT AND REPAIR. By Victor W. Page. The only complete work published for the motorcyclist and cyclecarist. Describes fully all leading types of machines, their design, construction, maintenance, operation and repair. 550 pages. 350 specially made illustrations, 5 folding plates. $1.50

MODERN STARTING, LIGHTING AND IGNITION SYSTEMS. By Victor W. Page. This is the first really comprehensive work on this important subject. It is written in simple language and considers in detail the basic principles of the electrical apparatus involved before it describes any of the systems or their parts. Instructions are given which cover every detail. Over 295 illustrations, 520 pages, 1916 edition. Price, $1.50
AUTOMOBILE REPAIRING MADE EASY. By Victor W. Page. This is a thoroughly practical book and includes complete directions for making repairs to all parts of the motor car mechanism. A book for the garageman, chauffeur and automobile mechanic, it also contains a mass of general information that will be of equal value to the motorist who takes care of his own car. This book contains special instructions on electric starting, lighting and ignition systems, tire repairing and rebuilding, autogenous welding, heat treatment of steel, latest timing practice, eight and twelve cylinder motors, etc., etc. A guide to greater mechanical efficiency for all repairmen. You will never "get stuck" on a job if you own this book. Complete index makes for easy reference. Contains more than 1,000 specially made engravings on 500 plates, most of which are full page. 1,040 pages. 1916 edition.

Price, $3.00

BALLOONS AND FLYING MACHINES

MODEL BALLOONS AND FLYING MACHINES, WITH A SHORT ACCOUNT OF THE PROGRESS OF AVIATION. By J. H. Alexander. This book has been written with a view to assist those who desire to construct a model airship or flying machine. It shows the working drawings of five different sized machines. A short account of the progress of aviation is included, which renders the book of great interest. Several illustrations of full sized airship and flying machines of the latest types are shown. This practical work gives data, working drawings and details which will assist materially those interested in the problems of flight. 127 pages, 45 illustrations, 5 folding plates.

Price, $1.50

BRAZING AND SOLDERING

BRAZING AND SOLDERING. By James F. Hobart. The only book that shows you just how to handle any job of brazing or soldering that comes along; it tells you what mixture to use, how to make a furnace if you need one. Full of valuable kinks. The fifth edition of this book has just been published, and to it much new matter and a large number of tested formulas for all kinds of solders and fluxes have been added. Illustrated. 25 cents

CHARTS

GASOLINE ENGINE TROUBLES MADE EASY — A CHART SHOWING SECTIONAL VIEW OF GASOLINE ENGINE. Compiled by Victor W. Page. It shows clearly all parts of a typical four-cylinder gasoline engine of the four-cycle type. It outlines distinctly all parts liable to give trouble and also details the derangements apt to interfere with smooth engine operation. This sectional view of engine is a complete review of all motor troubles. It is prepared by a practical motorist for all who motor. No details omitted. Size 25 x 38 inches. Price, 25 cents
LUBRICATION OF THE MOTOR CAR CHASSIS. This chart presents the plan view of a typical six cylinder chassis of standard design and all parts are clearly indicated that demand oil, also the frequency with which they must be lubricated and the kind of oil to use. A practical chart for all interested in motor car maintenance. Size 24 x 38 inches.

Price, 25 cents

MOTORCYCLE TROUBLES MADE EASY—A CHART SHOWING SECTIONAL VIEW OF SINGLE CYLINDER GASOLINE ENGINE. Compiled by Victor W. Page. This chart simplifies location of all power plant troubles, and will prove invaluable to all who have to do with the operation, repair or sale of motorcycles. No details omitted. Size 25 x 38 inches. Price, 25 cents

MODERN SUBMARINE CHART—WITH 200 PARTS NUMBERED AND NAMED. A cross-section view, showing clearly and distinctly all the interior of a submarine of the latest type. No details omitted—everything is accurate and to scale. This chart is really an encyclopedia of a submarine. Price, 25 cents

BOX CAR CHART. A chart showing the anatomy of a box car, having every part of the car numbered and its proper name given in a reference list. Price, 25 cents

GONDOLA CAR CHART. A chart showing the anatomy of a gondola car, having every part of the car numbered and its proper reference name given in a reference list. Price, 25 cents

PASSENGER CAR CHART. A chart showing the anatomy of a passenger car, having every part of the car numbered and its proper name given in a reference list. Price, 25 cents

STEEL HOPPER BOTTOM COAL CAR. A chart showing the anatomy of a steel hopper bottom coal car, having every part of the car numbered and its proper name given in a reference list. Price, 25 cents

TRACTIVE POWER CHART. A chart whereby you can find the tractive power or drawbar pull of any locomotive without making a figure. Shows what cylinders are equal, how driving wheels and steam pressure affect the power. What sized engine you need to exert a given drawbar pull or anything you desire in this line. 50 cents

HORSE POWER CHART. Shows the horse power of any stationary engine without calculation. No matter what the cylinder diameter of stroke, the steam pressure or cut-off, the revolutions, or whether condensing or non-condensing, it's all there. Easy to use, accurate and saves time and calculations. Especially useful to engineers and designers. Price, 50 cents

BOILER ROOM CHART. By Geo. L. Fowler. A chart—size 14 x 28 inches—showing in isometric perspective the mechanisms belonging in a modern boiler room. This chart is really a dictionary of the boiler room—the names of more than 200 parts being given. Price, 25 cents
CIVIL ENGINEERING

HENLEY'S ENCYCLOPEDIA OF PRACTICAL ENGINEERING AND ALLIED TRADES. Edited by JOSEPH G. HORNER, A.M.I.M.E. This set of five volumes contains about 2,500 large quarto pages with thousands of illustrations, including diagrammatic and sectional drawings with full explanatory details. This work covers the entire practice of civil and mechanical engineering. As a work of reference it is without a peer. $6.00 per single volume. For complete set of five volumes, Price, $25.00

COKE

COMPRESSED AIR

COMPRESSED AIR IN ALL ITS APPLICATIONS. By GARDNER D. HISCOX. This is the most complete book on the subject of air that has ever been issued, and its thirty-five chapters include about every phase of the subject one can think of. It may be called an encyclopedia of compressed air. It is written by an expert, who, in its 665 pages, has dealt with the subject in a comprehensive manner, no phase of it being omitted. Over 500 illustrations. Fifth Edition, revised and enlarged. Cloth bound, $5.00. Half Morocco, Price, $6.50. This is the standard work on this important subject.

CONCRETE

CONCRETE WALL FORMS. By A. A. HOUGHTON. A new automatic wall clamp is illustrated with working drawings. Other types of wall forms, clamps, separators, etc., are also illustrated and explained. Price, 50 cents

CONCRETE FLOORS AND SIDEWALKS. By A. A. HOUGHTON. The molds for molding squares, hexagonal and many other styles of mosaic floor and sidewalk blocks are fully illustrated and explained. Price, 50 cents

PRACTICAL CONCRETE SILO CONSTRUCTION. By A. A. HOUGHTON. Complete working drawings and specifications are given for several styles of concrete silos, with illustrations of molds for monolithic and block silos. The tables, data, and information presented in this book are of the utmost value in planning and constructing all forms of concrete silos. Price, 50 cents
MOLDING CONCRETE BATH TUBS, AQUARIUMS AND NATATORIUMS. By A. A. Houghton. Simple molds and instruction are given for molding different styles of concrete bath tubs, swimming pools, etc.

Price, 50 cents

MOLDING CONCRETE CHIMNEYS, SLATE AND ROOF TILES. By A. A. Houghton. The manufacture of all types of concrete slate and roof tile is fully treated. Valuable data on all forms of reinforced concrete roofs are contained within its pages. The construction of concrete chimneys by block and monolithic systems is fully illustrated and described. A number of ornamental designs of chimney construction with molds are shown in this valuable treatise.

Price, 50 cents

MOLDING AND CURING ORNAMENTAL CONCRETE. By A. A. Houghton. The proper proportions of cement and aggregates for various finishes, also the methods of thoroughly mixing and placing in the molds, are fully treated. An exhaustive treatise on this subject that every concrete worker will find of daily use and value.

Price, 50 cents

CONCRETE MONUMENTS, MAUSOLEUMS AND BURIAL VAULTS. By A. A. Houghton. The molding of concrete monuments to imitate the most expensive cut stone is explained in this treatise, with working drawings of easily built molds. Cutting inscriptions and designs is also fully treated.

Price, 50 cents

CONCRETE BRIDGES, CULVERTS AND SEWERS. By A. A. Houghton. A number of ornamental concrete bridges with illustrations of molds are given. A collapsible center or core for bridges, culverts and sewers is fully illustrated with detailed instructions for building.

Price, 50 cents

CONSTRUCTING CONCRETE PORCHES. By A. A. Houghton. A number of designs with working drawings of molds are fully explained so any one can easily construct different styles of ornamental concrete porches without the purchase of expensive molds.

Price, 50 cents

MOLDING CONCRETE FLOWER POTS, BOXES, JARDINIERES, ETC. By A. A. Houghton. The molds for producing many original designs of flower pots, urns, flower boxes, jardinieres, etc., are fully illustrated and explained. so the worker can easily construct and operate the same.

Price, 50 cents

MOLDING CONCRETE FOUNTAINS AND LAWN ORNAMENTS. By A. A. Houghton. The molding of a number of designs of lawn seats, curbing, hitching posts, pergolas, sun dials and other forms of ornamental concrete, for the ornamentation of lawns and gardens, is fully illustrated and described.

Price, 50 cents

CONCRETE FOR THE FARM AND SHOP. The molding of drain tile, tanks, cisterns, fence posts, stable floors, hog and poultry houses and all the purposes for which concrete is an invaluable aid to the farmer are numbered among the contents of this handy volume.

Price, 75 cents
CONCRETE FROM SAND MOLDS. By A. A. Houghton. A practical work treating on a process which has heretofore been held as a trade secret by the few who possessed it, and which will successfully mold every and any class of ornamental concrete work. The process of molding concrete with sand molds is of the utmost practical value, possessing the manifold advantages of a low cost of molds, the ease and rapidity of operation, perfect details to all ornamental designs, density and increased strength of the concrete, perfect curing of the work without attention and the easy removal of the molds regardless of any undercutting the design may have. 192 pages. Fully illustrated. Cloth. Price, $2.00

ORNAMENTAL CONCRETE WITHOUT MOLDS. By A. A. Houghton. The process for making ornamental concrete without molds has long been held as a secret, and now, for the first time, this process is given to the public. The book reveals the secret and is the only book published which explains a simple, practical method whereby the concrete worker is enabled, by employing wood and metal templates of different designs, to mold or model in concrete any cornice, archivolt, column, pedestal, base cap, urn or pier in a monolithic form—right upon the job. These may be molded in units or blocks, and then built up to suit the specifications demanded. This work is fully illustrated, with detailed engravings. Cloth. Price, $2.00

POPULAR HANDBOOK FOR CEMENT AND CONCRETE USERS. By Myron H. Lewis. Everything of value to the concrete user is contained, including kinds of cement employed in construction, concrete architecture, inspection and testing, waterproofing, coloring and painting, rules, tables, working and cost data. The book comprises thirty-three chapters. A valuable addition to the library of every cement and concrete user. Cloth, 430 pages, 126 illustrations. Price, $2.50

DIES—METAL WORK

PUNCHES, DIES AND TOOLS FOR MANUFACTURING IN PRESSES. By J. V. Woodworth. An encyclopedia of die-making, punch-making, die-sinking, sheet-metal working, and making of special tools, subpresses, devices and mechanical combinations for punching, cutting, bending, forming, piercing, drawing, compressing, and assembling sheet-metal parts and also articles of other materials in machine tools. This is a distinct work from the author's book entitled "Dies; Their Construction and Use." 500 pages, 700 engravings. Second edition. Cloth. Price, $4.00
DIES, THEIR CONSTRUCTION AND USE FOR THE MODERN WORKING OF SHEET METALS.
By J. V. Woodworth. A new book by a practical man, for those who wish to know the latest practice in the working of sheet metals. It shows how dies are designed, made and used, and those who are engaged in this line of work can secure many valuable suggestions. Fifth edition. 505 illustrations, 384 pages. Cloth. Price, $3.00

DROP FORGING, DIE-SINKING AND MACHINE-FORMING OF STEEL. By J. V. Woodworth. The processes of die-sinking and force-making, which are thoroughly described and illustrated in this admirable work, are rarely to be found explained in such a clear and concise manner as is here set forth. The process of die-sinking relates to the engraving or sinking of the female or lower dies, such as are used for drop forgings, hot and cold machine forging, swedging and the press working of metals. The process of force-making relates to the engraving or raising of the male or upper dies used in producing the lower dies for the press-forming and machine-forging of duplicate parts of metal. The book contains eleven chapters, and the information contained in these chapters is just what will prove most valuable to the forged-metal worker. All operations described in the work are thoroughly illustrated by means of perspective half-tones and outline sketches of the machinery employed. 300 detailed illustrations. 339 pages, cloth. Price, $2.50

DICTIONARIES

STANDARD ELECTRICAL DICTIONARY. By T. O'Connor Sloane. A practical handbook of reference containing definitions of about 5,000 distinct words, terms and phrases. The definitions are terse and concise and include every term used in electrical science. Recently issued. Twelfth Edition. 682 pages, 393 illustrations. Price, $3.00

DRAWING—SKETCHING PAPER

LINEAR PERSPECTIVE SELF-TAUGHT. By Herman T. C. Kraus. This work gives the theory and practice of linear perspective, as used in architectural, engineering and mechanical drawings. The arrangement of the book is good; the plate is on the left-hand, while the descriptive text follows on the opposite page, so as to be readily referred to. The drawings are on sufficiently large scale to show the work clearly and are plainly figured. The whole work makes a very complete course on perspective drawing. Cloth. Price, $2.50

SELF-TAUGHT MECHANICAL DRAWING AND ELEMENTARY MACHINE DESIGN. By F. L. Sylvester, M.E., Draftsman, with additions by Erik Oberg, associate editor of "Machinery." A practical elementary treatise on Mechanical Drawing and Machine Design, comprising the first principles of geometric and mechanical drawing, workshop mathematics, mechanics, strength of materials and the calculation and design of machine details, compiled for the use of practical mechanics and young draftsmen. 330 pages, 215 engravings, cloth. Price, $2.00
A NEW SKETCHING PAPER. A new specially ruled paper to enable you to make sketches or drawings in isometric perspective without any figuring or fussing. It is being used for shop details as well as for assembly drawings, as it makes one sketch do the work of three, and no workman can help seeing just what is wanted. Pads of 40 sheets, 6 x 9 inches, Price, 25 cents 9 x 12 inches, Price, 50 cents 12 x 18 inches, Price, $1.00

PRACTICAL PERSPECTIVE. By Richards and Colvin. Shows just how to make all kinds of mechanical drawings in the only practical perspective isometric. Makes everything plain so that any mechanic can understand a sketch or drawing in this way. Saves time in the drawing room and mistakes in the shops. Contains practical examples of various classes of work. Third edition. Limp cloth. Price, 50 cents

ELECTRICITY

ARITHMETIC OF ELECTRICITY. By Prof. T. O'Conor Sloane. A practical treatise on electrical calculations of all kinds reduced to a series of rules, all of the simplest forms, and involving only ordinary arithmetic; each rule illustrated by one or more practical problems with detailed solution of each one. This book is classed among the most useful works published on the science of electricity, covering as it does the mathematics of electricity in a manner that will attract the attention of those who are not familiar with algebraical formulas. 160 pages. Twenty-first edition. Cloth. Price, $1.00

DYNAMO BUILDING FOR AMATEURS, OR HOW TO CONSTRUCT A FIFTY WATT DYNAMO. By Arthur J. Weed. A practical treatise showing in detail the construction of a small dynamo or motor, the entire machine work of which can be done on a small foot lathe. Dimensioned working drawings are given for each piece of machine work, and each operation is clearly described. This machine, when used as a dynamo, has an output of fifty watts; when used as a motor it will drive a small drill press or lathe. It can be used to drive a sewing machine on any and all ordinary work. The book is illustrated with more than sixty original engravings showing the actual construction of the different parts. Price, paper binding, 50 cents; Cloth, $1.00

ELECTRIC WIRING, DIAGRAMS AND SWITCHBOARDS. By Newton Harrison. This is the only complete work issued showing and telling you what you should know about direct and alternating current wiring. It is a ready reference. The work is free from advanced technicalities and mathematics, arithmetic being used throughout. It is in every respect a handy, well-written, instructive, comprehensive volume on wiring for the wireman, foreman, contractor or electrician. 272 pages, 105 illustrations. Cloth. Price, $1.50
COMMUTATOR CONSTRUCTION. By WM. BAXTER, JR. The business end of any dynamo or motor of the direct current type is the commutator. This book goes into the designing, building and maintenance of commutators, shows how to locate troubles and how to remedy them; everyone who fusses with dynamos needs this. Fourth edition.

Price, 25 cents

ELECTRIC FURNACES AND THEIR INDUSTRIAL APPLICATIONS. By J. WRIGHT. This is a book which will prove of interest to many classes of people; the manufacturer who desires to know what product can be manufactured successfully in the electric furnace, the chemist who wishes to post himself on the electro-chemistry, and the student of science who merely looks into the subject from curiosity. 288 pages. Fully illustrated, cloth.

Price, $3.00

ELECTRIC LIGHTING AND HEATING POCKET BOOK. By SYDNEY F. WALKER. This book puts in convenient form useful information regarding the apparatus which is likely to be attached to the mains of an electrical company. Tables of units and equivalents are included and useful electrical laws and formulas are stated. 438 pages, 300 engravings. Bound in leather. Pocket book form.

Price, $3.00

ELECTRIC TOY MAKING, DYNAMO BUILDING, AND ELECTRIC MOTOR CONSTRUCTION. This work treats of the making at home of electrical toys, electrical apparatus, motors, dynamos and instruments in general, and is designed to bring within the reach of young and old the manufacture of genuine and useful electrical appliances. 210 pages, cloth. Fully illustrated. Twentieth edition, enlarged.

Price, $1.00

PRACTICAL ELECTRICITY. By PROF. T. O'CONOR SLOANE. This work of 768 pages was previously known as Sloane's Electricians' Hand Book, and is intended for the practical electrician who has to make things go. The entire field of electricity is covered within its pages. It contains no useless theory; everything is to the point. It teaches you just what you should know about electricity. It is the standard work published on the subject. Forty-one chapters, 610 engravings, 761 pages, handsomely bound in cloth. Third edition.

Price, $2.50

ELECTRICITY SIMPLIFIED. By PROF. T. O'CONOR SLOANE. The object of "Electricity Simplified" is to make the subject as plain as possible and to show what the modern conception of electricity is; to show how two plates of different metals immersed in acid can send a message around the globe; to explain how a bundle of copper wire rotated by a steam engine can be the agent in lighting our streets, to tell what the volt, ohm and ampere are, and what high and low tension mean; and to answer the questions that perpetually arise in the mind in this age of electricity. 172 pages. Illustrated. Thirteenth edition. Cloth.

Price, $1.00
HOUSE WIRING. By THOMAS W. POPPE. Describing and illustrating up-to-date methods of installing electric light wiring. Intended for the electrician, helper and apprentice. Contains just the information needed for successful wiring of a building. Fully illustrated with diagrams and plans. It solves all wiring problems and contains nothing that conflicts with the rulings of the National Board of Fire Underwriters. It gives just the information essential to the successful wiring of a building. 125 pages, fully illustrated, flexible cloth.

Price, 50 cents

MANAGEMENT OF DYNAMOS. By LUMMIS-PATerson. A handbook of theory and practice. This work is arranged in three parts. The first part covers the elementary theory of the dynamo. The second part, the construction and action of the different classes of dynamos in common use are described; while the third part relates to such matters as affect the practical management and working of dynamos and motors. Fourth edition. 292 pages, 117 illustrations.

Price, $1.50

HOW TO BECOME A SUCCESSFUL ELECTRICIAN. By PROF. T. O'CONOR SLOANE. An interesting book from cover to cover. Telling in simplest language the surest and easiest way to become a successful electrician. The studies to be followed, methods of work, field of operation and the requirements of the successful electrician are pointed out and fully explained. 202 pages. Illustrated. Eighteenth revised edition. Cloth.

Price, $1.00

STANDARD ELECTRICAL DICTIONARY. By PROF. T. O'CONOR SLOANE. A practical handbook of reference containing definitions of about 5,000 distinct words, terms and phrases. The definitions are terse and concise and include every term used in electrical science. Twelfth edition. 682 pages, 393 illustrations.

Price, $3.00

SWITCHBOARDS. By WILLIAM BAXTER, JR. This book appeals to every engineer and electrician who wants to know the practical side of things. All sorts and conditions of dynamos, connections and circuits are shown by diagram and illustrate just how the switchboard should be connected. Includes direct and alternating current boards, also those for arc lighting, incandescent and power circuits. Special treatment on high voltage boards for power transmission. Second edition. 190 pages. Illustrated.

Price, $1.50

TELEPHONE CONSTRUCTION, INSTALLATION, WIRING, OPERATION AND MAINTENANCE. By W. H. RADCLIFFE and H. C. CUSHING. This book gives the principles of construction and operation of both the Bell and Independent instruments; approved methods of installing and wiring them; the means of protecting them from lighting and abnormal currents; their connection together for operation as series or bridging stations; and rules for their inspection and maintenance. Line wiring and the wiring and operation of special telephone systems are also treated. 224 pages, 132 illustrations. Second revised edition.

Price, $1.00
WIRELESS TELEGRAPHY AND TELEPHONY SIMPLY EXPLAINED. By Alfred P. Morgan. This is undoubtedly one of the most complete and comprehensible treatises on the subject ever published, and a close study of its pages will enable one to master all the details of the wireless transmission of messages. The author has filled a long-felt want and has succeeded in furnishing a lucid, comprehensible explanation in simple language of the theory and practice of wireless telegraphy and telephony. 154 pages, 156 engravings. Price, $1.00

WIRING A HOUSE. By Herbert Pratt. Shows a house already built; tells just how to start about wiring it; where to begin; what wire to use; how to run it according to insurance rules; in fact, just the information you need. Directions apply equally to a shop. Fourth edition. Price, 25 cents

HENLEY'S TWENTIETH CENTURY RECEIPT BOOK. Edited by Gardner D. Hiscox. A work of 10,000 practical receipts, including enameling receipts for hollow ware, for metals, for signs, for china and porcelain, for wood. etc. Thorough and practical. 1914 edition. Price, $3.00

MODERN FACTORY MANAGEMENT, ETC.

FUEL

COMBUSTION OF COAL AND THE PREVENTION OF SMOKE. By Wm. M. Barr. This book has been prepared with special reference to the generation of heat by the combustion of the common fuels found in the United States, and deals particularly with the conditions necessary to the economic and smokeless combustion of bituminous coals in stationary and locomotive steam boilers. The presentation of this important subject is systematic and progressive. The arrangement of the book is in a series of practical questions to which are appended accurate answers, which describe in language, free from technicalities, the several processes involved in the furnace combustion of American fuels; it clearly states the essential requisites for perfect combustion, and points out the best methods for furnace construction for obtaining the greatest quantity of heat from any given quality of coal. Nearly 350 pages, fully illustrated. Fifth edition. Price, $1.00

SMOKE PREVENTION AND FUEL ECONOMY. By Booth and Kershaw. As the title indicates, this book of 197 pages and 75 illustrations deals with the problem of complete combustion, which it treats from the chemical and mechanical standpoints, besides pointing out the economical and humanitarian aspects of the question. Price, $2.50
GAS ENGINE CONSTRUCTION, Or How to Build a Half-Horse-power Gas Engine. By Parsons and Weed. A practical treatise describing the theory and principles of the action of gas engines of various types, and the design and construction of a half-horse-power gas engine, with illustrations of the work in actual progress, together with dimensioned working drawings giving clearly the sizes of the various details. 300 pages. Third edition. Cloth. Price, $2.50

CHEMISTRY OF GAS MANUFACTURE. By H. M. Royles. This book covers points likely to arise in the ordinary course of the duties of the engineer or manager of a gas works not large enough to necessitate the employment of a separate chemical staff. It treats of the testing of the raw materials employed in the manufacture of illuminating coal gas and of the gas produced. The preparation of standard solutions is given as well as the chemical and physical examination of gas coal. 5¾ x 8¾. Cloth. 328 pages, 82 illustrations, 1 colored plate. Price, $4.00

THE GASOLINE ENGINE ON THE FARM: ITS OPERATION, REPAIR AND USES. By Xenon W. Putnam. A useful and practical treatise on the modern gasoline and kerosene engine, its construction, management, repair and the many uses to which it can be applied in present-day farm life. It considers all the various household, shop and field uses of this up-to-date motor and includes chapters on engine installation, power transmission and the best arrangement of the power plant in reference to the work. 5⅞ x 7⅞. Cloth. 527 pages, 179 illustrations.

GASOLINE ENGINES: THEIR OPERATION, USE AND CARE. By A. Hyatt Verrill. A comprehensive, simple and practical work, treating of gasoline engines for stationary, marine or vehicle use; their construction, design, management, care, operation, repair, installation and troubles. A complete glossary of technical terms and an alphabetically arranged table of troubles and symptoms form a most valuable and unique feature of the book. 5¾ x 7¾. Cloth. 275 pages, 152 illustrations. Price, $1.50

GAS, GASOLINE AND OIL ENGINES. By Gardner Hiscox. Revised by Victor W. Page. Just issued 1916 revised and enlarged edition. Every user of a gas engine needs this book. Simple, instructive and right up-to-date. The only complete work on the subject. Tells all about internal combustion engineering, treating exhaustively on the design, construction and practical application of all forms of gas, gasoline, kerosene and crude petroleum-oil engines. Describes minutely all auxiliary systems, such as lubrication, carburetion and ignition. Considers the theory and management of all forms of explosive motors for stationary and marine work, automobiles, aeroplanes and motorcycles. Includes also Producer Gas and Its Production. Invaluable instructions for all students, gas-engine owners, gas-engineers, patent experts, designers, mechanics, draftsmen and all having to do with the modern power. Illustrated by over 400 engravings, many specially made from engineers' drawings, all in correct proportion. 650 pages, 435 engravings. Price, net, $2.50
MODERN GAS ENGINES AND PRODUCER GAS PLANTS. By R. E. Mathot, M.E. A practical treatise of 320 pages, fully illustrated by 175 detailed illustrations, setting forth the principles of gas engines and producer design, the selection and installation of an engine, conditions of perfect operation, producer-gas engines and their possibilities, the care of gas engines and producer-gas plants, with a chapter on volatile hydrocarbon and oil engines. This book has been endorsed by Dugal Clerk as a most useful work for all interested in gas engine installation and producer gas.

Price, $2.50

HOW TO RUN AND INSTALL GASOLINE ENGINES. By C. Von Culin. New revised and enlarged edition just issued. The object of this little book is to furnish a pocket instructor for the beginner, the busy man who uses an engine for pleasure or profit, but who does not have the time or inclination for a technical book, but simply to thoroughly understand how to properly operate, install and care for his own engine. The index refers to each trouble, remedy and subject alphabetically. Being a quick reference to find the cause, remedy and prevention for troubles, and to become an expert with his own engine. Pocket size. Paper binding.

Price, 25 cents

MODERN GAS TRACTOR, ITS CONSTRUCTION, UTILITY, OPERATION AND REPAIR. By Victor W. Page. Treats exhaustively on the design and construction of farm tractors and tractor power-plants, and gives complete instructions on their care, operation and repair. All types and sizes of gasoline, kerosene and oil tractory are described, and every phase of traction engineering practice fully covered. Invaluable to all desiring reliable information on gas motor propelled traction engines and their use. 5 1/4 x 7 1/2. Cloth. 475 pages, 204 illustrations, 3 folding plates.

Price, $2.00

GEARINO AND CAMS

BEVEL GEAR TABLES. By D. Ag. Engstrom. No one who has to do with bevel gears in any way should be without this book. The designer and draftsman will find it a great convenience, while to the machinist who turns up the blanks or cuts the teeth, it is invaluable, as all needed dimensions are given and no fancy figuring need be done. Third edition. Cloth.

Price, $1.00

CHANGE GEAR DEVICES. By Oscar E. Perrigo, A book for every designer, draftsman and mechanic who is interested in feed changes for any kind of machines. This shows what has been done and how. Gives plans, patents and all information that you need. Saves hunting through patent records and reinventing old ideas. A standard work of reference. Cloth.

Price, $1.00

DRAFTING OF CAMS. By Louis Rouillion. The laying out of cams is a serious problem unless you know how to go at it right. This puts you on the right road for practically any kind of cam you are likely to run up against. Third edition.

Price, 25 cents
HYDRAULICS

HYDRAULIC ENGINEERING. By Gardener D. Hiscox. A treatise on the properties, power, and resources of water for all purposes. Including the measurement of streams; the flow of water in pipes or conduits; the horse-power of falling water; turbine and impact water-wheels; wave-motors, centrifugal, reciprocating and air-lift pumps. With 300 figures and diagrams and 36 practical tables. 320 pages. Price, $4.00

ICE AND REFRIGERATION

POCKETBOOK OF REFRIGERATION AND ICE MAKING. By A. J. Wallis-Taylor. This is one of the latest and most comprehensive reference books published on the subject of refrigeration and cold storage. It explains the properties and refrigerating effect of the different fluids in use, the management of refrigerating machinery and the construction and insulation of cold rooms with their required pipe surface for different degrees of cold; freezing mixtures and non-freezing brines, temperatures of cold rooms for all kinds of provisions, cold storage charges for all classes of goods, ice making and storage of ice, data and memoranda for constant reference by refrigerating engineers, with nearly one hundred tables containing valuable references to every fact and condition required in the installment and operation of a refrigerating plant. New edition just published. Price, $1.50

INVENTIONS—PATENTS

INVENTOR'S MANUAL, HOW TO MAKE A PATENT PAY. This is a book designed as a guide to inventors in perfecting their inventions, taking out their patents, and disposing of them. It is not in any sense a Patent Solicitor's circular nor a Patent Broker's advertisement. No advertisements of any description appear in the work. It is a book containing a quarter of a century's experience of a successful inventor, together with notes based upon the experience of many other inventors. Revised edition. 120 pages. Cloth. Price, $1.00

KNOTS

KNOTS, SPLICES AND ROPE WORK. By A. Hyatt Verrill. This is a practical book giving complete and simple directions for making all the most useful and ornamental knots in common use, with chapters on Splicing, Pointing, Seizing, Serving, etc. This book is fully illustrated with one hundred and fifty original engravings, which shows how each knot, tie or splice is formed, and its appearance when finished. The book will be found of the greatest value to campers, yachtsmen, travelers or Boy Scouts, in fact, to anyone having occasion to use or handle rope or knots for any purpose. The book is thoroughly reliable and practical, and is not only a guide but a teacher. It is the standard work on the subject. 118 pages, 150 original engravings. Price, 60 cents
LATHE WORK

TURNING AND BORING TAPERS. By Fred H. Colvin. There are two ways to turn tapers; the right way and one other. This treatise has to do with the right way; it tells you how to start the work properly, how to set the lathe, what tools to use and how to use them, and forty and one other little things that you should follow. Fourth edition. Price, 25 cents

LATHE DESIGN, CONSTRUCTION, AND OPERATION, WITH PRACTICAL EXAMPLES OF LATHE WORK. By Oscar E. Perrigo. A New revised edition, and the only complete American work on the subject, written by a man who knows not only how work ought to be done, but who also knows how to do it, and how to convey this knowledge to others. It is strictly up-to-date in its descriptions and illustrations. Lathe history and the relations of the lathe to manufacturing are given; also a description of the various devices for feeds and thread cutting mechanisms from early efforts in this direction to the present time. Lathe design is thoroughly discussed, including back gearing, driving cones, thread-cutting gears, and all the essential element of the modern lathe. The classification of lathes is taken up, giving the essential differences of the several types of lathes including, as is usually understood, engine lathes, bench lathes, speed lathes, forge lathes, gap lathes, pulley lathes, forming lathes, multiple-spindle lathes, rapid-reduction lathes, precision lathes, turret lathes, special lathes, electrically-driven lathes, etc. In addition to the complete exposition on construction and design, much practical matter on lathe installation, care and operation has been incorporated in the enlarged 1915 edition. All kinds of lathe attachments for drilling, milling, etc., are described and complete instructions are given to enable the novice machinist to grasp the art of lathe operation as well as the principles involved in design. A number of difficult machining operations are described at length and illustrated. The new edition has nearly 500 pages and 350 illustrations. Price, $2.50

PRACTICAL METAL TURNING. By Joseph G. Horner. A work of 404 pages, fully illustrated, covering in a comprehensive manner the modern practice of machining metal parts in the lathe, including the regular engine lathe, its essential design, its uses, its tools, its attachments, and the manner of holding the work and performing the operations. The modernized engine lathe, its methods, tools and great range of accurate work. The turret lathe, its tools, accessories and methods of performing its functions. Chapters on special work, grinding, tool holders, speeds, feeds, modern tool steels, etc., etc. Second edition. Price, $3.50

LIQUID AIR

LOCOMOTIVE ENGINEERING

AIR-BRAKE CATECHISM. By Robert H. Blackall. This book is a standard text book. It is the only practical and complete work published. Treats on the equipment manufactured by the Westinghouse Air Brake Company, including the E-T Locomotive Brake Equipment, the K (Quick-Service) Triple Valve for freight service; the L High Speed Triple Valve; the P-C Passenger Brake Equipment, and the Cross Compound Pump. The operation of all parts of the apparatus is explained in detail and a practical way of locating their peculiarities and remedying their defects is given. Endorsed and used by air-brake instructors and examiners on nearly every railroad in the United States. Twenty-sixth edition. 411 pages, fully illustrated with folding plates and diagrams. New edition. Price, $2.00

AMERICAN COMPOUND LOCOMOTIVES. By Fred H. Colvin. The most complete book on compounds published. Shows all types, including the balanced compound. Makes everything clear by many illustrations, and shows valve setting, breakdowns and repairs. 142 pages. Cloth. Price, $1.00

APPLICATION OF HIGHLY SUPERHEATED STEAM TO LOCOMOTIVES. By Robert Garbe. A practical book which cannot be recommended too highly to those motive-power men who are anxious to maintain the highest efficiency in their locomotives. Contains special chapters on Generation of Highly Superheated Steam; Superheated Steam and the Two-Cylinder Simple Engine; Compounding and Superheating; Designs of Locomotive Superheaters; Constructive Details of Locomotives Using Highly Superheated Steam. Experimental and Working Results. Illustrated with folding plates and tables. Cloth. Price, $2.50

COMBUSTION OF COAL AND THE PREVENTION OF SMOKE. By Wm. M. Barr. To be a success a fireman must be "Light on Coal." He must keep his fire in good condition, and prevent, as far as possible, the smoke nuisance. To do this, he should know how coal burns, how smoke is formed and the proper burning of fuel to obtain the best results. He can learn this, and more too, from Barr's "Combination of Coal." It is an absolute authority on all questions relating to the firing of a locomotive. Fifth edition. Nearly 350 pages, fully illustrated. Price, $1.00

DIARY OF A ROUND-HOUSE FOREMAN. By T. S. Reilly. This is the greatest book of railroad experiences ever published. Containing a fund of information and suggestions along the line of handling men, organizing, etc., that one cannot afford to miss. 176 pages. Price, $1.00

LINK MOTIONS, VALVES AND VALVE SETTING. By Fred H. Colvin, Associate Editor of "American Machinist." A handy book that clears up the mysteries of valve setting. Shows the different valve gears in use, how they work, and why. Piston and slide valves of different types are illustrated and explained. A book that every railroad man in the motive-power department ought to have. Fully illustrated. New revised and enlarged edition just published. Price, 50 cents
TRAIN RULE EXAMINATIONS MADE EASY.
By G. E. COLLINGWOOD. This is the only practical work on train rules in print. Every detail is covered, and puzzling points are explained in simple, comprehensive language, making it a practical treatise for the train dispatcher, engineman, trainman and all others who have to do with the movements of trains. Contains complete and reliable information of the Standard Code of Train Rules for single track. Shows signals in colors, as used on the different roads. Explains fully the practical application of train orders, giving a clear and definite understanding of all orders which may be used. 256 pages. Fully illustrated with train signals in colors.

Price, $1.25

LOCOMOTIVE BOILER CONSTRUCTION. By FRANK A. KLEINHANS. The only book showing how locomotive boilers are built in modern shops. Shows all types of boilers used; gives details of construction; practical facts, such as life of riveting punches and dies, work done per day, allowance for bending and flanging sheets and other data that means dollars to any railroad man. Second edition. 451 pages, 334 illustrations. Six folding plates. Cloth.

Price, $3.00

LOCOMOTIVE BREAKDOWNS AND THEIR REMEDIES. By Geo. L. FOWLER. Revised by Wm. W. Wood, Air-Brake Instructor. Just issued. Revised pocket edition. It is out of the question to try and tell you about every subject that is covered in this pocket edition of Locomotive Breakdowns. Just imagine all the common troubles that an engineer may expect to happen some time, and then add all of the unexpected ones, troubles that could occur, but that you had never thought about, and you will find that they are all treated with the very best methods of repair. Walschaert Locomotive Valve Gear Troubles, Electric Headlight Troubles, as well as Questions and Answers on the Air Brake are all included. Eighth edition. 294 pages. Fully illustrated.

Price, $1.00

LOCOMOTIVE CATECHISM. By ROBERT GRIMSHAW. Twenty-eighth revised and enlarged edition. This may well be called an encyclopedia of the locomotive. Contains over 4,000 examination questions with their answers, including among them those asked at the first, second and third years' examinations. 825 pages, 437 illustrations and 3 folding plates.

Price, $2.50

WESTINGHOUSE ET AIR-BRAKE INSTRUCTION POCKET BOOK CATECHISM. By Wm. W. Wood, Air-Brake Instructor. A practical work containing examination questions and answers on the E. T. Equipment. Covering what the E. T. Brake is. How it should be operated. What to do when defective. Not a question can be asked of the engineman up for promotion on either the No. 5 or the No. 6 E T equipment that is not asked and answered in the book. If you want to thoroughly understand the E T equipment get a copy of this book. It covers every detail. Makes air-brake troubles and examinations easy. Fully illustrated with colored plates, showing various pressures. Cloth.

Price, $1.50
PRACTICAL INSTRUCTOR AND REFERENCE BOOK FOR LOCOMOTIVE FIREMEN AND ENGINEERS. By CHAS. F. LOCKHART. An entirely new book on the locomotive. It appeals to every railroad man, as it tells him how things are done and the right way to do them. Written by a man who has had years of practical experience in locomotive shops and on the road firing and running. The information given in this book cannot be found in any other similar treatise. Eight hundred and fifty-one questions with their answers are included, which will prove specially helpful to those preparing for examination. 368 pages, 88 illustrations. Cloth. Price, $1.50

PREVENTION OF RAILROAD ACCIDENTS, OR SAFETY IN RAILROADING. By GEORGE BRADSHAW. This book is a heart-to-heart talk with railroad employees, dealing with facts, not theories, and showing the men in the ranks, from every-day experience, how accidents occur and how they may be avoided. The book is illustrated with seventy original photographs and drawings showing the safe and unsafe methods of work. No visionary schemes, no ideal pictures. Just plain facts and practical suggestions are given. Every railroad employee who reads the book is a better and safer man to have in railroad service. It gives just the information which will be the means of preventing many injuries and deaths. All railroad employees should procure a copy; read it, and do their part in preventing accidents. 169 pages. Pocket size. Fully illustrated. Price, 50 cents

WALSCHAERT LOCOMOTIVE VALVE GEAR. By WM. W. Wood. If you would thoroughly understand the Walschaert Valve Gear, you should possess a copy of this book. The author divides the subject into four divisions, as follows: I. Analysis of the gear. II. Designing and erecting of the gear. III. Advantages of the gear. IV. Questions and answers relating to the Walschaert Valve Gear. This book is specially valuable to those preparing for promotion. Third edition. 245 pages. Fully illustrated. Cloth. Price, $1.50

MACHINE SHOP PRACTICE

MACHINE SHOP ARITHMETIC. By COLVIN-CHENEY. Most popular book for shop men. Shows how all shop problems are worked out and "why." Includes change gears for cutting any threads; drills, taps, shink and force fits; metric system of measurements and threads. Used by all classes of mechanics and for instruction in Y. M. C. A. and other schools. Sixth edition. 131 pages. Price, 50 cents

TOOLS FOR MACHINISTS AND WOOD WORKERS, INCLUDING INSTRUMENTS OF MEASUREMENT. By JOSEPH G. HORNER. The principles upon which cutting tools for wood, metal, and other substances are made are identical, whether used by the machinist, the carpenter, or by any other skilled mechanic in their daily work, and the object of this book is to give a correct and practical description of these tools as they are commonly designed, constructed, and used. 340 pages, fully illustrated. Price, $3.50
AMERICAN TOOL MAKING AND INTERCHANGEABLE MANUFACTURING. By J. V. Woodworth. In its 500-odd pages the one subject only, Tool Making, and whatever relates thereto, is dealt with. The work stands without a rival. It is a complete practical treatise on the art of American Tool Making and system of interchangeable manufacturing as carried on to-day in the United States. In it are described and illustrated all of the different types and classes of small tools, fixtures, devices and special appliances which are in general use in all machine-manufacturing and metal-working establishments where economy, capacity and interchangeability in the production of machined metal parts are imperative. The science of jig making is exhaustively discussed, and particular attention is paid to drill jigs, boring, profiling and milling fixtures and other devices in which the parts to be machined are located and fastened within the contrivances. All of the tools, fixtures and devices illustrated and described have been or are used for the actual production of work, such as parts of drill presses, lathes, patented machinery, type-writers, electrical apparatus, mechanical appliances, brass goods, composition parts, mould products, sheet metal articles, drop forgings, jewelry, watches, medals, coins, etc. Second edition. 531 pages. Price, $4.00

HENLEY'S ENCYCLOPEDIA OF PRACTICAL ENGINEERING AND ALLIED TRADES. Edited by Joseph G. Horner, A.M.I.Mech.E. This book covers the entire practice of Civil and Mechanical Engineering. The best known experts in all branches of engineering have contributed to these volumes. The Cyclopaedia is admirably well adapted to the needs of the beginner and the self-taught practical man, as well as the mechanical engineer, designer, draftsman, shop superintendent, foreman and machinist. It is a modern treatise in five volumes. Handsomely bound in half morocco, each volume containing nearly 500 pages, with thousands of illustrations, including diagrammatic and sectional drawings with full explanatory details. Price, for the complete set of five volumes, $25.00

MODERN MACHINE SHOP CONSTRUCTION, EQUIPMENT AND MANAGEMENT. By Oscar E. Perrigo. The only work published that describes the Modern Machine Shop or Manufacturing Plant from the time the grass is growing on the site intended for it until the finished product is shipped. Just the book needed by those contemplating the erection of modern shop buildings, the rebuilding and reorganization of old ones, or the introduction of Modern Shop Methods, Time and Cost Systems. It is a book written and illustrated by a practical shop man for practical shop men who are too busy to read theories and want facts. It is the most complete all-around book of its kind ever published. 400 large quarto pages, 225 original and specially-made illustrations. Price, $5.00

"SHOP KINKS." By Robert Grimshaw. This shows special methods of doing work of various kinds, and releasing cost of production. Has hints and kinks from some of the largest shops in this country and Europe. You are almost sure to find some that apply to your work, and in such a way as to save time and trouble. 400 pages. Fifth edition. Cloth. Price, $2.50
THE WHOLE FIELD OF MECHANICAL MOVEMENTS COVERED BY MR. HISCOX'S TWO BOOKS

We publish two books by Gardner D. Hiscox that will keep you from "inventing" things that have been done before, and suggest ways of doing things that you have not thought of before. Many a man spends time and money, pondering over some mechanical problem, only to learn, after he has solved the problem, that the same thing has been accomplished and put in practice by others long before. Time and money spent in an effort to accomplish what has already been accomplished are time and money lost. The whole field of mechanics, every known mechanical movement, and practically every device is covered by these two books. If the thing you want has been invented, it is illustrated in them. If it hasn't been invented, then you'll find in them the nearest things to what you want, some movement or device that will apply in your case, perhaps; or which will give you a key from which to work. No book or set of books ever published is of more real value to the inventor, draftsman or practical mechanic than the two volumes described below.

MECHANICAL MOVEMENTS, POWERS AND DEVICES. By Gardner D. Hiscox. This is a collection of 1,890 engravings of different mechanical motions and appliances, accompanied by appropriate text, making it a book of great value to the inventor, the draftsman, and to all readers with mechanical tastes. The book is divided into eighteen sections or chapters, in which the subject-matter is classified under the following heads: Mechanical Powers; Transmission of Power; Measurement of Power; Steam Power; Air Power Appliances; Electric Power and Construction; Navigation and Roads; Gearing; Motion and Devices; Controlling Motion; Horological; Mining; Mill and Factory Appliances; Construction and Devices; Drafting Devices; Miscellaneous Devices, etc. Fourteenth edition. 400 octavo pages. Price, $2.50

MECHANICAL APPLIANCES, MECHANICAL MOVEMENTS AND NOVELTIES OF CONSTRUCTION. By Gardner D. Hiscox. This is a supplementary volume to the one upon mechanical movements. Unlike the first volume, which is more elementary in character, this volume contains illustrations and descriptions of many combinations of motions and of mechanical devices and appliances found in different lines of machinery, each device being shown by a line drawing with a description showing its working parts and the method of operation. From the multitude of devices described and illustrated might be mentioned, in passing, such items as conveyors and elevators, Prony brakes, thermometers, various types of boilers, solar engines, oil-fuel burners, condensers, evaporators, Corliss and other valve gears, governors, gas engines, water motors of various descriptions, air ships, motors and dynamos, automobile and motor bicycles, railway lock signals, car couplers, link and gear motions, ball bearings, breech block mechanism for heavy guns, and a large accumulation of others of equal importance. 1,000 specially made engravings. 396 octavo pages. Third revised edition. Price, $2.50
MACHINE SHOP TOOLS AND SHOP PRACTICE. By W. H. Vandervoort. A work of 555 pages and 673 illustrations, describing in every detail the construction, operation, and manipulation of both hand and machine tools. Includes chapters on filing, fitting, and scraping surfaces; on drills, reamers, taps, and dies; the lathe and its tools; planers, shapers, and their tools; milling machines and cutters; gear cutters and gear cutting; drilling machines and drill work; grinding machines and their work; hardening and tempering; gearing, belting, and transmission machinery; useful data and tables. Sixth edition. Cloth. Price, $3.00

MODERN MILLING MACHINES: THEIR DESIGN, CONSTRUCTION AND OPERATION. By Joseph G. Horner. This book describes and illustrates the Milling Machine and its work in such a plain, clear, and forceful manner, and illustrates the subject so clearly and completely, that the up-to-date machinist, student, or mechanical engineer cannot afford to do without the valuable information which it contains. It describes not only the early machines of this class, but notes their gradual development into the splendid machines of the present day, giving the design and construction of the various types, forms, and special features produced by prominent manufacturers, American and foreign. 304 pages, 300 illustrations. Cloth. Price, $4.00

THE MODERN MACHINIST. By John T. Usher. This book might be called a compendium of shop methods, showing a variety of special tools and appliances which will give new ideas to many mechanics from the superintendent down to the man at the bench. It will be found a valuable addition to any machinist’s library and should be consulted whenever a new or difficult job is to be done, whether it is boring, milling, turning, or planing, as they are all treated in a practical manner. Fifth edition. 320 pages, 250 illustrations. Cloth. Price, $2.50

THREADS AND THREAD CUTTING. By Colvin and Stabel. This clears up many of the mysteries of thread-cutting, such as double and triple threads, internal threads, catching threads, use of hobs, etc. Contains a lot of useful hints and several tables. Third edition. Price, 25 cents

MARINE ENGINEERING

MODERN SUBMARINE CHART. A cross-section view, showing clearly and distinctly all the interior of a submarine of the latest type. You get more information from this chart about the construction and operation of a submarine than in any other way. No details omitted—everything is accurate and to scale. It is absolutely correct in every detail, having been approved by naval engineers. All the machinery and devices fitted in a modern submarine boat are shown, and to make the engraving more readily understood all the features are shown in operative form, with officers and men in the act of performing the duties assigned to them in service conditions. THIS CHART IS REALLY AN ENCYCLOPEDIA OF SUBMARINE. It is educational and worth many times its cost. Mailed in a tube for 25 cents.
MARINE ENGINES AND BOILERS, THEIR DESIGN AND CONSTRUCTION. By Dr. G. Bauer, Leslie S. Robertson and S. Bryan Donkin. In the words of Dr. Bauer, this present work owes its origin to an oft felt want of a condensed treatise embodying the theoretical and practical rules used in designing marine engines and boilers. The need of such a work has been felt by most engineers engaged in the construction and working of marine engines, not only by the younger men, but also by those of greater experience. The fact that the original German work was written by the chief engineer of the famous Vulcan Works, Stettin, is in itself a guarantee that this book is in all respects thoroughly up-to-date, and that it embodies all the information which is necessary for the design and construction of the highest types of marine engines and boilers. It may be said that the motive power which Dr. Bauer has placed in the fast German liners that have been turned out of late years from the Stettin Works represent the very best practice in marine engineering of the present day. The work is clearly written, thoroughly systematic, theoretically sound; while the character of the plans, drawings, tables, and statistics is without reproach. The illustrations are careful reproductions from actual working drawings, with some well-executed photographic views of completed engines and boilers. 744 pages, 550 illustrations and numerous tables. Cloth.

Price, $9.00 net

MANUAL TRAINING

ECONOMICS OF MANUAL TRAINING. By Louis Rouillon. The only book that gives just the information needed by all interested in manual training, regarding buildings, equipment and supplies. Shows exactly what is needed for all grades of the work from the Kindergarten to the High and Normal School. Gives itemized lists of everything needed and tells just what it ought to cost. Also shows where to buy supplies. Illustrated. Second edition. Cloth.

Price, $1.50

MINING

ORE DEPOSITS, WITH A CHAPTER ON HINTS TO PROSPECTORS. By J. P. Johnson. This book gives a condensed account of the ore deposits at present known in South Africa. It is also intended as a guide to the prospector. Only an elementary knowledge of geology and some mining experience are necessary in order to understand this work. With these qualifications, it will materially assist one in his search for metalliferous mineral occurrences and, so far as simple ores are concerned, should enable one to form some idea of the possibilities of any they may find. Illustrated. Cloth.

Price, $2.00

PRACTICAL COAL MINING. By T. H. Cockin. An important work, containing 428 pages and 213 illustrations, complete with practical details, which will intuitively impart to the reader, not only a general knowledge of the principles of coal mining, but also considerable insight into allied subjects. The treatise is positively up to date in every instance, and should be in the hands of every colliery engineer, geologist, mine operator, superintendent, foreman, and all others who are interested in or connected with the industry. Third edition. Cloth.

Price, $2.50
PHYSICS AND CHEMISTRY OF MINING. By T. H. Byrom. A practical work for the use of all preparing for examinations in mining or qualifying for colliery managers' certificates. The aim of the author in this excellent book is to place clearly before the reader useful and authoritative data which will render him valuable assistance in his studies. The only work of its kind published. The information incorporated in it will prove of the greatest practical utility to students, mining engineers, colliery managers, and all others who are specially interested in the present-day treatment of mining problems. 160 pages, illustrated.

Price, $2.00

PATTERN MAKING

PRACTICAL PATTERN MAKING. By F. W. Barrows. This book, now in its second edition, is a comprehensive and entirely practical treatise on the subject of pattern making, illustrating pattern work in both wood and metal, and with definite instructions on the use of plaster of paris in the trade. It gives specific and detailed descriptions of the materials used by pattern makers and describes the tools; both those for the bench and the more interesting machine tools; having complete chapters on the lathe, the circular saw and the band saw. It gives many examples of pattern work, each one fully illustrated and explained with much detail. These examples, in their great variety, offer much that will be found of interest to all pattern makers, and especially to the younger ones, who are seeking information on the more advanced branches of their trade. Containing nearly 350 pages and 170 illustrations. Second edition, revised and enlarged.

Price, $2.00

PERFUMERY

HENLEY'S TWENTIETH CENTURY BOOK OF RECEIPTS, FORMULAS AND PROCESSES. Edited by G. D. Hiscox. The most valuable techno-chemical receipt book published. Contains over 10,000 practical receipts, many of which will prove of special value to the perfumer.

$3.00

PERFUMES AND COSMETICS, THEIR PREPARATION AND MANUFACTURE. By G. W. Askinson, Perfumer. A comprehensive treatise, in which there has been nothing omitted that could be of value to the perfumer or manufacturer of toilet preparations. Complete directions for making handkerchief perfumes, smelling-salts, sachets, fumigating pastilles; preparations for the care of the skin, the mouth, the hair, cosmetics, hair dyes and other toilet articles are given, also a detailed description of aromatic substances; their nature, tests of purity, and wholesale manufacture, including a chapter on synthetic products, with formulas for their use. A book of general, as well as professional interest, meeting the wants not only of the druggist and perfume manufacturer, but also of the general public. Fourth edition much enlarged and brought up-to-date. Nearly 400 pages, illustrated.

Price, $5.00
PLUMBING

STANDARD PRACTICAL PLUMBING. By R. M. STARBUCK. This is a complete treatise and covers the subject of modern plumbing in all its branches. It treats exhaustively on the skilled work of the plumber and the theory underlying plumbing devices and operations, and commands itself at once to everyone working in any branch of the plumbing trade. A large amount of space is devoted to a very complete and practical treatment of the subjects of hot water supply, circulation and range boiler work. Another valuable feature is the special chapter on drawing for plumbers. The illustrations, of which there are three hundred and forty-seven, one hundred being full-page plates, were drawn expressly for this book and show the most modern and best American practice in plumbing construction. 6¾x9¾. Cloth, 406 pages, 347 illustrations. Price, $3.00

MECHANICAL DRAWING FOR PLUMBERS. By R. M. STARBUCK. A concise, comprehensive and practical treatise on the subject of mechanical drawing in its various modern applications to the work of all who are in any way connected with the plumbing trade. Nothing will so help the plumber in estimating and in explaining work to customers and workmen as a knowledge of drawing, and to the workman it is of inestimable value if he is to rise above his position to positions of greater responsibility. 150 illustrations.

Price, $1.50

MODERN PLUMBING ILLUSTRATED. By R. M. STARBUCK. The author of this book, Mr. R. M. Starbuck, is one of the leading authorities on plumbing in the United States. The book represents the highest standard of plumbing work. A very comprehensive work, illustrating and describing the drainage and ventilation of dwellings, apartments and public buildings. The very latest and most approved methods in all branches of sanitary installation are given. The standard book for master plumbers, architects, builders, plumbing inspectors, boards of health, boards of plumbing examiners and for the property owner, as well as the workman and apprentice. It contains fifty-five entirely new and large full pages of illustrations with descriptive text, all of which have been made specially for this work. These plates show all kinds of modern plumbing work. Each plate is accompanied by several pages of text, giving notes and practical suggestions, sizes of pipe, proper measurements for setting up work, etc. Suggestions on estimating plumbing construction are also included. 400 octavo pages, fully illustrated by 55 full-page engravings.

Price, $4.00

RECIPE BOOK

HENLEY’S TWENTIETH CENTURY BOOK OF RECIPES, FORMULAS AND PROCESSES. Edited by GARDNER D. Hiscox. The most valuable technological, chemical formula book published, including over 10,000 selected scientific, chemical, technological and practical recipes and processes. This book of 800 pages is the most complete book of recipes ever published, giving thousands of recipes for the manufacture of valuable articles for everyday use. Hints, helps, practical ideas and secret processes are revealed within its pages. It covers every branch of the useful arts.
and tells thousands of ways of making money and is just the
testimony of intense interest and immeasurable prac-
tical value to the photographer, the perfumer, the painter,
the manufacturer of glues, pastes, cements and mucilages,
the physician, the druggist, the electrician, the brewer, the
engineer, the foundryman, the machinist, the potter, the
 Tanner, the confectioner, the chiropodist, the manufacturer
of chemical novelties and toilet preparations, the dyer, the
electroplater, the enameler, the engraver, the provisioner, the
 glass worker, the goldbeater, the watchmaker and jeweler,
the ink manufacturer, the optician, the farmer, the dairyman,
the paper maker, the metal worker, the soap maker, the
veterinary surgeon, and the technologist in general. A book
to which you may turn with confidence that you will find
what you are looking for. A mine of information up-to-date
in every respect. Contains an immense number of formulas
that every one ought to have that are not found in any other
work. New edition. Cloth binding, $3.00; Half Morocco
binding, $4.00

RUBBER

HENLEY’S TWENTIETH CENTURY BOOK
OF RECEIPTS, FORMULAS AND PROCESSES.
Edited by Gardner D. Hiscox. Contains upward of 10,000
practical receipts, including among them formulas on arti-
cficial rubber. Price, $3.00

RUBBER HAND STAMPS AND THE MANIP-
ULATION OF INDIA RUBBER. By T. O’Connor
Sloan. This book gives full details of all points, treating
in a concise and simple manner the elements of nearly every-
ting it is necessary to understand for a commencement in
any branch of the India rubber manufacture. The making
of all kinds of rubber hand stamps, small articles of India
rubber, U. S. Government composition, dating hand stamps,
the manipulation of sheet rubber, toy balloons, India rubber
solutions, cements, blackings, renovating varnish, and treat-
ment for India rubber shoes, etc.; the hectograph stamp inks,
and miscellaneous notes, with a short account of the dis-
covery, collection and manufacture of India rubber are set
forth in a manner designed to be readily understood, the ex-
planation being plain and simple. Third edition, 175 pages,
illustrated. Cloth. Price, $1.00

SAWS

SAW FILING AND MANAGEMENT OF SAWS.
By Robert Grimshaw. A practical hand book on filing,
gumming, swaging, hammering and the brazing of band saws,
the speed, work, and power to run circular saws, etc. A
handy book for those who have charge of saws, or for those
mechanics who do their own filing, as it deals with the proper
shape and pitches of saw teeth of all kinds and gives many
useful hints and rules for gumming, setting, and filing, and is
a practical aid to those who use saws for any purpose. Third
edition, revised and enlarged. Illustrated. Price, $1.00
SCREW CUTTING

THREADS AND THREAD CUTTING. By Colin Vin and Stabel. This clears up many of the mysteries of thread cutting, such as double and triple threads, internal threads, catching threads, use of hobs, etc. Contains a lot of useful hints and several tables. Third edition.

Price, 25 cents

STEAM ENGINEERING

Price, $2.00

STEAM ENGINE CATECHISM. By Robert Grimshaw. This volume of 413 pages is not only a catechism on the question and answer principle, but it contains formulas and worked-out answers for all the steam problems that appertain to the operation and management of the steam engine. Illustrations of various valves and valve gear with their principles of operation are given. 34 tables that are indispensable to every engineer and fireman that wishes to be progressive and is ambitious to become master of his calling are within its pages. It is a most valuable instructor in the service of steam engineering. Leading engineers have recommended it as a valuable educator for the beginner as well as a reference book for the engineer. Sixteenth edition.

Price, $2.00

BOILER ROOM CHART. By Geo. L. Fowler. A chart—size 14 x 28 inches—showing in isometric perspective the mechanisms belonging in a modern boiler room. Water tube boilers, ordinary grates and mechanical stokers, feed water heaters and pumps comprise the equipment. The various parts are shown broken or removed, so that the internal construction is fully illustrated. Each part is given a reference number, and these, with the corresponding name, are given in a glossary printed at the sides. This chart is really a dictionary of the boiler room—the names of more than 200 parts being given. It is educational—worth many times its cost.

Price, 25 cents

EMINENT ENGINEERS. By Dwight Goddard. Everyone who appreciates the effect of such great inventions as the steam engine, steamboat, locomotive, sewing machine, steel working, and other fundamental discoveries, is interested in knowing a little about the men who made them and their achievements. Mr. Goddard has selected thirty-two of the world's engineers who have contributed most largely to the advancement of our civilization by mechanical means, giving only such facts as are of general interest and in a way which appeals to all, whether mechanics or not. 280 pages, 35 illustrations.

Price, $1.50
ENGINE RUNNER'S CATECHISM. By ROBERT T. GRIMSHAW. Tells how to erect, adjust and run the principal steam engines in use in the United States. The work is of a handy size for the pocket. To young engineers this catechism will be of great value, especially to those who may be preparing to go forward to be examined for certificates of competency; and to engineers generally it will be of no little service, as they will find in this volume more really practical and useful information than is to be found anywhere else within a like compass. 387 pages.

Price, $2.00

MODERN STEAM ENGINEERING IN THEORY AND PRACTICE. By GARDNER D. HISCOX. This is a complete and practical work issued for stationary engineers and firemen dealing with the care and management of boilers, engines, pumps, superheated steam, refrigerating machinery, dynamos, motors, elevators, air compressors, and all other branches with which the modern engineer must be familiar. Nearly 200 questions with their answers on steam and electrical engineering, likely to be asked by the examining board, are included. Third edition. 487 pages, 405 engravings. Cloth.

Price, $3.00

HORSE POWER CHART. Shows the horse power of any stationary engine without calculation. No matter what the cylinder diameter or stroke; the steam pressure or cut-off; the revolutions, or whether condensing or non-condensing, it's all there. Easy to use, accurate, and saves time and calculations. Especially useful to engineers and designers.

Price, 50 cents

STEAM ENGINEER'S ARITHMETIC. By COLVIN-CHENEY. A practical pocket book for the steam engineer. Shows how to work the problems of the engine room and shows "why." Tells how to figure horse-power of engines and boilers; area of boilers; has tables of areas and circumferences; steam tables; has a dictionary of engineering terms. Puts you onto all of the little kinks in figuring whatever there is to figure around a power plant. Tells you about the heat unit; absolute zero; adiabatic expansion; duty of engines; factor of safety; and 1,001 other things; and everything is plain and simple—not the hardest way to figure, but the easiest. Second edition.

Price, 50 cents

STEAM PIPES

STEAM PIPES: THEIR DESIGN AND CONSTRUCTION. By WM. H. BOOTH. The work is well illustrated in regard to pipe joints, expansion offsets, flexible joints, and self-contained sliding joints for taking up the expansion of long pipes. In fact, the chapters on the flow of steam and expansion of pipes are most valuable to all steam fitters and users. The pressure strength of pipes and method of hanging them is well treated and illustrated. Valves and by-passes are fully illustrated and described, as are also flange joints and their proper proportions. Exhaust heads and separators. One of the most valuable chapters is that on superheated steam and the saving of steam by insulation with the various kinds of felting and other materials, with comparison tables of the loss of heat in thermal units from naked and felted steam pipes. Second edition. Contains 187 pages. Cloth.

Price, $2.00
STEAM HEATING AND VENTILATING

PRACTICAL STEAM, HOT-WATER HEATING AND VENTILATION. By A. G. King. This book has been prepared for the use of all engaged in the business of steam, hot-water heating and ventilation. Tells how to get heating contracts, how to install heating and ventilating apparatus, the best business methods to be used, with "Tricks of the Trade" for shop use. Rules and data for estimating radiation and cost and such tables and information as make it an indispensable work for everyone interested in steam, hot-water heating and ventilation. It describes all the principal systems of steam, hot-water, vacuum, vapor and vacuum-vapor heating, together with the new accelerated systems of hot-water circulation, including chapters on up-to-date methods of ventilation and the fan or blower system of heating and ventilation. Second edition. 367 pages, 300 detailed engravings. Cloth. Price, $3.00

500 PLAIN ANSWERS TO DIRECT QUESTIONS ON STEAM, HOT-WATER, VAPOR AND VACUUM HEATING PRACTICE. By Alfred G. King. This work, just off the press, is arranged in question and answer form; it is intended as a guide and text-book for the younger inexperienced fitter and as a reference book for all fitters. All long and tedious discussions and descriptions formerly considered so important have been eliminated, and the theory and laws of heat and the various old and modern methods and appliances used for heating and ventilating are treated in a concise manner. This is the standard Question and Answer examination book on Steam and Hot Water Heating, etc. 200 pages, 127 illustrations. Octavo. Cloth. Price, $1.50

STEEL

HARDENING, TEMPERING, ANNEALING, AND FORGING OF STEEL. By J. V. Woodworth. A book containing special directions for the successful hardening and tempering of all steel tools. Milling cutters, taps, thread dies, reamers, both solid and shell, hollow mills, punches and dies, and all kinds of sheet-metal working tools, shear blades, saws, fine cutlery and metal-cutting tools of all descriptions, as well as for all implements of steel, both large and small, the simplest, and most satisfactory hardening and tempering processes are presented. 320 pages, 250 illustrations. Fourth edition. Cloth. Price, $2.50

STEEL: ITS SELECTION, ANNEALING, HARDENING AND TEMPERING. By E. R. Markham. This work was formerly known as "The American Steel Worker," but on the publication of the new, revised edition, the publishers deemed it advisable to change its title to a more suitable one. This is the standard work on hardening, tempering, and annealing steel of all kinds. This book tells how to select, and how to work, temper, harden, and anneal steel for everything on earth. It is the standard book on selecting, hardening, and tempering all grades of steel. 400 pages. Very fully illustrated. Fourth edition. Price, $2.50
HENLEY'S TWENTIETH CENTURY BOOK OF RECEIPTS, FORMULAS AND PROCESSES.
Edited by GARDNER D. Hiscox. The most valuable technochemical receipt book published, giving, among other practical receipts, methods of annealing, coloring, tempering, welding, plating, polishing and cleaning steel. **Price, $3.00**

TRACTORS

THE HOME-MADE TRACTOR. By XENO W. PUTNAM. A practical treatise on the construction of small and special purpose tractors in the home workshop from the odds and ends of cast-off machinery available on nearly every farm. This work shows the farmer how, at small expense, to make his gasoline engine conveniently portable by making it self-moving; It guides him in the construction of a practical farm tractor that is capable of hauling, harvesting, plowing and doing all the ordinary farm work in which the propulsion of other machinery is required. Twenty-four chapters are contained in this book and it is illustrated with over 125 working engravings showing many successfully built and tested home-made tractors. (Ready shortly.)

THE MODERN GAS TRACTOR. By VICTOR W. PAGE. A complete treatise describing all types and sizes of gasoline, kerosene, and oil tractors. Considers design and construction exhaustively, gives complete instruction for care, operation and repair, outlines all practical applications on the road and in the field. The best and latest work on farm tractors and tractor power plants. A work needed by farmers, students, blacksmiths, mechanics, salesmen, implement dealers, designers and engineers. 500 pages. Nearly 300 illustrations and folding plates. **Price, $2.00**

TURBINES

MARINE STEAM TURBINES. By DR. G. BAUER and O. LASCHE. Assisted by E. Ludwig and H. Vogel. Translated from the German and edited by M. G. S. Swallow. The book is essentially practical and discusses turbines in which the full expansion of steam passes through a number of separate turbines arranged for driving two or more shafts, as in the Parsons system, and turbines in which the complete expansion of steam from inlet to exhaust pressure occurs in a turbine on one shaft, as in the case of the Curtis machines. It will enable a designer to carry out all the ordinary calculation necessary for the construction of steam turbines, hence it fills a want which is hardly met by larger and more theoretical works. Numerous tables, curves and diagrams will be found, which explain with remarkable lucidity the reason why turbine blades are designed as they are, the course which steam takes through turbines of various types, the thermodynamics of steam turbine calculation, the influence of vacuum on steam consumption of steam turbines, etc. In a word, the very information which a designer and builder of steam turbines most requires. Large octavo, 214 pages. Fully illustrated and containing 18 tables, including an entropy chart. **Price, $3.50 net**

31
The Most Valuable Techno-Chemical Recipe Book Ever Offered to the Public!

Henley's Twentieth Century Book of Recipes, Formulas AND PROCESSES

Price $3.00

It contains more than 10,000 practical recipes and formulas for everyday use in business, at home, or in the factory. Everything you want to make—Antiseptics, Water-proofing, Lubricants, Rust Preventives, Dyes, Filters, Cleaning Preparations, Enameling, Beverages, Inks, Adhesives, Polishes, Disinfectants, Flavorings, Cosmetics, Ceramics, etc., etc. Photography is treated in all its various branches, as are also Plating, Painting, Leather Work, etc. Tests for Food Adulterants are fully covered; how to make fly paper; to color flowers artificially; to estimate weight of ice by measurement; to make materials fireproof; to work with metals—aluminum, brass, etc.; to make anything and everything, from A to Z.

10,000 Practical Formulas and Processes

The Best Way to Make Everything

ONE USEFUL RECIPE WILL BE WORTH MORE THAN TEN TIMES THE PRICE OF THE BOOK

(See page 26 for further description of the book.)
<table>
<thead>
<tr>
<th>MAR 10 1947</th>
</tr>
</thead>
</table>

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $1.00 ON THE SEVENTH DAY OVERDUE.

LD 21-100m-12,'43 (8796s)